
Public Input Meeting

Wastewater Master Plan April 27, 2010

The Portsmouth Wastewater System

- ~ 115 miles of CollectionSystem
- Urban area is Combined Stormwater and Sanitary Flow
- 20 pumping Stations
- 3 Permitted Active
 Combined Sewer
 Overflows (CSOs)

Master Planning Process

- Iterative planning process reduces complexity
- Start at the 30,000 foot level and work down as information becomes available
- Findings will evolve as planning process progresses
- Public input throughout process reduces re-evaluations and re-work

Key Issues

- The regulatory framework is constantly changing
- City has been working to comply with the Clean Water Act since its passage
- Required improvements are not due to growth
- Low permit limits = complex technologies
- Solution must be implementable
- Solution must be affordable
- Solution must be acceptable to City

Regulatory History

- Clean Water Act passed in 1972.
 - Required Facilities Planning (201 Plan)
 - Required secondary treatment of sewage discharges
 - Set timetable for compliance
- Amendment in 1977 provided for a "301 (h)" waiver, allowing primary treatment for specific marine discharges.

City's Wastewater History

- Pre-1964 Sewer collection system discharged directly to river at multiple points
- 1964 Peirce Island Primary Treatment
 Plant Constructed
- 1972 Clean Water Act passed
- 1977 First 201 Facilities Plan prepared

- 1980 Secondary plant designed
- 1982 State prepares 301(h) waiver
 - State and City jointly submit to EPA.
- 1985 Permit issued w/301(h) waiver
- 1987 Advanced primary WWTF designed
- 1990 First EPA Consent Decree issued
 - CSO related issues

- 1992 Plant upgrades completed
 - Permit application submitted w/301(h)
- 2002 City prepares collection systemCSO LTCP
- 2005 EPA issues draft permit w/301(h)
 - Twenty years after first permit issued
 - Five year permit cycle, no permit renewal for 15 years

- 2007 EPA rescinds draft permit
 - NPDES permit issued requiring Secondary Treatment,
 - Master Plan begins
- August 2007 EPA issues Administrative
 Order
- May 2009 DES states 8 mg/L TN limit for Great Bay WWTFs

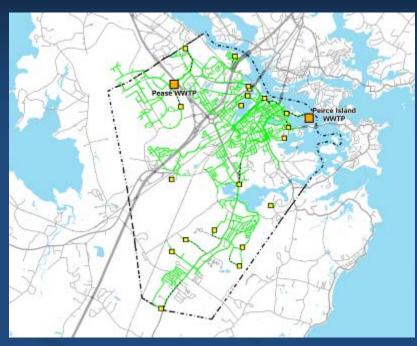
- September 2009 EPA issues Consent Decree
 - Concurred with City that phased expansion of Pease WWTF is preferred option
- October 2009 EPA / NHDES performed dye tracer study

- December 2009 City issues Treatment Alternative memorandum identifying phased expansion of Pease WWTF as preferred option
 - EPA indicates 8 mg/L TN limit unsupportable
- January 2010 NHDES states that Pease
 Outfall may not be viable for higher flows
- March 2010 City Staff briefed by regional and national EPA

- April 2010 NHDES states that a phosphorus limit will likely be added to a future NPDES permit for both Pease and Peirce Island WWTFs
- June 2010 Draft Wastewater Master Plan is required to be submitted to EPA and NHDES
- September 2010 Final Wastewater
 Master Plan is required to be submitted to EPA and NHDES

Regulatory Summary

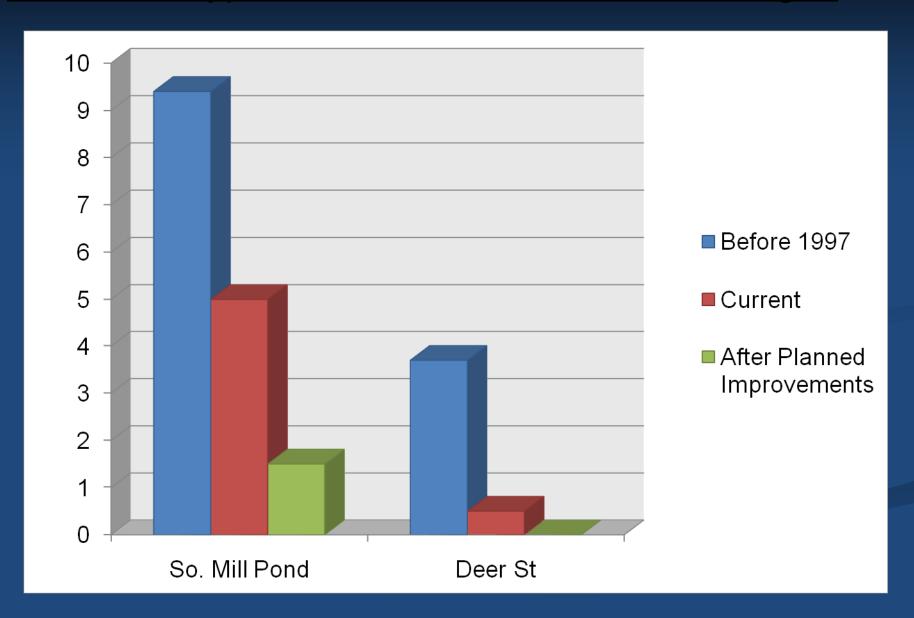
- The City must construct a new/upgraded WWTF
- Consent Decree requires submission of complete draft Master Plan by June 1, 2010 with final submission September 1, 2010
- The WWTF must be designed to treat to the required permit limits, which are yet to be determined
- Direction on permit limits from regulators has been constantly evolving
- The City will continue to work with regulators to clarify the permit limits


The regulatory framework is constantly changing

Key Issues

- The regulatory framework is constantly changing
- City has been working to comply with the Clean Water Act since its passage
- Required improvements are not due to growth
- Low permit limits = complex technologies
- Solution must be implementable
- Solution must be affordable
- Solution must be acceptable to City

Projects Completed Since 1997 (over \$25M)


- Peirce Island Bridge Forcemain
- Essex Sheffield Separation
- Thaxter Fells Separation
- Pannaway Manor Separation
- Brickbox Cleaning
- Brackett Road Sewer Extension
- Peirce Island WWTP Improvements
- Mechanic Street Pumping Station Upgrade
- Route One Sewer Improvements
- Upper Court Street (LTCP)
- South Mill Pond Area Contract 1 (LTCP)

Projects Completed Since 1997 (con't)

- South Street Sewer Separation
- Pease Interceptor Upgrade
- Lafayette Road Pumping Station Upgrade
- SCADA System Upgrade
- Gosling Road Pumping Station Upgrade
- Dennett Street Sewer Separation
- Pleasant Point Sewer Extension
- Lower Court Street (LTCP)
- Deer Street Pumping Station (LTCP)
- Borthwick Avenue Sewer (LTCP)

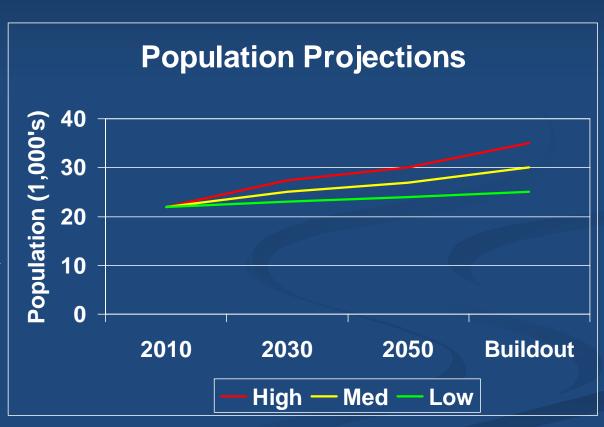
Estimated Typical Year CSO Volumes Discharged

Projects Concurrent with Master Plan

- Mechanic Street Completed
- Bartlett Street Under Construction
- Lincoln Area 3A Construction Starts Summer 2010
- State Street Under Construction
- Cass Street Area Under Design
- Evaluating interim measures to control nitrogen and total suspended solids which can be implemented within the current NPDES Permit cycle – On-going

 City has been working to comply with the Clean Water Act since its passage

Key Issues


- The regulatory framework is constantly changing
- City has been working to comply with the Clean Water Act since its passage
- Required improvements are not due to growth
- Low permit limits = complex technologies
- Solution must be implementable
- Solution must be affordable
- Solution must be acceptable to City

Future Wastewater Flows

- Population / Employment
 - Current 20,800 / 28,800
 - Year 2030 24,400 / 35,700
- Wastewater Flows
 - Current Max Month Flow 10 MGD
 - Future Max Month Design Flow 12 MGD (2030)

Flow Projections

- Current Zoning
- Water use records
- Monitoring data
- Flow/person
- Flow/House
- Flow/Business

Improvements Required due to Regulatory Changes, not Growth

- Limited growth within Portsmouth through 2060
- Loss of the 301(h) waiver requires the City to treat its wastewater to secondary levels
 - The Peirce Island WWTF cannot meet secondary treatment levels as configured
 - The Pease WWTF is too small to treat City's wastewater flows
- Regulatory actions concurrent with Master Plan will require additional treatment for nutrient removal

Required improvements are not due to growth

Key Issues

- The regulatory framework is constantly changing
- City has been working to comply with the Clean Water Act since its passage
- Required improvements are not due to growth
- Low permit limits = complex technologies
- Solution must be implementable
- Solution must be affordable
- Solution must be acceptable to City

Nitrogen Reduction RETURN SLUDGE 20 -30 mg/L Total Nitrogen RETURN SLUDGE NITRATE RECYCLE 8 -10 mg/L Total Nitrogen RETURN SLUDGE NITRATE RECYCLE > 5 mg/L Total Nitrogen **RETURN SLUDGE** NITRATE RECYCLE > 3 mg/L Total Nitrogen, >0.5 mg/L Total Phosphorus

What Will the Nutrient Limits Be?

- EPA has suggested that a total nitrogen limit of 3 mg/L may be required
 - This is considered the limit of technology in warmer climates
 - To reach these limits, methanol will be required in the treatment process
- The previous support by NHDES of an 8 mg/L limit appears to be fading
- The phosphorus limit may be 1 mg/L
 - This is achievable biologically, but will require additional treatment tanks

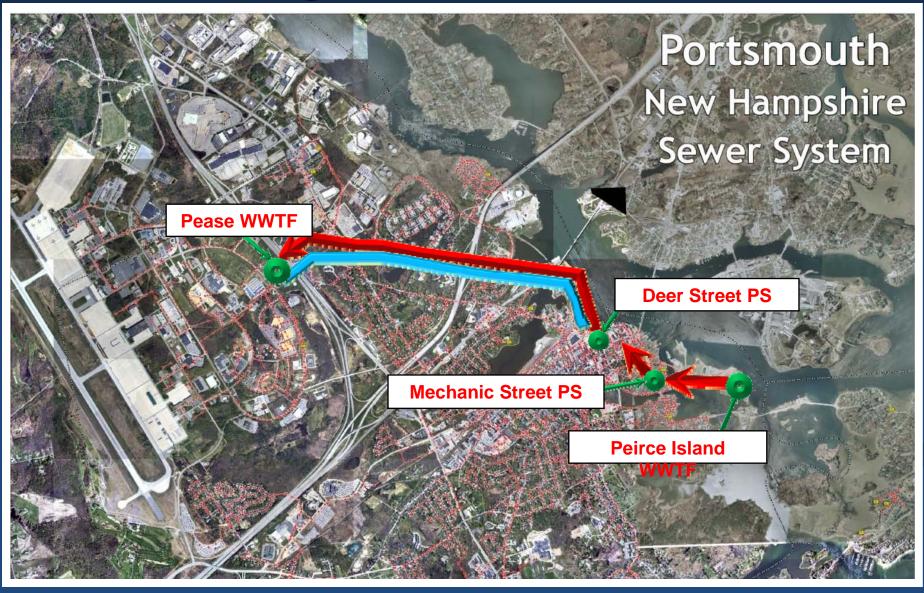
Current Alternatives

Current WWTF Alternatives

- Expand the Pease facility
 - Pumping back to Peirce Island may be required
- Upgrade Peirce Island facility
 - Regulatory and construction issues may impact ability to stay within the fence line

Each alternative impacts the collection system CSO LTCP

Modifications to Pease for 7.5 mgd WWTF TN of 5 mg/L


Pease SBR Expansion - Pros

- Can meet low total nitrogen limits
- Proven technology
- City currently runs SBR system
- Construction can be phased over time to reduce rate impacts
- Consistent with Public Goal of not expanding the Peirce Island WWTF

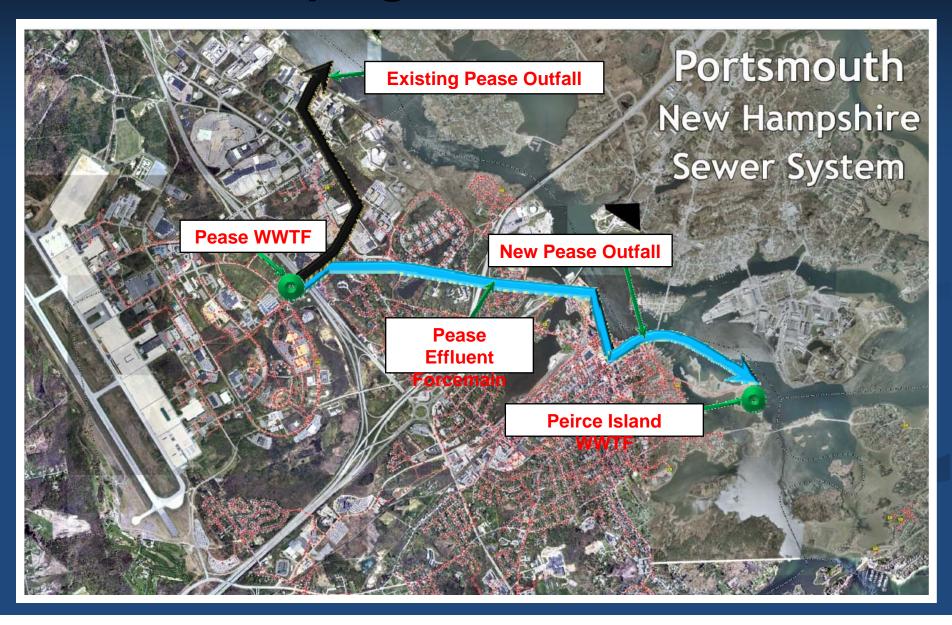
Pease SBR Expansion - Cons

- Will require additional pumping to reroute flow to Pease
- May require pumping back to Peirce Island outfall for discharge increasing cost
- If Pease outfall is used, EPA may impose stricter permit limits than at the Peirce Island outfall
- The Peirce Island WWTF will continue to operate as a wet weather treatment system

Re-routing Flows to Pease WWTF

Re-routing / CSO Capital Costs- Pease Option

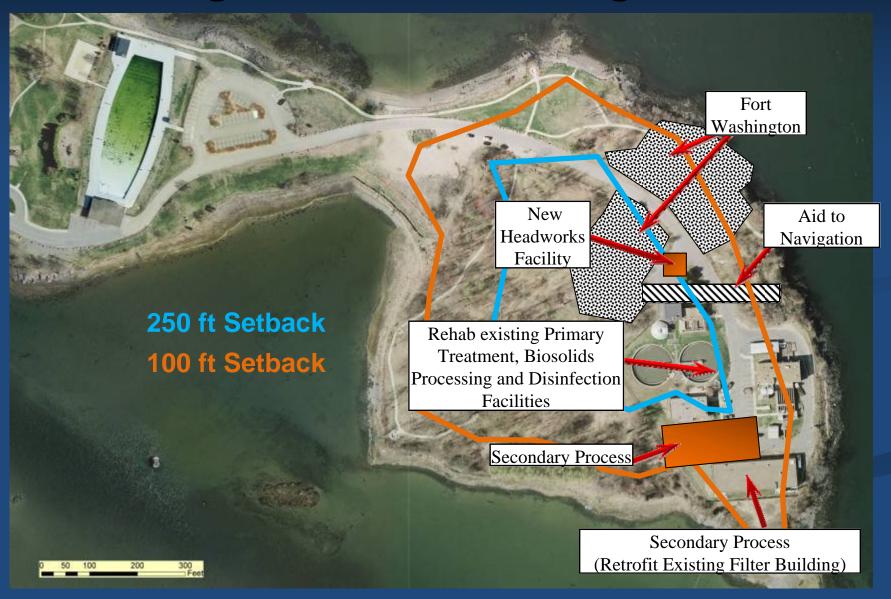
Re-Routing


```
Deer Street PS/FM $ 5 M
Mechanic Street DW PS/FM $ 9 M
Peirce Island PS/FM $ 2 M
$ 16M
```

CSO Improvements

Parrott Avenue Upgrade \$ 4 M

Total\$ 20 M


Effluent Pumping to Peirce Island WWTF

Pease Effluent PS/FM to Peirce Island Outfall Capital Costs

Total	\$ 14 M
Subaqueous FM to Existing Outfall	\$ 8 M
FM Pease WWTF to North Mill Pond	\$ 4 M
Effluent Pump Station	\$ 2 M

Modifications to Peirce Island for 6.3 mgd WWTF TN of 5 mg/L

Peirce Island High Rate System - Pros

- Can meet low total nitrogen and phosphorus limits
- Maximize use of existing infrastructure
 - Both with collection system and WWTF

Peirce Island High Rate System - Cons

- Limited upgrade capacity
 - Upgrade to 2030 flows pushing limits of existing fence line
 - No room for future expansion within fence line
 - Waiver of the Shoreline Protection setback will likely be required for any work outside fence line
- Upgrade at Pease facility would still be necessary (particularly if phosphorus limit is issued)

Peirce Island High Rate System Cons

- MBR process eliminated during technology screening
- Wet weather capacity cannot be utilized without
 - A new outfall or wet weather bypass to the existing outfall
- Difficulty of on-island construction
- Potential need for nested tanks will increase construction costs

Peirce Island High Rate System - Cons

- Counter to City's expressed goal of reclaiming Peirce Island
- Potential impacts to Fort Washington 106
 Historic Review Process
- Additional truck traffic through central business district during construction and operations
- Challenging operations
- Upgrade cannot be phased

Benefits of Phased Construction

- Construction period is spread over time
 - May allow the development of an affordable, implementable schedule
 - Requires EPA approval
- Additional science can be collected
 - Potential to prove the viability of the Pease WWTF outfall
 - Would reduce the overall cost of the project
 - Would reduce the timeframe to implement
 - May prove higher nutrient limits are acceptable

Low permit limits = complex technologies

Key Issues

- The regulatory framework is constantly changing
- City has been working to comply with the Clean Water Act since its passage
- Required improvements are not due to growth
- Low permit limits = complex technologies
- Solution must be implementable
- Solution must be affordable
- Solution must be acceptable to City

Implementation Concerns Pease WWTF

- The NHDES has verbally stated that the Pease outfall cannot support the required effluent flow rate
- Loss of the Pease outfall, with use of an expanded Pease WWTF as the solution will require pumping back to the Peirce Island WWTF
 - This will add \$14 million to capital cost of project and \$50,000 in O&M costs per year

Implementation Concerns Peirce Island WWTF

- There is no room for expansion, if required, within the fence line
 - With a potential phosphorus limit, it may not be possible to stay within the existing fence line with new construction
- Construction cannot be phased
- A high rate treatment system will be required
 - High energy cost
 - Challenging to operate

Solution must be implementable

Key Issues

- The regulatory framework is constantly changing
- City has been working to comply with the Clean Water Act since its passage
- Required improvements are not due to growth
- Low permit limits = complex technologies
- Solution must be implementable
- Solution must be affordable
- Solution must be acceptable to City

Affordability Evaluation

- EPA guidelines allow for an affordability evaluation
 - This evaluation is currently being refined to reflect most recent alternatives
- If project is above affordability threshold, implementation can be phased over time or water quality standards can be adjusted

Affordability Evaluation

- An upgrade to the Peirce Island WWTF cannot be phased
 - Its not possible to adjust compliance schedule with this option
- An upgrade to the Pease WWTF can be phased
 - This will allow scheduled compliance

Cost Definitions

- Capital Costs
 - Costs to construct a facility, including engineering.
- Operating and Maintenance (O&M) Costs
 - Costs to operate a facility, on an annual basis
- Life Cycle Costs
 - The total of present value of 20 years of O&M costs plus the capital costs
 - Used to identify the lowest cost alternative

Capital Cost Breakdowns

- Consent Decree Capital Costs
 - Costs directly related to meeting the Consent Decree
 - Expenditure will be mandated by EPA
- Capital Improvement Plan (CIP) Costs
 - Non-consent Decree related costs necessary to keep the City's WWTFs in compliance
 - Includes the need to meet future permit limits

Alternative Capital Cost Comparison

Scenario	Capital Cost (\$M)			
	WWTF	Collection System	CSO Treatment	Total
TN 8				
Peirce Island	\$50	\$0	\$21	\$71
Pease (Pease)	\$48	\$16	\$4	\$68
Pease (PI)	\$48	\$30	\$4	\$82
TN 5				
Peirce Island	\$50	\$0	\$21	\$71
Pease (Pease)	\$69	\$16	\$4	\$89
Pease (PI)	\$69	\$30	\$4	\$103
TN 3				
Peirce Island	\$50	\$0	\$21	\$71
Pease (Pease)	\$69	\$16	\$4	\$89
Pease (PI)	\$69	\$30	\$4	\$103

Alternative Capital Cost Comparison

Scenario	Capital Cost (\$M)				
	WWTF	Collection System	CSO Treatment	Additional CIP	Total
TN 8					
Peirce Island	\$50	\$0	\$21	\$30	\$101
Pease (Pease)	\$48	\$16	\$4	\$18	\$86
Pease (PI)	\$48	\$30	\$4	\$18	\$100
TN 5					
Peirce Island	\$50	\$0	\$21	\$31	\$102
Pease (Pease)	\$69	\$16	\$4	\$18	\$107
Pease (PI)	\$69	\$30	\$4	\$18	\$121
TN 3					
Peirce Island	\$50	\$0	\$21	\$31	\$102
Pease (Pease)	\$69	\$16	\$4	\$18	\$107
Pease (PI)	\$69	\$30	\$4	\$18	\$121

Life Cycle Cost Comparison

Scenario	Capital (\$M)	Annual O&M (\$M)	Present Value O&M (5% , 20 yrs, \$M)	Life Cycle Cost (\$M)
TN 8				
Peirce Island	\$101	\$5.1	\$60	\$161
Pease (Pease)	\$86	\$5.6	\$66	\$152
Pease (PI)	\$100	\$5.6	\$66	\$166
TN 5				
Peirce Island	\$102	\$5.8	\$68	\$170
Pease (Pease)	\$107	\$5.1	\$60	\$167
Pease (PI)	\$121	\$5.2	\$61	\$182
TN 3				
Peirce Island	\$102	\$6.0	\$70	\$172
Pease (Pease)	\$107	\$5.2	\$61	\$168
Pease (PI)	\$121	\$5.3	\$62	\$183

Estimated Impact on Sewer Rates

Additional Debt (\$M)	User Rate (\$/Year)	% of Median Household Income
\$40	\$1,400	2.3%
\$60	\$1,600	2.7%
\$80	\$1,800	3.0%
\$100	\$2,000	3.3%

- Current average user rate is \$600 per year
- EPA affordability threshold is 2%

Solution must be affordable

Key Issues

- The regulatory framework is constantly changing
- City has been working to comply with the Clean Water Act since its passage
- Required improvements are not due to growth
- Low permit limits = complex technologies
- Solution must be implementable
- Solution must be affordable
- Solution must be acceptable to City

Acceptable Solution

- The cost and public goal of reclaiming
 Peirce Island must be balanced
 - Peirce Island option has the lowest capital and life cycle cost if a Pease solution with pumping back to Peirce Island is required
 - The Peirce Island solution cannot be phased
 - Expansion at Pease is the lowest life cycle cost if pumping back to Peirce Island is not required
 - This option can be phased over time, reducing impact to user rates

Acceptable Solution

The final option will be an EPA determination with City's consent.

Key Issues

Solution must be acceptable to City

Key Issues

- The regulatory framework is constantly changing
- City has been working to comply with the Clean Water Act since its passage
- Required improvements are not due to growth
- Low permit limits = complex technologies
- Solution must be implementable
- Solution must be affordable
- Solution must be acceptable to City

Where do we go from here?

- City has to build secondary WWTP
 - Ability to remove nitrogen and phosphorus must be considered
- Continue to refine alternatives
- Regulatory hurdles
- Regional cooperation
 - Additional science and data gathering being considered to support cost effective and sustainable solutions

QUESTIONS

???