ADDENDUM NO. 2

TO

BIDDING AND CONTRACT REQUIREMENTS AND SPECIFICATIONS

FOR THE

WATER TRANSMISSION MAIN VALVE IMPROVEMENTS PROJECT WP PROJECT NO. 14202

1/3/2024

PREPARED BY:

WRIGHT-PIERCE

230 COMMERCE WAY, SUITE 302 PORTSMOUTH, NH 03801 603.430.3728 | WWW.WRIGHT-PIERCE.COM

WATER TRANSMISSION MAIN VALVE IMPROVEMENTS PROJECT

ADDENDUM NO. 2

WP PROJECT NO. 14202

As a point of clarification, it should be understood that the Contract Documents govern all aspects of the project. Discussions held during the Pre-Bid Conference or over phone or email are informal and informational only. All official changes to the Contract Documents are made only by addenda. The following changes and additional information are hereby made a part of the Contract Documents:

SPECIFICATIONS

1. NO CHANGES

DRAWINGS

1. **NO CHANGES**

QUESTIONS AND ANSWERS

Questions Received During the Bidding Period

- 1. Q: Regarding Item 14, please clarify that the requirement is for a 24"x20" Tapping sleeve with a 20" valve, and that the intent is to complete these taps on the existing 24" PCCP Pipeline.
 - A: Item 14 is intended to include furnishing all materials and equipment necessary to tap the existing 24" PCCP pipe with a tapping sleeve and install 20" valves on both sides of the project. The valves are for future use and will provide isolation for the proposed 24" HDPE subaqueous water main that will be installed as a part of a future project. Item 14 also includes installation of a 6 ft stub of 20" ductile iron pipe and a restrained cap after the valve. Note that test pits are required at each tapping location to confirm the diameter of the existing PCCP pipe and locations of the pipe joints.
- 2. Q: After corresponding with various insertion valve manufacturers, we are unable to find one who can meet AIS or BABA. Will the AIS and BABA requirements be waived for the insertion valves on this contract?
 - A: Yes, we understand that there are no insertion valves manufactured to meet AIS or BABA requirements, and these requirements are waived for the insertion valves.

- 3. Q: Have you discussed lead time with any of the insertion valves manufacturers? We have been told the valve may be ~6 months out.

 A: Discussion with leading insertion valve manufacturer indicates delivery of 4 20" valves can be accomplished within 2-4 weeks. For the 20" tapping valves we have been told less than 8-10 weeks for delivery at this time.
- 4. Q: Will 16' wide timber mats be allowed in lieu of 12'?

 A: Yes, 16' long timbers mats are permissible. Mats shall not exceed 16' width at wetland crossings. Note this item was also addressed in Addendum 1.
- 5. Q: Please request the static pressure in the existing pipe. Also, please request the SP-5 specification sheets for the pipe the taps are supposed to go on so I can do a hoop stress calculation.
 - A: Based on the Newington Booster Tank Level, the static pressure at the bay level should be 60-70 psi. At the lowest point in the bay the static pressure should be 75-85 psi.

The best historic information available for the precast concrete cylinder pipe from the 1954 installation is included as Attachment A. The handwritten notes indicate from Bellamy Reservoir to Water Treatment Plant, however the approximate footage indicated for the 24-inch of 17,000 feet seems to indicate this is the pipe used to construct the finished water to Newington. This information is provided for the Contractor's benefit as the best available historic information; however, the Contractor is responsible for verifying the actual conditions, size, and location of the pipeline in its as-built conditions.

END OF ADDENDUM No. 2

Attachments Follow:

A. Attachment A - 1954 Interpace PCCP 24" and 20" pipe information.

PORTSMOUTH, NEW HAMPSHIRE

J. R. Hush

SPECIFICATION

NO. WH-5L-15-1

ADDENDUM 2, ATTACHMENT A

FOR 20" & 24" PRESTRESSED CONCRETE CYLINDER PIPE WITH RUBBER & STEEL JOINT

ARYY AIR FORCE BASE

PORTSMOUTH, NEW HAMPSHIRE

WHITMAN & HOWARD, ARCHITECTS - ENGINEERS

SEE DRAWING D-2-630-20"A & D-2-630-24"A			
Nominal Pipe Diameter - inches	20		511
Approximate Footage - feet	16,300		29,800
Class - psi	150	1	150
Cylinder Gage - ga. ASTM A 245-52T, Grade B Cylinder Area - sq. in./ft. Cylinder Test Pressure - (25,000 psi) - psi	16 0.718 133		16 0.718 111
Wire Size - ASTM 227-47 Wire Spacing - in. c.c. Wire Area - sq. in./ft.	#6 MBU 1.151 0.304		#6 MBN 1.000 0.3h7
Pressure when compression in concrete is zero - psi Resultant compression in concrete - psi Resultant tension in wire - psi Gross wrapping stress - psi Dynamometer (1 wire) - lbs. Dynamometer (2 wires) - lbs. Minimum compressive strength of centrifugated concrete at time of wrapping - psi	233 1,540 119,900 140,000 4,055 8,105		218 1,495 114,700 140,000 4,055 5,105
Core Thickness (including cylinder) - inches Coating Thickness - inches	1-1/4 3/4		1-1/2 3/4
Joint Rings Spigot Ring - special section x 4-1/2" Bell Hing - 3/16" x 5" wide Both zinc coated			121 MACLUST
Joint Depth - inches Creep - feet Average Laid Length - feet	3-1/4 0.02 16.02		3-1/4 0.02 16.02
Calculation Data: C =	0.61	+2	0.73

Pipe to be coated inside with a Bituminous Seal Coat.

MART A PETIT FOR THE PETIT OF T

LOCK JOINT PIPE CO.

r. =

EAST ORANGE, N. J.

11111-1-54

LOCK JOINT PIPE CO.

FITTHESTE NANCY White Ports mouth N. Hampshite

EAST ORANGE, N. J.

SPECIFICATION

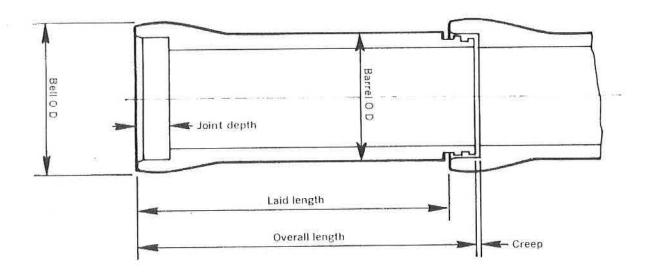
NO. WH-59-36-1

PORTSMOUTH, N. H. WHITMAN & HOWARD — CORPS OF ENGINEERS SEE DRAWING D.2-630-24", D.2-630-20" Nominal Pipe Diameter — inches	SURFACE WATER SUPPLY SYSTEM - PEASE AIR FORCE	E BASE	
### HOWARD — CORPS OF ENGINEERS SEE DRAWING D=2-630_24", D=2-630_20" Nominal Pipe Diameter — inches			
Nominal Pipe Diameter = inches	44.5 TO STOCK (1944) 14.4 PAGE STOCK (1945) 14.5 PAGE STOCK (1945) 1		
Approximate Footage = feet 17,000 4,700 Design Conditions: Working Pressure 150 150 Cylinder Gage = ASTM A 245-57T, Grade B 16 16 16 Cylinder Area = sq.in./ft. 0.718 0.718 111 133 Wire Size = ASTM A 227-47 #6 MBU #6	SEE DRAWING D-2-630-24", D-2-630-20"		
Design Conditions: Working Pressure 150	Nominal Pipe Diameter _ inches	24	20
Working Pressure Cylinder Gage - ASTM A 245-57T, Grade B Cylinder Area - sq.in./ft. Cylinder Test Pressure (25,000 psi) psi Cylinder Est Pressure (25,000 psi) psi Cylinder Test Pressure (25,000 psi) psi Cylinder Test Pressure (25,000 psi) psi Cylinder Size - ASTM A 247-47 Co.289 Cylinder Test Pressure (25,000 psi) psi Cylinder Cylinde	Approximate Footage - feet	17,000	4,700
Working Pressure Cylinder Gage - ASTM A 245-57T, Grade B Cylinder Area - sq.in./ft. Cylinder Test Pressure (25,000 psi) psi Cylinder Est Pressure (25,000 psi) psi Cylinder Test Pressure (25,000 psi) psi Cylinder Test Pressure (25,000 psi) psi Cylinder Size - ASTM A 247-47 Co.289 Cylinder Test Pressure (25,000 psi) psi Cylinder Cylinde	Design Conditions:		
Cylinder Area = sq.in./ft.		150	150
Cylinder Area = sq.in./ft.	Cylinder Gage _ ASTM A 245_57T. Grade B	16	16
Sylinder Test Pressure (25,000 psi) psi 111 133		DEST APPROXIMATE	0.718
Wire Spacing - in. c.c. Wire Area - sq.in./ft. 1.000 0.289 Pressure when compression in concrete is zero-psi Resultant compression in concrete - psi Resultant tension in wire - psi Resultant tension in concrete - psi Resultant compression to concrete - psi Resultant compression in concrete is zero-psi Resultant concrete is zero-psi Resultant concrete is zero-psi Resultant concrete is zero-psi Result			
Wire Spacing - in. c.c. Wire Area - sq.in./ft. 1.000 0.289 Pressure when compression in concrete is zero-psi Resultant compression in concrete - psi Resultant tension in wire - psi Resultant tension in concrete - psi Resultant compression to concrete - psi Resultant compression in concrete is zero-psi Resultant concrete is zero-psi Resultant concrete is zero-psi Resultant concrete is zero-psi Result	Wine Size ASTM & 227_47	#6 MBU	#6 MBU
Wire Area — sq.in./ft. O.347 O.289 Pressure when compression in concrete is zero—psi Resultant compression in concrete — psi 1,480 Resultant tension in wire — psi 118,300 Resultant tension in wire — psi 140,000 Resultant tension in concrete — psi 14,400 Resultant tension in concrete in tension in te			D-17
Resultant compression in concrete - psi 1,480 1,405 Resultant tension in wire - psi 118,300 119,705 Gross wrapping stress - psi 140,000 140,000 Dynamometer (1 wire) - 1bs. 4,055 4,055 Minimum compressive strength of centrifugated concrete at time of wrapping - psi 4,100 4,000 Core Thickness (including cylinder) - inches 1-1/2 7/8 7/8 Joint Rings: Spigot Ring - special section x 4-1/2" wide Bell Ring 3/16" x 5 inches Both zinc coated Joint Depth - inches 3-1/4 0.02 0.02 Average Laid Length - feet 16.02 Calculation Data: C = 0.76 6 6			
Resultant compression in concrete - psi 1,480 1,405 Resultant tension in wire - psi 118,300 119,705 Gross wrapping stress - psi 140,000 140,000 Dynamometer (1 wire) - 1bs. 4,055 4,055 Minimum compressive strength of centrifugated concrete at time of wrapping - psi 4,100 4,000 Core Thickness (including cylinder) - inches 1-1/2 7/8 7/8 Joint Rings: Spigot Ring - special section x 4-1/2" wide Bell Ring 3/16" x 5 inches Both zinc coated Joint Depth - inches 3-1/4 0.02 0.02 Average Laid Length - feet 16.02 Calculation Data: C = 0.76 6 6	Pressure when compression in concrete is zero_psi	216	211
Resultant tension in wire - psi Gross wrapping stress - psi Dynamometer (1 wire) - 1bs. Minimum compressive strength of centrifugated concrete at time of wrapping - psi Core Thickness (including cylinder) - inches Coating Thickness - inch Joint Rings: Spigot Ring - special section x 4-1/2" wide Bell Ring 3/16" x 5 inches Both zinc coated Joint Depth - inches Creep - feet Average Laid Length - feet Calculation Data: C = 0.76 D.70 Core Thickness of the psi of the			
Gross wrapping stress = psi Dynamometer (1 wire) = 1bs. Minimum compressive strength of centrifugated concrete at time of wrapping = psi Core Thickness (including cylinder) = inches Coating Thickness = inch Joint Rings: Spigot Ring = special section x 4-1/2" wide Bell Ring 3/16" x 5 inches Both zinc coated Joint Depth = inches Creep = feet Average Laid Length = feet Calculation Data: C = 0.76 D = 6 140,000 4,055 4,055 4,000			119,705
Dynamometer (1 wire) = 1bs. Minimum compressive strength of centrifugated concrete at time of wrapping = psi 4,100 4,000 Core Thickness (including cylinder) = inches 1=1/2 7/8 7/8 Joint Rings: Spigot Ring = special section x 4=1/2" wide Bell Ring 3/16" x 5 inches Ecth zinc coated Joint Depth = inches 3=1/4 0.02 0.02 16.02 Average Laid Length = feet 16.02 0.70 Calculation Data: C = 0.76 0.70 n = 6			
concrete at time of wrapping = psi 4,100 4,000 Core Thickness (including cylinder) = inches 1=1/2 7/8 7/8 Joint Rings: Spigot Ring = special section x 4=1/2" wide Bell Ring 3/16" x 5 inches Both zinc coated Joint Depth = inches 3=1/4 3=1/4 Creep = feet 0.02 0.02 Average Laid Length = feet 16.02 Calculation Data: C = 0.76 0.70 n = 6		4,055	4,055
Core Thickness (including cylinder) - inches 1-1/2 7/8 7/8 Joint Rings: Spigot Ring - special section x 4-1/2" wide Bell Ring 3/16" x 5 inches Both zinc coated Joint Depth - inches Creep - feet 0.02 0.02 Average Laid Length - feet 0.76 0.70 Calculation Data: C = 0.76 0.70 Depth - inches 0.70 Calculation Data: C = 0.76 0.70			1
Coating Thickness = inch Joint Rings: Spigot Ring = special section x 4-1/2" wide Bell Ring 3/16" x 5 inches Both zinc coated Joint Depth = inches Creep = feet Average Laid Length = feet Calculation Data: C = 0.76 n = 6	concrete at time of wrapping - psi	4,100	4,000
Spigot Ring - special section x 4-1/2" wide Bell Ring 3/16" x 5 inches Both zinc coated Joint Depth - inches Creep - feet Average Laid Length - feet Calculation Data: C = 0.76 n = 6 O.70 6		1_1/2 7/8	
Creep - feet 0.02 0.02 16.02 Average Laid Length - feet 16.02 16.02 Calculation Data: C = 0.76 0.70 6 6	Spigot Ring - special section x 4-1/2" wide Bell Ring 3/16" x 5 inches		
Creep - feet 0.02 0.02 16.02 Average Laid Length - feet 16.02 16.02 Calculation Data: C = 0.76 0.70 6 6	Joint Depth - inches	3_1/4	3_1/4
Average Laid Length = feet 16.02 16.02 Calculation Data: C = 0.76 0.70 6 6	The second of the second second second of the second of th		
n = 6 6			16.02
n = 6 6	Calculation Data: C =	0.76	0.70
Some may need to be BELLAMI BESEARCH Painte d'ordride AT TO WITER			AND THE PROPERTY OF THE PROPER
Some montrade At 70 W.T. P.	masse to be	$D_{L} \cdot i \cdot i_L M$, Resélation
1 116+00	Some non lide A	70 W.T.	P
	1 116+00		

Schoon - Missy Fortomauck 21.7%

SPECIFICATION

NO. WH-68-63-1


20" WATER MAIN RELOCATION	
PORTSMOUTH, NEW HAMPSHIRE	
DEPARTMENT OF PUBLIC WORKS & HIGHWAYS	
EE DRAWING INTERPACE Engineering Manual, Section 1, E	Page 2
Nominal Pipe Diameter - inches	20
Approximate Footage - feet	3,200
Cylinder Gage - ASTM A-570-66T, Grade C Minimum Yield Strength of Cylinder - psi Cylinder Test Pressure - psi	17 33,000 112
Wire Size - ASTM A 227-64 Wire Area - sq.in./ft. No. of Wraps of Wire - per ft. Minimum Ultimate Wire Strength - psi Wire Wrapping Stress - psi Dynamometer (1 wire) - lbs.	#8 MBU 0.221 10.74 231,000 173,250 3,570
Pressure at zero concrete compression - psi Resultant compression in concrete - psi Minimum compressive strength of concrete at time of wrapping (Rodded or Vibrated Cylinders) - psi	187 1,330 3,500
Core Thickness (including cylinder) - inches Minimum Coating Thickness - inches	1-1/4 13/16
Zinc Coated Joint Rings: Spigot Ring Width - inches Bell Ring - inches x inches	4-1/2 3/16 x 4-1/2
Joint Depth - inches Creep - feet Average Laid Length - feet	3 - 1/4 0.02 16.02
Calculation Data: $n_i = 6.0$, $n_r = 5.0$, $R_1 = 0.05$, $R_2 =$	0.00, $C_r = 1.50$
Design Conditions: In Accordance with AWWA Specification C-301-64	
Working Pressure - psi Test Pressure - psi Cover - feet	150 150 9
NOTES: 1. For details of specials see INTERPACE Engineering 2. All specials to be Type "B", Class 150. 3. For details of Dresser ends see Dwg. E-4-1503. 4. For details of Dresser ends x Flg Adapter see Dwg.	

LJ02005150

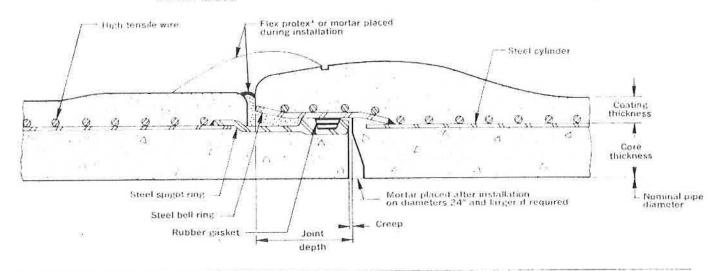
International Pipe & Ceramics Corporation LOCK JOINT PIPE PRODUCTS

SECTION 1, PAGE 2

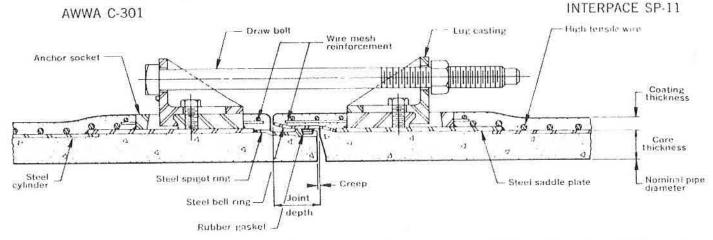
Pipe Dimensions

The "Average Laid Length" of all pipe and fittings includes an allowance for "creep", "Creep" is the distance from the end of the spigot of one pipe to the seat of the bell of the adjacent pipe averaging 0.02" to 0.05" depending upon pipe diameter. The creep value is included in the spigot end length of fittings.

OD* (outside diameter) Dimensions for AWWA C-301 pipe with mortar coating are meant as nominal values. Local INTERPACE representative will confirm OD for critical situations.


Nominal	Creep
Dia.	Feet
16" thru 30" 36" thru 72 "	0.02
+78" thru 102"	-0.04
100" thru 144"	-0.05

Nominal	SP-	5 PIPE		2 PIPE ARD CORE /	SP-12 PIPE-D/16 CORE				
Dia.	Bell OD	Barrel OD	dell OD.	Barrel Op-	Bell OD	Barrel 00			
-16	22 1/2	195/a							
-18	2474	2176-	\	/		/			
20	27	241/8	\						
24	311/2	285/8	321/4	301/8	\				
₩7	-347/8-	32-		X		X			
-30	- 381/4	35%	381/4	\ 36 \/s	/	1			
-36	45	42 Va	44 1/4	421/8	44 1/4	/21/8			
42	-51 1/4	487/8	503/4	4878	503/4	43/78			
-48	-58	55 ⁵ /8	563/4	55 \s	5634	55 As			
-54			63%	635/s	635/8	6238			
60			/705/B	70%	705/8	691 a			


All Dimensions in Inches and based upon 13/16" mortal coating pased upon 13/16" mortar coating
"For farner S# 12 pipe, Barrel OD
Bell OD To compute OD values
add nominal 1D plus twice the
core plus twice the coating. See
cages 7 and 9 of this section for
core and coating values.

SECTION 1, PAGE 6

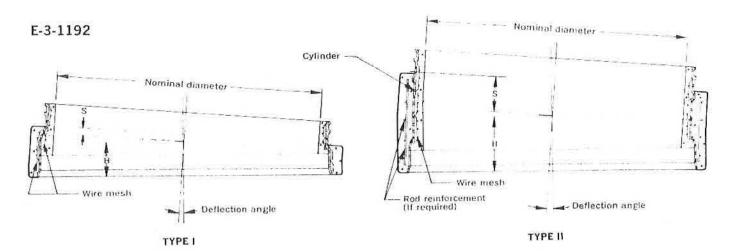
Lock Joint Prestressed Concrete Cylinder Pipe with Rubber and Steel Joint AWWA C-301 INTERPACE SP-5

Lock Joint Subaqueous Prestressed Concrete Cylinder Pipe with Rubber and Steel Joint

Nominal Diameter	Core Thickness	Weight lbs:/ft.	Joint Depth	Avg. Laid Length of Straight in feet*
16	1	126		1
18 -	11/8	145	11/4-	1
20	1 1/4	170	31/4	10.00 20.00
24	1 1/2	225	31/4	16.02 or 20 02
-27	-14/ ₁₆	270	31/4	
-30	17/8	320-	31/4	
-36	21/4	430	33/4	Î
-42	2 1/8	555	334-	16,03 or 20 03
-48	3	700	37/n	1

As dimensions, in the continuous mand.

Weights based upon 13/16" modul coating.


* Local INTERPACE representative will continn available lengths.

Lock Joint Pipe Products / NTERPACE

SECTION 2, PAGE 2

Bevel Adapters

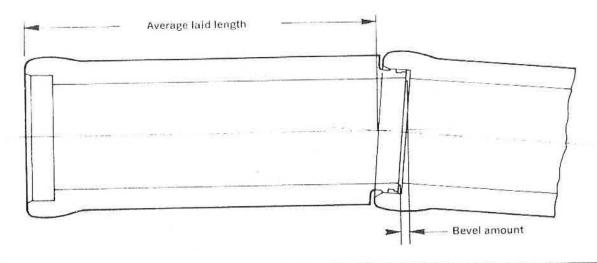
		AWV	WA C-30	1	AWWA C3	02, C30	0, C301			AWWA C3	02, C300), C301/			
		(SP-5		SP-1	,32†,3,1	12 /			SP-1, 3, 12 R.C. Pressure & Cylinder Pipe & P.C. Embedded Cylinder Pipe					
		C	estressed Concrete inder Pipe		Cylin P.C.	Pressure ider Pipe Embedde inder Pipe	& / l								
Nominal Dia. inches	Bevel Amount inches	Deflec- tion Angle	S feet	B feet	Dellec- tion Angle	S feet	B feet	Nominal Dia. inches	Bevel Amount inches	Deflec- tion Angle	S lega	B feet			
16-	1/16	4° 04′	0.10	0.35		/		78	31/2	2°-15′ 4°-31′	0.43	0.67			
18-	11/2	42-09	0.09	0:34				1.5	61/2		/				
20	11/16	4°-12′	0.09	0.34				84	31/2 7	2°·16′/	0.41	0.71			
-21*	13/4				4°-00′	0.99	0.34			0 18	0.41	0.71			
24	1 2	2°-05′ 4"-10′	0.13	0.33	2"-07' 4"-15'	0/13	0.33 0.33	90	3 % 7 %	4-12'	0.47	0.77			
-27	-1 1/8 -2 1/4	2 -05'	0.13 0.08	0.33	2°-09′ 4°-18′	0.13	0.33 0.32	96	4 8	2 X16'	0.43	0.73 0.81			
-90	11/4 21/2	2"-05' 	0-13	0.32	2°-10′ 4°-20′	0.13	0.32 0.42	102	4 1/4 8 1/2	2" 1X 4"-34	0.43 0.51	0.73 0.81			
-36-	-1½	2°-06' 4°-12'	0.09	0.34	2°-12′ 4°-24′	0.09	0.34 0.42	108	4½ 9 /	2' -17' \ 4' -34'	0.51	0.81 0.90			
-42-	31/2		0.15	0.45	2"-14 4° 27	0.12	0.45 0.63	114	43/ 9/2	2"-15' 4"-33'	0.51	0.83 0.94			
-48-	2	2*-07' 4"-15'	0.14	0.44	2"-1/4'	0.12 0.34	0.44	120	10	2°-16′ 4°-32′	0.51	0.83 0.94			
-54	-9-1/4- 4-1/2-				2°/14′ 4°/-28′	0.35 0.40	\0.60 \0.65	126	101/2	2°-16′ 4°-32′	0.51	0.83			
-60-	-21/2-				2/-15'	0.34 0.39	0\60 0.65	132/	5½ 11	2°-16′ 4°-32′	0 53 0 66	0.85			
-66-	-23/ 4 -51/2-				2°-15′ 4°-30′	0.33 0.38	0.65	1/38	53/4 111/2	2°-17′ 4°-83′	0.53 0.66	0\85 0.98			
72	3 -				2"-15'	0.34 0.41	0.67	144	6 12	2°-17′ -4"-33′	0.53 0.66	0.85\ 0.98			

Type I Bevel Adapters 16" thru 36", 42" 1 1/4" Bevel, and 48" 2" Bevel.

Type II Bevel Adaptors 42" 31/2" Bevel, and 48" 4" Bevel thru 144" 12" Bevel

Deflection Angles listed above are lot 0" joint opening. See various deflection tables in this section to find max mum available deflection.

^{*} Available as C-302 pipe, SP-32, only * Available as C-301, SP-5, SP 11, and C-302, SP-32 only, * SP-32 range, 16" dia Piru 54" dia For 16" & 18" dia use SP-5 dimensions.


Lock Joint Pipe Products / INTERPACE

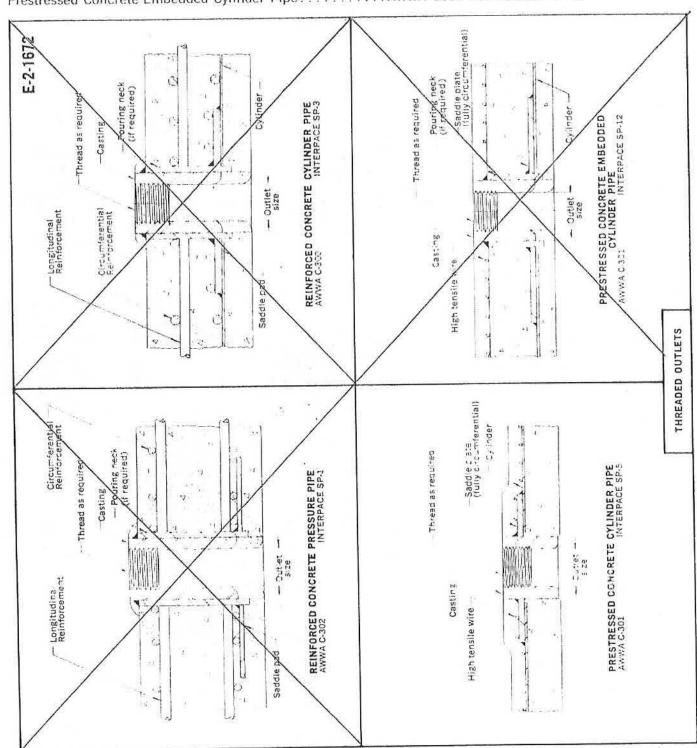
SECTION 2, PAGE 3

Deflection Table

PRESTRESSED CONCRETE CYLINDER PIPE AWWA C-301

				16′ NO	MINAL LEN	IGTHS	20' NO!	MINAL LENG	STHS
Nominal Dia. inches	Pipe Description	Joint Opening* inches	Deflection Angle	Avg. Laid Length feet	Radius of Curve feet	Tangent Offset feet	Avg. Laid Length feet	Radius of Curve feet	Tangent Offset feet
· 16-	STRAIGHT 17,," BEVEL		2'-19' 6'-23'	16.03 15.98	395 143	0.65 1.78	20.03 — 19.98	179	0.81 2.22
-18	STRAIGHT 11/2" BEVEL	3/4	2°-04' 6°-13'	16.03 15.97	445 147	0,58 1.73	20 03 19.97	554 184	0.72 2.16
20	STRAIGHT 117" BEVEL	1"-52' 6"-04'	16.03 15.96	490 150	0.52 1.69	20.03 19.96	614 188	0.65 2.11	
24	STRAIGHT 1" BEVEL 2" BEVEL	3/4 3/4 3/4	1°-34′ 3°-39′ 5°-44′	16,03 15,99 15,95	585 251 159	0,44 1,02 1,59	20.03 19.99 19.95	734 314 199	0.55 1.27 1.99
-27	STRAIGHT 1½8" BEVEL 2½ BEVEL	3/4 3/4 3/4	1°-24′ 3°-29′ 5"-34′	16.03 15.98 15.94	660 263 164	0.39 0.97 1.55	20.03 19.98 19.94	824 329 205	0.49 1.21 1.93
30	STRAIGHT 1¼" BEVEL 2½" BEVEL	3/ ₄ 3/ ₄ 3/ ₄	1"-15' 3"-21' 5" 26'	16.03 15.98 15.93	730 273 167	0.35 0.93 1-51	29-03 19.98 19.93	914 342 210	0.44 1.17 1.89
36	STRAIGHT 175" BEVEL 3" BEVEL	3/4 3/4 3/4	1' 03' 3 -09' 5"-14'	16.03 15.93 15.91	875 291 174	0.29 0.88 1.45	20 03 19 97 19 91	1,094 363 217	0.37 1.10 1.82
42	STRAIGHT 134" BEVEL 31/2" BEVEL	%8 %8 ₹6	1°-04′ 3°-11′ 5′-18′	16.04 15.97 15.89	865 287 171	0.89 1.47	20.04 19.97 19.89	1.082 359 214	0 37 1.11 1.84
48	STBAIGHT 2" BEVEL 4" BEVEL	1 1	1 04' 3 -11' 5 -18'	16.04 15.96 15.87	865 287 171	0.30 0.89 1.47	20.04 19.96 19.87	1,082 359 214	0.37

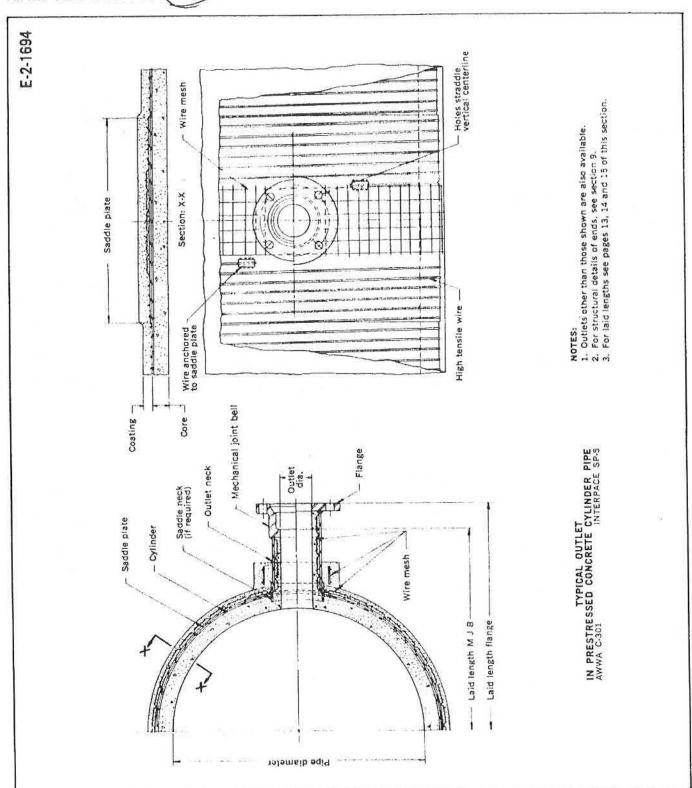
Total carening is maximum meranimended by INTERPACE Corporation for layout particises. For maximum waterlight extensibility see page 1 of this section.


Lock Joint Pipe Products / INTERPACE

SECTION 6, PAGE 1

Threaded Outlets

Reinforced Concrete Pressure Pipe AWWA C302 INTERPACE SP-1 Prestressed Concrete Embedded Cylinder Pipe........... AWWA C301 INTERPACE SP-12


Lock Joint Pipe Products / JINTERPACE

SECTION 6, PAGE 5

Typical Outlet in Prestressed Concrete Cylinder Pipe

AWWA C301 INTERPACE (SP-5)

Lock Joint Pipe Products / DINTERPACE

SECTION 6, PAGE 6

Outlet Saddles

Prestressed Concrete Cylinder Pipe......AWWA C301 INTERPACE SP-5

Outlet Dia, Range (inches)	3-6 8-12 14-18 20-24	Saddle Width (inches)	20 30 42 54	379125		37.0	3/10		3/10	3%	1/4			1/4	1/2 5/10	1/4	5/° 3/8		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	16	3/8	7. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	3/8		1/2 1/2	4/4		1, 12	1/2 1/2	1/4 // // // // // // // // // // // // /	
(20)	Maximum	Outlet Dia.	200		12			12			-tz	de est		18			20			20	/	/	7 77	/- !i		\	12	i \			
ADDLE PLATE THICKNESS (INCITES)	Pipe	Class	2	150		500	250	175	200	150	175	200	150	175	200	150	175	200	720	175/	200	100	150	:75	200	100	150	175	2007	100	
ODLE PLAIE	Pine	Dia.	nches		9	2		8	2		20) 1		24	j		**	1		30			Ç	9			70	74			

SADDLE PLATE THICKNESS (Inches)

NOTES: 1. For 14" x 15' 2: er type manholes use sacce for 18" cullets. 2. For 16" x 18" bollet type manholes use saddle for 20" outlets.

SECTION 13, PAGE 1

General Information — Tapping of Pipe

INTERPACE carries in stock tapping assemblies for threaded connections in sizes $^{3}/^{4}$ " to 2" diameter, for most sizes and types of pipe. These assemblies will be supplied, drilled and tapped for standard pipe thread or AWWA standard corporation stop thread as specified. Flanged tapping assemblies for large diameter connections are not generally carried in stock but can be fabricated for prompt delivery. Outlet flanges of these larger connections will be faced and drilled to match the tapping valve being used.

THREADED PRESSURE TAPS

Mueller E-4 and D-4 drilling machines are normally used for making pressure taps in reinforced concrete pressure pipe. The E-4 machine is used for sizes up to a 1" tap. The D-4 machine is used for sizes up to a 2" tap. Mueller A and B machines cannot be used.

High speed, carbide tipped or a combination of high speed and carbide tipped masonry drills may be used. A formed tip, spiral flute carbide tipped drill is recommended. INTERPACE carries common sizes of these carbide drills in stock and will supply them on request.

FLANGED PRESSURE TAPS

Tapping valves for making large diameter taps are available from most valve manufacturers. U.S. Pipe and Foundry Company (Smith V & H Division) and the Mueller Company are the prime manufacturers of tapping machines and equipment.

Carbide tipped shell cutters and pilot drills and power operated automatic feed tapping machines are recommended for making taps in concrete pressure pipe.

When specifying tapping valves larger than 12" in diameter it is important to check on the availability of a tapping machine and cutter.

The following tables represent the maximum size outlets which may be tapped into AWWA C-301 pipe.

Pipe Dia. inches	Maximum Tap Diameter inches
16	12
18	14
20	16
24	20
27	20
30	24
36	30
42	36
48	36

SP	7-12
Pipe Dia. inches	Maximum Tap Diameter inches
24	18
30	20
36	24
42	30
48	36
54-144	42

Size restricted by current availability of tapping machines.

SECTION 13, PAGE 2

Method of Making 3/4" to 2" Threaded Pressure Taps in Prestressed Concrete Cylinder Pipe (16" thru 30" dia.)

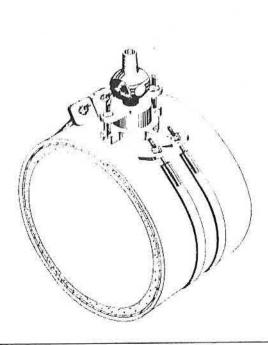
INTERPACE SP-5

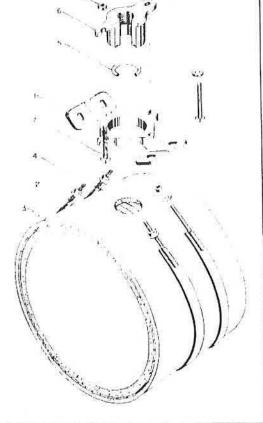
E-1-231

Attach saddle (1) to outside of pipe, using U-bolts (2). Chip away mortar coating of pipe (3), to expose circumferential wires (4). Make chipped opening 4" in diameter and remove the coating. Remove exposed circumferential wires.

Place rubber gasket [5] in groove of gland [6]. Insert gland through hole in saddle. Place square head bolts (7) in saddle slot hole and through hole in gland. Thread nuts [8] on bolts, compressing rubber gasket against cylinder of pipe to make waterlight seal.

Screw corporation stop [9] into gland and attach adapter nipple [10] and drilling machine (11).


Drill through cylinder and concrete core of pipe. Retract drill, close stop and remove drilling machine and adapter. Open stop to flush out cement dust.


Pack recess between gland and saddle with mortar.

Protect saddle and II holfs by concrete encasement.

For detailed instructions, see operational specifications No. 56.

Lock Joint Pipe Products / JINTERPACE

SECTION 13, PAGE 3

Method of Making 3/4" to 2" Threaded Pressure Taps in Concrete Cylinder Pipe INTERPACE SP-3 Reinforced Concrete Cylinder Pipe......AWWA C300 INTERPACE (SP-5 Prestressed Concrete Cylinder Pipe*.....AWWA C301 INTERPACE SP-12 Prestressed Concrete Embedded Cylinder Pipe...... AWWA C301 36 944 487 E-1-169 Attach saddle [2] to oublide of pipe (1) using U-bolts (3). If outside surface of pipe is irregular, place thin layer of cement mortal of pipe before placing saddle. Chip away mortar pipe coating from outside of cylinder every w edge of hole in saddle plate, and remove exposed circuloferential wires (4). Place rubber gland gasket (5) in groove of gland (6). Insert gland through hole in saddle. Using studs and nuts (7) pull gland toward cylinder, compressing gasket to make watertight seal. Screw corporation stop (8) into gland and attach dylling machine (9). Drill through cylinder and concrete core of pipe. Retract drill, close stop and remove drilling machine. Open stop to flush out cement dust. Pack recess between gland and saddle with mortal Protect steel saddle and U-bolts by convete encasement. For detailed instructions, see operational specification No. 27.

SECTION 13, PAGE 4

Method of Making Flanged Pressure or Dry Taps in Concrete Cylinder Pipe

Reinforced Concrete Cylinder Pipe	.AWWA C300	INTERPACE SP-3
Prestressed Concrete Cylinder Pipe	. AWWA C301	INTERPACE (SP-5)
Prestressed Concrete Embedded Cylinder Pipe		INTERPACE SP-12

Wire rubber gaskets (4) under edges of saddle (2). Assemble saddle on concrete cylinder pipe (1) with U-bolts (3). Draw up saddle lightly against gaskets to seal space between saddle and pipe.

Pour mortar grout into space between saddle plate and pipe through grout holes (5). After grout between saddle and pipe has taken its initial set, tighten saddle firmly

against grout.

Chip mortar or concrete [6] from outside of pipe cylinder even with edge of hole in saddle. Cut circumferential steel wires (7) or rods away from outside of cylinder, even with edge of hole in saddle.

If area of cylinder to be tapped includes a longitudinal seam, carefully file weld down to sheet and fill recess

with hot or cold solder.

For outlets larger than 12", attach concrete lining of pipe to steel cylinder as described in notes on "Methods of Core Retention", Spec. No. 49.

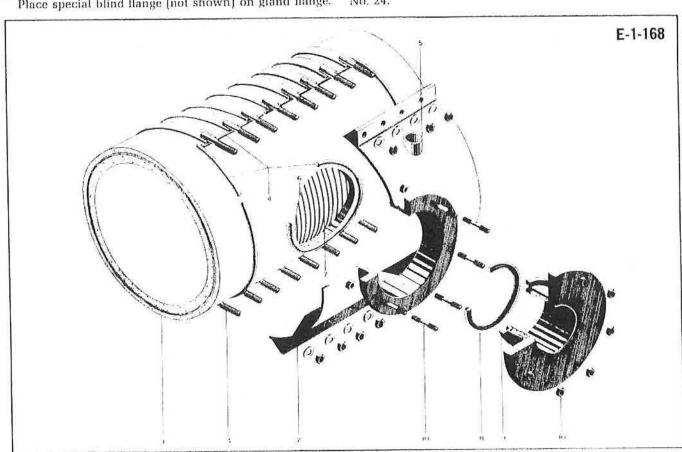
Place rubber gland gasket (8) into groove of gland [9]. Insert gland through hole in saddle. Using studs and nuts (10), pull gland toward the cylinder, compressing the gasket to make a watertight seal.

Place special blind flange (not shown) on gland flange.

Fill outlet with water and apply pressure to check tightness of gland gasket. Remove blind flange.

For outlets 12" in diameter and larger, wire form around outside of gland flange and saddle flange and pour mortar grout into space between flanges and between necks of saddle and gland. Allow mortar to "set-up" before cutting. For outlets 12" and smaller, this operation can be done after completing the cut.

Fill recess between inner end of gland and surface of


cylinder with neal cement or mortar.

Attach tapping valve and tapping machine (not shown) equipped with pilot drill and carbide tipped cutter. Drill and cut through cylinder and concrete pipe core. Retract drill and cutter, close valve, and remove tapping machine.

Even if the pipe is dewatered the preferred method for cutting through the cylinder and inner core is with the use of standard tapping machine, cutting as usual, thru the valve. However, it is possible to remove the cylinder and inner core without the use of the valve and tapping machine.

Protect steel saddle and U-holts by concrete encasement

For detailed instructions see operational specification No. 24.

