

CITY OF PORTSMOUTH

City Hall, One Junkins Avenue Portsmouth, New Hampshire 03801 jpb@cityofportsmouth.com (603) 610-7201

John P. Bohenko City Manager

November 22, 2019

US EPA: Attn Shelly Puleo Office of Ecosystem Protection 5 Post Office Square, Suite 100 Boston, MA 02109-3912

Re: NPDES Permit No. NH0090000 – Reapplication City of Portsmouth, Pease Wastewater Treatment Facility Portsmouth, New Hampshire

Dear Ms. Puleo:

The City is in receipt of the EPA comments provided in your letter dated October 22, 2019. The City requested our consulting engineer, Underwood Engineers, Inc., provide responses to those comments and they are submitted below via this letter. Responses are in *italics*.

Form 2A

Item A.12. Effluent Testing Information ML/MDL was not provided for BOD₅, Fecal Coliform and TSS, as required.

The ML/MDL for total suspended solids (TSS) analysis is based upon the method blank analyzed alongside the TSS sample and therefore varies for each test. The laboratory has not performed a statistical analysis on its tests to determine a long-term ML/MDL. It is possible for the laboratory to record a zero value when a zero value is measured for TSS for both the sample and method blank, therefore the ML/MDL provided in the permit application is zero.

According to EPA guidance provided in "Definition and Procedure for the Determination of the Method Detection Limit, Rev. 2 (Attachment 1) the MDL does not apply to fecal coliform or BOD₅ methods. Underwood Engineers discussed this interpretation with EPA during the submission of a previous NPDES permit reapplication form (Attachment 2). Accordingly, these values were left blank.

Part D. Expanded Effluent Testing Data Please clarify why certain pollutants in this section were not analyzed.

The missing pollutants have been added to Part D, and were initially identified as "not analyzed" because the analytical laboratory reported them using alternate names.

Certain laboratory methods for this section were updated to the methods used for analysis upon further review by Underwood Engineers.

Page 2 Ms. Shelley Puleo November 22, 2019

Form 2S

Item A.8. Pollutant Concentrations All pollutants in this section must be tested.

The Pease WWTF current sludge disposal practice is disposal in a municipal solid waste landfill which requires monitoring to determine whether the sludge is a hazardous waste. The testing methods required in order to dispose dewatered sludge to the municipal solid waste landfill are the Toxicity Characteristic Leaching Procedure (TCLP) and the Paint Filter (free liquid) test. Recent test results are included as Attachment F to the permit application as specified in Item B.10.g. Copper, Molybdenum, Nickel, and Zinc analyses are not required for this disposal practice and therefore were not performed.

CZM

Please provide the Coastal Zone Management Consistency letter. Your application cannot be considered complete without the submittal of this letter.

The Coastal Zone Management Consistency letter is provided as Attachment G to the revised application. At the request of the New Hampshire Coastal Program (NHCP), the consistency letter addresses the updated NHCP enforceable policies effective October 29, 2019.

The City has enclosed only those pages in the submittal that have changed. We trust the information provided meets EPA requirements for review. Please contact Underwood Engineers at (603) 436-6192 if there are any questions.

Very truly yours.

John P. Bohenko City Manager

encl.

cc: Tracy Wood, P.E., NHDES w/ encl.
 David Mullen, Director, Pease Development Authority w/ encl.
 Terry Desmarais, P.E., City Engineer w/ encl.
 Steve Clifton, P.E., Underwood Engineers, Inc. w/ encl.
 Christian Williams, NH Coastal Program w/ encl.

Table of Contents

Section 1 – NPDES Permit Application Renewal Form 2A Form 2S

Section 2 – Attachments

Attachment A - WWTF Flow and Load Technical Memorandum

Attachment B - WWTF Maps and Process Flow Schematic

Attachment C - Pease WWTF Priority Pollutant Scans

Attachment D - Whole Effluent Toxicity Testing Results

Attachment E - Significant Industrial User Information

Attachment F - Sewage Sludge Test Results

Attachment G - Coastal Zone Consistency Certification

ACILITY NA			acility, NHO	00000	Form Approved 1/14/99 OMB Number 2040-0080							
.11. Descrip	iption of Tre	eatment.									141	
a. Wh	hat levels of	treatment a	are provided	? Check all t	hat ap	ply.						
	Pr	imary	-	<u> </u>	Second	dary						
	Ad	Ivanced	<i>2</i> —	0	Other.	Describe:	Sequenci	ng Batch	Rea	ctor		
b. Indi	dicate the fol	lowing rem	noval rates (a	s applicable)):							
Des	sign BOD ₅ r	emoval <u>or</u>	Design CBO	D _s removal			90.	00		%		
Des	esign SS rem	noval					90.	00		%		
Des	esign P remo	oval								~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	sign N remo									%		
Other												
							· · · · ·	N 19		%		
				e effluent fro	om this	s outfall? If di	sinfection varie	es by seas	on, p	lease descrit	be.	
<u>Ch</u>	hlorination	rite)										
lf di	If disinfection is by chlorination, is dechlorination					r this outfall?			_ Ye	es _	<u>. 12</u>	No
d. Does the treatment plant have post aeration?									_ Ye	s _	1	No
parame <u>dischar</u> collecte of 40 C At a mi	eters. Provi arged. Do n ted through CFR Part 13	ide the ind ot include analysis o 6 and othe	licated efflue information conducted u er appropria	ent testing r n on combin using 40 CFI te QA/QC re	require ned se R Part equire	ed by the pe wer overflow t 136 method ments for st	rmitting authors in this sec ls. In addition andard methor	ority <u>for e</u> tion. All in h, this dat ods for an	ach c nform a mu alvte	outfall throu nation report st comply w s not addres	gh wh ted mu vith Q/	for the following <u>ich effluent is</u> ist be based on A/QC requiremen by 40 CFR Part 1 one-half years a
parame <u>dischar</u> collecte of 40 C At a mi	eters. Provi arged. Do n ted through CFR Part 13 inimum, eff	ide the ind not include analysis o 6 and othe fluent testi 005	licated efflue information conducted u er appropria	ent testing r n on combin using 40 CFI te QA/QC re st be based	require ned se R Part equire on at	ed by the pe wer overflow t 136 method ments for st least three s	rmitting authors in this sec ls. In addition andard methor	ority <u>for e</u> tion. All in h, this dat ods for an	ach o nform a mu alyte o mo	butfall throu nation report ist comply w s not addres ore than four	gh wh ted mu vith QA ssed b r and c	ich effluent is ust be based on A/QC requiremen by 40 CFR Part 1 one-half years a
parame dischar collecte of 40 C At a mi	eters. Provi arged. Do n ted through CFR Part 13 inimum, eff number:	ide the ind not include analysis o 6 and othe fluent testi 005	licated efflue information conducted u er appropria	ent testing r n on combin Ising 40 CFI te QA/QC re st be based MAXIMUN	require ned se R Part equire on at	ed by the pe wer overflow t 136 method ments for st least three s	rmitting authors vs in this sec ls. In addition andard methors samples and n	ority <u>for e</u> tion. All in n, this dat ods for an must be r	ach o nform a mu alyte o mo	outfall through nation report st comply w s not address ore than four RAGE DAILY	gh wh ted mu vith QA ssed b r and c	ich effluent is ust be based on VQC requiremen by 40 CFR Part 1 one-half years a
parame dischar collecte of 40 C At a mi	eters. Provi arged. Do n ted through CFR Part 13 inimum, eff number:	ide the ind not include analysis o 6 and othe fluent testi 005	licated efflue information conducted u er appropriating data mus	ent testing r n on combin Ising 40 CFI te QA/QC re st be based MAXIMUN Value	require ned se R Part equire on at	ed by the pe wer overflow t 136 method ments for st least three s	rmitting authors in this sec ls. In addition andard methor	ority <u>for e</u> tion. All in n, this dat ods for an must be r	ach o nform a mu alyte o mo	butfall throu nation report ist comply w s not addres ore than four	gh wh ted mu vith QA ssed b r and c	ich effluent is ust be based on A/QC requiremen by 40 CFR Part 1 one-half years a
parame <u>dischar</u> collecte of 40 C At a mi Outfall r	eters. Provi arged. Do n ted through CFR Part 13 inimum, eff number: PARAMET	ide the ind not include analysis o 6 and othe fluent testi 005	licated efflue information conducted u er appropria ing data mus 6.70	ent testing r n on combin using 40 CFI te QA/QC re st be based MAXIMUM Value	require ned se R Part equire on at	ed by the pe wer overflow t 136 method ments for st least three s	rmitting authors vs in this sec ls. In addition andard methors samples and n	ority <u>for e</u> tion. All in n, this dat ods for an must be r	ach o nform a mu alyte o mo	outfall through nation report st comply w s not address ore than four RAGE DAILY	gh wh ted mu vith QA ssed b r and c	ich effluent is ust be based on VQC requiremen by 40 CFR Part 1 one-half years a
parame <u>dischar</u> collecte of 40 C At a mi Outfall r H (Minimum	eters. Provi arged. Do n ted through CFR Part 13 inimum, eff number: PARAMET	ide the ind not include analysis o 6 and othe fluent testi 005	licated efflue information conducted u er appropriating data mus 6.70 7.82	ent testing r n on combin Ising 40 CFI te QA/QC re st be based MAXIMUN Value 0	A DAIL	ed by the pe wer overflow t 136 method ments for st least three s .Y VALUE Units s.u. s.u.	rmitting authors in this sec is. In addition andard methors samples and r	ority <u>for e</u> tion. All in n, this dat ods for an must be r	ach c nform a mu alyte o mo	outfall through nation report st comply w s not address ore than four RAGE DAILY Units	gh wh ted mu vith QA ssed b and c	ich effluent is ust be based on AQC requiremen by 40 CFR Part 1 one-half years a IE
parame dischar collectr of 40 C At a mi Outfall I H (Minimum H (Maximum low Rate	eters. Provi arged. Do n ted through CFR Part 13 inimum, eff number: PARAMET n) m)	ide the ind not include analysis o 6 and othe fluent testi 005	licated efflue information conducted u er appropria ing data mus 6.70 7.82 1.32	ent testing r n on combin using 40 CFI te QA/QC rest be based MAXIMUN Value 0 2	MG	ed by the pe wer overflow t 136 method ments for st least three s .Y VALUE Units s.u. s.u. 5D	rmitting authors in this sec is. In addition andard methors samples and in Val	ority <u>for e</u> tion. All in n, this dat ods for an must be r	AVER	Dutfall through the term of the term of the term of the term of the term of the term that the term of term of the term of term that the term of term of term of term of term of term term of term of t	gh wh ted mu vith QA ssed b and c VALU	ich effluent is ust be based on AQC requiremen y 40 CFR Part 1 one-half years a IE Number of Sample 30.00
parame dischar collecte of 40 C At a mi Outfall r Utfall r H (Minimum H (Maximum low Rate emperature	eters. Provi arged. Do n ted through CFR Part 13 ininimum, eff number: PARAMET n) m)	ide the ind not include analysis o 6 and othe fluent testi 005	licated efflue e information conducted u er appropriating data mus 6.70 7.83 1.33 21.9	ent testing r n on combin Ising 40 CFI te QA/QC re st be based MAXIMUN Value 0 2 2 90	A DAIL	ed by the pe wer overflow t 136 method ments for st least three s .Y VALUE Units s.u. s.u. iD	rmitting authors in this sec is. In addition andard methors samples and in Val	ority <u>for e</u> tion. All in n, this dat ods for an must be r	ach c nform a mu alyte o mo AVEF MGI	C	y h wh ted mu vith QA ssed b and c VALU	ich effluent is ust be based on AQC requiremen by 40 CFR Part 1 one-half years a IE Jumber of Sample 30.00
parame dischar collecte of 40 C At a mi Outfall I H (Minimum H (Maximum low Rate emperature emperature	eters. Provi arged. Do n ted through CFR Part 13 ininimum, eff number: PARAMET n) m) e (Winter) e (Summer)	ide the ind not include a analysis of 6 and othe fluent testi 005	licated efflue information conducted u er appropria ing data mus 6.70 7.82 1.32	ent testing r n on combin Ising 40 CFI te QA/QC re st be based MAXIMUN Value 0 2 2 90	A DAIL MG deg deg	ed by the pe wer overflow t 136 method ments for st least three s .Y VALUE Units s.u. s.u. D 1 C	rmitting authors in this sec is. In addition andard methors samples and in Val	ority <u>for e</u> tion. All in n, this dat ods for an must be r	AVER	C	gh wh ted mu vith QA ssed b and c VALU	ich effluent is ust be based on AQC requiremen by 40 CFR Part 1 one-half years a IE Jumber of Sample 30.00
dischar collecte of 40 C At a mi Outfall r M (Minimum M (Maximum Ow Rate emperature emperature * For ph	eters. Provi arged. Do n ted through CFR Part 13 ininimum, eff number: PARAMET n) m) e (Winter) e (Summer)	ide the ind not include a analysis of 6 and othe fluent testi 005 TER	licated efflue e information conducted u er appropriating data mus 6.70 7.82 1.32 21.9 28.4 mum and a m	ent testing r n on combin Ising 40 CFI te QA/QC re st be based MAXIMUN Value 0 2 2 90	MG deg ly value	ed by the pe wer overflow t 136 method ments for st least three s .Y VALUE Units s.u. s.u. iD g C g C le	rmitting authors in this sec is. In addition andard methors samples and in Val	ue	ach c nform a mu alyte o mo AVER MGI deg deg	ANALYTIC	y whited mu vith QA ssed b and c VALU N 1,18 610. 523.	ich effluent is ust be based on AQC requiremen by 40 CFR Part 1 one-half years a IE Jumber of Sample 30.00
parame dischar collectr of 40 C At a mi Outfall I H (Minimum H (Maximum low Rate emperature * For pl	eters. Provi arged. Do n ted through CFR Part 13 inimum, eff number: PARAMET PARAMET n) m) e (Winter) e (Summer) H please rej	ide the ind not include a analysis of 6 and othe fluent testi 005 TER	licated efflue e information conducted u er appropriating data mus 6.70 7.82 1.32 21.9 28.4 mum and a m	ent testing r n on combin using 40 CFI te QA/QC rest be based MAXIMUM Value 0 2 2 90 40 naximum dai MUM DAILY	MG deg	ed by the pe wer overflow t 136 method ments for st least three s .Y VALUE Units s.u. s.u. iD g C g C le	rmitting authors in this sec dis. In addition andard methors samples and in Val 0.58 16.00 23.60	ority <u>for e</u> tion. All in n, this dat ods for an must be n ue ue GCHARGE	ach c form form a mu alyte o mo AVEF deg deg deg	C	y whited mu vith QA ssed b and c VALU N 1,18 610. 523.	ich effluent is ust be based on AQC requiremen y 40 CFR Part 1 one-half years a IE Number of Sample 30.00 .00
parame dischar collectr of 40 C At a mi Outfall I H (Minimum H (Maximum low Rate emperature * For pl	eters. Provi arged. Do n ted through CFR Part 13 inimum, eff number: PARAMET PARAMET n) m) e (Winter) e (Summer) H please rej	ide the ind not include a analysis of 6 and othe fluent testi 005 TER	licated efflue e information conducted u er appropriating data mus 6.70 7.83 1.33 21.9 28.4 mum and a m MAXII DIS	ent testing r n on combin Ising 40 CFI te QA/QC rest be based MAXIMUM Value 0 2 2 90 40 naximum dai MUM DAILY CHARGE	MG deg	ed by the perver overflow transforments for st least three s Y VALUE Units S.U. S.U. C C C C AVERAG	rmitting authors in this sec lis. In addition andard methors samples and in Val 0.58 16.00 23.60 GE DAILY DIS	ue	ach c form form a mu alyte o mo AVEF deg deg deg	ANALYTIC	y whited mu vith QA ssed b and c VALU N 1,18 610. 523.	ich effluent is ust be based on AQC requiremen y 40 CFR Part 1 one-half years a IE Number of Sample 30.00 .00
parame dischar collecte of 40 C At a mi Outfall I discrete (Minimum) discrete discrete discrete At a mi Outfall I discrete discrete (Minimum) discrete di discrete discrete discrete discrete di	eters. Provi arged. Do n ted through CFR Part 13 inimum, eff number: PARAMET PARAMET n) (Winter) e (Winter) e (Summer) H please rej OLLUTANT	ide the ind not include a analysis of 6 and othe fluent testi 005 TER	licated efflue e information conducted u er appropriating data mus 6.70 7.83 1.33 21.9 28.4 mum and a m MAXII DIS Conc.	ent testing r n on combin using 40 CFI te QA/QC rest be based MAXIMUM Value 0 2 2 90 40 10 22 90 40 10 22 90 40 10 22 90 40 10 22 90 40 10 22 90 40 10 22 90 40 10 10 10 10 10 10 10 10 10 10 10 10 10	MG deg ly values ss.	ed by the perver overflow t 136 method ments for st least three s Y VALUE Units S.U. S.U. C C C AVERAGE Conc.	rmitting authors in this sec lis. In addition andard methors samples and in Val 0.58 16.00 23.60 GE DAILY DIS Units	ority <u>for e</u> tion. All in n, this dat ods for an must be n ue ue CHARGE Numb Samp	ach c form a mu alyte o mo AVEF MGI deg deg er of oles	C ANALYTIC METHO	y h wh ted mu vith QA ssed b and c VALU N 1,18 610. 523. CAL D	ich effluent is ust be based on A/QC requiremen by 40 CFR Part 1 one-half years a lE lumber of Sample 30.00 .00 .00 .00 .00 .00
parame dischar collecte of 40 C At a mi Outfall n H (Minimum H (Maximum H (Maximum H (Maximum H (Maximum Expert For ph PO PO	eters. Provi arged. Do n ted through CFR Part 13 inimum, eff number: PARAMET PARAMET (Winter) (Winter) (Summer) H please rej OLLUTANT NAL AND N	ide the ind not include a analysis of 6 and othe fluent testi 005 TER	licated efflue e information conducted u er appropria ing data mus 6.70 7.83 1.33 21.9 28.4 mum and a m MAXII DIS Conc.	ent testing r n on combin Ising 40 CFI te QA/QC rest be based MAXIMUN Value 0 2 2 90 40 naximum dai MUM DAILY CHARGE Unit	MG deg ly values ss.	ed by the perver overflow transforments for st least three s Y VALUE Units S.U. S.U. C C C C AVERAG	rmitting authors in this sec lis. In addition andard methors samples and in Val 0.58 16.00 23.60 GE DAILY DIS	ority <u>for e</u> tion. All in n, this dat ods for an must be n ue ue GCHARGE	ach c form a mu alyte o mo AVEF MGI deg deg er of oles	ANALYTIC	y h wh ted mu vith QA ssed b and c VALU N 1,18 610. 523. CAL D	ich effluent is ust be based on AQC requiremen y 40 CFR Part 1 one-half years a IE Number of Sample 30.00 .00
parame dischar collecte of 40 C At a mi Outfall r H (Minimum H (Maximum Iow Rate emperature * For ph PO PO DNVENTION DCHEMICAL	eters. Provi arged. Do n ted through CFR Part 13 inimum, eff number: PARAMET PARAMET M) (Winter) (Vinter) (Summer) H please rep OLLUTANT NAL AND N L OXYGEN port one)	ide the ind oot include a analysis of 6 and othe fluent testi 005 FER	licated efflue e information conducted u er appropriating data mus 6.70 7.83 1.33 21.9 28.4 mum and a m MAXII DIS Conc. ENTIONAL C	ent testing r n on combin using 40 CFI te QA/QC rest be based MAXIMUM Value 0 2 2 90 40 10 22 90 40 10 22 90 40 10 22 90 40 10 22 90 40 10 22 90 40 10 22 90 40 10 10 10 10 10 10 10 10 10 10 10 10 10	MG deg ily values	ed by the perver overflow t 136 method ments for st least three s .Y VALUE Units S.U. S.U. C IC IC IC AVERA Conc. 8.50	rmitting authors in this sec lis. In addition andard methors samples and in Val 0.58 16.00 23.60 GE DAILY DIS Units	ority <u>for e</u> tion. All in n, this dat ods for an must be n ue ccHARGE Numb Samp 330.00	ach c form a mu alyte o mo AVEF deg deg deg er of oles	C C C C C C C C SM 5210B	y h wh ted mu vith QA ssed b and c VALU N 1,18 610. 523. CAL D	ich effluent is ust be based on AQC requiremen by 40 CFR Part 1 one-half years a IE Jumber of Sample 30.00 .00 .00 .00 .00 .00 .00
parame dischar collectr of 40 C At a mi Outfall I H (Minimum H (Maximum low Rate emperature * For pl PO PO DNVENTION OCHEMICAL EMAND (Rep CAL COLIFC	eters. Provi arged. Do n ted through CFR Part 13 inimum, eff number: PARAMET PARAMET M) (Winter) (Vinter) (Summer) H please rep OLLUTANT NAL AND N L OXYGEN port one)	ide the ind not include analysis of 6 and othe fluent testi 005 TER port a minir port a minir BOD-5 CBOD-5	licated efflue e information conducted u er appropriating data mus 6.70 7.83 1.33 21.9 28.4 mum and a m MAXII DIS Conc.	ent testing r n on combin using 40 CFI te QA/QC rest be based MAXIMUM Value 0 2 2 90 40 10 22 90 40 10 22 90 40 10 22 90 40 10 22 90 40 10 22 90 40 10 22 90 40 10 10 10 10 10 10 10 10 10 10 10 10 10	A DAIL MG deg deg ly valu	ed by the perver overflow t 136 method ments for st least three s Y VALUE Units S.U. S.U. C C C AVERAGE Conc.	rmitting authors in this sec lis. In addition andard methors samples and in Val 0.58 16.00 23.60 GE DAILY DIS Units	ority <u>for e</u> tion. All in n, this dat ods for an must be n ue ue CHARGE Numb Samp	ach (ching) ach (ching) a mu alyte o mo AVEF MGI deg deg deg er of bles	C ANALYTIC METHO	y h wh ted mu vith QA ssed b ssed b and c VALU N 1,18 610. 523. CAL D	ich effluent is ust be based on A/QC requiremen by 40 CFR Part 1 one-half years a lE lumber of Sample 30.00 .00 .00 .00 .00 .00

Pease Wastewater Treatment Facility, NH0090000

SUPPLEMENTAL APPLICATION INFORMATION

PART D. EXPANDED EFFLUENT TESTING DATA

Refer to the directions on the cover page to determine whether this section applies to the treatment works.

Effluent Testing: 1.0 mgd and Pretreatment Treatment Works. If the treatment works has a design flow greater than or equal to 1.0 mgd or it has (or is required to have) a pretreatment program, or is otherwise required by the permitting authority to provide the data, then provide effluent testing data for the following pollutants. Provide the indicated effluent testing information and any other information required by the permitting authority for each outfall through which effluent is discharged. Do not include information on combined sewer overflows in this section. All information reported must be based on data collected through analyses conducted using 40 CFR Part 136 methods. In addition, these data must comply with QA/QC requirements of 40 CFR Part 136 and other appropriate QA/QC requirements for standard methods for analytes not addressed by 40 CFR Part 136. Indicate in the blank rows provided below any data you may have on pollutants not specifically listed in this form. At a minimum, effluent testing data must be based on at least three pollutant scans and must be no more than four and one-half years old.

Outfall number: 005			chmen Ince for e	250 F. 2020 C. 1000	fall disch	arging e	ffluent to	waters	of the Unite	ed States.)	
POLLUTANT	N		IM DAIL	1	A\	/ERAGI	DAILY	DISCH/	ARGE		ML/ MDL
METALS (TOTAL RECOVERABLE)	Conc.	Units	Mass	Units	Conc.	Units	Mass	Units	Number of Samples	ANALYTICAL METHOD	
METALS (TOTAL RECOVERABLE),	CYANIDE,	PHENO	LS, AND	HARDNE	SS.				·····	••••	
ANTIMONY	0.315	ug/L	0.00169	lb/d	0.23	ug/L	0.0014	lb/d	4	EPA 200.8	0.2/0.009
ARSENIC	4.63	ug/L	0.03672	lb/d	4.63	ug/L	0.0256	lb/d	4	EPA 200.8	0.3/0.1
BERYLLIUM	0.004	ug/L	0.00003	lb/d	0.004	ug/L	0.00003	lb/d	4	EPA 200.8	0.06/0.004
CADMIUM	0.118	ug/L	0.00094	lb/d	0.07	ug/L	0.00047	lb/d	4	EPA 200.8	0.02/0.008
CHROMIUM	0.730	ug/L	0.0047	lb/d	0.57	ug/L	0.0036	lb/d	4	EPA 200.8	0.1/0.02
COPPER	19.8	ug/L	0.139	lb/d	14.47	ug/L	0.0927	lb/d	4	EPA 200.8	0.1/0.02
LEAD	1.03	ug/L	0.0046	lb/d	0.44	ug/L	0.00247	lb/d	4	EPA 200.8	0.04/0.005
MERCURY	6.49	ug/L	0.0514	lb/d	4.24	ug/L	0.0295	lb/d	4	EPA 1631 E	0.5/0.08
NICKEL	8.31	ug/L	0.0372	lb/d	5.04	ug/L	0.0298	lb/d	4	EPA 200.8	0.1/0.04
SELENIUM	2.23	ug/L	0.0177	lb/d	1.62	ug/L	0.0107	lb/d	4	EPA 200.8	0.6/0.44
SILVER	0.030	ug/L	0.00024	lb/d	0.020	ug/L	0.00015	lb/d	4	EPA 200.8	0.02/0.002
THALLIUM	ND	ug/L	0.00005	lb/d	ND	ug/L	0.00004	lb/d	4	EPA 200.8	0.02/0.006
ZINC	117	ng/L	0.00093	lb/d	92.43	ng/L	0.0006	lb/d	4	EPA 200.8	0.5/0.16
CYANIDE	0.012	mg/L	0.056	lb/d	0.0083	mg/L	0.051	lb/d	4	SM 4500-CN E	0.02/0.007
TOTAL PHENOLIC COMPOUNDS	ND	mg/L	ND	LB/D	ND	mg/L	ND	LB/D	4	EPA 420.1	0.05
HARDNESS (AS CaCO ₃)	600	mg/L	1,118	LB/D	230	mg/L	5,721	LB/D	11	SM 2340	1

EPA Form 3510-2A (Rev. 1-99). Replaces EPA forms 7550-6 & 7550-22.

Use this space (or a separate sheet) to provide information on other metals requested by the permit writer.

Pease Wastewater Treatment Facility, NH0090000

Form Approved 1/14/99 OMB Number 2040-0086

Outfall number:		and the second second		20					the United	States.)	
POLLUTANT	N		JM DAILY	(AI	/ERAGI	E DAILY	DISCH	ARGE		
	Conc.	Units	Mass	Units	Conc.	Units	Mass	Units	Number of Samples	ANALYTICAL METHOD	ML/ MDL
VOLATILE ORGANIC COMPOUNDS.										,	
ACROLEIN	<10	ug/L	<0.0793	lb/d	<10	ug/L	<0.0642	lb/d	4	EPA 624	10
ACRYLONITRILE	<10	ug/L	<0.0793	lb/d	<10	ug/L	<0.0642	lb/d	4	EPA 624	10
BENZENE	<2	ug/L	<0.0159	lb/d	<2	ug/L	<0.0129	lb/d	4	EPA 624	2
BROMOFORM	2.2	ug/L	0.0108	lb/d	2.05	ug/L	0.0103	lb/d	4	EPA 624	2
CARBON TETRACHLORIDE	<2	ug/L	<0.0108	lb/d	<2	ug/L	<0.0129	lb/d	4	EPA 624	2
CLOROBENZENE	<2	ug/L	<0.0108	lb/d	<2	ug/L	<0.0129	lb/d	4	EPA 624	2
CHLORODIBROMO-METHANE	24	ug/L	0.107	lb/d	14.65	ug/L	0.102	lb/d	4	EPA 624	2
CHLOROETHANE	<2	ug/L	<0.0107	lb/d	<2	ug/L	<0.0129	lb/d	4	EPA 624	2
2-CHLORO-ETHYLVINYL ETHER	<4	ug/L	<0.0317	lb/d	<4	ug/L	<0.0257	lb/d	4	EPA 624	4
CHLOROFORM	92	ug/L	0.495	lb/d	64.3	ug/L	0.395	lb/d	4	EPA 624	2
DICHLOROBROMO-METHANE	24	ug/L	0.107	lb/d	14.7	ug/L	0.102	lb/d	4	EPA 624	2
1,1-DICHLOROETHANE	<2	ug/L	<0.0158	lb/d	<2	ug/L	<0.0129	lb/d	4	EPA 624	2
1,2-DICHLOROETHANE	<2	ug/L	<0.0158	lb/d	<2	ug/L	<0.0129	lb/d	4	EPA 624	2
TRANS-1,2-DICHLORO-ETHYLENE	<2	ug/L	<0.0159	lb/d	<2	ug/L	<0.0129	lb/d	4	EPA 624	2
1,1-DICHLOROETHYLENE	<2	ug/L	<0.0159	lb/d	<2	ug/L	<0.0129	lb/d	4	EPA 624	2
1,2-DICHLOROPROPANE	<2	ug/L	<0.0159	lb/d	<2	ug/L	<0.0129	lb/d	4	EPA 624	2
1,3-DICHLORO-PROPYLENE	<2	ug/L	<0.0159	lb/d	<2	ug/L	<0.0129	lb/d	4	EPA 624	2
ETHYLBENZENE	<2	ug/L	<0.0159	lb/d	<2	ug/L	<0.0129	lb/d	4	EPA 624	2
METHYL BROMIDE	<2	ug/L	<0.0159	lb/d	<2	ug/L	<0.0129	lb/d	4	EPA 624	2
METHYL CHLORIDE	<2	ug/L	<0.0159	lb/d	<2	ug/L	<0.0129	lb/d	4	EPA 624	2
METHYLENE CHLORIDE	<2	ug/L	<0.0159	lb/d	<2	ug/L	<0.0129	lb/d	4	EPA 624	2
1,1,2,2-TETRACHLORO-ETHANE	<2	ug/L	<0.0159	lb/d	<2	ug/L	<0.0129	lb/d	4	EPA 624	2
TETRACHLORO-ETHYLENE	<2	ug/L	<0.0159	lb/d	<2	ug/L	<0.0129	lb/d	4	EPA 624	2
TOLUENE	<2	ug/L	<0.0159	lb/d	<2	ug/L	<0.0129	lb/d	4	EPA 624	2
		1	I					I			

EPA Form 3510-2A (Rev. 1-99). Replaces EPA forms 7550-6 & 7550-22.

Pease Wastewater Treatment Facility, NH0090000

Form Approved 1/14/99 OMB Number 2040-0086

Outfall number:	-				discharging effluent to waters of the United States.) AVERAGE DAILY DISCHARGE						
POLLUTANT	N		IM DAIL	Y	A۱	/ERAGE	DAILY	DISCH	ARGE		
	Conc.	Units	Mass	Units	Conc.	Units	Mass	Units	Number of Samples	ANALYTICAL METHOD	ML/ MDL
1,1,1-TRICHLOROETHANE	<2	ug/L	<0.0159	lb/d	<2	ug/L	<0.0129	lb/d	7.859	EPA 624	2
1,1,2-TRICHLOROETHANE	<2	ug/L	<0.0159	lb/d	<2	ug/L	<0.0129	lb/d	4	EPA 624	2
TRICHLORETHYLENE	<2	ug/L	<0.0159	lb/d	<2	ug/L	<0.0129	lb/d	4	EPA 624	2
VINYL CHLORIDE			<0.0159						4	EPA 624	2
Use this space (or a separate sheet) to	provide in	formatio	n on other	volatile o	rganic cor	npounds	requested	by the p	ermit writer.		
ACID-EXTRACTABLE COMPOUNDS					0.1						
P-CHLORO-M-CRESOL	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
2-CHLOROPHENOL	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
2,4-DICHLOROPHENOL	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
2,4-DIMETHYLPHENOL	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
4,6-DINITRO-O-CRESOL	<10	ug/L	<0.0793	lb/d	<10	ug/L	<0.0642	lb/d	4	EPA 625/8270	10
2,4-DINITROPHENOL	<5	ug/L	<0.0397	lb/d	<5	ug/L	<0.0321	lb/d	4	EPA 625/8270	5
2-NITROPHENOL	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
4-NITROPHENOL	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
PENTACHLOROPHENOL	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
PHENOL	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
2,4,6-TRICHLOROPHENOL		ug/L							4	EPA 625/8270	3
Use this space (or a separate sheet) to	o provide in	formatio	n on other	acid-extr	actable co	mpounds	requeste	d by the	permit writer.		
BASE-NEUTRAL COMPOUNDS.											
ACENAPHTHENE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
ACENAPHTHYLENE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
ANTHRACENE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
BENZIDINE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
BENZO(A)ANTHRACENE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
BENZO(A)PYRENE	<3	ug/L	<0.0238	lb/d	<3	ua/l	<0.0198	lh/d	4	EPA 625/8270	3

EPA Form 3510-2A (Rev. 1-99). Replaces EPA forms 7550-6 & 7550-22.

Pease Wastewater Treatment Facility, NH0090000

Outfall number:			discharging effluent to waters of the United AVERAGE DAILY DISCHARGE					Siales.)			
POLLUTANT	N		JM DAIL	Y	A	/ERAG	DAILY	DISCH	ARGE		
	Conc.	Units	Mass	Units	Conc.	Units	Mass	Units	Number of Samples	ANALYTICAL METHOD	ML/ MDL
3,4 BENZO-FLUORANTHENE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
BENZO(GHI)PERYLENE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
BENZO(K)FLUORANTHENE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
BIS (2-CHLOROETHOXY) METHANE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
BIS (2-CHLOROETHYL)-ETHER	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
BIS (2-CHLOROISO-PROPYL) ETHER	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
BIS (2-ETHYLHEXYL) PHTHALATE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
4-BROMOPHENYL PHENYL ETHER	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
BUTYL BENZYL PHTHALATE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
2-CHLORONAPHTHALENE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
4-CHLORPHENYL PHENYL ETHER	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
CHRYSENE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
DI-N-BUTYL PHTHALATE	21	ug/L	0.166	lb/d	14.7	ug/L	0.113	lb/d	4	EPA 625/8270	3
DI-N-OCTYL PHTHALATE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
DIBENZO(A,H) ANTHRACENE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
1,2-DICHLOROBENZENE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
1,3-DICHLOROBENZENE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
1,4-DICHLOROBENZENE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
3,3-DICHLOROBENZIDINE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
DIETHYL PHTHALATE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
DIMETHYL PHTHALATE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
2,4-DINITROTOLUENE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
2,6-DINITROTOLUENE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
1,2-DIPHENYLHYDRAZINE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3

EPA Form 3510-2A (Rev. 1-99). Replaces EPA forms 7550-6 & 7550-22.

Outfall number: POLLUTANT	(Complete once for each outfall of MAXIMUM DAILY					0.0000.0	E DAILY		A CONTRACT OF		
	Conc.	DISC Units	HARGE Mass	Units	Conc.	Units	Mass	Units	Number of Samples	ANALYTICAL METHOD	ML/ MDL
FLUORANTHENE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
FLUORENE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
HEXACHLOROBENZENE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
HEXACHLOROBUTADIENE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
HEXACHLOROCYCLO- PENTADIENE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
HEXACHLOROETHANE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
INDENO(1,2,3-CD)PYRENE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
ISOPHORONE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
NAPHTHALENE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
NITROBENZENE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
N-NITROSODI-N-PROPYLAMINE	4.4	ug/L	<0.0238	lb/d	3.35	ug/L	0.0208	lb/d	4	EPA 625/8270	3
N-NITROSODI- METHYLAMINE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
N-NITROSODI-PHENYLAMINE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
PHENANTHRENE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
PYRENE	<3	ug/L	<0.0238	lb/d	<3	ug/L	<0.0198	lb/d	4	EPA 625/8270	3
1,2,4-TRICHLOROBENZENE			<0.0238							EPA 625/8270	3
Use this space (or a separate sheet) to	o provide in	formation	n on other	base-neu	itral comp	ounds rea	uested b	y the perr	mit writer.		
Use this space (or a separate sheet) to	provide in	formation	n on other	pollutants	s (e.g., pes	sticides) r	equested	by the pe	ermit writer.		
	-	_			Surger 1						

Form Approved 1/14/99 OMB Number 2040-0086

FACILITY	NAME	AND	PERMIT	NUMBER:	

Pease WWTF NH0090000

LEAD

MERCURY

NICKEL

ZINC

SELENIUM

MOLYBDENUM

POLLUTANT	CONCENTRATION (mg/kg dry weight)	ANALYTICAL METHOD	DETECTION LEVEL FOR ANALYSIS					
ARSENIC	NOT REQUIRED	The facility disposes sludge in a municipal solid was						
CADMIUM	NOT REQUIRED	landfill. The monitoring required for this practice is TCLP and paint filter tests, which are provided in						
CHROMIUM	NOT REQUIRED	Attachment F.						
COPPER	NOT REQUIRED							

A.8. Pollution Concentrations: Using the table below or a separate attachment, provide sewage sludge monitoring data for the pollutants for which

A.9. Certification. Read and submit the following certification statement with this application. Refer to the instructions to determine who is an officer for purposes of this certification. Indicate which parts of Form 2S you have completed and are submitting:

Part 1 Limited Background Information packet

NOT REQUIRED

NOT REQUIRED

NOT REQUIRED

NOT REQUIRED

NOT REQUIRED

NOT REQUIRED

Part 2 Permit Application Information packet:

Section A (General Information)

Section B (Generation of Sewage Sludge or Preparation of a Material Derived from Sewage Sludge)

_ Section C (Land Application of Bulk Sewage Sludge)

____ Section D (Surface Disposal)

Section E (Incineration)

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with the system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Name and official title	John P. Bohenko, City Manager			
Signature	NULPIZ	Date signed	11-19-17	
Telephone number	(603) 610-7201			
	mitting authority, you must submit any other informat opropriate permitting requirements.	ion necessary to a	ssess sewage sludge use or o	lisposal practices at

SEND COMPLETED FORMS TO:

ATTACHMENT G

COASTAL ZONE CONSISTENCY CERTIFICATION

CITY OF PORTSMOUTH

City Hall, One Junkins Avenue Portsmouth, New Hampshire 03801 jpb@cityofportsmouth.com (603) 610-7201

John P. Bohenko City Manager

November 22, 2019

Mr. Christian Williams Program Coordinator NH Coastal Program Pease Field Office 222 International Drive Portsmouth, New Hampshire 03801

Re: Coastal Zone Management Act Consistency Certification NPDES Permit No. NH0090000 Portsmouth, New Hampshire

Dear Mr. Williams:

This document provides the New Hampshire Coastal Management Program (NHCP) with the City of Portsmouth, NH consistency certification and necessary data and information under CZMA § 307(c) (3)(A) and 15 CFR part 930, subpart D, for the City of Portsmouth NPDES permit renewal application.

Certification:

The City of Portsmouth, NH certifies that the proposed activity complies with the policies of the New Hampshire approved coastal zone management program and will be conducted in a manner consistent with such policies.

Necessary Data and Information:

- 1. In support of the Certification, the City of Portsmouth is providing responses to the New Hampshire Coastal Program Policies. The enclosed Consistency Determination includes an evaluation relating the probable coastal effects of the proposed project to the relevant enforceable policies.
- 2. The City of Portsmouth, NH seeks a National Pollution Discharge Elimination System permit renewal (Permit No. NH0090000) for the WWTF. Please refer to the NPDES Renewal Application submitted to the EPA dated June 21, 2019. The City is requesting that the permit be modified for an increase of the permitted flow of the WWTF from 1.2 Million Gallons per Day (MGD) to 1.77 MGD.

By this certification that the NPDES permit renewal is consistent with the NHCP, the NHCP is hereby notified that it has six months from the receipt of this letter and accompanying information in which to concur with or object to City of Portsmouth's certification. Pursuant to 15 CFR § 930.62(b), if the NHCP has not issued a decision within three months following commencement of its review, it shall notify the City of Portsmouth and EPA of the status of the matter and the basis for further delay. The NHCP's concurrence, objection or notification of review status shall be sent to:

Mr. Terry Desmarais, P.E., City Engineer Department of Public Works 680 Peverly Hill Road Portsmouth, New Hampshire 03801

US EPA Attn: S. Puleo (OEP06-1) Office of Ecosystem Protection 5 Post Office Square, Suite 100 Boston, MA 02109-3912

W. Steven Clifton, P.E., Vice PresidentUnderwood Engineers, Inc.25 Vaughan MallPortsmouth, NH 03801

Thank you for your assistance. Please call if you have any questions.

CITY OF PORTSMOUTH, NEW HAMPSHIRE

Very truly yours,

John P. Bohenko City Manager

Consistency Determination Pease WWTF, City of Portsmouth NPDES Permit NH0090000 Portsmouth, New Hampshire November 22, 2019

I. New Hampshire Coastal Program Policies

NHDES contact

Christian Williams, Program Coordinator NH Coastal Program, NHDES Pease Field Office 222 International Drive Portsmouth, NH 03801 Phone: 603-559-0025 Fax: 603-559-1510 Email: christian.williams@des.nh.gov

Protection of Coastal Resources

1. Protect and preserve and, where appropriate, restore the water and related land resources and uses of the coastal and estuarine environments. The resources of primary concern are: coastal and estuarine waters, tidal and freshwater wetlands, beaches, sand dunes, and rocky shores;

The National Pollution Discharge Elimination System (NPDES) permitting activity was authorized by the Clean Water Act (CWA), which is intended "to restore and maintain the chemical, physical, and biological integrity of the Nation's waters." The CWA includes the provision that "it is the national goal that wherever attainable, an interim goal of water quality which provides for the protection and propagation of fish, shellfish, and wildlife and provides for recreation in an on the water be achieved..." As such, the intent of the permitting activity is consistent with the coastal program policy to protect and preserve the State of New Hampshire water resources and environments and their related uses.

The City has submitted an anti-degradation sampling program for use by the New Hampshire Department of Environmental Services (NHDES) and Environmental Protection Agency (EPA) in preparing a modified NPDES Permit. The purpose of the antidegradation program is to evaluate the impact of an increased pollutant loading on the receiving waters capacity to continue to meet NHDES water quality and designated use criteria. The results of the anti-degradation study are used in the permitting activity to set discharge limits which protect and preserve water quality to meet the existing uses in the receiving stream.

The permitting activity also includes an anti-backsliding component, which prevents a permit to be renewed or modified with less stringent limitations than a previous permit and further protects the water quality and uses of the receiving stream.

The Pease WWTF provides treatment of domestic, and industrial wastewater. The treatment process uses two (2) clarifiers for primary treatment and two (2) sequencing batch reactors (SBRs) for secondary treatment for the removal of BOD₅ and TSS, as well as other processes. The City is currently constructing a new headworks facility at the Pease WWTF to improve preliminary treatment at the facility. Although a facility plan to meet the proposed increase in flow and load has not been completed, the City is planning for upgrades, including improvements to the secondary process which may include providing additional aeration capacity for the SBRs and, if necessary, construction of an additional SBR.

2. Protect, manage, conserve and, where appropriate, undertake measures to maintain, restore, and enhance the fish and wildlife resources and related uses, including but not limited to commercial and recreational fishing, of the state;

The City's continuing efforts to reduce impacts from wastewater discharges to coastal and estuarine waters have also been addressed as conserving fish and wildlife resources and the related uses in the same waters such as fishing, shellfishing, boating, and swimming.

The City and NHDES are performing a dye study to track the flow and dispersion of water from the Pease WWTF in the Piscataqua River downstream as well as upstream into the Little Bay area. Information from this study is being used by DES to determine what areas in the Upper and Lower Piscataqua River may be suitable for recreational shellfish harvest and for commercial shellfish aquaculture, while still protecting public health. Results of the dye study are pending.

3. Regulate the mining of sand and gravel resources in offshore and onshore locations so as to ensure protection of submerged lands, and marine and estuarine life, and existing uses. Ensure adherence to minimum standards for restoring natural resources and uses impacted from onshore sand and gravel operations;

Not applicable.

4. Undertake oil spill prevention measures, safe oil handling procedures and, when necessary, expedite the cleanup of oil spillage that will contaminate public waters. Institute legal action to collect damages from liable parties in accordance with state law;

Not applicable.

5. Encourage investigations of the distribution, habitat needs, and limiting factors of rare and endangered animal species and undertake conservation programs to ensure their continued perpetuation;

Not applicable.

6. Identify, designate, and preserve unique and rare plant and animal species and geologic formations which constitute the natural heritage of the state. Encourage measures, including acquisition strategies, to ensure their protection;

Not applicable.

Recreation and Public Access

7. Provide a wide range of outdoor recreational opportunities including public access in the seacoast through the maintenance and improvement of the existing public facilities and the acquisition and development of new recreational areas and public access

No activities are currently planned that will further restrict public access to the seacoast or restrict recreational opportunities.

Managing Coastal Development:

8. Preserve the rural character and scenic beauty of the Great Bay estuary by limiting public investment in infrastructure within the coastal zone in order to limit development to a mixture of low and moderate density

The investment in public infrastructure associated with this activity is intended to protect and restore the water, fish, and wildlife resources of the state as required by policies 1 and 2.

The Pease WWTF serves the Pease International Tradeport, which has the following dedicated type of use zones: Airport, Airport Industrial, Industrial, Business/Commercial, and Natural Resource Protection. The type of use or area for each zone will not be impacted by the permitting activity. The increase in permitted flow is to support industrial flows, and is not anticipated to support an overall increase in the density of development.

9. Reduce the risk of flood loss, to minimize the impact of floods on human safety, health and welfare, and to preserve the natural and beneficial value of floodplains, through the implementation of the National Flood Insurance Program and applicable state laws and regulations, and local building codes and zoning ordinances;

The Pease International Tradeport area has fully separated storm and sanitary sewers. The stormwater permits are regulated under separate NPDES permit numbers.

All treatment facilities within the Pease WWTF are above the FEMA 100-year

floodplain line.

10. Maintain the air resources in the coastal area by ensuring that the ambient air pollution level, established by the New Hampshire State Implementation Plan pursuant to the Clean Air Act, as amended, is not exceeded;

Not applicable

11. Protect and preserve the chemical, physical, and biological integrity of coastal water resources, both surface and groundwater;

The chemical, physical and biological integrity of both surface and groundwater are being protected through the permitting activities and the City's ongoing projects as described above (Q.1).

12. Ensure that the siting of any proposed energy facility in the coast will consider the national interest and will not unduly interfere with the orderly development of the region and will not have an unreasonable adverse impact on aesthetics, historic sites, coastal and estuarine waters, air and water quality, the natural environment and the public health and safety, and existing uses;

Not applicable

Coastal Dependent Uses:

13. Allow only water dependent uses and structures on State properties in Portsmouth-Little Harbor, Rye Harbor, and Hampton-Seabrook Harbor, at the State Port Authority, the State Fish Pier and State beaches (except those uses or structures which directly support the public recreation purpose). For new development, allow only water dependent uses and structures over waters and wetlands of the State. Allow repair of existing over-water structures within guidelines. Encourage the siting of water dependent uses adjacent to public waters.

Not Applicable

14. Preserve and protect coastal and tidal waters and fish and wildlife resources from the adverse effects of dredging and dredge disposal, while ensuring the availability of navigable waters to coastal-dependent uses. Encourage beach renourishment and wildlife habit restoration as a means of dredge disposal whenever compatible.

Not applicable.

Preservation of Historic and Cultural Resources:

15. Support the preservation, management, and interpretation of historic and culturally significant structures, sites and districts along the Atlantic coast and in the Great Bay area

The City does not anticipate impacting any historic or culturally significant structures, sites or districts during upgrades to its wastewater facilities.

Marine and Estuarine Research and Education:

16. Promote and support marine and estuarine research and education that will directly benefit coastal resource management.

Not applicable.