

85 Portsmouth Avenue, PO Box 219, Stratham, NH 03885 603.772.4746 - JonesandBeach.com

March 18, 2024

Portsmouth Technical Advisory Committee Attn: Peter Stith, Principal Planner 1 Junkins Avenue, Suite 3rd Floor Portsmouth, NH 03801

RE: Site Plan Application 635 Sagamore Avenue, Portsmouth, NH Tax Map 222, Lot 19 JBE Project No. 18134.1

Dear Board Members,

Jones & Beach Engineers, Inc., respectfully submits a Site Plan Application on behalf of the applicant & owner, 635 Sagamore Development LLC. The intent of this application is to remove the 2 pre-existing non-conforming structures known as the Luster King, then construct a four-unit multi-family residential development.

The following items are provided in support of this Application:

- 1. Completed Site Plan Application (submitted online).
- 2. Site Plan Application Checklist.
- 3. Letter of Authorization.
- 4. Current Deed.
- 5. Wetland Delineation Letter.
- 6. Trip Generation Memorandum.
- 7. Test Pit Log.
- 8. One (1) Full Size Plan Set Folded.
- 9. One (1) Copy of Architectural Plans at End of Plan Set
- 10. One (1) Drainage Report.
- 11. One (1) Stormwater Operations and Maintenance Manual.

If you have any questions or need any additional information, please feel free to contact our office. Thank you very much for your time.

Very truly yours, **JONES & BEACH ENGINEERS, INC.**

Medite Daniel

Daniel Meditz, P.E. Project Engineer

cc: Michael Garrepy (via email) Christopher Ward (via email)

City of Portsmouth, New Hampshire

Site Plan Application Checklist

This site plan application checklist is a tool designed to assist the applicant in the planning process and for preparing the application for Planning Board review. The checklist is required to be completed and uploaded to the Site Plan application in the City's online permitting system. A preapplication conference with a member of the planning department is strongly encouraged as additional project information may be required depending on the size and scope. The applicant is cautioned that this checklist is only a guide and is not intended to be a complete list of all site plan review requirements. Please refer to the Site Plan review regulations for full details.

Applicant Responsibilities (Section 2.5.2): Applicable fees are due upon application submittal along with required attachments. The application shall be complete as submitted and provide adequate information for evaluation of the proposed site development. <u>Waiver requests must be submitted</u> in writing with appropriate justification.

Name of Applicant: _______ Sagamore Development, LLC _____ Date Submitted: _________ J18/24

Application # (in City's online permitting): _____

Site Address: 635 Sagamore Avenue

	Application Requirements		
Ø	Required Items for Submittal	Item Location (e.g. Page or Plan Sheet/Note #)	Waiver Requested
X	Complete <u>application</u> form submitted via the City's web-based permitting program (2.5.2.1(2.5.2.3A)		N/A
X	All application documents, plans, supporting documentation and other materials uploaded to the application form in viewpoint in digital Portable Document Format (PDF). One hard copy of all plans and materials shall be submitted to the Planning Department by the published deadline. (2.5.2.8)		N/A

	Site Plan Review Application Required Inf	ormation		
Ø	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested	
	Statement that lists and describes "green" building components and systems. (2.5.3.1B)	Pending		
X	Existing and proposed gross floor area and dimensions of all buildings and statement of uses and floor area for each floor. (2.5.3.1C)	Architectural Plans	N/A	
X	Tax map and lot number, and current zoning of all parcels under Site Plan Review. (2.5.3.1D)	Cover Sheet & Sheet C2	N/A	

Map: 222 Lot: 19

	Site Plan Review Application Required Info	ormation	
	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested
X	Owner's name, address, telephone number, and signature. Name, address, and telephone number of applicant if different from owner. (2.5.3.1E)	Cover Sheet	N/A
X	Names and addresses (including Tax Map and Lot number and zoning districts) of all direct abutting property owners (including properties located across abutting streets) and holders of existing conservation, preservation or agricultural preservation restrictions affecting the subject property. (2.5.3.1F)	Cover Sheet	N/A
K	Names, addresses and telephone numbers of all professionals involved in the site plan design. (2.5.3.1G)	Cover Sheet	N/A
x	List of reference plans. (2.5.3.1H)	Cl	N/A
X	List of names and contact information of all public or private utilities servicing the site. (2.5.3.1)	Cover Sheet	N/A

	Site Plan Specifications					
	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested			
X	Full size plans shall not be larger than 22 inches by 34 inches with match lines as required, unless approved by the Planning Director (2.5.4.1A)	Required on all plan sheets	N/A			
X	Scale: Not less than 1 inch = 60 feet and a graphic bar scale shall be included on all plans. Required on all plan sheets (2.5.4.1B) GIS data should be referenced to the coordinate system New Hampshire State Plane, NAD83 (1996), with units in feet. C1, Note #3					
X	GIS data should be referenced to the coordinate system New Hampshire State Plane, NAD83 (1996), with units in feet. (2.5.4.1C)	Cl, Note #3	N/A			
X	Plans shall be drawn to scale and stamped by a NH licensed civil engineer. (2.5.4.1D)	Required on all plan sheets	N/A			
X	Wetlands shall be delineated by a NH certified wetlands scientist and so stamped. (2.5.4.1E)	None Observed, Wetland Delineation Report Included	N/A			
X	Title (name of development project), north point, scale, legend. (2.5.4.2A)	Cl	N/A			
X	Date plans first submitted, date and explanation of revisions. (2.5.4.2B)	All Sheets	N/A			
X	(2.5.4.2B) All Sheets Individual plan sheet title that clearly describes the information that is displayed. Required on all plan sheets (2.5.4.2C) Sheets					
X	Source and date of data displayed on the plan. (2.5.4.2D)	Cl	N/A			

Site Plan Application Checklist/December 2020

	Site Plan Specifications – Required Exhibit		
R	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested
	 Existing Conditions: (2.5.4.3A) Surveyed plan of site showing existing natural and built features; Existing building footprints and gross floor area; Existing parking areas and number of parking spaces provided; Zoning district boundaries; Existing, required, and proposed dimensional zoning requirements including building and open space coverage, yards and/or setbacks, and dwelling units per acre; Existing impervious and disturbed areas; Limits and type of existing vegetation; Wetland delineation, wetland function and value assessment (including vernal pools); SFHA, 100-year flood elevation line and BFE data, as required. 	Cl	
x	 2. Buildings and Structures: (2.5.4.3B) Plan view: Use, size, dimensions, footings, overhangs, 1st fl. elevation; Elevations: Height, massing, placement, materials, lighting, façade treatments; Total Floor Area; Number of Usable Floors; Gross floor area by floor and use. 	Architectural Plans	
	 Access and Circulation: (2.5.4.3C) Location/width of access ways within site; Location of curbing, right of ways, edge of pavement and sidewalks; Location, type, size and design of traffic signing (pavement markings); Names/layout of existing abutting streets; Driveway curb cuts for abutting prop. and public roads; If subdivision; Names of all roads, right of way lines and easements noted; AASHTO truck turning templates, description of minimum vehicle allowed being a WB-50 (unless otherwise approved by TAC). 	C2 T1-T2	
	 4. Parking and Loading: (2.5.4.3D) Location of off street parking/loading areas, landscaped areas/buffers; Parking Calculations (# required and the # provided). 	C2, Note #3	
X	 5. Water Infrastructure: (2.5.4.3E) Size, type and location of water mains, shut-offs, hydrants & Engineering data; Location of wells and monitoring wells (include protective radii). 	C4	
X	 6. Sewer Infrastructure: (2.5.4.3F) Size, type and location of sanitary sewage facilities & Engineering data, including any onsite temporary facilities during construction period. 	C4 & P2	

ALC: NO.		
1		
X	 7. Utilities: (2.5.4.3G) The size, type and location of all above & below ground utilities; Size type and location of generator pads, transformers and other fixtures. 	C4
X	8. Solid Waste Facilities: (2.5.4.3H)	C2, Note #22
	• The size, type and location of solid waste facilities.	
	 9. Storm water Management: (2.5.4.3I) The location, elevation and layout of all storm-water drainage. The location of onsite snow storage areas and/or proposed off- site snow removal provisions. Location and containment measures for any salt storage facilities Location of proposed temporary and permanent material storage locations and distance from wetlands, water bodies, and stormwater structures. 	Snow Storage - C2 Everything Else - C3
X	 10. Outdoor Lighting: (2.5.4.3J) Type and placement of all lighting (exterior of building, parking lot and any other areas of the site) and photometric plan. 	L2
X	 Indicate where dark sky friendly lighting measures have been implemented. (10.1) 	Everywhere
x	 12. Landscaping: (2.5.4.3K) Identify all undisturbed area, existing vegetation and that which is to be retained; Location of any irrigation system and water source. 	L1
X	 13. Contours and Elevation: (2.5.4.3L) Existing/Proposed contours (2 foot minimum) and finished grade elevations. 	С3
X	 14. Open Space: (2.5.4.3M) Type, extent and location of all existing/proposed open space. 	C2, Note #2
	 All easements, deed restrictions and non-public rights of ways. (2.5.4.3N) 	N/A
	 16. Character/Civic District (All following information shall be included): (2.5.4.3P) Applicable Building Height (10.5A21.20 & 10.5A43.30); Applicable Special Requirements (10.5A21.30); Proposed building form/type (10.5A43); Proposed community space (10.5A46). 	N/A
	 17. Special Flood Hazard Areas (2.5.4.3Q) The proposed development is consistent with the need to minimize flood damage; All public utilities and facilities are located and construction to minimize or eliminate flood damage; Adequate drainage is provided so as to reduce exposure to flood hazards. 	N/A

	Other Required Information				
N	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested		
Х	Traffic Impact Study or Trip Generation Report, as required. (3.2.1-2)	Included with Submission			
Х	Indicate where Low Impact Development Design practices have been incorporated. (7.1)	С3			
Х	Indicate whether the proposed development is located in a wellhead protection or aquifer protection area. Such determination shall be approved by the Director of the Dept. of Public Works. (7.3.1)	C2, Note #23			
Х	Stormwater Management and Erosion Control Plan. (7.4)	Included with Submission	n		
X	Inspection and Maintenance Plan (7.6.5)	Included with Submission	1		

	Final Site Plan Approval Required Info	rmation		
	Required Items for Submittal	Item LocationWill(e.g. Page/line orRequirePlan Sheet/Note #)Item Plan Sheet/Note #		
X	 All local approvals, permits, easements and licenses required, including but not limited to: Waivers; Driveway permits; Special exceptions; Variances granted; Easements; Licenses. 	C2, Note # 4 & 5		
X	 Exhibits, data, reports or studies that may have been required as part of the approval process, including but not limited to: Calculations relating to stormwater runoff; Information on composition and quantity of water demand and wastewater generated; Information on air, water or land pollutants to be discharged, including standards, quantity, treatment and/or controls; Estimates of traffic generation and counts pre- and post-construction; Estimates of noise generation; A Stormwater Management and Erosion Control Plan; Endangered species and archaeological / historical studies; Wetland and water body (coastal and inland) delineations; Environmental impact studies. 	Included with Submissi	on	
X	A document from each of the required private utility service providers indicating approval of the proposed site plan and indicating an ability to provide all required private utilities to the site. (2.5.3.2D)	Pending		

Site Plan Application Checklist/December 2020

Page 5 of 6

N	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested
x	A list of any required state and federal permit applications required for the project and the status of same. (2.5.3.2E)	C2, Note #5	
X	A note shall be provided on the Site Plan stating: "All conditions on this Plan shall remain in effect in perpetuity pursuant to the requirements of the Site Plan Review Regulations." (2.5.4.2E)	C2, Note #21	N/A
X	For site plans that involve land designated as "Special Flood Hazard Areas" (SFHA) by the National Flood Insurance Program (NFIP) confirmation that all necessary permits have been received from those governmental agencies from which approval is required by Federal or State law, including Section 404 of the Federal Water Pollution Control Act Amendments of 1972, 33 U.S.C. 1334. (2.5.4.2F)	N/A	
X	 Plan sheets submitted for recording shall include the following notes: a. "This Site Plan shall be recorded in the Rockingham County Registry of Deeds." b. "All improvements shown on this Site Plan shall be constructed and maintained in accordance with the Plan by the property owner and all future property owners. No changes shall be made to this Site Plan without the express approval of the Portsmouth Planning Director." (2.13.3) 	C2, Note #19 & 20	N/A

Site Plan Application Checklist/December 2020

Page 6 of 6

< Sagamore A... Save \bigcirc :

Letter of Authorization

635 Sagamore Development, LLC, owner of property located at 635 Sagamore Avenue in Portsmouth, NH, known as Tax Map 222, Lot 19, do hereby authorize Jones & Beach Engineers, Inc. ("JBE"), Garrepy Planning Consultants, LLC ("GPC"), and Hoefle, Phoenix, Gormley & Roberts, PLLC ("HPGR") to act on its behalf concerning the previously mentioned property.

I hereby appoint JBE, GPC and HPGR as agents to act on behalf of 635 Sagamore Development, LLC in the Planning Board and Zoning Board application process, to include any required signatures.

635 Sagamore Development, LLC

Timothy & Black Duty Authorized

January 5, 2022 Date

1/1

*

<

E # 21060614 09/24/2021 09:32:59 AM Book 6332 Page 1158 Page 1 of 2 Register of Deeds, Rockingham County

Carly ann Starry

LCHIP R0A585829 25.00 TRANSFER TAX R0109828 5,807.00 RECORDING 14.00 SURCHARGE 2.00

WARRANTY DEED

KNOW ALL BY THESE PRESENTS, that I, WILLIAM A. HINES, married person, TRUSTEE OF THE WILLIAM A. HINES FAMILY REVOCABLE TRUST a/k/a The Hines Family Revocable Trust of 2006, of 635 Sagamore Avenue, Portsmouth, New Hampshire 03801, for consideration paid, hereby grant to 635 SAGAMORE DEVELOPMENT, LLC, a New Hampshire limited liability company with a mailing address of 3612 Lafayette Road, Dept. 4, Portsmouth, New Hampshire 03801 with WARRANTY COVENANTS, the following described premises:

A certain tract of land with the buildings thereon, situate on Sagamore Avenue in said Portsmouth, more particularly described as follows:

Beginning at a point on Sagamore Avenue at land now or formerly of Arnold, thence running Westerly by said Arnold land three hundred (300) feet, more or less, to land now or formerly of W.W. and D.M. Johnston; thence turning and running Northwesterly by said Johnston land one hundred and twentyfour (124) feet; thence turning and running Northerly also by said Johnston land one hundred sixtytwo (162) feet to land now or formerly of C.W. Walker; thence turning and running Easterly by said Walker land four hundred nineteen (419) feet to Sagamore Avenue; thence turning and running Easterly one hundred forty (140) feet; thence turning and running along said Sagamore Avenue thirty (30) feet to land of one Smith; thence turning and running Westerly one hundred forty (140) feet; thence turning and running Southerly ninety (90) feet; thence turning and running Easterly one hundred forty (140) feet to Sagamore Avenue; the last three bounds being land of Smith; thence turning running Southerly by said Sagamore Avenue one hundred sixty (160) feet to the point of beginning.

EXCEPTING AND RESERVING to the said William A. Hines and his wife Bonnie Hines a life estate in the above-described property permitting them to reside in the existing residential apartment on the property for the remainder of William A. Hines natural life, plus one year unless Bonne Hines shall have predeceased.

Meaning and intending to convey the same premises conveyed to the Grantor by deed of William A. Hines dated February 11, 2008 and recorded in the Rockingham County Registry of Deeds at Book 4885, Page 1538.

BY SIGNING BELOW, William A. Hines and Bonnie Hines release all homestead rights to the Premises.

Return to:

Book: 6332 Page: 1159

TRUSTEE CERTIFICATE

I, William A. Hines, Trustee of the William A. Hines Family Revocable Trust A/K/A The Hines Family Revocable Trust of 2006, hereby covenant that said Trust is duly organized under the laws of the State of New Hampshire; that I am the sole trustee pursuant to said Declaration of Trust; that said Trust is still in full force and effect; that I have the power thereunder to convey as aforesaid; and that, in making this conveyance, I have, in all respects, acted pursuant to the authority vested in and granted to me therein and no purchaser or third party shall be bound to inquire whether the Trustee has said power or are properly exercising said power or to see to the application of any trust assets paid to the Trustee for a conveyance thereof.

Signed this 3rd day of September, 2021.

Will A. Z

William A. Hines, Trustee of the William A. Hines Family Revocable Trust A/K/A The Hines Family Revocable Trust of 2006

Bonnie Hines

STATE OF NEW HAMPSHIRE COUNTY OF ROCKINGHAM

On this, the 3rd day of September, 2021, before me, the undersigned Officer, personally appeared William A. Hines, Trustee of the William A. Hines Family Revocable Trust A/K/A The Hines Family Revocable Trust of 2006, known to me, or satisfactorily proven, to be the person whose name is subscribed to the foregoing instrument, and acknowledged that he executed the same for the purposes set forth therein.

anumm_{in} Justice of the Peace/Notary Public My commission expires: . (11111111111111111 COMMISSION **EXPIRES** 20. 2024 AMPS

STATE OF NEW HAMPSHIRE COUNTY OF ROCKINGHAM

On this, the 3rd day of September, 2021, before me, the undersigned Officer, personally appeared Bonnie Hines, known to me, or satisfactorily proven, to be the person whose name is subscribed to the foregoing instrument, and acknowledged that she executed the same for the purposes set forth therein,

H. RA fustice of the Peace/Notary Public ANN BURBAR COMMISSION EXPIRES My commission expires:

WINITINS!

GOVE ENVIRONMENTAL SERVICES, INC.

November 8, 2021

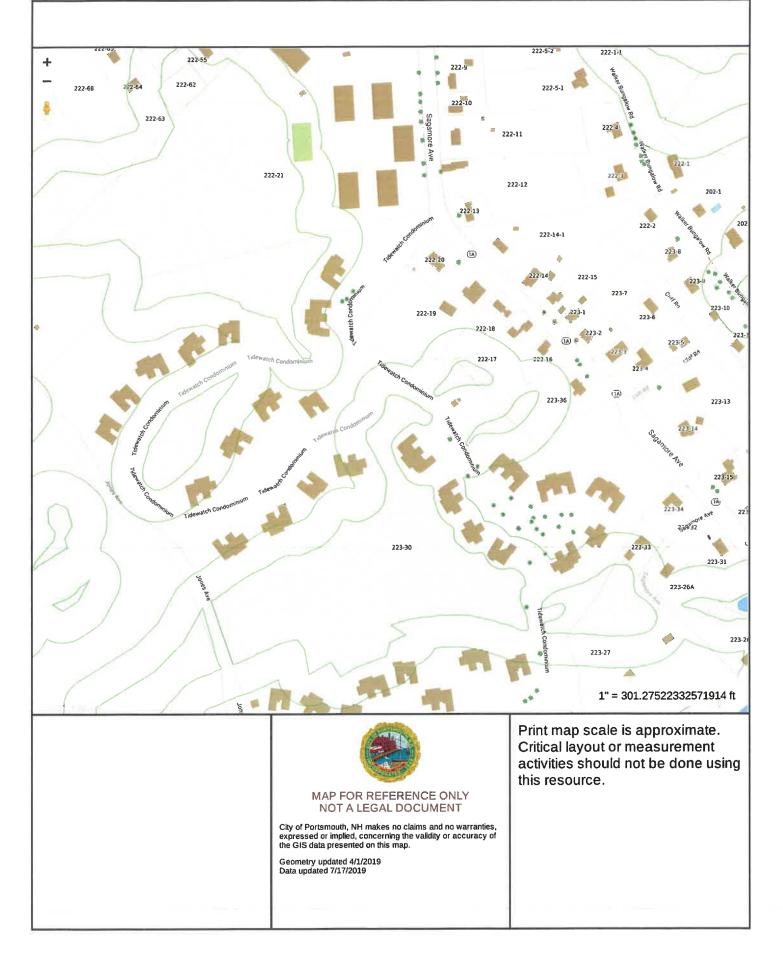
Subject: Wetland Delineation Report 635 Sagamore Ave, Portsmouth, NH

Dear Michael Garrepy,

Per your request, this letter is to verify that Gove Environmental Services, Inc., performed a site inspection to identify wetlands on the subject properties located on Tax Map 222 Lots 19 on Sagamore Ave in Portsmouth, NH. Wetlands were evaluated utilizing the following standards:

- 1. US Army Corps of Engineers Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region, Technical Report ERDC/EL TR-12-1 (January 2012).
- 2. Field Indicators for Identifying Hydric Soils in New England Version 4, June 2020. New England Hydric Soils Technical Committee.
- 3. US Army Corps of Engineers National Wetland Plant List, 2018.
- 4. Classification of Wetlands and Deepwater Habitats of the United States. USFW Manual FWS/OBS-79/31 (1979).

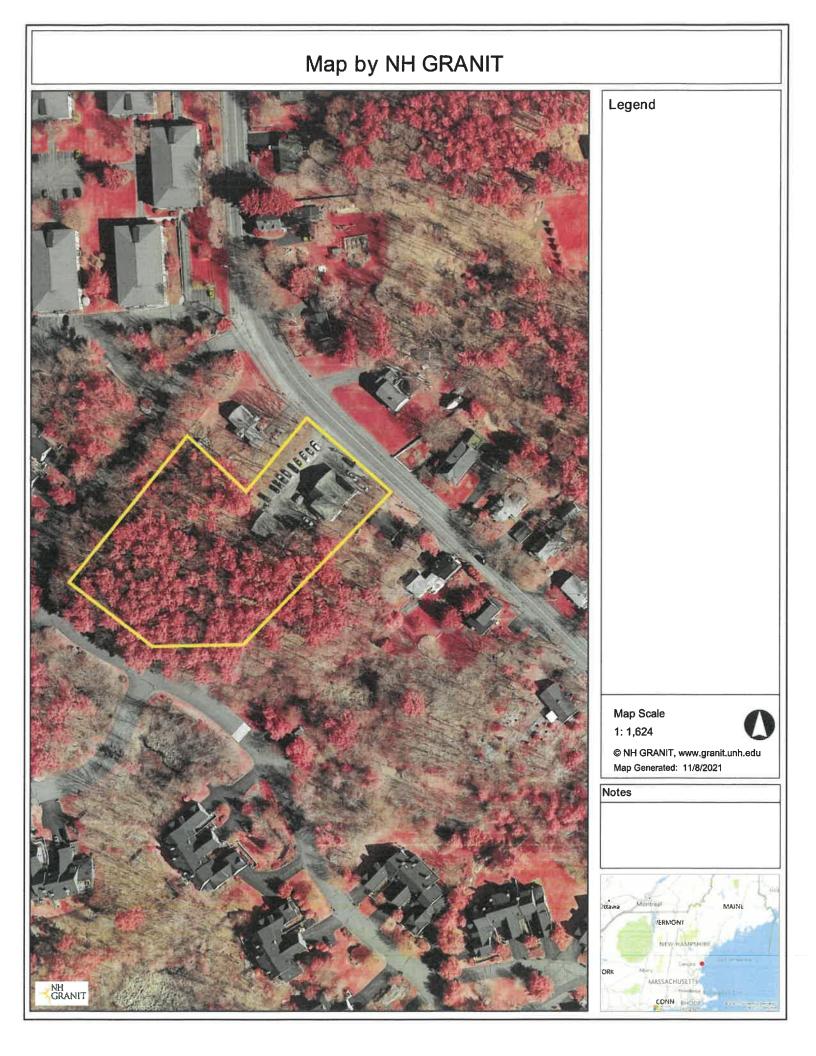
Brenden Walden performed the site inspection on 10/29/2021. The Subject property was reviewed in its entirety with careful attention paid to the area outlined southeast of the property on the City of Portsmouth's GIS website as being a wetland with a 100ft buffer that encroaches onto the property. During the site review it was determined, using the methods and standards above, that no areas on the property had any areas that would meet the criteria needed to be classified as a wetland. The area outside to the southeast of the property was also reviewed and was determined to also not have any characteristics of a wetland and thus would not have any buffer that would encroach on the subject property.


This concludes the wetland delineation report. If I can be of further assistance, please feel free to contact me at (603) 778-0644.

Sincerely,

Brenden Walden Business Manager & Wetland Scientist Gove Environmental Services, Inc.

Enc. Portsmouth GIS Granitview Maps: Aerial Aerial w/ Topography Aerial w/ Topography & NWI



Map Theme Legends

Wetlands

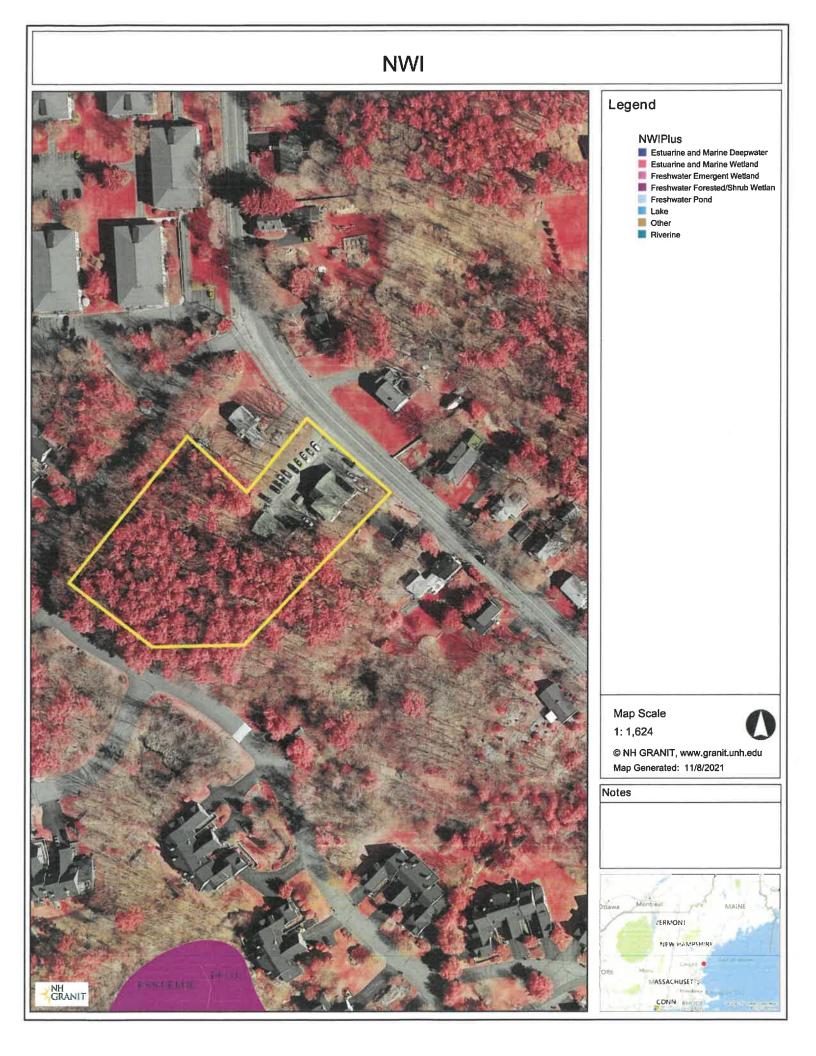
Wetlands 100ft Wetlands Buffer

City of Portsmouth

Map by NH GRANIT

Legend

Contour_2ft_0108020201_s Contour_2ft_0108020202_s Contour_2ft_0108020201_s Contour_2ft_0108020202_s Contour_2ft_0108020101_s Contour_2ft_0108020102_s Contour 2ft 0108020103_s Contour_2ft_0108020104_s Contour_2ft_0108020105_s Contour_2ft_0108020101_s Contour_2ft_0108020102_s Contour_2ft_0108020103_s Contour_2ft_0108020104_s Contour_2ft_0108020105_s Contour_2ft_0108010702_s Contour_2ft_0108010705_s Contour_2ft_0108010702_s Contour_2ft_0108010705_s Contour_2ft_0108010601_s Contour_2ft_0108010603_s Contour_2ft_0108010604_s Contour_2ft_0108010607_s Contour_2ft_0108010601_s Contour_2ft_0108010603_s Contour_2ft_0108010604_s Contour_2ft_0108010607_s Contour 2ft 0108010402_s Contour_2ft 0108010404_s Contour_2ft_0108010402_s Contour_2ft_0108010404_s Contour_2ft_0108010301_s Contour_2ft_0108010302_s Contour_2ft_0108010303_s Contour_2ft_0108010304_s Contour_2ft_0108010305_s Contour_2ft_0108010307_s Contour 2ft 0108010301 e


Map Scale 1: 1,624

0

© NH GRANIT, www.granit.unh.edu Map Generated: 11/8/2021

Notes

Transportation: Engineering • Planning • Design

MEMORANDUM

Ref: 2180A

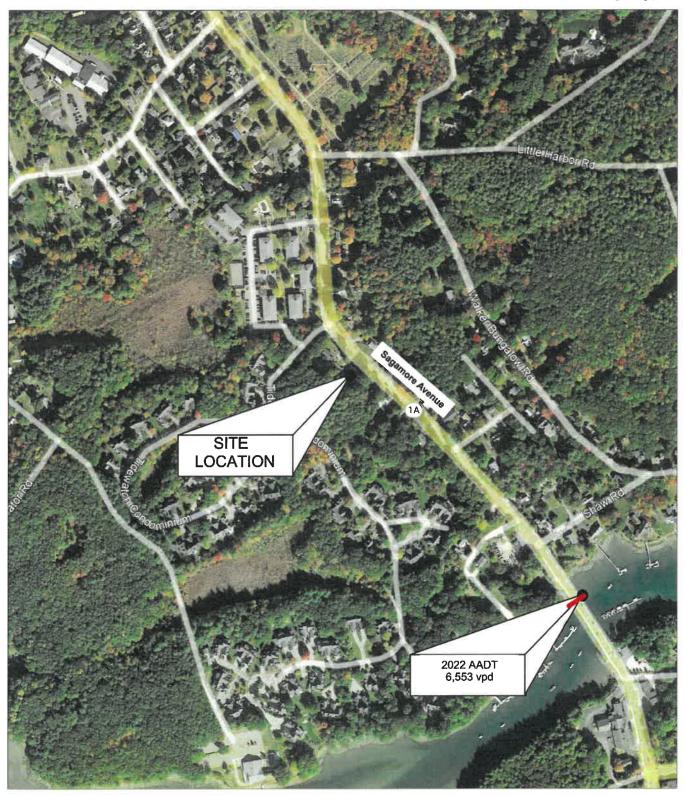
To: Michael Garrepy

From: Stephen G. Pernaw, P.E., PTOE

Subject: Residential Development – 635 Sagamore Avenue Portsmouth, New Hampshire

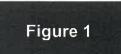
Date: _____August 8, 2023

<u>Introduction</u> - As requested, our office has conducted a trip generation analysis for the proposed change of use that will occur at 635 Sagamore Avenue (NH1A) in Portsmouth, New Hampshire. This analysis is based on the latest edition of the Institute of Transportation Engineers "*Trip Generation Manual*" and the results reflect average weekday conditions. We also researched available traffic count data at the New Hampshire Department of Transportation. Figure 1 shows the location of the subject site with respect to the area road system.


<u>Proposed Development</u> - The plan entitled "*ZBA Site Plan*," prepared by Jones and Beach Engineers, Inc. dated 12/7/21 (revised 6/23/22), Scale 1" = 20', Sheet C2 shows that the existing Luster King Car Care business located on the west side of Sagamore Avenue will be razed and replaced by four single-family detached dwelling units. The wide-open curb cut that provides access to the current site will be replaced by a well-defined site access road. Access to the individual residences will be provided by driveways that intersect the site access road (see Attachment 1).

<u>Existing Conditions</u> - Sagamore Avenue is a two-lane state-maintained minor arterial roadway that is delineated with a four-inch double-yellow centerline and four-inch single white edge lines. The speed limit is posted at 30 mph in both directions.

Research at the NHDOT revealed that a short-term automatic traffic recorder count was conducted on Sagamore Avenue at Sagamore Creek in August 2022. This count station is located approximately 0.3 miles south of the subject site. The NHDOT estimates that the 2022 Annual Average Daily Traffic volume was 6,553 vehicles per day (see Attachment 2). The raw data collected in the month of August exceeded 7,000 vehicles per day. This data confirms that the highest traffic hours on Sagamore Avenue occurred from 8:00 to 9:00 AM and from 5:00 to 6:00 PM on weekdays (see Attachment 3)`.



Pernaw & Company, Inc.

= AUTOMATIC TRAFFIC RECORDER LOCATION (NHDOT)

Site Location

2180A

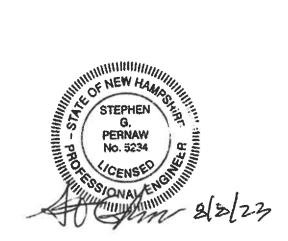
Traffic Evaluation, Proposed Residential Development, Portsmouth, New Hampshire

NORTH

<u>Trip Generation</u> – To estimate the volume of traffic generated by the former use and the proposed residential development, Pernaw & Company, Inc. considered the standardized tripgeneration rates and equations published by the Institute of Transportation Engineers $(ITE)^1$. More specifically, ITE Land Use Code (LUC) 942 (Automobile Care Center) was selected for the former use and the number of service bays (3 bays) was utilized as the independent variable. ITE LUC 210 (Single-Family Detached Housing) was chosen for the residential development and the number of dwelling units was used as the independent variable. The results of the trip generation comparison are summarized in Table 1.

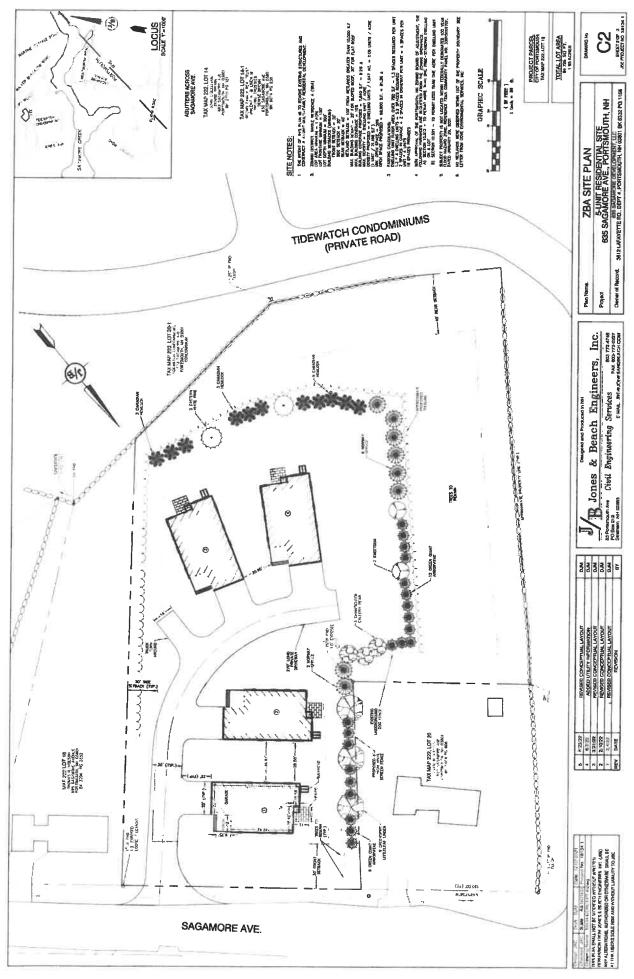
During the peak hour periods of the adjacent street system, the proposed residential development will generate approximately 3 vehicle-trips (1 arrival, 2 departures) during the AM peak hour, and 4 vehicle-trips (2 arrivals, 2 departures) during the PM peak hour. When compared to the car care center, the proposed development likely generates slightly fewer vehicle-trips during both the AM and PM peak hour periods. The trip generation computations are attached (see Attachments 4 - 8).

Table 1		Trip Gene	ration Comparis	on
Weekday P eak Ho	ur (24 hrs.)	Current Use ¹ (Car Care)	Proposed Use ² (Residential)	Change
,, ,	Entering Exiting Total	NA NA NA	19 veh <u>19 veh</u> 38 trips	NA NA NA
AM Peak Hour				
	Entering Exiting Total	3 veh <u>2</u> <u>veh</u> 5 trips	1 veh <u>2 veh</u> 3 trips	-2 trips <u>0</u> <u>trips</u> -2 trips
PM Peak Hour				
	Entering Exiting Total	3 veh <u>4</u> <u>veh</u> 7 trips	2 veh <u>2 veh</u> 4 trips	-1 trips <u>-2 trips</u> -3 trips


¹ ITE Land Use Code 942 - Automobile Care Center - 3 Service Bays - Trip Rate Method (PM directional distribution is estimated) ² ITE Land Use Code 210 - Single-Family Detached Housing - Trip Rate Method

¹ Institute of Transportation Engineers, *Trip Generation*, eleventh edition (Washington, D.C., 2021)

<u>Conclusions</u> - Replacement of the Luster King car care business with four residential singlefamily dwelling units will likely result in a slight reduction in vehicle-trips that are generated during the weekday AM and PM peak hour periods. From this it is reasonable to conclude that off-site traffic impacts will be de minimis. The proposed closure of the wide-open curb cut on the highway, and replacing it with one well-defined site access road intersection on the state highway, represents a significant improvement from an access management and safety standpoint. In short, we find that the proposed redevelopment of the subject site to be reasonable and beneficial from a transportation engineering and traffic operations standpoint.


Attachments

Stephen G. Pernaw & Company, Inc.

ATTACHMENTS

Attachment 1

List View All DIRs θI Record 144 1 M of 1 Goto Record -1 1 go Location ID 82379151 MPO ID SPOT Туре HPMS ID On NHS No On HPMS No LRS ID S000001A_ LRS Loc Pt. SF Group 04 Þ **Route Type** AF Group 04 ▶ Route NH 1A GF Group E • Active Yes Class Dist Grp Default Category 3 Seas Clss Grp Default Þ WIM Group Default ▶ QC Group Default Fnct'l Class Minor Arterial Milepost Located On Sagamore Ave Loc On Alias NH 1A (SAGAMORE AVE) AT SAGAMORE CREEK (SB-NB) (81379151-81379152) More Detail 🕨 STATION DATA

Directions: 2-WAY NB SB

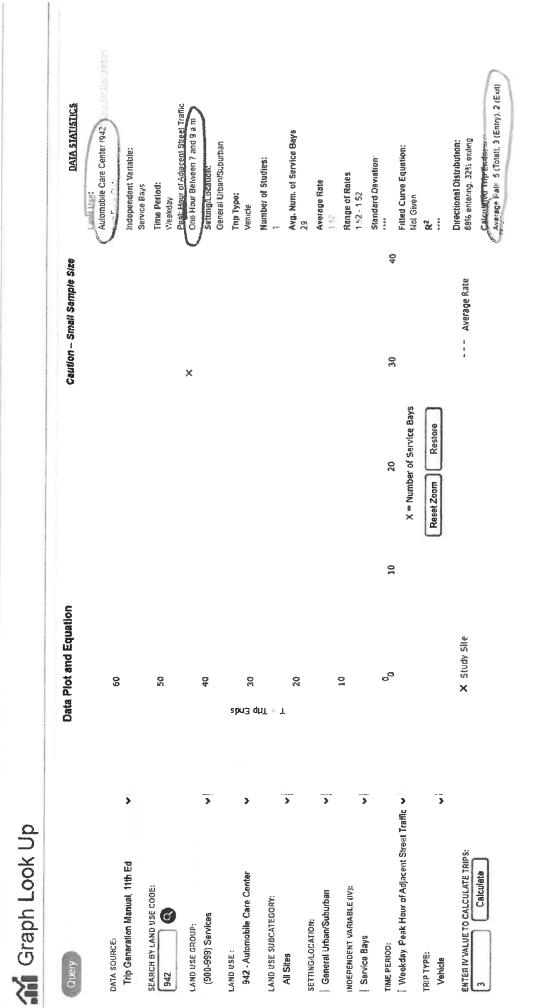
AADT 🧐

Year	AADT	DHV-30	Κ%	D %	PA	BC	Src
2022	6,553	702	11	54	6,250 (95%)	303 (5%)	
2021	6,633 ³		11	56	6,029 (91%)	604 (9%)	Grown from 2020
2020	5,981 ³		11	56	5,442 (91%)	539 (9%)	Grown from 2019
2019	7,086	763	11	56	6,489 (92%)	597 (8%)	
2018	7,823 ³		10	58	7,212 (92%)	611 (8%)	Grown from 2017
	> >>	1-5 of 16					

Trave	e! Demand	d Model								
	Model Year	Model AADT		AM PPV	MD PHV	MD PPV	PM PHV	PM PPV	NT PHV	NT PPV
VOLU	IME COU	NT				VOLUN	TREN	n Ø		
		Date		Int	Total	Year			al Growth	
-	Th	u 8/11/2022		60	7,538	2022			-1%	
1	We	ed 8/10/2022	2	60	7,434	2021			11%	
10	Τι	Je 8/9/2022		60	7,490	2021				
10	Th	nu 6/6/2019		60	8,374				16%	
-	W	ed 6/5/2019		60	8,121	2019			-9%	
5	TL	le 6/4/2019		60	8,151	2018			2%	
<u></u>	τ	- 7400040		00	0.007	2017			2%	

.

Transportation Data Management System


.

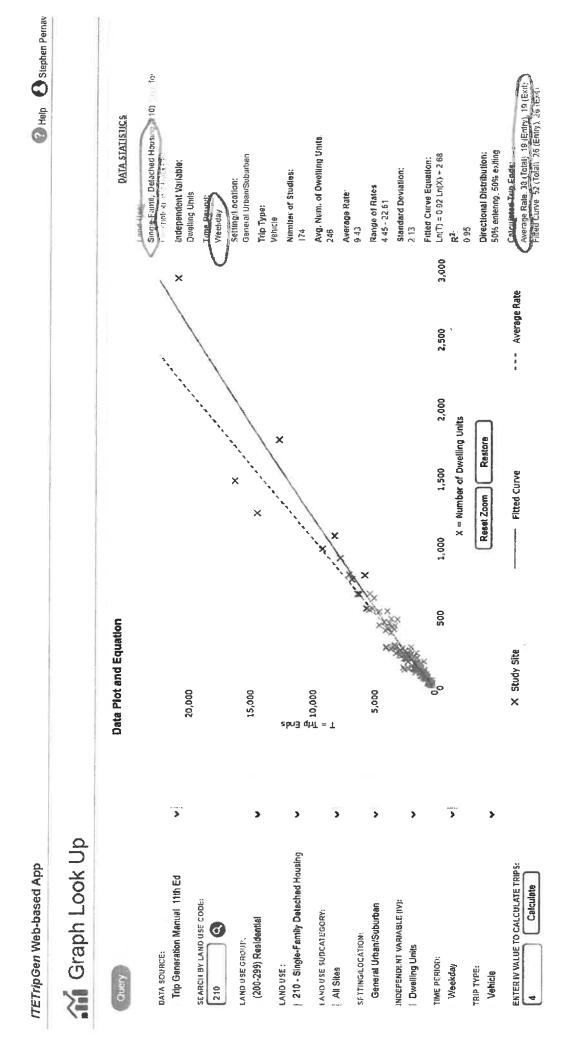
Excel Version

kly Volume Re	eport		
Location ID:	82379151	Type:	SPOT
Located On:	Sagamore Ave	:	
Direction:	2-WAY		
Community:	PORTSMOUTH	Period:	Mon 8/8/2022 - Sun 8/14/2022
AADT:	6553		

Start Time	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Avg	Graph
12:00 AM		33	19	29				27	0.4%
1:00 AM		10	8	12				10	0.1%
2:00 AM		5	0	6				4	0.0%
3:00 AM		6	1	6				4	0.1%
4:00 AM		13	16	18				16	0.2%
5:00 AM		48	48	46				47	0.6%
6:00 AM		143	127	142				137	1.8%
7:00 AM		298	289	313				300	4.0%
8:00 AM		404	434	425	}			421	5.6%
9:00 AM		467	470	419				452	6.0%
10:00 AM		438	480	428				449	6.0%
11:00 AM		541	546	504				530	7.1%
12:00 PM		533	582	516				544	7.3%
1:00 PM		521	536	541				533	7.1%
2:00 PM		559	538	533				543	7.3%
3:00 PM		575	563	582				573	7.7%
4:00 PM		573	639	630				614	8.2%
5:00 PM	(693	644	702	2			680	9.1%
6:00 PM		539	476	566				527	7.0%
7:00 PM		440	403	377				407	5.4%
8:00 PM		306	269	367				314	4.2%
9:00 PM		198	190	220				203	2.7%
10:00 PM		110	99	93				101	1.3%
11:00 PM		37	57	63				52	0.7%
Total	0	7,490	7,434	7,538	0	0	0		
24hr Total		7490	7434	7538				7,487	
AM Pk Hr		11:00	11:00	11:00					
AM Peak		541	54 6	504				530	
PM Pk Hr		5:00	5:00	5:00					
PM Peak		69 3	644	702	_			680	
% Pk Hr		9.25%	8.66%	9.31%				9.07%	

ITETripGen Web-based App

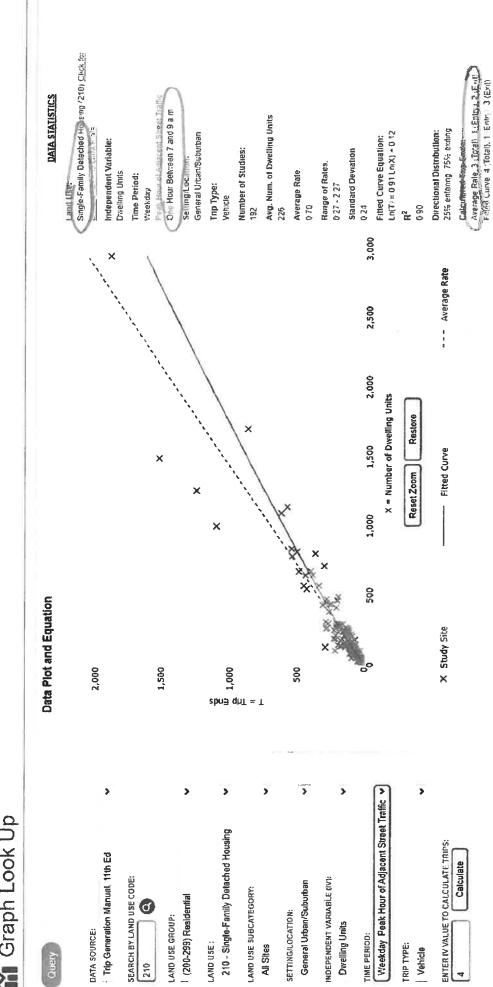
f


C Help C Stephen Pernaw

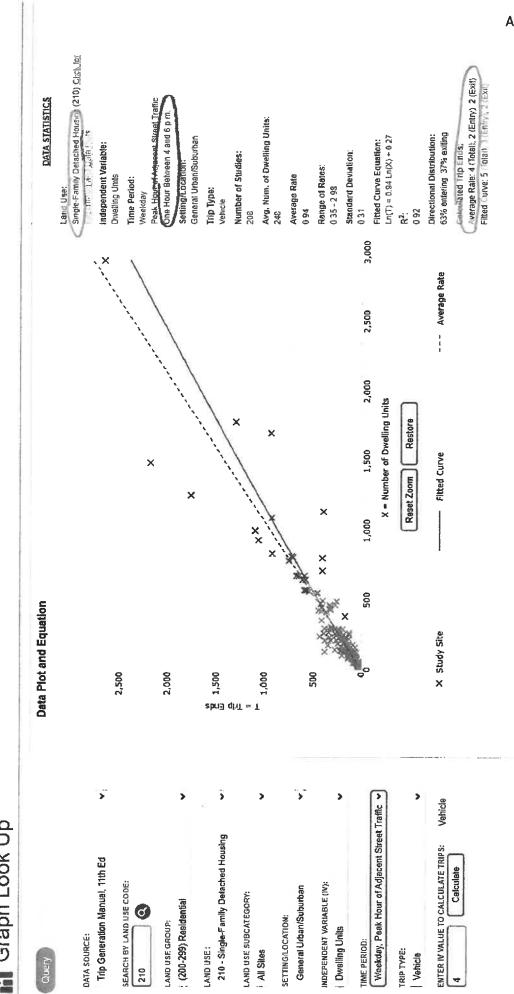
Attachment 4

				Help O Stephen Pernav
👬 Graph Look Up	ł			
Query	Data Plot and Equation	0	Caution - Smail Sample Size	DATA STATISTICS
DATA SOURCE:	8		•	Automotive Carle Center (942) Inc. Inc. Inc. 11, 1101
Trip Generation Manuel, 11th Ed 🗸	5			Independent Variable: Secure Bour
SEARCH BY LAND USE CODE: 942	5		×	oervee besp Viime Period: Need-tayy Reaet known Strawn Trene
LAMD USE GROUP: (900-999) Services	2			One Hour Between 4 and 6 p m Setting/Location: General Unbar/Suburban
LAND USE : 942 - Automobile Care Center	sbr3 q			Trip Type: Vehicle
LAND USE SUBCATEGORY: All Shes	hī ≃ T			Number of Studies:
SETTING/LOCATION: General Urban/Suburban	20			Ave. ruum, or service bays 29 Average Rate: 217
INDEPENDENT VARIABLE (IV): Service Bays				Range of Rates. 2.17 - 2.17 Standard Deviation:
TIME PERIOD: Weekday Peak Hour of Adjacent Street Traffic V	00	20 X = Number of Service Bays	30 40	Fitted Curve Equation: Not Siten
TRIP TYPE: Vehicle		Reset Zoom Restore		R ² .
ENTER IV VALUE TO CALCULATE TRIPS:	X Study Site		Average Rate	Directional Distribution: Not available Calculated Tim Ends: Average Rale: 7 (Total)
				Atta

ITETripGen Web-based App


Alaip 🕄 Stephen Pernav

Help O Stephen Pernav


流 Graph Look Up



- a
d
-
77
- -
9
G
- 2
1
9
- du
~
>
-
ω.
Ö
ō.
- 5
-
ш
-

Aelp 🖸 Stephen Perna-

👬 Graph Look Up

GOVE ENVIRONMENTAL SERVICES, INC. TEST PIT DATA

Project Client GES Projec MM/DD/Y Test Pit N ESHWT: r Terminatic Refusal: 1	635 Sag ct No. 6 'Y Staff 3 o. 1 h/a on @ 15"	amore Ave amore Developmer GES 2021307 3-18-2022 JPG		Soil:	Hollis
Obs. Water	r: none				
Depth 0–5" 5–15"	Color 10YR 3/2 10YR 5/6	Texture FSL FSL	Structure GR GR	Consistence FR FR	Redox; Quantity/Contrast NONE NONE
Test Pit N ESHWT: n Terminatio Refusal: 2 Obs. Wate	u/a on @ 25" 5"		SCS	Soil:	Chatfield
Depth 0–5" 5–25"	Color 10YR 3/2 10YR 5/6	Texture FSL FSL	Structure GR GR	Consistence FR FR	Redox; Quantity/Contrast NONE NONE
Test Pit N ESHWT: n Terminatio Refusal: 2 Obs. Water	n/a on @ 25" 5"		SCS	Soil:	Chatfield
Depth 0-6" 6-25"	Color 10YR 3/2 10YR 5/6	Texture FSL FSL	Structure GR GR	Consistence FR FR	Redox; Quantity/Contrast NONE NONE

Test Pit N ESHWT: r Terminatic Refusal: 1 Obs. Wate	n/a on @ 15" 5"		SCS	Soil:	Hollis
Depth 0–15"	Color 10YR 3/2	Texture FSL	Structure GR	Consistence FR	Redox; Quantity/Contrast NONE
Test Pit N ESHWT: 3 Terminatic Refusal: 3 Obs. Wate	60" on @ 36" 6"		SCS	Soil:	Chatfield variant
Depth 0-8"	Color 10YR 3/2	Texture FSL	Structure GR	Consistence FR	Redox; Quantity/Contrast NONE
8–30" 30–36"	10YR 4/6 2.5Y 5/3	FSL FSL	GR GR	FR. FR	NONE 10% Distinct
Test Pit No. 6 ESHWT: n/a Termination @ 12" Refusal: 12" Obs. Water: none			SCS Soil:		Hollis
Depth 0-12"	Color 10YR 3/2	Texture FSL	Structure GR	Consistence FR	Redox; Quantity/Contrast NONE
Test Pit N ESHWT: n Terminatio Refusal: 2	n/a on @ 27"		SCS	Soil:	Chatfield
Obs. Water	r: none Color	Texture	Structure	Consistence	Redox; Quantity/Contrast
Depth 0–4" 4–27"	10YR 3/2 10YR 5/6	FSL FSL	GR GR	FR FR	NONE NONE

Test Pit No. 8 ESHWT: 35" Termination @ 40" Refusal: 40" Obs. Water: none			SCS	Soil:	Chatfield variant
Depth 0-6" 6-35" 35-40"	0–6" 10YR 3/2 FSL 6–35" 10YR 5/6 FSL		Structure GR GR OM	Consistence FR FR FI	Redox; Quantity/Contrast NONE NONE 10% Distinct
Test Pit No. 9 ESHWT: n/a Termination @ 27" Refusal: 27" Obs. Water: none			SCS	Soil:	Chatfield
Depth Color Texture 0-4" 10YR 3/2 FSL 4-27" 10YR 5/6 FSL		Structure GR GR	Consistence FR FR	Redox; Quantity/Contrast NONE NONE	

Test Pit N ESHWT: 3	** = *				
Terminatio	on @ 62"				
Refusal: 62"			SCS Soil:		Scituate
Obs. Wate	r: none				
Depth	Color	Texture	Structure	Consistence	Redox; Quantity/Contrast
0-10"	10YR 3/2	FSL	GR	FR	NONE
10-35"	10YR 5/6	FSL	GR	FR	NONE
35-62"	2.5Y 5/3	FSL	PL	FI	10%, Distinct

.....

. .

3-21-2022

Legend:

FSL = fine sandy loam GR = granular PL = platyFI = firm

85 Portsmouth Avenue, PO Box 219, Stratham, NH 03885 603.772.4746 - JonesandBeach.com

STORMWATER MANAGEMENT OPERATIONS AND MAINTENANCE MANUAL

Luster Cluster 635 Sagamore Ave. Portsmouth, NH 03801 Tax Map 222, Lot 19

Prepared for:

635 Sagamore Development LLC 3612 Lafayette Rd., Dept 4 Portsmouth, NH 03801

> Prepared by: Jones & Beach Engineers, Inc. 85 Portsmouth Avenue P.O. Box 219 Stratham, NH 03885 (603) 772-4746 March 18, 2024 JBE Project No. 18134.1

Inspection and Maintenance of Facilities and Property

A. Maintenance of Common Facilities or Property

1. The Condominium Association, future owners and assigns are responsible to perform the maintenance obligations or hire a Professional Engineer to review the site on an annual basis for maintenance and certification of the stormwater system. The Association shall keep receipts and records of all maintenance companies hired throughout the year to submit along with the following form.

B. General Inspection and Maintenance Requirements

- 1. Permanent stormwater and sediment and erosion control facilities to be maintained on the site include, but are not limited to, the following:
 - a. Roadway and driveways
 - b. Vegetation and landscaping
 - c. Bioretention systems
 - d. Catch Basins & Yard Drains
 - e. Permeable Paver Patio
 - f. Stone Drip Edges
 - g. Culverts
 - h. Rip-Rap Outlet Protection Aprons
 - i. Swale
- 2. Maintenance of permanent measures shall follow the following schedule:
 - a. Normal winter roadway maintenance including plowing and snow removal. Road sweeping at the end of every winter, preferably before the start of the spring rain season.
 - b. Annual inspection of the site for erosion, destabilization, settling, and sloughing. Any needed repairs are to be conducted immediately. Annual inspection of site's vegetation and landscaping. Any areas that are bare shall be reseeded and mulched with hay or, if the case is extreme, loamed and seeded or sodded to ensure adequate vegetative cover. Landscape specimens shall be replaced in kind, if they are found to be dead or dying.
 - c. Bioretention Systems:
 - Visually inspect monthly and repair erosion. Use small stones to stabilize erosion along drainage paths.
 - Check the pH once a year if grass is not surviving. Apply an alkaline product, such as limestone, if needed.
 - Re-seed any bare areas by hand as needed.
 - Immediately after the completion of cell construction, water grass for 14 consecutive days unless there is sufficient natural rainfall.

- Once a month (more frequently in the summer), the land owner or Association shall visually inspect vegetation for disease or pest problems and treat as required.
- During times of extended drought, look for physical features of stress. Water in the early morning as needed.
- Weed regularly, if needed.
- After rainstorms, inspect the cell and make sure that drainage paths are clear and that ponding water dissipates over 4-6 hours. (Water may pond for longer times during the winter and early spring.)
- Twice annually, inspect the outlet control structures to ensure that they are not clogged and correct any clogging found as needed.
- Any debris and sediment accumulations shall be removed from the outlet structures, overflow risers, and emergency spillways and disposed of properly.
- Inspect outlet structure for deterioration and or clogging.
- If erosion is evident on the berm or emergency spillway, stabilize the affected area by seeding. Trees must not be allowed to grow in these areas.
- KEEP IN MIND, THE BIORETENTION CELL IS NOT A POND. IT SHALL NOT PROVIDE A BREEDING GROUND FOR MOSQUITOES. MOSQUITOES NEED AT LEAST FOUR (4) DAYS OF STANDING WATER TO DEVELOP AS LARVA.
- d. **Annual inspection** of catch basins and yard drains to determine if they need to be cleaned. Catch basins and yard drains are to be cleaned if the depth of deposits is greater than one-half the depth from the basin bottom to the invert of the lowest pipe or opening into or out of the basin. If a catch basin or yard drain significantly exceeds the one-half depth standard during the inspection, then it shall be cleaned more frequently. If woody debris or trash accumulates in the catch basin or yard drain, then it shall be cleaned on a weekly basis. The catch basin or yard drain can be cleaned either manually or by specially designed equipment including, but not limited to, bucket loaders and vacuum pumps. Before any materials can be disposed, it is necessary to perform a detailed chemical analysis to determine if the materials meet the EPA criteria for hazardous waste. This will help determine how the materials shall be stored, treated, and disposed. Grease hoods are to be wiped clean and the rags disposed of properly. Debris obscuring the grate inlet shall also be removed.
- e. Permeable Paver Patio:

Units 4 features a permeable paver patio for stormwater management while Units 1-3 feature standard paver patios. The following course of action will help assure that the pavers are maintained to preserve its hydrologic effectiveness for their special purpose.

Winter maintenance:

• Sanding for winter traction is prohibited. Deicing is permitted (NaCl, MgCl₂, or equivalent). Reduced salt application is possible and can be a cost savings

for winter maintenance. Nontoxic, organic deicers, applied either as blended, magnesium chloride-based liquid products or as pretreated salt, are preferable.

• Plow after each storm. Special plow blades may be used to prevent scarring. Do not raise blade of plow. Ice and light snow accumulation are generally not as problematic as for standard asphalt. Snow will accumulate during heavier storms and should be plowed after 2 to 4 inches of snow accumulate. Alternatively, snow may be blown or shoveled off of paver surface

Routine maintenance:

- Seal coating is absolutely forbidden. Surface seal coating is not reversible.
- The paver surface shall be vacuumed 2 or 3 times per year, and at any additional times sediment is spilled, eroded, or tracked onto the surface.
- Planted areas adjacent to permeable pavers shall be well maintained to prevent soil washout onto the pavers. If any bare spots or eroded areas are observed within the planted areas, they shall be replanted and/or stabilized at once.
- Immediately clean any soil deposited on pavers. Superficial dirt does not necessarily clog the paver voids. However, dirt that is ground in repeatedly by tires can lead to clogging. Therefore, trucks or other heavy vehicles shall be prevented from tracking or spilling dirt onto the pavers.
- Do not allow construction staging, soil/mulch storage, etc. on unprotected paver surface. Contractor to lay down tarps, plywood or removable item and take care not to track material onto unprotected pavers.
- Repairs: Potholes or other surface blemishes shall be replaced in kind. Any required repair of drainage structures shall be done promptly to ensure continued proper functioning of the system.
- Written and verbal communication to the future owner shall make clear the pavers' special purpose and special maintenance requirements such as those listed here.
- f. Stone Drip Edges:

In the spring and fall, visually inspect the area around the edges and repair any erosion. Use small stones to stabilize erosion along drainage paths. Inspect stone area to ensure that it has not been displaced, undermined, or otherwise damaged. Displaced rock shall be replaced, or additional rock added in order to maintain the structure(s) in their undamaged state. Woody vegetation shall not be allowed to become established in stone areas, and/or any debris removed from the void spaces between the stones.

- g. **Inspection** of culvert inlets and outlets at least **once per month** during the rainy season (March to November). Any debris is to be removed and disposed of properly.
 - h. Rock riprap shall be **inspected annually** in order to ensure that it has not been displaced, undermined, or otherwise damaged. Displaced rock shall be replaced, or additional rock added in order to maintain the structure(s) in their undamaged

state. Woody vegetation must not be allowed to become established in riprap areas, and/or any debris removed from the void spaces between the rocks. If the riprap is adjacent to a stream or other waterbody, the water shall be kept clear of obstructions, debris, and sediment deposits

i. Swales - Inspect swales annually for erosion, sediment accumulation, vegetation loss, and presence of invasive species. Perform periodic mowing; frequency depends on location and type of grass. Remove debris and accumulated sediment, based on inspection. Repair eroded areas, remove invasive species and dead vegetation, and reseed as warranted by inspection

See attached sample forms as a guideline.

Any inquiries in regards to the design, function, and/or maintenance of any one of the abovementioned facilities or tasks shall be directed to the project engineer:

Jones & Beach Engineers, Inc. 85 Portsmouth Avenue P.O. Box 219 Stratham, NH 03885

T#: (603) 772-4746 F#: (603) 772-0227

Commitment to maintenance requirements

I agree to complete and/or observe all of the required maintenance practices and their respective schedules as outlined above.

Signature

Print Name

Title

Date

Annual Operations and Maintenance Report

The Condominium Association, future owners and assigns are responsible to perform the maintenance obligations or hire a Professional Engineer to review the site on an annual basis for maintenance and certification of the stormwater system. The Association shall keep receipts and records of all maintenance companies hired throughout the year to submit along with the following form.

Construction Activity	Date of Inspection	Who Inspected	Findings of Inspector
Roadway and Driveways			
Vegetation and Landscaping			
Bioretention #1			
Bioretention #2			
Catch Basins & Yard Drains			

Permeable Paver Patios			
(Unit 4)			
	1		
\mathbf{Q}_{1} \mathbf{D}_{1} \mathbf{D}_{2} \mathbf{D}_{1}			
Stone Drip Edge			
Calmente		·	
Culverts			
		0	0
		(). ()	
Rip Rap Outlet Protection			
1 1			
	1		
Swales			
Swaros			
Other (please note):			
			1

Regular Inspection and Maintenance Guidance for Bioretention Systems / Tree Filters

Maintenance of bioretention systems and tree filters can typically be performed as part of standard landscaping. Regular inspection and maintenance is critical to the effective operation of bioretention systems and tree filters to insure they remain clear of leaves and debris and free draining. This page provides guidance on maintenance activities that are typically required for these systems, along with the suggested frequency for each activity. Individual systems may have more, or less, frequent maintenance needs, depending on a variety of factors including the occurrence of large storm events, overly wet or dry (I.E., drought), regional hydrologic conditions, and the upstream land use.

ACTIVITIES

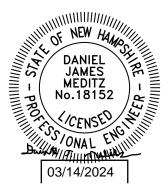
The most common maintenance activity is the removal of leaves from the system and bypass structure. Visual inspections are routine for system maintenance. This includes looking for standing water, accumulated leaves, holes in the soil media, signs of plant distress, and debris and sediment accumulation in the system. Mulch and/or vegetation coverage is integral to the performance of the system, including infiltration rate and nutrient uptake. Vegetation care is important to system productivity and health.

ACTIVITY	FREQUENCY	
A record should be kept of the time to drain for the system completely after a storm event. The system should drain completely within 72 hours.		
Check to insure the filter surface remains well draining after storm event.	After every major storm in the first few	
Remedy : If filter bed is clogged, draining poorly, or standing water covers more than 15% of the surface 48 hours after a precipitation event, then remove top	months, then biannually.	
few inches of discolored material. Till or rake remaining material as needed.		
Check inlets and outlets for leaves and debris.		
Remedy : Rake in and around the system to clear it of debris. Also, clear the inlet and overflow if obstructed.		
Check for animal burrows and short circuiting in the system		
Remedy : Soil erosion from short circuiting or animal boroughs should be repaired when they occur. The holes should be filled and lightly compacted.	Quarterly initially, biannually,	
Check to insure the filter bed does not contain more than 2 inches accumulated material	frequency adjusted as needed after 3 inspections	
Remedy : Remove sediment as necessary. If 2 inches or more of filter bed has been removed, replace media with either mulch or a (50% sand, 20% woodchips, 20% compost, 10% soil) mixture.		
During extended periods without rainfall, inspect plants for signs of distress.		
Remedy: Plants should be watered until established (typical only for first few months) or as needed thereafter.		
Inspect inlets and outlets to ensure good condition and no evidence of deterioration. Check to see if high-flow bypass is functioning.		
Remedy: Repair or replace any damaged structural parts, inlets, outlets, sidewalls.	Annually	
Check for robust vegetation coverage throughout the system.		
Remedy : If at least 50% vegetation coverage is not established after 2 years, reinforcement planting should be performed.		
Check for dead or dying plants, and general long term plant health.		
Remedy: This vegetation should be cut and removed from the system. If woody vegetation is present, care should be taken to remove dead or decaying plant Material. Separation of Herbaceous vegetation rootstock should occur when overcrowding is observed.	As needed	

1/15/2011, University of New Hampshire Stormwater Center

Location:		Inspect	or:
Date: Time:		Site Co	nditions:
Date Since Last Rain Event:			
Inspection Items	Satisfac Unsatisf	tory (S) or actory (U)	Comments/Corrective Action
1. Initial Inspection After Planting and Mulching			
Plants are stable, roots not exposed	S	U	
Surface is at design level, typically 4" below overpass	S	U	
Overflow bypass / inlet (if available) is functional	s	U	
2. Debris Cleanup (2 times a year minimum, Spring & Fall)		S. In the second	
Litter, leaves, and dead vegetation removed from the system	S	U]
Prune perennial vegetation	S	U	
3. Standing Water (1 time a year, After large storm events)			
No evidence of standing water after 72 hours	S	U	
4. Short Circuiting & Erosion (1 time a year, After large storn	n events)	100	
No evidence of animal burrows or other holes	S	U	
No evidence of erosion	S	U	1
5. Drought Conditions (As needed)			
Water plants as needed	S	U	1
Dead or dying plants	1		
6. Overflow Bypass / Inlet Inspection (1 time a year, After lar	ge storm ev	ents)	
No evidence of blockage or accumulated leaves	s	U	1
Good condition, no need for repair	S	U	1
7. Vegetation Coverage (once a year)			
50% coverage established throughout system by first year	S	U	
Robust coverage by year 2 or later	S	υ	
8. Mulch Depth (if applicable)(once every 2 years)		المقاطر الألم	
Mulch at original design depth after tilling or replacement	S	U	
9. Vegetation Health (once every 3 years)			
Dead or decaying plants removed from the system	S	U	
10. Tree Pruning (once every 3 years)			
Prune dead, diseased, or crossing branches	S	U	
Corrective Action Needed			Due Date
1.			
2.			
3.			

1/15/2011, University of New Hampshire Stormwater Center


DRAINAGE ANALYSIS

SEDIMENT AND EROSION CONTROL PLAN

"Luster Cluster" 635 Sagamore Ave. Portsmouth, NH 03801 Tax Map 222, Lot 19

Prepared for:

635 Sagamore Development LLC 3612 Lafayette Rd., Dept 4 Portsmouth, NH 03801

Prepared by: Jones & Beach Engineers, Inc. 85 Portsmouth Avenue P.O. Box 219 Stratham, NH 03885 (603) 772-4746 March 14, 2024 JBE Project No. 18134.1

EXECUTIVE SUMMARY

635 Sagamore Development LLC proposes to demolish an existing commercial development and construct a 4-unit multi-family residential site on the subject parcel located at 635 Sagamore Ave. in Portsmouth, NH. In the existing condition, the subject parcel is home to two buildings and a paved parking area that used to comprise the "Luster King," a former auto detailing business that has since closed.

A drainage analysis of the entire site as well as offsite contributing watershed area was conducted for the purpose of estimating the peak rate of stormwater runoff and to subsequently design adequate drainage structures. Two models were compiled, one for the area in its existing (pre-construction) condition, and a second for its proposed (post-construction) condition. The analysis was conducted using data for the 2 Year – 24 Hour (3.70"), 10 Year – 24 Hour (5.61"), 25 Year – 24 Hour (7.12"), and 50 Year – 24 Hour (8.53") storm events using the USDA SCS TR-20 method within the HydroCAD Stormwater Modeling System environment. This data was taken from the Extreme Precipitation Tables developed by the Northeast Regional Climate Center (NRCC), and the values have been increased by 15% due to the project being within the Coastal/Great Bay Region. A summary of the existing and proposed conditions peak rates of runoff in units of cubic feet per second (cfs) is as follows:

Analysis Point	2 Y	ear	10 Y	ear	25	Year	50 Y	lear
	Pre	Post	Pre	Post	Pre	Post	Pre	Post
Analysis Point #1	0.75	0.35	1.33	0.67	1.78	0.93	2.21	1.17
Analysis Point #2	0.20	0.02	0.44	0.08	0.65	0.12	0.84	0.17
Analysis Point #3	0.51	0.50	1.74	1.63	2.94	2.94	4.17	4.17
Analysis Point #4	0.49	0.27	1.31	0.85	2.05	1.40	2.78	1.99

A similar summary of the existing and proposed peak volumes in units of acre-feet is as follows:

Analysis Point	2 Y	ear	10 Y	<i>Y</i> ear	25	Year	50 Y	lear
	Pre	Post	Pre	Post	Pre	Post	Pre	Post
Analysis Point #1	0.054	0.025	0.098	0.048	0.133	0.068	0.167	0.087
Analysis Point #2	0.015	0.002	0.032	0.006	0.047	0.009	0.061	0.013
Analysis Point #3	0.069	0.130	0.186	0.293	0.300	0.451	0.417	0.611
Analysis Point #4	0.049	0.027	0.116	0.069	0.177	0.112	0.238	0.155

The subject parcel is located in the Single Residence A (SRA) Zoning District. The subject parcel currently consists of the aforementioned former commercial site which is proposed to be demolished. Despite impervious surface existing on the subject parcel now, the proposed development results in an increase in impervious surface on the subject parcel. The addition of the proposed impervious surfaces causes an increase in the curve number (C_n) and a decrease in the time of concentration (T_c), the net result being a potential increase in peak rates of runoff from the site. In order to mitigate this potential, a stormwater management system has been designed, consisting of two bioretention systems, stone drip edges and an Eco-Paver patio. Due to the use of these stormwater management features, the peak flow will be reduced toward all analysis points during all analyzed storm events in the proposed condition as compared to the existing condition, the treatment requirements of the City of Portsmouth are met, and volumes of runoff directed toward three of the four analysis points will be reduced post-construction as well. The one analysis point toward which the volume of runoff is proposed to slightly

increase is Analysis Point 3, which represents a drainage ditch alongside and below the grade of the adjacent Tidewatch Condominium roadway. This is a low-risk analysis point as runoff is not directed toward pavement or a building. The ditch as well as the entire watershed directed toward it has been modelled in both the existing and proposed conditions analysis and it is shown to have plenty of freeboard up to the 50 year storm. The Tidewatch Condominium roadway itself is curbed with a closed drainage system so roadway runoff does not enter the ditch. Additionally, the NHDES Alteration of Terrain Bureau's groundwater recharge volume and channel protection requirements are met with the proposed development. The stormwater management system as designed meets all requirements of the City of Portsmouth stormwater regulations per Section 7.1 and 7.4-7.6 of the Site Plan Review Regulations. Additionally, the stormwater management system as designed meets all requirements is not necessary for this project due to the area of disturbance.

The use of Best Management Practices per the NHDES <u>Stormwater Manual</u> have been applied to the design of this stormwater management system and will be observed during all stages of construction. All land disturbed during construction will be stabilized within thirty days of groundbreaking and abutting property owners will suffer minimal adversity resultant to this development.

TABLE OF CONTENTS

Executive Summary

- 1.0 Rainfall Characteristics
- 2.0 Existing Conditions Analysis
- 3.0 Proposed Conditions Analysis
- 4.0 Conclusion
- Appendix I Existing Conditions Analysis

2 Year - 24 Hour Summary 10 Year - 24 Hour Complete 25 Year - 24 Hour Summary 50 Year - 24 Hour Complete

Appendix II Proposed Conditions Analysis

2 Year - 24 Hour Summary 10 Year - 24 Hour Complete 25 Year - 24 Hour Summary 50 Year - 24 Hour Complete

- Appendix III Test Pit Logs
- Appendix IV Site Specific Soil Survey and Map
- Appendix V NRCS Soil Map
- Appendix VI Extreme Precipitation Estimates
- Appendix VII Rip Rap Calculations
- Appendix VIII BMP Worksheets
- Appendix IX Pollutant Removal Calculations
- Appendix X Stormwater Operations and Maintenance Manual
- Appendix XI Pre- and Post-Construction Watershed Plans

1.0 RAINFALL CHARACTERISTICS

This drainage report includes an existing conditions analysis of the area involved in the proposed development, as well as a proposed condition, or post-construction analysis, of the same area. These analyses were accomplished using the USDA SCS TR-20 Method within the HydroCAD 10.20-3c Stormwater Modeling System. The curve numbers were developed using the SCS TR-55 Runoff Curve numbers for Urban Areas. A Type III SCS 24-hour rainfall distribution was utilized in analyzing the data for the 2 Year – 24 Hour (3.70"), 10 Year – 24 Hour (5.61"), 25 Year – 24 Hour (7.12"), and 50 Year – 24 Hour (8.53") storm events. This data was taken from the Extreme Precipitation Tables developed by the Northeast Regional Climate Center (NRCC), and the values have been increased by 15% due to the project being within the Coastal/Great Bay Region.

The peak rates of runoff will be reduced from the existing condition, thereby minimizing any potential for a negative impact on abutting properties. This is accomplished through treatment of stormwater runoff and attenuation of peak flows and volumes resulting from storm events.

2.0 EXISTING CONDITIONS ANALYSIS

In the existing condition, the site consists of two commercial buildings as well as a shed and a paved parking area that comprise the former Luster King auto detailing business, which has since closed. Most of the area behind the existing commercial development is wooded with light underbrush and large ledge outcrops. Due to these features of the woodlands, the woods has been modelled as "fair" rather than "good" for the purposes of stormwater runoff calculations. There is some lawn space around the existing developed area as well.

The existing topography and roof ridges divide the subject parcel and offsite contributing watershed areas into four subcatchments, draining toward four analysis points, respectively. Subcatchment 1 represents the front of the subject parcel as well as a stretch of the northbound lane of Sagamore Avenue. This subcatchment is entirely developed in the existing condition, and it drains directly into the Sagamore Ave. right of way, modelled as Analysis Point 1.

Subcatchment 2S represents a small section of the developed portion of the property which drains to the north and on to abutting Tax Map 222, Lot 20, modelled as Analysis Point 2. It is very important that peak flows and volumes draining toward Analysis Points 1 and 2 are reduced in the post-construction condition, as these two analysis points represent a highway and a house lot, respectively.

The largest subcatchment is Subcatchment 3S. Subcatchment 3S is roughly the western quarter of the property and it consists primarily of woodland with large ledge outcrops. Subcatchment 3S drains toward an existing drainage ditch alongside and below the grade of the Tidewatch Condominium private roadway. This drainage ditch is modelled as Reach 1R and it drains toward Analysis Point 3, representing the immediate outlet point from the ditch.

Finally, a section of both developed and undeveloped land in the western end of the property drains into abutting woodland on the Tidewatch Condominium property, modelled as Analysis Point 4.

Existing soil types were determined through a Site Specific Soil Survey conducted by a Certified Soil Scientist. The pervious soils are categorized into Hydrologic Soil Group (HSG) B while the impervious areas of the subject parcel are modelled as Urban Land (SSS Symbol 699). The pervious sections of the property are represented as Chatfield-Hollis-Rock Outcrop complex and Chatfield

Variant (moderately well drained). According to "Ksat Values for New Hampshire Soils," Special Publication No. 5 sponsored by the Society of Soil Scientists of Northern New England (SSSNNE), Chatfield, Chatfield Variant, and Hollis soils all have identical saturated hydraulic conductivity ranges in the B and C horizons. The saturated hydraulic conductivity (Ksat) value for these soils ranges from 0.6 to 6.0 inches/hour within both the B and C horizons. Therefore, in accordance with standard engineering practice, the lowest published Ksat of 0.6 in/hr for these soils types was divided by two in order to determine an appropriate Ksat of **0.3 in/hr** to use for design.

3.0 PROPOSED CONDITIONS ANALYSIS

The addition of the proposed impervious paved areas and buildings causes an increase in the curve number (C_n) and a decrease in the time of concentration (T_c) , the result being a potential increase in peak rates of runoff from the site. A stormwater management system was designed in order to mitigate this potential. The proposed development, consisting of the aforementioned four (4) residential units with associated paved roadway and driveways as well as stormwater management features divide the subject parcel into seventeen (17) subcatchments. Subcatchments 1S-4S drain directly toward Analysis Points 1-4, respectively, as previously outlined. The drainage ditch that outlets toward Analysis Point 3 which was modelled as Reach 1R in the existing conditions analysis is modelled as Reach 2R in the proposed conditions analysis. Subcatchment 5S represents a section of grass and roof that will drain directly toward bioretention pond #1, modelled as Pond 1P, in the proposed condition. Subcatchments 6S-8S drain through deep sump catch basins into a closed drainage system which outlets toward Reach 3R, representing a swale which leads toward Pond 1P. The deep sump catch basins provide pretreatment of runoff in lieu of a sediment forebay. Subcatchment 9S drains into another deep sump catch basin, the outlet pipe of which is directed toward Pond 2P. Pond 2P is designed to infiltrate runoff directed toward it, while Pond 1P is designed to treat and then slowly release treated and attenuated stomwater toward Reach 2R. Any overflow from Pond 2P flows over an emergency spillway and through the backwoods of the site toward Reach 2R, as well.

Subcatchments 10S-12S consist of lawn and roof areas that drain toward yard drains 1-3, respectively. The runoff that is caught by these yard drains additionally enters the previously described closed drainage system that outlets toward Reach 3R and ultimately Pond 1P for treatment.

Subcatchments 13S-17S represent roof, deck and patio areas on Units 3-4 which are routed toward infiltration systems adjacent to the units such as stone drip edges, stone underneath a deck and a permeable paver patio. These devices are only featured in areas where the basement grade will be above the seasonal high water table and the top of ledge. These devices are modelled as Ponds 3P-7P.

Finally, Subcatchment 18S represents the grassed area that drains directly toward Pond 2P without passing through the closed drainage system in the proposed condition.

Peak flows are reduced toward all four analysis points during all analyzed storm events in the proposed condition as compared with the existing condition, as required. Whenever possible, it is good practice to reduce runoff volumes as well, though this is not always practicable. In this case, we are able to reduce runoff volumes toward Analysis Points 1, 2, and 4. Analysis Points 1 and 2 represent existing developed areas so it is critical to reduce volumes toward these analysis points. Incidentally, runoff volumes directed toward Analysis Point 4 are being reduced as well, which will help to prevent erosion of downstream wetlands. However, due to the preponderance of ledge throughout much of the site it is not feasible to reduce runoff volumes toward Analysis Point 3, which represents a drainage ditch alongside a private roadway. We are proposing infiltration practices wherever possible in order to

reduce runoff volumes to below what they would otherwise be: There are infiltration practices proposed adjacent to the foundations of Units 3 and 4 in areas where the basement grade will be above the top of ledge and the seasonal high water table, and a small unlined bioretention system (Pond 2P) is proposed to provide groundwater recharge as well. However, Pond 2P can only be made so large, as we need to maintain a wooded buffer behind the abutting property, Tax Map 222 Lot 20.

Pond 1P is situated such that the bottom of the stone media is below the top of ledge in some areas and therefore we cannot use it for infiltration. For these reasons, a slight increase in runoff volume toward Analysis Point 3 is unavoidable. However, the NHDES Alteration of Terrain Bureau allows an increase in runoff volume of up to 0.1 acre-feet during the 2-year 24-hour storm event. We are below this threshold and therefore this would be approvable by the AOT Bureau if the project needed an AOT permit (which it does not as the area of disturbance is below 100,000 SF). The same drainage ditch modelled as Reach 1R in the existing conditions analysis is modelled as Reach 2R in the proposed conditions analysis and Subcatchment 3S contains the entire watershed draining toward the ditch. Despite the increase in runoff volume, the 50-year peak elevation within the swale remains the same in the proposed condition as it is in the existing condition. Therefore, we have demonstrated that "There is sufficient on- and off-stie downstream channel or system capacity to carry the stormwater run-off volume nad flow without advere effects" (Site Plan Review Regulations Section 7.6.1.11).

Furthermore, the project as designed FAR exceeds the AOT Bureau's groundwater recharge volume requirement. A GRV worksheet is contained within the appendix of this report in order to illustrate this. Therefore, we have designed the drainage system to avoid adverse impacts to abutting infrastructure and the requirement per Section 7.1 of the Site Plan Review Regulations to "design practices <u>to the maximum extent practical (MEP)</u> to reduce stormwater runoff volumes, maintain predevelopment site hydrology, and protect water quality in receiving waters" is met. Furthermore, rain gardens (also known as bioretention systems) are recommended as a Low Impact Development practice in this same section of the regulations. We are using bioretention systems to treat and attenuate runoff from paved areas of the subject parcel in the proposed condition.

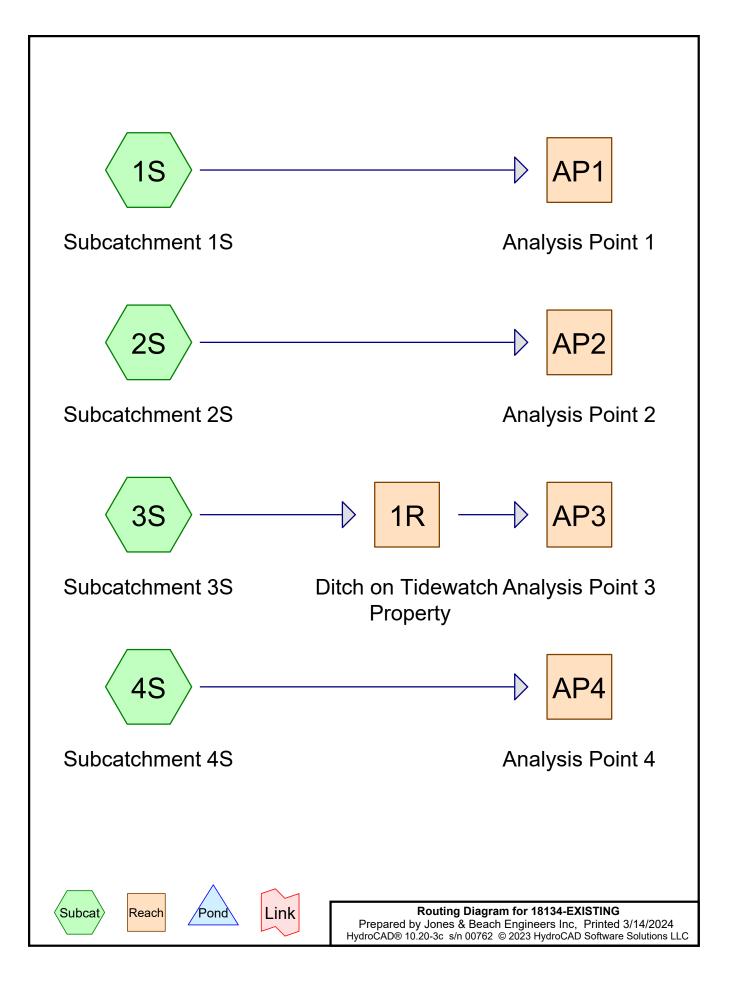
According to the NH Stormwater Manual, bioretention systems provide a pollutant removal efficiency of 90% for TSS and 65% for nitrogen, and drip edges provide a removal efficiency of 90% for TSS and 55% for nitrogen. The City of Portsmouth Site Plan Review Regulations stipulate that stormwater BMPs shall either be designed for 80% TSS removal and 50% nitrogen removal of stormwater runoff from impervious surfaces. This plan exceeds the requirements for pollutant removal because appropriate treatment / groundwater recharge systems are proposed and the Water Quality Volume is retained and treated. A breakdown of pollutant removal efficiencies for the entire site is contained within the appendix of this report.

5.0 CONCLUSION

This proposed site development will have minimal adverse effect on abutting infrastructures, properties, and downstream wetlands by way of stormwater runoff or siltation. Appropriate steps will be taken to eliminate erosion and sedimentation; these will be accomplished through the construction of a drainage system consisting of site grading, catch basins, yard drains, bioretention systems, and temporary erosion control measures including but not limited to silt fence and the use of a stabilized construction entrance. Best Management Practices developed by the State of New Hampshire have been utilized in the design of this system and their application will be enforced throughout the construction process. Peak rates of runoff from the site will be reduced toward all analysis points during all analyzed storm events.

This project disturbs less than 100,000 S.F. and does <u>not</u> require a NHDES Alteration of Terrain Permit.

Respectfully Submitted, JONES & BEACH ENGINEERS, INC.


Meditz 5

Daniel Meditz, P.E Project Engineer

APPENDIX I

EXISTING CONDITIONS DRAINAGE ANALYSIS

Summary 2 YEAR Complete 10 YEAR Summary 25 YEAR Complete 50 YEAR

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.547	61	>75% Grass cover, Good, HSG B (1S, 2S, 3S, 4S)
0.230	98	Paved parking, HSG B (1S, 2S, 4S)
0.114	98	Roofs, HSG B (1S, 2S, 3S, 4S)
1.538	60	Woods, Fair, HSG B (2S, 3S, 4S)
2.429	66	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
2.429	HSG B	1S, 2S, 3S, 4S
0.000	HSG C	
0.000	HSG D	
0.000	Other	
2.429		TOTAL AREA

18134-EXISTING	Type III 24-hr	2 Yr 24 Hr +15% Rainfall=3.70"
Prepared by Jones & Beach Engineers Inc		Printed 3/14/2024
HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Softwa	re Solutions LLC	Page 4

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: Subcatchment1S	Runoff Area=13,001 sf 64.94% Impervious Runoff Depth>2.19" Flow Length=187' Tc=6.0 min CN=85 Runoff=0.75 cfs 0.054 af
Subcatchment2S: Subcatchment2S	Runoff Area=6,082 sf 32.08% Impervious Runoff Depth>1.31" Flow Length=114' Tc=6.0 min CN=73 Runoff=0.20 cfs 0.015 af
Subcatchment3S: Subcatchment3S	Runoff Area=58,629 sf 0.32% Impervious Runoff Depth>0.62" Flow Length=291' Tc=17.0 min CN=60 Runoff=0.51 cfs 0.069 af
Subcatchment4S: Subcatchment4S	Runoff Area=28,091 sf 15.59% Impervious Runoff Depth>0.91" Flow Length=216' Tc=11.5 min CN=66 Runoff=0.49 cfs 0.049 af
	ty Avg. Flow Depth=0.18' Max Vel=1.77 fps Inflow=0.51 cfs 0.069 af L=159.0' S=0.0189 '/' Capacity=18.18 cfs Outflow=0.51 cfs 0.069 af
Reach AP1: Analysis Point 1	Inflow=0.75 cfs 0.054 af Outflow=0.75 cfs 0.054 af
Reach AP2: Analysis Point 2	Inflow=0.20 cfs 0.015 af Outflow=0.20 cfs 0.015 af
Reach AP3: Analysis Point 3	Inflow=0.51 cfs 0.069 af Outflow=0.51 cfs 0.069 af
Reach AP4: Analysis Point 4	Inflow=0.49 cfs 0.049 af Outflow=0.49 cfs 0.049 af

Total Runoff Area = 2.429 ac Runoff Volume = 0.188 af Average Runoff Depth = 0.93" 85.86% Pervious = 2.085 ac 14.14% Impervious = 0.343 ac

18134-EXISTING	Type III 24-hr 10 Yr 24 Hr +15% Rainfall=5.61"
Prepared by Jones & Beach Engineers Inc	Printed 3/14/2024
HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Softw	are Solutions LLC Page 5

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: Subcatchment1S	Runoff Area=13,001 sf 64.94% Impervious Runoff Depth>3.93" Flow Length=187' Tc=6.0 min CN=85 Runoff=1.33 cfs 0.098 af
Subcatchment2S: Subcatchment2S	Runoff Area=6,082 sf 32.08% Impervious Runoff Depth>2.77" Flow Length=114' Tc=6.0 min CN=73 Runoff=0.44 cfs 0.032 af
Subcatchment3S: Subcatchment3S	Runoff Area=58,629 sf 0.32% Impervious Runoff Depth>1.66" Flow Length=291' Tc=17.0 min CN=60 Runoff=1.75 cfs 0.187 af
Subcatchment4S: Subcatchment4S	Runoff Area=28,091 sf 15.59% Impervious Runoff Depth>2.15" Flow Length=216' Tc=11.5 min CN=66 Runoff=1.31 cfs 0.116 af
	ty Avg. Flow Depth=0.34' Max Vel=2.48 fps Inflow=1.75 cfs 0.187 af L=159.0' S=0.0189 '/' Capacity=18.18 cfs Outflow=1.74 cfs 0.186 af
Reach AP1: Analysis Point 1	Inflow=1.33 cfs 0.098 af Outflow=1.33 cfs 0.098 af
Reach AP2: Analysis Point 2	Inflow=0.44 cfs 0.032 af Outflow=0.44 cfs 0.032 af
Reach AP3: Analysis Point 3	Inflow=1.74 cfs 0.186 af Outflow=1.74 cfs 0.186 af
Reach AP4: Analysis Point 4	Inflow=1.31 cfs 0.116 af Outflow=1.31 cfs 0.116 af

Total Runoff Area = 2.429 ac Runoff Volume = 0.432 af Average Runoff Depth = 2.14" 85.86% Pervious = 2.085 ac 14.14% Impervious = 0.343 ac

Summary for Subcatchment 1S: Subcatchment 1S

Runoff = 1.33 cfs @ 12.09 hrs, Volume= 0.098 af, Depth> 3.93" Routed to Reach AP1 : Analysis Point 1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Yr 24 Hr +15% Rainfall=5.61"

Α	rea (sf)	CN E	Description				
	1,476	98 F	98 Roofs, HSG B				
	6,967	98 F	Paved park	ing, HSG B	}		
	4,558	61 >	75% Gras	s cover, Go	bod, HSG B		
	13,001	85 V	85 Weighted Average				
	4,558	3	5.06% Per	vious Area			
	8,443	6	64.94% Imp	pervious Ar	ea		
Тс	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
2.5	46	0.1090	0.31		Sheet Flow,		
					Grass: Short		
0.4	45	0.0670	2.04		Sheet Flow,		
					Smooth surfaces n= 0.011 P2= 3.70"		
0.4	96	0.0360	3.85		Shallow Concentrated Flow,		
					Paved Kv= 20.3 fps		
3.3	187	Total, I	ncreased t	o minimum	1 Tc = 6.0 min		

Summary for Subcatchment 2S: Subcatchment 2S

Runoff = 0.44 cfs @ 12.09 hrs, Volume= 0.032 af, Depth> 2.77" Routed to Reach AP2 : Analysis Point 2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Yr 24 Hr +15% Rainfall=5.61"

Area (sf)	CN	Description
482	98	Roofs, HSG B
1,469	98	Paved parking, HSG B
3,981	61	>75% Grass cover, Good, HSG B
150	60	Woods, Fair, HSG B
6,082	73	Weighted Average
4,131		67.92% Pervious Area
1,951		32.08% Impervious Area

18134-EXISTING

Type III 24-hr 10 Yr 24 Hr +15% Rainfall=5.61" Printed 3/14/2024

Page 7

Prepared by Jones & Beach	Engineers Inc
HydroCAD® 10.20-3c s/n 00762	© 2023 HydroCAD Software Solutions LLC

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	0.7	53	0.0200	1.30		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.70"
	2.8	47	0.0810	0.28		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.70"
	0.1	14	0.2100	3.21		Shallow Concentrated Flow,
_						Short Grass Pasture Kv= 7.0 fps
	3.6	114	Total, li	ncreased t	o minimum	Tc = 6.0 min

Summary for Subcatchment 3S: Subcatchment 3S

Runoff	=	1.75 cfs @	12.26 hrs,	Volume=	(0.187 af,	Depth>	1.66"
Routed	I to Read	ch 1R : Ditch	on Tidewat	ch Property			-	

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Yr 24 Hr +15% Rainfall=5.61"

A	rea (sf)	CN D	escription					
	187	98 F	98 Roofs, HSG B					
	9,391	61 >	75% Gras	s cover, Go	bod, HSG B			
	49,051	60 V	Voods, Fai	r, HSG B				
	58,629	60 V	Veighted A	verage				
	58,442	-		vious Area				
	187	0	.32% Impe	ervious Are	а			
-		<u></u>		• ••				
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
9.0	53	0.0415	0.10		Sheet Flow,			
					Woods: Light underbrush n= 0.400 P2= 3.70"			
5.8	47	0.0968	0.13		Sheet Flow,			
					Woods: Light underbrush n= 0.400 P2= 3.70"			
0.2	15	0.0968	1.56		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
0.7	54	0.0741	1.36		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
1.3	122	0.1000	1.58		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
17.0	291	Total						

Summary for Subcatchment 4S: Subcatchment 4S

Runoff	=	1.31 cfs @ 12	2.17 hrs,	Volume=	0.116 af,	Depth>	2.15"
Routed	d to F	Reach AP4 : Analys	is Point 4				

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Yr 24 Hr +15% Rainfall=5.61"

Type III 24-hr 10 Yr 24 Hr +15% Rainfall=5.61"

Printed 3/14/2024

Page 8

18134-EXISTING

Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC

	Area (sf)	CN E	escription		
	2,809	98 F	Roofs, HSG	βB	
	1,571	98 F	aved park	ing, HSG B	3
	5,912	61 >	75% Gras	s cover, Go	bod, HSG B
	17,799	60 V	Voods, Fai	r, HSG B	
	28,091	66 V	Veighted A	verage	
	23,711		•	vious Area	
	4,380	1	5.59% Imp	pervious Ar	ea
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
1.9	14	0.0210	0.13		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.70"
8.4	86	0.1280	0.17		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.70"
1.0	87	0.0800	1.41		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
0.2	29	0.2860	2.67		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
11.5	216	Total			

Summary for Reach 1R: Ditch on Tidewatch Property

 Inflow Area =
 1.346 ac,
 0.32% Impervious, Inflow Depth >
 1.66" for 10 Yr 24 Hr +15% event

 Inflow =
 1.75 cfs @
 12.26 hrs, Volume=
 0.187 af

 Outflow =
 1.74 cfs @
 12.27 hrs, Volume=
 0.186 af, Atten= 0%, Lag= 0.7 min

 Routed to Reach AP3 : Analysis Point 3

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Max. Velocity= 2.48 fps, Min. Travel Time= 1.1 min Avg. Velocity = 1.11 fps, Avg. Travel Time= 2.4 min

Peak Storage= 112 cf @ 12.27 hrs Average Depth at Peak Storage= 0.34', Surface Width= 3.07' Bank-Full Depth= 1.00' Flow Area= 4.0 sf, Capacity= 18.18 cfs

1.00' x 1.00' deep channel, n= 0.030 Stream, clean & straight Side Slope Z-value= 3.0 '/' Top Width= 7.00' Length= 159.0' Slope= 0.0189 '/' Inlet Invert= 38.00', Outlet Invert= 35.00'

Summary for Reach AP1: Analysis Point 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	=	0.298 ac, 64.94% Impervious, Inflow Depth > 3.93" for 10 Yr 24 Hr +15% event
Inflow =	=	1.33 cfs @ 12.09 hrs, Volume= 0.098 af
Outflow =	=	1.33 cfs @ 12.09 hrs, Volume= 0.098 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP2: Analysis Point 2

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	0.140 ac, 32.08% Impervious, Inflow Depth > 2.77" for 10 Yr 24 Hr +15% event
Inflow	=	0.44 cfs @ 12.09 hrs, Volume= 0.032 af
Outflow	=	0.44 cfs @ 12.09 hrs, Volume= 0.032 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP3: Analysis Point 3

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	1.346 ac,	0.32% Impervious, Inflow E	Depth > 1.66"	for 10 Yr 24 Hr +15% event
Inflow	=	1.74 cfs @	12.27 hrs, Volume=	0.186 af	
Outflow	=	1.74 cfs @	12.27 hrs, Volume=	0.186 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP4: Analysis Point 4

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.645 ac, 15.59% Impervious, Inflow I	Depth > 2.15" for 10 Yr 24 Hr +15% event
Inflow =	1.31 cfs @ 12.17 hrs, Volume=	0.116 af
Outflow =	1.31 cfs $@$ 12.17 hrs, Volume=	0.116 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

18134-EXISTING	Type III 24-hr 25 Yr 24 Hr +15% Rainfall=7.12"
Prepared by Jones & Beach Engineers Inc	Printed 3/14/2024
HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Softw	are Solutions LLC Page 10

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: Subcatchment1S	Runoff Area=13,001 sf 64.94% Impervious Runoff Depth>5.36" Flow Length=187' Tc=6.0 min CN=85 Runoff=1.78 cfs 0.133 af
Subcatchment2S: Subcatchment2S	Runoff Area=6,082 sf 32.08% Impervious Runoff Depth>4.04" Flow Length=114' Tc=6.0 min CN=73 Runoff=0.65 cfs 0.047 af
Subcatchment3S: Subcatchment3S	Runoff Area=58,629 sf 0.32% Impervious Runoff Depth>2.68" Flow Length=291' Tc=17.0 min CN=60 Runoff=2.94 cfs 0.300 af
Subcatchment4S: Subcatchment4S	Runoff Area=28,091 sf 15.59% Impervious Runoff Depth>3.29" Flow Length=216' Tc=11.5 min CN=66 Runoff=2.05 cfs 0.177 af
	ty Avg. Flow Depth=0.44' Max Vel=2.85 fps Inflow=2.94 cfs 0.300 af L=159.0' S=0.0189 '/' Capacity=18.18 cfs Outflow=2.94 cfs 0.300 af
Reach AP1: Analysis Point 1	Inflow=1.78 cfs 0.133 af Outflow=1.78 cfs 0.133 af
Reach AP2: Analysis Point 2	Inflow=0.65 cfs 0.047 af Outflow=0.65 cfs 0.047 af
Reach AP3: Analysis Point 3	Inflow=2.94 cfs 0.300 af Outflow=2.94 cfs 0.300 af
Reach AP4: Analysis Point 4	Inflow=2.05 cfs 0.177 af Outflow=2.05 cfs 0.177 af

Total Runoff Area = 2.429 ac Runoff Volume = 0.658 af Average Runoff Depth = 3.25" 85.86% Pervious = 2.085 ac 14.14% Impervious = 0.343 ac

18134-EXISTING	<i>Type III 24-hr 50 Yr 24 Hr +15% Rainfall=8.53</i> "
Prepared by Jones & Beach Engineers Inc	Printed 3/14/2024
HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Softw	are Solutions LLC Page 11

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: Subcatchment1S	Runoff Area=13,001 sf 64.94% Impervious Runoff Depth>6.72" Flow Length=187' Tc=6.0 min CN=85 Runoff=2.21 cfs 0.167 af
Subcatchment2S: Subcatchment2S	Runoff Area=6,082 sf 32.08% Impervious Runoff Depth>5.28" Flow Length=114' Tc=6.0 min CN=73 Runoff=0.84 cfs 0.061 af
Subcatchment3S: Subcatchment3S	Runoff Area=58,629 sf 0.32% Impervious Runoff Depth>3.72" Flow Length=291' Tc=17.0 min CN=60 Runoff=4.17 cfs 0.418 af
Subcatchment4S: Subcatchment4S	Runoff Area=28,091 sf 15.59% Impervious Runoff Depth>4.44" Flow Length=216' Tc=11.5 min CN=66 Runoff=2.78 cfs 0.238 af
	ty Avg. Flow Depth=0.52' Max Vel=3.12 fps Inflow=4.17 cfs 0.418 af L=159.0' S=0.0189 '/' Capacity=18.18 cfs Outflow=4.17 cfs 0.417 af
Reach AP1: Analysis Point 1	Inflow=2.21 cfs 0.167 af Outflow=2.21 cfs 0.167 af
Reach AP2: Analysis Point 2	Inflow=0.84 cfs 0.061 af Outflow=0.84 cfs 0.061 af
Reach AP3: Analysis Point 3	Inflow=4.17 cfs 0.417 af Outflow=4.17 cfs 0.417 af
Reach AP4: Analysis Point 4	Inflow=2.78 cfs 0.238 af Outflow=2.78 cfs 0.238 af

Total Runoff Area = 2.429 ac Runoff Volume = 0.884 af Average Runoff Depth = 4.37" 85.86% Pervious = 2.085 ac 14.14% Impervious = 0.343 ac

Summary for Subcatchment 1S: Subcatchment 1S

2.21 cfs @ 12.09 hrs, Volume= Runoff 0.167 af, Depth> 6.72" = Routed to Reach AP1 : Analysis Point 1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Yr 24 Hr +15% Rainfall=8.53"

_	A	rea (sf)	CN E	Description		
		1,476	98 F	Roofs, HSC	βB	
		6,967			ing, HSG B	
_		4,558	61 >	75% Gras	s cover, Go	bod, HSG B
		13,001	85 V	Veighted A	verage	
		4,558	3	5.06% Per	vious Area	
		8,443	6	4.94% Imp	pervious Ar	ea
	_					
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	2.5	46	0.1090	0.31		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.70"
	0.4	45	0.0670	2.04		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.70"
	0.4	96	0.0360	3.85		Shallow Concentrated Flow,
_						Paved Kv= 20.3 fps
	3.3	187	Total, I	ncreased t	o minimum	1 Tc = 6.0 min

Lotal, Increased to minimum 1c = 6.0 min 3.3 107

Summary for Subcatchment 2S: Subcatchment 2S

Runoff 0.84 cfs @ 12.09 hrs, Volume= 0.061 af, Depth> 5.28" = Routed to Reach AP2 : Analysis Point 2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Yr 24 Hr +15% Rainfall=8.53"

Area (sf)	CN	Description			
482	98	Roofs, HSG B			
1,469	98	Paved parking, HSG B			
3,981	61	>75% Grass cover, Good, HSG B			
150	60	Woods, Fair, HSG B			
6,082	73	Weighted Average			
4,131		67.92% Pervious Area			
1,951		32.08% Impervious Area			

18134-EXISTING

Type III 24-hr 50 Yr 24 Hr +15% Rainfall=8.53" Printed 3/14/2024

Page 13

Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC

	Tc	Length	Slope	Velocity		Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.7	53	0.0200	1.30		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.70"
	2.8	47	0.0810	0.28		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.70"
	0.1	14	0.2100	3.21		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
_	3.6	114	Total, I	ncreased t	o minimum	Tc = 6.0 min

Summary for Subcatchment 3S: Subcatchment 3S

Runoff	=	4.17 cfs @	12.24 hrs,	Volume=	0.418 af,	Depth>	3.72"
Routed	l to Read	ch 1R : Ditch	on Tidewat	ch Property			

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Yr 24 Hr +15% Rainfall=8.53"

A	rea (sf)	CN D	escription			
	187	98 F	98 Roofs, HSG B			
	9,391	61 >	75% Gras	s cover, Go	bod, HSG B	
	49,051	60 V	Voods, Fai	r, HSG B		
	58,629	60 V	Veighted A	verage		
	58,442	-		vious Area		
	187	0	.32% Impe	ervious Are	а	
-		01		0		
Tc (min)	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
9.0	53	0.0415	0.10		Sheet Flow,	
					Woods: Light underbrush n= 0.400 P2= 3.70"	
5.8	47	0.0968	0.13		Sheet Flow,	
					Woods: Light underbrush n= 0.400 P2= 3.70"	
0.2	15	0.0968	1.56		Shallow Concentrated Flow,	
					Woodland Kv= 5.0 fps	
0.7	54	0.0741	1.36		Shallow Concentrated Flow,	
					Woodland Kv= 5.0 fps	
1.3	122	0.1000	1.58		Shallow Concentrated Flow,	
					Woodland Kv= 5.0 fps	
17.0	291	Total				

Summary for Subcatchment 4S: Subcatchment 4S

Runoff	=	2.78 cfs @ 12.16 hrs, Volume=	0.238 af, Depth> 4.44"
Routed	d to F	Reach AP4 : Analysis Point 4	-

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Yr 24 Hr +15% Rainfall=8.53"

Type III 24-hr 50 Yr 24 Hr +15% Rainfall=8.53"

Printed 3/14/2024

Page 14

18134-EXISTING

Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC

	Area (sf)	CN E	escription				
	2,809	98 F	98 Roofs, HSG B				
	1,571	98 F	aved park	ing, HSG B	3		
	5,912	61 >	75% Gras	s cover, Go	bod, HSG B		
	17,799	60 V	Voods, Fai	r, HSG B			
	28,091	66 V	Veighted A	verage			
	23,711		•	vious Area			
	4,380	1	5.59% Imp	pervious Ar	ea		
Тс	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
1.9	14	0.0210	0.13		Sheet Flow,		
					Grass: Short n= 0.150 P2= 3.70"		
8.4	86	0.1280	0.17		Sheet Flow,		
					Woods: Light underbrush n= 0.400 P2= 3.70"		
1.0	87	0.0800	1.41		Shallow Concentrated Flow,		
					Woodland Kv= 5.0 fps		
0.2	29	0.2860	2.67		Shallow Concentrated Flow,		
					Woodland Kv= 5.0 fps		
11.5	216	Total					

Summary for Reach 1R: Ditch on Tidewatch Property

 Inflow Area =
 1.346 ac,
 0.32% Impervious, Inflow Depth >
 3.72" for 50 Yr 24 Hr +15% event

 Inflow =
 4.17 cfs @
 12.24 hrs, Volume=
 0.418 af

 Outflow =
 4.17 cfs @
 12.26 hrs, Volume=
 0.417 af, Atten= 0%, Lag= 0.7 min

 Routed to Reach AP3 : Analysis Point 3
 3

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Max. Velocity= 3.12 fps, Min. Travel Time= 0.8 min Avg. Velocity = 1.34 fps, Avg. Travel Time= 2.0 min

Peak Storage= 212 cf @ 12.26 hrs Average Depth at Peak Storage= 0.52', Surface Width= 4.12' Bank-Full Depth= 1.00' Flow Area= 4.0 sf, Capacity= 18.18 cfs

1.00' x 1.00' deep channel, n= 0.030 Stream, clean & straight Side Slope Z-value= 3.0 '/' Top Width= 7.00' Length= 159.0' Slope= 0.0189 '/' Inlet Invert= 38.00', Outlet Invert= 35.00'

Summary for Reach AP1: Analysis Point 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	0.298 ac, 64.94% Impervious, Inflow Depth > 6.72" for 50 Yr 24 Hr +15% event
Inflow	=	2.21 cfs @ 12.09 hrs, Volume= 0.167 af
Outflow	=	2.21 cfs @ 12.09 hrs, Volume= 0.167 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP2: Analysis Point 2

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	=	0.140 ac, 32.08% Impervious, Inflow Depth > 5.28" for 50 Yr 24 Hr +15% event
Inflow =	=	0.84 cfs @ 12.09 hrs, Volume= 0.061 af
Outflow =	=	0.84 cfs @ 12.09 hrs, Volume= 0.061 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP3: Analysis Point 3

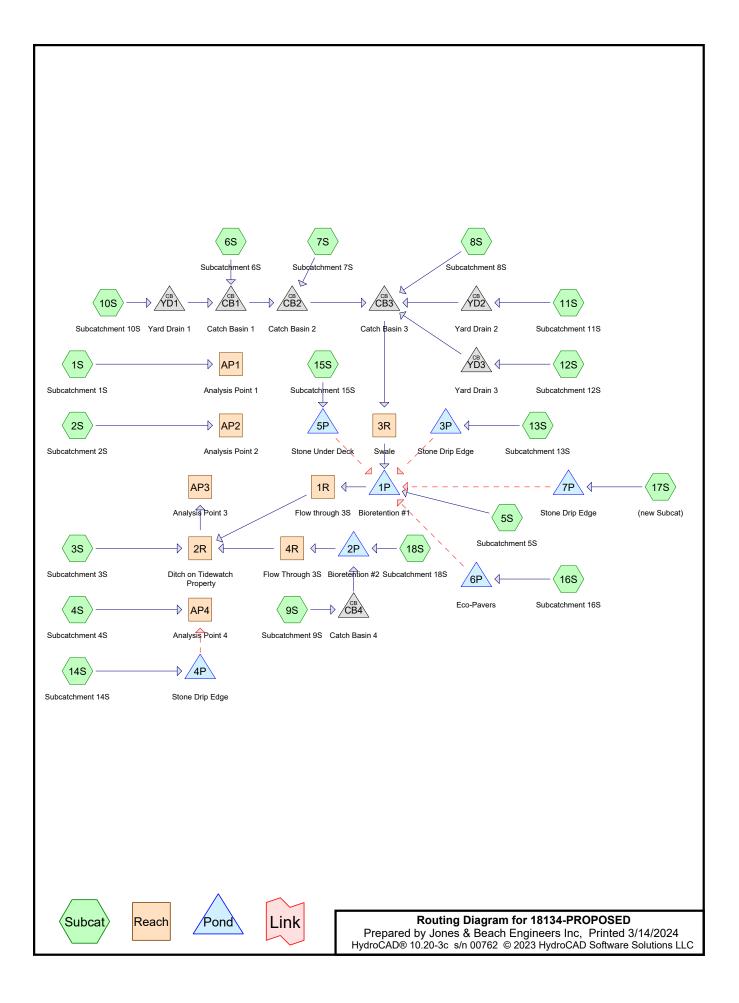
[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	1.346 ac,	0.32% Impervious, Inflow D	epth > 3.72"	for 50 Yr 24 Hr +15% event
Inflow	=	4.17 cfs @	12.26 hrs, Volume=	0.417 af	
Outflow	=	4.17 cfs @	12.26 hrs, Volume=	0.417 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP4: Analysis Point 4

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area	a =	0.645 ac, 15.59% Impervious, Inflow Depth > 4.44" for 50 Yr 24 Hr +15% event
Inflow	=	2.78 cfs @ 12.16 hrs, Volume= 0.238 af
Outflow	=	2.78 cfs @ 12.16 hrs, Volume= 0.238 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

APPENDIX II

PROPOSED CONDITIONS DRAINAGE ANALYSIS

Summary 2 YEAR Complete 10 YEAR Summary 25 YEAR Complete 50 YEAR

Area Listing (all nodes)

	Area	CN	Description
(a	cres)		(subcatchment-numbers)
	1.118	61	>75% Grass cover, Good, HSG B (1S, 2S, 3S, 4S, 5S, 10S, 11S, 12S, 18S)
().247	98	Paved parking, HSG B (1S, 6S, 7S, 8S, 9S, 10S, 11S)
().221	98	Roofs, HSG B (3S, 4S, 5S, 9S, 10S, 11S, 12S, 13S, 14S, 15S, 17S)
(0.017	98	Water Surface, HSG B (13S, 14S, 16S, 17S)
().826	60	Woods, Fair, HSG B (3S, 4S)
2	2.429	68	TOTAL AREA

Soil Listing (all nodes)

Area (acres)	Soil Group	Subcatchment Numbers
0.000	HSG A	
2.429	HSG B	1S, 2S, 3S, 4S, 5S, 6S, 7S, 8S, 9S, 10S, 11S, 12S, 13S, 14S, 15S, 16S, 17S, 18S
0.000	HSG C	
0.000	HSG D	
0.000	Other	
2.429		TOTAL AREA

18134-PROPOSED Type III 24-hr 2 Yr 24 Hr +15% Rainfall=3.70" Prepared by Jones & Beach Engineers Inc Printed 3/14/2024 HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC Page 4

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: Subcatchment1S	Runoff Area=7,392 sf 50.61% Impervious Runoff Depth>1.79" Flow Length=186' Tc=6.0 min CN=80 Runoff=0.35 cfs 0.025 af
Subcatchment2S: Subcatchment2S Flow Length=20	Runoff Area=1,728 sf 0.00% Impervious Runoff Depth>0.66" Slope=0.0500 '/' Tc=6.0 min CN=61 Runoff=0.02 cfs 0.002 af
Subcatchment3S: Subcatchment3S	Runoff Area=38,661 sf 0.16% Impervious Runoff Depth>0.62" Flow Length=291' Tc=17.0 min CN=60 Runoff=0.34 cfs 0.046 af
Subcatchment4S: Subcatchment4S	Runoff Area=19,888 sf 3.66% Impervious Runoff Depth>0.71" Flow Length=210' Tc=7.9 min CN=62 Runoff=0.27 cfs 0.027 af
Subcatchment5S: Subcatchment5S	Runoff Area=14,610 sf 10.77% Impervious Runoff Depth>0.86" Flow Length=138' Tc=6.8 min CN=65 Runoff=0.28 cfs 0.024 af
Subcatchment6S: Subcatchment6S	Runoff Area=1,952 sf 100.00% Impervious Runoff Depth>3.46" Tc=6.0 min CN=98 Runoff=0.16 cfs 0.013 af
Subcatchment7S: Subcatchment7S	Runoff Area=1,516 sf 100.00% Impervious Runoff Depth>3.46" Tc=6.0 min CN=98 Runoff=0.12 cfs 0.010 af
Subcatchment8S: Subcatchment8S	Runoff Area=707 sf 100.00% Impervious Runoff Depth>3.46" Tc=6.0 min CN=98 Runoff=0.06 cfs 0.005 af
Subcatchment9S: Subcatchment9S	Runoff Area=2,789 sf 100.00% Impervious Runoff Depth>3.46" Tc=6.0 min CN=98 Runoff=0.23 cfs 0.018 af
Subcatchment10S: Subcatchment10S	Runoff Area=3,630 sf 29.12% Impervious Runoff Depth>1.25" Flow Length=142' Tc=6.3 min CN=72 Runoff=0.11 cfs 0.009 af
Subcatchment11S: Subcatchment11S Flow Length=77	Runoff Area=4,571 sf 49.42% Impervious Runoff Depth>1.72" Slope=0.0396 '/' Tc=6.0 min CN=79 Runoff=0.21 cfs 0.015 af
Subcatchment12S: Subcatchment12S Flow Length=51	Runoff Area=3,734 sf 35.30% Impervious Runoff Depth>1.38" Slope=0.0320 '/' Tc=6.0 min CN=74 Runoff=0.13 cfs 0.010 af
Subcatchment13S: Subcatchment13S	Runoff Area=876 sf 100.00% Impervious Runoff Depth>3.46" Tc=6.0 min CN=98 Runoff=0.07 cfs 0.006 af
Subcatchment14S: Subcatchment14S	Runoff Area=882 sf 100.00% Impervious Runoff Depth>3.46" Tc=6.0 min CN=98 Runoff=0.07 cfs 0.006 af
Subcatchment15S: Subcatchment15S	Runoff Area=560 sf 100.00% Impervious Runoff Depth>3.46" Tc=6.0 min CN=98 Runoff=0.05 cfs 0.004 af
Subcatchment16S: Subcatchment16S	Runoff Area=221 sf 100.00% Impervious Runoff Depth>3.46" Tc=6.0 min CN=98 Runoff=0.02 cfs 0.001 af

18134-PROPOSED Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroC	-	Rainfall=3.70" nted 3/14/2024 Page <u>5</u>
Subcatchment17S: (new Subcat)	Runoff Area=876 sf 100.00% Impervious Run Tc=6.0 min CN=98 Runoff=0.	•
Subcatchment18S: Subcatchment18S	Runoff Area=1,220 sf 0.00% Impervious Run Tc=6.0 min CN=61 Runoff=0.	
U	g. Flow Depth=0.02' Max Vel=1.32 fps Inflow=0.)' S=0.1568 '/' Capacity=498.58 cfs Outflow=0.	
Reach 2R: Ditch on Tidewatch Property Ave n=0.030 L=159	g. Flow Depth=0.18' Max Vel=1.76 fps Inflow=0. .0' S=0.0189 '/' Capacity=18.18 cfs Outflow=0.	
	g. Flow Depth=0.19' Max Vel=2.57 fps Inflow=0. .0' S=0.0379 '/' Capacity=25.77 cfs Outflow=0.	
	g. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0. .0' S=0.1145 '/' Capacity=74.97 cfs Outflow=0.	
Reach AP1: Analysis Point 1		.35 cfs 0.025 af .35 cfs 0.025 af
Reach AP2: Analysis Point 2		.02 cfs 0.002 af .02 cfs 0.002 af
Reach AP3: Analysis Point 3		.50 cfs 0.130 af .50 cfs 0.130 af
Reach AP4: Analysis Point 4	-	.27 cfs 0.027 af .27 cfs 0.027 af
Pond 1P: Bioretention#1	Peak Elev=54.46' Storage=1,256 cf Inflow=1 Outflow=0	.07 cfs 0.085 af .17 cfs 0.084 af
Pond 2P: Bioretention#2 Discarded=0.03 cfs	Peak Elev=69.22' Storage=377 cf Inflow=0. 0.019 af Primary=0.00 cfs 0.000 af Outflow=0.	
Pond 3P: Stone Drip Edge Discarded=0.00 cfs 0.0	Peak Elev=64.62' Storage=0.004 af Inflow=0 003 af Secondary=0.00 cfs 0.000 af Outflow=0.	
Pond 4P: Stone Drip Edge Discarded=0.00 cfs 0.0	Peak Elev=63.42' Storage=0.003 af Inflow=0 004 af Secondary=0.00 cfs 0.000 af Outflow=0.	
Pond 5P: Stone Under Deck Discarded=0.00 cfs 0.0	Peak Elev=65.44' Storage=0.002 af Inflow=0 003 af Secondary=0.00 cfs 0.000 af Outflow=0.	
Pond 6P: Eco-Pavers Discarded=0.00 cfs 0.0	Peak Elev=65.61' Storage=0.001 af Inflow=0 001 af Secondary=0.00 cfs 0.000 af Outflow=0.	
Pond 7P: Stone Drip Edge Discarded=0.00 cfs 0.0	Peak Elev=64.62' Storage=0.004 af Inflow=0 003 af Secondary=0.00 cfs 0.000 af Outflow=0.	

Type III 24-hr 2 Yr 24 Hr +15% Rainfall=3.70"

Prepared by Jones & Beac	h Engineers Inc	Printed 3/14/2024
	2 © 2023 HydroCAD Software Solutions LLC	Page 6
Pond CB1: Catch Basin 1	Peak Elev=62.42' Ir 12.0" Round Culvert n=0.012 L=19.0' S=0.0053 '/' Out	nflow=0.27 cfs 0.022 af tflow=0.27 cfs 0.022 af
Pond CB2: Catch Basin 2	Peak Elev=62.27' Ir 12.0" Round Culvert n=0.012 L=130.0' S=0.0054 '/' Out	nflow=0.39 cfs 0.032 af tflow=0.39 cfs 0.032 af
Pond CB3: Catch Basin 3	Peak Elev=61.62' Ir 12.0" Round Culvert n=0.012 L=94.0' S=0.0053 '/' Out	nflow=0.79 cfs 0.061 af tflow=0.79 cfs 0.061 af
Pond CB4: Catch Basin 4	Peak Elev=69.22' Ir 12.0" Round Culvert n=0.012 L=20.0' S=0.0050 '/' Out	nflow=0.23 cfs 0.018 af tflow=0.23 cfs 0.018 af
Pond YD1: Yard Drain 1	Peak Elev=62.93' Ir 6.0" Round Culvert n=0.012 L=2.0' S=0.0500 '/' Out	nflow=0.11 cfs 0.009 af tflow=0.11 cfs 0.009 af
Pond YD2: Yard Drain 2	Peak Elev=67.62' Ir 6.0" Round Culvert n=0.012 L=52.0' S=0.0096 '/' Out	nflow=0.21 cfs 0.015 af tflow=0.21 cfs 0.015 af
Pond YD3: Yard Drain 3	Peak Elev=67.55' Ir 6.0" Round Culvert n=0.012 L=13.0' S=0.0385 '/' Out	nflow=0.13 cfs 0.010 af tflow=0.13 cfs 0.010 af
Total Runof	f Area = 2.429 ac Runoff Volume = 0.228 af Averag 80.04% Pervious = 1.944 ac 19.96%	

18134-PROPOSED Type III 24-hr 10 Yr 24 Hr +15% Rainfall=5.61" Prepared by Jones & Beach Engineers Inc Printed 3/14/2024 HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: Subcatchment1S	Runoff Area=7,392 sf 50.61% Impervious Runoff Depth>3.43" Flow Length=186' Tc=6.0 min CN=80 Runoff=0.67 cfs 0.048 af
Subcatchment2S: Subcatchment2S Flow Length=20	Runoff Area=1,728 sf 0.00% Impervious Runoff Depth>1.75")' Slope=0.0500 '/' Tc=6.0 min CN=61 Runoff=0.08 cfs 0.006 af
Subcatchment3S: Subcatchment3S	Runoff Area=38,661 sf 0.16% Impervious Runoff Depth>1.66" Flow Length=291' Tc=17.0 min CN=60 Runoff=1.15 cfs 0.123 af
Subcatchment4S: Subcatchment4S	Runoff Area=19,888 sf 3.66% Impervious Runoff Depth>1.83" Flow Length=210' Tc=7.9 min CN=62 Runoff=0.85 cfs 0.069 af
Subcatchment5S: Subcatchment5S	Runoff Area=14,610 sf 10.77% Impervious Runoff Depth>2.07" Flow Length=138' Tc=6.8 min CN=65 Runoff=0.76 cfs 0.058 af
Subcatchment6S: Subcatchment6S	Runoff Area=1,952 sf 100.00% Impervious Runoff Depth>5.37" Tc=6.0 min CN=98 Runoff=0.24 cfs 0.020 af
Subcatchment7S: Subcatchment7S	Runoff Area=1,516 sf 100.00% Impervious Runoff Depth>5.37" Tc=6.0 min CN=98 Runoff=0.19 cfs 0.016 af
Subcatchment8S: Subcatchment8S	Runoff Area=707 sf 100.00% Impervious Runoff Depth>5.37" Tc=6.0 min CN=98 Runoff=0.09 cfs 0.007 af
Subcatchment9S: Subcatchment9S	Runoff Area=2,789 sf 100.00% Impervious Runoff Depth>5.37" Tc=6.0 min CN=98 Runoff=0.34 cfs 0.029 af
Subcatchment10S: Subcatchment10S	Runoff Area=3,630 sf 29.12% Impervious Runoff Depth>2.67" Flow Length=142' Tc=6.3 min CN=72 Runoff=0.25 cfs 0.019 af
Subcatchment11S: Subcatchment11S Flow Length=77	Runoff Area=4,571 sf 49.42% Impervious Runoff Depth>3.33" "Slope=0.0396 '/' Tc=6.0 min CN=79 Runoff=0.40 cfs 0.029 af
Subcatchment12S: Subcatchment12S Flow Length=57	Runoff Area=3,734 sf 35.30% Impervious Runoff Depth>2.86" ' Slope=0.0320 '/' Tc=6.0 min CN=74 Runoff=0.28 cfs 0.020 af
Subcatchment13S: Subcatchment13S	Runoff Area=876 sf 100.00% Impervious Runoff Depth>5.37" Tc=6.0 min CN=98 Runoff=0.11 cfs 0.009 af
Subcatchment14S: Subcatchment14S	Runoff Area=882 sf 100.00% Impervious Runoff Depth>5.37" Tc=6.0 min CN=98 Runoff=0.11 cfs 0.009 af
Subcatchment15S: Subcatchment15S	Runoff Area=560 sf 100.00% Impervious Runoff Depth>5.37" Tc=6.0 min CN=98 Runoff=0.07 cfs 0.006 af
Subcatchment16S: Subcatchment16S	Runoff Area=221 sf 100.00% Impervious Runoff Depth>5.37" Tc=6.0 min CN=98 Runoff=0.03 cfs 0.002 af

18134-PROPOSED Prepared by Jones & Beach Engineers Inc <u>HydroCAD® 10.20-3c s/n 00762 © 2023 HydroC</u>	-	%
Subcatchment17S: (new Subcat)	Runoff Area=876 sf 100.00% Impervious R Tc=6.0 min CN=98 Runoff=	
Subcatchment18S: Subcatchment18S	Runoff Area=1,220 sf 0.00% Impervious R Tc=6.0 min CN=61 Runoff	
U	g. Flow Depth=0.04' Max Vel=1.84 fps Inflow= D' S=0.1568 '/' Capacity=498.58 cfs Outflow=	
Reach 2R: Ditch on Tidewatch Property Ave n=0.030 L=159	g. Flow Depth=0.33' Max Vel=2.44 fps Inflow= 0.0' S=0.0189 '/' Capacity=18.18 cfs Outflow=	
	g. Flow Depth=0.27' Max Vel=3.05 fps Inflow= 6.0' S=0.0379 '/' Capacity=25.77 cfs Outflow=	
	g. Flow Depth=0.02' Max Vel=1.34 fps Inflow= 6.0' S=0.1145 '/' Capacity=74.97 cfs Outflow=	
Reach AP1: Analysis Point 1		=0.67 cfs 0.048 af =0.67 cfs 0.048 af
Reach AP2: Analysis Point 2		=0.08 cfs 0.006 af =0.08 cfs 0.006 af
Reach AP3: Analysis Point 3		=1.63 cfs 0.293 af =1.63 cfs 0.293 af
Reach AP4: Analysis Point 4		=0.85 cfs 0.069 af =0.85 cfs 0.069 af
Pond 1P: Bioretention#1	Peak Elev=55.34' Storage=2,503 cf Inflow Outflow	=2.21 cfs 0.169 af =0.54 cfs 0.167 af
Pond 2P: Bioretention#2 Discarded=0.03 cfs	Peak Elev=69.54' Storage=560 cf Inflow= 0.028 af Primary=0.11 cfs 0.003 af Outflow=	
Pond 3P: Stone Drip Edge Discarded=0.00 cfs 0.0	Peak Elev=65.98' Storage=0.006 af Inflow= 004 af Secondary=0.00 cfs 0.000 af Outflow=	
Pond 4P: Stone Drip Edge Discarded=0.00 cfs 0.0	Peak Elev=64.93' Storage=0.006 af Inflow= 005 af Secondary=0.00 cfs 0.000 af Outflow=	
Pond 5P: Stone Under Deck Discarded=0.00 cfs 0.0	Peak Elev=65.97' Storage=0.003 af Inflow= 004 af Secondary=0.00 cfs 0.000 af Outflow=	
Pond 6P: Eco-Pavers Discarded=0.00 cfs 0.0	Peak Elev=65.88' Storage=0.001 af Inflow= 002 af Secondary=0.00 cfs 0.000 af Outflow=	
Pond 7P: Stone Drip Edge Discarded=0.00 cfs 0.0	Peak Elev=65.98' Storage=0.006 af Inflow= 004 af Secondary=0.00 cfs 0.000 af Outflow=	

Type III 24-hr 10 Yr 24 Hr +15% Rainfall=5.61"

Prepared by Jones & Beau	th Engineers Inc Printed 3/14/2024
	62 © 2023 HydroCAD Software Solutions LLC Page 9
Pond CB1: Catch Basin 1	Peak Elev=62.57' Inflow=0.49 cfs 0.039 af 12.0" Round Culvert n=0.012 L=19.0' S=0.0053 '/' Outflow=0.49 cfs 0.039 af
Pond CB2: Catch Basin 2	Peak Elev=62.42' Inflow=0.68 cfs 0.054 af 12.0" Round Culvert n=0.012 L=130.0' S=0.0054 '/' Outflow=0.68 cfs 0.054 af
Pond CB3: Catch Basin 3	Peak Elev=61.84' Inflow=1.45 cfs 0.111 af 12.0" Round Culvert n=0.012 L=94.0' S=0.0053 '/' Outflow=1.45 cfs 0.111 af
Pond CB4: Catch Basin 4	Peak Elev=69.54' Inflow=0.34 cfs 0.029 af 12.0" Round Culvert n=0.012 L=20.0' S=0.0050 '/' Outflow=0.34 cfs 0.029 af
Pond YD1: Yard Drain 1	Peak Elev=63.07' Inflow=0.25 cfs 0.019 af 6.0" Round Culvert n=0.012 L=2.0' S=0.0500 '/' Outflow=0.25 cfs 0.019 af
Pond YD2: Yard Drain 2	Peak Elev=67.84' Inflow=0.40 cfs 0.029 af 6.0" Round Culvert n=0.012 L=52.0' S=0.0096 '/' Outflow=0.40 cfs 0.029 af
Pond YD3: Yard Drain 3	Peak Elev=67.70' Inflow=0.28 cfs 0.020 af 6.0" Round Culvert n=0.012 L=13.0' S=0.0385 '/' Outflow=0.28 cfs 0.020 af
Total Runo	f Area = 2.429 ac Runoff Volume = 0.483 af Average Runoff Depth = 2.39

9" 80.04% Pervious = 1.944 ac 19.96% Impervious = 0.485 ac

Summary for Subcatchment 1S: Subcatchment 1S

Runoff = 0.67 cfs @ 12.09 hrs, Volume= 0.048 af, Depth> 3.43" Routed to Reach AP1 : Analysis Point 1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Yr 24 Hr +15% Rainfall=5.61"

A	rea (sf)	CN D	escription				
	3,741	98 Paved parking, HSG B					
	3,651	61 >	75% Ġras	s cover, Go	bod, HSG B		
	7,392	80 V	Veighted A	verage			
	3,651	4	9.39% Per	vious Area			
	3,741	5	0.61% Imp	pervious Ar	ea		
_		~		• •	— • • •		
Tc	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
2.8	56	0.1250	0.34		Sheet Flow,		
					Grass: Short n= 0.150 P2= 3.70"		
2.1	30	0.0670	0.23		Sheet Flow,		
					Grass: Short n= 0.150 P2= 3.70"		
0.2	14	0.0360	1.26		Sheet Flow,		
					Smooth surfaces n= 0.011 P2= 3.70"		
0.4	86	0.0360	3.85		Shallow Concentrated Flow,		
					Paved Kv= 20.3 fps		
5.5	186	Total, I	ncreased t	o minimum	n Tc = 6.0 min		

Summary for Subcatchment 2S: Subcatchment 2S

Runoff = 0.08 cfs @ 12.10 hrs, Volume= 0.006 af, Depth> 1.75" Routed to Reach AP2 : Analysis Point 2

_	Ai	rea (sf)	CN [Description						
		1,728	61 >	61 >75% Grass cover, Good, HSG B						
		1,728	100.00% Pervious Area							
_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
_	1.7	20	0.0500	0.19		Sheet Flow,				
_						Grass: Short	n= 0.150	P2= 3.70"		
	1.7	20	Total,	Increased t	o minimum	Tc = 6.0 min				

Summary for Subcatchment 3S: Subcatchment 3S

Runoff	=	1.15 cfs @	12.26 hrs,	Volume=	0.123 af,	Depth> 1.66"
Routed	to Read	ch 2R : Ditch	on Tidewate	ch Property		

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Yr 24 Hr +15% Rainfall=5.61"

Ar	rea (sf)	CN D	escription		
	60	98 R	oofs, HSG	βB	
	10,778	61 >	75% Gras	s cover, Go	bod, HSG B
	27,823	60 V	/oods, Fai	r, HSG B	
	38,661	60 V	/eighted A	verage	
:	38,601	9	9.84% Per	vious Area	
	60	0	.16% Impe	ervious Are	а
_					
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
9.0	53	0.0415	0.10		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.70"
5.8	47	0.0968	0.13		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.70"
0.2	15	0.0968	1.56		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
0.7	54	0.0741	1.36		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
1.3	122	0.1000	1.58		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
17.0	291	Total			

Summary for Subcatchment 4S: Subcatchment 4S

Runoff = 0.85 cfs @ 12.12 hrs, Volume= 0.069 af, Depth> 1.83" Routed to Reach AP4 : Analysis Point 4

Area (sf)	CN	Description
10,991	61	>75% Grass cover, Good, HSG B
8,169	60	Woods, Fair, HSG B
728	98	Roofs, HSG B
19,888	62	Weighted Average
19,160		96.34% Pervious Area
728		3.66% Impervious Area

Type III 24-hr 10 Yr 24 Hr +15% Rainfall=5.61"

Prepared by Jones & Beach Engineers Inc	
HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC)

Printed	3/14/2024
	Page 12

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	1.5	14	0.0357	0.16		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.70"
	1.9	14	0.1429	0.12		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.70"
	3.3	72	0.1333	0.37		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.70"
	1.0	80	0.0750	1.37		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	0.2	30	0.2667	2.58		Shallow Concentrated Flow,
_						Woodland Kv= 5.0 fps
_						

7.9 210 Total

Summary for Subcatchment 5S: Subcatchment 5S

Runoff = 0.76 cfs @ 12.11 hrs, Volume= Routed to Pond 1P : Bioretention #1 0.058 af, Depth> 2.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Yr 24 Hr +15% Rainfall=5.61"

A	rea (sf)	CN D	escription		
	13,037	61 >	75% Gras	s cover, Go	ood, HSG B
	1,573	98 F	Roofs, HSG	БВ	
	14,610	65 V	Veighted A	verage	
	13,037	8	9.23% Per	vious Area	
	1,573	1	0.77% Imp	pervious Ar	ea
_		<u>.</u>		• •	-
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
3.5	43	0.0419	0.21		Sheet Flow,
					Grass: Short
1.7	35	0.1714	0.35		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.70"
1.4	23	0.1087	0.27		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.70"
0.2	37	0.1892	3.04		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
6.8	138	Total			

Summary for Subcatchment 6S: Subcatchment 6S

Runoff	=	0.24 cfs @	12.09 hrs,	Volume=	0.020 af,	Depth>	5.37"
Routed	I to Pond	d CB1 : Catch	i Basin 1				

18134-PROPOSEDType III 24-hr 10 Yr 24 Hr +15% Rainfall=5.61"Prepared by Jones & Beach Engineers IncPrinted 3/14/2024

HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC

Ar	ea (sf)	CN	Description								
	1,952	98	Paved park	ing, HSG E	3						
	1,952		100.00% In	npervious A	Area						
Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description						
6.0					Direct Entry,						
	Summany for Subcatchmont 7S: Subcatchmont 7S										

Summary for Subcatchment 7S: Subcatchment 7S

Runoff = 0.19 cfs @ 12.09 hrs, Volume= 0.016 af, Depth> 5.37" Routed to Pond CB2 : Catch Basin 2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Yr 24 Hr +15% Rainfall=5.61"

A	rea (sf)	CN [Description							
	1,516	98 F	98 Paved parking, HSG B							
	1,516		100.00% In	npervious A	Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0					Direct Entry,					

Summary for Subcatchment 8S: Subcatchment 8S

Runoff = 0.09 cfs @ 12.09 hrs, Volume= Routed to Pond CB3 : Catch Basin 3

0.007 af, Depth> 5.37"

Page 13

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Yr 24 Hr +15% Rainfall=5.61"

A	rea (sf)	CN [Description							
	707	98 F	98 Paved parking, HSG B							
	707	-	100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0					Direct Entry,					

Summary for Subcatchment 9S: Subcatchment 9S

Runoff = 0.34 cfs @ 12.09 hrs, Volume= 0.029 af, Depth> 5.37" Routed to Pond CB4 : Catch Basin 4

Type III 24-hr 10 Yr 24 Hr +15% Rainfall=5.61" Printed 3/14/2024

Page 14

Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description					
	2,332	98	Paved park	ing, HSG B	3			
	457	98	Roofs, HSC	βB				
	2,789	98	Weighted A	verage				
	2,789		100.00% Impervious Area					
Тс	Length	Slop	,	Capacity	Description			
<u>(min)</u>	(feet)	(ft/f	t) (ft/sec)	(cfs)				
6.0					Direct Entry,			

Summary for Subcatchment 10S: Subcatchment 10S

Runoff = 0.25 cfs @ 12.10 hrs, Volume= 0.019 af, Depth> 2.67" Routed to Pond YD1 : Yard Drain 1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Yr 24 Hr +15% Rainfall=5.61"

Ar	ea (sf)	CN D	escription								
	796	98 F	98 Roofs, HSG B								
	2,573	61 >	75% Gras	s cover, Go	bod, HSG B						
	261	98 P	aved park	ing, HSG B	}						
	3,630		Veighted A								
	2,573	7	0.88% Per	vious Area							
	1,057	2	9.12% Imp	ervious Ar	ea						
_											
Tc	Length	Slope	Velocity	Capacity	Description						
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)							
2.2	42	0.1190	0.31		Sheet Flow,						
					Grass: Short n= 0.150 P2= 3.70"						
3.7	58	0.0650	0.26		Sheet Flow,						
					Grass: Short n= 0.150 P2= 3.70"						
0.4	42	0.0650	1.78		Shallow Concentrated Flow,						
					Short Grass Pasture Kv= 7.0 fps						
6.3	142	Total									

Summary for Subcatchment 11S: Subcatchment 11S

Runoff = 0.40 cfs @ 12.09 hrs, Volume= 0.029 af, Depth> 3.33" Routed to Pond YD2 : Yard Drain 2

Type III 24-hr 10 Yr 24 Hr +15% Rainfall=5.61"

Printed 3/14/2024

Page 15

Prepared by Jones & Beach	Engineers Inc
HydroCAD® 10.20-3c s/n 00762	© 2023 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description					
	1,998	98	Roofs, HSG	В				
	2,312	61	>75% Grass	s cover, Go	od, HSG B			
	261	98	Paved parki	ng, HSG B				
	4,571	79	Weighted A	verage				
	2,312	:	50.58% Per	vious Area				
	2,259		49.42% Imp	ervious Are	ea			
Tc	Length	Slope		Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
5.6	77	0.0396	0.23		Sheet Flow,			
					Grass: Short	n= 0.150	P2= 3.70"	
5.6	77	Total,	Increased to	o minimum	Tc = 6.0 min			

Summary for Subcatchment 12S: Subcatchment 12S

Runoff = 0.28 cfs @ 12.09 hrs, Volume= 0.020 af, Depth> 2.86" Routed to Pond YD3 : Yard Drain 3

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Yr 24 Hr +15% Rainfall=5.61"

A	rea (sf)	CN E	Description					
	1,318	98 F	Roofs, HSG	в				
	2,416	61 >	>75% Grass	s cover, Go	od, HSG B			
	3,734	74 V	Neighted A	verage				
	2,416	6	64.70% Per	vious Area				
	1,318	3	35.30% Imp	ervious Are	ea			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
4.4	51	0.0320	0.19		Sheet Flow,			
					Grass: Short	n= 0.150	P2= 3.70"	
4.4	51	Total, I	Increased to	o minimum	Tc = 6.0 min			

Summary for Subcatchment 13S: Subcatchment 13S

Runoff = 0.11 cfs @ 12.09 hrs, Volume= 0.009 af, Depth> 5.37" Routed to Pond 3P : Stone Drip Edge

Area (sf)	CN	Description	
696	98	Roofs, HSG B	
180	98	Water Surface, HSG B	
876 876	98	Weighted Average 100.00% Impervious Area	

Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC	Printed 3/14/2024 Page 16				
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)					
6.0 Direct Entry,					
Summary for Subcatchment 14S: Subcatchment	14S				
Runoff = 0.11 cfs @ 12.09 hrs, Volume= 0.009 af, Depth> 5.3 Routed to Pond 4P : Stone Drip Edge	7"				
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 h Type III 24-hr 10 Yr 24 Hr +15% Rainfall=5.61"	rs, dt= 0.05 hrs				
Area (sf) CN Description					
738 98 Roofs, HSG B 144 98 Water Surface, HSG B					
882 98 Weighted Average882 100.00% Impervious Area					
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)					
6.0 Direct Entry,					
Summary for Subcatchment 15S: Subcatchment 15S					
Runoff = 0.07 cfs @ 12.09 hrs, Volume= 0.006 af, Depth> 5.3 Routed to Pond 5P : Stone Under Deck	7"				
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Yr 24 Hr +15% Rainfall=5.61"					
Area (sf) CN Description 560 98 Roofs, HSG B					
560 98 Roots, HSG B 560 100.00% Impervious Area					
To Longth Clang Valagity Consoity Description					

Type III 24-hr 10 Yr 24 Hr +15% Rainfall=5.61"

TcLengthSlopeVelocityCapacityDescription(min)(feet)(ft/ft)(ft/sec)(cfs)

6.0

18134-PROPOSED

Direct Entry,

Summary for Subcatchment 16S: Subcatchment 16S

Runoff = 0.03 cfs @ 12.09 hrs, Volume= 0.002 af, Depth> 5.37" Routed to Pond 6P : Eco-Pavers

Type III 24-hr 10 Yr 24 Hr +15% Rainfall=5.61" Printed 3/14/2024

Page 17

	51
Prepared by Jones & Beach	Engineers Inc
HydroCAD® 10.20-3c s/n 00762	© 2023 HydroCAD Software Solutions LLC

Area (sf) CN Description					
221 98 Water Surface, HSG B					
221 100.00% Impervious Area					
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)					
6.0 Direct Entry,					
Summary for Subcatchment 17S: (new Subcat)					
Runoff = 0.11 cfs @ 12.09 hrs, Volume= 0.009 af, Depth> 5.37" Routed to Pond 7P : Stone Drip Edge					
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Yr 24 Hr +15% Rainfall=5.61"					
Area (sf) CN Description					
696 98 Roofs, HSG B					
180 98 Water Surface, HSG B					
876 98 Weighted Average					
876 100.00% Impervious Area					
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)					
6.0 Direct Entry,					
Summary for Subcatchment 18S: Subcatchment 18S					
Runoff = 0.05 cfs @ 12.10 hrs, Volume= 0.004 af, Depth> 1.75" Routed to Pond 2P : Bioretention #2					
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Yr 24 Hr +15% Rainfall=5.61"					
Area (sf) CN Description					
1,220 61 >75% Grass cover, Good, HSG B					
1,220 100.00% Pervious Area					
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)					
6.0 Direct Entry,					
Summery for Deach 4D: Flow through 2S					

Summary for Reach 1R: Flow through 3S

Inflow Area = 0.705 ac, 33.80% Impervious, Inflow Depth > 2.84" for 10 Yr 24 Hr +15% event Inflow = 0.54 cfs @ 12.52 hrs, Volume= 0.167 af Outflow = 0.54 cfs @ 12.52 hrs, Volume= 0.167 af, Atten= 0%, Lag= 0.3 min Routed to Reach 2R : Ditch on Tidewatch Property

18134-PROPOSED Type III 24-hr 10 Yr 24 Hr +15% Rainfall=5.61" Prepared by Jones & Beach Engineers Inc Printed 3/14/2024 HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC Page 18

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Max. Velocity= 1.84 fps, Min. Travel Time= 0.7 min Avg. Velocity = 0.99 fps, Avg. Travel Time= 1.4 min

Peak Storage= 24 cf @ 12.52 hrs Average Depth at Peak Storage= 0.04', Surface Width= 10.32' Bank-Full Depth= 1.00' Flow Area= 33.3 sf, Capacity= 498.58 cfs

50.00' x 1.00' deep Parabolic Channel, n= 0.030 Stream, clean & straight Length= 81.0' Slope= 0.1568 '/' Inlet Invert= 50.70', Outlet Invert= 38.00'

‡

Summary for Reach 2R: Ditch on Tidewatch Property

[62] Hint: Exceeded Reach 1R OUTLET depth by 0.29' @ 12.30 hrs [62] Hint: Exceeded Reach 4R OUTLET depth by 0.33' @ 12.25 hrs

 Inflow Area =
 1.685 ac, 18.03% Impervious, Inflow Depth > 2.09" for 10 Yr 24 Hr +15% event

 Inflow =
 1.64 cfs @
 12.29 hrs, Volume=
 0.293 af

 Outflow =
 1.63 cfs @
 12.30 hrs, Volume=
 0.293 af, Atten= 0%, Lag= 0.9 min

 Routed to Reach AP3 : Analysis Point 3
 3

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Max. Velocity= 2.44 fps, Min. Travel Time= 1.1 min Avg. Velocity = 0.98 fps, Avg. Travel Time= 2.7 min

Peak Storage= 106 cf @ 12.30 hrs Average Depth at Peak Storage= 0.33', Surface Width= 3.01' Bank-Full Depth= 1.00' Flow Area= 4.0 sf, Capacity= 18.18 cfs

1.00' x 1.00' deep channel, n= 0.030 Stream, clean & straight Side Slope Z-value= 3.0 '/' Top Width= 7.00' Length= 159.0' Slope= 0.0189 '/' Inlet Invert= 38.00', Outlet Invert= 35.00'

Summary for Reach 3R: Swale

[90] Warning: Qout>Qin may require smaller dt or Finer Routing

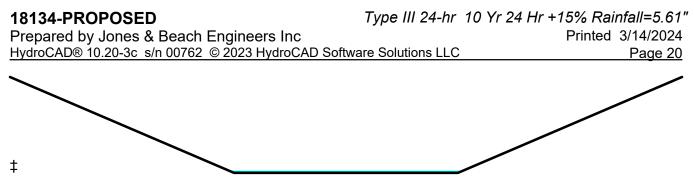
Inflow Area =0.370 ac, 54.68% Impervious, Inflow Depth > 3.60" for 10 Yr 24 Hr +15% eventInflow =1.45 cfs @12.09 hrs, Volume=0.111 afOutflow =1.45 cfs @12.10 hrs, Volume=0.111 af, Atten= 0%, Lag= 0.4 minRouted to Pond 1P : Bioretention #1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Max. Velocity= 3.05 fps, Min. Travel Time= 0.5 min Avg. Velocity = 0.90 fps, Avg. Travel Time= 1.8 min

Peak Storage= 45 cf @ 12.10 hrs Average Depth at Peak Storage= 0.27', Surface Width= 2.59' Bank-Full Depth= 1.00' Flow Area= 4.0 sf, Capacity= 25.77 cfs

1.00' x 1.00' deep channel, n= 0.030 Earth, grassed & winding Side Slope Z-value= 3.0 '/' Top Width= 7.00' Length= 95.0' Slope= 0.0379 '/' Inlet Invert= 60.60', Outlet Invert= 57.00'

Summary for Reach 4R: Flow Through 3S


[80] Warning: Exceeded Pond 2P by 0.15' @ 15.95 hrs (0.00 cfs 0.000 af)

Inflow Area = 0.092 ac, 69.57% Impervious, Inflow Depth = 0.39" for 10 Yr 24 Hr +15% event Inflow = 0.11 cfs @ 12.37 hrs, Volume= 0.003 af Outflow = 0.09 cfs @ 12.44 hrs, Volume= 0.003 af, Atten= 12%, Lag= 4.1 min Routed to Reach 2R : Ditch on Tidewatch Property

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Max. Velocity= 1.34 fps, Min. Travel Time= 3.4 min Avg. Velocity = 0.87 fps, Avg. Travel Time= 5.2 min

Peak Storage= 19 cf @ 12.44 hrs Average Depth at Peak Storage= 0.02', Surface Width= 3.14' Bank-Full Depth= 1.00' Flow Area= 6.0 sf, Capacity= 74.97 cfs

3.00' x 1.00' deep channel, n= 0.030 Stream, clean & straight Side Slope Z-value= 3.0 '/' Top Width= 9.00' Length= 275.0' Slope= 0.1145 '/' Inlet Invert= 69.50', Outlet Invert= 38.00'

Summary for Reach AP1: Analysis Point 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	0.170 ac, 50.61% Impervious, Inflow Depth > 3.43" for 10 Yr 24 Hr +15% event
Inflow	=	0.67 cfs @ 12.09 hrs, Volume= 0.048 af
Outflow	=	0.67 cfs (a) 12.09 hrs, Volume= 0.048 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP2: Analysis Point 2

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.040 ac,	0.00% Impervious, Inflow D	epth > 1.75"	for 10 Yr 24 Hr +15% event
Inflow =	0.08 cfs @	12.10 hrs, Volume=	0.006 af	
Outflow =	0.08 cfs @	12.10 hrs, Volume=	0.006 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP3: Analysis Point 3

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	1.685 ac, 18.03% Impervious, Inflow Depth > 2.09" for 10 Yr 24 Hr +15% event
Inflow =	1.63 cfs @ 12.30 hrs, Volume= 0.293 af
Outflow =	1.63 cfs @ 12.30 hrs, Volume= 0.293 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP4: Analysis Point 4

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	0.457 ac,	3.66% Impervious, Inflow	Depth > 1.83"	for 10 Yr 24 Hr +15% event
Inflow	=	0.85 cfs @	12.12 hrs, Volume=	0.069 af	
Outflow	=	0.85 cfs @	12.12 hrs, Volume=	0.069 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

Summary for Pond 1P: Bioretention #1

 Inflow Area =
 0.705 ac, 33.80% Impervious, Inflow Depth > 2.87" for 10 Yr 24 Hr +15% event

 Inflow =
 2.21 cfs @ 12.10 hrs, Volume=
 0.169 af

 Outflow =
 0.54 cfs @ 12.52 hrs, Volume=
 0.167 af, Atten= 75%, Lag= 24.9 min

 Primary =
 0.54 cfs @ 12.52 hrs, Volume=
 0.167 af

 Routed to Reach 1R : Flow through 3S
 0.167 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 55.34' @ 12.52 hrs Surf.Area= 1,655 sf Storage= 2,503 cf

Plug-Flow detention time= 80.2 min calculated for 0.167 af (99% of inflow) Center-of-Mass det. time= 74.4 min (890.7 - 816.3)

-5=Orifice/Grate (Controls 0.00 cfs) -6=Orifice/Grate (Controls 0.00 cfs)

Volume	Invert	Avai	I.Stor	age	Storage Descri	ption	
#1	50.99'		6,06	1 cf	Custom Stage	Data (Prismati	c) Listed below (Recalc)
Elevatio	on Su	urf.Area	Voic	ls	Inc.Store	Cum.Store	
(fee		(sq-ft)	(%		(cubic-feet)	(cubic-feet)	
50.9	- /	924	0.	/	0		
51.0		924	40.		4	4	
52.4		924	40.		551	554	
52.5		924	15.		1	556	
53.9	99	924	15.	0	207	762	
54.0	00	924	100.	0	9	772	
56.0	00	2,012	100.	.0	2,936	3,708	
57.0	00	2,643	100.	.0	2,328	6,035	
57.0)1	2,643	100.	.0	26	6,061	
Device	Routing	In	vert	Out	et Devices		
<u>Device</u> #1	U		.00'		" Round Culve	t	
<i>#</i> I	Primary	51	.00		20.0' CPP, proje		
							S= 0.0150 '/' Cc= 0.900
					0.012, Flow Area		8= 0.0130 / 80 - 0.900
#2	Device 1	51	.00'				Limited to weir flow at low heads
#3	Device 1		.50'	-			Limited to weir flow at low heads
#4	Device 1		5.60'				Limited to weir flow at low heads
#5	Device 1		5.10'		' W x 1.5" H Vert		
			-		ted to weir flow a		
#6	Device 1	56	5.50'	48.0)" x 48.0" Horiz.	Orifice/Grate	C= 0.600
				Limi	ted to weir flow a	at low heads	
					52 hrs_HW=55.3		(Dynamic Tailwater)
					cfs potential flow		
					0.20 cfs @ 9.94		
					3 0.35 cfs @ 3.96	ips)	
-4=	Orifice/Gra	ie (Con		0.00 0	315)		

Summary for Pond 2P: Bioretention #2

[80] Warning: Exceeded Pond CB4 by 0.92' @ 17.10 hrs (1.76 cfs 0.178 af)

0.092 ac, 69.57% Impervious, Inflow Depth > 4.27" for 10 Yr 24 Hr +15% event Inflow Area = Inflow = 0.40 cfs @ 12.09 hrs, Volume= 0.033 af Outflow 0.14 cfs @ 12.37 hrs, Volume= 0.031 af, Atten= 66%, Lag= 17.0 min = 0.03 cfs @ 12.40 hrs, Volume= 0.11 cfs @ 12.37 hrs, Volume= Discarded = 0.028 af Primarv 0.003 af = Routed to Reach 4R : Flow Through 3S

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 69.54' @ 12.40 hrs Surf.Area= 621 sf Storage= 560 cf

Plug-Flow detention time= 178.7 min calculated for 0.031 af (96% of inflow) Center-of-Mass det. time= 155.1 min (915.5 - 760.4)

Volume	Invert	Ava	il.Storage	e Storage Descri	ption	
#1	65.74'	I	884 c	f Custom Stage	Data (Prismatic)	_isted below (Recalc)
Elevatio (fee		urf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
65.7	1	153	0.0	0	0	
65.7		153	40.0	1	1	
66.9	99	153	40.0	76	77	
67.0	00	153	15.0	0	77	
68.4	49	153	15.0	34	111	
68.5	50	153	100.0	2	112	
69.0	00	464	100.0	154	267	
70.0	00	755	100.0	610	876	
70.0	01	755	100.0	8	884	
Device	Routing	In	vert O	utlet Devices		
#1	Discarded	65	5.74' 0. 3	300 in/hr Exfiltrat	ion over Surface	area
						= 65.58' Phase-In= 0.10'
#2	Primary	69				ed Rectangular Weir
) 1.20 1.40 1.60 1.80 2.00
					0 4.50 5.00 5.50	
				()		2.67 2.67 2.65 2.66 2.66
			2.	68 2.72 2.73 2.70	6 2.79 2.88 3.07	3.32

Discarded OutFlow Max=0.03 cfs @ 12.40 hrs HW=69.54' (Free Discharge) **1=Exfiltration** (Controls 0.03 cfs)

Primary OutFlow Max=0.10 cfs @ 12.37 hrs HW=69.54' TW=69.52' (Dynamic Tailwater) ←2=Broad-Crested Rectangular Weir (Weir Controls 0.10 cfs @ 0.41 fps)

Summary for Pond 3P: Stone Drip Edge

Ledge surface modelled 15" below original grade based on TP 1 and TP 4. Proposed grade is approximately 4' above existing grade and therefore 5.25' above ledge.

Discarded = Secondary =	Inflow = 0.11 cfs @ 12.09 hrs, Volume= 0.009 af Outflow = 0.00 cfs @ 15.49 hrs, Volume= 0.004 af, Atten= 97%, Lag= 204.3 min						
		Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 surf.Area= 0.004 ac Storage= 0.006 af					
	Plug-Flow detention time= 332.3 min calculated for 0.004 af (50% of inflow) Center-of-Mass det. time= 201.5 min(947.3 - 745.7)						
Volume	nvert Avail.Stor	ge Storage Description					
#1 6	62.50' 0.00	af 3.00'W x 60.00'L x 3.51'H Prismatoid 0.015 af Overall x 40.0% Voids					
Device Routi	ng Invert	Outlet Devices					
#0 Seco #1 Disca	ndary 66.01' Irded 62.50'	Automatic Storage Overflow (Discharged without head)0.300 in/hr Exfiltration over Surface areaConductivity to Groundwater Elevation = 60.75'Phase-In= 0.10'					
Discarded OutFlow Max=0.00 cfs @ 15.49 hrs HW=65.98' (Free Discharge)							

1=Exfiltration (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=62.50' TW=50.99' (Dynamic Tailwater)

Summary for Pond 4P: Stone Drip Edge

Ledge surface modelled 15" below original grade based on TP 1 and TP 4. Proposed grade is approximately 4' above existing grade and therefore 5.25' above ledge.

Inflow Area =	0.020 ac,100.00% Impervious, Inflow	Depth > 5.37" for 10 Yr 24 Hr +15% event
Inflow =	0.11 cfs @ 12.09 hrs, Volume=	0.009 af
Outflow =	0.00 cfs @14.94 hrs, Volume=	0.005 af, Atten= 96%, Lag= 171.1 min
Discarded =	0.00 cfs @_ 14.94 hrs, Volume=	0.005 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af
Routed to Read	ch AP4 : Analysis Point 4	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 64.93' @ 14.94 hrs Surf.Area= 0.004 ac Storage= 0.006 af

Plug-Flow detention time= 331.1 min calculated for 0.005 af (56% of inflow) Center-of-Mass det. time= 213.2 min (959.0 - 745.7)

 Type III 24-hr
 10 Yr
 24 Hr
 +15% Rainfall=5.61"

 Printed
 3/14/2024

 Ire Solutions LLC
 Page 24

Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC

Volume	Invert	Avail.Storage	e Storage Description	
#1	61.00'	0.006 a		
			0.014 af Overall x 40.0% Voids	
Device	Routing	Invert C	Dutlet Devices	
#0	Secondary	65.01' A	Automatic Storage Overflow (Discharged without head)	
#1	Discarded		.300 in/hr Exfiltration over Surface area	
		Ĺ	Conductivity to Groundwater Elevation = 59.75' Phase-In= 0.10'	
		Max=0.00 cfs (ontrols 0.00 cfs	@ 14.94 hrs HW=64.93' (Free Discharge) s)	
Second	ary OutFlow	Max=0.00 cfs	@ 0.00 hrs HW=61.00' TW=0.00' (Dynamic Tailwater)	
		Summ	ary for Pond 5P: Stone Under Deck	
			riginal grade based on TP 1 and TP 4. Proposed grade is ade and therefore 4.45' above ledge.	
Inflow A	rea = 0	013 ac 100 00	% Impervious, Inflow Depth > 5.37" for 10 Yr 24 Hr +15% event	
Inflow	= 0.	07 cfs @ 12.0	0.006 af	
Outflow			0.004 af, Atten= 96%, Lag= 176.3 min	
Discarde Seconda			02 hrs, Volume= 0.004 af 00 hrs, Volume= 0.000 af	
	Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af Routed to Pond 1P : Bioretention #1			
Deviting				
			ne Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 f.Area= 0.006 ac Storage= 0.003 af	
r our Er	er ee.e. @			
			a calculated for 0.004 af (62% of inflow)	
Center-o	ot-Mass det. t	ime= 187.7 min	n (933.4 - 745.7)	
Volume	Invert	Avail.Storage	e Storage Description	
#1	64.70'	0.004 a		
			0.010 af Overall x 40.0% Voids	
Device	Routing	Invert C	Dutlet Devices	
#0	Secondary		Automatic Storage Overflow (Discharged without head)	
#1	Discarded	-	.300 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 61.75' Phase-In= 0.10'	
		C	Conductivity to Groundwater Elevation – 01.75 Fridse-III– 0.10	
	Discarded OutFlow Max=0.00 cfs @ 15.02 hrs HW=65.97' (Free Discharge)			
└─1=Ex	filtration (C	ontrols 0.00 cfs	3)	

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=64.70' TW=50.99' (Dynamic Tailwater)

Summary for Pond 6P: Eco-Pavers

Ledge surface modelled 15" below original grade based on TP 1 and TP 4. Proposed grade is approximately 3.2' above existing grade and therefore 4.45' above ledge.

Inflow Area = Inflow = Outflow = Discarded = Secondary = Routed to Po	0.03 cfs @ 12.0 0.00 cfs @ 13.4 0.00 cfs @ 13.4	% Impervious, Inflow Depth > 5.37" for 10 Yr 24 Hr +15% event 9 hrs, Volume= 0.002 af 6 hrs, Volume= 0.002 af, Atten= 93%, Lag= 82.4 min 6 hrs, Volume= 0.002 af 10 hrs, Volume= 0.000 af #1	
Routing by Dyn-	Stor-Ind method Tin	ne Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3	
		f.Area= 0.005 ac Storage= 0.001 af	
Center-of-Mass	det. time= 206.5 min		
-		e Storage Description	
#1 65	0.002 a	f 13.00'W x 17.00'L x 1.00'H Prismatoid 0.005 af Overall x 30.0% Voids	
Device Routing	g Invert C	Dutlet Devices	
#0 Second	dary 66.20' A	Automatic Storage Overflow (Discharged without head)	
#1 Discard		.300 in/hr Exfiltration over Surface area	
	C	Conductivity to Groundwater Elevation = 61.75' Phase-In= 0.10'	
Discarded OutFlow Max=0.00 cfs @ 13.46 hrs HW=65.88' (Free Discharge)			

1=Exfiltration (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=65.20' TW=50.99' (Dynamic Tailwater)

Summary for Pond 7P: Stone Drip Edge

Ledge surface modelled 15" below original grade based on TP 1 and TP 4. Proposed grade is approximately 4' above existing grade and therefore 5.25' above ledge.

Inflow Area =	0.020 ac,100.00% Impervious, Inflow	Depth > 5.37" for 10 Yr 24 Hr +15% event
Inflow =	0.11 cfs @ 12.09 hrs, Volume=	0.009 af
Outflow =	0.00 cfs @ 15.49 hrs, Volume=	0.004 af, Atten= 97%, Lag= 204.3 min
Discarded =	0.00 cfs @ 15.49 hrs, Volume=	0.004 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af
Routed to Pond	d 1P : Bioretention #1	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 65.98' @ 15.49 hrs Surf.Area= 0.004 ac Storage= 0.006 af

Plug-Flow detention time= 332.3 min calculated for 0.004 af (50% of inflow) Center-of-Mass det. time= 201.5 min (947.3 - 745.7)

 Type III 24-hr
 10 Yr
 24 Hr
 +15% Rainfall=5.61"

 Printed
 3/14/2024

 are Solutions LLC
 Page 26

Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC

Volume	Invert	Avail.Stora	ge Storage Description
#1	62.50'		af 3.00'W x 60.00'L x 3.51'H Prismatoid 0.015 af Overall x 40.0% Voids
Device	Routing	Invert	Outlet Devices
	Secondary		Automatic Storage Overflow (Discharged without head)
#1	Discarded	62.50'	0.300 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 60.75' Phase-In= 0.10'
			,
	ed OutFlow I filtration (Co		s @ 15.49 hrs HW=65.98' (Free Discharge) cfs)
Seconda	ary OutFlow	Max=0.00 cf	s @ 0.00 hrs HW=62.50' TW=50.99' (Dynamic Tailwater)
		Sun	nmary for Pond CB1: Catch Basin 1
Inflow Are	oo = 0	129 00 52 (91% Impervious, Inflow Depth > 3.62" for 10 Yr 24 Hr +15% event
Inflow			2.09 hrs, Volume = 0.039 af
Outflow	= 0.4	49 cfs @ 12	2.09 hrs, Volume= 0.039 af, Atten= 0%, Lag= 0.0 min
Primary	= 0.4 d to Pond CE		2.09 hrs, Volume= 0.039 af
Noule		DZ . GAIGH Da	
			Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3
	v= 62.57' @ ev= 65.60'	12.09 hrs	
	90.00		
Device	Routing	Invert	Outlet Devices
#1	Primary	62.10'	12.0" Round Culvert
			L= 19.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 62.10' / 62.00' S= 0.0053 '/' Cc= 0.900
			n = 0.012, Flow Area = 0.79 sf
			0 12.09 hrs HW=62.57' TW=62.41' (Dynamic Tailwater) 8 cfs @ 1.97 fps)
I-Cu		Controls 0.40	
		Sun	nmary for Pond CB2: Catch Basin 2
Inflow Are	ea = 0.	163 ac, 63.7	75% Impervious, Inflow Depth > 3.99" for 10 Yr 24 Hr +15% event
Inflow			2.09 hrs, Volume= 0.054 af
Outflow Primary			2.09 hrs, Volume= 0.054 af, Atten= 0%, Lag= 0.0 min 2.09 hrs, Volume= 0.054 af
	d to Pond CE		
Douting 4	NUD Starl	nd mothed T	F_{imp} Shan- 0.00.24.00 km dt= 0.05 km / 2
	v= 62.42' @		Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3
	ev= 65.60'		
Device	Routing	Invert	Outlet Devices
	Primary	61.90'	12.0" Round Culvert
	-		L = 130.0' CPP projecting no headwall Ke= 0.900

L= 130.0' CPP, projecting, no headwall, Ke= 0.900

Inlet / Outlet Invert= 61.90' / 61.20' S= 0.0054 '/' Cc= 0.900

n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.67 cfs @ 12.09 hrs HW=62.41' TW=61.83' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 0.67 cfs @ 2.41 fps)

Summary for Pond CB3: Catch Basin 3

Inflow Area =		0.370 ac, 54.68% Impervious, Inflow Depth > 3.60" for 10	Yr 24 Hr +15% event		
Inflow =	=	1.45 cfs @ 12.09 hrs, Volume= 0.111 af			
Outflow =	=	1.45 cfs @ 12.09 hrs, Volume= 0.111 af, Atten= 0%,	, Lag= 0.0 min		
Primary =	=	1.45 cfs @ 12.09 hrs, Volume= 0.111 af			
Routed to Reach 3R : Swale					
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs. dt= 0.05 hrs / 3					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 61.84' @ 12.09 hrs Flood Elev= 73.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	61.10'	12.0" Round Culvert L= 94.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 61.10' / 60.60' S= 0.0053 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=1.42 cfs @ 12.09 hrs HW=61.83' TW=60.86' (Dynamic Tailwater) -1=Culvert (Inlet Controls 1.42 cfs @ 2.30 fps)

Summary for Pond CB4: Catch Basin 4

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=85)

Inflow Area =		0.064 ac,100.00% Impervious, Inflow Depth > 5.37" for 10 Yr 24 Hr +15% event	
Inflow	=	0.34 cfs @ 12.09 hrs, Volume= 0.029 af	
Outflow	=	0.34 cfs @ 12.09 hrs, Volume= 0.029 af, Atten= 0%, Lag= 0.0 min	
Primary	=	0.34 cfs @ 12.09 hrs, Volume= 0.029 af	
Routed to Pond 2P : Bioretention #2			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 69.54' @ 12.39 hrs Flood Elev= 71.80'

Device	Routing	Invert	Outlet Devices
#1	Primary	68.30'	12.0" Round Culvert L= 20.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 68.30' / 68.20' S= 0.0050 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.34 cfs @ 12.09 hrs HW=69.24' TW=69.22' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.34 cfs @ 0.44 fps)

Summary for Pond YD1: Yard Drain 1

 Inflow Area =
 0.083 ac, 29.12% Impervious, Inflow Depth > 2.67" for 10 Yr 24 Hr +15% event

 Inflow =
 0.25 cfs @ 12.10 hrs, Volume=
 0.019 af

 Outflow =
 0.25 cfs @ 12.10 hrs, Volume=
 0.019 af, Atten= 0%, Lag= 0.0 min

 Primary =
 0.25 cfs @ 12.10 hrs, Volume=
 0.019 af

 Routed to Pond CB1 : Catch Basin 1
 0.019 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 63.07' @ 12.10 hrs Flood Elev= 65.80'

Device	Routing	Invert	Outlet Devices
#1	Primary	62.70'	6.0" Round Culvert L= 2.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 62.70' / 62.60' S= 0.0500 '/' Cc= 0.900 n= 0.012, Flow Area= 0.20 sf

Primary OutFlow Max=0.25 cfs @ 12.10 hrs HW=63.07' TW=62.57' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.25 cfs @ 1.63 fps)

Summary for Pond YD2: Yard Drain 2

 Inflow Area =
 0.105 ac, 49.42% Impervious, Inflow Depth > 3.33" for 10 Yr 24 Hr +15% event

 Inflow =
 0.40 cfs @
 12.09 hrs, Volume=
 0.029 af

 Outflow =
 0.40 cfs @
 12.09 hrs, Volume=
 0.029 af, Atten= 0%, Lag= 0.0 min

 Primary =
 0.40 cfs @
 12.09 hrs, Volume=
 0.029 af, Atten= 0%, Lag= 0.0 min

 Primary =
 0.40 cfs @
 12.09 hrs, Volume=
 0.029 af

 Routed to Pond CB3 : Catch Basin 3
 0.029 af
 0.029 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 67.84' @ 12.09 hrs Flood Elev= 69.30'

Device	Routing	Invert	Outlet Devices
#1	Primary	67.30'	6.0" Round Culvert L= 52.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 67.30' / 66.80' S= 0.0096 '/' Cc= 0.900 n= 0.012, Flow Area= 0.20 sf

Primary OutFlow Max=0.39 cfs @ 12.09 hrs HW=67.83' TW=61.83' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.39 cfs @ 2.00 fps)

Summary for Pond YD3: Yard Drain 3

 Inflow Area =
 0.086 ac, 35.30% Impervious, Inflow Depth > 2.86" for 10 Yr 24 Hr +15% event

 Inflow =
 0.28 cfs @
 12.09 hrs, Volume=
 0.020 af

 Outflow =
 0.28 cfs @
 12.09 hrs, Volume=
 0.020 af, Atten= 0%, Lag= 0.0 min

 Primary =
 0.28 cfs @
 12.09 hrs, Volume=
 0.020 af

 Routed to Pond CB3 : Catch Basin 3
 0.020 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

18134-PROPOSED Prepared by Jones & Beach Engineers Inc

Peak Elev= 67.70' @ 12.09 hrs Flood Elev= 70.20'

Device	Routing	Invert	Outlet Devices	
#1	Primary	67.30'	6.0" Round Culvert L= 13.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 67.30' / 66.80' S= 0.0385 '/' Cc= 0.900 n= 0.012, Flow Area= 0.20 sf	
Primary OutFlow Max=0.28 cfs @ 12.09 hrs HW=67.69' TW=61.84' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 0.28 cfs @ 1.68 fps)				

18134-PROPOSED Type III 24-hr 25 Yr 24 Hr +15% Rainfall=7.12" Prepared by Jones & Beach Engineers Inc Printed 3/14/2024 HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC Page 30

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: Subcatchment1S	Runoff Area=7,392 sf 50.61% Impervious Runoff Depth>4.80" Flow Length=186' Tc=6.0 min CN=80 Runoff=0.93 cfs 0.068 af
Subcatchment2S: Subcatchment2S Flow Length=20	Runoff Area=1,728 sf 0.00% Impervious Runoff Depth>2.79" O' Slope=0.0500 '/' Tc=6.0 min CN=61 Runoff=0.12 cfs 0.009 af
Subcatchment3S: Subcatchment3S	Runoff Area=38,661 sf 0.16% Impervious Runoff Depth>2.68" Flow Length=291' Tc=17.0 min CN=60 Runoff=1.94 cfs 0.198 af
Subcatchment4S: Subcatchment4S	Runoff Area=19,888 sf 3.66% Impervious Runoff Depth>2.89" Flow Length=210' Tc=7.9 min CN=62 Runoff=1.40 cfs 0.110 af
Subcatchment5S: Subcatchment5S	Runoff Area=14,610 sf 10.77% Impervious Runoff Depth>3.19" Flow Length=138' Tc=6.8 min CN=65 Runoff=1.20 cfs 0.089 af
Subcatchment6S: Subcatchment6S	Runoff Area=1,952 sf 100.00% Impervious Runoff Depth>6.88" Tc=6.0 min CN=98 Runoff=0.31 cfs 0.026 af
Subcatchment7S: Subcatchment7S	Runoff Area=1,516 sf 100.00% Impervious Runoff Depth>6.88" Tc=6.0 min CN=98 Runoff=0.24 cfs 0.020 af
Subcatchment8S: Subcatchment8S	Runoff Area=707 sf 100.00% Impervious Runoff Depth>6.88" Tc=6.0 min CN=98 Runoff=0.11 cfs 0.009 af
Subcatchment9S: Subcatchment9S	Runoff Area=2,789 sf 100.00% Impervious Runoff Depth>6.88" Tc=6.0 min CN=98 Runoff=0.44 cfs 0.037 af
Subcatchment10S: Subcatchment10S	Runoff Area=3,630 sf 29.12% Impervious Runoff Depth>3.93" Flow Length=142' Tc=6.3 min CN=72 Runoff=0.37 cfs 0.027 af
Subcatchment11S: Subcatchment11S Flow Length=7	Runoff Area=4,571 sf 49.42% Impervious Runoff Depth>4.69" 7' Slope=0.0396 '/' Tc=6.0 min CN=79 Runoff=0.56 cfs 0.041 af
Subcatchment12S: Subcatchment12S Flow Length=5	Runoff Area=3,734 sf 35.30% Impervious Runoff Depth>4.14" 1' Slope=0.0320 '/' Tc=6.0 min CN=74 Runoff=0.41 cfs 0.030 af
Subcatchment13S: Subcatchment13S	Runoff Area=876 sf 100.00% Impervious Runoff Depth>6.88" Tc=6.0 min CN=98 Runoff=0.14 cfs 0.012 af
Subcatchment14S: Subcatchment14S	Runoff Area=882 sf 100.00% Impervious Runoff Depth>6.88" Tc=6.0 min CN=98 Runoff=0.14 cfs 0.012 af
Subcatchment15S: Subcatchment15S	Runoff Area=560 sf 100.00% Impervious Runoff Depth>6.88" Tc=6.0 min CN=98 Runoff=0.09 cfs 0.007 af
Subcatchment16S: Subcatchment16S	Runoff Area=221 sf 100.00% Impervious Runoff Depth>6.88" Tc=6.0 min CN=98 Runoff=0.03 cfs 0.003 af

18134-PROPOSED Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD		n fall= 7.12" 3/14/2024 Page <u>31</u>
Subcatchment17S: (new Subcat)	Runoff Area=876 sf 100.00% Impervious Runoff Do Tc=6.0 min CN=98 Runoff=0.14 cf	
Subcatchment18S: Subcatchment18S	Runoff Area=1,220 sf 0.00% Impervious Runoff Do Tc=6.0 min CN=61 Runoff=0.09 cf	
U V	Flow Depth=0.05' Max Vel=2.13 fps Inflow=0.87 cf S=0.1568 '/' Capacity=498.58 cfs Outflow=0.87 cf	
Reach 2R: Ditch on Tidewatch Property Avg. F n=0.030 L=159.0'	Flow Depth=0.44' Max Vel=2.85 fps Inflow=2.93 cf S=0.0189 '/' Capacity=18.18 cfs Outflow=2.94 cf	
	Flow Depth=0.31' Max Vel=3.33 fps Inflow=2.00 cf S=0.0379 '/' Capacity=25.77 cfs Outflow=2.00 cf	
	Flow Depth=0.05' Max Vel=2.09 fps Inflow=0.35 cf S=0.1145 '/' Capacity=74.97 cfs Outflow=0.32 cf	
Reach AP1: Analysis Point 1	Inflow=0.93 c Outflow=0.93 c	
Reach AP2: Analysis Point 2	Inflow=0.12 c Outflow=0.12 c	
Reach AP3: Analysis Point 3	Inflow=2.94 c Outflow=2.94 c	
Reach AP4: Analysis Point 4	Inflow=1.40 c Outflow=1.40 c	
Pond 1P: Bioretention#1	Peak Elev=56.00' Storage=3,698 cf Inflow=3.19 cf Outflow=0.87 cf	
Pond 2P: Bioretention#2 Discarded=0.03 cfs 0.0	Peak Elev=69.59' Storage=589 cf Inflow=0.52 cf 032 af Primary=0.35 cfs 0.009 af Outflow=0.38 cf	
	Peak Elev=66.01' Storage=0.006 af Inflow=0.14 cf af Secondary=0.05 cfs 0.002 af Outflow=0.05 cf	
1 0	Peak Elev=65.01' Storage=0.006 af Inflow=0.14 cf af Secondary=0.05 cfs 0.002 af Outflow=0.05 cf	
	Peak Elev=66.20' Storage=0.004 af Inflow=0.09 cf af Secondary=0.01 cfs 0.001 af Outflow=0.01 cf	
	Peak Elev=66.13' Storage=0.001 af Inflow=0.03 cf af Secondary=0.00 cfs 0.000 af Outflow=0.00 cf	
	Peak Elev=66.01' Storage=0.006 af Inflow=0.14 cf af Secondary=0.05 cfs 0.002 af Outflow=0.05 cf	

Type III 24-hr 25 Yr 24 Hr +15% Rainfall=7.12"Engineers IncPrinted 3/14/2024© 2023 HydroCAD Software Solutions LLCPage 32
Peak Elev=62.70' Inflow=0.68 cfs 0.053 af 12.0" Round Culvert n=0.012 L=19.0' S=0.0053 '/' Outflow=0.68 cfs 0.053 af
Peak Elev=62.54' Inflow=0.92 cfs 0.073 af 12.0" Round Culvert n=0.012 L=130.0' S=0.0054 '/' Outflow=0.92 cfs 0.073 af
Peak Elev=62.04' Inflow=2.00 cfs 0.153 af 12.0" Round Culvert n=0.012 L=94.0' S=0.0053 '/' Outflow=2.00 cfs 0.153 af
Peak Elev=69.60' Inflow=0.44 cfs 0.037 af 12.0" Round Culvert n=0.012 L=20.0' S=0.0050 '/' Outflow=0.44 cfs 0.037 af
Peak Elev=63.20' Inflow=0.37 cfs 0.027 af 6.0" Round Culvert n=0.012 L=2.0' S=0.0500 '/' Outflow=0.37 cfs 0.027 af
Peak Elev=68.11' Inflow=0.56 cfs 0.041 af 6.0" Round Culvert n=0.012 L=52.0' S=0.0096 '/' Outflow=0.56 cfs 0.041 af
Peak Elev=67.85' Inflow=0.41 cfs 0.030 af 6.0" Round Culvert n=0.012 L=13.0' S=0.0385 '/' Outflow=0.41 cfs 0.030 af

Total Runoff Area = 2.429 acRunoff Volume = 0.715 afAverage Runoff Depth = 3.53"80.04% Pervious = 1.944 ac19.96% Impervious = 0.485 ac

18134-PROPOSED	Type III 24-hr 50 Yr 24 Hr +15% Rainfall=8.53"
Prepared by Jones & Beach Engineers Inc	Printed 3/14/2024
HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Softw	are Solutions LLC Page 33

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: Subcatchment1S	Runoff Area=7,392 sf 50.61% Impervious Runoff Depth>6.12" Flow Length=186' Tc=6.0 min CN=80 Runoff=1.17 cfs 0.087 af
Subcatchment2S: Subcatchment2S Flow Length=20	Runoff Area=1,728 sf 0.00% Impervious Runoff Depth>3.85" Slope=0.0500 '/' Tc=6.0 min CN=61 Runoff=0.17 cfs 0.013 af
Subcatchment3S: Subcatchment3S	Runoff Area=38,661 sf 0.16% Impervious Runoff Depth>3.72" Now Length=291' Tc=17.0 min CN=60 Runoff=2.75 cfs 0.275 af
Subcatchment4S: Subcatchment4S	Runoff Area=19,888 sf 3.66% Impervious Runoff Depth>3.97" Flow Length=210' Tc=7.9 min CN=62 Runoff=1.95 cfs 0.151 af
Subcatchment5S: Subcatchment5S	Runoff Area=14,610 sf 10.77% Impervious Runoff Depth>4.32" Flow Length=138' Tc=6.8 min CN=65 Runoff=1.63 cfs 0.121 af
Subcatchment6S: Subcatchment6S	Runoff Area=1,952 sf 100.00% Impervious Runoff Depth>8.28" Tc=6.0 min CN=98 Runoff=0.37 cfs 0.031 af
Subcatchment7S: Subcatchment7S	Runoff Area=1,516 sf 100.00% Impervious Runoff Depth>8.28" Tc=6.0 min CN=98 Runoff=0.28 cfs 0.024 af
Subcatchment8S: Subcatchment8S	Runoff Area=707 sf 100.00% Impervious Runoff Depth>8.28" Tc=6.0 min CN=98 Runoff=0.13 cfs 0.011 af
Subcatchment9S: Subcatchment9S	Runoff Area=2,789 sf 100.00% Impervious Runoff Depth>8.28" Tc=6.0 min CN=98 Runoff=0.52 cfs 0.044 af
Subcatchment10S: Subcatchment10S	Runoff Area=3,630 sf 29.12% Impervious Runoff Depth>5.16" Flow Length=142' Tc=6.3 min CN=72 Runoff=0.49 cfs 0.036 af
Subcatchment11S: Subcatchment11S Flow Length=77'	Runoff Area=4,571 sf 49.42% Impervious Runoff Depth>6.00" Slope=0.0396 '/' Tc=6.0 min CN=79 Runoff=0.71 cfs 0.052 af
Subcatchment12S: Subcatchment12S Flow Length=51	Runoff Area=3,734 sf 35.30% Impervious Runoff Depth>5.40" Slope=0.0320 '/' Tc=6.0 min CN=74 Runoff=0.53 cfs 0.039 af
Subcatchment13S: Subcatchment13S	Runoff Area=876 sf 100.00% Impervious Runoff Depth>8.28" Tc=6.0 min CN=98 Runoff=0.16 cfs 0.014 af
Subcatchment14S: Subcatchment14S	Runoff Area=882 sf 100.00% Impervious Runoff Depth>8.28" Tc=6.0 min CN=98 Runoff=0.17 cfs 0.014 af
Subcatchment15S: Subcatchment15S	Runoff Area=560 sf 100.00% Impervious Runoff Depth>8.28" Tc=6.0 min CN=98 Runoff=0.11 cfs 0.009 af
Subcatchment16S: Subcatchment16S	Runoff Area=221 sf 100.00% Impervious Runoff Depth>8.28" Tc=6.0 min CN=98 Runoff=0.04 cfs 0.004 af

18134-PROPOSED Prepared by Jones & Beach Engineers Inc <u>HydroCAD® 10.20-3c s/n 00762 © 2023 HydroC</u>	-	5%
Subcatchment17S: (new Subcat)	Runoff Area=876 sf 100.00% Impervious R Tc=6.0 min CN=98 Runoff	
Subcatchment18S: Subcatchment18S	Runoff Area=1,220 sf 0.00% Impervious R Tc=6.0 min CN=61 Runoff	
U	g. Flow Depth=0.07' Max Vel=2.44 fps Inflow)' S=0.1568 '/' Capacity=498.58 cfs Outflow	
Reach 2R: Ditch on Tidewatch Property Ave n=0.030 L=159	g. Flow Depth=0.52' Max Vel=3.12 fps Inflow .0' S=0.0189 '/' Capacity=18.18 cfs Outflow	
•	g. Flow Depth=0.35' Max Vel=3.54 fps Inflow .0' S=0.0379 '/' Capacity=25.77 cfs Outflow	
	g. Flow Depth=0.07' Max Vel=2.61 fps Inflow .0' S=0.1145 '/' Capacity=74.97 cfs Outflow	
Reach AP1: Analysis Point 1		v=1.17 cfs 0.087 af v=1.17 cfs 0.087 af
Reach AP2: Analysis Point 2		v=0.17 cfs 0.013 af v=0.17 cfs 0.013 af
Reach AP3: Analysis Point 3		v=4.17 cfs 0.611 af v=4.17 cfs 0.611 af
Reach AP4: Analysis Point 4		v=1.99 cfs 0.155 af v=1.99 cfs 0.155 af
Pond 1P: Bioretention#1	Peak Elev=56.52' Storage=4,849 cf Inflow Outflow	r=4.15 cfs 0.324 af r=1.38 cfs 0.320 af
Pond 2P: Bioretention#2 Discarded=0.03 cfs	Peak Elev=69.63' Storage=614 cf Inflow 0.035 af Primary=0.57 cfs 0.016 af Outflow	
Pond 3P: Stone Drip Edge Discarded=0.00 cfs 0.0	Peak Elev=66.01' Storage=0.006 af Inflow 005 af Secondary=0.11 cfs 0.004 af Outflow	
Pond 4P: Stone Drip Edge Discarded=0.00 cfs 0.0	Peak Elev=65.01' Storage=0.006 af Inflow 006 af Secondary=0.12 cfs 0.004 af Outflow	
Pond 5P: Stone Under Deck Discarded=0.00 cfs 0.0	Peak Elev=66.20' Storage=0.004 af Inflow 004 af Secondary=0.04 cfs 0.002 af Outflow	
Pond 6P: Eco-Pavers Discarded=0.00 cfs 0.0	Peak Elev=66.20' Storage=0.002 af Inflow 003 af Secondary=0.01 cfs 0.000 af Outflow	
Pond 7P: Stone Drip Edge Discarded=0.00 cfs 0.0	Peak Elev=66.01' Storage=0.006 af Inflow 005 af Secondary=0.11 cfs 0.004 af Outflow	

18134-PROPOSED Prepared by Jones & Beac HydroCAD® 10.20-3c, s/n 0076	Type III 24-hr 50 Yr 24 Hr +15% Rainfall=8.53"ch Engineers IncPrinted 3/14/2024S2 © 2023 HydroCAD Software Solutions LLCPage 35
<u></u>	
Pond CB1: Catch Basin 1	Peak Elev=62.84' Inflow=0.86 cfs 0.067 af
	12.0" Round Culvert n=0.012 L=19.0' S=0.0053 '/' Outflow=0.86 cfs 0.067 af
Pond CB2: Catch Basin 2	Peak Elev=62.71' Inflow=1.14 cfs 0.091 af
	12.0" Round Culvert n=0.012 L=130.0' S=0.0054 '/' Outflow=1.14 cfs 0.091 af
Pond CB3: Catch Basin 3	Peak Elev=62.31' Inflow=2.51 cfs_0.193 af
	12.0" Round Culvert n=0.012 L=94.0' S=0.0053 '/' Outflow=2.51 cfs 0.193 af
Pond CB4: Catch Basin 4	Peak Elev=69.66' Inflow=0.52 cfs 0.044 af
	12.0" Round Culvert n=0.012 L=20.0' S=0.0050 '/' Outflow=0.52 cfs 0.044 af
Pond YD1: Yard Drain 1	Peak Elev=63.38' Inflow=0.49 cfs 0.036 af
Ponu fDT. falu Dialit i	6.0" Round Culvert n=0.012 L=2.0' S=0.0500 '/' Outflow=0.49 cfs 0.036 af
Pond YD2: Yard Drain 2	Peak Elev=68.46' Inflow=0.71 cfs 0.052 af 6.0" Round Culvert n=0.012 L=52.0' S=0.0096 '/' Outflow=0.71 cfs 0.052 af
	0.0 Round Culvert II-0.012 L-52.0 $3-0.00907$ Culliow-0.71 Cis 0.052 al
Pond YD3: Yard Drain 3	Peak Elev=68.05' Inflow=0.53 cfs 0.039 af
	6.0" Round Culvert n=0.012 L=13.0' S=0.0385 '/' Outflow=0.53 cfs 0.039 af
Total Bunat	f Area = 2,420 ca. Bunoff Voluma = 0,047 of Average Bunoff Depth = 4,69

Total Runoff Area = 2.429 acRunoff Volume = 0.947 afAverage Runoff Depth = 4.68"80.04% Pervious = 1.944 ac19.96% Impervious = 0.485 ac

Summary for Subcatchment 1S: Subcatchment 1S

Runoff = 1.17 cfs @ 12.09 hrs, Volume= 0.087 af, Depth> 6.12" Routed to Reach AP1 : Analysis Point 1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Yr 24 Hr +15% Rainfall=8.53"

A	rea (sf)	CN D	escription				
	3,741	98 P	98 Paved parking, HSG B				
	3,651	61 >	75% Ġras	s cover, Go	bod, HSG B		
	7,392	80 V	Veighted A	verage			
	3,651	4	9.39% Per	vious Area			
	3,741	5	0.61% Imp	pervious Ar	ea		
_		~		• •	— • • •		
Tc	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
2.8	56	0.1250	0.34		Sheet Flow,		
					Grass: Short n= 0.150 P2= 3.70"		
2.1	30	0.0670	0.23		Sheet Flow,		
					Grass: Short n= 0.150 P2= 3.70"		
0.2	14	0.0360	1.26		Sheet Flow,		
					Smooth surfaces n= 0.011 P2= 3.70"		
0.4	86	0.0360	3.85		Shallow Concentrated Flow,		
					Paved Kv= 20.3 fps		
5.5	186	Total, I	ncreased t	o minimum	n Tc = 6.0 min		

Summary for Subcatchment 2S: Subcatchment 2S

Runoff = 0.17 cfs @ 12.10 hrs, Volume= 0.013 af, Depth> 3.85" Routed to Reach AP2 : Analysis Point 2

_	Ai	rea (sf)	CN [Description						
		1,728	61 >	61 >75% Grass cover, Good, HSG B						
		1,728	100.00% Pervious Area							
_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
_	1.7	20	0.0500	0.19		Sheet Flow,				
_						Grass: Short	n= 0.150	P2= 3.70"		
	1.7	20	Total,	Increased t	o minimum	Tc = 6.0 min				

Summary for Subcatchment 3S: Subcatchment 3S

Runoff = 2.75 cfs @ 12.24 hrs, Volume= 0.275 af, Depth> 3.72" Routed to Reach 2R : Ditch on Tidewatch Property

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Yr 24 Hr +15% Rainfall=8.53"

Α	rea (sf)	CN D	escription		
	60	98 R	oofs, HSG	βB	
	10,778	61 >	75% Gras	s cover, Go	bod, HSG B
	27,823	60 V	/oods, Fai	r, HSG B	
	38,661	60 V	Veighted A	verage	
	38,601	9	9.84% Pei	rvious Area	l de la constante d
	60	0	.16% Impe	ervious Are	а
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
9.0	53	0.0415	0.10		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.70"
5.8	47	0.0968	0.13		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.70"
0.2	15	0.0968	1.56		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
0.7	54	0.0741	1.36		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
1.3	122	0.1000	1.58		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
17.0	291	Total			

Summary for Subcatchment 4S: Subcatchment 4S

Runoff = 1.95 cfs @ 12.12 hrs, Volume= 0.151 af, Depth> 3.97" Routed to Reach AP4 : Analysis Point 4

Area (sf)	CN	Description			
10,991	61	>75% Grass cover, Good, HSG B			
8,169	60	Woods, Fair, HSG B			
728	98	Roofs, HSG B			
19,888	62	Weighted Average			
19,160		96.34% Pervious Area			
728		3.66% Impervious Area			

Type III 24-hr 50 Yr 24 Hr +15% Rainfall=8.53" Printed 3/14/2024

Page 38

Prepared by Jones & Beach	Engineers Inc
HydroCAD® 10.20-3c s/n 00762	© 2023 HydroCAD Software Solutions LLC

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
1.5	14	0.0357	0.16		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.70"
1.9	14	0.1429	0.12		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.70"
3.3	72	0.1333	0.37		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.70"
1.0	80	0.0750	1.37		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
0.2	30	0.2667	2.58		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps

7.9 210 Total

Summary for Subcatchment 5S: Subcatchment 5S

Runoff	=	1.63 cfs @	12.10 hrs,	Volume=
Routed	to Pond	d 1P : Biorete	ntion #1	

0.121 af, Depth> 4.32"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Yr 24 Hr +15% Rainfall=8.53"

A	rea (sf)	CN E	escription						
	13,037	61 >	61 >75% Grass cover, Good, HSG B						
	1,573	98 F	Roofs, HSG	ВВ					
	14,610	65 V	Veighted A	verage					
	13,037	8	9.23% Per	vious Area					
	1,573	1	0.77% Imp	pervious Ar	ea				
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
3.5	43	0.0419	0.21		Sheet Flow,				
					Grass: Short				
1.7	35	0.1714	0.35		Sheet Flow,				
					Grass: Short n= 0.150 P2= 3.70"				
1.4	23	0.1087	0.27		Sheet Flow,				
					Grass: Short n= 0.150 P2= 3.70"				
0.2	37	0.1892	3.04		Shallow Concentrated Flow,				
					Short Grass Pasture Kv= 7.0 fps				
6.8	138	Total							

Summary for Subcatchment 6S: Subcatchment 6S

Runoff	=	0.37 cfs @	12.09 hrs,	Volume=	0.031	af, Depth> 8.28"
Routed	I to Pond	d CB1 : Catch	Basin 1			

18134-PROPOSEDType III 24-hr 50 Yr 24 Hr +15% Rainfall=8.53"Prepared by Jones & Beach Engineers IncPrinted 3/14/2024

Page 39

HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description						
	1,952	98	98 Paved parking, HSG B						
	1,952	100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description				
6.0					Direct Entry,				
	Summary for Subcatchmont 78: Subcatchmont 78								

Summary for Subcatchment 7S: Subcatchment 7S

Runoff = 0.28 cfs @ 12.09 hrs, Volume= 0.024 af, Depth> 8.28" Routed to Pond CB2 : Catch Basin 2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Yr 24 Hr +15% Rainfall=8.53"

A	rea (sf)	CN [CN Description						
	1,516	98 F	98 Paved parking, HSG B						
	1,516	100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry,				

Summary for Subcatchment 8S: Subcatchment 8S

Runoff = 0.13 cfs @ 12.09 hrs, Volume= 0.011 af, Depth> 8.28" Routed to Pond CB3 : Catch Basin 3

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Yr 24 Hr +15% Rainfall=8.53"

A	rea (sf)	CN	Description					
	707	98	Paved parking, HSG B					
	707		100.00% In	npervious A	Area			
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description			
6.0					Direct Entry,			

Summary for Subcatchment 9S: Subcatchment 9S

Runoff = 0.52 cfs @ 12.09 hrs, Volume= 0.044 af, Depth> 8.28" Routed to Pond CB4 : Catch Basin 4

18134-PROPOSED

Type III 24-hr 50 Yr 24 Hr +15% Rainfall=8.53" Printed 3/14/2024

Page 40

Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description							
	2,332	98	Paved park	Paved parking, HSG B						
	457	98	Roofs, HSC	Roofs, HSG B						
	2,789	98	Weighted Average							
	2,789		100.00% Im	npervious A	Area					
Тс	Length	Slop	e Velocity	Capacity	Description					
<u>(min)</u>	(feet)	(ft/f	t) (ft/sec)	(cfs)						
6.0					Direct Entry,					

Summary for Subcatchment 10S: Subcatchment 10S

Runoff = 0.49 cfs @ 12.10 hrs, Volume= 0.036 af, Depth> 5.16" Routed to Pond YD1 : Yard Drain 1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Yr 24 Hr +15% Rainfall=8.53"

Ar	ea (sf)	CN D	escription							
	796	98 F	Roofs, HSG B							
	2,573	61 >	75% Gras	s cover, Go	bod, HSG B					
	261	98 P	aved park	ing, HSG B	}					
	3,630		Veighted A							
	2,573	7	0.88% Per	vious Area						
	1,057	2	9.12% Imp	ervious Ar	ea					
_										
Tc	Length	Slope	Velocity	Capacity	Description					
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)						
2.2	42	0.1190	0.31		Sheet Flow,					
					Grass: Short n= 0.150 P2= 3.70"					
3.7	58	0.0650	0.26		Sheet Flow,					
					Grass: Short n= 0.150 P2= 3.70"					
0.4	42	0.0650	1.78		Shallow Concentrated Flow,					
					Short Grass Pasture Kv= 7.0 fps					
6.3	142	Total								

Summary for Subcatchment 11S: Subcatchment 11S

Runoff = 0.71 cfs @ 12.09 hrs, Volume= 0.052 af, Depth> 6.00" Routed to Pond YD2 : Yard Drain 2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Yr 24 Hr +15% Rainfall=8.53"

18134-PROPOSED

Type III 24-hr 50 Yr 24 Hr +15% Rainfall=8.53"

Printed 3/14/2024

Page 41

Prepared by Jones & Beach Er	ngineers Inc
HydroCAD® 10.20-3c s/n 00762 ©	2023 HydroCAD Software Solutions LLC

_	Ai	rea (sf)	CN	Description							
		1,998	98	Roofs, HSC	Roofs, HSG B						
		2,312	61	>75% Gras	s cover, Go	od, HSG B					
_		261	98	Paved park	ing, HSG B						
		4,571	79	Weighted A	verage						
		2,312		50.58% Per	vious Area						
		2,259		49.42% Imp	49.42% Impervious Area						
	Tc	Length	Slop	,	Capacity	Description					
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)						
	5.6	77	0.039	6 0.23		Sheet Flow,					
_						Grass: Short	n= 0.150	P2= 3.70"			
	5.6	77	Total,	Increased t	o minimum	Tc = 6.0 min					

Summary for Subcatchment 12S: Subcatchment 12S

Runoff = 0.53 cfs @ 12.09 hrs, Volume= 0.039 af, Depth> 5.40" Routed to Pond YD3 : Yard Drain 3

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Yr 24 Hr +15% Rainfall=8.53"

Are	a (sf)	CN [Description							
	1,318	98 F	Roofs, HSG B							
	2,416	61 >	>75% Grass	s cover, Go	od, HSG B					
	3,734	74 \	Neighted Av	verage						
2	2,416	6	64.70% Per	vious Area						
	1,318	3	35.30% Imp	ervious Are	a					
Tc l (min)	_ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
4.4	51	0.0320	0.19		Sheet Flow,					
					Grass: Short	n= 0.150	P2= 3.70"			
4.4	51	Total,	Increased to	o minimum	Tc = 6.0 min					

Summary for Subcatchment 13S: Subcatchment 13S

Runoff = 0.16 cfs @ 12.09 hrs, Volume= 0.014 af, Depth> 8.28" Routed to Pond 3P : Stone Drip Edge

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Yr 24 Hr +15% Rainfall=8.53"

Area (sf)	CN	Description
696	98	Roofs, HSG B
180	98	Water Surface, HSG B
876 876	98	Weighted Average 100.00% Impervious Area

Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC							
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	Page 42						
6.0 Direct Entry,							
Summary for Subcatchment 14S: Subcatc	hment 14S						
Runoff = 0.17 cfs @ 12.09 hrs, Volume= 0.014 af, Depth> 8.28" Routed to Pond 4P : Stone Drip Edge							
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Yr 24 Hr +15% Rainfall=8.53"							
Area (sf) CN Description							
738 98 Roofs, HSG B 144 98 Water Surface, HSG B							
882 98 Weighted Average882 100.00% Impervious Area							
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)							
6.0 Direct Entry,							
Summary for Subcatchment 15S: Subcatchment 15S							
Runoff = 0.11 cfs @ 12.09 hrs, Volume= 0.009 af, De Routed to Pond 5P : Stone Under Deck	pth> 8.28"						
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Yr 24 Hr +15% Rainfall=8.53"							
Area (sf) CN Description							
560 98 Roofs, HSG B							
560 100.00% Impervious Area							
To Longth Slong Valasity Consoity Description							

Type III 24-hr 50 Yr 24 Hr +15% Rainfall=8.53"

TcLengthSlopeVelocityCapacityDescription(min)(feet)(ft/ft)(ft/sec)(cfs)

6.0

18134-PROPOSED

Direct Entry,

Summary for Subcatchment 16S: Subcatchment 16S

Runoff = 0.04 cfs @ 12.09 hrs, Volume= 0.004 af, Depth> 8.28" Routed to Pond 6P : Eco-Pavers

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Yr 24 Hr +15% Rainfall=8.53"

18134-PROPOSED

Type III 24-hr 50 Yr 24 Hr +15% Rainfall=8.53" Printed 3/14/2024

Page 43

Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC

Area (sf) CN Description						
221 98 Water Surface, HSG B						
221 100.00% Impervious Area						
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)						
6.0 Direct Entry,						
Summary for Subcatchment 17S: (new Subcat)						
Runoff = 0.16 cfs @ 12.09 hrs, Volume= 0.014 af, Depth> 8.28" Routed to Pond 7P : Stone Drip Edge						
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Yr 24 Hr +15% Rainfall=8.53"						
Area (sf) CN Description						
696 98 Roofs, HSG B 180 98 Water Surface, HSG B						
180 98 Water Surface, HSG B 876 98 Weighted Average						
876 100.00% Impervious Area						
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)						
6.0 Direct Entry,						
Summary for Subcatchment 18S: Subcatchment 18S						
Runoff = 0.12 cfs @ 12.10 hrs, Volume= 0.009 af, Depth> 3.85" Routed to Pond 2P : Bioretention #2						
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Yr 24 Hr +15% Rainfall=8.53"						
Area (sf) CN Description 1,220 61 >75% Grass cover, Good, HSG B 1,220 100.00% Pervious Area						

Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)

6.0

Direct Entry,

Summary for Reach 1R: Flow through 3S

Inflow Area = 0.705 ac, 33.80% Impervious, Inflow Depth > 5.44" for 50 Yr 24 Hr +15% event Inflow = 1.38 cfs @ 12.45 hrs, Volume= 0.320 af Outflow = 1.37 cfs @ 12.46 hrs, Volume= 0.320 af, Atten= 1%, Lag= 0.5 min Routed to Reach 2R : Ditch on Tidewatch Property

18134-PROPOSED Type III 24-hr 50 Yr 24 Hr +15% Rainfall=8.53" Prepared by Jones & Beach Engineers Inc Printed 3/14/2024 HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC Page 44

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Max. Velocity= 2.44 fps, Min. Travel Time= 0.6 min Avg. Velocity = 1.13 fps, Avg. Travel Time= 1.2 min

Peak Storage= 45 cf @ 12.46 hrs Average Depth at Peak Storage= 0.07', Surface Width= 12.80' Bank-Full Depth= 1.00' Flow Area= 33.3 sf, Capacity= 498.58 cfs

50.00' x 1.00' deep Parabolic Channel, n= 0.030 Stream, clean & straight Length= 81.0' Slope= 0.1568 '/' Inlet Invert= 50.70', Outlet Invert= 38.00'

±

Summary for Reach 2R: Ditch on Tidewatch Property

[62] Hint: Exceeded Reach 1R OUTLET depth by 0.46' @ 12.25 hrs [62] Hint: Exceeded Reach 4R OUTLET depth by 0.47' @ 12.30 hrs

Inflow Area = 1.685 ac, 18.03% Impervious, Inflow Depth > 4.35" for 50 Yr 24 Hr +15% event Inflow = 4.17 cfs @ 12.24 hrs, Volume= 0.611 af Outflow = 4.17 cfs @ 12.25 hrs, Volume= 0.611 af, Atten= 0%, Lag= 0.6 min Routed to Reach AP3 : Analysis Point 3

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Max. Velocity= 3.12 fps, Min. Travel Time= 0.8 min Avg. Velocity = 1.18 fps, Avg. Travel Time= 2.2 min

Peak Storage= 212 cf @ 12.25 hrs Average Depth at Peak Storage= 0.52' , Surface Width= 4.13' Bank-Full Depth= 1.00' Flow Area= 4.0 sf, Capacity= 18.18 cfs

1.00' x 1.00' deep channel, n= 0.030 Stream, clean & straight Side Slope Z-value= 3.0 '/' Top Width= 7.00' Length= 159.0' Slope= 0.0189 '/' Inlet Invert= 38.00', Outlet Invert= 35.00'

Summary for Reach 3R: Swale

[90] Warning: Qout>Qin may require smaller dt or Finer Routing

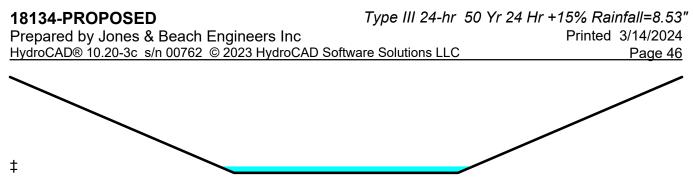
Inflow Area =0.370 ac, 54.68% Impervious, Inflow Depth > 6.26" for 50 Yr 24 Hr +15% eventInflow =2.51 cfs @ 12.09 hrs, Volume=0.193 afOutflow =2.52 cfs @ 12.10 hrs, Volume=0.193 af, Atten= 0%, Lag= 0.4 minRouted to Pond 1P : Bioretention #1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Max. Velocity= 3.54 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.07 fps, Avg. Travel Time= 1.5 min

Peak Storage= 68 cf @ 12.10 hrs Average Depth at Peak Storage= 0.35', Surface Width= 3.09' Bank-Full Depth= 1.00' Flow Area= 4.0 sf, Capacity= 25.77 cfs

1.00' x 1.00' deep channel, n= 0.030 Earth, grassed & winding Side Slope Z-value= 3.0 '/' Top Width= 7.00' Length= 95.0' Slope= 0.0379 '/' Inlet Invert= 60.60', Outlet Invert= 57.00'

Summary for Reach 4R: Flow Through 3S


[80] Warning: Exceeded Pond 2P by 0.13' @ 17.35 hrs (0.00 cfs 0.000 af)

Inflow Area = 0.092 ac, 69.57% Impervious, Inflow Depth = 2.10" for 50 Yr 24 Hr +15% event Inflow = 0.57 cfs @ 12.12 hrs, Volume= 0.016 af Outflow = 0.56 cfs @ 12.16 hrs, Volume= 0.016 af, Atten= 3%, Lag= 2.3 min Routed to Reach 2R : Ditch on Tidewatch Property

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Max. Velocity= 2.61 fps, Min. Travel Time= 1.8 min Avg. Velocity = 1.02 fps, Avg. Travel Time= 4.5 min

Peak Storage= 58 cf @ 12.16 hrs Average Depth at Peak Storage= 0.07', Surface Width= 3.40' Bank-Full Depth= 1.00' Flow Area= 6.0 sf, Capacity= 74.97 cfs

3.00' x 1.00' deep channel, n= 0.030 Stream, clean & straight Side Slope Z-value= 3.0 '/' Top Width= 9.00' Length= 275.0' Slope= 0.1145 '/' Inlet Invert= 69.50', Outlet Invert= 38.00'

Summary for Reach AP1: Analysis Point 1

[40] Hint: Not Described (Outflow=Inflow)

 Inflow Area =
 0.170 ac, 50.61% Impervious, Inflow Depth > 6.12" for 50 Yr 24 Hr +15% event

 Inflow =
 1.17 cfs @ 12.09 hrs, Volume=
 0.087 af

 Outflow =
 1.17 cfs @ 12.09 hrs, Volume=
 0.087 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP2: Analysis Point 2

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.040 ac,	0.00% Impervious, Inflow I	Depth > 3.85"	for 50 Yr 24 Hr +15% event
Inflow =	0.17 cfs @	12.10 hrs, Volume=	0.013 af	
Outflow =	0.17 cfs @	12.10 hrs, Volume=	0.013 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP3: Analysis Point 3

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	1.685 ac, 18.03% Impervious, Inflow D	Depth > 4.35" for 50 Yr 24 Hr +15% event
Inflow =	4.17 cfs @ 12.25 hrs, Volume=	0.611 af
Outflow =	4.17 cfs @ 12.25 hrs, Volume=	0.611 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP4: Analysis Point 4

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	0.457 ac,	3.66% Impervious, Inflow D	epth > 4.07"	for 50 Yr 24 Hr +15% event
Inflow	=	1.99 cfs @	12.13 hrs, Volume=	0.155 af	
Outflow	=	1.99 cfs @	12.13 hrs, Volume=	0.155 af, Att	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

Summary for Pond 1P: Bioretention #1

 Inflow Area =
 0.705 ac, 33.80% Impervious, Inflow Depth > 5.51" for 50 Yr 24 Hr +15% event

 Inflow =
 4.15 cfs @ 12.10 hrs, Volume=
 0.324 af

 Outflow =
 1.38 cfs @ 12.45 hrs, Volume=
 0.320 af, Atten= 67%, Lag= 21.1 min

 Primary =
 1.38 cfs @ 12.45 hrs, Volume=
 0.320 af

 Routed to Reach 1R : Flow through 3S
 0.320 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 56.52' @ 12.45 hrs Surf.Area= 2,343 sf Storage= 4,849 cf

Plug-Flow detention time= 77.0 min calculated for 0.319 af (99% of inflow) Center-of-Mass det. time= 69.4 min (872.7 - 803.3)

Volume	Invert	Ava	il.Stor	age	Storage Descrip	otion	
#1	50.99'		6,06	1 cf	Custom Stage	Data (Prismati	c) Listed below (Recalc)
Elevatio	on Si	urf.Area	Voic	ls	Inc.Store	Cum.Store	
(fee		(sq-ft)	(%		(cubic-feet)	(cubic-feet)	
50.9		924	0.	/	0	0	
51.0		924	40.		4	4	
52.4		924	40.		551	554	
52.5		924	15.		1	556	
53.9		924	15.		207	762	
54.0		924	100.		9	772	
56.0		2,012	100.		2,936	3,708	
57.0		2,643	100.		2,328	6,035	
57.0		2,643	100.		26	6,061	
		,				-,	
Device	Routing	In	vert	Outle	et Devices		
#1	Primary	51	.00'	12.0	" Round Culve	rt	
					0.0' CPP, proje		
				Inlet	/ Outlet Invert= 5	51.00' / 50.70'	S= 0.0150 '/' Cc= 0.900
					.012, Flow Area		
#2	Device 1	51	.00'	1.9"	Vert. Orifice/Gr	ate C= 0.600	Limited to weir flow at low heads
#3	Device 1	54	.50'	4.0"	Vert. Orifice/Gr	ate C= 0.600	Limited to weir flow at low heads
#4	Device 1	55	5.60'	3.7"	Vert. Orifice/Gr	ate C= 0.600	Limited to weir flow at low heads
#5	Device 1	56	5.10'	2.5"	W x 1.5" H Vert	. Orifice/Grate	C= 0.600
					ed to weir flow a		
#6	Device 1	56	6.50'		" x 48.0" Horiz.		C= 0.600
				Limit	ed to weir flow a	t low heads	
Drimon		lov-1 27	ofe (م <u>۱</u> ۵ ۸	15 hrs HW=56.5	2' T\N/-50 77'	(Dynamic Tailwater)
					ofs potential flow		
					0.22 cfs @ 11.2		
					0.57 cfs @ 6.56		
					0.32 cfs @ 4.22		
					0.08 cfs @ 2.89		
					.19 cfs @ 0.50 fp		
0-			0011	0.00	. 10 010 @ 0.00 Ip	,	

Summary for Pond 2P: Bioretention #2

[80] Warning: Exceeded Pond CB4 by 0.93' @ 18.70 hrs (1.77 cfs 0.220 af)

0.092 ac, 69.57% Impervious, Inflow Depth > 6.93" for 50 Yr 24 Hr +15% event Inflow Area = Inflow = 0.65 cfs @ 12.09 hrs, Volume= 0.053 af Outflow 0.61 cfs @ 12.12 hrs, Volume= 0.051 af, Atten= 6%, Lag= 2.2 min = 0.03 cfs @ 12.14 hrs, Volume= 0.57 cfs @ 12.12 hrs, Volume= Discarded = 0.035 af Primarv 0.016 af = Routed to Reach 4R : Flow Through 3S

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 69.63' @ 12.14 hrs Surf.Area= 646 sf Storage= 614 cf

Plug-Flow detention time= 140.8 min calculated for 0.051 af (96% of inflow) Center-of-Mass det. time= 116.3 min (873.1 - 756.8)

Volume	Invert	: Avai	il.Stora	ge Storage Descr	ription	
#1	65.74	1	884	cf Custom Stage	e Data (Prismatio	Listed below (Recalc)
Elevatio (fee		urf.Area (sq-ft)	Voids (%)		Cum.Store (cubic-feet)	
65.7	,	<u>(34 ft)</u> 153	0.0		0	
65.7		153	40.0		1	
66.9	99	153	40.0	76	77	
67.0	00	153	15.0	0	77	
68.4	19	153	15.0	-	111	
68.5	50	153	100.0	2	112	
69.0	00	464	100.0	154	267	
70.0	00	755	100.0	610	876	
70.0)1	755	100.0	8	884	
Device	Routing	In	vert (Outlet Devices		
#1	Discarded	65	5.74' (0.300 in/hr Exfiltrat	tion over Surface	e area
			(Conductivity to Grou	undwater Elevatio	n = 65.58' Phase-In= 0.10'
#2	Primary	69	.50'	6.0' long x 4.0' bre	adth Broad-Cres	sted Rectangular Weir
				()		00 1.20 1.40 1.60 1.80 2.00
				2.50 3.00 3.50 4.0		
				ι υ ,		2.67 2.67 2.65 2.66 2.66
				2.68 2.72 2.73 2.7	6 2.79 2.88 3.07	7 3.32

Discarded OutFlow Max=0.03 cfs @ 12.14 hrs HW=69.62' (Free Discharge) **1=Exfiltration** (Controls 0.03 cfs)

Primary OutFlow Max=0.53 cfs @ 12.12 hrs HW=69.62' TW=69.56' (Dynamic Tailwater) ←2=Broad-Crested Rectangular Weir (Weir Controls 0.53 cfs @ 0.72 fps)

Summary for Pond 3P: Stone Drip Edge

Ledge surface modelled 15" below original grade based on TP 1 and TP 4. Proposed grade is approximately 4' above existing grade and therefore 5.25' above ledge.

Inflow = 0.16 cfs @ Outflow = 0.11 cfs @ Discarded = 0.00 cfs @	.00% Impervious, Inflow Depth > 8.28" for 50 Yr 24 Hr +15% event 2.09 hrs, Volume= 0.014 af 2.20 hrs, Volume= 0.009 af, Atten= 32%, Lag= 6.6 min 2.15 hrs, Volume= 0.005 af 2.20 hrs, Volume= 0.004 af			
	Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 66.01' @ 12.15 hrs Surf.Area= 0.004 ac Storage= 0.006 af			
	Plug-Flow detention time= 220.2 min calculated for 0.009 af (64% of inflow) Center-of-Mass det. time= 113.7 min(853.7 - 740.0)			
Volume Invert Avail.Sto	age Storage Description			
#1 62.50' 0.00	6 af 3.00'W x 60.00'L x 3.51'H Prismatoid 0.015 af Overall x 40.0% Voids			
Device Routing Invert	Outlet Devices			
#0 Secondary 66.01 #1 Discarded 62.50	Automatic Storage Overflow (Discharged without head)0.300 in/hr Exfiltration over Surface areaConductivity to Groundwater Elevation = 60.75'Phase-In= 0.10'			
Discarded OutFlow Max=0.00 cfs @ 12.15 hrs HW=66.01' (Free Discharge) ☐1=Exfiltration (Controls 0.00 cfs)				

Secondary OutFlow Max=0.00 cfs @ 12.20 hrs HW=66.01' TW=56.18' (Dynamic Tailwater)

Summary for Pond 4P: Stone Drip Edge

Ledge surface modelled 15" below original grade based on TP 1 and TP 4. Proposed grade is approximately 4' above existing grade and therefore 5.25' above ledge.

Inflow Area =	0.020 ac,100.00% Impervious, Inflow	Depth > 8.28" for 50 Yr 24 Hr +15% event
Inflow =	0.17 cfs @ 12.09 hrs, Volume=	0.014 af
Outflow =	0.13 cfs @ 12.17 hrs, Volume=	0.009 af, Atten= 23%, Lag= 5.3 min
Discarded =	0.00 cfs @_ 12.15 hrs, Volume=	0.006 af
Secondary =	0.12 cfs @_ 12.17 hrs, Volume=	0.004 af
Routed to Rea	ch AP4 : Analysis Point 4	
	•	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 65.01' @ 12.15 hrs Surf.Area= 0.004 ac Storage= 0.006 af

Plug-Flow detention time= 227.9 min calculated for 0.009 af (67% of inflow) Center-of-Mass det. time= 126.9 min (867.0 - 740.0) 18134-PROPOSED

 Type III 24-hr
 50 Yr
 24 Hr
 +15% Rainfall=8.53"

 Printed
 3/14/2024

 are Solutions LLC
 Page 50

Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC

Volume	Invert	Avail.Stora	ge Storage Description	
#1	61.00'	0.006	af 3.25'W x 48.00'L x 4.01'H Prismatoid 0.014 af Overall x 40.0% Voids	
Device	Routing			
#0 #1	Secondary Discarded	65.01' 61.00'	Automatic Storage Overflow (Discharged without head)0.300 in/hr Exfiltration over Surface areaConductivity to Groundwater Elevation = 59.75'Phase-In= 0.10'	
Discard Î─1=Ex	ed OutFlow	Max=0.00 cfs ontrols 0.00 c	@ 12.15 hrs HW=65.01' (Free Discharge) fs)	
Second	ary OutFlow	Max=0.00 cf	s @ 12.17 hrs HW=65.01' TW=0.00' (Dynamic Tailwater)	
		Sumr	mary for Pond 5P: Stone Under Deck	
			original grade based on TP 1 and TP 4. Proposed grade is grade and therefore 4.45' above ledge.	
Inflow A Inflow Outflow Discarde Seconda Rout	= 0. = 0. ed = 0.	11 cfs @ 12 05 cfs @ 12 00 cfs @ 12 04 cfs @ 12	00% Impervious, Inflow Depth > 8.28" for 50 Yr 24 Hr +15% event 0.09 hrs, Volume= 0.009 af .30 hrs, Volume= 0.006 af, Atten= 56%, Lag= 13.1 min .25 hrs, Volume= 0.004 af .30 hrs, Volume= 0.002 af	
Routing Peak Ele	by Dyn-Stor- ev= 66.20' @	nd method, 1 12.25 hrs S	⁻ ime Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 urf.Area= 0.006 ac Storage= 0.004 af	
	Plug-Flow detention time= 224.3 min calculated for 0.006 af (66% of inflow) Center-of-Mass det. time= 122.1 min (862.1 - 740.0)			
Volume	Invert	Avail.Stora	ge Storage Description	
#1	64.70'	0.004	af 14.00'W x 20.00'L x 1.50'H Prismatoid 0.010 af Overall x 40.0% Voids	
Device	Routing	Invert	Outlet Devices	
#0 #1	Secondary Discarded	66.20' 64.70'	Automatic Storage Overflow (Discharged without head) 0.300 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 61.75' Phase-In= 0.10'	
Discarded OutFlow Max=0.00 cfs @ 12.25 hrs HW=66.20' (Free Discharge) 1=Exfiltration (Controls 0.00 cfs)				

Secondary OutFlow Max=0.00 cfs @ 12.30 hrs HW=66.20' TW=56.42' (Dynamic Tailwater)

Summary for Pond 6P: Eco-Pavers

Ledge surface modelled 15" below original grade based on TP 1 and TP 4. Proposed grade is approximately 3.2' above existing grade and therefore 4.45' above ledge.

Inflow Area = Inflow = Outflow = Discarded = Secondary = Routed to Pon	0.005 ac,100.00% Impervious, Inflow Depth > 8.28" for 50 Yr 24 Hr +15% eve 0.04 cfs @ 12.09 hrs, Volume= 0.004 af 0.01 cfs @ 12.46 hrs, Volume= 0.003 af, Atten= 71%, Lag= 22.7 min 0.00 cfs @ 12.40 hrs, Volume= 0.003 af 0.01 cfs @ 12.46 hrs, Volume= 0.000 af P : Bioretention #1	ent		
	-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3) 12.40 hrs Surf.Area= 0.005 ac Storage= 0.002 af			
0	Plug-Flow detention time= 244.3 min calculated for 0.003 af (81% of inflow) Center-of-Mass det. time= 169.3 min (909.3 - 740.0)			
Volume Inv	Avail.Storage Storage Description			
#1 65.2	0.002 af 13.00'W x 17.00'L x 1.00'H Prismatoid 0.005 af Overall x 30.0% Voids			
Device Routing	Invert Outlet Devices			
#0 Seconda #1 Discarde	 66.20' Automatic Storage Overflow (Discharged without head) 65.20' 0.300 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 61.75' Phase-In= 0.10' 			
Discarded OutFlow Max=0.00 cfs @ 12.40 hrs HW=66.20' (Free Discharge)				

1=Exfiltration (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 12.46 hrs HW=66.20' TW=56.52' (Dynamic Tailwater)

Summary for Pond 7P: Stone Drip Edge

Ledge surface modelled 15" below original grade based on TP 1 and TP 4. Proposed grade is approximately 4' above existing grade and therefore 5.25' above ledge.

Inflow Area =	0.020 ac,100.00% Impervious, Inflow [Depth > 8.28" for 50 Yr 24 Hr +15% event
Inflow =	0.16 cfs @ 12.09 hrs, Volume=	0.014 af
Outflow =	0.11 cfs @ 12.20 hrs, Volume=	0.009 af, Atten= 32%, Lag= 6.6 min
Discarded =	0.00 cfs @12.15 hrs, Volume=	0.005 af
Secondary =	0.11 cfs @ 12.20 hrs, Volume=	0.004 af
Routed to Pone	d 1P : Bioretention #1	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 66.01' @ 12.15 hrs Surf.Area= 0.004 ac Storage= 0.006 af

Plug-Flow detention time= 220.2 min calculated for 0.009 af (64% of inflow) Center-of-Mass det. time= 113.7 min (853.7 - 740.0)

18134-PROPOSED

 Type III 24-hr
 50 Yr
 24 Hr
 +15% Rainfall=8.53"

 Printed
 3/14/2024

 Ire Solutions LLC
 Page 52

Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC

Volume	Invert	Avail.Stora	ge Storage Description	
#1	62.50'		af 3.00'W x 60.00'L x 3.51'H Prismatoid	
			0.015 af Overall x 40.0% Voids	
Device	Routing		Outlet Devices	
#0 #1	Secondary Discarded		Automatic Storage Overflow (Discharged without head) 0.300 in/hr Exfiltration over Surface area	
<i>#</i> 1	Discarded	02.00	Conductivity to Groundwater Elevation = 60.75' Phase-In= 0.10'	
	ed OutFlow		s @ 12.15 hrs HW=66.01' (Free Discharge) cfs)	
Second	ary OutFlow	Max=0.00 cfs	s @ 12.20 hrs HW=66.01' TW=56.18' (Dynamic Tailwater)	
		Sum	nmary for Pond CB1: Catch Basin 1	
Inflow A Inflow Outflow Primary Rout	= 0. = 0.	86 cfs @ 12 86 cfs @ 12 86 cfs @ 12	01% Impervious, Inflow Depth > 6.25" for 50 Yr 24 Hr +15% event 0.09 hrs, Volume= 0.067 af 0.09 hrs, Volume= 0.067 af, Atten= 0%, Lag= 0.0 min 0.09 hrs, Volume= 0.067 af 0.09 hrs, Volume= 0.067 af	
Peak El	Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 62.84' @ 12.09 hrs Flood Elev= 65.60'			
Device	Routing	Invert	Outlet Devices	
#1	Primary	62.10'	12.0" Round Culvert L= 19.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 62.10' / 62.00' S= 0.0053 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf	
			0 12.09 hrs HW=62.83' TW=62.69' (Dynamic Tailwater) 4 cfs @ 1.92 fps)	
		Sum	nmary for Pond CB2: Catch Basin 2	
Inflow A Inflow Outflow Primary Rout	= 1. = 1.	14 cfs @ 12 14 cfs @ 12 14 cfs @ 12	75% Impervious, Inflow Depth > 6.69" for 50 Yr 24 Hr +15% event 2.09 hrs, Volume= 0.091 af 2.09 hrs, Volume= 0.091 af, Atten= 0%, Lag= 0.0 min 2.09 hrs, Volume= 0.091 af 3 0.091 af	
Peak El	by Dyn-Stor-l ev= 62.71' @ lev= 65.60'		Γime Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3	
Device	Routing	Invert	Outlet Devices	
#1	Primary	61.90'	12.0" Round Culvert	
			L= 130.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 61.90' / 61.20' S= 0.0054 '/' Cc= 0.900	

n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=1.12 cfs @ 12.09 hrs HW=62.69' TW=62.28' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 1.12 cfs @ 2.31 fps)

Summary for Pond CB3: Catch Basin 3

Inflow Area =	0.370 ac, 54.68% Impervious, Inflow Depth > 6.26" for 50 Yr 24 Hr +15% event			
Inflow =	2.51 cfs @ 12.09 hrs, Volume= 0.193 af			
Outflow =	2.51 cfs @ 12.09 hrs, Volume= 0.193 af, Atten= 0%, Lag= 0.0 min			
Primary =	2.51 cfs @ 12.09 hrs, Volume= 0.193 af			
Routed to Reach 3R : Swale				
Pouting by Dyn Stor Ind mothod Time Span= 0.00.24.00 bro. dt= 0.05 bro./2				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 62.31' @ 12.09 hrs Flood Elev= 73.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	61.10'	12.0" Round Culvert L= 94.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 61.10' / 60.60' S= 0.0053 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=2.46 cfs @ 12.09 hrs HW=62.28' TW=60.94' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 2.46 cfs @ 3.13 fps)

Summary for Pond CB4: Catch Basin 4

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=75)

Inflow Area =		0.064 ac,100.00% Impervious, Inflow Depth > 8.28" for 50 Yr 24 Hr +15% event
Inflow	=	0.52 cfs @ 12.09 hrs, Volume= 0.044 af
Outflow	=	0.52 cfs @ 12.09 hrs, Volume= 0.044 af, Atten= 0%, Lag= 0.0 min
Primary	=	0.52 cfs @ 12.09 hrs, Volume= 0.044 af
Routed	d to Pone	2P : Bioretention #2

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 69.66' @ 12.12 hrs Flood Elev= 71.80'

Device	Routing	Invert	Outlet Devices
#1	Primary	68.30'	12.0" Round Culvert L= 20.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 68.30' / 68.20' S= 0.0050 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.51 cfs @ 12.09 hrs HW=69.63' TW=69.60' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.51 cfs @ 0.65 fps)

Summary for Pond YD1: Yard Drain 1

 Inflow Area =
 0.083 ac, 29.12% Impervious, Inflow Depth > 5.16" for 50 Yr 24 Hr +15% event

 Inflow =
 0.49 cfs @
 12.10 hrs, Volume=
 0.036 af

 Outflow =
 0.49 cfs @
 12.10 hrs, Volume=
 0.036 af, Atten= 0%, Lag= 0.0 min

 Primary =
 0.49 cfs @
 12.10 hrs, Volume=
 0.036 af

 Routed to Pond CB1 : Catch Basin 1
 0.036 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 63.38' @ 12.10 hrs Flood Elev= 65.80'

Device	Routing	Invert	Outlet Devices
#1	Primary	62.70'	6.0" Round Culvert L= 2.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 62.70' / 62.60' S= 0.0500 '/' Cc= 0.900 n= 0.012, Flow Area= 0.20 sf

Primary OutFlow Max=0.48 cfs @ 12.10 hrs HW=63.37' TW=62.83' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.48 cfs @ 2.46 fps)

Summary for Pond YD2: Yard Drain 2

 Inflow Area =
 0.105 ac, 49.42% Impervious, Inflow Depth > 6.00" for 50 Yr 24 Hr +15% event

 Inflow =
 0.71 cfs @ 12.09 hrs, Volume=
 0.052 af

 Outflow =
 0.71 cfs @ 12.09 hrs, Volume=
 0.052 af, Atten= 0%, Lag= 0.0 min

 Primary =
 0.71 cfs @ 12.09 hrs, Volume=
 0.052 af

 Routed to Pond CB3 : Catch Basin 3
 0.052 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 68.46' @ 12.09 hrs Flood Elev= 69.30'

Device	Routing	Invert	Outlet Devices
#1	Primary	67.30'	6.0" Round Culvert L= 52.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 67.30' / 66.80' S= 0.0096 '/' Cc= 0.900 n= 0.012, Flow Area= 0.20 sf

Primary OutFlow Max=0.69 cfs @ 12.09 hrs HW=68.42' TW=62.28' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.69 cfs @ 3.54 fps)

Summary for Pond YD3: Yard Drain 3

 Inflow Area =
 0.086 ac, 35.30% Impervious, Inflow Depth > 5.40" for 50 Yr 24 Hr +15% event

 Inflow =
 0.53 cfs @
 12.09 hrs, Volume=
 0.039 af

 Outflow =
 0.53 cfs @
 12.09 hrs, Volume=
 0.039 af, Atten= 0%, Lag= 0.0 min

 Primary =
 0.53 cfs @
 12.09 hrs, Volume=
 0.039 af

 Routed to Pond CB3 : Catch Basin 3
 0.039 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

18134-PROPOSED Prepared by Jones & Beach Engineers Inc

Peak Elev= 68.05' @ 12.09 hrs Flood Elev= 70.20'

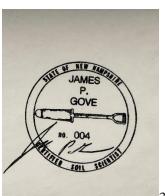
Device	Routing	Invert	Outlet Devices			
#1	Primary	67.30'	6.0" Round Culvert L= 13.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 67.30' / 66.80' S= 0.0385 '/' Cc= 0.900 n= 0.012, Flow Area= 0.20 sf			
Brimany OutElow May-0 52 of a $(2,00)$ bra $(1)(1-69,02)$ $(1)(1-62,29)$ (Dynamia Tailwatar)						

Primary OutFlow Max=0.52 cfs @ 12.09 hrs HW=68.03' TW=62.28' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 0.52 cfs @ 2.64 fps)

APPENDIX III

Test Pit Logs

GOVE ENVIRONMENTAL SERVICES, INC.


TEST PIT DATA

Project Client GES Projec MM/DD/Y	ct No. GE	ore Ave ore Developme S 2021307 8-2022 JPC			
Test Pit N ESHWT: n Terminatio Refusal: 1 Obs. Water	/a n @ 15" 5"		SCS	Soil:	Hollis
Depth 0–5" 5–15"	Color 10YR 3/2 10YR 5/6	Texture FSL FSL	Structure GR GR	Consistence FR FR	Redox; Quantity/Contrast NONE NONE
Test Pit N ESHWT: n Terminatio Refusal: 2. Obs. Water	/a n @ 25" 5"		SCS	Soil:	Chatfield
Depth 0–5" 5–25"	Color 10YR 3/2 10YR 5/6	Texture FSL FSL	Structure GR GR	Consistence FR FR	Redox; Quantity/Contrast NONE NONE
Test Pit N ESHWT: n Terminatio Refusal: 2. Obs. Water	/a n @ 25" 5"		SCS	Soil:	Chatfield
Depth 0–6" 6–25"	Color 10YR 3/2 10YR 5/6	Texture FSL FSL	Structure GR GR	Consistence FR FR	Redox; Quantity/Contrast NONE NONE

Test Pit N ESHWT: n Terminatio Refusal: 1: Obs. Water	/a n @ 15" 5"		SCS	Soil:	Hollis
Depth 0–15"	Color 10YR 3/2	Texture FSL	Structure GR	Consistence FR	Redox; Quantity/Contrast NONE
	_				
Test Pit No ESHWT: 3 Terminatio Refusal: 3 Obs. Water	0" n @ 36" 6"		SCS	Soil:	Chatfield variant
Depth 0–8" 8–30" 30–36"	Color 10YR 3/2 10YR 4/6 2.5Y 5/3	Texture FSL FSL FSL	Structure GR GR GR	Consistence FR FR FR	Redox; Quantity/Contrast NONE NONE 10% Distinct
Test Pit N ESHWT: n Terminatio Refusal: 12 Obs. Water	/a n @ 12" 2"		SCS	Soil:	Hollis
Depth 0–12"	Color 10YR 3/2	Texture FSL	Structure GR	Consistence FR	Redox; Quantity/Contrast NONE
Test Pit N ESHWT: n Terminatio Refusal: 2' Obs. Water	/a n @ 27" 7"		SCS	Soil:	Chatfield
Depth 0–4" 4–27"	Color 10YR 3/2 10YR 5/6	Texture FSL FSL	Structure GR GR	Consistence FR FR	Redox; Quantity/Contrast NONE NONE

Test Pit N ESHWT: 3 Terminatio Refusal: 4 Obs. Wate	35" on @ 40" 40"		SCS	Soil:	Chatfield variant
Depth	Color	Texture	Structure	Consistence	Redox; Quantity/Contrast
0-6"	10YR 3/2	FSL	GR	FR	NONE
6-35"	10YR 5/6	FSL	GR	FR	NONE
35-40"	2.5Y 5/3	FSL	OM	FI	10% Distinct
Test Pit N ESHWT: r Terminatio Refusal: 2 Obs. Wate	n/a on @ 27" 27"		SCS	Soil:	Chatfield
Depth	Color	Texture	Structure	Consistence	Redox; Quantity/Contrast
0–4"	10YR 3/2	FSL	GR	FR	NONE
4–27"	10YR 5/6	FSL	GR	FR	NONE

Test Pit N					
ESHWT: 3					
Terminatio	on @ 62"				
Refusal: 6	2"		SCS	Soil:	Scituate
Obs. Wate	r: none				
Depth	Color	Texture	Structure	Consistence	Redox; Quantity/Contrast
0–10"	10YR 3/2	FSL	GR	FR	NONE
10–35"	10YR 5/6	FSL	GR	FR	NONE
35-62"	2.5Y 5/3	FSL	PL	FI	10%, Distinct

3-21-2022

Legend:

FSL = fine sandy loam GR = granular PL = platy FI = firm

APPENDIX IV

Site Specific Soil Survey Report and Map

GOVE ENVIRONMENTAL SERVICES, INC

SITE-SPECIFIC SOIL SURVEY REPORT For 635 Sagamore Avenue, Portsmouth, NH By GES, Inc. Project # 2021308 Date: 02-20-2024

1. MAPPING STANDARDS

Site-Specific Soil Mapping Standards for New Hampshire and Vermont. SSSNNE Special Publication No. 3, Version 7.0, July, 2021.

This map product is within the technical standards of the National Cooperative Soil Survey. It is a special purpose product, intended for infiltration requirements by the NH DES Alteration of Terrain Bureau. The soil map was produced by a professional soil scientist and is not a product of the USDA Natural Resources Conservation Service. This report accompanies the soil map.

The site-specific soil map (SSSM) was produced 2-20-2024; prepared by JP Gove, CSS #004, GES, Inc.

Soils were identified with the New Hampshire State-wide Numerical Soils Legend, USDA NRCS, Durham, NH. Issue # 10, January 2011.

Hydrologic Soil Group was determined using SSSNNE Special Publication No. 5, Ksat Values for New Hampshire Soils, September 2009.

High Intensity Soil Map symbols, based upon SSSNNE Special Publication 1, December 2017, were added to the Soil Legend.

Scale of soil map: Approximately 1'' = 20'.

Contours Interval: 2 feet

2. LANDFORMS & EXISTING CONDITIONS:

The site is located on sloping hillside that is bedrock controlled. Rock outcrops are numerous. At the top of the hill, adjacent Sagamore Avenue, is an existing commercial building and paved areas. Behind the impervious areas to the south, the hillside slopes downward. The area is forested in white pines. There are no wetlands on the site.

3. DATE SOIL MAP PRODUCED

Date(s) of on-site field work:3-18-2022Date(s) of test pits:3-18-2922

Test pits recorded by: JP Gove, CSS # 004

4. GEOGRAPHIC LOCATION AND SIZE OF SITE

City or town where soil mapping was conducted: Portsmouth, NH Location: Tax Map 222 Lot 19 Size of area: Approximately 2 acres Was the map for the entire lot? Yes If no, where was the mapping conducted on the parcel: n/a

5. <u>PURPOSE OF THE SOIL MAP</u>

Was the map prepared to meet the requirement of Alteration of Terrain? No If no, what was the purpose of the map? City of Portsmouth requirements Who was the map prepared for? Jones & Beach Engineers, Inc.

6. SOIL IDENTIFICATION LEGEND

Map I	Unit Sym	bol Map Unit N	lame	HISS Symb	loc	Hydrol	ogic Soil Group		
41	Chatfie	ld-Hollis-Rock O	utcrop complex		228		В		
289 Chatfield Variant (moderately well drained)				ned)	327		В		
699	Urban	Land			n/a		Imperv	vious	
SLOPE	PHASE:								
0-8%		В	8-15%	С		15-25%	/ D	D	
25%-5	0%	E	50%+	F					

7. NARRATIVE MAP UNIT DESCRIPTIONS

SITE-SPECIFIC MAP UNIT: 41

CORRELATED SOIL SERIES: Chatfield-Hollis-Rock Outcrop complex

LANDSCAPE SETTING: Sloping to very steep hillside.

CHARACTERISTIC SURFACE FEATURES: Numerous rock outcrops

DRAINAGE CLASS: Well drained

PARENT MATERIAL: Glacial Till

NATURE OF DISSIMILAR INCLUSIONS: With a complex, several similar soils are present. While the major soil is the moderately deep Chatfield, the shallow Hollis and the exposed ledge of the Rock Outcrop, are large minor components. Chatfield is 50%, Hollis is 25%, and Rock Outcrop is 25%. A few deeper soil areas are present in hollow in the bedrock.

ESTIMATED PERCENTAGE OF DISSIMILAR INCLUSIONS: less than 5%.

SOIL PROFILE DESCRIPTIONS- horizon designation, depth, soil texture, Munsell color notation, Munsell color of redox features, soil structure, soil consistence, estimated coarse fragments, estimated seasonal high water table (ESHWT), observed water table (OBSWT), kind of water table (perched, apparent, or both), depth to lithic or paralithic contact:

Test Pit N ESHWT: 1	n/a				
Termination Refusal: 2	-		SCS	Soil:	Chatfield
Obs. Wate	r: none				
Depth	Color	Texture	Structure	Consistence	Redox; Quantity/Contrast
0–6"	10YR 3/2	FSL	GR	FR	NONE
6–25"	10YR 5/6	FSL	GR	FR	NONE

No OBSWT, no ESHWT, lithic contact at 25", 20% rock fragments.

Test Pit N	lo. 1				
ESHWT: 1	n/a				
Terminatio	on @ 15"				
Refusal: 1	15"		SCS	Soil:	Hollis
Obs. Wate	er: none				
Depth	Color	Texture	Structure	Consistence	Redox; Quantity/Contrast
0–5"	10YR 3/2	FSL	GR	FR	NONE
5–15"	10YR 5/6	FSL	GR	FR	NONE

No OBSWT, no ESHWT, lithic contact at 15", 20% rock fragments.

SITE-SPECIFIC MAP UNIT: 289

CORRELATED SOIL SERIES: Chatfield Variant (moderately well drained)

LANDSCAPE SETTING: At the top of the slope, a slightly deeper soil area on the northwest corner of the site.

CHARACTERISTIC SURFACE FEATURES: Fewer outcrops than the rest of the site.

DRAINAGE CLASS: Moderately well drained.

PARENT MATERIAL: Glacial till.

NATURE OF DISSIMILAR INCLUSIONS: Scituate soils with a hard pan above the bedrock,

ESTIMATED PERCENTAGE OF DISSIMILAR INCLUSIONS: 5%

SOIL PROFILE DESCRIPTIONS- horizon designation, depth, soil texture, Munsell color notation, Munsell color of redox features, soil structure, soil consistence, estimated coarse fragments, estimated seasonal high water table (ESHWT), observed water table (OBSWT), kind of water table (perched, apparent, or both), depth to lithic or paralithic contact:

Refusal: 3	WT: 30" ination @ 36"				Chatfield variant
Depth	Color	Texture	Structure	Consistence	Redox; Quantity/Contrast
0-8"	10YR 3/2	FSL	GR	FR	NONE
8–30"	10YR 4/6	FSL	GR	FR	NONE
30–36"	2.5Y 5/3	FSL	GR	FR	10% Distinct

ESHWT is 30", no OBSWT, lithic contact at 36", 20% rock fragments.

SITE-SPECIFIC MAP UNIT: 699

CORRELATED SOIL SERIES: Urban land

LANDSCAPE SETTING: Top of slope adjacent to Sagamore Avenue.

CHARACTERISTIC SURFACE FEATURES: Impervious.

DRAINAGE CLASS: N/A

PARENT MATERIAL: N/A

NATURE OF DISSIMILAR INCLUSIONS: N/A

ESTIMATED PERCENTAGE OF DISSIMILAR INCLUSIONS: N/A

SOIL PROFILE DESCRIPTIONS- horizon designation, depth, soil texture, Munsell color notation, Munsell color of redox features, soil structure, soil consistence, estimated coarse fragments, estimated seasonal high water table (ESHWT), observed water table (OBSWT), kind of water table (perched, apparent, or both), depth to lithic or paralithic contact:

N/A ---- Pavement and buildings.

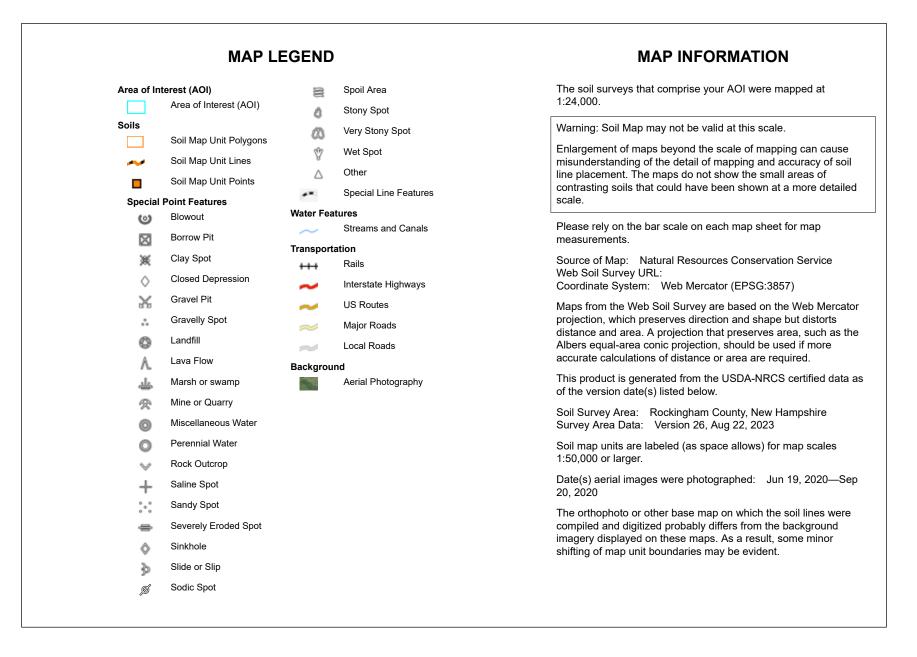
8. <u>RESPONSIBLE SOIL SCIENTIST</u>

Name: James Gove

Certified Soil Scientist Number: 004

9. OTHER DISTINGUISHING FEATURES OF SITE

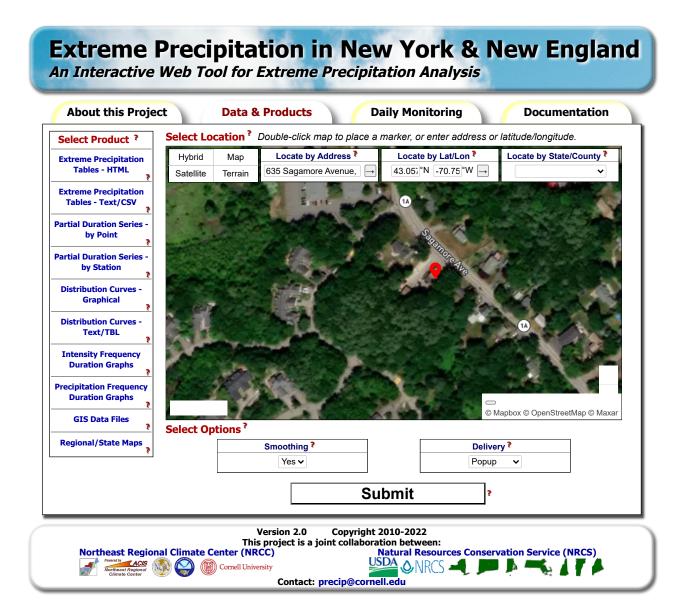
Is the site in a natural condition? Yes, with exception of existing development.



APPENDIX V

NRCS Soil Map

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 3/8/2024 Page 1 of 3


Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
	indp offic raino		
140B	Chatfield-Hollis-Canton complex, 0 to 8 percent slopes, rocky	0.7	30.5%
140D	Chatfield-Hollis-Canton complex, 15 to 35 percent slopes, rocky	1.6	69.5%
Totals for Area of Interest		2.3	100.0%

APPENDIX VI

Extreme Precipitation Estimates

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Metadata for Point

Smoothing	Yes
State	
Location	
Latitude	43.058 degrees North
Longitude	70.753 degrees West
Elevation	10 feet
Date/Time	Wed Feb 21 2024 09:41:54 GMT-0500 (Eastern Standard Time)

+15% due to location in Coastal/Great Bay Region 2yr: 3.22*1.15 = 3.70 in 10yr: 4.88*1.15 = 5.16 in 25yr: 6.19*1.15 = 7.12 in 50yr: 7.42*1.15 = 8.53 in

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day
1yr	0.26	0.40	0.50	0.65	0.82	1.04	1yr	0.70	0.98	1.21	1.56	2.03	2.67	2.94	1yr	2.36	2.82	3.24	3.96	4.57
2yr	0.32	0.50	0.62	0.82	1.03	1.30	2yr	0.89	1.18	1.52	1.94	2.49	<mark>3.22</mark>	3.58	2yr	2.85	3.45	3.95	4.70	5.35
5yr	0.37	0.58	0.73	0.98	1.25	1.61	5yr	1.08	1.47	1.89	2.44	3.15	4.08	4.60	5yr	3.61	4.42	5.07	5.96	6.73
10yr	0.41	0.65	0.82	1.12	1.46	1.90	10yr	1.26	1.73	2.24	2.90	3.76	<mark>4.88</mark>	5.55	10yr	4.32	5.34	6.12	7.14	8.01
25yr	0.48	0.76	0.97	1.34	1.78	2.35	25yr	1.54	2.15	2.79	3.65	4.76	<mark>6.19</mark>	7.13	25yr	5.48	6.86	7.85	9.07	10.09
50yr	0.54	0.86	1.11	1.55	2.08	2.77	50yr	1.80	2.54	3.31	4.35	5.69	<mark>7.42</mark>	8.62	50yr	6.57	8.29	9.48	10.87	12.02
100yr	0.60	0.97	1.25	1.78	2.43	3.28	100yr	2.10	2.99	3.93	5.19	6.80	8.89	10.42	100yr	7.87	10.02	11.46	13.04	14.33
200yr	0.68	1.11	1.44	2.06	2.85	3.86	200yr	2.46	3.54	4.65	6.17	8.12	10.65	12.60	200yr	9.43	12.12	13.85	15.64	17.09
500yr	0.81	1.33	1.73	2.51	3.51	4.80	500yr	3.03	4.41	5.81	7.76	10.28	13.54	16.21	500yr	11.98	15.59	17.81	19.90	21.58

Lower Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day
1yr	0.23	0.36	0.44	0.59	0.72	0.88	1yr	0.62	0.86	0.93	1.33	1.69	2.26	2.51	1yr	2.00	2.41	2.88	3.20	3.93
2yr	0.32	0.49	0.60	0.81	1.00	1.19	2yr	0.86	1.16	1.37	1.82	2.33	3.07	3.47	2yr	2.72	3.33	3.84	4.56	5.11
5yr	0.35	0.54	0.67	0.92	1.17	1.40	5yr	1.01	1.37	1.61	2.11	2.73	3.80	4.21	5yr	3.36	4.05	4.74	5.56	6.27
10yr	0.39	0.59	0.74	1.03	1.33	1.60	10yr	1.15	1.57	1.81	2.38	3.05	4.39	4.88	10yr	3.88	4.70	5.48	6.45	7.23
25yr	0.44	0.67	0.83	1.19	1.57	1.90	25yr	1.35	1.86	2.10	2.74	3.52	4.77	5.92	25yr	4.22	5.70	6.70	7.85	8.73
50yr	0.48	0.73	0.92	1.32	1.77	2.17	50yr	1.53	2.12	2.35	3.06	3.91	5.40	6.84	50yr	4.78	6.58	7.79	9.11	10.08
100yr	0.54	0.81	1.02	1.47	2.02	2.47	100yr	1.74	2.42	2.63	3.39	4.33	6.08	7.90	100yr	5.38	7.60	9.07	10.60	11.64
200yr	0.59	0.89	1.13	1.64	2.29	2.82	200yr	1.97	2.75	2.94	3.75	4.76	6.83	9.12	200yr	6.05	8.77	10.54	12.34	13.47
500yr	0.69	1.02	1.32	1.92	2.72	3.37	500yr	2.35	3.29	3.42	4.28	5.41	7.97	11.03	500yr	7.06	10.61	12.87	15.13	16.32

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day
1yr	0.29	0.44	0.54	0.72	0.89	1.08	1yr	0.77	1.06	1.26	1.74	2.20	2.99	3.18	1yr	2.64	3.05	3.59	4.38	5.06
2yr	0.34	0.52	0.64	0.87	1.07	1.27	2yr	0.92	1.24	1.48	1.96	2.51	3.43	3.72	2yr	3.03	3.57	4.10	4.86	5.64
5yr	0.40	0.62	0.77	1.05	1.34	1.63	5yr	1.16	1.59	1.89	2.54	3.25	4.36	4.98	5yr	3.85	4.79	5.40	6.40	7.18
10yr	0.47	0.72	0.89	1.25	1.61	1.98	10yr	1.39	1.94	2.29	3.11	3.96	5.36	6.22	10yr	4.74	5.98	6.84	7.87	8.78
25yr	0.58	0.88	1.09	1.56	2.06	2.58	25yr	1.77	2.52	2.96	4.08	5.17	7.77	8.36	25yr	6.87	8.04	9.18	10.37	11.44
50yr	0.67	1.03	1.28	1.84	2.48	3.15	50yr	2.14	3.08	3.61	5.01	6.35	9.71	10.48	50yr	8.60	10.08	11.48	12.76	14.00
100yr	0.80	1.20	1.51	2.17	2.98	3.83	100yr	2.57	3.75	4.39	6.18	7.80	12.14	13.13	100yr	10.74	12.62	14.35	15.74	17.13
200yr	0.93	1.40	1.78	2.57	3.58	4.69	200yr	3.09	4.58	5.36	7.61	9.60	15.22	16.46	200yr	13.47	15.83	17.96	19.40	20.96
500yr	1.16	1.72	2.22	3.22	4.58	6.09	500yr	3.95	5.95	6.96	10.07	12.65	20.54	22.22	500yr	18.18	21.36	24.18	25.57	27.38

APPENDIX VII

Rip Rap Calculations

RIP RAP CALCULATIONS

"Luster Cluster" 635 Sagamore Ave. Portsmouth, NH

Jones & Beach Engineers, Inc.

P.O. Box 219 Stratham, NH 03885 14-Mar-24

Rip Rap equations were obtained from the *Stormwater Management and Erosion Control Handbook for Urban and Developing Areas in New Hampshire.* Aprons are sized for the 10-Year storm event.

TAILWATER < HALF THE D_0

$$\begin{split} & L_a = (1.8 \ x \ Q) \ / \ {D_0}^{3/2} + (7 \ x \ D_o) \\ & W = L_a + (3 \ x \ D_o) \text{ or defined channel width} \\ & d_{50} = (0.02 \ x \ Q^{4/3}) \ / \ (T_w \ x \ D_0) \end{split}$$

Culvert or	Tailwater	Discharge	Diameter	Length of	Width of	d ₅₀ -Median Stone
Catch Basin	(Feet)	(C.F.S.)	of Pipe	Rip Rap	Rip Rap	Rip Rap
(Sta. No.)	T _w	Q	D _o	L _a (feet)	W (feet)	d50 (feet)
1P Outlet Pipe	0.29	0.87	1	8.6	12	0.06
CB4 Outlet Pipe	0.27	0.44	1	7.8	11	0.02

TAILWATER > HALF THE D_o

$$\begin{split} &L_a = (3.0 \ x \ Q) \ / \ {D_0}^{3/2} + (7 \ x \ D_o) \\ &W = (0.4 \ x \ L_a) + (3 \ x \ D_o) \ \text{or defined channel width} \\ &d_{50} = (0.02 \ x \ Q^{4/3}) \ / \ (T_w \ x \ D_0) \end{split}$$

Culvert or	Tailwater	Discharge	Diameter	Length of	Width of	d50-Median Stone
Catch Basin	(Feet)	(C.F.S.)	of Pipe	Rip Rap	Rip Rap	Rip Rap
(Sta. No.)	T_w	Q	D _o	L _a (feet)	W (feet)	d50 (feet)
CB3 Outlet Pipe	0.62	2	1	13.0	8	0.08

d ₅₀ Size =	0.25	Feet	3	Inches
% of Weight Smaller	0.23		e of Stone (In	
Than the Given d_{50} Size		From		То
100%		5		6
85%		4		5
50%		3		5
15%		1		2

d_{50} Size =	0.5	Feet	6	Inches
% of Weight Smaller		Size	of Stone (In	ches)
Than the Given d ₅₀ Size		From		То
100%		9		12
85%		8		11
50%		6		9
15%		2		3

APPENDIX VIII

BMP Worksheets

FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.07)

Type/Node Name:

Bioretention #1 (1P)

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable.

		Check if you reviewed the restrictions on unlined systems sutlined in Fry Wa 1500.00	7(a)
0.71	-	Check if you reviewed the restrictions on unlined systems outlined in Env-Wq 1508.0	/(d).
	-	A = Area draining to the practice A _i = Impervious area draining to the practice	
0.24			
	decimal	I = Percent impervious area draining to the practice, in decimal form	
	unitless	$Rv = Runoff coefficient = 0.05 + (0.9 \times I)$	
906	ac-in	WQV= 1" x Rv x A WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
227	-	25% x WQV (check calc for sediment forebay volume)	
680	-	75% x WQV (check calc for surface sand filter volume)	
	imp CBs	Method of Pretreatment? (not required for clean or roof runoff)	
Deep St	cf	V_{SED} = Sediment forebay volume, if used for pretreatment	> 25%WQV
Calculate ti	-	if system IS NOT underdrained:	
	sf	A _{SA} = Surface area of the practice	
	-		
	iph -	Ksat _{DESIGN} = Design infiltration rate ¹	
		If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	
	Yes/No	(Use the calculations below)	
	hours	T_{DRAIN} = Drain time = V / ($A_{SA} * I_{DESIGN}$)	<u><</u> 72-hrs
		if system IS underdrained:	
54.15	ft	E_{WQV} = Elevation of WQV (attach stage-storage table)	
0.10	cfs	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table)	
5.04	hours	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$	<u><</u> 72-hrs
			—
52.50	feet	E_{FC} = Elevation of the bottom of the filter course material ²	_
52.50 51.00	-		_
	feet	E_{FC} = Elevation of the bottom of the filter course material ²	
51.00	feet feet	E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable	it)
51.00 N/A	feet feet feet	E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p	it)
51.00 N/A N/A	feet feet feet feet	E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test	it) pit)
51.00 N/A N/A 1.50	feet feet feet feet feet	E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course	it) pit) ≥1'
51.00 N/A N/A 1.50 #VALUE!	feet feet feet feet feet feet	$ \begin{split} & E_{FC} = \text{Elevation of the bottom of the filter course material}^2 \\ & E_{UD} = \text{Invert elevation of the underdrain (UD), if applicable} \\ & E_{SHWT} = \text{Elevation of SHWT (if none found, enter the lowest elevation of the test p} \\ & E_{ROCK} = \text{Elevation of bedrock (if none found, enter the lowest elevation of the test} \\ & D_{FC to UD} = \text{Depth to UD from the bottom of the filter course} \\ & D_{FC to ROCK} = \text{Depth to bedrock from the bottom of the filter course} \end{split} $	it) pit) ≥1' ≥1'
51.00 N/A N/A 1.50 #VALUE! #VALUE!	feet feet feet feet feet feet ft	$\begin{split} & E_{FC} = \text{Elevation of the bottom of the filter course material}^2 \\ & E_{UD} = \text{Invert elevation of the underdrain (UD), if applicable} \\ & E_{SHWT} = \text{Elevation of SHWT (if none found, enter the lowest elevation of the test p} \\ & E_{ROCK} = \text{Elevation of bedrock (if none found, enter the lowest elevation of the test} \\ & D_{FC to UD} = \text{Depth to UD from the bottom of the filter course} \\ & D_{FC to SHWT} = \text{Depth to SHWT from the bottom of the filter course} \end{split}$	it) pit) ≥1' ≥1'
51.00 N/A N/A 1.50 #VALUE! #VALUE! 56.52	feet feet feet feet feet feet ft	$ \begin{split} & E_{FC} = \text{Elevation of the bottom of the filter course material}^2 \\ & E_{UD} = \text{Invert elevation of the underdrain (UD), if applicable} \\ & E_{SHWT} = \text{Elevation of SHWT (if none found, enter the lowest elevation of the test p} \\ & E_{ROCK} = \text{Elevation of bedrock (if none found, enter the lowest elevation of the test p} \\ & D_{FC to UD} = \text{Depth to UD from the bottom of the filter course} \\ & D_{FC to ROCK} = \text{Depth to bedrock from the bottom of the filter course} \\ & D_{FC to SHWT} = \text{Depth to SHWT from the bottom of the filter course} \\ & Peak elevation of the 50-year storm event (infiltration can be used in analysis) \end{split} $	it) pit) ≥1' ≥1'
51.00 N/A N/A 1.50 #VALUE! #VALUE! 56.52 57.00 YES	feet feet feet feet feet ft ft	$ \begin{split} & E_{FC} = \text{Elevation of the bottom of the filter course material}^2 \\ & E_{UD} = \text{Invert elevation of the underdrain (UD), if applicable} \\ & E_{SHWT} = \text{Elevation of SHWT (if none found, enter the lowest elevation of the test p} \\ & E_{ROCK} = \text{Elevation of bedrock (if none found, enter the lowest elevation of the test} \\ & D_{FC to UD} = \text{Depth to UD from the bottom of the filter course} \\ & D_{FC to ROCK} = \text{Depth to bedrock from the bottom of the filter course} \\ & D_{FC to SHWT} = \text{Depth to SHWT from the bottom of the filter course} \\ & Peak elevation of the 50-year storm event (infiltration can be used in analysis) \\ & Elevation of the top of the practice \\ \end{split}$	it) pit) ≥1' ≥1' ≥1' ≥1'
51.00 N/A N/A 1.50 #VALUE! #VALUE! 56.52 57.00 YES	feet feet feet feet feet ft ft	$ \begin{split} & E_{FC} = \text{Elevation of the bottom of the filter course material}^2 \\ & E_{UD} = \text{Invert elevation of the underdrain (UD), if applicable} \\ & E_{SHWT} = \text{Elevation of SHWT (if none found, enter the lowest elevation of the test p} \\ & E_{ROCK} = \text{Elevation of bedrock (if none found, enter the lowest elevation of the test} \\ & D_{FC to UD} = \text{Depth to UD from the bottom of the filter course} \\ & D_{FC to ROCK} = \text{Depth to bedrock from the bottom of the filter course} \\ & D_{FC to SHWT} = \text{Depth to SHWT from the bottom of the filter course} \\ & \text{Peak elevation of the 50-year storm event (infiltration can be used in analysis)} \\ & \text{Elevation of the top of the practice} \\ & 50 \text{ peak elevation } \leq \text{Elevation of the top of the practice} \\ \end{aligned}$	it) pit) ≥1' ≥1' ≥1' ≥1'
51.00 N/A N/A 1.50 #VALUE! #VALUE! 56.52 57.00 YES If a surface	feet feet feet feet feet ft ft sand filter	E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed:	it) pit) ≥ 1' ≥ 1' ≥ 1' < yes
51.00 N/A N/A 1.50 #VALUE! #VALUE! 56.52 57.00 YES If a surface	feet feet feet feet ft ft sand filter ac cf	E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check. V = Volume of storage ³ (attach a stage-storage table)	it) pit) ≥ 1' ≥ 1' ≥ 1' ← yes < 10 ac ≥ 75%WQV 18", or 24" if
51.00 N/A N/A 1.50 #VALUE! #VALUE! 56.52 57.00 YES If a surface YES	feet feet feet feet ft ft sand filter ac cf inches	$E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test D_{FC to UD} = Depth to UD from the bottom of the filter course D_{FC to ROCK} = Depth to bedrock from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation < Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check. V = Volume of storage3 (attach a stage-storage table) D_{FC} = Filter course thickness$	it) pit) ≥ 1' ≥ 1' ≥ 1' ← yes < 10 ac ≥ 75%WQV
51.00 N/A N/A 1.50 #VALUE! #VALUE! 56.52 57.00 YES If a surface	feet feet feet feet feet ft ft ac cf inches	$ E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test D_{FC to UD} = Depth to UD from the bottom of the filter course D_{FC to ROCK} = Depth to bedrock from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation < Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check. V = Volume of storage3 (attach a stage-storage table) DFC = Filter course thickness Note what sheet in the plan set contains the filter course specification.$	it) pit) ≥ 1' ≥ 1' ≥ 1' ← yes < 10 ac ≥ 75%WQV 18", or 24" if within GPA
51.00 N/A N/A 1.50 #VALUE! #VALUE! 56.52 57.00 YES If a surface YES	feet feet feet feet ft ft sand filter ac cf inches	$E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test D_{FC to UD} = Depth to UD from the bottom of the filter course D_{FC to ROCK} = Depth to bedrock from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation < Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check. V = Volume of storage3 (attach a stage-storage table) D_{FC} = Filter course thickness$	it) pit) ≥ 1' ≥ 1' ≥ 1' ← yes < 10 ac ≥ 75%WQV 18", or 24" if

If a bioretention	n area i	s proposed:	
YES ac		Drainage Area no larger than 5 ac?	← yes
4,215 cf		V = Volume of storage ³ (attach a stage-storage table)	<u>></u> WQV
inch 18.0	nes	D _{FC} = Filter course thickness	18", or 24" if within GPA
Sheet	D4	Note what sheet in the plan set contains the filter course specification	
3.0 :1		Pond side slopes	<u>> 3</u> :1
Sheet	D4	Note what sheet in the plan set contains the planting plans and surface cover	
If porous paven	nent is	proposed:	
		Type of pavement proposed (Concrete? Asphalt? Pavers? Etc.)	
acre	es	A _{SA} = Surface area of the pervious pavement	
:1		Ratio of the contributing area to the pervious surface area	≤ 5:1
inch	nes	D _{FC} = Filter course thickness	12", or 18" if within GPA
Sheet		Note what sheet in the plan set contains the filter course spec.	mod. 304.1 (see spec)

1. Rate of the limiting layer (either the filter course or the underlying soil). Ksat_{design} includes factor of safey. See Env-Wq 1504.14 for guidance on determining the infiltration rate.

2. See lines 34, 40 and 48 for required depths of filter media.

3. Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet stucture, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.

Designer's Notes:

SHWT and bedrock elevations are irrelevant as system is lined.

NHDES Alteration of Terrain

Last Revised: January 2019

18134-PROPOSED

Stage-Area-Storage for Pond 1P: Bioretention #1

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
50.99	924	0	56.19	2,132	4,101
51.09	924	37	56.29	2,195	4,318
51.19	924	74	56.39	2,258	4,540
51.29	924	111	<mark>56.49</mark>	2,321	4,769
51.39	924	148	56.59	2,384	5,004
51.49	924	185	56.69	2,447	5,246
51.59	924	222	56.79	2,510	5,494
51.69	924	259	56.89	2,574	5,748
51.79	924	296	56.99	2,637	6,009
51.89	924	333	Dettern of [50.50
51.99	924	370		Filter Course El.	= 52.50
52.09	924	407		below = 554 cf	
52.19	924	444	Overflow E		
52.29	924	480		Below = 4,769 (CT
52.39	924	517		lired = 906 cf	
52.49	924	554	WQV Provi	ded = 4769-554	4 = 4,215 cf
52.59	924	568			
52.69	924	582			
52.79	924	596			
52.89	924	610			
52.99	924	624			
53.09	924	638			
53.19	924	651			
53.29	924	665 670			
53.39	924	679			
53.49	924	693 707			
53.59 53.69	924 924	707 721			
53.79	924	735			
53.89	924	733			
53.99	924	740			
<mark>54.09</mark>	973	857	WQV Require	d – 006 of	
54.19	1,027	957	EI(WQV) = 54		
54.29	1,082	1,062		.10 +/-	
54.39	1,136	1,173			
54.49	1,191	1,290			
54.59	1,245	1,411			
54.69	1,299	1,539			
54.79	1,354	1,671			
54.89	1,408	1,809			
54.99	1,463	1,953			
55.09	1,517	2,102			
55.19	1,571	2,256			
55.29	1,626	2,416			
55.39	1,680	2,581			
55.49	1,735	2,752			
55.59	1,789	2,928			
55.69	1,843	3,110			
55.79 55.80	1,898	3,297			
55.89	1,952	3,490 3,687			
55.99 56.09	2,007 2,069	3,687 3,801			
00.09	2,009	3,891			
		I			

18134-PROPOSED

Stage-Discharge for Pond 1P: Bioretention #1

Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)
50.99	0.00	53.59	0.15	56.19	0.99
51.04	0.00	53.64	0.15	56.24	1.03
51.09	0.01	53.69	0.15	56.29	1.06
51.14	0.02	53.74	0.15	56.34	1.09
51.19	0.03	53.79	0.16	56.39	1.12
51.24	0.04	53.84	0.16	56.44	1.14
51.29	0.04	53.89	0.16	56.49	1.17
51.34 51.39	0.05 0.05	53.94 53.99	0.16 0.16	56.54 56.59	1.61 2.63
51.44	0.05	54.04	0.10	56.64	3.98
51.49	0.06	54.09	0.16	56.69	5.59
51.54	0.06	54.14	0.17	56.74	6.83
51.59	0.07	54.19	0.17	56.79	6.87
51.64	0.07	54.24	0.17	56.84	6.90
51.69	0.07	54.29	0.17	56.89	6.93
51.74 51.79	0.08 0.08	54.34 54.39	0.17 0.17	56.94 56.99	6.96 7.00
51.84	0.08	54.44	0.17	50.99	7.00
51.89	0.09	54.49	0.18		
51.94	0.09	54.54	0.18		
51.99	0.09	54.59	0.20		
52.04	0.09	54.64	0.22	FUMO	50 45 1
52.09	0.10	54.69	0.26		= 52.15 +/- prage Table
<mark>52.14</mark> 52.19	<mark>0.10</mark> 0.10	54.74 54.79	0.29 0.33		= 0.10 cfs
52.24	0.10	54.84	0.36		- 0.10 013
52.29	0.10	54.89	0.38		
52.34	0.11	54.94	0.41		
52.39	0.11	54.99	0.43		
52.44	0.11	55.04	0.45		
52.49 52.54	0.11 0.11	55.09 55.14	0.46 0.48		
52.54	0.11	55.14	0.48		
52.64	0.12	55.24	0.51		
52.69	0.12	55.29	0.53		
52.74	0.12	55.34	0.54		
52.79	0.12	55.39	0.55		
52.84 52.89	0.13	55.44	0.57		
52.89 52.94	0.13 0.13	55.49 55.54	0.58 0.59		
52.94	0.13	55.59	0.61		
53.04	0.13	55.64	0.62		
53.09	0.13	55.69	0.65		
53.14	0.14	55.74	0.68		
53.19	0.14	55.79	0.72		
53.24 53.29	0.14 0.14	55.84 55.89	0.77 0.81		
53.34	0.14	55.94	0.81		
53.39	0.14	55.99	0.87		
53.44	0.15	56.04	0.90		
53.49	0.15	56.09	0.92		
53.54	0.15	56.14	0.95		
				I	

+/- per ble fs

FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.07)

Type/Node Name:

Bioretention #2 (2P)

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable.

			-/ >
	-	Check if you reviewed the restrictions on unlined systems outlined in Env-Wq 1508.0	7(a).
0.09	-	A = Area draining to the practice	
0.06		A _I = Impervious area draining to the practice	
	decimal	I = Percent impervious area draining to the practice, in decimal form	
	unitless	$Rv = Runoff coefficient = 0.05 + (0.9 \times I)$	
	ac-in	$WQV = 1'' \times Rv \times A$	
226	-	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
56	-	25% x WQV (check calc for sediment forebay volume)	
169		75% x WQV (check calc for surface sand filter volume)	
Deep S	ump CB	Method of Pretreatment? (not required for clean or roof runoff)	
	cf	V _{SED} = Sediment forebay volume, if used for pretreatment	<u>></u> 25%WQV
		if system IS NOT underdrained:	
153	sf	A _{SA} = Surface area of the practice	
0.30	iph	Ksat _{DESIGN} = Design infiltration rate ¹	
	-	If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	
N/A	Yes/No	(Use the calculations below)	
59.0	hours	$T_{DRAIN} = Drain time = V / (A_{SA} * I_{DESIGN})$	<u><</u> 72-hrs
Calculate ti	me to drain	if system IS underdrained:	
	ft	E _{WQV} = Elevation of WQV (attach stage-storage table)	
	cfs	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table)	
-	hours	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$	<u><</u> 72-hrs
67.00	feet	E_{FC} = Elevation of the bottom of the filter course material ²	
	feet	E_{UD} = Invert elevation of the underdrain (UD), if applicable	
65.58	feet	E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p	it)
65.17	feet	E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test	pit)
67.00	feet	$D_{FC \text{ to UD}}$ = Depth to UD from the bottom of the filter course	<u>></u> 1'
1.83	feet	$D_{FC \text{ to ROCK}}$ = Depth to bedrock from the bottom of the filter course	<u>></u> 1'
1.42	feet	D _{FC to SHWT} = Depth to SHWT from the bottom of the filter course	<u>></u> 1'
69.63	ft	Peak elevation of the 50-year storm event (infiltration can be used in analysis)	
70.00	ft	Elevation of the top of the practice	
YES	_	50 peak elevation \leq Elevation of the top of the practice	← yes
If a surface	sand filter	or underground sand filter is proposed:	
YES	ас	Drainage Area check.	< 10 ac
	cf	V = Volume of storage ³ (attach a stage-storage table)	<u>></u> 75%WQV
	inches	D _{FC} = Filter course thickness	18", or 24" if
	incres	$D_{FC} = 1$ inter course thickness	within GPA
Sheet		Note what sheet in the plan set contains the filter course specification.	
	Yes/No	Access grate provided?	← yes

If a biorete	ention ar	ea is proposed:	
YES	ас	Drainage Area no larger than 5 ac?	← yes
452	cf	V = Volume of storage ³ (attach a stage-storage table)	<u>></u> WQV
18.0	inches	D _{FC} = Filter course thickness	18", or 24" if within GPA
Sheet	tI	D4 Note what sheet in the plan set contains the filter course specification	
3.0) :1	Pond side slopes	<u>> 3</u> :1
Sheet	t I	D4 Note what sheet in the plan set contains the planting plans and surface cover	
If porous p	avemen	t is proposed:	
		Type of pavement proposed (Concrete? Asphalt? Pavers? Etc.)	
	acres	A _{SA} = Surface area of the pervious pavement	
	:1	Ratio of the contributing area to the pervious surface area	≤ 5:1
	inches	D _{FC} = Filter course thickness	12", or 18" if within GPA
Sheet	t	Note what sheet in the plan set contains the filter course spec.	mod. 304.1 (see spec)

1. Rate of the limiting layer (either the filter course or the underlying soil). Ksat_{design} includes factor of safey. See Env-Wq 1504.14 for guidance on determining the infiltration rate.

2. See lines 34, 40 and 48 for required depths of filter media.

3. Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet stucture, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.

Designer's Notes:					
High existing contour in filtration section = 68.50					
Per Test Pit 8: SHWT Depth = 35" & Bedrock Depth = 40"					
SHWT El. = 68.50-(35/12) = 65.58					
Bedrock El. = 68.50-(40/12) = 65.17					

18134-PROPOSED

Stage-Area-Storage for Pond 2P: Bioretention #2

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
65.74	153	0	68.34	153	107
65.79	153	3	68.39	153	109
65.84	153	6	68.44	153	110
65.89	153	9	68.49	153	111
65.94	153	12	68.54	178	119
65.99	153	15	68.59	209	129
66.04	153	18	68.64	240	140
66.09	153	21	68.69	271	153
66.14	153	24	68.74	302	167
66.19	153	28	68.79	333	183
66.24	153	31	68.84	364	200
66.29	153	34	68.89	396	219
66.34	153	37	68.94	427	240
66.39	153	40	68.99	458	262
66.44	153	43	69.04	476	285
66.49	153	46	69.09	490	310
66.54	153	49	69.14	505	335
66.59	153	52	69.19	519	360
66.64 66.69	153 153	55 58	69.24 69.29	534 548	386 414
66.74	153	50 61	69.34	563	414
66.79	153	64	69.34	503	441
66.84	153	67	69.44	592	499
66.89	153	70	69.49	607	529
66.94	153	73	69.54	621	560
66.99	153	77	69.59	636	591
67.04	153	78	69.64	650	623
67.09	153	79	69.69	665	656
67.14	153	80	69.74	679	690
67.19	153	81	69.79	694	724
67.24	153	82	69.84	708	759
67.29	153	83	69.89	723	795
67.34	153	85	69.94	738	831
67.39	153	86	69.99	752	869
67.44	153	87			
67.49	153	88	Bottom of	Filter Course El.	- 67.00
67.54	153	89		below = 77 cf	- 07.00
67.59	153	90	Spillway E		
67.64 67.69	153 153	91 93		Below = 529 cf	
67.74	153	93		uired = 226 cf	
67.79	153	94 95		vided = 529-77 =	452 cf
67.84	153	96	V & V 1 10V		402 01
67.89	153	97			
67.94	153	98			
67.99	153	99			
68.04	153	101			
68.09	153	102			
68.14	153	103			
68.19	153	104			
68.24	153	105			
68.29	153	106			
		ļ			

Page 2

GROUNDWATER RECHARGE VOLULME (GRV) CALCULATION (Env-Wq 1507.04)

	ас	Area of HSG A soil that was replaced by impervious cover	0.40"	
0.12	ac	Area of HSG B soil that was replaced by impervious cover	0.25"	
ас		Area of HSG C soil that was replaced by impervious cover	0.10"	
	ac	Area of HSG D soil or impervious cover that was replaced by impervious cover	0.0"	
0.25	inches	Rd = Weighted groundwater recharge depth		
0.031 ac-in		GRV = AI * Rd		
113	cf	GRV conversion (ac-in x 43,560 sf/ac x 1ft/12")		

Provide calculations below showing that the project meets the groundwater recharge requirements (Env-Wq 1507.04):

_

APPENDIX IX

Pollutant Removal Calculations

POLLUTANT REMOVAL CALCULATIONS

BMP	Drip Edge	Bioretention	Nothing	Total	Required
Acres Impervious	0.073	0.303	0.016	0.392	
TSS Removal (%)	90%	90%	0%	86%	80%
TN Removal (%)	55%	65%	0%	65%	50%

Calculations are based on post-construction impervious surfaces on the subject parcel.

TSS removal of 86% provided exceeds 80% requirement

TN removal of 65% provided exceeds 50% requirement

Pollutant R	Values Accepted for Loading Analyses					
ВМР Туре	BMP	Notes	Lit. Ref.	TSS	TN	ТР
	Wet Pond		B, F	70%	35%	45%
Chammadaa	Wet Extended Detention Pond		А, В	80%	55%	68%
Stormwater Ponds	Micropool Extended Detention Pond	TBA				
	Multiple Pond System	TBA				
	Pocket Pond	TBA				
	Shallow Wetland		A, B, F, I	80%	55%	45%
Stormwater	Extended Detention Wetland		A, B, F, I	80%	55%	45%
Wetlands	Pond/Wetland System	TBA				
	Gravel Wetland		Н	95%	85%	64%
	Infiltration Trench (≥75 ft from surface water)		B, D, I	90%	55%	60%
	Infiltration Trench (<75 ft from surface water)		B, D, I	90%	10%	60%
Infiltration Practices	Infiltration Basin (≥75 ft from surface water)		A, F, B, D, I	90%	60%	65%
	Infiltration Basin (<75 ft from surface water)		A, F, B, D, I	90%	10%	65%
	Dry Wells			90%	55%	60%
	Drip Edges			90%	55%	60%
	Aboveground or Underground Sand Filter that infiltrates WQV (≥75 ft from surface water)		A, F, B, D, I	90%	60%	65%
	Aboveground or Underground Sand Filter that infiltrates WQV (<75 ft from surface water)		A, F, B, D, I	90%	10%	65%
	Aboveground or Underground Sand Filter with underdrain		A, I, F, G, H	85%	10%	45%
Filtering	Tree Box Filter	TBA				
Practices	Bioretention System		I, G, H	90%	65%	65%
	Permeable Pavement that infiltrates WQV (≥75 ft from surface water)		A, F, B, D, I	90%	60%	65%
	Permeable Pavement that infiltrates WQV (<75 ft from surface water)		A, F, B, D, I	90%	10%	65%
	Permeable Pavement with underdrain		Use TN and TP values for sand filter w/ underdrain and outlet pipe	90%	10%	45%

Pollutant R	Values Accepted for Loading Analyses					
ВМР Туре	ВМР	Notes	Lit. Ref.	TSS	TN	ТР
Treatment Swales	Flow Through Treatment Swale	TBA				
Vegetated Buffers	Vegetated Buffers		A, B, I	73%	40%	45%
	Sediment Forebay	TBA				
	Vegetated Filter Strip		A, B, I	73%	40%	45%
	Vegetated Swale		A, B, C, F, H, I	65%	20%	25%
Pre-	Flow-Through Device - Hydrodynamic Separator		A, B, G, H	35%	10%	5%
Treatment Practices	Flow-Through Device - ADS Underground Multichamber Water Quality Unit (WQU)		G, H	72%	10%	9%
	Other Flow-Through Devices	TBA				
	Off-line Deep Sump Catch Basin		J, K, L, M	15%	5%	5%

APPENDIX X

Stormwater Operations and Maintenance Manual

85 Portsmouth Avenue, PO Box 219, Stratham, NH 03885 603.772.4746 - JonesandBeach.com

STORMWATER MANAGEMENT OPERATIONS AND MAINTENANCE MANUAL

Luster Cluster 635 Sagamore Ave. Portsmouth, NH 03801 Tax Map 222, Lot 19

Prepared for:

635 Sagamore Development LLC 3612 Lafayette Rd., Dept 4 Portsmouth, NH 03801

> Prepared by: Jones & Beach Engineers, Inc. 85 Portsmouth Avenue P.O. Box 219 Stratham, NH 03885 (603) 772-4746 March 8, 2024 JBE Project No. 18134.1

Inspection and Maintenance of Facilities and Property

A. Maintenance of Common Facilities or Property

1. The Condominium Association, future owners and assigns are responsible to perform the maintenance obligations or hire a Professional Engineer to review the site on an annual basis for maintenance and certification of the stormwater system. The Association shall keep receipts and records of all maintenance companies hired throughout the year to submit along with the following form.

B. General Inspection and Maintenance Requirements

- 1. Permanent stormwater and sediment and erosion control facilities to be maintained on the site include, but are not limited to, the following:
 - a. Roadway and driveways
 - b. Vegetation and landscaping
 - c. Bioretention systems
 - d. Catch Basins & Yard Drains
 - e. Permeable Paver Patio
 - f. Stone Drip Edges
 - g. Culverts
 - h. Rip-Rap Outlet Protection Aprons
 - i. Swale
- 2. Maintenance of permanent measures shall follow the following schedule:
 - a. Normal winter roadway maintenance including plowing and snow removal. Road sweeping at the end of every winter, preferably before the start of the spring rain season.
 - b. **Annual inspection** of the site for erosion, destabilization, settling, and sloughing. Any needed repairs are to be conducted immediately. **Annual inspection** of site's vegetation and landscaping. Any areas that are bare shall be reseeded and mulched with hay or, if the case is extreme, loamed and seeded or sodded to ensure adequate vegetative cover. Landscape specimens shall be replaced in kind, if they are found to be dead or dying.
 - c. Bioretention Systems:
 - Visually inspect monthly and repair erosion. Use small stones to stabilize erosion along drainage paths.
 - Check the pH once a year if grass is not surviving. Apply an alkaline product, such as limestone, if needed.
 - Re-seed any bare areas by hand as needed.
 - Immediately after the completion of cell construction, water grass for 14 consecutive days unless there is sufficient natural rainfall.

- Once a month (more frequently in the summer), the land owner or Association shall visually inspect vegetation for disease or pest problems and treat as required.
- During times of extended drought, look for physical features of stress. Water in the early morning as needed.
- Weed regularly, if needed.
- After rainstorms, inspect the cell and make sure that drainage paths are clear and that ponding water dissipates over 4-6 hours. (Water may pond for longer times during the winter and early spring.)
- Twice annually, inspect the outlet control structures to ensure that they are not clogged and correct any clogging found as needed.
- Any debris and sediment accumulations shall be removed from the outlet structures, overflow risers, and emergency spillways and disposed of properly.
- Inspect outlet structure for deterioration and or clogging.
- If erosion is evident on the berm or emergency spillway, stabilize the affected area by seeding. Trees must not be allowed to grow in these areas.
- KEEP IN MIND, THE BIORETENTION CELL IS NOT A POND. IT SHALL NOT PROVIDE A BREEDING GROUND FOR MOSQUITOES. MOSQUITOES NEED AT LEAST FOUR (4) DAYS OF STANDING WATER TO DEVELOP AS LARVA.
- d. **Annual inspection** of catch basins and yard drains to determine if they need to be cleaned. Catch basins and yard drains are to be cleaned if the depth of deposits is greater than one-half the depth from the basin bottom to the invert of the lowest pipe or opening into or out of the basin. If a catch basin or yard drain significantly exceeds the one-half depth standard during the inspection, then it shall be cleaned more frequently. If woody debris or trash accumulates in the catch basin or yard drain, then it shall be cleaned on a weekly basis. The catch basin or yard drain can be cleaned either manually or by specially designed equipment including, but not limited to, bucket loaders and vacuum pumps. Before any materials can be disposed, it is necessary to perform a detailed chemical analysis to determine if the materials meet the EPA criteria for hazardous waste. This will help determine how the materials shall be stored, treated, and disposed. Grease hoods are to be wiped clean and the rags disposed of properly. Debris obscuring the grate inlet shall also be removed.
- e. Permeable Paver Patio:

Units 4 features a permeable paver patio for stormwater management while Units 1-3 feature standard paver patios. The following course of action will help assure that the pavers are maintained to preserve its hydrologic effectiveness for their special purpose.

Winter maintenance:

• Sanding for winter traction is prohibited. Deicing is permitted (NaCl, MgCl₂, or equivalent). Reduced salt application is possible and can be a cost savings

for winter maintenance. Nontoxic, organic deicers, applied either as blended, magnesium chloride-based liquid products or as pretreated salt, are preferable.

• Plow after each storm. Special plow blades may be used to prevent scarring. Do not raise blade of plow. Ice and light snow accumulation are generally not as problematic as for standard asphalt. Snow will accumulate during heavier storms and should be plowed after 2 to 4 inches of snow accumulate. Alternatively, snow may be blown or shoveled off of paver surface

Routine maintenance:

- Seal coating is absolutely forbidden. Surface seal coating is not reversible.
- The paver surface shall be vacuumed 2 or 3 times per year, and at any additional times sediment is spilled, eroded, or tracked onto the surface.
- Planted areas adjacent to permeable pavers shall be well maintained to prevent soil washout onto the pavers. If any bare spots or eroded areas are observed within the planted areas, they shall be replanted and/or stabilized at once.
- Immediately clean any soil deposited on pavers. Superficial dirt does not necessarily clog the paver voids. However, dirt that is ground in repeatedly by tires can lead to clogging. Therefore, trucks or other heavy vehicles shall be prevented from tracking or spilling dirt onto the pavers.
- Do not allow construction staging, soil/mulch storage, etc. on unprotected paver surface. Contractor to lay down tarps, plywood or removable item and take care not to track material onto unprotected pavers.
- Repairs: Potholes or other surface blemishes shall be replaced in kind. Any required repair of drainage structures shall be done promptly to ensure continued proper functioning of the system.
- Written and verbal communication to the future owner shall make clear the pavers' special purpose and special maintenance requirements such as those listed here.
- f. Stone Drip Edges:

In the spring and fall, visually inspect the area around the edges and repair any erosion. Use small stones to stabilize erosion along drainage paths. Inspect stone area to ensure that it has not been displaced, undermined, or otherwise damaged. Displaced rock shall be replaced, or additional rock added in order to maintain the structure(s) in their undamaged state. Woody vegetation shall not be allowed to become established in stone areas, and/or any debris removed from the void spaces between the stones.

- g. **Inspection** of culvert inlets and outlets at least **once per month** during the rainy season (March to November). Any debris is to be removed and disposed of properly.
 - h. Rock riprap shall be **inspected annually** in order to ensure that it has not been displaced, undermined, or otherwise damaged. Displaced rock shall be replaced, or additional rock added in order to maintain the structure(s) in their undamaged

state. Woody vegetation must not be allowed to become established in riprap areas, and/or any debris removed from the void spaces between the rocks. If the riprap is adjacent to a stream or other waterbody, the water shall be kept clear of obstructions, debris, and sediment deposits

i. Swales - Inspect swales annually for erosion, sediment accumulation, vegetation loss, and presence of invasive species. Perform periodic mowing; frequency depends on location and type of grass. Remove debris and accumulated sediment, based on inspection. Repair eroded areas, remove invasive species and dead vegetation, and reseed as warranted by inspection

See attached sample forms as a guideline.

Any inquiries in regards to the design, function, and/or maintenance of any one of the abovementioned facilities or tasks shall be directed to the project engineer:

Jones & Beach Engineers, Inc. 85 Portsmouth Avenue P.O. Box 219 Stratham, NH 03885

T#: (603) 772-4746 F#: (603) 772-0227

Commitment to maintenance requirements

I agree to complete and/or observe all of the required maintenance practices and their respective schedules as outlined above.

Signature

Print Name

Title

Date

Annual Operations and Maintenance Report

The Condominium Association, future owners and assigns are responsible to perform the maintenance obligations or hire a Professional Engineer to review the site on an annual basis for maintenance and certification of the stormwater system. The Association shall keep receipts and records of all maintenance companies hired throughout the year to submit along with the following form.

Construction Activity	Date of Inspection	Who Inspected	Findings of Inspector
Roadway and Driveways			
Vegetation and Landscaping			
Bioretention #1			
Bioretention #2			
Catch Basins & Yard Drains			

Permeable Paver Patios (Unit 4)		
Stone Drip Edge		
Culverts		
Rip Rap Outlet Protection		
Swales		
Other (please note):		

Regular Inspection and Maintenance Guidance for Bioretention Systems / Tree Filters

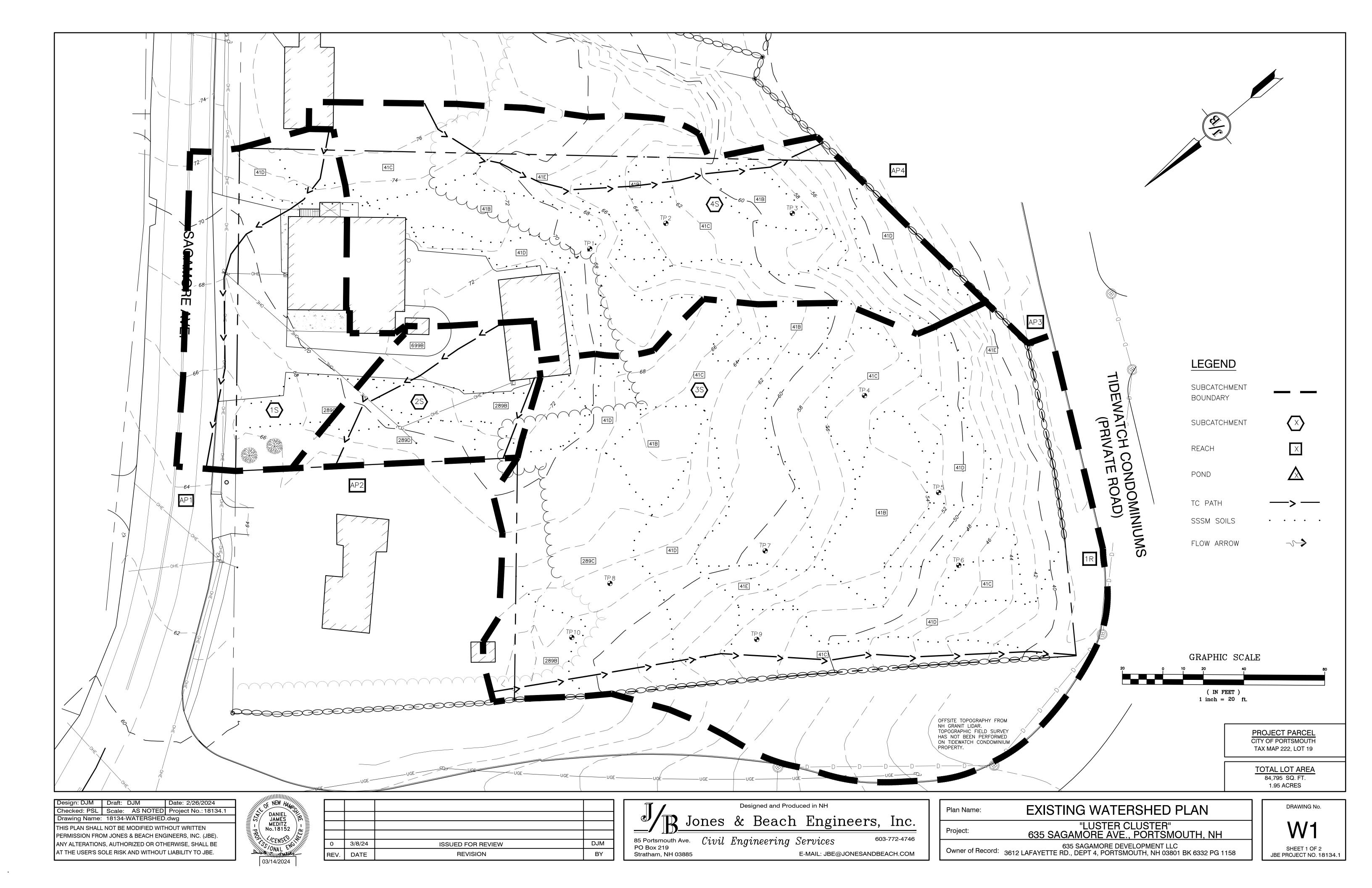
Maintenance of bioretention systems and tree filters can typically be performed as part of standard landscaping. Regular inspection and maintenance is critical to the effective operation of bioretention systems and tree filters to insure they remain clear of leaves and debris and free draining. This page provides guidance on maintenance activities that are typically required for these systems, along with the suggested frequency for each activity. Individual systems may have more, or less, frequent maintenance needs, depending on a variety of factors including the occurrence of large storm events, overly wet or dry (I.E., drought), regional hydrologic conditions, and the upstream land use.

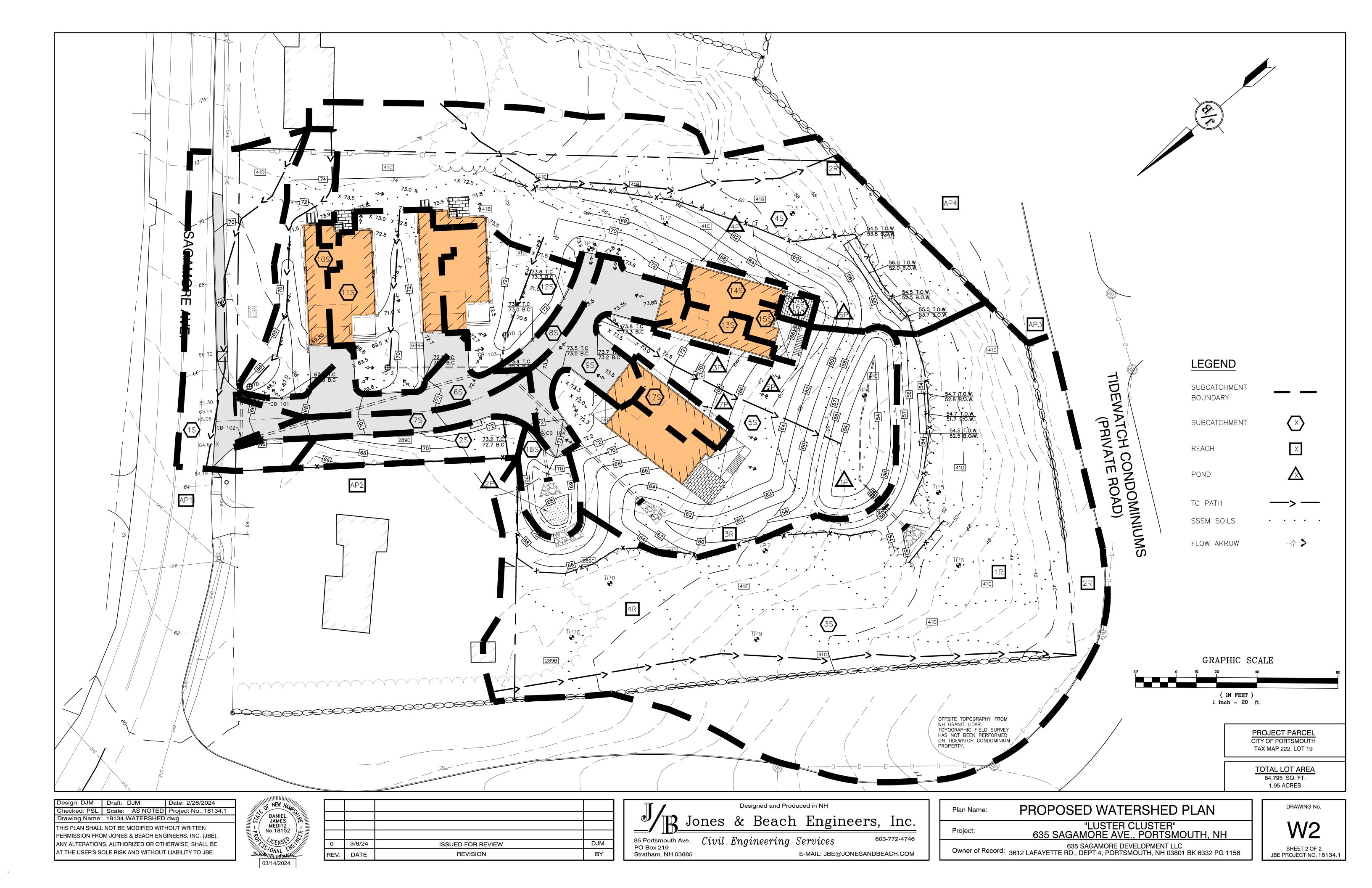
ACTIVITIES

The most common maintenance activity is the removal of leaves from the system and bypass structure. Visual inspections are routine for system maintenance. This includes looking for standing water, accumulated leaves, holes in the soil media, signs of plant distress, and debris and sediment accumulation in the system. Mulch and/or vegetation coverage is integral to the performance of the system, including infiltration rate and nutrient uptake. Vegetation care is important to system productivity and health.

ACTIVITY	FREQUENCY		
A record should be kept of the time to drain for the system completely after a storm event. The system should drain completely within 72 hours.			
Check to insure the filter surface remains well draining after storm event.	After every major storm in the first few		
Remedy : If filter bed is clogged, draining poorly, or standing water covers more than 15% of the surface 48 hours after a precipitation event, then remove top	months, then biannually.		
few inches of discolored material. Till or rake remaining material as needed.			
Check inlets and outlets for leaves and debris.			
Remedy : Rake in and around the system to clear it of debris. Also, clear the inlet and overflow if obstructed.			
Check for animal burrows and short circuiting in the system			
Remedy : Soil erosion from short circuiting or animal boroughs should be repaired when they occur. The holes should be filled and lightly compacted.	Quarterly initially, biannually, frequency adjusted as needed after 3 inspections		
Check to insure the filter bed does not contain more than 2 inches accumulated material			
Remedy : Remove sediment as necessary. If 2 inches or more of filter bed has been removed, replace media with either mulch or a (50% sand, 20% woodchips, 20% compost, 10% soil) mixture.			
During extended periods without rainfall, inspect plants for signs of distress.			
Remedy : Plants should be watered until established (typical only for first few months) or as needed thereafter.			
Inspect inlets and outlets to ensure good condition and no evidence of deterioration. Check to see if high-flow bypass is functioning.			
Remedy : Repair or replace any damaged structural parts, inlets, outlets, sidewalls.	Annually		
Check for robust vegetation coverage throughout the system.			
Remedy : If at least 50% vegetation coverage is not established after 2 years, reinforcement planting should be performed.			
Check for dead or dying plants, and general long term plant health.			
Remedy : This vegetation should be cut and removed from the system. If woody vegetation is present, care should be taken to remove dead or decaying plant Material. Separation of Herbaceous vegetation rootstock should occur when overcrowding is observed.	As needed		
/15/2011 University of New Hempshire Stermuster Center			

1/15/2011, University of New Hampshire Stormwater Center


CHECKLIST FOR INSPECTION OF BIORETENTION SYSTEM / TREE FILTERS				
Location:	Inspector:			
Date: Time:		Site Co	nditions:	
Date Since Last Rain Event:				
Inspection Items		tory (S) or actory (U)	Comments/Corrective Action	
1. Initial Inspection After Planting and Mulching				
Plants are stable, roots not exposed	S	U		
Surface is at design level, typically 4" below overpass	S	U		
Overflow bypass / inlet (if available) is functional	S	U		
2. Debris Cleanup (2 times a year minimum, Spring & Fall)				
Litter, leaves, and dead vegetation removed from the system	S	U		
Prune perennial vegetation	S	U		
3. Standing Water (1 time a year, After large storm events)				
No evidence of standing water after 72 hours	S	U	1	
4. Short Circuiting & Erosion (1 time a year, After large storm	events)			
No evidence of animal burrows or other holes	S	U		
No evidence of erosion	S	U	1	
5. Drought Conditions (As needed)				
Water plants as needed	S	U		
Dead or dying plants				
6. Overflow Bypass / Inlet Inspection (1 time a year, After large	storm ev	ents)		
No evidence of blockage or accumulated leaves	S	U		
Good condition, no need for repair	S	U		
7. Vegetation Coverage (once a year)				
50% coverage established throughout system by first year	S	U		
Robust coverage by year 2 or later	S	U		
8. Mulch Depth (if applicable)(once every 2 years)				
Mulch at original design depth after tilling or replacement	s	U		
9. Vegetation Health (once every 3 years)	<u> </u>			
Dead or decaying plants removed from the system	S	U		
10. Tree Pruning (once every 3 years)				
Prune dead, diseased, or crossing branches	S	U		
Corrective Action Needed			Due Date	
1.				
2.				
3.				


1/15/2011, University of New Hampshire Stormwater Center

APPENDIX XI

Pre- and Post-Construction Watershed Plans

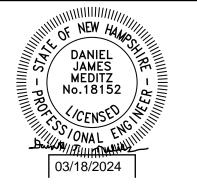
GENERAL	
GENERAL	
EXISTING	PROPOSED
LAISTING	FNOFUSLD
$\cdot (\land $	
$\cdot \infty \infty$	∞
	× × ×
• • • • •	
100	100
<i>—98</i>	<u> </u>
30	30
VGC	VGC
SGC	SGC
x	X
D	= = = = = =
s	s
FM	FM
G	G
	——————————————————————————————————————
WS	
UGE	UGE
UD	UD
	√ w
Ô	
۲	_
	•
100x0	100x0
<u>x 100.00</u>	<u>× 100.00</u>
	~
× <u>100.00</u> 99.50	× 100.00
99.50	^ 99.50
\bigcirc	
	
	Å
#	e
D	
AYYO N 1	WV.
₩ ^O S	
	_ _
	H
T	Ī
48383 >	43339
←~~	€ -2-

4	4
[14 <u>1141</u> 4] <u>-4479</u> 4]	han an an an taon an
	ഹ്ന്നാ
	turri
*	· · · · ·

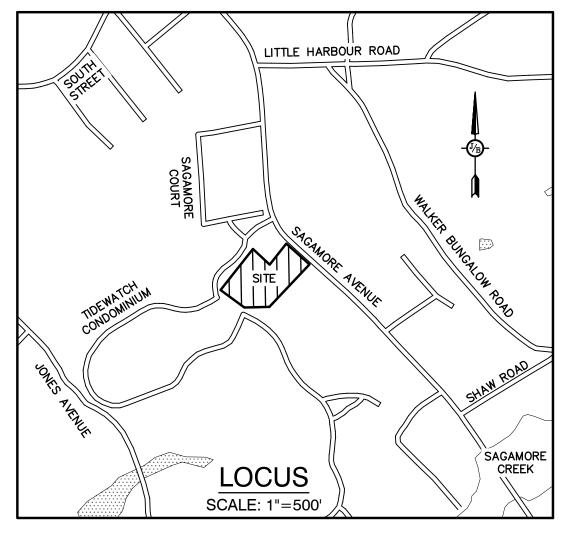
DESCRIPTION PROPERTY LINES SETBACK LINES CENTERLINE TREE LINE STONEWALL BARBED WIRE FENCE SOIL BOUNDARY EASEMENT MAJOR CONTOUR MINOR CONTOUR EDGE OF PAVEMENT VERTICAL GRANITE CURB SLOPE GRANITE CURB SILT FENCE DRAINAGE LINE SEWER LINE SEWER FORCE MAIN GAS LINE WATER LINE WATER SERVICE OVERHEAD ELECTRIC UNDERGROUND ELECTRIC UNDERDRAIN THRUST BLOCK IRON PIPE/IRON ROD DRILL HOLE IRON ROD/DRILL HOLE STONE/GRANITE BOUND SPOT GRADE PAVEMENT SPOT GRADE CURB SPOT GRADE BENCHMARK (TBM) DOUBLE POST SIGN SINGLE POST SIGN WELL TEST PIT TREES AND BUSHES UTILITY POLE DRAIN MANHOLE SEWER MANHOLE HYDRANT WATER GATE WATER SHUT OFF REDUCER SINGLE GRATE CATCH BASIN TRANSFORMER CULVERT W/STRAIGHT HEADWALL STONE CHECK DAM DRAINAGE FLOW DIRECTION RIPRAP PAVEMENT HATCH STABILIZED CONSTRUCTION ENTRANCE CONCRETE GRAVEL SNOW STORAGE RETAINING WALL

"LUSTER CLUSTER" TAX MAP 222, LOT 19

SINGLE FAMILY CONDOMINIUM 635 SAGAMORE AVE., PORTSMOUTH, NH


CIVIL ENGINEER / SURVEYOR JONES & BEACH ENGINEERS, INC. 85 PORTSMOUTH AVENUE PO BOX 219 STRATHAM, NH 03885 (603) 772-4746 CONTACT: JOSEPH CORONATI EMAIL: JCORONATI@JONESANDBEACH.COM

TRAFFIC ENGINEER STEPHEN G. PERNAW & COMPANY, INC. P.O. BOX 1721 CONCORD, NH 03302 (603) 731-8500


SOILS CONSULTANT GOVE ENVIRONMENTAL SERVICES, INC. 8 CONTINENTAL DRIVE, BLDG 2, UNIT H EXETER, NH 03833-7507 (603) 418-7260 CONTACT: JAMES GOVE EMAIL: JGOVE@GESINC.BIZ

Design: DJM Draft: KDR Date: 2/26/2024 Checked: JAC Scale: AS NOTED Project No.: 18134.1 Drawing Name: 18134.1-PLAN.dwg

THIS PLAN SHALL NOT BE MODIFIED WITHOUT WRITTEN PERMISSION FROM JONES & BEACH ENGINEERS, INC. (JBE). ANY ALTERATIONS, AUTHORIZED OR OTHERWISE, SHALL BE AT THE USER'S SOLE RISK AND WITHOUT LIABILITY TO JBE.

_		
0	3/18/24	ISSUED FOR REVIEW
REV.	DATE	REVISION

CONTACT: STEPHEN PERNAW

LANDSCAPE DESIGNER LM LAND DESIGN, LLC 11 SOUTH ROAD BRENTWOOD, NH 03833 (603) 770-7728

CONTACT: LISE MCNAUGHTON WATER CITY OF PORTSMOUTH DEPARTMENT OF PUBLIC WORKS WATER DIVISION 680 PEVERLY HILL ROAD

PORTSMOUTH. NH 03801

(603) 427-1530 SEWER CITY OF PORTSMOUTH DEPARTMENT OF PUBLIC WORKS SEWER DIVISION 680 PEVERLY HILL ROAD PORTSMOUTH, NH 03801 (603) 766-1421

LIGHTING DESIGN **EXPOSURE LIGHTING 501 ISLINGTON STREET, UNIT 1A** PORTSMOUTH, NH 03801 CONTACT: KEN SWEENEY

ELECTRIC

EVERSOURCE 1700 LAFAYETTE ROAD PORTSMOUTH, NH 03801 (800) 662-7764

TELEPHONE

CONSOLIDATED COMMUNICATIONS 1575 GREENLAND ROAD GREENLAND, NH 03840 (800) 427-5525

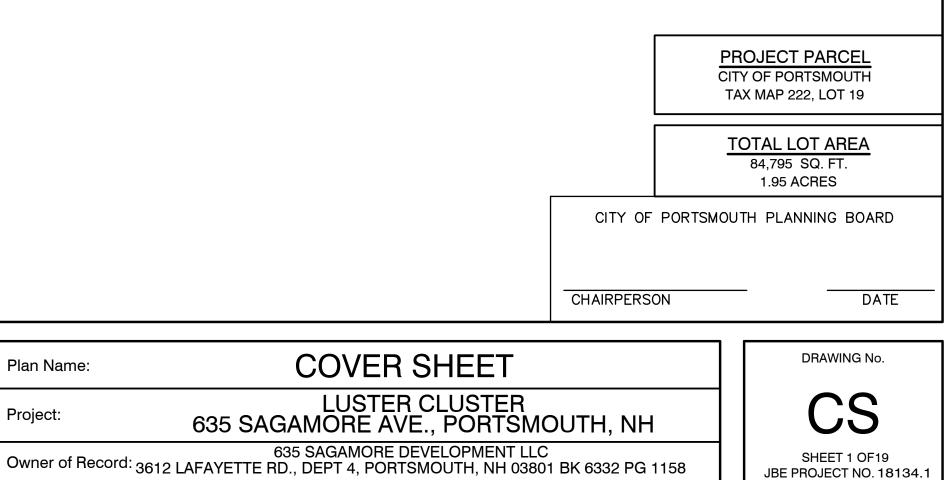
CABLE TV

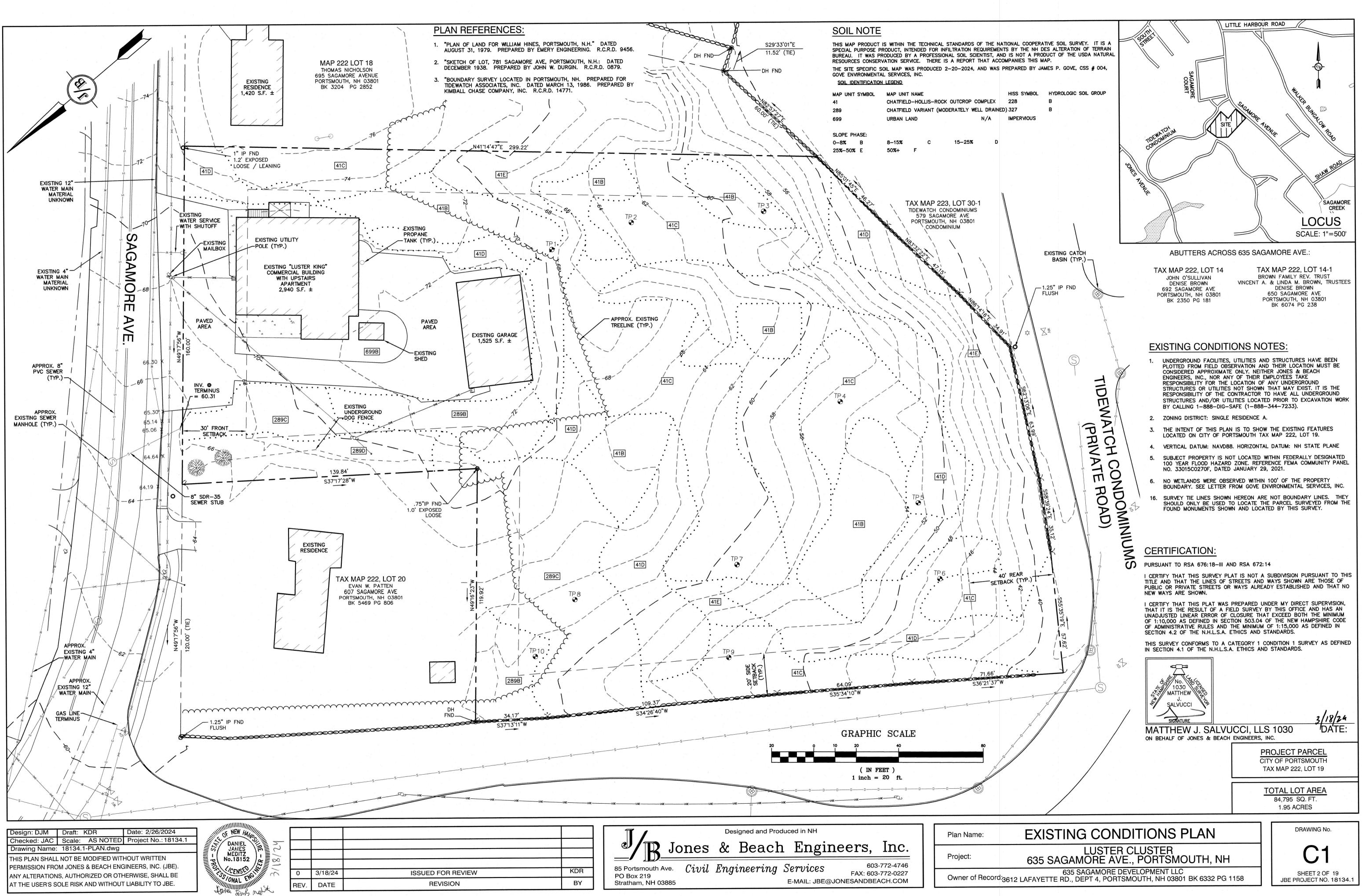
COMCAST COMMUNICATION CORPORATION 334-B CALEF HIGHWAY EPPING, NH 03042-2325 (603) 679-5695

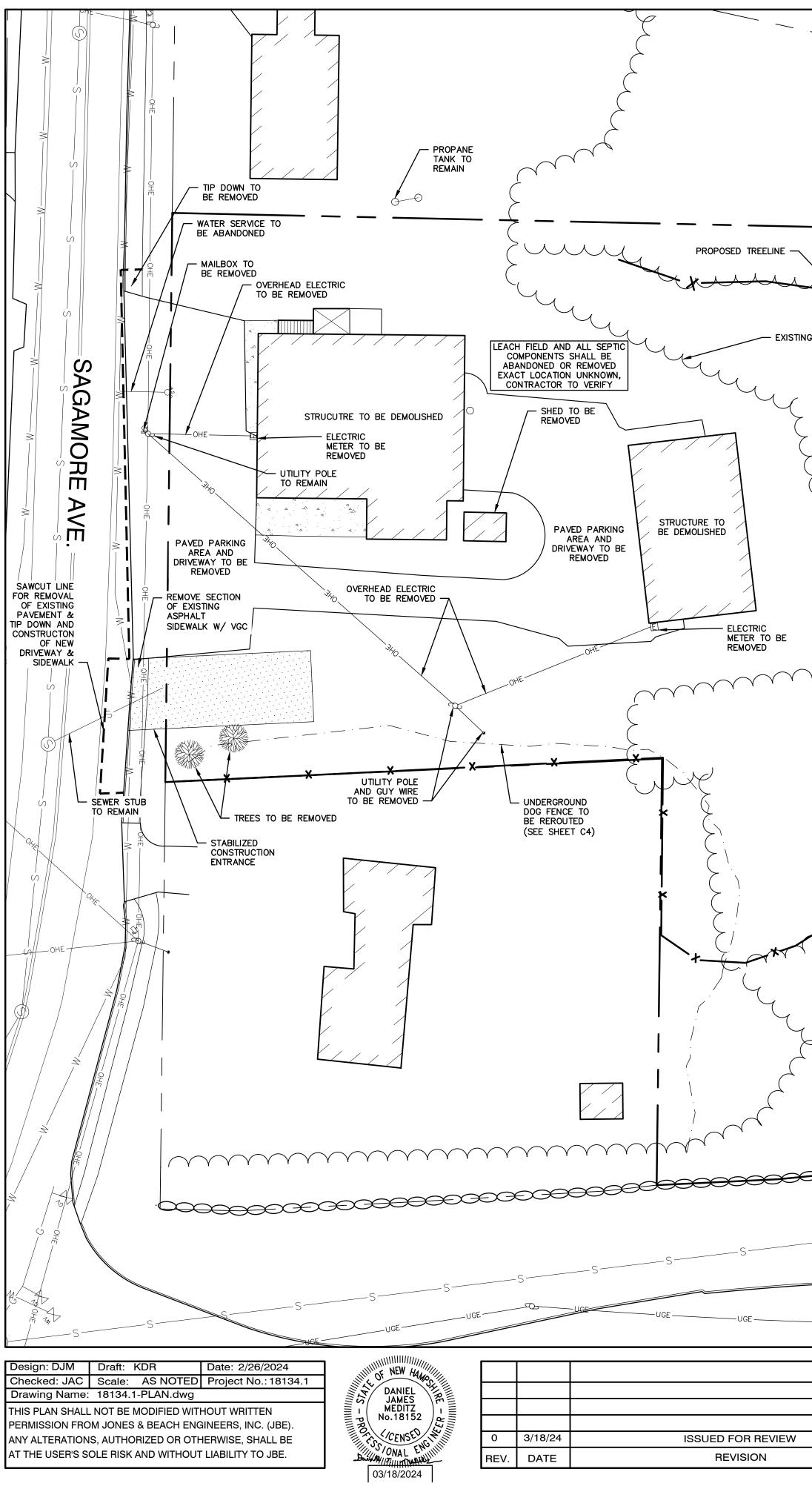
KDR
BY

Designed and Produced in NH Jones & Beach Engineers, Inc. 85 Portsmouth Ave. Civil Engineering Services 603-772-4746 PO Box 219 E-MAIL: JBE@JONESANDBEACH.COM Stratham, NH 03885

Plan Name:

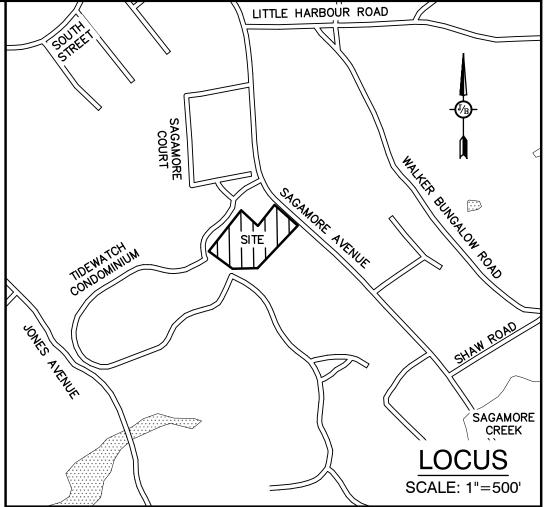

Project:

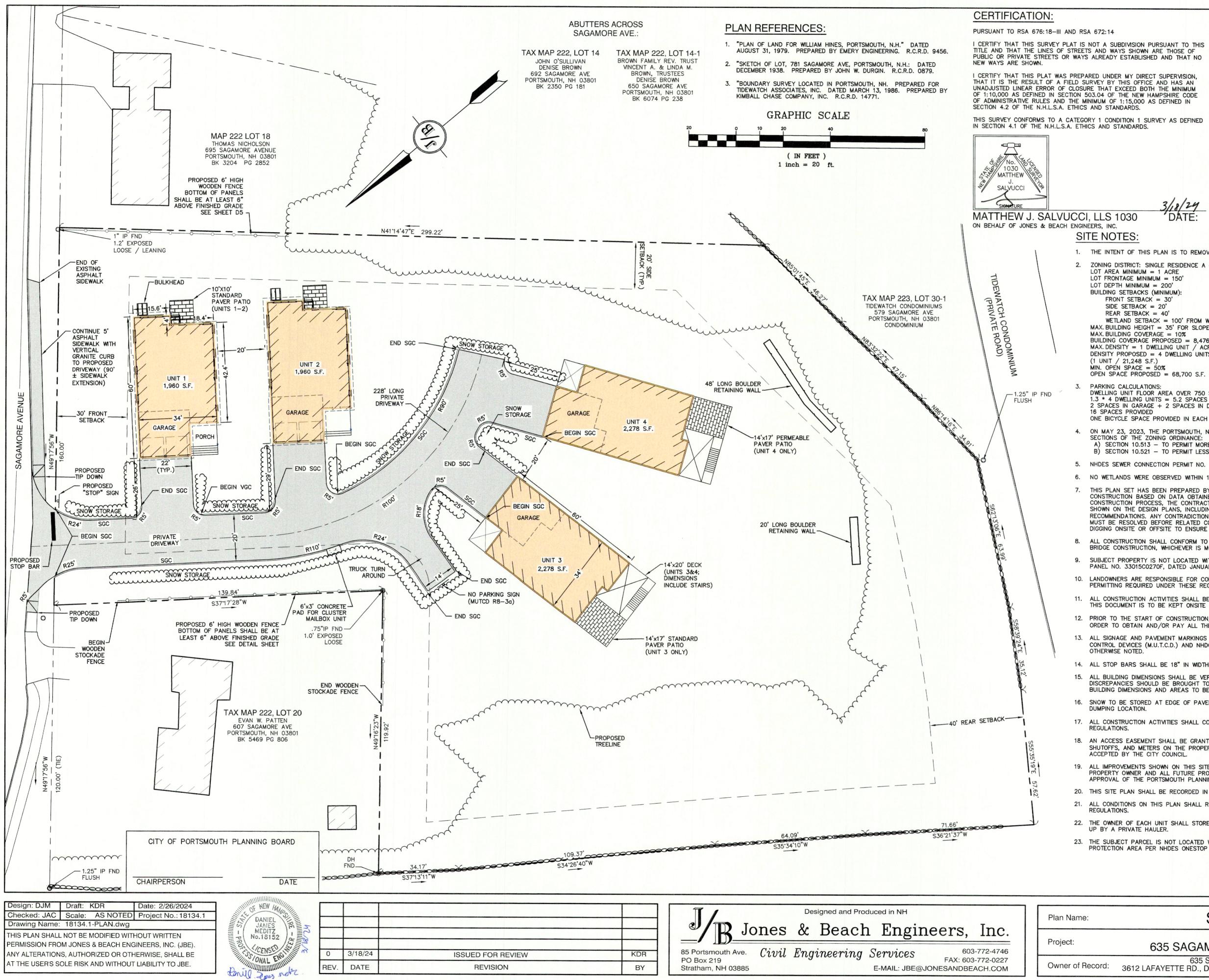



Know what's **below** 811 before you dig

SHEET INDEX

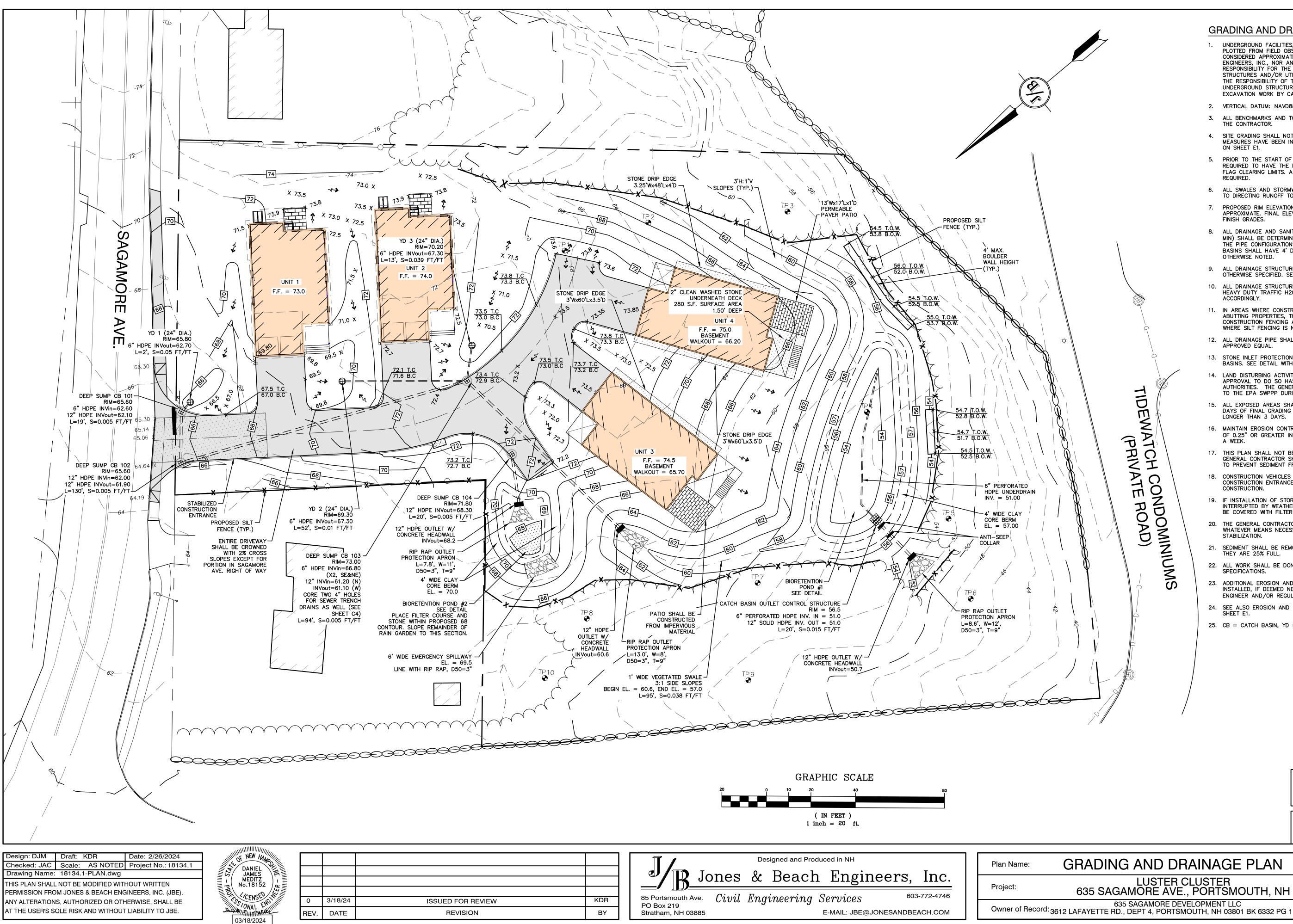
CS	COVER SHEET
C1	EXISTING CONDITIONS PLAN
DM1	DEMOLITION PLAN
C2	SITE PLAN
C3	GRADING AND DRAINAGE PLAN
C4	UTILITY PLAN
L1	LIGHTING PLAN
L2	LANDSCAPE PLAN
P1	DRIVEWAY PLAN AND PROFILE
P2	SEWER PLAN AND PROFILE
H1	HIGHWAY ACCESS PLAN
T1-T2	TRUCK TURNING PLAN
D1-D	5 DETAIL SHEET
E1	EROSION AND SEDIMENT CONTROL DETAILS
	ARCHITECTURAL PLANS





•

Ţ	SLITICLE (TP.)	THE WHEN AND AND AND AND AND AND AND AND AND AN	ION. IT SHOULD BE NOTED SAGAMORE CREEK ELOCUS SCALE: 1"=500' SAGAMORE CREEK ELOCUS SCALE: 1"=500' SCALE: 1"=500'
			JECT PARCEL
			OF PORTSMOUTH MAP 222, LOT 19
		(IN FEET)	
		1 inch = 20 ft.	TAL LOT AREA 34,795 SQ. FT. 1.95 ACRES
	Designed and Produced in NH	Plan Name: DEMOLITION PLAN	DRAWING No.
	Jones & Beach Engineers, Inc.		
		LUSTER CLUSTER 635 SAGAMORE AVE., PORTSMOUTH, NH	DM-1
KDR	85 Portsmouth Ave. Civil Engineering Services 603-772-4746		
BY	PO Box 219 Stratham, NH 03885 E-MAIL: JBE@JONESANDBEACH.COM	635 SAGAMORE DEVELOPMENT LLC Owner of Record:3612 LAFAYETTE RD., DEPT 4, PORTSMOUTH, NH 03801 BK 6332 PG 1158	SHEET 3 OF19 JBE PROJECT NO. 18134.1
I			



3/18/24 DATE:

LITTLE HARBOUR ROAD SAGAMORE CREEK LOCUS SCALE: 1"=500

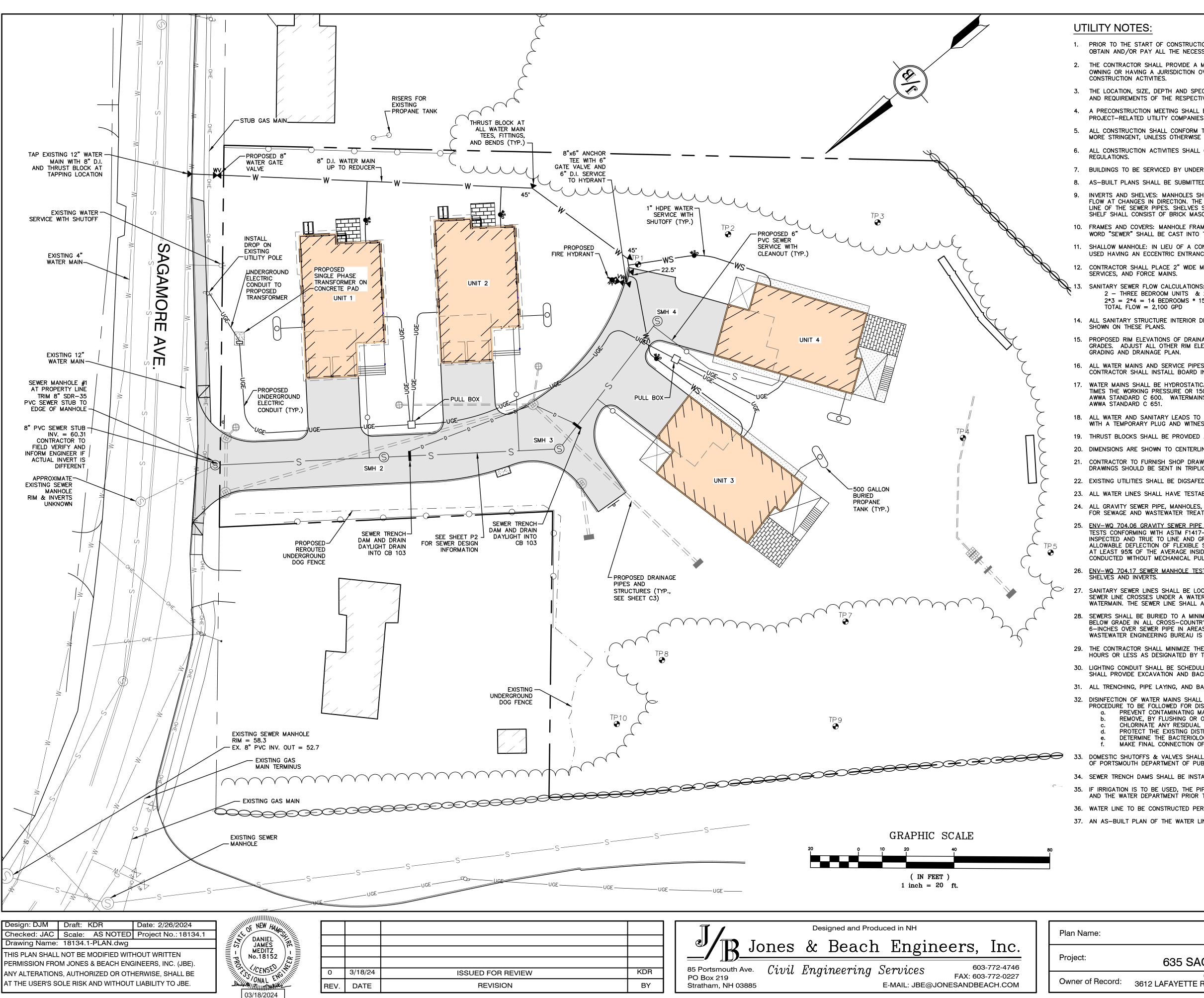
1. THE INTENT OF THIS PLAN IS TO REMOVE EXISTING STRUCTURES AND CONSTRUCT A 4-UNIT MULTI-FAMILY RESIDENTIAL DEVELOPMENT. 2. ZONING DISTRICT: SINGLE RESIDENCE A (SRA)

LOT FRONTAGE MINIMUM = 150' LOT DEPTH MINIMUM = 200'BUILDING SETBACKS (MINIMUM): FRONT SETBACK = 30' SIDE SETBACK = 20'REAR SETBACK = 40'WETLAND SETBACK = 100' FROM WETLANDS GREATER THAN 10,000 S.F. MAX. BUILDING HEIGHT = 35' FOR SLOPED ROOF; 30' FOR FLAT ROOF MAX. BUILDING COVERAGE = 10% BUILDING COVERAGE PROPOSED = 8,476 S.F. = JUST UNDER 10% MAX. DENSITY = 1 DWELLING UNIT / ACRE DENSITY PROPOSED = 4 DWELLING UNITS / 1.947 AC. = 2.05 UNITS / ACRE (1 UNIT / 21,248 S.F.) MIN. OPEN SPACE = 50%OPEN SPACE PROPOSED = 68,700 S.F. = 80.0%PARKING CALCULATIONS: DWELLING UNIT FLOOR AREA OVER 750 S.F. - 1.3 SPACES REQUIRED PER UNIT 1.3 * 4 DWELLING UNITS = 5.2 SPACES REQUIRED 2 SPACES IN GARAGE + 2 SPACES IN DRIVEWAY PER UNIT = 4 SPACES PER UNIT * 4 UNITS 16 SPACES PROVIDED ONE BICYCLE SPACE PROVIDED IN EACH GARAGE (1 REQUIRED FOR EVERY 5 DWELLING UNITS PER ZONING) 4. ON MAY 23, 2023, THE PORTSMOUTH, NH ZONING BOARD OF ADJUSTMENT VOTED TO APPROVE VARIANCES FROM THE FOLLOWING SECTIONS OF THE ZONING ORDINANCE: A) SECTION 10.513 - TO PERMIT MORE THAN ONE FREE-STANDING DWELLING ON A LOT B) SECTION 10.521 - TO PERMIT LESS THAN ONE ACRE PER DWELLING UNIT 5. NHDES SEWER CONNECTION PERMIT NO. , DATED 6. NO WETLANDS WERE OBSERVED WITHIN 100' OF THE PROPERTY BOUNDARY. SEE LETTER FROM GOVE ENVIRONMENTAL SERVICES, INC. THIS PLAN SET HAS BEEN PREPARED BY JONES & BEACH ENGINEERS, INC., FOR MUNICIPAL AND STATE APPROVALS AND FOR CONSTRUCTION BASED ON DATA OBTAINED FROM ON-SITE FIELD SURVEY AND EXISTING MUNICIPAL RECORDS. THROUGHOUT THE CONSTRUCTION PROCESS, THE CONTRACTOR SHALL INFORM THE ENGINEER IMMEDIATELY OF ANY FIELD DISCREPANCY FROM DATA AS SHOWN ON THE DESIGN PLANS, INCLUDING ANY UNFORESEEN CONDITIONS, SUBSURFACE OR OTHERWISE, FOR EVALUATION AND RECOMMENDATIONS. ANY CONTRADICTION BETWEEN ITEMS ON THIS PLAN/PLAN SET, OR BETWEEN THE PLANS AND ON-SITE CONDITIONS, MUST BE RESOLVED BEFORE RELATED CONSTRUCTION HAS BEEN INITIATED. CONTRACTOR TO ALWAYS CONTACT DIG SAFE PRIOR TO DIGGING ONSITE OR OFFSITE TO ENSURE SAFETY AND OBEY THE LAW. ALL CONSTRUCTION SHALL CONFORM TO TOWN STANDARDS AND REGULATIONS, AND NHOOT STANDARD SPECIFICATIONS FOR ROAD AND BRIDGE CONSTRUCTION, WHICHEVER IS MORE STRINGENT. 9. SUBJECT PROPERTY IS NOT LOCATED WITHIN FEDERALLY DESIGNATED 100 YEAR FLOOD HAZARD ZONE. REFERENCE FEMA COMMUNITY PANEL NO. 33015C0270F, DATED JANUARY 29, 2021. 10. LANDOWNERS ARE RESPONSIBLE FOR COMPLYING WITH ALL APPLICABLE LOCAL, STATE AND FEDERAL WETLAND REGULATIONS, INCLUDING PERMITTING REQUIRED UNDER THESE REGULATIONS. 11. ALL CONSTRUCTION ACTIVITIES SHALL BE PERFORMED IN ACCORDANCE WITH THE STORMWATER POLLUTION PREVENTION PLAN (S.W.P.P.P.). THIS DOCUMENT IS TO BE KEPT ONSITE AT ALL TIMES AND UPDATED AS REQUIRED. 12. PRIOR TO THE START OF CONSTRUCTION, THE CONTRACTOR SHALL COORDINATE WITH THE ENGINEER, ARCHITECT AND/OR OWNER, IN ORDER TO OBTAIN AND/OR PAY ALL THE NECESSARY LOCAL PERMITS, FEES AND BONDS. 13. ALL SIGNAGE AND PAVEMENT MARKINGS SHALL BE IN ACCORDANCE WITH THE LATEST EDITION OF THE MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES (M.U.T.C.D.) AND NHDOT STANDARDS AND SPECIFICATIONS (NON-REFLECTORIZED PAVEMENT MARKINGS), UNLESS 14. ALL STOP BARS SHALL BE 18" IN WIDTH IN A COLOR OF WHITE; ALL TRAFFIC ARROWS SHALL BE PAINTED IN A COLOR OF WHITE. 15. ALL BUILDING DIMENSIONS SHALL BE VERIFIED WITH THE ARCHITECTURAL AND STRUCTURAL PLANS PROVIDED BY THE OWNER. ANY DISCREPANCIES SHOULD BE BROUGHT TO THE ATTENTION OF THE ENGINEER AND OWNER PRIOR TO THE START OF CONSTRUCTION. BUILDING DIMENSIONS AND AREAS TO BE TO OUTSIDE OF MASONRY, UNLESS OTHERWISE NOTED. 16. SNOW TO BE STORED AT EDGE OF PAVEMENT AND IN AREAS SHOWN ON THE PLANS, OR TRUCKED OFFSITE TO AN APPROVED SNOW 17. ALL CONSTRUCTION ACTIVITIES SHALL CONFORM TO LABOR OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION (OSHA) RULES AND 18. AN ACCESS EASEMENT SHALL BE GRANTED TO THE CITY OF PORTSMOUTH FOR ACCESS AND LEAK DETECTION OF THE WATER MAIN, SHUTOFFS, AND METERS ON THE PROPERTY. EASEMENT DESCRIPTION MUST BE APPROVED BY THE CITY'S LEGAL DEPARTMENT AND ACCEPTED BY THE CITY COUNCIL. 19. ALL IMPROVEMENTS SHOWN ON THIS SITE PLAN SHALL BE CONSTRUCTED AND MAINTAINED IN ACCORDANCE WITH THE PLAN BY THE PROPERTY OWNER AND ALL FUTURE PROPERTY OWNERS. NO CHANGES SHALL BE MADE TO THE SITE PLAN WITHOUT THE EXPRESS APPROVAL OF THE PORTSMOUTH PLANNING DIRECTOR. 20. THIS SITE PLAN SHALL BE RECORDED IN THE ROCKINGHAM COUNTY REGISTRY OF DEEDS. 21. ALL CONDITIONS ON THIS PLAN SHALL REMAIN IN EFFECT IN PERPETUITY PURSUANT TO THE REQUIREMENTS OF THE SITE PLAN REVIEW 22. THE OWNER OF EACH UNIT SHALL STORE TRASH IN THEIR GARAGE. TRASH WILL BE PICKED **PROJECT PARCEL** UP BY A PRIVATE HAULER. CITY OF PORTSMOUTH 23. THE SUBJECT PARCEL IS NOT LOCATED WITHIN A WELLHEAD PROTECTION OR AQUIFER TAX MAP 222, LOT 19 PROTECTION AREA PER NHDES ONESTOP DATA. TOTAL LOT AREA 84,795 SQ. FT. 1.95 ACRES SITE PLAN DRAWING No. LUSTER CLUSTER **n**r 635 SAGAMORE AVE., PORTSMOUTH, NH 635 SAGAMORE DEVELOPMENT LLC Owner of Record: 3612 LAFAYETTE RD., DEPT 4, PORTSMOUTH, NH 03801 BK 6332 PG 1158 SHEET 4 OF 19 JBE PROJECT NO. 18134.1

GRADING AND DRAINAGE NOTES:

- UNDERGROUND FACILITIES, UTILITIES AND STRUCTURES HAVE BEEN PLOTTED FROM FIELD OBSERVATION AND THEIR LOCATION MUST BE CONSIDERED APPROXIMATE ONLY. NEITHER JONES & BEACH ENGINEERS, INC., NOR ANY OF THEIR EMPLOYEES TAKE RESPONSIBILITY FOR THE LOCATION OF ANY UNDERGROUND STRUCTURES AND/OR UTILITIES NOT SHOWN THAT MAY EXIST. IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO HAVE ALL UNDERGROUND STRUCTURES AND/OR UTILITIES LOCATED PRIOR TO EXCAVATION WORK BY CALLING 888-DIG-SAFE (888-344-7233).
- 2. VERTICAL DATUM: NAVD88.
- 3. ALL BENCHMARKS AND TOPOGRAPHY SHALL BE FIELD VERIFIED BY THE CONTRACTOR.
- 4. SITE GRADING SHALL NOT PROCEED UNTIL EROSION CONTROL MEASURES HAVE BEEN INSTALLED. SEE CONSTRUCTION SEQUENCE ON SHEET E1.
- PRIOR TO THE START OF CONSTRUCTION, THE CONTRACTOR IS REQUIRED TO HAVE THE PROJECT'S LAND SURVEYOR STAKE OR FLAG CLEARING LIMITS. A MINIMUM OF 48 HOURS NOTICE IS REQUIRED.
- 6. ALL SWALES AND STORMWATER PONDS SHALL BE STABILIZED PRIOR TO DIRECTING RUNOFF TO THEM.
- PROPOSED RIM ELEVATIONS OF DRAINAGE STRUCTURES ARE APPROXIMATE. FINAL ELEVATIONS ARE TO BE SET FLUSH WITH FINISH GRADES.
- 8. ALL DRAINAGE AND SANITARY STRUCTURE INTERIOR DIAMETERS (4' MIN) SHALL BE DETERMINED BY THE MANUFACTURER BASED ON THE PIPE CONFIGURATIONS SHOWN ON THESE PLANS. CATCH BASINS SHALL HAVE 4' DEEP SUMPS WITH GREASE HOODS, UNLESS OTHERWISE NOTED.
- 9. ALL DRAINAGE STRUCTURES SHALL BE PRECAST, UNLESS OTHERWISE SPECIFIED. SEE DETAIL SHEETS FOR DRAINAGE DETAILS.
- 10. ALL DRAINAGE STRUCTURES AND STORMWATER PIPES SHALL MEET HEAVY DUTY TRAFFIC H20 LOADING AND SHALL BE INSTALLED ACCORDINGLY.
- 11. IN AREAS WHERE CONSTRUCTION IS PROPOSED ADJACENT TO ABUTTING PROPERTIES, THE CONTRACTOR SHALL INSTALL ORANGE CONSTRUCTION FENCING ALONG PROPERTY LINES IN ALL AREAS WHERE SILT FENCING IS NOT REQUIRED.
- 12. ALL DRAINAGE PIPE SHALL BE NON-PERFORATED ADS N-12 OR APPROVED EQUAL.
- 13. STONE INLET PROTECTION SHALL BE PLACED AT ALL CATCH BASINS. SEE DETAIL WITHIN THE DETAIL SHEETS.
- 14. LAND DISTURBING ACTIVITIES SHALL NOT COMMENCE UNTIL APPROVAL TO DO SO HAS BEEN RECEIVED BY ALL GOVERNING AUTHORITIES. THE GENERAL CONTRACTOR SHALL STRICTLY ADHERE TO THE EPA SWPPP DURING CONSTRUCTION OPERATIONS.
- 15. ALL EXPOSED AREAS SHALL BE SEEDED AS SPECIFIED WITHIN 3 DAYS OF FINAL GRADING AND ANYTIME CONSTRUCTION STOPS FOR LONGER THAN 3 DAYS.
- 16. MAINTAIN EROSION CONTROL MEASURES AFTER EACH RAIN EVENT OF 0.25" OR GREATER IN A 24 HOUR PERIOD AND AT LEAST ONCE A WEEK.
- 17. THIS PLAN SHALL NOT BE CONSIDERED ALL INCLUSIVE, AS THE GENERAL CONTRACTOR SHALL TAKE ALL NECESSARY PRECAUTIONS TO PREVENT SEDIMENT FROM LEAVING THE SITE.
- 18. CONSTRUCTION VEHICLES SHALL UTILIZE THE STABILIZED CONSTRUCTION ENTRANCE TO THE EXTENT POSSIBLE THROUGHOUT CONSTRUCTION.
- 19. IF INSTALLATION OF STORM DRAINAGE SYSTEM SHOULD BE INTERRUPTED BY WEATHER OR NIGHTFALL, THE PIPE ENDS SHALL BE COVERED WITH FILTER FABRIC
- 20. THE GENERAL CONTRACTOR SHALL BE RESPONSIBLE TO TAKE WHATEVER MEANS NECESSARY TO ESTABLISH PERMANENT SOIL STABILIZATION.
- 21. SEDIMENT SHALL BE REMOVED FROM ALL SEDIMENT BASINS BEFORE THEY ARE 25% FULL.
- 22. ALL WORK SHALL BE DONE IN STRICT ACCORDANCE WITH PROJECT SPECIFICATIONS.
- 23. ADDITIONAL EROSION AND SEDIMENT CONTROL MEASURES SHALL BE INSTALLED, IF DEEMED NECESSARY BY ON-SITE INSPECTION BY ENGINEER AND/OR REGULATORY OFFICIALS.
- 24. SEE ALSO EROSION AND SEDIMENT CONTROL SPECIFICATIONS ON SHEET E1.
- 25. CB = CATCH BASIN, YD = YARD DRAIN

PROJECT PARCEL CITY OF PORTSMOUTH TAX MAP 222, LOT 19


TOTAL LOT AREA 84,795 SQ. FT. 1.95 ACRES

GRADING AND DRAINAGE PLAN

635 SAGAMORE DEVELOPMENT LLC Owner of Record: 3612 LAFAYETTE RD., DEPT 4, PORTSMOUTH, NH 03801 BK 6332 PG 1158

SHEET 5 OF 19 JBE PROJECT NO. 18134.1

PRIOR TO THE START OF CONSTRUCTION, THE CONTRACTOR SHALL COORDINATE WITH THE ENGINEER, ARCHITECT AND/OR OWNER, IN ORDER TO OBTAIN AND/OR PAY ALL THE NECESSARY LOCAL PERMITS, CONNECTION FEES AND BONDS.

2. THE CONTRACTOR SHALL PROVIDE A MINIMUM NOTICE OF FOURTEEN (14) DAYS TO ALL CORPORATIONS, COMPANIES AND/OR LOCAL AUTHORITIES OWNING OR HAVING A JURISDICTION OVER UTILITIES RUNNING TO, THROUGH OR ACROSS PROJECT AREAS PRIOR TO DEMOLITION AND/OR

3. THE LOCATION, SIZE, DEPTH AND SPECIFICATIONS FOR CONSTRUCTION OF PROPOSED PRIVATE UTILITY SERVICES SHALL BE TO THE STANDARDS AND REQUIREMENTS OF THE RESPECTIVE UTILITY COMPANY (ELECTRIC, TELEPHONE, CABLE TELEVISION, WATER, AND SEWER).

4. A PRECONSTRUCTION MEETING SHALL BE HELD WITH THE OWNER, ENGINEER, ARCHITECT, CONTRACTOR, LOCAL OFFICIALS, AND ALL PROJECT-RELATED UTILITY COMPANIES (PUBLIC AND PRIVATE) PRIOR TO START OF CONSTRUCTION.

5. ALL CONSTRUCTION SHALL CONFORM TO THE CITY STANDARDS AND REGULATIONS, AND NHDES STANDARDS AND SPECIFICATIONS, WHICHEVER ARE MORE STRINGENT, UNLESS OTHERWISE SPECIFIED.

6. ALL CONSTRUCTION ACTIVITIES SHALL CONFORM TO LABOR OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION (OSHA) RULES AND

7. BUILDINGS TO BE SERVICED BY UNDERGROUND UTILITIES UNLESS OTHERWISE NOTED.

8. AS-BUILT PLANS SHALL BE SUBMITTED TO DEPARTMENT OF PUBLIC WORKS.

INVERTS AND SHELVES: MANHOLES SHALL HAVE A BRICK PAVED SHELF AND INVERT, CONSTRUCTED TO CONFORM TO THE SIZE OF PIPE AND FLOW AT CHANGES IN DIRECTION. THE INVERTS SHALL BE LAID OUT IN CURVES OF THE LONGEST RADIUS POSSIBLE TANGENT TO THE CENTER LINE OF THE SEWER PIPES. SHELVES SHALL BE CONSTRUCTED TO THE ELEVATION OF THE THROUGH CHANNEL UNDERLAYMENT OF INVERT, AND SHELF SHALL CONSIST OF BRICK MASONRY.

10. FRAMES AND COVERS: MANHOLE FRAMES AND COVERS SHALL BE OF HEAVY DUTY DESIGN AND PROVIDE A 30 INCH DIA, CLEAR OPENING. THE WORD "SEWER" SHALL BE CAST INTO THE CENTER OF THE UPPER FACE OF EACH COVER WITH RAISED, 3" LETTERS.

SHALLOW MANHOLE: IN LIEU OF A CONE SECTION, WHEN MANHOLE DEPTH IS LESS THAN 6 FEET, A REINFORCED CONCRETE SLAB COVER MAY BE USED HAVING AN ECCENTRIC ENTRANCE OPENING AND CAPABLE OF SUPPORTING H20 LOADS. (THIS APPLIES TO SMH 1)

CONTRACTOR SHALL PLACE 2" WIDE METAL WIRE IMPREGNATED RED PLASTIC WARNING TAPE OVER ENTIRE LENGTH OF ALL GRAVITY SEWERS,

2 - THREE BEDROOM UNITS & 2 - FOUR BEDROOM UNITS @ 150 GPD/BEDROOM PER METCALF & EDDY TABLE 3-2 2*3 = 2*4 = 14 BEDROOMS * 150 GPD/BEDROOM = 2,100 GPD

TOTAL FLOW = 2,100 GPD

14. ALL SANITARY STRUCTURE INTERIOR DIAMETERS (4' MIN) SHALL BE DETERMINED BY THE MANUFACTURER BASED ON THE PIPE CONFIGURATIONS

15. PROPOSED RIM ELEVATIONS OF DRAINAGE AND SANITARY MANHOLES ARE APPROXIMATE. FINAL ELEVATIONS ARE TO BE SET FLUSH WITH FINISH GRADES. ADJUST ALL OTHER RIM ELEVATIONS OF MANHOLES, WATER GATES, AND OTHER UTILITIES TO FINISH GRADE AS SHOWN ON THE

16. ALL WATER MAINS AND SERVICE PIPES SHALL HAVE A MINIMUM 12" VERTICAL AND 24" HORIZONTAL SEPARATION TO MANHOLES, OR CONTRACTOR SHALL INSTALL BOARD INSULATION FOR FREEZING PROTECTION.

WATER MAINS SHALL BE HYDROSTATICALLY PRESSURE TESTED FOR LEAKAGE PRIOR TO ACCEPTANCE. WATERMAINS SHALL BE TESTED AT 1.5 TIMES THE WORKING PRESSURE OR 150 PSI, WHICH EVER IS GREATER. TESTING SHALL BE CONDUCTED IN ACCORDANCE WITH SECTION 4 OF AWWA STANDARD C 600. WATERMAINS SHALL BE DISINFECTED AFTER THE ACCEPTANCE OF THE PRESSURE AND LEAKAGE TESTS ACCORDING TO

18. ALL WATER AND SANITARY LEADS TO BUILDING(S) SHALL END 5' OUTSIDE THE BUILDING LIMITS AS SHOWN ON PLANS AND SHALL BE PROVIDED WITH A TEMPORARY PLUG AND WITNESS AT END.

19. THRUST BLOCKS SHALL BE PROVIDED AT ALL BENDS, TEES, MECHANICAL JOINTS AND FIRE HYDRANTS.

20. DIMENSIONS ARE SHOWN TO CENTERLINE OF PIPE OR FITTING.

CONTRACTOR TO FURNISH SHOP DRAWINGS FOR UTILITY RELATED ITEMS TO ENSURE CONFORMANCE WITH THE PLANS AND SPECIFICATIONS. SHOP DRAWINGS SHOULD BE SENT IN TRIPLICATE TO THE DESIGN ENGINEER FOR REVIEW AND APPROVAL PRIOR TO INSTALLATION.

22. EXISTING UTILITIES SHALL BE DIGSAFED BEFORE CONSTRUCTION.

23. ALL WATER LINES SHALL HAVE TESTABLE BACKFLOW PREVENTERS AT THE ENTRANCE TO EACH BUILDING.

24. ALL GRAVITY SEWER PIPE, MANHOLES, AND FORCE MAINS SHALL BE TESTED ACCORDING TO NHDES STANDARDS OF DESIGN AND CONSTRUCTION FOR SEWAGE AND WASTEWATER TREATMENT FACILITIES, CHAPTER ENV-WQ 700. ADOPTED ON 10-15-14.

25. ENV-WQ 704.06 GRAVITY SEWER PIPE TESTING: GRAVITY SEWERS SHALL BE TESTED FOR WATER TIGHTNESS BY USE OF LOW-PRESSURE AIR TESTS CONFORMING WITH ASTM F1417-92(2005) OR UNI-BELL PVC PIPE ASSOCIATION UNI-B-6. LINES SHALL BE CLEANED AND VISUALLY INSPECTED AND TRUE TO LINE AND GRADE. DEFLECTION TESTS SHALL TAKE PLACE AFTER 30 DAYS FOLLOWING INSTALLATION AND THE MAXIMUM ALLOWABLE DEFLECTION OF FLEXIBLE SEWER PIPE SHALL BE 5% OF AVERAGE INSIDE DIAMETER. A RIGID BALL OR MANDREL WITH A DIAMETER OF AT LEAST 95% OF THE AVERAGE INSIDE PIPE DIAMETER SHALL BE USED FOR TESTING PIPE DEFLECTION. THE DEFLECTION TEST SHALL BE CONDUCTED WITHOUT MECHANICAL PULLING DEVICES.

26. ENV-WQ 704.17 SEWER MANHOLE TESTING: SHALL BE TESTED FOR LEAKAGE USING A VACUUM TEST PRIOR TO BACKFILLING AND PLACEMENT OF

SANITARY SEWER LINES SHALL BE LOCATED AT LEAST TEN (10) FEET HORIZONTALLY FROM AN EXISTING OR PROPOSED WATER LINE. WHEN A SEWER LINE CROSSES UNDER A WATER LINE, THE SEWER PIPE JOINTS SHALL BE LOCATED AT LEAST 6 FEET HORIZONTALLY FROM THE WATERMAIN. THE SEWER LINE SHALL ALSO MAINTAIN A VERTICAL SEPARATION OF NOT LESS THAN 18 INCHES.

SEWERS SHALL BE BURIED TO A MINIMUM DEPTH OF 6 FEET BELOW GRADE IN ALL ROADWAY LOCATIONS, AND TO A MINIMUM DEPTH OF 4 FEET BELOW GRADE IN ALL CROSS-COUNTRY LOCATIONS. PROVIDE TWO-INCHES OF R-10 FOAM BOARD INSULATION 2-FOOT WIDE TO BE INSTALLED 6-INCHES OVER SEWER PIPE IN AREAS WHERE DEPTH IS NOT ACHIEVED. A WAIVER FROM THE DEPARTMENT OF ENVIRONMENTAL SERVICES WASTEWATER ENGINEERING BUREAU IS REQUIRED PRIOR TO INSTALLING SEWER AT LESS THAN MINIMUM COVER.

29. THE CONTRACTOR SHALL MINIMIZE THE DISRUPTIONS TO THE EXISTING SEWER FLOWS AND THOSE INTERRUPTIONS SHALL BE LIMITED TO FOUR (4) HOURS OR LESS AS DESIGNATED BY THE CITY SEWER DEPARTMENT.

30. LIGHTING CONDUIT SHALL BE SCHEDULE 40 PVC, AND SHALL BE INSTALLED IN CONFORMANCE WITH THE NATIONAL ELECTRIC CODE. CONTRACTOR SHALL PROVIDE EXCAVATION AND BACKFILL.

31. ALL TRENCHING, PIPE LAYING, AND BACKFILLING SHALL BE IN ACCORDANCE WITH FEDERAL OSHA REGULATIONS.

32. DISINFECTION OF WATER MAINS SHALL BE CARRIED OUT IN STRICT ACCORDANCE WITH AWWA STANDARD C651, LATEST EDITION. THE BASIC

PROCEDURE TO BE FOLLOWED FOR DISINFECTING WATER MAINS IS AS FOLLOWS: PREVENT CONTAMINATING MATERIALS FROM ENTERING THE WATER MAIN DURING STORAGE, CONSTRUCTION, OR REPAIR.

REMOVE, BY FLUSHING OR OTHER MEANS, THOSE MATERIALS THAT MAY HAVE ENTERED THE WATER MAINS. CHLORINATE ANY RESIDUAL CONTAMINATION THAT MAY REMAIN, AND FLUSH THE CHLORINATED WATER FROM THE MAIN.

PROTECT THE EXISTING DISTRIBUTION SYSTEM FROM BACKFLOW DUE TO HYDROSTATIC PRESSURE TEST AND DISINFECTION PROCEDURES. DETERMINE THE BACTERIOLOGICAL QUALITY BY LABORATORY TEST AFTER DISINFECTION. MAKE FINAL CONNECTION OF THE APPROVED NEW WATER MAIN TO THE ACTIVE DISTRIBUTION SYSTEM

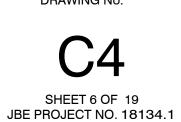
DOMESTIC SHUTOFFS & VALVES SHALL BE PAINTED BLUE. FIRE SERVICE SHUTOFFS & VALVES SHALL BE PAINTED RED. COORDINATE WITH CITY

OF PORTSMOUTH DEPARTMENT OF PUBLIC WORKS FOR EXACT COLORS.

34. SEWER TRENCH DAMS SHALL BE INSTALLED EVERY 75' ALONG GRAVITY SEWER PIPE.

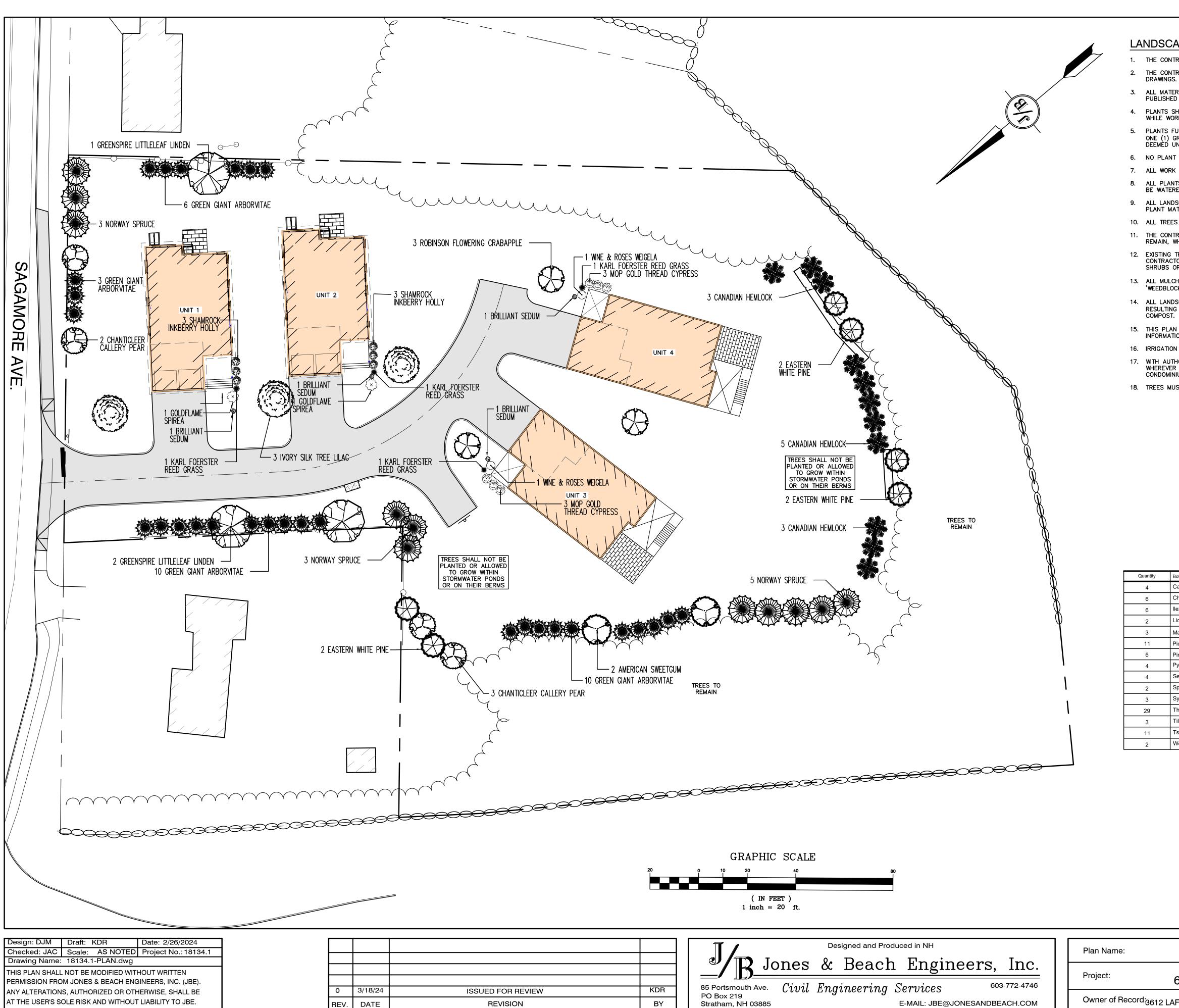
35. IF IRRIGATION IS TO BE USED, THE PIPING SYSTEM SHALL BE REVIEWED AND APPROVED BY THE PORTSMOUTH CITY PLANNER, CITY ENGINEER, AND THE WATER DEPARTMENT PRIOR TO INSTALLATION.

36. WATER LINE TO BE CONSTRUCTED PER CITY OF PORTSMOUTH SPECIFICATIONS.


37. AN AS-BUILT PLAN OF THE WATER LINE IS TO BE PREPARED AND SUBMITTED TO THE CITY OF PORTSMOUTH DEPARTMENT OF PUBLIC WORKS.

PROJECT PARCEL **CITY OF PORTSMOUTH** TAX MAP 222, LOT 19


TOTAL LOT AREA 84,795 SQ. FT. 1.95 ACRES



DRAWING No.

635 SAGAMORE DEVELOPMENT LLC 3612 LAFAYETTE RD., DEPT 4, PORTSMOUTH, NH 03801 BK 6332 PG 1158

uth Ave.	Civil	Engin
H 03885		

LANDSCAPE NOTES:

1. THE CONTRACTOR SHALL LOCATE AND VERIFY THE EXISTENCE OF ALL UTILITIES PRIOR TO STARTING WORK.

THE CONTRACTOR SHALL SUPPLY ALL PLANT MATERIALS IN QUANTITIES SUFFICIENT TO COMPLETE THE PLANTINGS SHOWN ON THE

ALL MATERIAL SHALL CONFORM TO THE GUIDELINES ESTABLISHED BY THE CURRENT AMERICAN STANDARD FOR NURSERY STOCK PUBLISHED BY THE AMERICAN ASSOCIATION OF NURSERYMEN.

4. PLANTS SHALL BE SUBJECT TO INSPECTION AND APPROVAL AT THE PLACE OF GROWTH, UPON DELIVERY OR AT THE JOB SITE WHILE WORK IS ON-GOING FOR CONFORMITY TO SPECIFIED QUALITY, SIZE AND VARIETY. 5. PLANTS FURNISHED IN CONTAINERS SHALL HAVE THE ROOTS WELL ESTABLISHED IN THE SOIL MASS AND SHALL HAVE AT LEAST

ONE (1) GROWING SEASON. ROOT-BOUND PLANTS OR INADEQUATELY SIZED CONTAINERS TO SUPPORT THE PLANT MAY BE DEEMÉD UNACCEPTABLE.

6. NO PLANT SHALL BE PUT IN THE GROUND BEFORE GRADING HAS BEEN COMPLETED.

7. ALL WORK AND PLANTS SHALL BE DONE, INSTALLED AND DETAILED IN STRICT ACCORDANCE WITH PROJECT SPECIFICATIONS.

8. ALL PLANTS SHALL BE WATERED THOROUGHLY TWICE DURING THE FIRST 24-HOUR PERIOD AFTER PLANTING. ALL PLANTS SHALL BE WATERED WEEKLY, OR MORE OFTEN IF NECESSARY, DURING THE FIRST GROWING SEASON.

9. ALL LANDSCAPE AREAS TO BE GRASS COMMON TO REGION, EXCEPT FOR INTERIOR LANDSCAPED ISLANDS OR WHERE OTHER PLANT MATERIAL IS SPECIFIED.

10. ALL TREES AND SHRUBS SHALL BE PLANTED IN MULCH BEDS WITH EDGE STRIPS TO SEPARATE TURF GRASS AREAS. 11. THE CONTRACTOR SHALL REMOVE WEEDS, ROCKS, CONSTRUCTION ITEMS, ETC. FROM ANY LANDSCAPE AREA SO DESIGNATED TO

REMAIN, WHETHER ON OR OFF-SITE. GRASS SEED OR PINE BARK MULCH SHALL BE APPLIED AS DEPICTED ON PLANS. 12. EXISTING TREES TO REMAIN SHALL BE PROTECTED WITH TEMPORARY SNOW FENCING AT THE DRIPLINE OF THE TREE. THE CONTRACTOR SHALL NOT STORE VEHICLES OR MATERIALS WITHIN THE LANDSCAPED AREAS. ANY DAMAGE TO EXISTING TREES, SHRUBS OR LAWN SHALL BE REPAIRED BY THE CONTRACTOR AT NO ADDITIONAL COST TO THE OWNER.

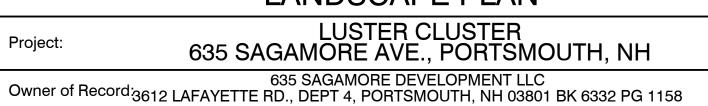
13. ALL MULCH AREAS SHALL RECEIVE A 3" LAYER OF SHREDDED PINE BARK MULCH OVER A 10 MIL WEED MAT EQUAL TO 'WEEDBLOCK' BY EASY GARDENER OR DEWITT WEED BARRIER.

14. ALL LANDSCAPED AREAS SHALL HAVE SELECT MATERIALS REMOVED TO A DEPTH OF AT LEAST 9" BELOW FINISH GRADE. THE RESULTING VOID IS TO BE FILLED WITH A MINIMUM OF 9" HIGH-QUALITY SCREENED LOAM AMENDED WITH 3" OF AGED ORGANIC

15. THIS PLAN IS INTENDED FOR LANDSCAPING PURPOSES ONLY. REFER TO CIVIL/SITE DRAWINGS FOR OTHER SITE CONSTRUCTION INFORMATION.

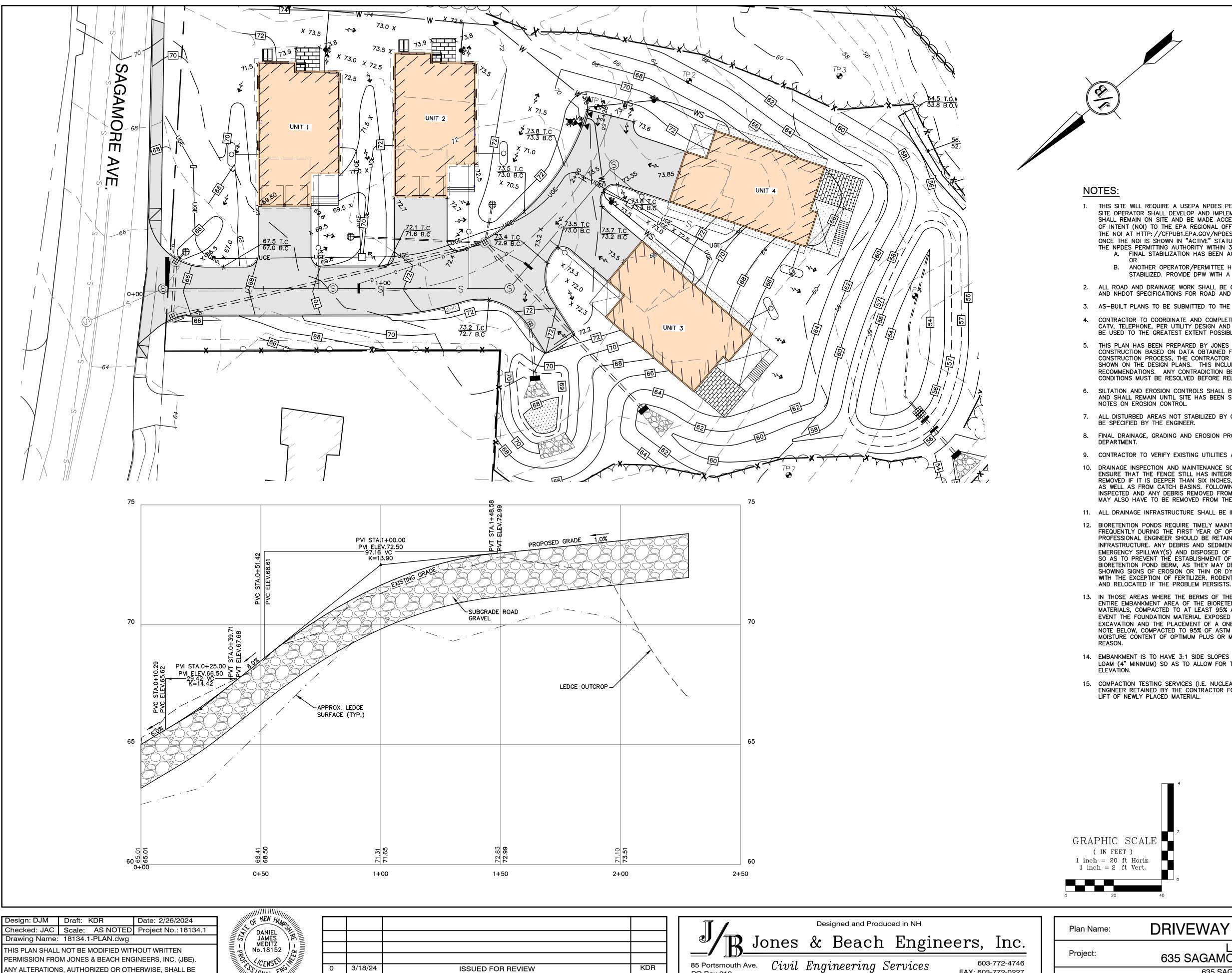
16. IRRIGATION PIPING SYSTEM SHALL BE REVIEWED AND APPROVED BY OWNER AND ENGINEER PRIOR TO INSTALLATION.

17. WITH AUTHORIZATION OF THE PROJECT ENGINEER, PROPOSED TREES ALONG EDGE OF WOODED BUFFER SHALL BE PLACED WHEREVER NECESSARY IN ORDER TO COVER GAPS IN EXISTING WOODED BUFFER IN ORDER TO BLOCK VISIBILITY FROM TIDEWATCH CONDOMINIUM PROPERTY.


18. TREES MUST NOT BE PLANTED ON BERMS OF STORMWATER PONDS UNDER ANY CIRCUMSTANCES.

Botanical Name	Common Name	Size
Calamagrostis x acutiflora 'Karl Foerster'	KARL FOERSTER REED GRASS	2 Gallon
Chamaecyparis pisifera 'Mop'	MOP GOLD THREAD CYPRESS	5 Gallon
llex glabra 'Shamrock'	SHAMROCK INKBERRY HOLLY	5 Gallon
Liquidambar styraciflua	AMERICAN SWEETGUM	3" Caliper
Malus x 'Robinson'	ROBINSON FLOWERING CRABAPPLE	2" Caliper
Picea abies	NORWAY SPRUCE	8-9 Ft. Ht.
Pinus strobus	EASTERN WHITE PINE	8-9 Ft. Ht.
Pyrus calleryana 'Chanticleer'	CHANTICLEER CALLERY PEAR	2.5" Caliper
Sedum spectabile 'Brilliant'	BRILLIANT SEDUM	1 Gallon
Spiraea japonica 'Goldflame'	GOLDFLAME SPIREA	5 Gallon
Syringa reticulata 'Ivory Silk'	IVORY SILK TREE LILAC	2" Caliper
Thuja plicata 'Green Giant'	GREEN GIANT ARBORVITAE	7-8 Ft. Ht.
Tilia cordata 'Greenspire'	GREENSPIRE LITTLELEAF LINDEN	3" Caliper
Tsuga canadensis	CANADIAN HEMLOCK	8-9 Ft. Ht.
Weigela florida 'Alexandra'	WINE & ROSES WEIGELA	5 Gallon

PROJECT PARCEL CITY OF PORTSMOUTH TAX MAP 222, LOT 19


TOTAL LOT AREA 84,795 SQ. FT. 1.95 ACRES

SHEET 8 OF19 JBE PROJECT NO. 18134.1

DRAWING No.

ANY ALTERATIONS, AUTHORIZED OR OTHERWISE, SHALL BE T THE USER'S SOLE RISK AND WITHOUT LIABILITY TO JBE.

BACCENSED Duilder 171111 03/18/2024

3/18/24 **ISSUED FOR REVIEW** REV. DATE REVISION

ΒY

FAX: 603-772-0227 E-MAIL: JBE@JONESANDBEACH.COM

THIS SITE WILL REQUIRE A USEPA NPDES PERMIT FOR STORMWATER DISCHARGE FOR THE CONSTRUCTION SITE. THE CONSTRUCTION SITE OPERATOR SHALL DEVELOP AND IMPLEMENT A CONSTRUCTION STORM WATER POLLUTION PREVENTION PLAN (SWPPP), WHICH SHALL REMAIN ON SITE AND BE MADE ACCESSIBLE TO THE PUBLIC. THE CONSTRUCTION SITE OPERATOR SHALL SUBMIT A NOTICE OF INTENT (NOI) TO THE EPA REGIONAL OFFICE SEVEN DAYS PRIOR TO COMMENCEMENT OF ANY WORK ON SITE. EPA WILL POST THE NOI AT HTTP: //CFPUB1.EPA.GOV/NPDES/STORMWATER/NOI/NOISEARCH.CFM. AUTHORIZATION IS GRANTED UNDER THE PERMIT ONCE THE NOI IS SHOWN IN "ACTIVE" STATUS ON THIS WEBSITE. A COMPLETED NOTICE OF TERMINATION SHALL BE SUBMITTED TO THE NPDES PERMITTING AUTHORITY WITHIN 30 DAYS AFTER EITHER OF THE FOLLOWING CONDITIONS HAVE BEEN MET: A. FINAL STABILIZATION HAS BEEN ACHIEVED ON ALL PORTIONS OF THE SITE FOR WHICH THE PERMITTEE IS RESPONSIBLE;

ANOTHER OPERATOR/PERMITTEE HAS ASSUMED CONTROL OVER ALL AREAS OF THE SITE THAT HAVE NOT BEEN FINALLY STABILIZED. PROVIDE DPW WITH A COPY OF THE NOTICE OF TERMINATION (NOT).

2. ALL ROAD AND DRAINAGE WORK SHALL BE CONSTRUCTED IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS FOR THE CITY, AND NHDOT SPECIFICATIONS FOR ROAD AND BRIDGE CONSTRUCTION, WHICHEVER IS MORE STRINGENT.

3. AS-BUILT PLANS TO BE SUBMITTED TO THE CITY PRIOR TO ACCEPTANCE OF THE ROADWAY.

CONTRACTOR TO COORDINATE AND COMPLETE ALL WORK REQUIRED FOR THE RELOCATION AND/OR INSTALLATION OF ELECTRIC, CATV, TELEPHONE, PER UTILITY DESIGN AND STANDARDS. LOCATIONS SHOWN ARE APPROXIMATE. LOW PROFILE STRUCTURES SHALL BE USED TO THE GREATEST EXTENT POSSIBLE.

5. THIS PLAN HAS BEEN PREPARED BY JONES & BEACH ENGINEERS, INC. FOR MUNICIPAL AND STATE APPROVALS AND FOR CONSTRUCTION BASED ON DATA OBTAINED FROM ON-SITE FIELD SURVEY AND EXISTING MUNICIPAL RECORDS. THROUGHOUT THE CONSTRUCTION PROCESS, THE CONTRACTOR SHALL INFORM THE ENGINEER IMMEDIATELY OF ANY FIELD DISCREPANCY FROM DATA SHOWN ON THE DESIGN PLANS. THIS INCLUDES ANY UNFORESEEN CONDITIONS, SUBSURFACE OR OTHERWISE, FOR EVALUATION AND RECOMMENDATIONS. ANY CONTRADICTION BETWEEN ITEMS OF THIS PLAN/PLAN SET, OR BETWEEN THE PLANS AND ON-SITE CONDITIONS MUST BE RESOLVED BEFORE RELATED CONSTRUCTION HAS BEEN INITIATED.

SILTATION AND EROSION CONTROLS SHALL BE INSTALLED PRIOR TO CONSTRUCTION, SHALL BE MAINTAINED DURING CONSTRUCTION, AND SHALL REMAIN UNTIL SITE HAS BEEN STABILIZED WITH PERMANENT VEGETATION. SEE DETAIL SHEET E1 FOR ADDITIONAL

7. ALL DISTURBED AREAS NOT STABILIZED BY OCTOBER 15TH SHALL BE COVERED WITH AN EROSION CONTROL BLANKET. PRODUCT TO

FINAL DRAINAGE, GRADING AND EROSION PROTECTION MEASURES SHALL CONFORM TO REGULATIONS OF THE PUBLIC WORKS

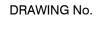
9. CONTRACTOR TO VERIFY EXISTING UTILITIES AND TO NOTIFY ENGINEER OF ANY DISCREPANCY IMMEDIATELY.

10. DRAINAGE INSPECTION AND MAINTENANCE SCHEDULE: SILT FENCING WILL BE INSPECTED DURING AND AFTER STORM EVENTS TO ENSURE THAT THE FENCE STILL HAS INTEGRITY AND IS NOT ALLOWING SEDIMENT TO PASS. SEDIMENT BUILD UP IN SWALES WILL BE REMOVED IF IT IS DEEPER THAN SIX INCHES, AND IS TO BE REMOVED FROM SUMPS BELOW THE INLET OF CULVERTS SEMIANNUALLY, AS WELL AS FROM CATCH BASINS. FOLLOWING MAJOR STORM EVENTS, THE STAGE DISCHARGE OUTLET STRUCTURES ARE TO BE INSPECTED AND ANY DEBRIS REMOVED FROM THE ORIFICE, TRASH TRACK AND EMERGENCY SPILL WAY. INFREQUENTLY, SEDIMENT MAY ALSO HAVE TO BE REMOVED FROM THE SUMP OF THE STRUCTURE.

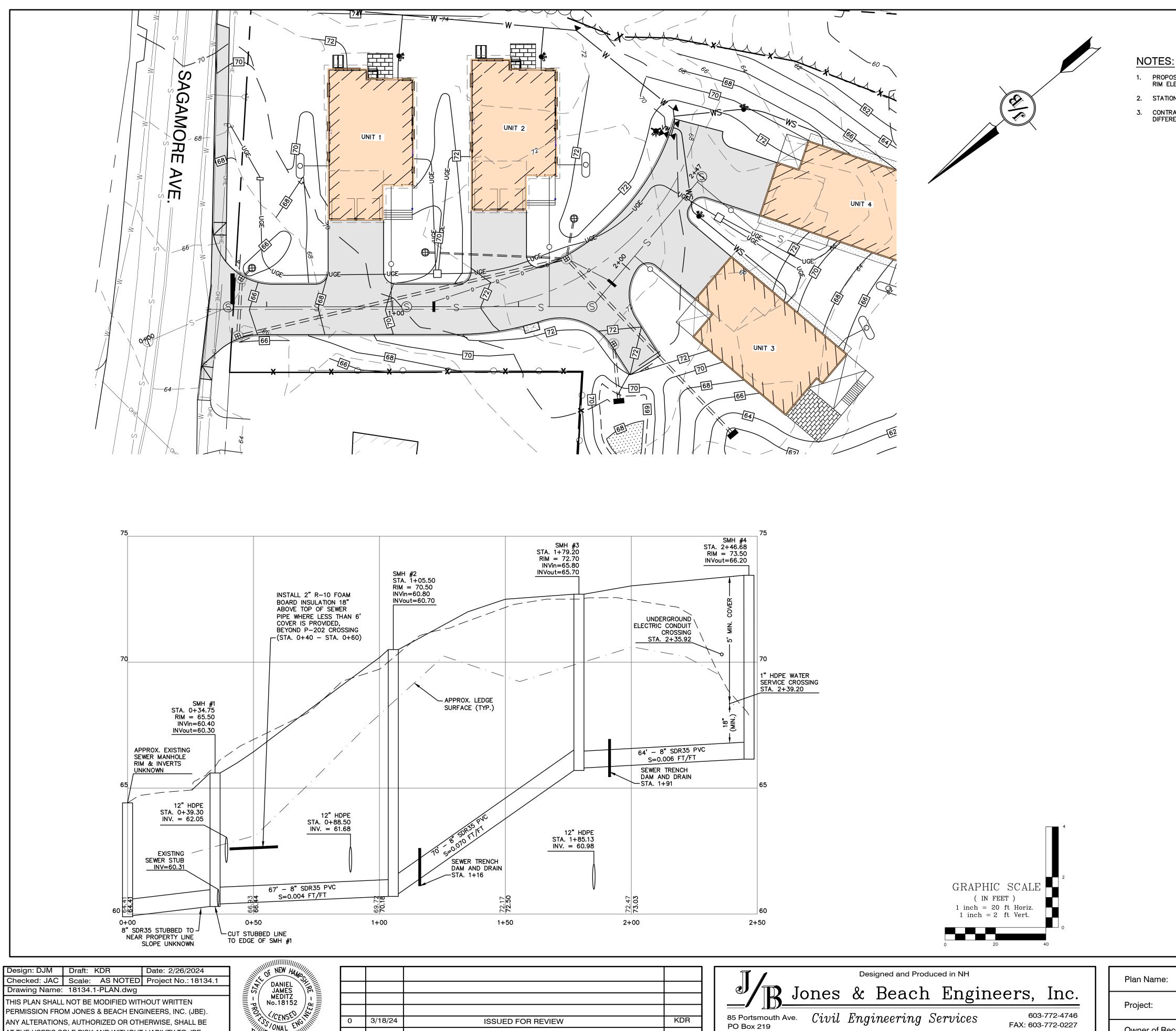
11. ALL DRAINAGE INFRASTRUCTURE SHALL BE INSTALLED AND STABILIZED PRIOR TO DIRECTING ANY RUNOFF TO IT.

12. BIORETENTION PONDS REQUIRE TIMELY MAINTENANCE AND SHOULD BE INSPECTED AFTER EVERY MAJOR STORM EVENT, AS WELL AS FREQUENTLY DURING THE FIRST YEAR OF OPERATION, AND ANNUALLY THEREAFTER. EVERY FIVE YEARS, THE SERVICES OF A PROFESSIONAL ENGINEER SHOULD BE RETAINED TO PERFORM A THOROUGH INSPECTION OF THE BIORETENTION POND AND ITS INFRASTRUCTURE. ANY DEBRIS AND SEDIMENT ACCUMULATIONS SHOULD BE REMOVED FROM THE OUTLET STRUCTURE(S) AND EMERGENCY SPILLWAY(S) AND DISPOSED OF PROPERLY. BIORETENTION POND BERMS SHOULD BE MOWED AT LEAST ONCE ANNUALLY SO AS TO PREVENT THE ESTABLISHMENT OF WOODY VEGETATION. TREES SHOULD NEVER BE ALLOWED TO GROW ON A BIORETENTION POND BERM, AS THEY MAY DESTABILIZE THE STRUCTURE AND INCREASE THE POTENTIAL FOR FAILURE. AREAS SHOWING SIGNS OF EROSION OR THIN OR DYING VEGETATION SHOULD BE REPAIRED IMMEDIATELY BY WHATEVER MEANS NECESSARY, WITH THE EXCEPTION OF FERTILIZER. RODENT BORROWS SHOULD BE REPAIRED IMMEDIATELY AND THE ANIMALS SHOULD BE TRAPPED

13. IN THOSE AREAS WHERE THE BERMS OF THE BIORETENTION SYSTEMS MUST BE CONSTRUCTED BY THE PLACEMENT OF FILL, THE ENTIRE EMBANKMENT AREA OF THE BIORETENTION PONDS SHALL BE EXCAVATED TO PROPOSED GRADE, STRIPPED OF ALL ORGANIC MATERIALS, COMPACTED TO AT LEAST 95% AND SCARIFIED PRIOR TO THE PLACEMENT OF THE EMBANKMENT MATERIAL. IN THE EVENT THE FOUNDATION MATERIAL EXPOSED DOES NOT ALLOW THE SPECIFIED COMPACTION, AN ADDITIONAL ONE FOOT (1') OF EXCAVATION AND THE PLACEMENT OF A ONE FOOT (1') THICK, TWELVE FOOT (12') WIDE PAD OF THE MATERIAL DESCRIBED IN THE NOTE BELOW, COMPACTED TO 95% OF ASTM D-1557 MAY BE NECESSARY. PLACEMENT AND COMPACTION SHOULD OCCUR AT A MOISTURE CONTENT OF OPTIMUM PLUS OR MINUS 3%, AND NO FROZEN OR ORGANIC MATERIAL SHOULD BE PLACED WITHIN FOR ANY


14. EMBANKMENT IS TO HAVE 3:1 SIDE SLOPES (MAX.) AND IS TO BE BROUGHT TO SPECIFIED GRADES PRIOR TO THE ADDITION OF LOAM (4" MINIMUM) SO AS TO ALLOW FOR THE COMPACTION OF THE STRUCTURE OVER TIME WHILE MAINTAINING THE PROPER BERM

15. COMPACTION TESTING SERVICES (I.E. NUCLEAR DENSITY TESTS) ARE TO BE PERFORMED BY AN INDEPENDENT GEOTECHNICAL ENGINEER RETAINED BY THE CONTRACTOR FOR ROADWAY CONSTRUCTION, AND ON THE FOUNDATION OF THE BERM AND ON EVERY


DRIVEWAY PLAN AND PROFILE

LUSTER CLUSTER 635 SAGAMORE AVE., PORTSMOUTH, NH

635 SAGAMORE DEVELOPMENT LLC Owner of Record: 3612 LAFAYETTE RD., DEPT 4, PORTSMOUTH, NH 03801 BK 6332 PG 1158

P SHEET 9 OF 19 JBE PROJECT NO. 18134.1

BY

Stratham, NH 03885

ANY ALTERATIONS, AUTHORIZED OR OTHERWISE, SHALL BE AT THE USER'S SOLE RISK AND WITHOUT LIABILITY TO JBE.

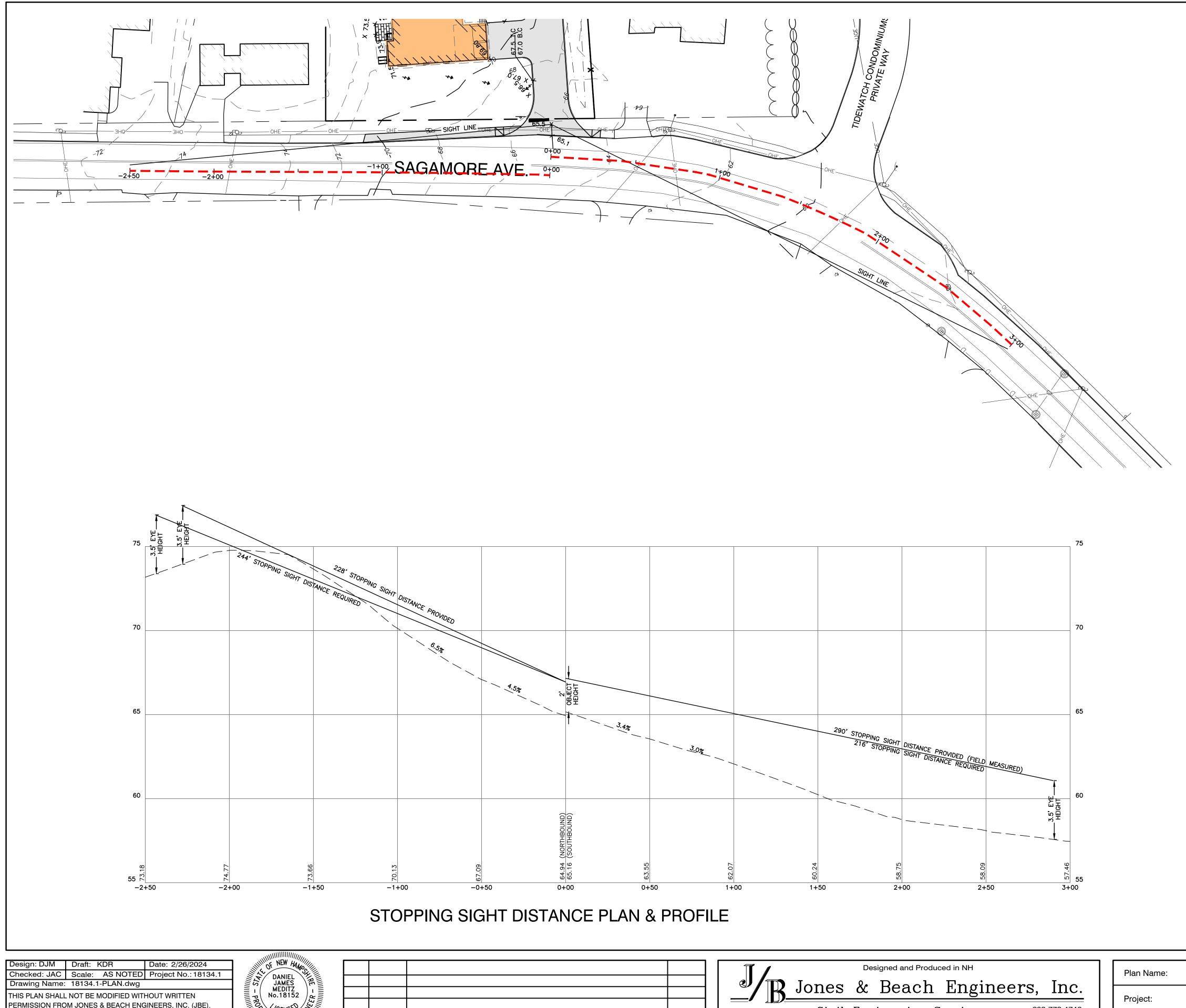
No.18152 CENSED SS /ONAL ENGINIE 03/18/2024

ISSUED FOR REVIEW DATE REVISION REV.

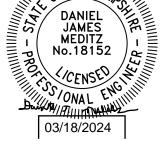
E-MAIL: JBE@JONESANDBEACH.COM

635 SAGAMORE DEVELOPMENT LLC Owner of Record: 3612 LAFAYETTE RD., DEPT 4, PORTSMOUTH, NH 03801 BK 6332 PG 1158

PROPOSED GRADES SHOWN HEREON ARE APPROXIMATE. REFER TO SHEETS C3 AND P1 FOR GRADING OF SITE AND DRIVEWAY. SET RIM ELEVATIONS OF SEWER STRUCTURES FLUSH WITH PROPOSED GRADE. 2. STATIONS REFER TO CENTERLINE OF SEWER STRUCTURE OR CROSSING DRAINAGE/WATER PIPE.

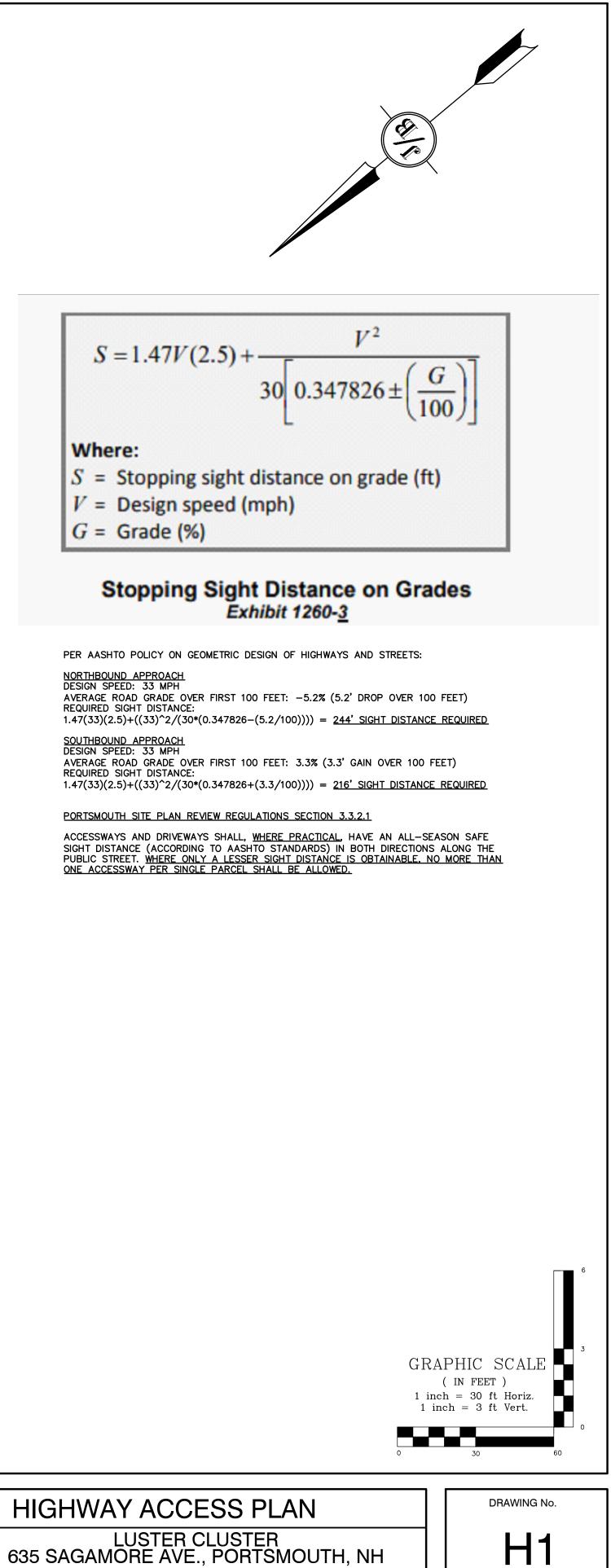

CONTRACTOR TO CONFIRM ACTUAL EXISTING INVERT OF STUB IN THE FIELD AND NOTIFY ENGINEER IF IT IS MORE THAN 0.1' DIFFERENT FROM THE STATED INVERT.

SEWER PLAN AND PROFILE

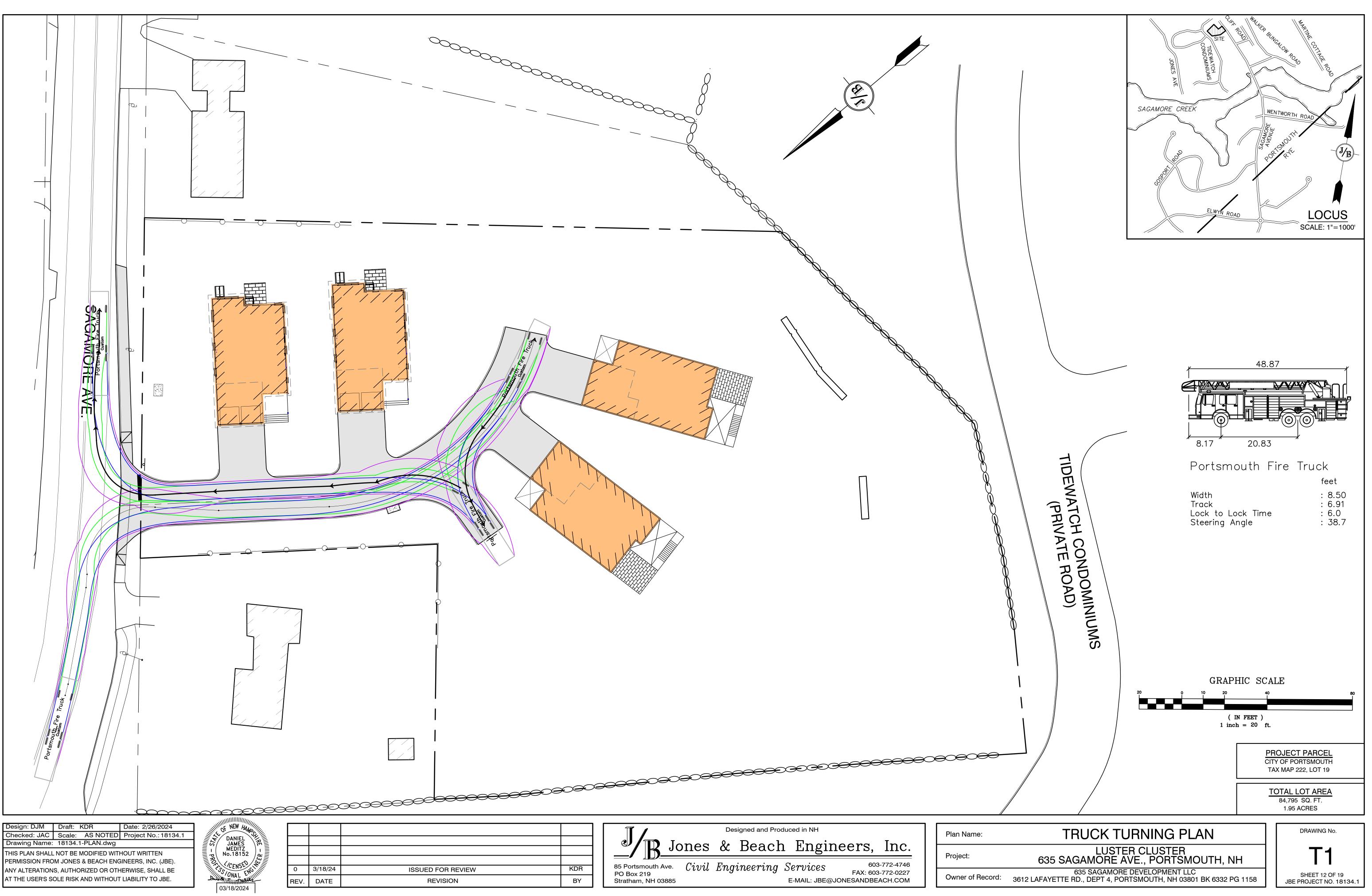

LUSTER CLUSTER 635 SAGAMORE AVE., PORTSMOUTH, NH

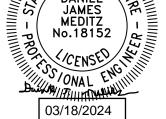
DRAWING No.

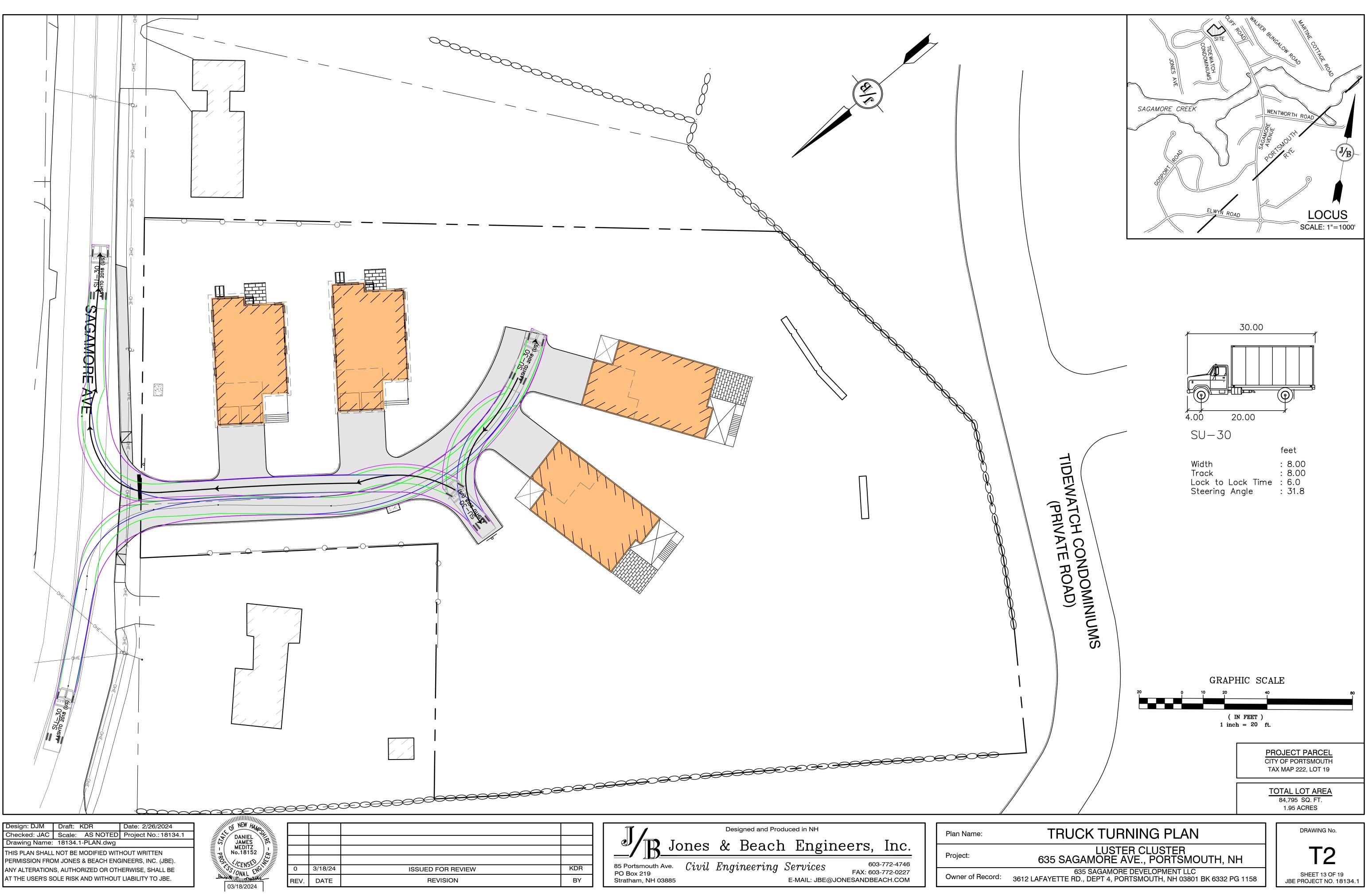
P2 SHEET 10 OF19 JBE PROJECT NO. 18134.1

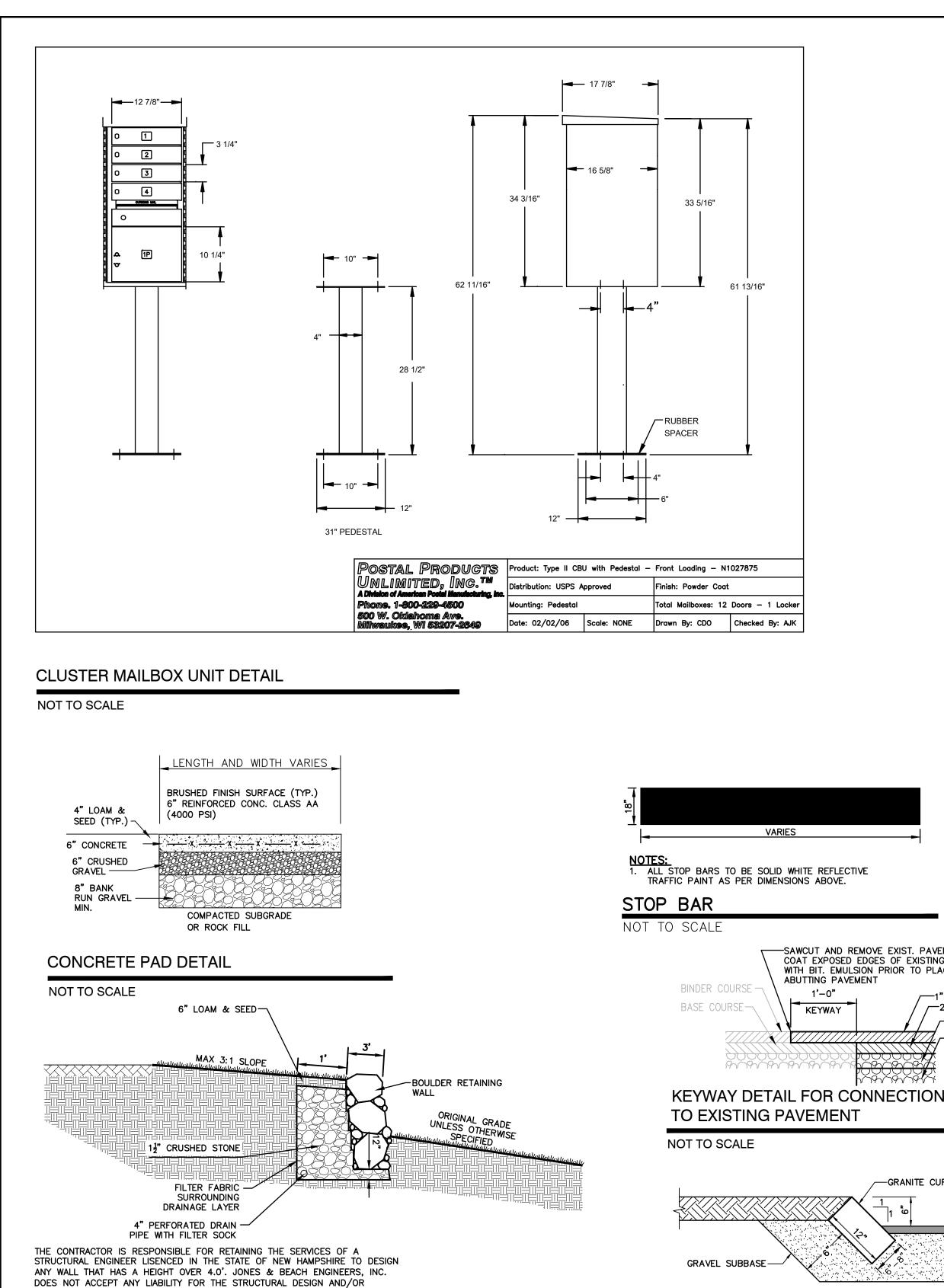


PERMISSION FROM JONES & BEACH ENGINEERS, INC. (JBE). ANY ALTERATIONS, AUTHORIZED OR OTHERWISE, SHALL BE T THE USER'S SOLE RISK AND WITHOUT LIABILITY TO JBE.


0	3/18/24	ISSUED FOR REVIEW
REV.	DATE	REVISION


Plan Name:		Designed and Produced in NH				
C. Project:	B Jones & Beach Engineers, Inc.					
746	603-772-4746	ngineering Services	Civil	85 Portsmouth Ave.	KDR	
Owner of Poord:	FAX: 603-772-0227 IONESANDBEACH.COM	• •		PO Box 219 Stratham, NH 03885	BY	



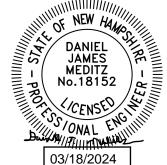

635 SAGAMORE DEVELOPMENT LLC 3612 LAFAYETTE RD., DEPT 4, PORTSMOUTH, NH 03801 BK 6332 PG 1158

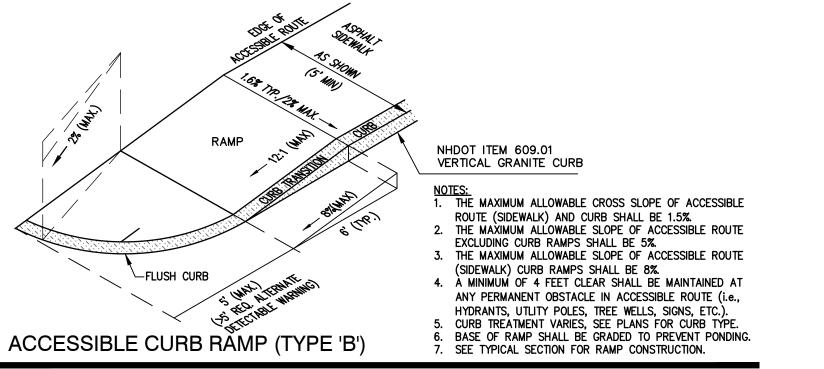
H1 SHEET 11 OF 19 JBE PROJECT NO. 18134.1

NOTES:

SLOPED GRANITE CURB

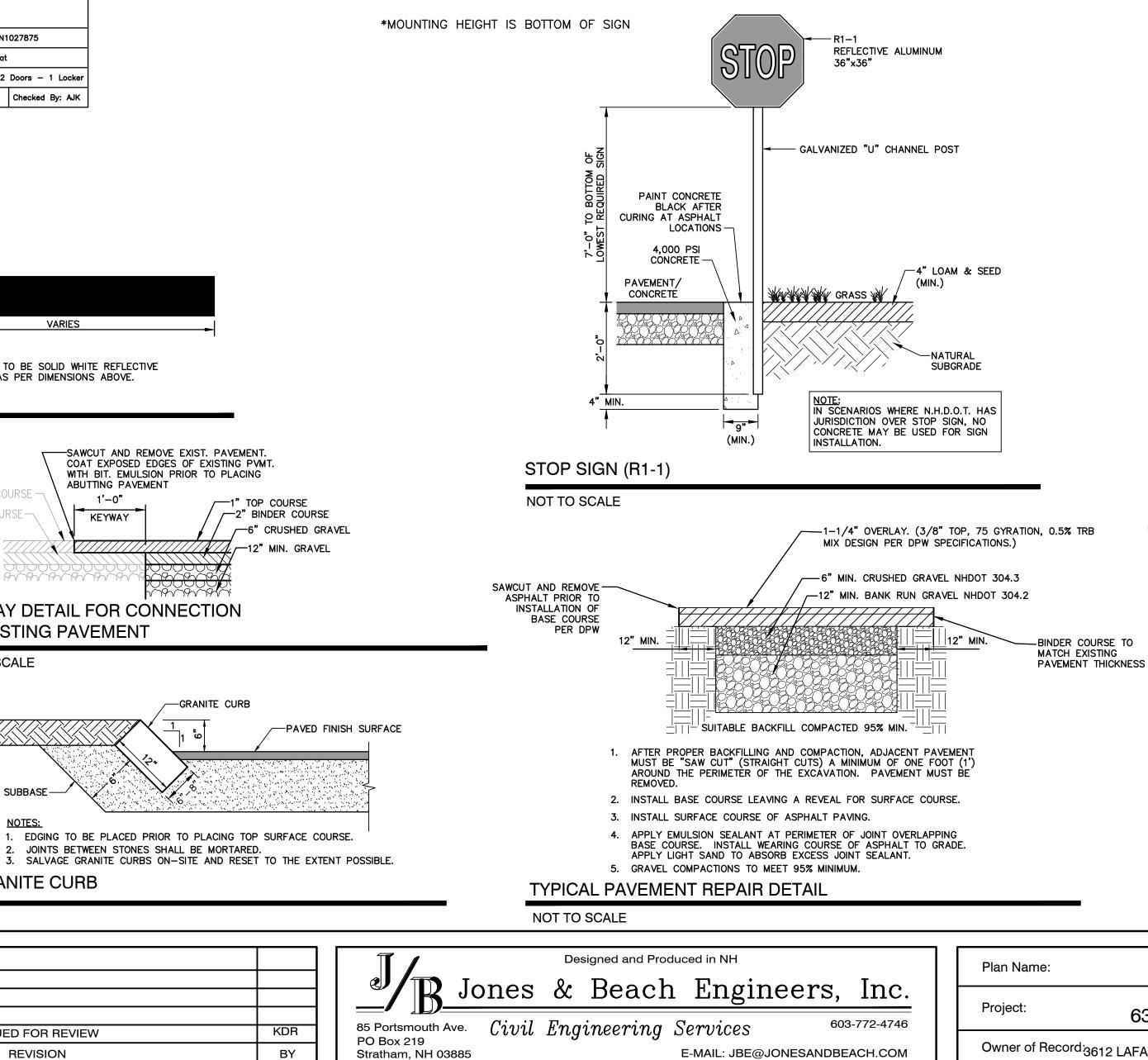
NOT TO SCALE

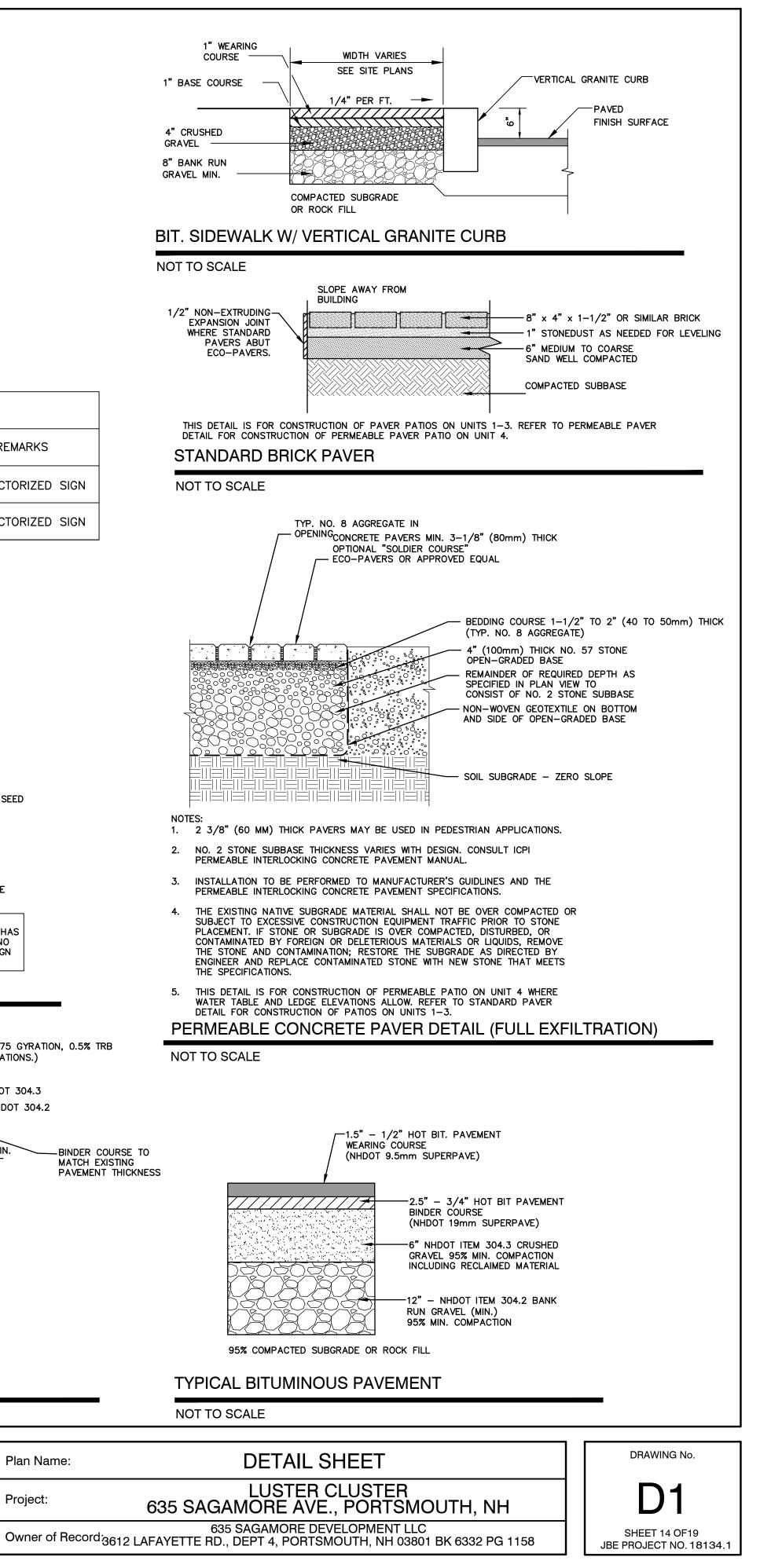

3/18/24 **ISSUED FOR REVIEW** 0 REVISION DATE REV.

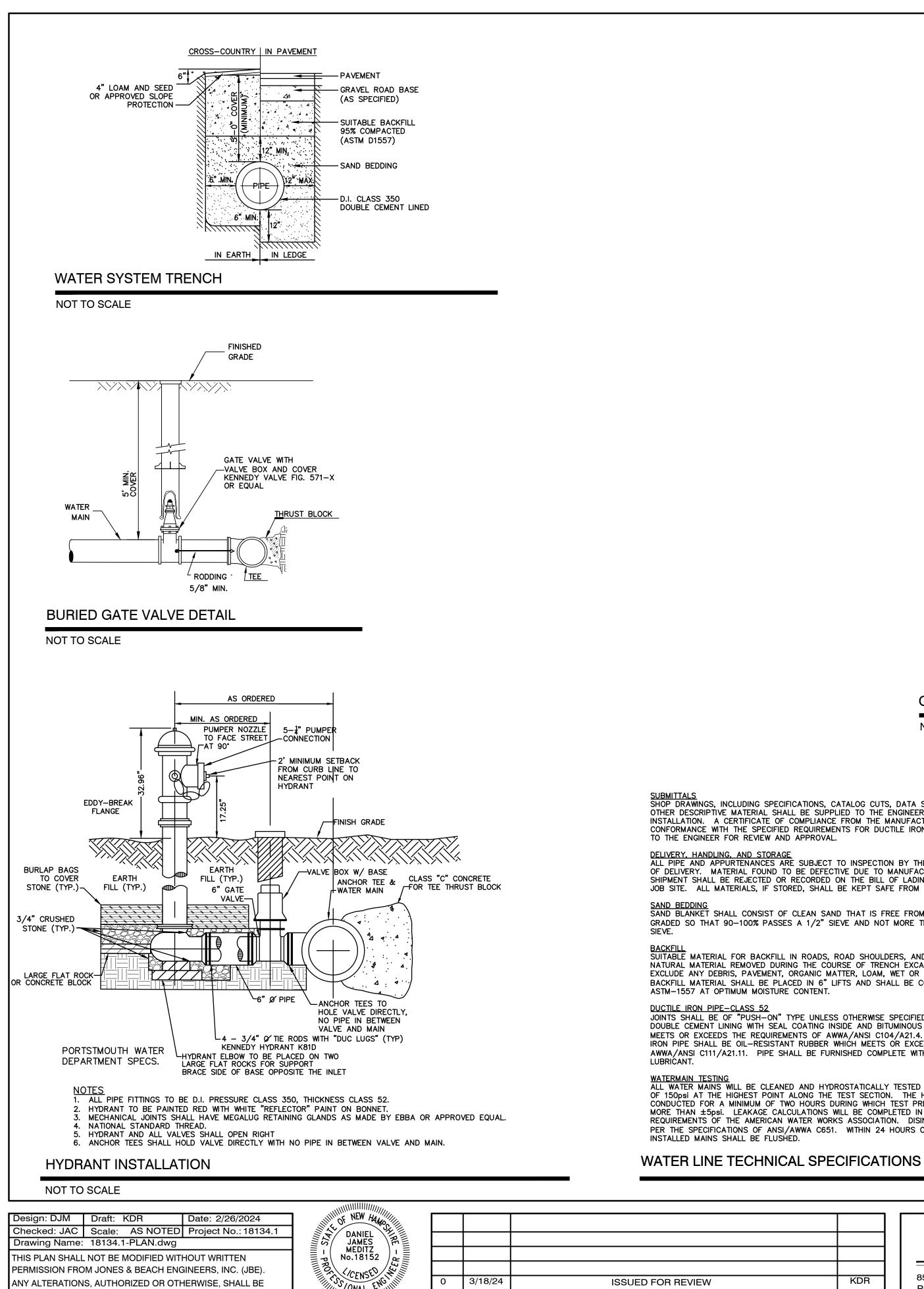

INSTALLATION OF ANY RETAINING WALL OF ANY TYPE ABOVE THIS HEIGHT. THIS DETAIL IS INTENDED TO PROVIDE AN EXAMPLE OF THE RETAINING WALL FOR PLANNING PURPOSES ONLY AND IS SPECIFICALLY NOT INTENDED FOR USE BY THE CONTRACTOR IN ANY CONSTRUCTION-RELATED ACTIVITY FOR A WALL GREATER THAN 4.0' IN HEIGHT.

BOULDER RETAINING WALL CROSS SECTION

NOT TO SCALE

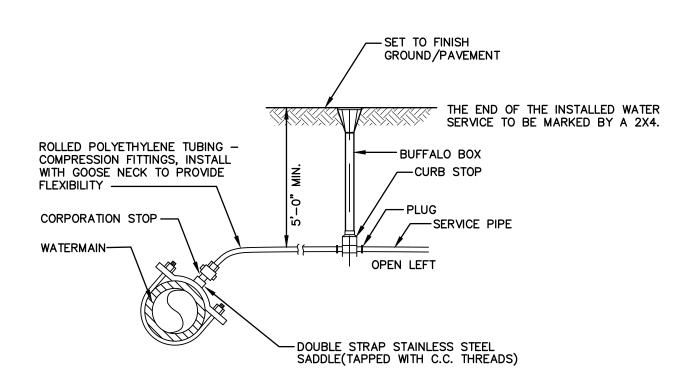

Design: DJM Draft: KDR Date: 2/26/2024 Checked: JAC Scale: AS NOTED Project No.: 18134.1 Drawing Name: 18134.1-PLAN.dwg THIS PLAN SHALL NOT BE MODIFIED WITHOUT WRITTEN PERMISSION FROM JONES & BEACH ENGINEERS, INC. (JBE). ANY ALTERATIONS, AUTHORIZED OR OTHERWISE, SHALL BE AT THE USER'S SOLE RISK AND WITHOUT LIABILITY TO JBE.





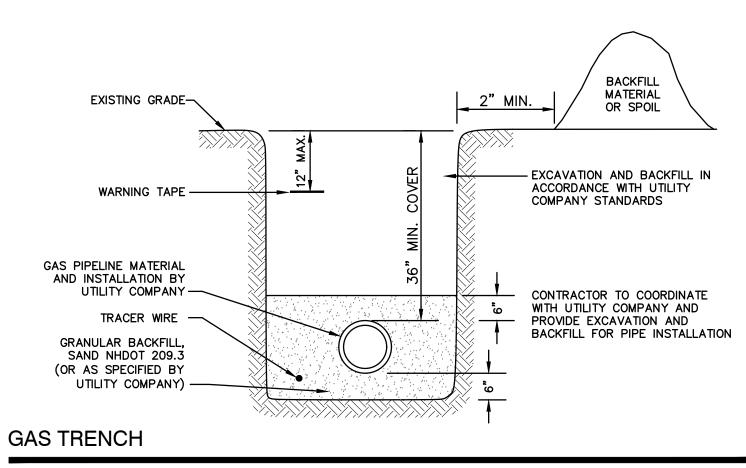
NOT TO SCALE

TRAFFIC CONTROL SCHEDULE								
SIGN NUMBER	SIGN		F SIGN HEIGHT	DESCRIPTION	MOUNT TYPE	MOUNT HEIGHT	REMARKS	
R1-1	STOP	30"	30"	WHITE ON RED	CHANNEL	7'-0"	REFLECTORIZED SIGN	
R4-7A	KEEP RIGHT	12"	18"	RED ON WHITE	CHANNEL	7'-0"	REFLECTORIZED SIGN	



CENSED LE AT THE USER'S SOLE RISK AND WITHOUT LIABILITY TO JBE. 03/18/2024

DATE


REV.

REVISION

WATER SERVICE CONNECTION-POLYETHYLENE

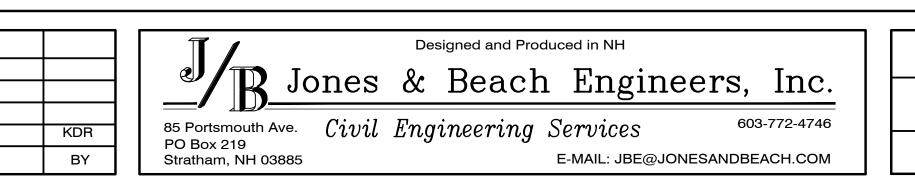
NOT TO SCALE

NOT TO SCALE

SUBMITTALS SHOP DRAWINGS, INCLUDING SPECIFICATIONS, CATALOG CUTS, DATA SHEETS, DRAWINGS AND OTHER DESCRIPTIVE MATERIAL SHALL BE SUPPLIED TO THE ENGINEER FOR REVIEW PRIOR TO INSTALLATION. A CERTIFICATE OF COMPLIANCE FROM THE MANUFACTURER INDICATING CONFORMANCE WITH THE SPECIFIED REQUIREMENTS FOR DUCTILE IRON PIPE SHALL BE SUBMITTED TO THE ENGINEER FOR REVIEW AND APPROVAL.

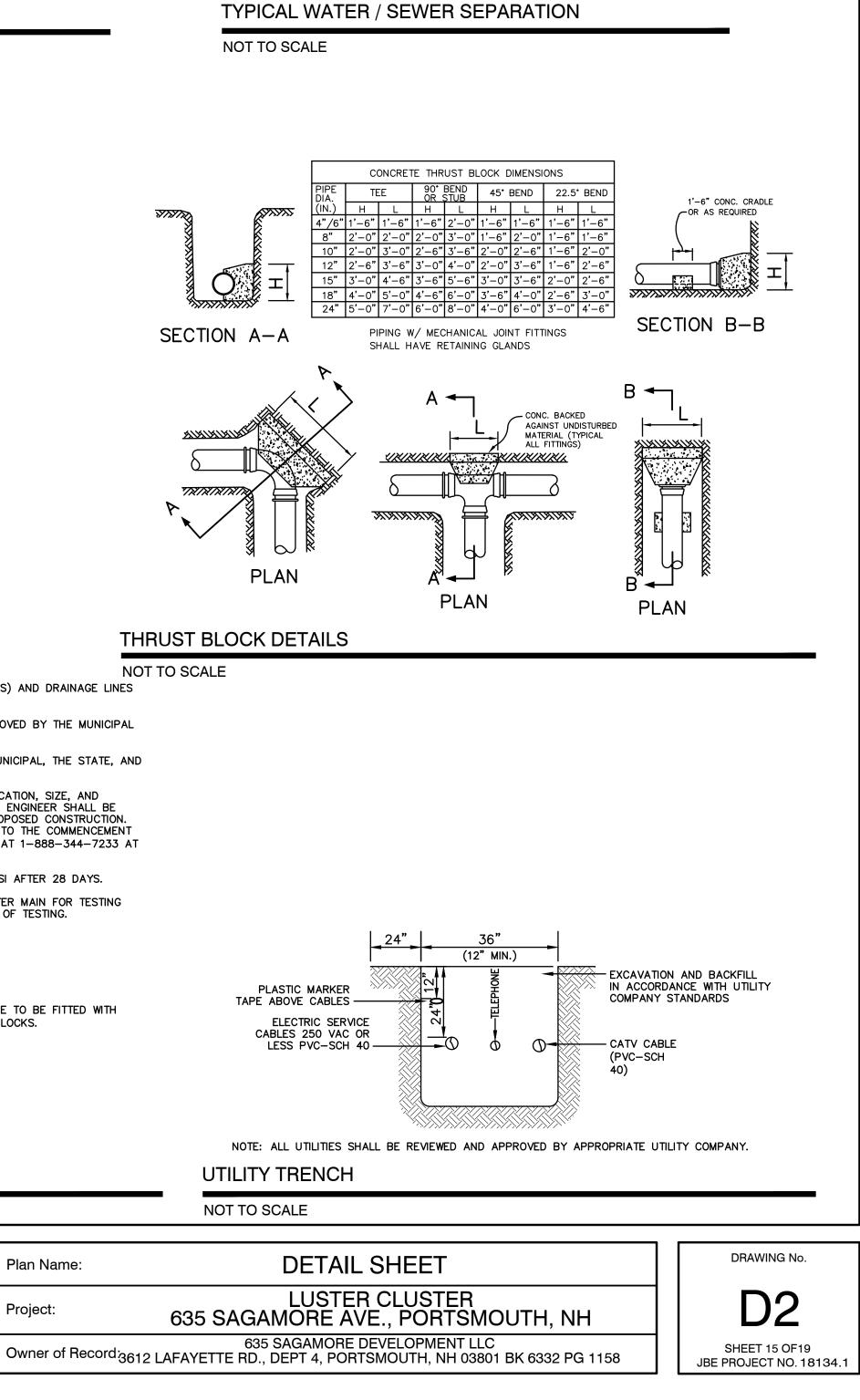
DELIVERY. HANDLING, AND STORAGE ALL PIPE AND APPURTENANCES ARE SUBJECT TO INSPECTION BY THE ENGINEER AT THE POINT OF DELIVERY. MATERIAL FOUND TO BE DEFECTIVE DUE TO MANUFACTURE OR DAMAGE IN SHIPMENT SHALL BE REJECTED OR RECORDED ON THE BILL OF LADING AND REMOVED FROM THE JOB SITE. ALL MATERIALS, IF STORED, SHALL BE KEPT SAFE FROM ANY POTENTIAL DAMAGE.

SAND BEDDING SAND BLANKET SHALL CONSIST OF CLEAN SAND THAT IS FREE FROM ORGANIC MATTER AND GRADED SO THAT 90-100% PASSES A 1/2" SIEVE AND NOT MORE THAN 15% WILL PASS A #200


BACKFILL SUITABLE MATERIAL FOR BACKFILL IN ROADS, ROAD SHOULDERS, AND WALKWAYS SHALL BE THE NATURAL MATERIAL REMOVED DURING THE COURSE OF TRENCH EXCAVATION, BUT SHALL EXCLUDE ANY DEBRIS, PAVEMENT, ORGANIC MATTER, LOAM, WET OR SOFT MUCK, PEAT, OR CLAY. BACKFILL MATERIAL SHALL BE PLACED IN 6" LIFTS AND SHALL BE COMPACTED TO 95% OF ASTM-1557 AT OPTIMUM MOISTURE CONTENT.

JOINTS SHALL BE OF "PUSH-ON" TYPE UNLESS OTHERWISE SPECIFIED. PIPE SHALL HAVE A DOUBLE CEMENT LINING WITH SEAL COATING INSIDE AND BITUMINOUS COATING OUTSIDE THAT MEETS OR EXCEEDS THE REQUIREMENTS OF AWWA/ANSI C104/A21.4. GASKETS FOR DUCTILE IRON PIPE SHALL BE OIL-RESISTANT RUBBER WHICH MEETS OR EXCEEDS THE REQUIREMENTS OF AWWA/ANSI C111/A21.11. PIPE SHALL BE FURNISHED COMPLETE WITH ALL GASKETS AND

WATERMAIN TESTING ALL WATER MAINS WILL BE CLEANED AND HYDROSTATICALLY TESTED AT A MINIMUM PRESSURE OF 150psi AT THE HIGHEST POINT ALONG THE TEST SECTION. THE HYDROSTATIC TEST SHALL BE CONDUCTED FOR A MINIMUM OF TWO HOURS DURING WHICH TEST PRESSURE SHALL NOT VARY MORE THAN ±5psi. LEAKAGE CALCULATIONS WILL BE COMPLETED IN ACCORDANCE WITH THE REQUIREMENTS OF THE AMERICAN WATER WORKS ASSOCIATION. DISINFECTION WILL BE REQUIRED PER THE SPECIFICATIONS OF ANSI/AWWA C651. WITHIN 24 HOURS OF DISINFECTION, ALL NEWLY INSTALLED MAINS SHALL BE FLUSHED.


<u>NOTES</u>

- 1. CONTRACTOR TO INSTALL 2" RIGID INSULATION BETWEEN THE PROPOSED WATERMAIN(S) AND DRAINAGE LINES IN ALL AREAS WHERE SEPARATION IS TO BE IN 4' OR LESS.
- 2. ALL PIPE, FITTINGS, HYDRANTS, AND WORKMANSHIP SHALL BE INSPECTED AND APPROVED BY THE MUNICIPAL WATER/SEWER DEPARTMENT.
- 4. ALL CONSTRUCTION AND TESTING SHALL COMPLY WITH THE REGULATIONS OF THE MUNICIPAL, THE STATE, AND THE AMERICAN WATER WORKS ASSOCIATION.
- THE CONTRACTOR SHALL BE RESPONSIBLE FOR VERIFYING AND DETERMINING THE LOCATION, SIZE, AND ELEVATION OF ALL EXISTING UTILITIES PRIOR TO THE START OF CONSTRUCTION. THE ENGINEER SHALL BE NOTIFIED IN WRITING OF ANY UNFORESEEN UTILITY FOUND INTERFERING WITH THE PROPOSED CONSTRUCTION. ANY APPROPRIATE REMEDIAL ACTION MUST BE AGREED TO BY THE ENGINEER PRIOR TO THE COMMENCEMENT OF WORK. THE CONTRACTOR SHALL BE RESPONSIBLE FOR CONTACTING "DIG-SAFE" AT 1-888-344-7233 AT LEAST 72 HOURS BEFORE DIGGING.
- 6. ALL CONCRETE SHALL HAVE A COMPRESSIVE STRENGTH OF NOT LESS THAN 2000 PSI AFTER 28 DAYS.
- 7. CONTRACTOR TO INSTALL CORPORATION FITTINGS AT EACH CONNECTION TO THE WATER MAIN FOR TESTING PURPOSES. CORPORATIONS SHALL BE REMOVED AND PLUGGED AT THE COMPLETION OF TESTING.
- 8. CONTRACTOR TO OBSERVE ALL APPROPRIATE BEST MANAGEMENT PRACTICES.
- 9. ALL GATE VALVES TO BE MUELLER RESILIENT WEDGE (OPEN RIGHT).
- 10. ALL TEES TO BE ANCHOR TEES.
- 11. THE TERMINAL 36' OF ALL "DEAD END" WATERMAINS AND ALL BENDS AND TEES ARE TO BE FITTED WITH MECHANICAL RESTRAINING JOINTS, "MEGALUG" OR APPROVED EQUAL AND THRUST BLOCKS.
- 12. INSTALL THRUST BLOCKS AT ALL TEES, BENDS, AND FITTINGS.

Plan Name:

Project:

-WATER MAIN

SEPARATION NOTES:

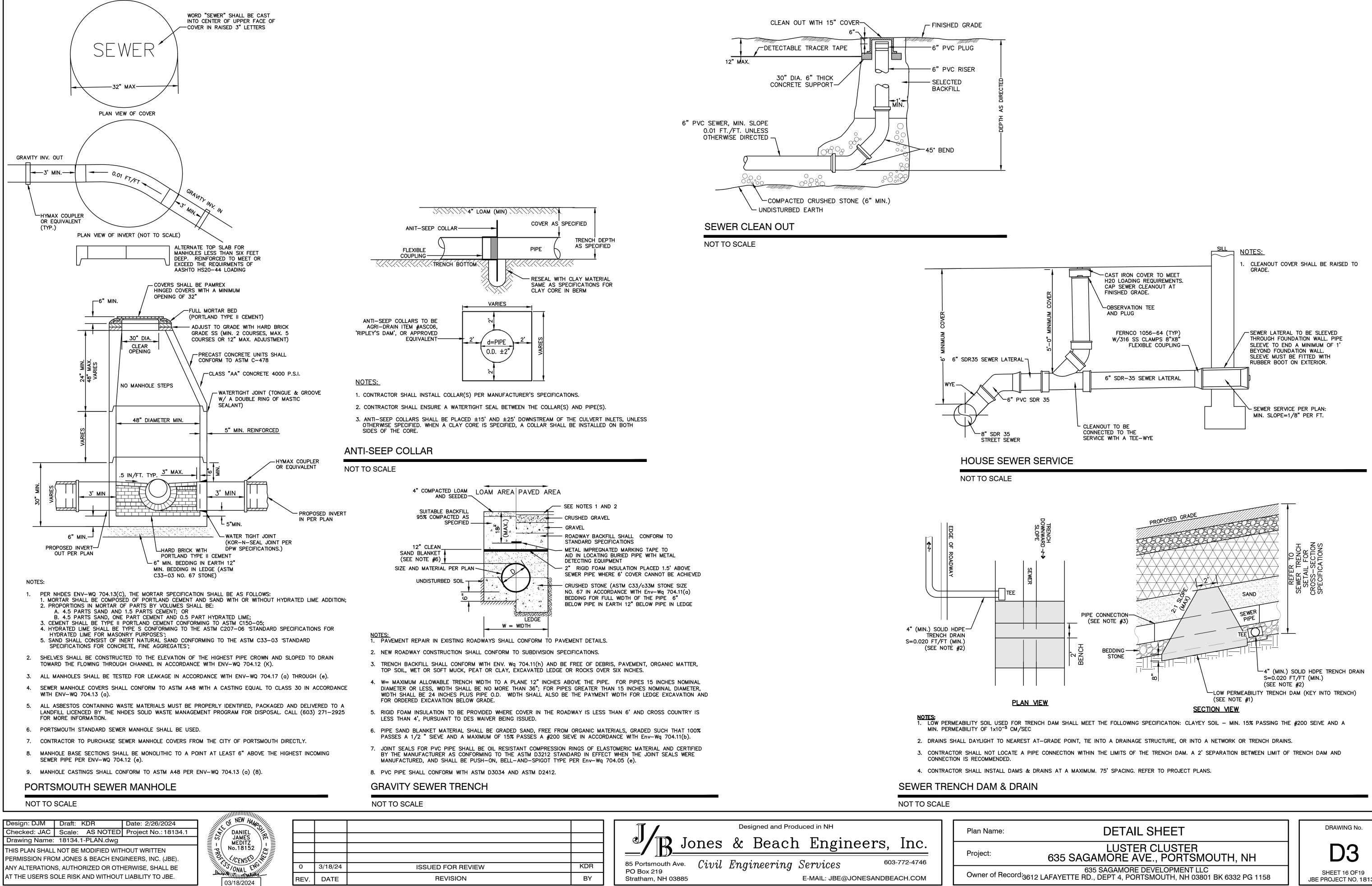
ONE STANDARD FULL

LENGTH OF WATER MAIN TO

BE CENTERED OVER SEWER

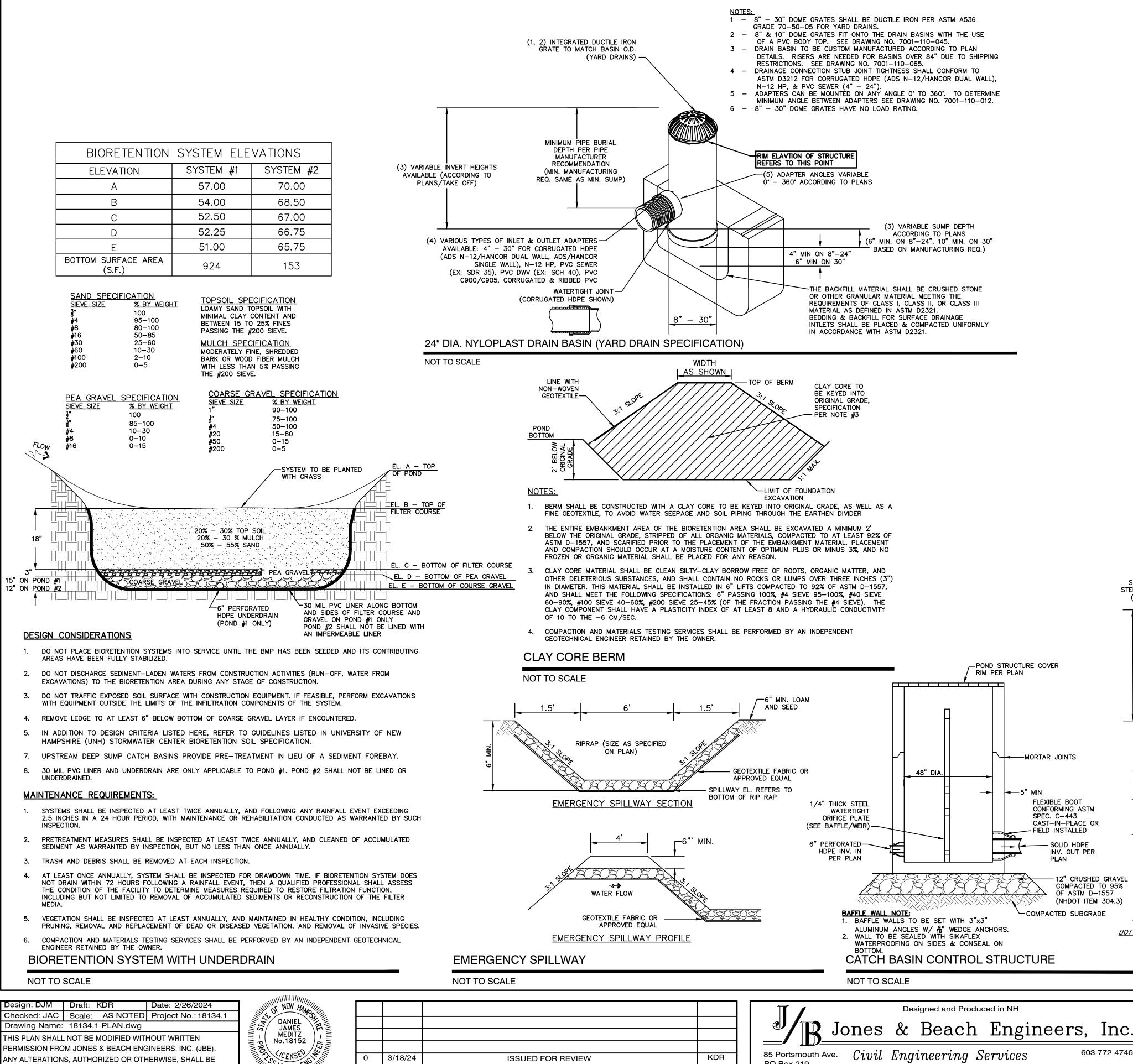
PROCTOR DENSITY

EXISTING OR PROPOSED SEWERS. THE DISTANCE SHALL BE MEASURED EDGE TO EDGE.


1. WATER MAINS SHALL BE LAID AT LEAST 10 FEET HORIZONTALLY FROM ANY

2. WATER MAINS CROSSING SEWERS SHALL BE LAID TO PROVIDE A MINIMUM VERTICAL DISTANCE OF 18 INCHES BETWEEN PIPES. SEWER PIPE JOINTS SHALL BE

LOCATED AT LEAST 6 FEET HORIZONTALLLY FROM THE WATER MAIN.


-SELECT BACKFILL COMPACTED

IN 6" LAYERS – 95% STANDARD

Owner of Record 3612 LAFAYETTE RD., DEPT 4, PORTSMOUTH, NH 03801 BK 6332 PG 1158

PERMISSION FROM JONES & BEACH ENGINEERS, INC. (JBE). ANY ALTERATIONS, AUTHORIZED OR OTHERWISE, SHALL BE AT THE USER'S SOLE RISK AND WITHOUT LIABILITY TO JBE.

0 3/18/24 REV. DATE

REVISION

_	
	Plan Name:
	Project:
	Owner of Record: 36

#5 REBAR

STAINLESS -

(TYP. X2)

INV.=56.23

INV.=56.10

INV.=55.60

INV.=54.50

INV.=51.00

BOTTOM<u>=50.75</u>

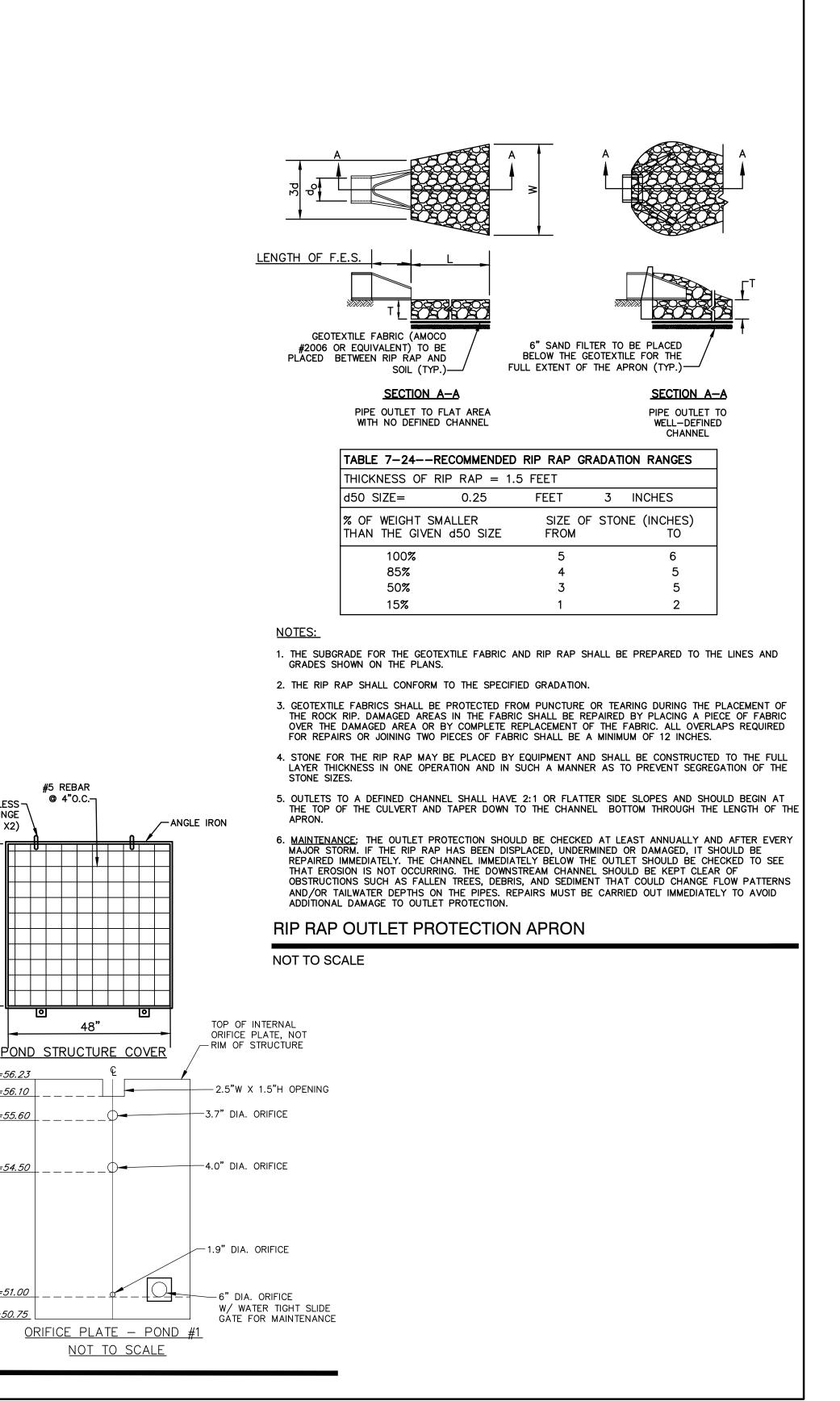
STEEL HINGE

@ 4"0.C.¬

48"

_ _ _ _ _ _

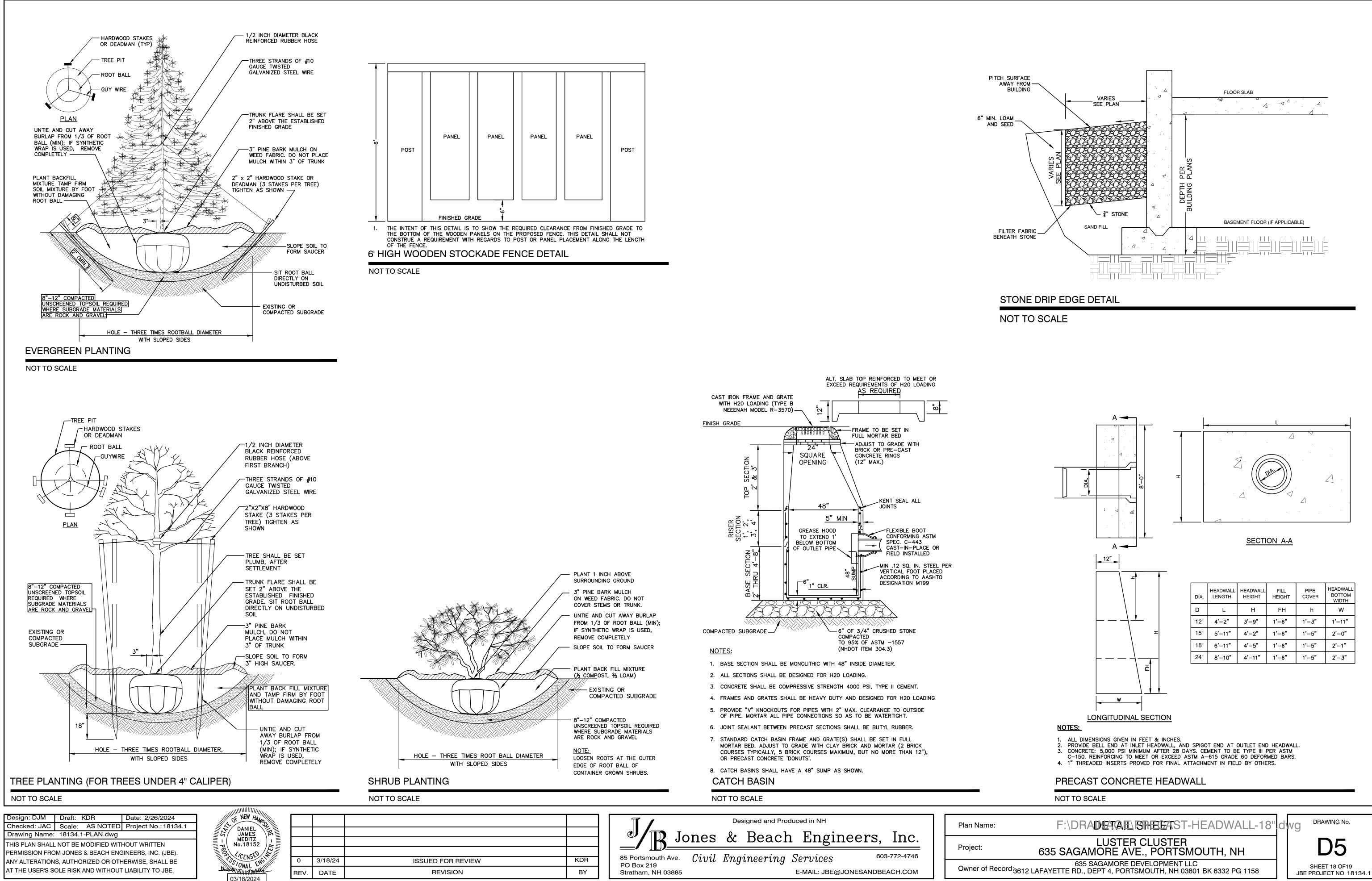
_____**\$**

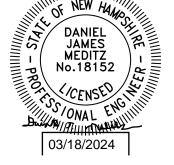

.0-

LUSTER CLUSTER 635 SAGAMORE AVE., PORTSMOUTH, NH 603-772-4746 635 SAGAMORE DEVELOPMENT LLC 3612 LAFAYETTE RD., DEPT 4, PORTSMOUTH, NH 03801 BK 6332 PG 1158 E-MAIL: JBE@JONESANDBEACH.COM

ISSUED FOR REVIEW KDR ΒY

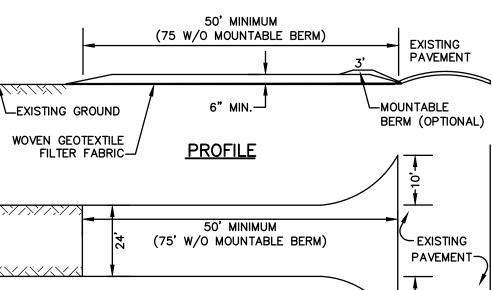
PO Box 219

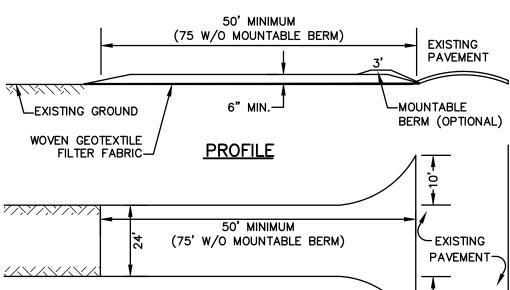

Stratham, NH 03885

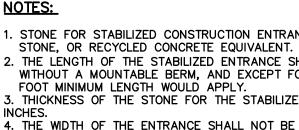


DETAIL SHEET

DRAWING No.

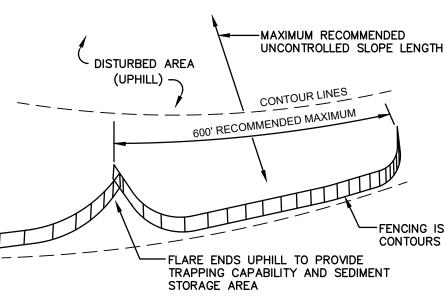






TEMPORARY EROSION CONTROL NOTES

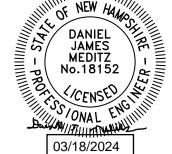
- THE SMALLEST PRACTICAL AREA OF LAND SHALL BE EXPOSED AT ANY ONE TIME. AT NO TIME SHALL AN AREA IN EXCESS OF 5 ACRES BE EXPOSED AT ANY ONE TIME BEFORE DISTURBED AREAS ARE STABILIZED.
- EROSION, SEDIMENT AND DETENTION MEASURES SHALL BE INSTALLED AS SHOWN ON THE PLANS AND AT LOCATIONS AS REQUIRED, DIRECTED BY THE ENGINEER.
- 3. ALL DISTURBED AREAS (INCLUDING POND AREAS BELOW THE PROPOSED WATERLINE) SHALL BE RETURNED TO PROPOSED GRADES AND ELEVATIONS. DISTURBED AREAS SHALL BE LOAMED WITH A MINIMUM OF 6" OF SCREENED ORGANIC LOAM AND SEEDED WITH SEED MIXTURE 'C' AT A RATE NOT LESS THAN 1.10 POUNDS OF SEED PER 1,000 S.F. OF AREA (48 LBS. / ACRE).
- SILT FENCES AND OTHER BARRIERS SHALL BE INSPECTED EVERY SEVEN CALENDAR DAYS AND WITHIN 24 HOURS OF A RAINFALL OF 0.5" OR GREATER. ALL DAMAGED AREAS SHALL BE REPAIRED, AND SEDIMENT DEPOSITS SHALL PERIODICALLY BE REMOVED AND DISPOSED OF
- AFTER ALL DISTURBED AREAS HAVE BEEN STABILIZED, THE TEMPORARY EROSION CONTROL MEASURES SHALL BE REMOVED AND THE AREA DISTURBED BY THE REMOVAL SMOOTHED AND RE-VEGETATED.
- AREAS MUST BE SEEDED AND MULCHED OR OTHERWISE PERMANENTLY STABILIZED WITHIN 3 DAYS OF FINAL GRADING, OR TEMPORARILY STABILIZED WITHIN 14 DAYS OF THE INITIAL DISTURBANCE OF SOIL. ALL AREAS SHALL BE STABILIZED WITHIN 45 DAYS OF INITIAL DISTURBANCE.
- ALL PROPOSED VEGETATED AREAS THAT DO NOT EXHIBIT A MINIMUM OF 85 PERCENT VEGETATIVE GROWTH BY OCTOBER 15, OR WHICH ARE DISTURBED AFTER OCTOBER 15, SHALL BE STABILIZED BY SEEDING AND INSTALLING NORTH AMERICAN GREEN S75 EROSION CONTROL BLANKETS (OR AN EQUIVALENT APPROVED IN WRITING BY THE ENGINEER) ON SLOPES GREATER THAN 3:1, AND SEEDING AND PLACING 3 TO 4 TONS OF MULCH PER ACRE, SECURED WITH ANCHORED NETTING, ELSEWHERE. THE INSTALLATION OF EROSION CONTROL BLANKETS OR MULCH AND NETTING SHALL NOT OCCUR OVER ACCUMULATED SNOW OR ON FROZEN GROUND AND SHALL BE COMPLETED IN ADVANCE OF THAW OR SPRING MELT EVENTS.
- ALL DITCHES OR SWALES WHICH DO NOT EXHIBIT A MINIMUM OF 85 PERCENT VEGETATIVE GROWTH BY OCTOBER 15. OR WHICH 8. ARE DISTURBED AFTER OCTOBER 15, SHALL BE STABILIZED TEMPORARILY WITH STONE OR EROSION CONTROL BLANKETS APPROPRIATE FOR THE DESIGN FLOW CONDITIONS.
- AFTER OCTOBER 15th, INCOMPLETE ROAD OR PARKING SURFACES, WHERE WORK HAS STOPPED FOR THE WINTER SEASON, SHALL BE PROTECTED WITH A MINIMUM OF 3" OF CRUSHED GRAVEL PER NHDOT ITEM 304.3.
- 10. AN AREA SHALL BE CONSIDERED STABLE IF ONE OF THE FOLLOWING HAS OCCURRED:
 - a. BASE COURSE GRAVELS HAVE BEEN INSTALLED IN AREAS TO BE PAVED;
 - b. A MINIMUM OF 85% VEGETATED GROWTH HAS BEEN ESTABLISHED;
 - c. A MINIMUM OF 3" OF NON-EROSIVE MATERIAL SUCH STONE OR RIPRAP HAS BEEN INSTALLED; OR
 - d. EROSION CONTROL BLANKETS HAVE BEEN PROPERLY INSTALLED.
- 11. FUGITIVE DUST CONTROL IS REQUIRED TO BE CONTROLLED IN ACCORDANCE WITH ENV-A 1000, AND THE PROJECT IS TO MEET THE REQUIREMENTS AND INTENT OF RSA 430:53 AND AGR 3800 RELATIVE TO INVASIVE SPECIES.



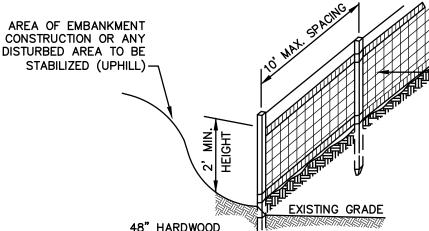
- THE PIPE

STABILIZED CONSTRUCTION ENTRANCE

NOT TO SCALE


7. SILT FENCES SHALL BE REMOVED WHEN NO LONGER NEEDED AND THE SEDIMENT COLLECTED SHALL BE DISPOSED AS DIRECTED BY THE ENGINEER. THE AREA DISTURBED BY THE REMOVAL SHALL BE SMOOTHED AND REVEGETATED.

MAINTENANCE:


- 1. SILT FENCES SHALL BE INSPECTED IMMEDIATELY AFTER EACH RAINFALL AND AT LEAST DAILY DURING PROLONGED RAINFALL. ANY REPAIRS THAT ARE REQUIRED SHALL BE DONE IMMEDIATELY.
- 2. IF THE FABRIC ON A SILT FENCE SHOULD DECOMPOSE OR BECOME INEFFECTIVE DURING THE EXPECTED LIFE OF THE FENCE, THE FABRIC SHALL BE REPLACED PROMPTLY.
- 3. SEDIMENT DEPOSITS SHOULD BE INSPECTED AFTER EVERY STORM EVENT. THE DEPOSITS SHOULD BE REMOVED WHEN THEY REACH APPROXIMATELY ONE HALF THE HEIGHT OF THE BARRIER.
- 4. SEDIMENT DEPOSITS THAT ARE REMOVED, OR LEFT IN PLACE AFTER THE FABRIC HAS BEEN REMOVED, SHALL BE GRADED TO CONFORM WITH THE EXISTING TOPOGRAPHY AND VEGETATED.

3/18/24 ISSUED FOR REVIEW KDR REVISION REV. DATE ΒY

Checked: JAC Scale: AS NOTED Project No.: 18134.1 Drawing Name: 18134.1-PLAN.dwg THIS PLAN SHALL NOT BE MODIFIED WITHOUT WRITTEN PERMISSION FROM JONES & BEACH ENGINEERS, INC. (JBE). ANY ALTERATIONS, AUTHORIZED OR OTHERWISE, SHALL BE T THE USER'S SOLE RISK AND WITHOUT LIABILITY TO JBE.

GEOTEXTILE FENCE WITH PROPEX-SILT STOP SEDIMENT CONTROL FABRIC OR APPROVED EQUAL

POST —16" POST DEPTH (MIN)

CONSTRUCTION SPECIFICATIONS:

. WOVEN FABRIC FENCE TO BE FASTENED SECURELY TO FENCE POSTS WITH WIRE TIES OR STAPLES. FILTER CLOTH SHALL BE FASTENED TO WOVEN WIRE EVERY 24" AT TOP, MID AND BOTTOM AND EMBEDDED IN THE GROUND A MINIMUM OF 8" AND THEN COVERED WITH SOIL.

- 2. THE FENCE POSTS SHALL BE A MINIMUM OF 48" LONG, SPACED A MAXIMUM 10' APART, AND DRIVEN A MINIMUM OF 16" INTO THE GROUND.
- 3. WHEN TWO SECTIONS OF FILTER CLOTH ADJOIN EACH OTHER, THE ENDS OF THE FABRIC SHALL BE OVERLAPPED 6", FOLDED AND STAPLED TO PREVENT SEDIMENT FROM BY-PASSING.
- 4. MAINTENANCE SHALL BE PERFORMED AS NEEDED AND SEDIMENT REMOVED AND PROPERLY DISPOSED OF WHEN IT IS 6" DEEP OR VISIBLE 'BULGES' DEVELOP IN THE SILT FENCE.
- 5. PLACE THE ENDS OF THE SILT FENCE UP CONTOUR TO PROVIDE FOR SEDIMENT STORAGE. 6. SILT FENCE SHALL REMAIN IN PLACE FOR 24 MONTHS.

SILT FENCE

NOT TO SCALE

Design: DJM | Draft: KDR Date: 2/26/2024

·		
MIXTURE	POUNDS PER ACRE	POUNDS F <u>1.000 Sq</u> .
A. TALL FESCUE CREEPING RED FESCUE RED TOP TOTAL	20 20 <u>2</u> 42	0.45 0.45 <u>0.05</u> 0.95
B. TALL FESCUE CREEPING RED FESCUE CROWN VETCH OR	15 10 15	0.35 0.25 0.35
FLAT PEA TOTAL	<u> </u>	0.75 0.95 OR 1.3
C. TALL FESCUE CREEPING RED FESCUE BIRDS FOOT TREFOIL TOTAL	20 20 <u>8</u> 48	0.45 0.45 <u>0.20</u> 1.10
D. TALL FESCUE FLAT PEA TOTAL	20 <u>30</u> 50	0.45 <u>0.75</u> 1.20
E. CREEPING RED FESCUE 1/ KENTUCKY BLUEGRASS 1/ TOTAL	50 <u>50</u> 100	1.15 <u>1.15</u> 2.30
F. TALL FESCUE 1	150	3.60
1/ FOR HEAVY USE ATHLETIC FIE NEW HAMPSHIRE COOPERATIVE EX		

SEEDING DATES

CURRENT VARIETIES AND SEEDING RATES.

SEEDING RATES	
Designed and Produced in NH	
ů – Č	Plan Nar
<u>Jones & Beach Engineers, Inc.</u>	Project:
85 Portsmouth Ave. Civil Engineering Services 603-772-4746	
PO Box 219 E-MAIL: JBE@JONESANDBEACH.COM	Owner o

FENCING IS TO RUN WITH THE CONTOURS ACROSS A SLOPE

7. THE ENTRANCE SHALL BE MAINTAINED IN A CONDITION THAT WILL PREVENT TRACKING OR FLOWING OF SEDIMENT ONTO THE PUBLIC RIGHT-OF-WAY. THIS MAY REQUIRE PERIODIC TOP DRESSING WITH ADDITIONAL STONE AS CONDITIONS DEMAND AND REPAIR AND/OR CLEAN OUT OF ANY MEASURES USED TO TRAP SEDIMENT. ALL SEDIMENT SPILLED, WASHED. OR TRACKED ONTO THE PUBLIC RIGHT-OF-WAY MUST BE REMOVED PROMPTLY.

5. GEOTEXTILE FILTER FABRIC SHALL BE PLACED OVER THE ENTIRE AREA PRIOR TO PLACING THE STONE. FILTER FABRIC IS NOT REQUIRED FOR A SINGLE FAMILY RESIDENTIAL LOT. 6. ALL SURFACE WATER THAT IS FLOWING TO OR DIVERTED TOWARD THE CONSTRUCTION ENTRANCE SHALL BE PIPED BENEATH THE ENTRANCE. IF PIPING IS IMPRACTICAL, A STONE BERM WITH 5:1 SLOPES THAT CAN BE CROSSED BY VEHICLES MAY BE SUBSTITUTED FOR

4. THE WIDTH OF THE ENTRANCE SHALL NOT BE LESS THAN THE FULL WIDTH OF THE ENTRANCE WHERE INGRESS OR EGRESS OCCURS, OR 10 FEET, WHICHEVER IS GREATER.

3. THICKNESS OF THE STONE FOR THE STABILIZED ENTRANCE SHALL NOT BE LESS THAN 6

2. THE LENGTH OF THE STABILIZED ENTRANCE SHALL NOT BE LESS THAN 50 FEET, 75' WITHOUT A MOUNTABLE BERM, AND EXCEPT FOR A SINGLE RESIDENTIAL LOT WHERE A 30

1. STONE FOR STABILIZED CONSTRUCTION ENTRANCE SHALL BE 3 INCH STONE, RECLAIMED

PLAN VIEW

SEEDING SPECIFICATIONS

- 1. <u>GRADING AND SHAPING</u> A. SLOPES SHALL NOT BE STEEPER THAN 2:1 WITHOUT APPROPRIATE EROSION CONTROL MEASURES AS SPECIFIED ON THE PLANS (3:1 SLOPES OR FLATTER ARE PREFERRED).
- B. WHERE MOWING WILL BE DONE, 3:1 SLOPES OR FLATTER ARE RECOMMENDED.

2. <u>SEEDBED PREPARATION</u>

- A. SURFACE AND SEEPAGE WATER SHOULD BE DRAINED OR DIVERTED FROM THE SITE TO PREVENT DROWNING OR WINTER KILLING OF THE PLANTS.
- B. STONES LARGER THAN 4 INCHES AND TRASH SHOULD BE REMOVED BECAUSE THEY INTERFERE WITH SEEDING AND FUTURE MAINTENANCE OF THE AREA. WHERE FEASIBLE, THE SOIL SHOULD BE TILLED TO A DEPTH OF ABOUT 4 INCHES TO PREPARE A SEEDBED AND FERTILIZER AND LIME MIXED INTO THE SOIL. THE SEEDBED SHOULD BE LEFT IN A REASONABLY FIRM AND SMOOTH CONDITION. THE LAST TILLAGE OPERATION SHOULD BE PERFORMED ACROSS THE SLOPE WHEREVER PRACTICAL.

3. ESTABLISHING A STAND

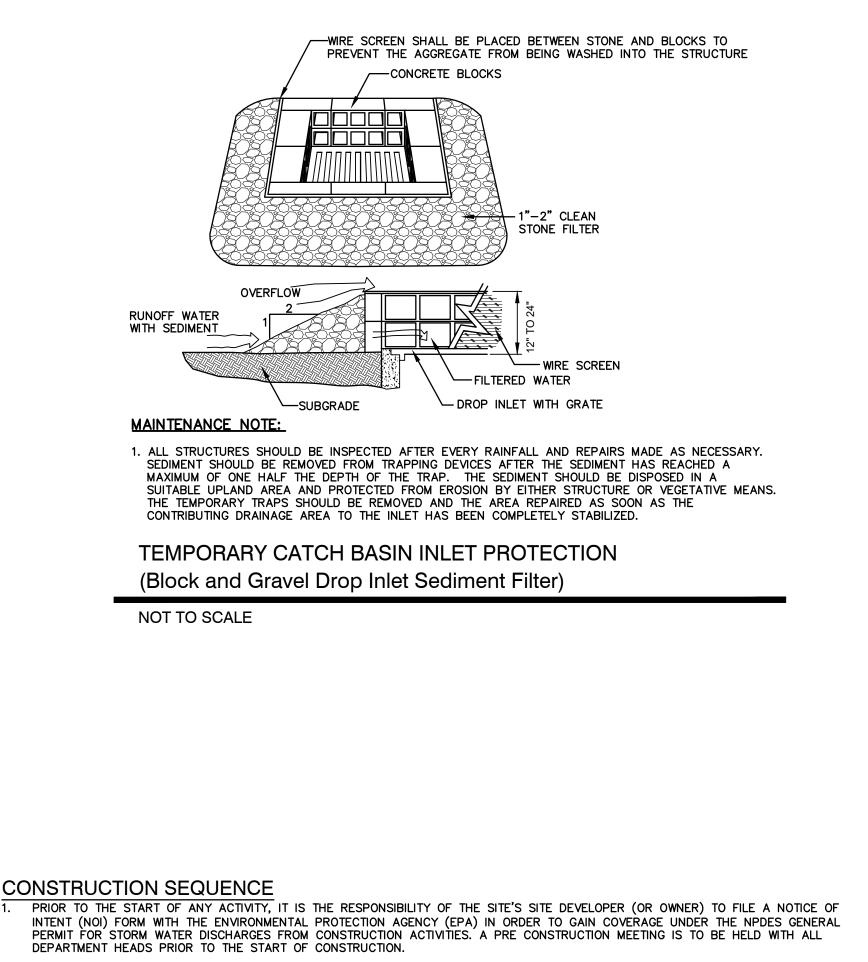
- A. LIME AND FERTILIZER SHOULD BE APPLIED PRIOR TO OR AT THE TIME OF SEEDING AND INCORPORATED INTO THE SOIL. TYPES AND AMOUNTS OF LIME AND FERTILIZER SHOULD BE BASED ON AN EVALUATION OF SOIL TESTS. WHEN A SOIL TEST IS NOT AVAILABLE, THE FOLLOWING MINIMUM AMOUNTS SHOULD BE **APPLIED:**
- AGRICULTURAL LIMESTONE, 2 TONS PER ACRE OR 100 LBS. PER 1,000 SQ.FT.
- NITROGEN(N), 50 LBS. PER ACRE OR 1.1 LBS. PER 1,000 SQ.FT.
- PHOSPHATE(P205), 100 LBS. PER ACRE OR 2.2 LBS. PER 1,000 SQ.FT.
- POTASH(K20), 100 LBS. PER ACRE OR 2.2 LBS. PER 1,000 SQ.FT. (NOTE: THIS IS THE EQUIVALENT OF 500 LBS. PER ACRE OF 10-20-20 FERTILIZER OR 1,000 LBS. PER
- ACRE OF 5-10-10.) B. SEED SHOULD BE SPREAD UNIFORMLY BY THE METHOD MOST APPROPRIATE FOR THE SITE. METHODS INCLUDE BROADCASTING, DRILLING AND HYDROSEEDING. WHERE BROADCASTING IS USED, COVER SEED WITH
- .25 INCH OF SOIL OR LESS, BY CULTIPACKING OR RAKING. C. REFER TO THE 'SEEDING GUIDE' AND 'SEEDING RATES' TABLES ON THIS SHEET FOR APPROPRIATE SEED
- MIXTURES AND RATES OF SEEDING. ALL LEGUMES (CROWNVETCH, BIRDSFOOT, TREFOIL AND FLATPEA) MUST BE INOCULATED WITH THEIR SPECIFIC INOCULANT PRIOR TO THEIR INTRODUCTION TO THE SITE.
- D. WHEN SEEDED AREAS ARE MULCHED, PLANTINGS MAY BE MADE FROM EARLY SPRING TO EARLY OCTOBER WHEN SEEDED AREAS ARE NOT MULCHED, PLANTINGS SHOULD BE MADE FROM EARLY SPRING TO MAY 20th OR FROM AUGUST 10th TO SEPTEMBER 1st.

- 4. MULCH A. HAY, STRAW, OR OTHER MULCH, WHEN NEEDED, SHOULD BE APPLIED IMMEDIATELY AFTER SEEDING. B. MULCH WILL BE HELD IN PLACE USING APPROPRIATE TECHNIQUES FROM THE BEST MANAGEMENT PRACTICE FOR MULCHING. HAY OR STRAW MULCH SHALL BE PLACED AT A RATE OF 90 LBS PER 1000 S.F.
- 5. MAINTENANCE TO ESTABLISH A STAND
- A. PLANTED AREAS SHOULD BE PROTECTED FROM DAMAGE BY FIRE, GRAZING, TRAFFIC, AND DENSE WEED
- B. FERTILIZATION NEEDS SHOULD BE DETERMINED BY ONSITE INSPECTIONS. SUPPLEMENTAL FERTILIZER IS USUALLY THE KEY TO FULLY COMPLETE THE ESTABLISHMENT OF THE STAND BECAUSE MOST PERENNIALS TAKE 2 TO 3 YEARS TO BECOME FULLY ESTABLISHED.
- C. IN WATERWAYS, CHANNELS, OR SWALES WHERE UNIFORM FLOW CONDITIONS ARE ANTICIPATED, ANNUAL MOWING MAY BE NECESSARY TO CONTROL GROWTH OF WOODY VEGETATION.

USE	SEEDING MIXTURE 1/		WELL DRAINED GOOD	MODERATELY WELL DRAINED GOOD	POORLY DRAINED FAIR
FILLS, BORROW AND DISPOSAL AREAS	С В С	POOR POOR	GOOD GOOD	FAIR EXCELLENT	FAIR GOOD
	D	FAIR	EXCELLENT	EXCELLENT	POOR
WATERWAYS, EMERGENC SPILLWAYS, AND OTHER CHANNELS WITH FLOWING WATER.		GOOD GOOD	GOOD EXCELLENT	GOOD EXCELLENT	FAIR FAIR
LIGHTLY USED PARKING LOTS, ODD AREAS, UNUSED LANDS, AND LOW INTENSITY USE RECREATION SITES.	A B C	GOOD GOOD GOOD	GOOD GOOD EXCELLENT	GOOD FAIR EXCELLENT	FAIR POOR FAIR
PLAY AREAS AND ATHLETIC FIELDS. (TOPSOIL IS ESSENTIAL FOR GOOD TURF.)	E F	FAIR FAIR	EXCELLENT EXCELLENT	EXCELLENT EXCELLENT	<u>2/</u> 2/

GRAVEL PIT, SEE NH-PM-24 IN APPENDIX FOR RECOMMENDATION REGARDING RECLAMATION OF SAND AND GRAVEL PITS.

/ REFER TO SEEDING MIXTURES AND RATES IN TABLE BELOW. $\overline{27}$ poorly drained soils are not desirable for use as playing area and athletic fields.


NOTE: TEMPORARY SEED MIX FOR STABILIZATION OF TURF SHALL BE WINTER RYE OR OATS AT A RATE OF 2.5 LBS. PER 1000 S.F. AND SHALL BE PLACED PRIOR TO OCTOBER 15th, IF PERMANENT SEEDING NOT YET COMPLETE.

- 5. CONSTRUCT AND/OR INSTALL TEMPORARY OR PERMANENT SEDIMENT AND/OR DETENTION BASIN(S) AS REQUIRED. THESE FACILITIES SHALL BE INSTALLED AND STABILIZED PRIOR TO DIRECTING RUN-OFF TO THEM.

- CONFLICTS BETWEEN UTILITIES ARE TO BE RESOLVED WITH THE INVOLVEMENT AND APPROVAL OF THE ENGINEER.
- 8. INSTALL THE SEWER AND DRAINAGE SYSTEMS FIRST. THEN ANY OTHER UTILITIES IN ACCORDANCE WITH THE PLAN AND DETAILS. ANY 9. INSTALL INLET PROTECTION AT ALL CATCH BASINS AS THEY ARE CONSTRUCTED IN ACCORDANCE WITH DETAILS.
- 10. ALL SWALES AND DRAINAGE STRUCTURES ARE TO BE CONSTRUCTED AND STABILIZED PRIOR TO HAVING RUN-OFF DIRECTED TO THEM. 11. DAILY, OR AS REQUIRED, CONSTRUCT TEMPORARY BERMS, DRAINAGE DITCHES, CHECK DAMS, SEDIMENT TRAPS, ETC., TO PREVENT EROSION ON THE SITE AND PREVENT ANY SILTATION OF ABUTTING WATERS AND/OR PROPERTY.

- 22. INSTALL ALL PAINTED PAVEMENT MARKINGS AND SIGNAGE PER THE PLANS AND DETAILS. 23. ALL EROSION CONTROLS SHALL BE INSPECTED WEEKLY AND AFTER EVERY QUARTER-INCH OF RAINFALL 24. UPON COMPLETION OF CONSTRUCTION, IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO NOTIFY ANY RELEVANT PERMITTING AGENCIES THAT THE CONSTRUCTION HAS BEEN FINISHED IN A SATISFACTORY MANNER.

- **SEEDING GUIDE** PER

- 2. CUT AND REMOVE TREES IN CONSTRUCTION AREA AS REQUIRED OR DIRECTED.
- 3. INSTALL SILT FENCING, HAY BALES AND CONSTRUCTION ENTRANCES PRIOR TO THE START OF CONSTRUCTION. THESE ARE TO BE MAINTAINED UNTIL THE FINAL PAVEMENT SURFACING AND LANDSCAPING AREAS ARE ESTABLISHED.
- CLEAR, CUT, GRUB AND DISPOSE OF DEBRIS IN APPROVED FACILITIES. THIS INCLUDES ANY REQUIRED DEMOLITION OF EXISTING STRUCTURES, UTILITIES, ETC.
- STRIP LOAM AND PAVEMENT PER THE RECOMMENDATIONS OF THE PROJECT ENGINEER AND STOCKPILE EXCESS MATERIAL. STABILIZE STOCKPILE AS NECESSARY. 7. PERFORM PRELIMINARY SITE GRADING IN ACCORDANCE WITH THE PLANS.
- 12. PERFORM FINAL FINE GRADING, INCLUDING PLACEMENT OF 'SELECT' SUBGRADE MATERIALS.
- 13. PAVE ROADWAY AND DRIVEWAYS WITH INITIAL 'BASE COURSE'.
- 14. PERFORM ALL REMAINING SITE CONSTRUCTION (i.e. BUILDING, CURBING, UTILITY CONNECTIONS, ETC.).
- 15. LOAM AND SEED ALL DISTURBED AREAS AND INSTALL ANY REQUIRED SEDIMENT AND EROSION CONTROL FACILITIES (i.e. RIP RAP, EROSION CONTROL BLANKETS, ETC.).
- 16. FINISH PAVING ROADWAY AND DRIVEWAYS WITH 'FINISH' COURSE.
- 17. ROADWAY AND DRIVEWAYS SHALL BE STABILIZED WITHIN 72 HOURS OF ACHIEVING FINISHED GRADE.
- 18. ALL CUT AND FILL SLOPES SHALL BE SEEDED/LOAMED WITHIN 72 HOURS OF ACHIEVING FINISHED GRADE.
- 19. COMPLETE PERMANENT SEEDING AND LANDSCAPING.
- 20. REMOVE TEMPORARY EROSION CONTROL MEASURES AFTER SEEDING AREAS HAVE BEEN 75%-85% ESTABLISHED AND SITE IMPROVEMENTS ARE COMPLETE. SMOOTH AND RE-VEGETATE ALL DISTURBED AREAS.
- 21. CLEAN SITE AND ALL DRAINAGE STRUCTURES, PIPES AND SUMPS OF ALL SILT AND DEBRIS.

Plan Name: EROSION AND SEDIMENT CONTROL DETAILS

LUSTER CLUSTER 635 SAGAMORE AVE., PORTSMOUTH, NH

SHEET 19 OF19 JBE PROJECT NO. 18134.1

DRAWING No.

635 SAGAMORE DEVELOPMENT LLC Owner of Record 3612 LAFAYETTE RD., DEPT 4, PORTSMOUTH, NH 03801 BK 6332 PG 1158

©2011-2021 Art Form Architecture, Inc., all rights reserved . You may not build this design without purchasing a license, even if you make changes. This design may have geographic restrictions.

Dear Builders and Home Buyers,

In addition to our Terms and Conditions (the "Terms"), please be aware of the following:

This design may not yet have Construction Drawings (as defined in the Terms), and is, therefore, only available as a Design Drawing (as defined in the Terms and together with Construction Drawings, "Drawings'). It is possible that during the conversion of a Design Drawing to a final Construction Drawing, changes may be necessary including, but not limited to, dimensional changes. Please see Plan Data Explained on www.ArtformHomePlans.com to understand room sizes, dimensions and other data provided. We are not responsible for typographical errors.

Artform Home Plans ("Artform") requires that our Drawings be built substantially as designed. Artform will not be obligated by or liable for use of this design with markups as part of any builder agreement. While we attempt to accommodate where possible and reasonable, and where the changes do not denigrate our design, any and all changes to Drawings must be approved in writing by Artform. It is recommended that you have your Drawing updated by Artform prior to attaching any Drawing to any builder agreement. Artform shall not be responsible for the misuse of or unauthorized alterations to any of its Drawings.

Facade Changes:

• To maintain design integrity, we pay particular attention to features on the front facade, including but not limited to door surrounds, window casings, finished porch column sizes, and roof friezes. While we may allow builders to add their own flare to aesthetic elements, we don't allow our designs to be stripped of critical details. Any such alterations require the express written consent of Artform. Increasing ceiling heights usually requires adjustments to window

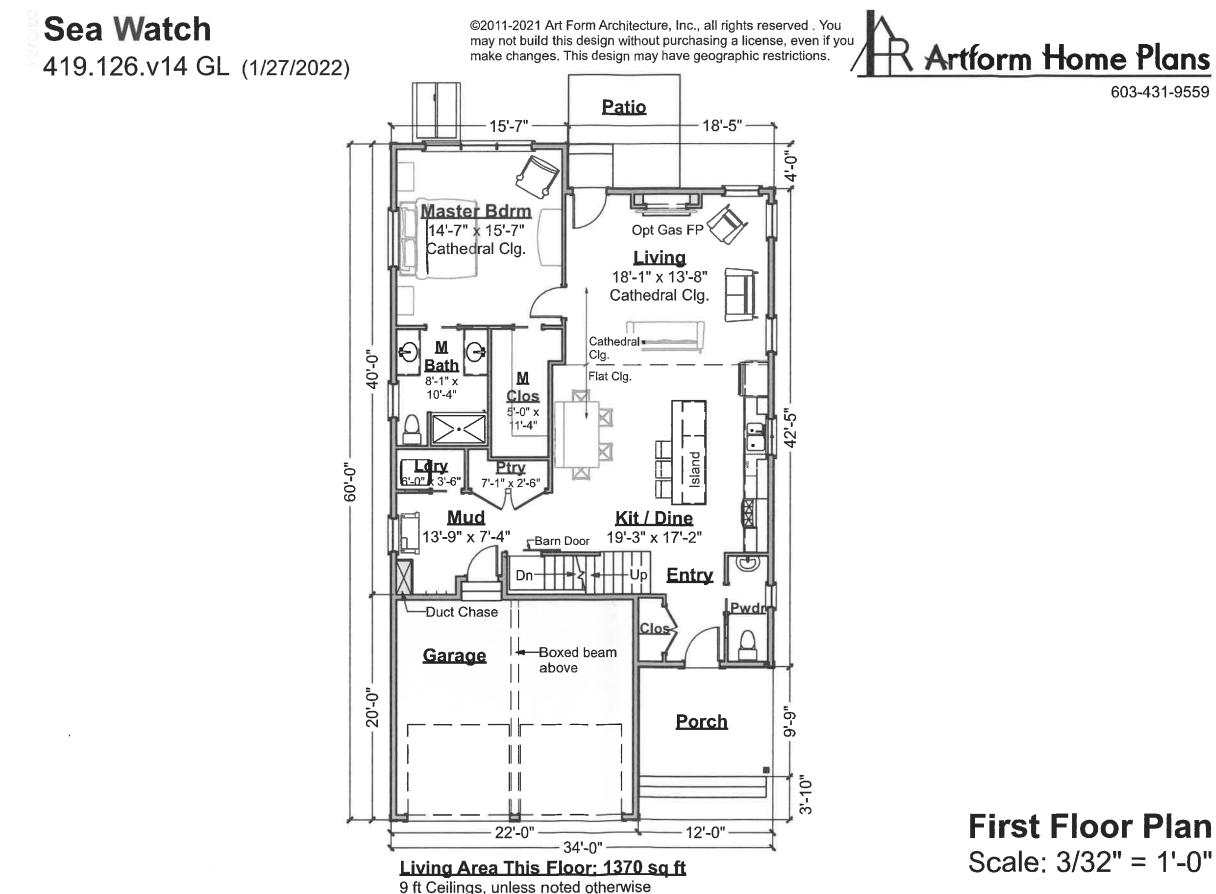
- sizes and other exterior elements. Floor plan layout and/or Structural Changes:
- · Structural changes always require the express written consent of Artform

• If you wish to move or remove walls or structural elements (such as removal of posts, increases in house size, ceiling height changes, addition of dormers, etc), please do not assume it can be done without other additional changes (even if the builder or lumber yard says you can).

Units 1&2

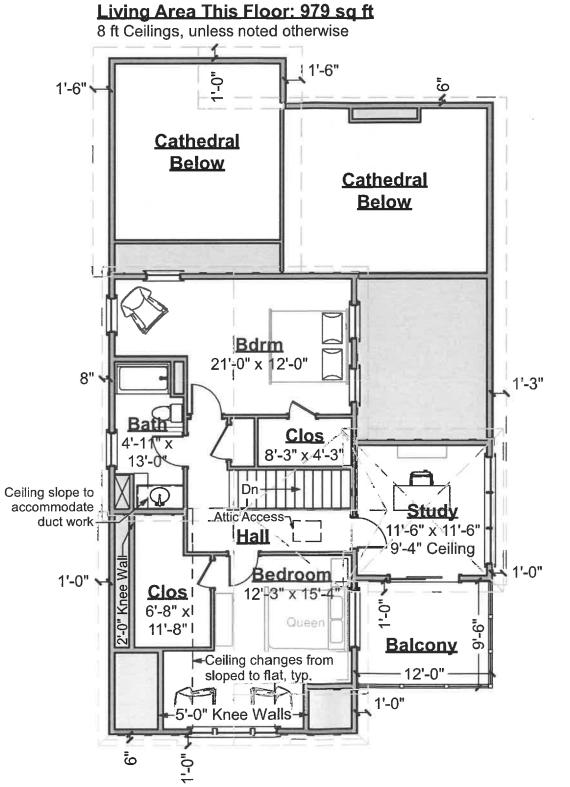
Artform Home Plans

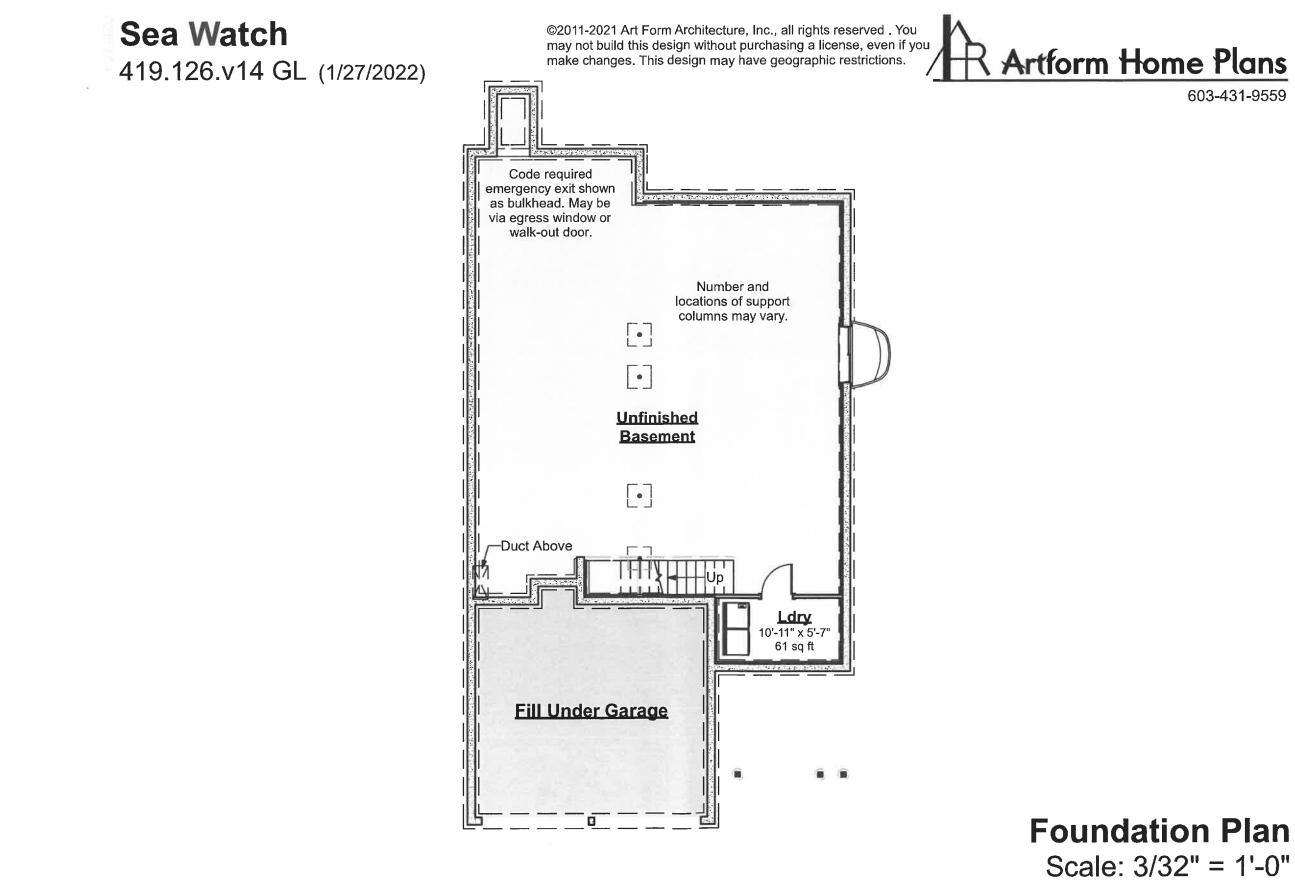
603-431-9559



©2011-2021 Art Form Architecture, Inc., all rights reserved . You may not build this design without purchasing a license, even if you make changes. This design may have geographic restrictions.

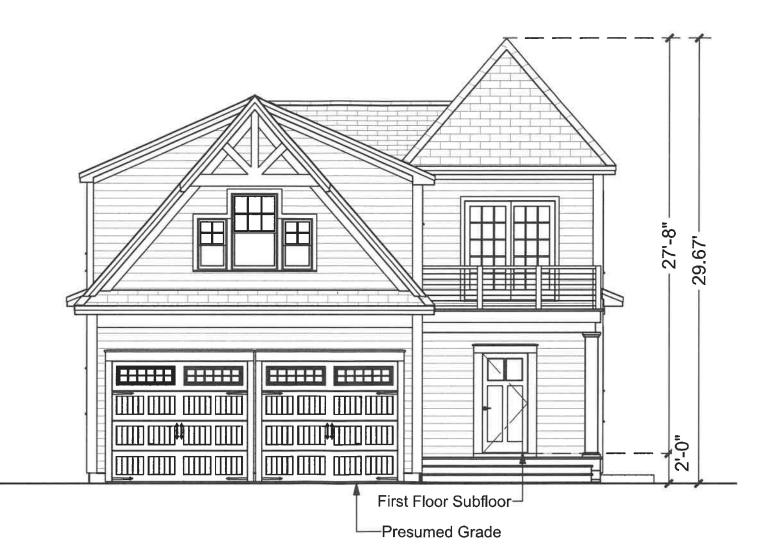
Artform Home Plans


603-431-9559


+

©2011-2021 Art Form Architecture, Inc., all rights reserved . You may not build this design without purchasing a license, even if you make changes. This design may have geographic restrictions.

Scale: 3/32" = 1'-0"



.

.

©2011-2021 Art Form Architecture, Inc., all rights reserved . You may not build this design without purchasing a license, even if you make changes. This design may have geographic restrictions.

Artform Home Plans

603-431-9559

Front Elevation Scale: 1/8" = 1'-0"

.

©2011-2021 Art Form Architecture, Inc., all rights reserved . You may not build this design without purchasing a license, even if you make changes. This design may have geographic restrictions.

<u>Representation Representation Representatio Representatio Representation Representation Represe</u>

603-431-9559

Right Elevation Scale: 1/8" = 1'-0"

.

©2011-2021 Art Form Architecture, Inc., all rights reserved . You may not build this design without purchasing a license, even if you make changes. This design may have geographic restrictions.

Artform Home Plans

603-431-9559

Rear Elevation Scale: 1/8" = 1'-0"

.

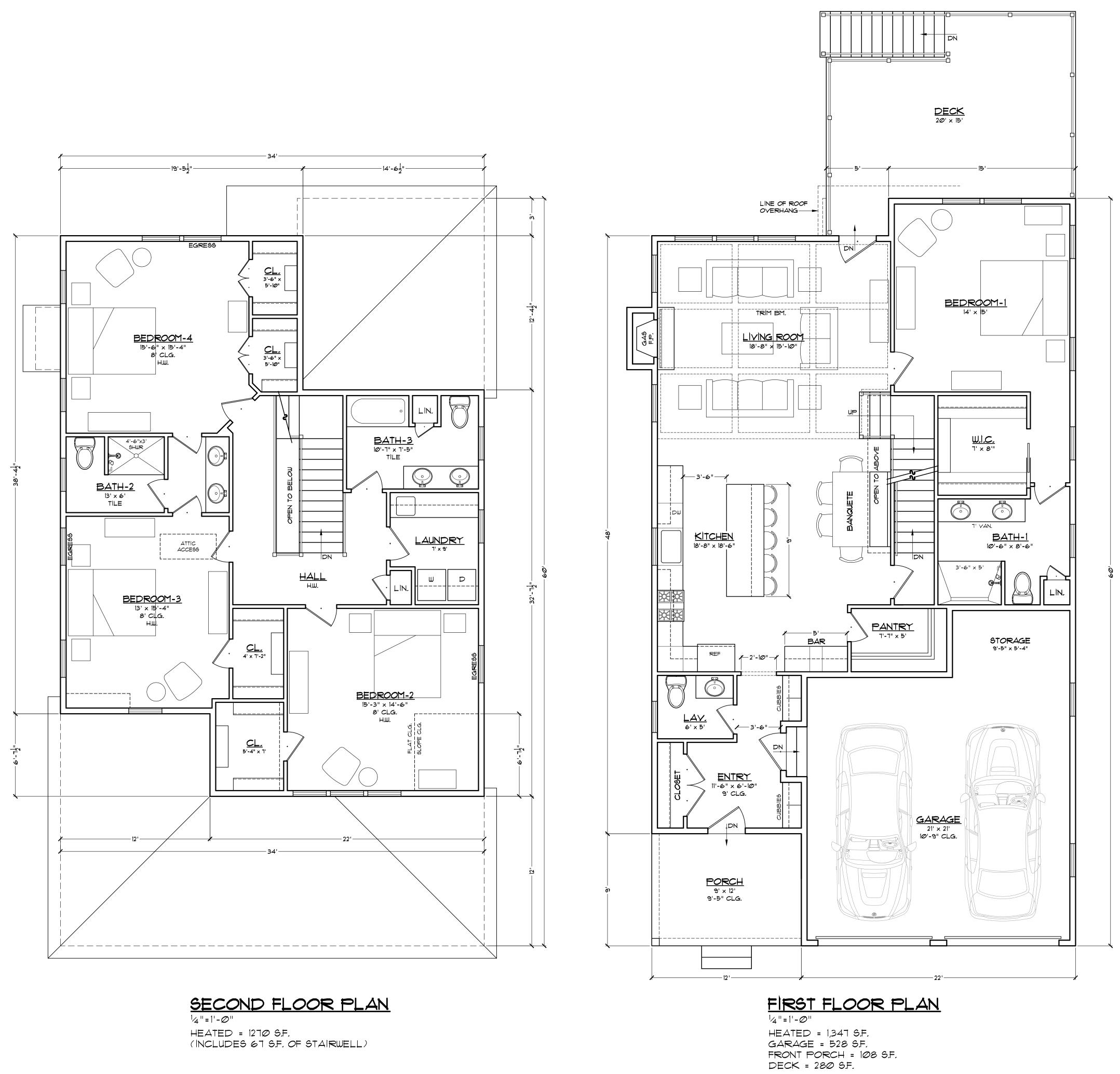
©2011-2021 Art Form Architecture, Inc., all rights reserved . You may not build this design without purchasing a license, even if you make changes. This design may have geographic restrictions.

Artform Home Plans 603-431-9559

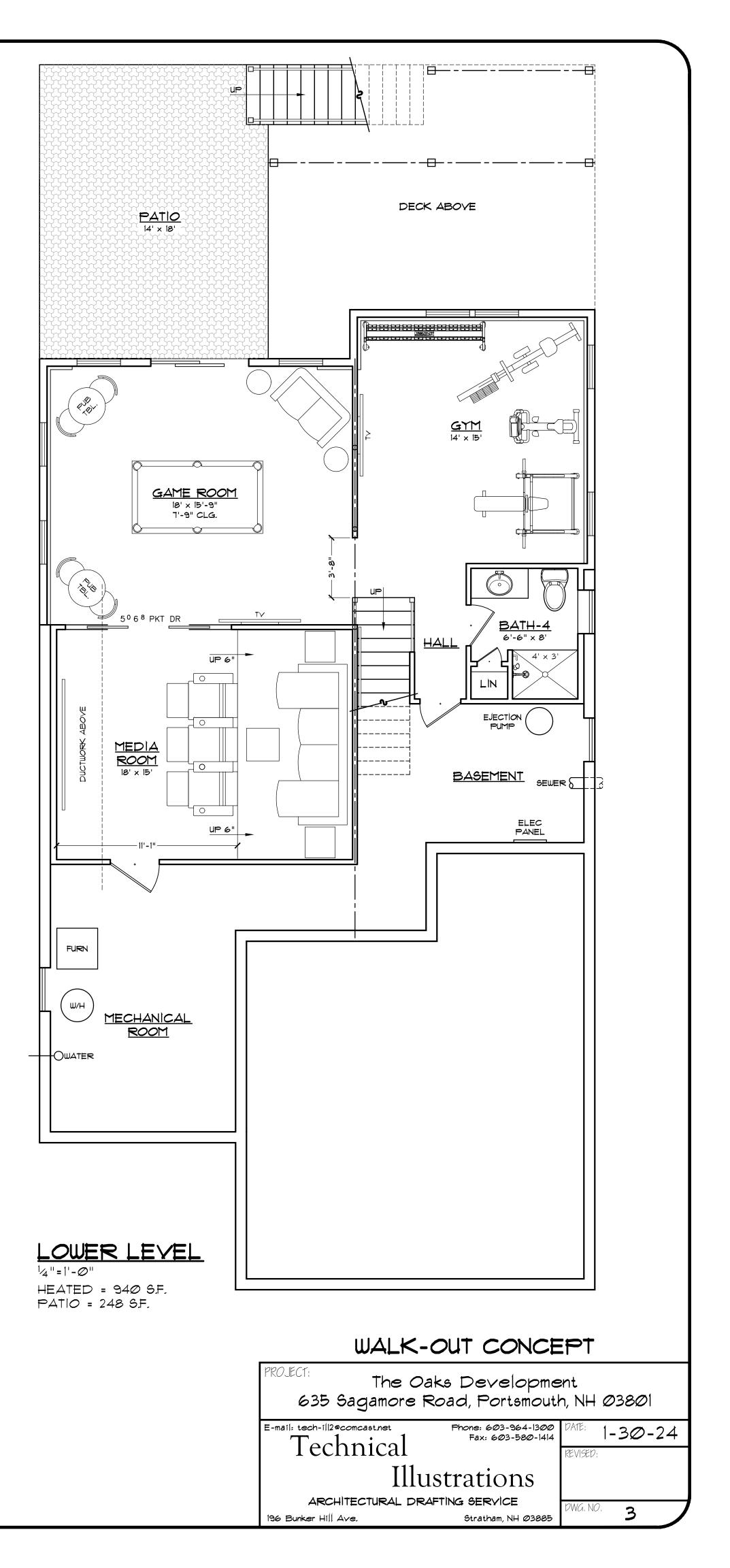
Left Elevation Scale: 1/8" = 1'-0"

.

©2011-2021 Art Form Architecture, Inc., all rights reserved . You may not build this design without purchasing a license, even if you make changes. This design may have geographic restrictions.



Artform Home Plans


603-431-9559

Interior Views

TOTAL HEATED =3,557 G.F.

