

85 Portsmouth Avenue, PO Box 219, Stratham, NH 03885 603.772.4746 - JonesandBeach.com

July 27, 2022

Portsmouth Planning Board Attn: Board Members 1 Junkins Avenue, Suite 3rd Floor Portsmouth, NH 03801

RE: Site Plan Application 1169 & 1171 Sagamore Avenue, Portsmouth, NH Tax Map 224, Lots 14 & 15 JBE Project No. 21047

Dear Board Members,

Jones & Beach Engineers, Inc., respectfully submits a Site Plan Application on behalf of the applicant, The Sagamore Group, LLC. The intent of this application is to remove existing structures as shown on Sheet C1 and construct a 10-unit condominium complex. The units are 2 duplex style homes with 6 single-family homes. All units will have a 2-car garage with space for 2 cars in the driveways. The private driveway is proposed as one-way traffic and will be 20' wide. This site will be served by underground electric, municipal water & sewer. Gas will be from on-site propane tanks. TAC approval was received on June 13, 2022.

The following items are provided in support of this Application:

- 1. Completed Site Plan Application (submitted online).
- 2. Site Plan Application Checklist.
- 3. Letters of Authorization.
- 4. Current Deeds.
- 5. Architectural Plans.
- 6. One (1) Full Size Plan Set Folded.
- 7. One (1) Drainage Analysis.

If you have any questions or need any additional information, please feel free to contact our office. Thank you very much for your time.

Very truly yours. JONES & BEACH ENGINEERS, INC. Joseph A. Coronati ce President

cc: Michael Garrepy, (via email) Mick Khavari (via email) Michael Fecteau (via email)

85 Portsmouth Avenue, PO Box 219, Stratham, NH 03885 603.772.4746 - JonesandBeach.com

July 28, 2022

Portsmouth Planning Board Attn: Board Members 1 Junkins Avenue, Suite 3rd Floor Portsmouth, NH 03801

RE: Wetland Conditional Use Application 1169 & 1171 Sagamore Avenue, Portsmouth, NH Tax Map 224, Lots 14 & 15, and Tax Map 201, Lot 26 JBE Project No. 21047

Dear Board Members,

Jones & Beach Engineers, Inc., respectfully submits a Wetland Conditional Use Application for the above-referenced properties on behalf of the applicant, The Sagamore Group, LLC. The intent of this project is to remove existing structures on the subject parcels and construct 10 condominium units. Runoff from impervious surfaces will be treated and detained on-site, and some of it infiltrated. Then, it is discharged toward a depression with an isolated wetland in the northeast corner of the subject parcel. Peak rates of runoff toward the depression will be reduced in the proposed condition compared with the existing condition during all analyzed storm events.

After discussions with the Technical Advisory Committee and with the abutters, we have agreed to install a cross-culvert under Sagamore Avenue to connect the wetlands on either side. Although no one could find a culvert in the field an old culvert in the field or on old plans, it was agreed that one should be located here. The culvert also collects and treats roadway drainage with catch basins and a proprietary treatment device called a Jellyfish.

The Conservation Commission voted to recommend approval of this application at its meeting on July 13, 2022, with the following conditions:

- For one year the applicant will monitor the site where invasive species are to be removed in order to determine the success of the removal and the health of the new wetland plantings. The new plantings shall have a greater than 80% success rate after one year. If not applicant shall replant.
 RESPONSE: This will be followed. See Note #33 on Sheet C2.
- The applicant will follow NOFA standards for land care and only use organic land management techniques within the wetland and wetland buffer areas.
 RESPONSE: This will be followed. See Note #34 on Sheet C2.

The culvert will drain toward a larger wetland located across the street on City-owned property (Tax Map 201, Lot 26). The intent of the proposed culvert is to reduce peak water elevations within the depression in the proposed condition and to mitigate the potential for flooding during larger storm events, as modelled. The culvert will unavoidably need to be within the buffer of the larger wetland and therefore triggers the need for a Conditional Use Permit. The smaller wetland on Lot 15 is under 10,000 S.F. in area and therefore too small to have a buffer of its own. Proposed temporary buffer impacts are as follows (whereas work within the right of way is exempt from the requirement for a CUP):

- 300 S.F. on Lot 15 (Proposed Condominium Site)
- 270 S.F. on Lot 26 (City Owned Property)
- 570 S.F. Total

Additionally, because a new sidewalk is being proposed as requested by the City, runoff from a $460' \pm 1000$ stretch of the southbound side of Sagamore Avenue which currently drains via sheet flow is proposed to be directed into a closed drainage system. This closed drainage system is proposed to be tied into the proposed cross-culvert. Road runoff will be treated via a "Jellyfish" filtration device before being discharged toward the larger wetland on Lot 26. Runoff from the proposed condominium development will be treated on-site.

10.1017.50 Criteria for Approval of Conditional Use Applications:

- 1. The land is reasonably suited to the use, activity or alteration.
 - RESPONSE: As agreed to by the Technical Advisory Committee, the wetland located on Map 201, Lot 26 has much more available flood storage than the depression surrounding the isolated wetland in the corner of the subject parcel on which the condominium units are proposed. The large wetland on this City-owned property is able to handle the runoff better than the isolated depression surrounding the smaller wetland across the street, and it should be noted that peak rates of runoff toward that isolated depression are reduced in the proposed conditions and the intent of the proposed culvert is to act as an overflow. The Cityowned land is in conservation and therefore won't be developed and provides excellent stormwater attenuation.
- There is no alternative location outside the wetland buffer that is feasible and reasonable for the proposed use, activity or alteration.
 RESPONSE: It is not possible to build this culvert outside of the wetland buffer.
 The culvert directly provides an overflow from a smaller wetland to drain toward a larger one; therefore, it must be located in the wetland buffer.
- There will be no adverse impact on the wetland functional values of the site or surrounding properties.
 RESPONSE: In the existing condition, the runoff from Sagamore Ave and from the subject parcel reach a wetland untreated. In the proposed condition, all runoff will be treated before reaching the wetland on the City-owned property. Runoff from the proposed condominium development will be treated on-site and runoff from the road will be treated with a proposed Jellyfish filtration device.

W:\21047 PORTSMOUTH - 1169 SAGAMORE RD - GARREPY PLANNING SERVICES\WORD FILES\CUP Application\PB Cover Letter.docx

4. Alteration of the natural vegetative state or managed woodland will occur only to the extent necessary to achieve construction goals.

RESPONSE: A very minimal amount of vegetation will need to be cleared for the proposed culvert. It will be primarily underneath the roadway and only the inlet and outlet with associated erosion control measures will be in existing vegetated areas. Existing vegetation will only be disturbed on the side slope of the road for the installation of the culvert and of the rip rap. Grass and naturally occurring shrubs may be allowed to grow back over the proposed culvert along the side slope of the road, but trees should not be allowed to grow over it.

5. The proposal is the alternative with the least adverse impact to areas and environments under the jurisdiction of this Section.

RESPONSE: There will be minimal temporary impact for the installation of the culvert. In the existing condition, stormwater enters the wetland untreated. In the proposed condition, the runoff from the condominium development and the roadway will be treated, which mitigates the potential for degradation of water quality downstream. The culvert is to be installed within the wetland buffer, not the wetland itself. Proposed temporary impacts to the wetland buffer are as noted above. There will be no permanent impacts to the wetland buffer.

6. Any area within the vegetated buffer strip will be returned to a natural state to the extent feasible.

RESPONSE: The installation of the culvert results in only temporary disturbance. Grass may be allowed to grow back over the culvert. For maintenance purposes, trees should not be allowed to grow over the culvert, but the remainder of the wooded area within the wetland buffer will remain wooded.

The following information is additionally required for Conditional Use Applications:

- Total area of inland wetland (both on and off subject parcel): 521 S.F. *
- Distance of proposed activity to wetland requiring CUP: 7' (Only the wetland on Lot 26 is large enough to require a CUP)
- Wetland buffer total area on lot: 1,354 S.F. *
- Wetland buffer area to be disturbed: See Above
- Inland wetland total area on lot: 257 S.F.
- Inland wetland area to be disturbed: 0 S.F.

* Responses with asterisk refer only to Tax Map 224, Lot 15; Tax Map 201, Lot 26 has not been fully surveyed, only the portion shown on the plans.

The following items are provided in support of this Application:

- 1. Conditional Use Application Completed & Submitted Online.
- 2. Signed Letter of Authorization.
- 3. Current Deed.
- 4. Off-Site Wetland Buffer Impact Letter prepared by Gove Environmental Services, Inc.

If you have any questions or need any additional information, please feel free to contact our office. Thank you very much for your time.

Very truly yours, JONES & BEACH ENGINEERS, INC.

Daniel Meditz, E.I.T. Project Engineer

cc: Michael Garrepy (via email) Mick Khavari (via email) Tim Phoenix, Hoefle, Phoenix, Gormley & Roberts (via email) Peter Britz, Portsmouth Planning (via email) Stefanie Casella, Portsmouth Planning (via email)

The Sagamore Group, LLC, 4 Merrill Industrial Drive, Hampton, NH, 03842, USA, developer of property located in Portsmouth, NH, known as Tax Map 224, Lots 14 & 15, do hereby authorize Jones & Beach Engineers, Inc., PO Box 219, Stratham, NH, to act on our behalf concerning the subject properties. The parcels are located at 1169 & 1171 Sagamore Avenue in Portsmouth, NH.

We hereby appoint Jones & Beach Engineers, Inc., as my agent to act on my behalf in the review process, to include any required signatures.

The Sagamore Group, LLC

<u>5/4/21</u> Date

Daniel Jackson, Member Duly authorized

-1

Letter of Authorization

We, John & Colleen Hebert, 54 Pioneer Road, Rye, NH 03870, owners of property located in Portsmouth, NH, known as Tax Map 224, Lot 15, do hereby authorize Jones & Beach Engineers, Inc., PO Box 219, Stratham, NH, to act on my behalf concerning the previously-mentioned property. The parcel is located on 1169 Sagamore Avenue in Portsmouth, NH.

We hereby appoint Jones & Beach Engineers, Inc., as my agent to act on my behalf in the review process, to include any required signatures.

	Jula J. Habort	05/1000 vervinn 05/104/21 2:47 PM EDT 551 C-Mil/AR-1 SWP-P 2NG
Witness	John Hebert	Date
	Colliese Hodest	05/04/11 2:49 PM EDT 13/G-7/MI M-TLIFK-BAFX
Witness	Colleen Heb	Date Date

I, Colleen Hebert, 54 Pioneer Road, Rye, NH 03870, owner of property located in Portsmouth, NH, known as Tax Map 224, Lot 14, do hereby authorize Jones & Beach Engineers, Inc., PO Box 219, Stratham, NH, to act on my behalf concerning the previously-mentioned property. The parcel is located on 1171 Sagamore Avenue in Portsmouth, NH.

I hereby appoint Jones & Beach Engineers, Inc., as my agent to act on my behalf in the review process, to include any required signatures.

Colleen Hebert

Date

Witness

KNOW ALL MEN BY THESE PRESENTS 2299-1707

THAT the Mark H. Wentworth Home for Chronic Invalids, a voluntary corporation duly , established by law and having a usual place of business in Portsmouth of x Rockingham County, State of

New Hampshire, for consideration paid, grant to the City of Portsmouth, a municipal corporation

in the County of Rockingham and State of New Hampshire

County_State_of

, with WARRANTY COVENANTS,

(Description and incumbrances, if any)

A certain tract of land situate on the Easterly side of Sagamore Avenue and the Southerly side of Wentworth Road, also known as Wentworth House Road in said Portsmouth and more particularly bounded as follows:

Beginning at a point in the Southerly sideline of Wentworth Road at the Northeasterly corner of land of Harold and Katherine Abbott and running Easterly along the Southerly sideline of Wentworth Road 464 feet more or less to land of Herman and Bertraude L . Odiorne; thence turning and running Southerly by said Odiornes, land of Mike Kuchtey and land of Helen F. Mulcahy 605 feet more or less to the Portsmouth-Rye town line; thence turning and running Southwesterly by said Portsmouth-Rye town line 1090 feet more or less to the Westerly sideline of Sagamore Avenue; thence turning and running Northerly by said Sagamore Avenue 1200 feet more or less to an iron pipe in the ground at land of Richard and Kathryn Cooper; thence turning and running Easterly by said land of Cooper 100 feet to an iron pipe in the ground; thence turning and running Northerly by said land of Cooper 100 feet to a drill hole in a ledge; thence continuing Northerly by land of Richard Cooper and others 80 feet to a corner at land of Valley Oil Company; thence turning and running Easterly by land of said Oil Company 49 feet more or less to an iron pipe at land of said Abbotts; thence continuing in an Easterly direction by land of Abbotts 100 feet more or less to an iron pipe; thence turning and running Northerly by said land of said Abbotts 139 feet more or less to Wentworth Road and the point of beginning. Containing by estimation 16.5 acres.

Being the same premises acquired by deed of Charles J. Griffin Executor of the will of Henry Kenney dated October 17, 1939, recorded in Rockingham County Registry of Deeds Book 963 Page 375 less a certain lot conveyed to Richard Cooper and Kathryn E. Cooper by deed dated September 27, 1956, recorded in Rockingham County Registry of Deeds Book 1410 Page 350.

relevente-mid.G	C ¹¹ 7	i de sta	and here	in freebrainen	benintera		:	
WITNESS	the	hand	and seal	this 27	day of	September	, 19 77	
Satrice.	e X	Q	yh	Mark H. W By	n P. Bo	29		
	****		****		1443413479999999999999999999999999999999			105
Rockingham,		55.	litate al Nei	a Manapolijire	Sept	iember 1	430 4 38 Y	8 34
Then person Trustees of th and scknowledg said corporation	e Mark H ed the fou	Wentster		Chronic Inva	Ligs, ar	d mt ture	the Board of purpose dui	A Stitutes

Notary Public -

ised

ofex

2299-1708

Mark H. Wentworth Home for Chronic Invalids

Mosting of the Board of Trustees of the Mark H. Wentworth Home for Chronic invalids held at the Hence on December 3, 1976, with a quorum of the Trustees present.

President, Wyman P. Boynton, presided.

On motion it was

VOTED: To sell the Sagamere Avenue property of the Home to the City of Portsmouth for the sum of \$40,000.00, together with the appraisers fee and the abatement of the 1976 taxes; and further that the President be sufficient to execute all deeds and other instruments required.

A true extract from the re hand R Wingl Q ł? Approved

1220

na strania si

(Fight)

2.1

.

1. C. A.

KNOW ALL MEN BY THESE PRESENTS. That Norman J. Smith, of P.O. Box 95, Portsmouth, County of Rockingham and State of New Hampshire,

812418 P0173

28° H9 32 S

n

Ę

i

for consideration paid, grant to Colleen M. Hebert of 1169 Sagamore Avenue, Portsmouth, County of Rockingham and State of New Hampshire,

with marranty covenants

A certain parcel of land, together with the buildings thereon, situate on the Westerly side of Sagamore Avenue, so-called, in Portsmouth in the County of Rockingham and State of New Hampshire, more particularly bounded and described as follows:

Beginning in the Westerly sideline of the Avenue at land now or formerly of Haven L. Joy; thence running Westerly by other land of Joy, Two Hundred Ninety-three and Five Tenths (293.5) feet to land now or formerly of Ralph W. Junkins Est. et als; thence turning and running Norterly by other land of Junkins et als One Hundred Twenty-six and Thirty-two Hundredths (126.32) feet to a point at other land now or formerly of John J. and Harriet Scammon; thence turning and running Easterly by other land of Scammon Three Hundred (300) feet, more or less, to the Westerly sideline of the Avenue, thence running Southerly by the sideline Forty-seven and Sixty-five Hundredths (47.65) feet to a point, thence running Southeastorly by the sideline Fortynine and Eight Hundredths (49.08) feet to land of Joy which is the point of beginning.

Being the same premises conveyed to Norman J. Smith and Janet S. Smith by deed of John J. Scammon et al dated July 24, 1954 and recorded in the Rockingham County Registry of Deeds in Book 1323 Page 324.

hand XXXXXXX they

Norman J. Smith, heine sincle **instant someworkennes** of as to and counter all orbits of costsy descenario homestad and other activity descena

mitten.

29th day of July

1. R2.

created the same

Julito 9. Giles

Hennorman

LS

1.5

LS

State of New Hampshire Rockingham

my.

July 29 AD IT BZ

Personally appeared Norman J. Smith

known to me, or satisfuctorily procen to be the person and whose name

subsended to the here course instrument and acknow hele of that the

too the purposes there we contained

Biton mi Jules a. Siles

WARRANTY DEED

KNOW ALL PERSONS BY THESE PRESENTS THAT I, ROBERT F. SCAMMON, JR., single and not a party to a civil union, of 1169 Sagamore Avenue, Portsmouth, New Hampshire, 03801

For consideration paid, grant to JOHN J. HEBERT AND COLLEEN HEBERT, husband and wife, of 54 Pioneer Road, Rye, New Hampshire, 03870, as joint tenants with rights of survivorship,

With Warranty Covenants, the following described premises situate in Portsmouth, Rockingham County, New Hampshire:

A certain lot or parcel of land with the buildings thereon situate on Sagamore Avenue, City of Portsmouth, County Rockingham and State of New Hampshire, bounded and described as follows:

Beginning at the concrete bound at the Northeasterly corner of the within described lot, the said bound being Four Hundred Seventy-nine (479) feet southerly along said Sagamore Avenue from the southeasterly corner of land now or formerly of Charles F. Moody; thence running Southerly twenty-four (24) degrees thirty-four (34) minutes west along said Sagamore Avenue one hundred (100) feet to a stake in the stone wall at other land now or formerly of Allen B. Keen; thence turning and running N 83° 43' W by other land of said Keen 300 feet to a stake; thence turning and running N 24° 30' E 100 feet by land now or formerly of Frank E. Brooks, etals; thence turning and running S 83° 43' E by land of said Brooks and other 300 feet to Sagamore Avenue and being the point of beginning.

Also a parcel of land situated on Sagamore Avenue in said Portsmouth adjoining and lying on the northerly side of the above described parcel and bounded and described as follows: Beginning at a concrete bound at the southeasterly corner of these premises at land described above, said bound being 479 feet southerly along said Sagamore Avenue from the southeasterly corner of land now or formerly of Charles F. Moody; thence running N 83° 43' W by the above described parcel 300 feet to a point of land now or formerly of Frank E Brooks et als; thence turning and running N 24° 30' E by other land of said Brooks and others 300 feet, more or less to said Sagamore Avenue; thence turning and running southerly along said Sagamore Avenue 50 feet to said concrete bound and being the point of beginning.

Also a parcel of land situated on Sagamore Avenue in said Portsmouth and bounded and described as follows: Beginning at the northeasterly corner of the herein described parcel at the intersection of the westerly sideline of said Sagamore Avenue and land now or formerly of Allen B. Keen, said point being 100 feet S 24' 34' W along said Sagamore Avenue from the concrete bound aforementioned; thence running southerly along said Avenue 25 feet to land now or formerly of Frank E .Brooks, et als; thence turning and running N 83° 43' W by land now or formerly Frank E. Brooks, et als 300 feet, more or less, to a point; thence turning and running N 24° 30' E 25 feet by land of said Brooks, et als, to a stake at other land now or formerly of Allen B. Keen; thence turning and running Southeast 83° 43' E by other land of said Keen 300 feet to Sagamore Avenue and being the point of beginning. This parcel adjoining and lying on the southerly side of the first described parcel herein.

Being the same premises conveyed to the within Grantor by deed of Barbara Scammon dated April 25, 1995, recorded in Rockingham County Registry of Deeds, Book 3097, Page 1715.

Signed this 30th day of November, 2012.

Robert F. Scammon, Jr.

STATE OF NEW HAMPSHIRE **ROCKINGHAM COUNTY**

Personally appeared this <u>30th</u> day of November , 2012, <u>Robert F.</u> , who acknowledged that he/she/they executed the Scammon, Jr. foregoing instrument as his/her/their free act and deed for the purposes contained herein.

Before me.

Lori Hebert, Notary Public

My commission expires: 05/09/2017

GES, Inc. 8 Continental Drive Exeter, NH 03833

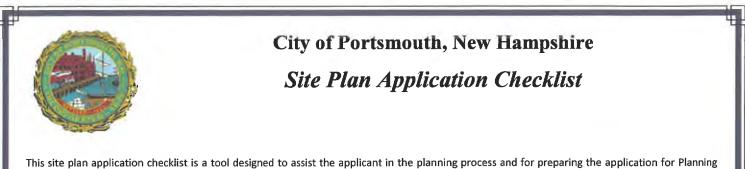
1169 Sagamore Road Portsmouth, NH

Off-site Wetland Buffer Impact:

Photos taken on June 28, 2022

Location of proposed culvert outlet is at log. The wetland edge is at the Phragmities growing next to the road.

Phragmities is adjacent the road and extends back into the wetland.



The majority of the wetland has Phragmities, with only some of the hydrologically wetter areas being too wet to allow the common reed to grow.

It is my understanding that the culvert is essentially a stormwater overflow for only major storm events and does not flow into the wetlands on most smaller storms. Further, the discharge has been cleaned by other upslope stormwater controls. This limited amount of discharge should have no appreciable impact on the wetlands.

Compiled by Jim Gove, CWS # 051, CSS # 004 on 6-28-2022.

This site plan application checklist is a tool designed to assist the applicant in the planning process and for preparing the application for Planning Board review. The checklist is required to be completed and uploaded to the Site Plan application in the City's online permitting system. A preapplication conference with a member of the planning department is strongly encouraged as additional project information may be required depending on the size and scope. The applicant is cautioned that this checklist is only a guide and is not intended to be a complete list of all site plan review requirements. Please refer to the Site Plan review regulations for full details.

Applicant Responsibilities (Section 2.5.2): Applicable fees are due upon application submittal along with required attachments. The application shall be complete as submitted and provide adequate information for evaluation of the proposed site development. <u>Waiver requests must be submitted</u> in writing with appropriate justification.

Name of Applicant: _____ The Sagamore Group, LLC _____ Date Submitted: _____08/23/22

Application # (in City's online permitting): LU-21-167

Site Address: 1169 & 1171 Sagamore Ave.

Map: <u>224</u> Lot: <u>14&15</u>

	Application Requirements		
Ø	Required Items for Submittal	Item Location (e.g. Page or Plan Sheet/Note #)	Waiver Requested
X	Complete <u>application</u> form submitted via the City's web-based permitting program (2.5.2.1(2.5.2.3A)		N/A
X	All application documents, plans, supporting documentation and other materials uploaded to the application form in viewpoint in digital Portable Document Format (PDF). One hard copy of all plans and materials shall be submitted to the Planning Department by the published deadline. (2.5.2.8)		N/A

-	Site Plan Review Application Required Information Required Items for Submittal Item Location Waiver									
	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested							
X	Statement that lists and describes "green" building components and systems. (2.5.3.1B)	Included								
x	Existing and proposed gross floor area and dimensions of all buildings and statement of uses and floor area for each floor. (2.5.3.1C)	C1 & C2	N/A							
x	Tax map and lot number, and current zoning of all parcels under Site Plan Review. (2.5.3.1D)	C1	N/A							

Site Plan Application Checklist/December 2020

Page 1 of 6

	Site Plan Review Application Required Info	ormation	
Ð	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested
X	Owner's name, address, telephone number, and signature. Name, address, and telephone number of applicant if different from owner. (2.5.3.1E)	Application	· N/A
X	Names and addresses (including Tax Map and Lot number and zoning districts) of all direct abutting property owners (including properties located across abutting streets) and holders of existing conservation, preservation or agricultural preservation restrictions affecting the subject property. (2.5.3.1F)	C1 & C2	N/A
x	Names, addresses and telephone numbers of all professionals involved in the site plan design. (2.5.3.1G)	Cover Sheet	N/A
X	List of reference plans. (2.5.3.1H)	C1 & C2	N/A
X	List of names and contact information of all public or private utilities servicing the site. (2.5.3.1)	Cover Sheet	N/A

	Site Plan Specifications		
A	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested
x	Full size plans shall not be larger than 22 inches by 34 inches with match lines as required, unless approved by the Planning Director (2.5.4.1A)	Required on all plan sheets	N/A
X	Scale: Not less than 1 inch = 60 feet and a graphic bar scale shall be included on all plans. (2.5.4.1B)	Required on all plan sheets	N/A
X	GIS data should be referenced to the coordinate system New Hampshire State Plane, NAD83 (1996), with units in feet. (2.5.4.1C)	C1 Note #15	N/A
x	Plans shall be drawn to scale and stamped by a NH licensed civil engineer. Required on al sheets (2.5.4.1D) Required on al sheets		N/A
X	Wetlands shall be delineated by a NH certified wetlands scientist and so stamped. (2.5.4.1E)	C1	N/A
X	Title (name of development project), north point, scale, legend. (2.5.4.2A)	Cover Sheet	N/A
х	Date plans first submitted, date and explanation of revisions. (2.5.4.2B)	All Sheets	N/A
x	Individual plan sheet title that clearly describes the information that is displayed. (2.5.4.2C)	Required on all plan sheets	N/A
x	Source and date of data displayed on the plan. (2.5.4.2D)	Cl	N/A

Site Plan Application Checklist/December 2020

	Site Plan Specifications – Required Exhibits	and Data	
Ø	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested
	 Existing Conditions: (2.5.4.3A) Surveyed plan of site showing existing natural and built features; Existing building footprints and gross floor area; Existing parking areas and number of parking spaces provided; Zoning district boundaries; Existing, required, and proposed dimensional zoning requirements including building and open space coverage, yards and/or setbacks, and dwelling units per acre; Existing impervious and disturbed areas; Limits and type of existing vegetation; Wetland delineation, wetland function and value assessment (including vernal pools); SFHA, 100-year flood elevation line and BFE data, as required. 	C1	
	 2. Buildings and Structures: (2.5.4.3B) Plan view: Use, size, dimensions, footings, overhangs, 1st fl. elevation; Elevations: Height, massing, placement, materials, lighting, façade treatments; Total Floor Area; Number of Usable Floors; Gross floor area by floor and use. 	Architectural Plans	
X	 Access and Circulation: (2.5.4.3C) Location/width of access ways within site; Location of curbing, right of ways, edge of pavement and sidewalks; Location, type, size and design of traffic signing (pavement markings); Names/layout of existing abutting streets; Driveway curb cuts for abutting prop. and public roads; If subdivision; Names of all roads, right of way lines and easements noted; AASHTO truck turning templates, description of minimum vehicle allowed being a WB-50 (unless otherwise approved by TAC). 	C2 T1-T4	
X	 Parking and Loading: (2.5.4.3D) Location of off street parking/loading areas, landscaped areas/buffers; Parking Calculations (# required and the # provided). 	C2	
	 5. Water Infrastructure: (2.5.4.3E) Size, type and location of water mains, shut-offs, hydrants & Engineering data; Location of wells and monitoring wells (include protective radii). 	C1 & C5	
X	 Sewer Infrastructure: (2.5.4.3F) Size, type and location of sanitary sewage facilities & Engineering data, including any onsite temporary facilities during construction period. 	C1, C5, P1	

X	 7. Utilities: (2.5.4.3G) The size, type and location of all above & below ground utilities; Size type and location of generator pads, transformers and other fixtures. 	C1 & C5
X	8. Solid Waste Facilities: (2.5.4.3H)	
	The size, type and location of solid waste facilities.	C2 Note #22
X	 9. Storm water Management: (2.5.4.31) The location, elevation and layout of all storm-water drainage. The location of onsite snow storage areas and/or proposed off- site snow removal provisions. Location and containment measures for any salt storage facilities Location of proposed temporary and permanent material storage locations and distance from wetlands, water bodies, and stormwater structures. 	C3 C2 C2 Note #35
X	 10. Outdoor Lighting: (2.5.4.3J) Type and placement of all lighting (exterior of building, parking lot and any other areas of the site) and photometric plan. 	L2
X	 Indicate where dark sky friendly lighting measures have been implemented. (10.1) 	L2
	 12. Landscaping: (2.5.4.3K) Identify all undisturbed area, existing vegetation and that which is to be retained; 	L2
	 Location of any irrigation system and water source. 	C5
x	 13. Contours and Elevation: (2.5.4.3L) Existing/Proposed contours (2 foot minimum) and finished grade elevations. 	C1 & C3
X	 14. Open Space: (2.5.4.3M) Type, extent and location of all existing/proposed open space. 	C2
x	15. All easements, deed restrictions and non-public rights of ways. (2.5.4.3N)	C1 & C2
	 16. Character/Civic District (All following information shall be included): (2.5.4.3P) Applicable Building Height (10.5A21.20 & 10.5A43.30); Applicable Special Requirements (10.5A21.30); Proposed building form/type (10.5A43); Proposed community space (10.5A46). 	N/A
	 17. Special Flood Hazard Areas (2.5.4.3Q) The proposed development is consistent with the need to minimize flood damage; All public utilities and facilities are located and construction to minimize or eliminate flood damage; Adequate drainage is provided so as to reduce exposure to flood hazards. 	N/A

Site Plan Application Checklist/December 2020

	Other Required Information		
	Required Items for Submittal	ltem Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested
X	Traffic Impact Study or Trip Generation Report, as required. (3.2.1-2)	Previously Submitted	
X	Indicate where Low Impact Development Design practices have been incorporated. (7.1)	C3	
x	Indicate whether the proposed development is located in a wellhead protection or aquifer protection area. Such determination shall be approved by the Director of the Dept. of Public Works. (7.3.1)	Not in Either	
Х	Stormwater Management and Erosion Control Plan. (7.4)	Included	
X	Inspection and Maintenance Plan (7.6.5)	Included	

	Final Site Plan Approval Required Info	rmation	
Ø	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested
X	 All local approvals, permits, easements and licenses required, including but not limited to: Waivers; Driveway permits; Special exceptions; Variances granted; Easements; Licenses. 	Easements shown on C1 & C2	
X	 Exhibits, data, reports or studies that may have been required as part of the approval process, including but not limited to: Calculations relating to stormwater runoff; Information on composition and quantity of water demand and wastewater generated; Information on air, water or land pollutants to be discharged, including standards, quantity, treatment and/or controls; Estimates of traffic generation and counts pre- and post-construction; Estimates of noise generation; A Stormwater Management and Erosion Control Plan; Endangered species and archaeological / historical studies; Wetland and water body (coastal and inland) delineations; Environmental impact studies. 	Enclosed	
	A document from each of the required private utility service providers indicating approval of the proposed site plan and indicating an ability to provide all required private utilities to the site. (2.5.3.2D)	Pending	

Site Plan Application Checklist/December 2020

Page 5 of 6

A	Required Items for Submittal	ltem Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested
X	A list of any required state and federal permit applications required for the project and the status of same. (2.5.3.2E)	C2 Note #5	
X	A note shall be provided on the Site Plan stating: "All conditions on this Plan shall remain in effect in perpetuity pursuant to the requirements of the Site Plan Review Regulations." (2.5.4.2E)	C2 Note #19	N/A
	For site plans that involve land designated as "Special Flood Hazard Areas" (SFHA) by the National Flood Insurance Program (NFIP) confirmation that all necessary permits have been received from those governmental agencies from which approval is required by Federal or State law, including Section 404 of the Federal Water Pollution Control Act Amendments of 1972, 33 U.S.C. 1334. (2.5.4.2F)	N/A	
	 Plan sheets submitted for recording shall include the following notes: a. "This Site Plan shall be recorded in the Rockingham County Registry of Deeds." b. "All improvements shown on this Site Plan shall be constructed and maintained in accordance with the Plan by the property owner and all future property owners. No changes shall be made to this Site Plan without the express approval of the Portsmouth Planning Director." (2.13.3) 	C2 Notes #20 & #21	N/A

KNOW ALL MEN BY THESE PRESENTS 2299-1707

THAT the Mark H. Wentworth Home for Chronic Invalids, a voluntary corporation duly, established by law and having a usual place of business in Portsmouth of x Rockingham County, State of

New Hampshire, for consideration paid, grant to the City of Portsmouth, a municipal corporation

in the County of Rockingham and State of New Hampshire

30.012

REC'O ROCKINCHAM COUNTY Registry of deeds

ofx

77 DEC-5 AII:00

County-State-of-

, with WARRANTY COVENANTS,

(Description and incumbrances, if any)

A certain tract of land situate on the Easterly side of Sagamore Avenue and the Southerly side of Wentworth Road, also known as Wentworth House Road in said Portsmouth and more particularly bounded as follows:

Beginning at a point in the Southerly sideline of Wentworth Road at the Northeasterly corner of land of Harold and Katherine Abbott and running Easterly along the Southerly sideline of Wentworth Road 464 feet more or less to land of Herman and Bertraude L. Odiorne; thence turning and running Southerly by said Odiornes, land of Mike Kuchtey and land of Helen F. Mulcahy 605 feet more or less to the Portsmouth-Rye town line; thence turning and running Southwesterly by said Portsmouth-Rye town line 1090 feet more or less to the Westerly sideline of Sagamore Avenue; thence turning and running Northerly by said Sagamore Avenue 1200 feet more or less to an iron pipe in the ground at land of Richard and Kathryn Cooper; thence turning and running Easterly by said land of Cooper 100 feet to an iron pipe in the ground; thence turning and running Northerly by said land of Cooper 100 feet to a drill hole in a ledge; thence continuing Northerly by land of Richard Cooper and others 80 feet to a corner at land of Valley Oil Company; thence turning and running Easterly by land of said Oil Company 49 feet more or less to an iron pipe at land of said Abbotts; thence continuing in an Easterly direction by land of Abbotts 100 feet more or less to an iron pipe; thence turning and running Northerly by said land of said Abbotts 139 feet more or less to Wentworth Road and the point of beginning. Containing by estimation 16.5 acres.

Being the same premises acquired by deed of Charles J. Griffin Executor of the will of Henry Kenney dated October 17, 1939, recorded in Rockingham County Registry of Deeds Book 963 Page 375 less a certain lot conveyed to Richard Cooper and Kathryn E. Cooper by deed dated September 27, 1956, recorded in Rockingham County Registry of Deeds Book 1410 Page 350.

zwifez instantz

Notary Public - Justice of the

	releasestance in G	contractally i	ights of z ^{di}	statute and then	and and a		catellocci o	EX.		
	WITNESS	the	hand	and seal	this 27	day of	Septemb	er	, 19 77	
(Patrici	a X	2,	igh	Mark H. H.	man P. Be	91		Call On	da Jawa
	Rockingham.		55.	State of New		Ser	otember	States and	A and a series	SOI
ized	Then person Trustees of th and acknowledg said corporati	ed the fore	wentwo		yman P. Bo Chronic Inv	ynton, P valids. au	resident	s purp	Board of	of

2299-1708

Mark H. Wentworth Home for Chronic Invalids

Meeting of the Board of Trustees of the Mark H. Wentworth Home for Chronic Invalids held at the Home on December 3, 1976, with a quorum of the Trustees present.

President, Wyman P. Boynton, presided.

Q In

On motion it was

VOTED: To sell the Sagamore Avenue property of the Home to the City of Portsmouth for the sum of \$40,000.00, together with the appraisers fee and the abatement of the 1976 taxes; and further that the President be authorized to execute all deeds and other instruments required.

A true extract from the re

Richard E

Winsk

Approver

2

KNOW ALL MEN BY THESE PRESENTS, That Norman J. Smith, of P.O. Box 95, Portsmouth, County of Rockingham and State of New Hampshire,

812418 P0173

tei'tz

56° HY 32

2

ž

Ľ

for consideration paid, grant to Colleen M. Hebert of 1169 Sagamore Avenue, Portsmouth, County of Rockingham and State of New Hampshire,

with marranty covenants

A certain parcel of land, together with the buildings thereon, situate on the Westerly side of Sagamore Avenue, so-called, in Portsmouth in the County of Rockingham and State of New Hampshire, more particularly bounded and described as follows:

Beginning in the Westerly sideline of the Avenue at land now or formerly of Haven L. Joy; thence running Westerly by other land of Joy, Two Hundred Ninety-three and Five Tenths (293.5) feet to land now or formerly of Ralph W. Junkins Est. et als; thence turning and running Norterly by other land of Junkins et als One Hundred Twenty-six and Thirty-two Hundredths (126.32) feet to a point at other land now or formerly of John J. and Harriet Scammon; thence turning and running Easterly by other land of Scammon Three Hundred (300) feet, more or less, to the Westerly sideline of the Avenue, thence running Southerly by the sideline Forty-seven and Sixty-five Hundredths (47.65) feet to a point, thence running Southeasterly by the sideline Fortynine and Eight Hundredths (49.08) feet to land of Joy which is the point of beginning.

Being the same premises conveyed to Norman J. Smith and Janet S. Smith by deed of John J. Scammon et al dated July 24, 1954 and recorded in the Rockingham County Registry of Deeds in Book 1323 Page 324.

Norman	з.	Smith,	being	single	. hustond	XMXXMXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
and grantee	4	di mahis et	endesy	dou	er and homestea	d and other interests darism

29th

whith a. Gile

Hormay

State of New Hampshire

my.

Wittens,

July 29 AD 17 82

a lana mana

1.

dan ...

July

p. 82.

1.5

L.S

L.N

secured the same

Personally appeared Norman J. Smill

hand MAXMAN they

known to me, or satisfactorily procent to be the person

subscribed to the bregarige instrument and acknow ledged that

for the purposes there we contained

Between Sudets a. Siles

WARRANTY DEED

KNOW ALL PERSONS BY THESE PRESENTS THAT I, ROBERT F.

SCAMMON, JR., single and not a party to a civil union, of 1169 Sagamore Avenue, Portsmouth, New Hampshire, 03801

For consideration paid, grant to JOHN J. HEBERT AND COLLEEN HEBERT, husband and wife, of 54 Pioneer Road, Rye, New Hampshire, 03870, as joint tenants with rights of survivorship,

With Warranty Covenants, the following described premises situate in Portsmouth, Rockingham County, New Hampshire:

A certain lot or parcel of land with the buildings thereon situate on Sagamore Avenue, City of Portsmouth, County Rockingham and State of New Hampshire, bounded and described as follows:

Beginning at the concrete bound at the Northeasterly corner of the within described lot, the said bound being Four Hundred Seventy-nine (479) feet southerly along said Sagamore Avenue from the southeasterly corner of land now or formerly of Charles F. Moody; thence running Southerly twenty-four (24) degrees thirty-four (34) minutes west along said Sagamore Avenue one hundred (100) feet to a stake in the stone wall at other land now or formerly of Allen B. Keen; thence turning and running N 83° 43' W by other land of said Keen 300 feet to a stake; thence turning and running N 24° 30' E 100 feet by land now or formerly of Frank E. Brooks, etals; thence turning and running S 83° 43' E by land of said Brooks and other 300 feet to Sagamore Avenue and being the point of beginning.

Also a parcel of land situated on Sagamore Avenue in said Portsmouth adjoining and lying on the northerly side of the above described parcel and bounded and described as follows: Beginning at a concrete bound at the southeasterly corner of these premises at land described above, said bound being 479 feet southerly along said Sagamore Avenue from the southeasterly corner of land now or formerly of Charles F. Moody; thence running N 83° 43' W by the above described parcel 300 feet to a point of land now or formerly of Frank E Brooks et als; thence turning and running N 24° 30' E by other land of said Brooks and others 300 feet, more or less to said Sagamore Avenue; thence turning and running southerly along said Sagamore Avenue 50 feet to said concrete bound and being the point of beginning.

Also a parcel of land situated on Sagamore Avenue in said Portsmouth and bounded and described as follows: Beginning at the northeasterly corner of the herein described parcel at the intersection of the westerly sideline of said Sagamore Avenue and land now or formerly of Allen B. Keen, said point being 100 feet S 24° 34' W along said Sagamore Avenue from the concrete bound aforementioned; thence running southerly along said Avenue 25 feet to land now or formerly of Frank E .Brooks, et als; thence turning and running N 83° 43' W by land now or formerly Frank E. Brooks, et als 300 feet, more or less, to a point; thence turning and running N 24° 30' E 25 feet by land of said Brooks, et als, to a stake at other land now or formerly of Allen B. Keen; thence turning and running Southeast 83° 43' E by other land of said Keen 300 feet to Sagamore Avenue and being the point of beginning. This parcel adjoining and lying on the southerly side of the first described parcel herein.

Being the same premises conveyed to the within Grantor by deed of Barbara Scammon dated April 25, 1995, recorded in Rockingham County Registry of Deeds, Book 3097, Page 1715.

Signed this 30th day of November, 2012.

Robert F. Scammon, Jr.

STATE OF NEW HAMPSHIRE ROCKINGHAM COUNTY

Personally appeared this <u>30th</u> day of <u>November</u>, 2012, <u>Robert F.</u> <u>Scammon, Jr.</u>, who acknowledged that he/she/they executed the foregoing instrument as his/her/their free act and deed for the purposes contained herein.

Before me,

Lori Hebert, Notary Public

My commission expires: 05/09/2017

The Sagamore Group, LLC, 4 Merrill Industrial Drive, Hampton, NH, 03842, USA, developer of property located in Portsmouth, NH, known as Tax Map 224, Lots 14 & 15, do hereby authorize Jones & Beach Engineers, Inc., PO Box 219, Stratham, NH, to act on our behalf concerning the subject properties. The parcels are located at 1169 & 1171 Sagamore Avenue in Portsmouth, NH.

We hereby appoint Jones & Beach Engineers, Inc., as my agent to act on my behalf in the review process, to include any required signatures.

The Sagamore Group, LLC

 $\frac{5/4/21}{\text{Date}}$

Daniel Jackson, Member Duly authorized

We, John & Colleen Hebert, 54 Pioneer Road, Rye, NH 03870, owners of property located in Portsmouth, NH, known as Tax Map 224, Lot 15, do hereby authorize Jones & Beach Engineers, Inc., PO Box 219, Stratham, NH, to act on my behalf concerning the previously-mentioned property. The parcel is located on 1169 Sagamore Avenue in Portsmouth, NH.

We hereby appoint Jones & Beach Engineers, Inc., as my agent to act on my behalf in the review process, to include any required signatures.

	Jula J Habert OSTAVI 247 PM EDT 55104/1247 PM EDT 5510 MUAR-ISWP P2NS	
Witness	John Hebert	Date
	College Holest OS/04/21 2:49 PM EDT]
	OIBG-7MLM-FUEK-BAEX	

I, Colleen Hebert, 54 Pioneer Road, Rye, NH 03870, owner of property located in Portsmouth, NH, known as Tax Map 224, Lot 14, do hereby authorize Jones & Beach Engineers, Inc., PO Box 219, Stratham, NH, to act on my behalf concerning the previously-mentioned property. The parcel is located on 1171 Sagamore Avenue in Portsmouth, NH.

I hereby appoint Jones & Beach Engineers, Inc., as my agent to act on my behalf in the review process, to include any required signatures.

	Colleon Hebert	donoop verilied 05/04/21 2:49 PM EDT RLSS-SIAZ-YMFLYUBD			
Witness	Colleen		Date		

CITY OF PORTSMOUTH

Planning Department 1 Junkins Avenue Portsmouth, New Hampshire 03801 (603) 610-7216

TECHNICAL ADVISORY COMMITTEE

June 13, 2022

John Hebert Colleen Hebert 54 Pioneer Rd Rye, NH 03870

RE: Site Plan Review for properties located at 1169 and 1171 Sagamore Avenue (LU-21-167)

Dear Mr. Hebert and Ms. Hebert:

The Technical Advisory Committee, at its regularly scheduled meeting of Tuesday, June 7, 2022, considered your application for requesting Site Plan Review approval for the demolition of 3 existing principal structures (3 single family units) and 3 existing accessory structures to be replaced with 6 single family structures and 2 2 family structures to total 10 living units and 22 parking spaces where 15 is required. Said property is shown on Assessor Map 224 Lot 14 and Lot 15 and lies within the Mixed Residential Office (MRO) District. As a result of said consideration, the Committee voted to **recommend approval** to the Planning Board with the following stipulations:

Items to be addressed prior to Planning Board approval:

1) Catch basin 3 is to be relocated upgrade to the northern side of the driveway servicing 1167 Sagamore Ave.

2) Applicant will provide confirmation from the Jelly Fish system manufacturer that the proposed location is adequate for the system to properly perform its functions.

Condition Precedent:

3) The proposed culvert across Sagamore Ave will need a Wetland Conditional Use Permit and City Council approval for work on City property.

Condition Subsequent:

4) Third party inspection of stormwater, sewer, water, and sidewalk installation is required.

This matter will be placed on the agenda for the Planning Board meeting scheduled for **Thursday, July 21, 2022**. One (1) hard copy of all plans and supporting reports and exhibits as well as an updated electronic file (in a PDF format) must be filed in the Planning Department and uploaded to the online permit system no later than **Wednesday, June 29, 2022**.

Per Section 2.5 of the Site Plan Regulations, a site plan review application to the Planning Board must include all applicable information and supporting materials including but not limited to the following items:

- Full updated plan set
- Draft Easements
- Drainage Analysis
- Traffic Studies
- Etc.

All comments, corrections, and conditions identified as "Items to be addressed before Planning Board submittal' must be resolved/corrected for the Planning Board application submittal to be deemed complete.

The minutes and audio recording of this meeting are available by contacting the Planning Department.

Very truly yours,

Benerey Mox-zalt

Beverly Mesa-Zendt, Planning Director

Daniel Jackson, Sagamore Group, LLC Joseph Coronati, Jones & Beach Engineers

DRAINAGE ANALYSIS

SEDIMENT AND EROSION CONTROL PLAN

Sagamore Avenue Condominiums 1169 & 1171 Sagamore Ave. Portsmouth, NH 03801 Tax Map 224, Lots 14 & 15

Prepared for:

The Sagamore Group, LLC P.O. Box 430 Hampton, NH 03842

Prepared by: Jones & Beach Engineers, Inc. 85 Portsmouth Avenue P.O. Box 219 Stratham, NH 03885 (603) 772-4746 August 23, 2021 Revised October 5, 2021 Revised December 28, 2021 Revised February 9, 2022 Revised February 9, 2022 Revised March 22, 2022 Revised April 18, 2022 Revised May 10, 2022 JBE Project No. 21047

EXECUTIVE SUMMARY

The Sagamore Group, LLC proposes to construct ten (10) residential condominium units on a 1.83acre parcel of land located at 1169 & 1171 Sagamore Avenue in Portsmouth, NH. In the existing condition, the two lots to be consolidated are home to single-family residences with multiple sheds and paved driveways, a pool, and a gravel driveway running through the lots.

A drainage analysis of the entire site was conducted for the purpose of estimating the peak rate of stormwater runoff and to subsequently design adequate drainage structures. Two models were compiled, one for the area in its existing (pre-construction) condition, and a second for its proposed (post-construction) condition. The analysis was conducted using data for the 2 Year – 24 Hour (3.70"), 10 Year – 24 Hour (5.61"), 25 Year – 24 Hour (7.12"), and 50 Year – 24 Hour (8.53") storm events using the USDA SCS TR-20 method within the HydroCAD Stormwater Modeling System environment. This data was taken from the Extreme Precipitation Tables developed by the Northeast Regional Climate Center (NRCC), and the values have been increased by 15% due to the project being within the Coastal/Great Bay Region. A summary of the existing and proposed conditions peak rates of runoff in units of cubic feet per second (cfs) is as follows:

Analysis Point	2 Year		10 Year		25 Year		50 Year	
	Pre	Post	Pre	Post	Pre	Post	Pre	Post
Analysis Point #1	0.60	0.31	1.40	0.87	2.11	1.40	2.80	1.92
Analysis Point #2	0.86	0.72	1.53	1.25	2.06	1.68	2.56	2.07
Analysis Point #3	1.20	0.22	2.24	0.53	3.14	0.80	3.98	1.07
Analysis Point #4	0.24	0.21	0.50	0.40	0.73	0.56	0.94	0.70
Analysis Point #5	N/A	0.69	N/A	1.05	N/A	1.50	N/A	2.40

A similar summary of the existing and proposed peak volumes in units of acre-feet is as follows:

Analysis Point	2 Year		10 Year		25 Year		50 Year	
	Pre	Post	Pre	Post	Pre	Post	Pre	Post
Analysis Point #1	0.063	0.036	0.140	0.089	0.208	0.139	0.275	0.189
Analysis Point #2	0.072	0.067	0.127	0.117	0.172	0.158	0.215	0.196
Analysis Point #3	0.086	0.017	0.228	0.039	0.402	0.058	0.573	0.077
Analysis Point #4	0.022	0.019	0.045	0.037	0.064	0.051	0.083	0.065
Analysis Point #5	N/A	0.082	N/A	0.206	N/A	0.343	N/A	0.478

The subject parcels are located in the Mixed Residential / Office (MRO) Zoning District. The subject parcels currently consist of the aforementioned single-family residences with associated driveways, sheds, and a pool, all of which is proposed to be demolished. The topography and ledge outcrops on the site as well as a stretch of Sagamore Ave. that is considered in this analysis define six (6) subcatchments, which drain to four (4) analysis points. Subcatchments 2S-4S drain directly toward their respective analysis points while subcatchment 6S drains directly toward Analysis Point #1, subcatchment 1S drains directly toward an isolated wetland which overflows toward both Analysis Points 1&3, and subcatchment 5S drains toward a shallow depression straddling the two properties, modelled as a pond, before cresting over a "berm" and running off toward the northerly abutter's detention pond (Analysis Point 3). The neighboring "Westwind Townhomes of Portsmouth" site to the south stands topographically prominent to this parcel, so some runoff from this development reaches

the southeast corner of the subject parcel although most of it drains directly into the Sagamore Avenue right of way. The runoff reaching this corner of the property (Analysis Point 2) then continues south along Sagamore Avenue. The majority of the site drains to the north in the existing condition, reaching either the abutting "Sea Star Cove Condominium" detention pond (Analysis Point 3) or the adjacent depression (Analysis Point 1) after overflowing from the isolated wetland in the rear of the site. Also included in Subcatchment 1S, which drains toward Analysis Point 1, is a stretch of Sagamore Ave with a low point at a horseshoe shaped driveway for an abutter to the subject property. Runoff from this stretch of the road sheet flows across the abutter's property in the proposed condition before ultimately reaching either the isolated wetland or a wooded depression defined as Analysis Point 1.

The proposed site development consists of the aforementioned ten (10) condominium units with associated paved roadway and individual driveways. The addition of the proposed impervious paved areas and buildings causes an increase in the curve number (C_n) and a decrease in the time of concentration (T_c), the net result being a potential increase in peak rates of runoff from the site. A stormwater management system was designed in order to mitigate this possibility. The proposed site development divides the site into nineteen (19) subcatchments, representing both the periphery of the site that will continue its existing flow pattern toward the aforementioned analysis points as well as the developed portions that will be routed into the site's stormwater management system for treatment and reduction of peak flows. The proposed stormwater management system for the front of the site consists of two (2) bioretention systems to filter runoff and a downstream concrete galley field that will detain runoff and release it slowly, allowing for peak flow rates to be reduced. The proposed stormwater management system for the rear of the site consists of two catch basins as well as several yard drains draining into a concrete galley field designed for infiltration, from which overflow will be routed to the concrete galley field in the center of the site that is designed for detention. Through the use of these practices, the peak rate and volume of runoff is reduced toward Analysis Points #1-4 during all analyzed storm events.

Otherwise, some roof runoff will be infiltrated through subsurface stone beds. These systems, in combination with the concrete galley field designed for infiltration, will help to reduce volumes of runoff below the existing condition and promote groundwater recharge.

Additionally, although the system has been designed to reduce the amount of flooding on to abutting properties in the proposed condition, a cross-street culvert is proposed as an overflow from the depression surrounding the isolated wetland. As modelled, this culvert protects against flooding on to adjacent properties during all analyzed storm events. This culvert outlets across the street into a larger wetland area, so new Analysis Point 5 is introduced in the proposed condition for the runoff that is captured by this culvert.

The use of Best Management Practices per the NHDES <u>Stormwater Manual</u> have been applied to the design of this drainage system and will be observed during all stages of construction. All land disturbed during construction will be stabilized within thirty days of groundbreaking and abutting property owners will suffer minimal adversity resultant of this development.

TABLE OF CONTENTS

Executive Summary

- 1.0 Rainfall Characteristics
- 2.0 Existing Conditions Analysis
- 3.0 Proposed Conditions Analysis
- 4.0 Conclusion
- Appendix I Existing Conditions Analysis

2 Year - 24 Hour Summary 10 Year - 24 Hour Complete 25 Year - 24 Hour Summary 50 Year - 24 Hour Complete

Appendix II Proposed Conditions Analysis

2 Year - 24 Hour Summary 10 Year - 24 Hour Complete 25 Year - 24 Hour Summary 50 Year - 24 Hour Complete

- Appendix III Test Pit Logs
- Appendix IV HISS Soil Note and Map
- Appendix V NRCS Soil Map
- Appendix VI Extreme Precipitation Estimates
- Appendix VII Rip Rap Calculations
- Appendix VIII BMP Worksheets
- Appendix IX Jellyfish Design Information
- Appendix X Pre- and Post-Construction Watershed Plans

1.0 RAINFALL CHARACTERISTICS

This drainage report includes an existing conditions analysis of the area involved in the proposed development, as well as a proposed condition, or post-construction analysis, of the same location. These analyses were accomplished using the USDA SCS TR-20 Method within the HydroCAD Stormwater Modeling System. The curve numbers were developed using the SCS TR-55 Runoff Curve numbers for Urban Areas. A Type III SCS 24-hour rainfall distribution was utilized in analyzing the data for the 2 Year – 24 Hour (3.70"), 10 Year – 24 Hour (5.61"), 25 Year – 24 Hour (7.12"), and 50 Year – 24 Hour (8.53") storm events. This data was taken from the Extreme Precipitation Tables developed by the Northeast Regional Climate Center (NRCC), and the values have been increased by 15% due to the project being within the Coastal/Great Bay Region.

The peak rates of runoff will be reduced from the existing condition, thereby minimizing any potential for a negative impact on abutting properties or erosion of the wetland system. This is accomplished through treatment of stormwater runoff and attenuation of peak flows and volumes resulting from storm events.

2.0 EXISTING CONDITIONS ANALYSIS

The two existing single-family residential properties feature three houses, two sheds, a pool, two paved driveways and a gravel driveway running through the site in addition to a paved island in the center of the site. The site is otherwise covered by both woods and grass, with sporadic ledge outcrops. A small section of the southern part of the site is sloped toward the south, while the majority of it is sloped toward the north.

The area draining toward the north is split into three subcatchments; Subcatchments 1S, 3S, and 5S. Subcatchment 1S drains into an isolated wetland near the northeast corner of the site. Subcatchment 1S includes the entire on and off-site contributing watershed area toward the isolated wetland, which includes parts of abutting properties as well as a stretch of Sagamore Avenue. Subcatchment 3S drains into Analysis Point #3 (AP3) representing the abutting condominium property's private detention pond. Subcatchment 5S drains toward a shallow depression straddling the two existing subject parcels, represented as 1P, and once the depression fills it crests over a berm and drains across Subcatchment 3S toward Analysis Point #3.

Two additional subcatchments were defined for the area draining toward the south; Subcatchment 2S and Subcatchment 4S. Subcatchment 2S is directed toward Analysis Point #2 (AP2), representing the shoulder of Sagamore Avenue. Runoff in this direction combines with runoff from the edge of the abutting property and continues south. Subcatchment 4S, which is separated from 3S by a ledge outcrop, a building roof, and otherwise a subtle inflection in the surface topography, is located in the southwestern corner of the property and this small area drains directly into the Sea Star Cove Condiminium property, represented by Analysis Point #4 (AP4).

There are two berms on the isolated wetland in the northeast corner of the subject site. A lower berm carries overflow toward the abutter's detention pond and a higher, 70' long x 10' wide berm carries any extreme overflow toward a depression in the woods represented as Analysis Point AP1. Additionally, a stretch of the road and areas of abutting properties drain directly toward Analysis Point AP1 and are represented as Subcatchment 6S.

Existing soil types were determined through a High Intensity Soil Survey (HISS) conducted by a Certified Soil Scientist. A Site-Specific Soil Map (SSSM) conversion table was provided along with the report that was generated based on the results of the HISS. These soils are categorized into Hydrologic Soil Groups (HSG) B and D. Areas surrounding ledge outcrops are categorized into HSG D while the remainder of the upland area of the site is mostly categorized into HSG B. Specifically, the upland soil types include the Hollis-Rock Outcrop Complex, Made Land – Similar to Canton, Newfields, and Chatfield Variant. According to "Ksat Values for New Hampshire Soils" sponsored by the Society of Soil Scientists of Northern New England SSSNNE Special Publication No. 5, the saturated hydraulic conductivity (Ksat) value for Canton soils ranges from 2 to 6 inches/hour within the B horizon and 6 to 20 inches/hour within the C horizon; the Ksat value for Newfields soils ranges from 0.6 to 2 inches per hour within both the B and C horizons, and the Ksat value for both Chatfield Variant and Hollis soils ranges from 0.6 to 6 inches/hour within both the B and C horizons.

3.0 PROPOSED CONDITIONS ANALYSIS

The addition of the proposed impervious paved areas and buildings causes an increase in the curve number (C_n) and a decrease in the time of concentration (T_c), the result being a potential increase in peak rates of runoff from the site. A stormwater management system was designed in order to mitigate this possibility. The proposed development, consisting of the aforementioned ten (10) condominium units with associated paved roadway and driveways as well as stormwater management features divide the subject parcel into nineteen (19) subcatchments. Subcatchments 2S-4S drain directly into their respective Analysis Points, AP2-AP4, as previously outlined. Subcatchments 5S-6S will drain into the two bioretention systems in the front of the site, and after receiving treatment in the bioretention systems, runoff will be piped into concrete "Galley" chambers for underground detention. Subcatchments 7S-8S represent the rear of the site and runoff from here is graded toward two catch basins in sequence from which a closed drainage network feeds into another Galley chamber system, except that this one is designed for infiltration. Overflow from this will be piped into the Galley chamber system in the center of the site that is designed for detention only. Subcatchments 9S-12S represent lawn areas that are proposed to drain toward yard drains. Subcatchments 13S-15S represent roof subcatchments from which runoff will be infiltrated through subsurface stone infiltration beds in lawn areas. Subcatchments 16S, 17S, and 18S represent three stretches of Sagamore Avenue that are to drain toward proposed deep sump catch basins, the purpose of which is to pre-treat roadway runoff and drain it to the wetland across the street. The three proposed catch basins drain toward a proposed "Jellyfish" filtration system for treatment. Finally, Subcatchment 19S represents the sections of adjacent properties draining directly toward the wooded depression to the north of the site represented as AP1. As explained in the executive summary, the proposed stormwater management features help to reduce off-site peak rates and volumes toward AP1-AP4 below the existing condition.

As stated in the executive summary, a new cross street culvert is proposed to be installed as an overflow to prevent runoff from cresting on to adjacent properties after filling the depression surrounding the isolated wetland. Because this culvert carries water across the road, a new analysis point is introduced, represented as Analysis Point 5 to delineate the runoff that enters the larger wetland across the street. The three proposed catch basins along Sagamore Ave feed into a "Jellyfish" filtration system which intercepts the cross-street culvert and treats runoff directed toward it, and therefore the roadway runoff that enters the proposed catch basin also directly reaches Analysis Point AP5 after being treated.

As modelled, this proposed culvert reduces the peak elevation within the depression surrounding the isolated wetland and reduces the potential for flooding during peak storm events. A summary of the peak elevations during each analyzed storm event are as follows, noting that the flood elevation is situated at 31.3:

	2 Year	10 Year	25 Year	50 Year
Existing	30.48	31.32 (Flooding)	31.36 (Flooding)	31.44 (Flooding)
Proposed	30.42	30.65	30.96	31.18

After passing through the bioretention systems and concrete "Galley" chambers, treated and attenuated runoff will gradually drain toward the isolated wetland in the northeast corner of the site, from which any overflow will drain across the street via the proposed culvert during all analyzed storm events. The peak rates and volumes of runoff will be reduced in all analyzed storm events toward Analysis Points 1-4 in the proposed condition compared to the existing condition.

The site will be graded such that runoff from all impervious areas, with the exception of clean roof, patio, and deck runoff, will be treated, detained, and some of it infiltrated to groundwater, by way of bioretention systems and subsurface infiltration and detention chambers. The two bioretention systems in the front of the site cannot be used for infiltration due to the presence of ledge in the area where they are proposed, therefore they shall be lined and underdrained. The proposed concrete Galley chambers in the center of the site will also lined and underdrained due to the presence of groundwater while the proposed concrete Galley chambers in the northwest corner of the site are designed as a subsurface infiltration basin, with at least 3' between the bottom of the chamber and the SHWT.

The Ksat values stated at the end of the Existing Conditions Analysis were used to determine the design infiltration rates of each stormwater practice. The lower Ksat for each soil type was divided by 2 to develop a design infiltration rate of 0.3 or 1 inches/hour for each stormwater practice depending on what soil type they are located in. When a practice is located within multiple soil types, a weighted average is taken. For example, the underground stone infiltration bed in back of Units 1 and 2 straddles two soil types, one with each aforementioned design infiltration rate, so the two rates were averaged and a design infiltration rate of 0.65 inches/hour was ultimately used.

By reducing the peak rate and volume of stormwater runoff toward the neighbor's detention pond, the functioning of the overall drainage system between the two properties is improved resultant to this development. The outfall is in an optimal location as the treated and attenuated runoff will be released toward an existing wetland, a rip rap outlet protection apron is proposed in order to dissipate any concentrated flows that result, and a proposed cross-street culvert will work to reduce the potential for flooding on adjacent properties. The contours surrounding the isolated wetland in the northeastern corner of the site are modelled as a pond, 21P, in the proposed condition, where it is modelled as 2P in the existing condition.

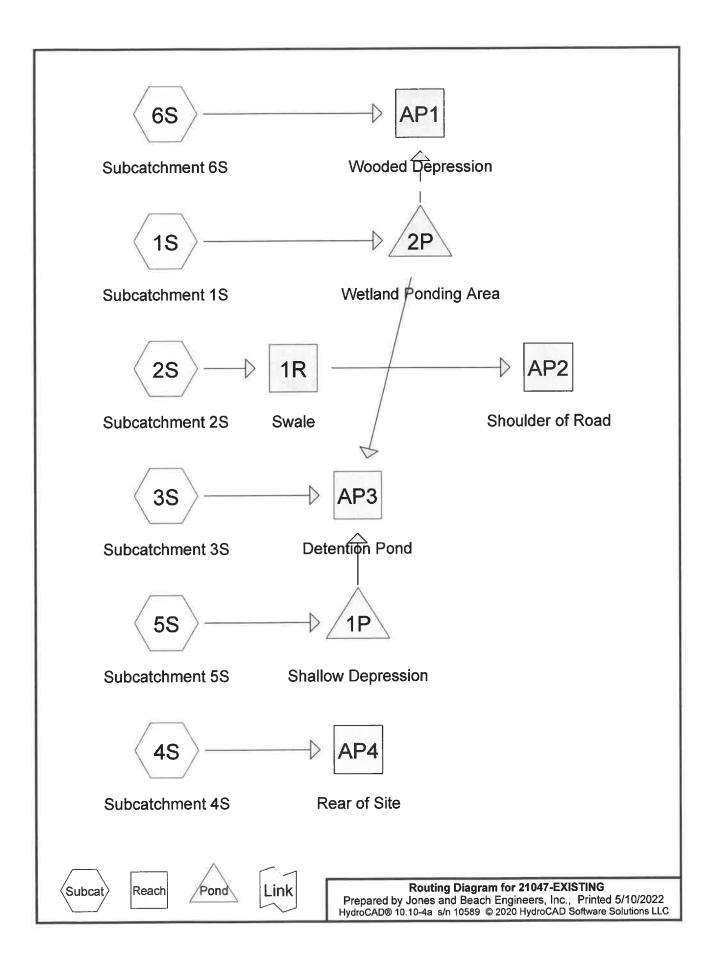
According to the NH Stormwater Manual, bioretention systems provide a pollutant removal efficiency of 90% for TSS and 65% for nitrogen, and infiltration basins (including subsurface ones) provide a removal efficiency of 90% for TSS and 60% for nitrogen provided that there is 3' of soil or stone separating the bottom of the chamber from the seasonal high water table and that the chamber is at least 75' from surface water. Runoff from all impervious surfaces with the exception of roofs is being directed toward one of these two types of treatment systems. The City of Portsmouth Site Plan Review Regulations stipulate that stormwater BMPs should either be designed for 80% TSS removal and 50%

nitrogen removal, OR to retain and treat the Water Quality Volume. This plan exceeds the requirements for pollutant removal because appropriate treatment / groundwater recharge systems are used and the Water Quality Volume is retained and treated.

5.0 CONCLUSION

This proposed site development will have minimal adverse effect on abutting infrastructures, properties, and wetlands by way of stormwater runoff or siltation. Appropriate steps will be taken to eliminate erosion and sedimentation; these will be accomplished through the construction of a drainage system consisting of site grading, catch basins, drain manholes, yard drains, bioretention systems, concrete "Galley" chambers, subsurface stone infiltration beds, rip rap outlet protection, a "Jellyfish" filtration system for road runoff, and a proposed cross-street culvert as well as temporary erosion control measures including but not limited to silt fence and the use of a stabilized construction entrance. The drainage outfall is in its optimal location and the rate and the volume of runoff reaching the abutter's detention pond from the subject site will be reduced. Best Management Practices developed by the State of New Hampshire have been utilized in the design of this system and their application will be enforced throughout the construction process. Peak rates and volumes of runoff from the site will be reduced toward all analysis points during all analyzed storm events.

This project disturbs less than 100,000 S.F. and does <u>not</u> require a NHDES Alteration of Terrain Permit.


Respectfully Submitted, JONES & BEACH ENGINEERS, INC.

Daniel Meditz, E.I.T Project Engineer

APPENDIX I

EXISTING CONDITIONS DRAINAGE ANALYSIS

Summary 2 YEAR Complete 10 YEAR Summary 25 YEAR Complete 50 YEAR

21047-EXISTING Prepared by Jones and Beach Engineers, Inc. HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	CN	Description	
(acres)		(subcatchment-numbers)	
0.644	61	>75% Grass cover, Good, HSG B (1S, 3S, 4S, 5S, 6S)	
0.448	80	>75% Grass cover, Good, HSG D (1S, 2S, 3S, 4S, 5S)	
0.135	96	Gravel surface, HSG B (1S, 5S)	
0.107	96	Gravel surface, HSG D (1S, 2S, 3S, 4S, 5S)	
0.156	98	Ledge Outcrop, HSG D (1S, 2S, 3S, 4S, 5S)	
0.228	98	Paved parking, HSG B (5S, 6S)	
0.047	98	Paved roads w/curbs & sewers, HSG B (1S)	
0.040	98	Paved roads w/curbs & sewers, HSG D (1S, 2S)	
0.064	98	Roofs, HSG B (1S, 4S, 5S, 6S)	
0.103	98	Roofs, HSG D (1S, 2S, 4S, 5S)	
0.861	55	Woods, Good, HSG B (1S, 3S, 4S, 5S, 6S)	
0.088	77	Woods, Good, HSG D (1S, 3S, 4S, 5S)	
2.921	74	TOTAL AREA	

Prepared by Jones and Beach Engineers, Inc. HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC

Soil Listing (all nodes)

Area (acres)	Soil Group	Subcatchment Numbers
0.000	HSG A	
1.980	HSG B	1S, 3S, 4S, 5S, 6S
0.000	HSG C	
0.941	HSG D	1S, 2S, 3S, 4S, 5S
0.000	Other	
2.921		TOTAL AREA

21047-EXISTING	Type III 24-hr 2 Yr 24 Hr (+15%) Rainfall=3.70"
Prepared by Jones and Beach Engineers, Inc.	Printed 5/10/2022
HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Soft	ware Solutions LLC Page 4

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: Subcatchment1S	Runoff Area=34,729 sf 15.46% Impervious Runoff Depth>1.25" Flow Length=112' Tc=20.1 min CN=72 Runoff=0.75 cfs 0.083 af
Subcatchment2S: Subcatchment2S Flow Length=4	Runoff Area=16,495 sf 25.67% Impervious Runoff Depth>2.27" 5' Slope=0.0400 '/' Tc=6.0 min CN=86 Runoff=0.99 cfs 0.072 af
Subcatchment3S: Subcatchment3S	Runoff Area=16,448 sf 0.17% Impervious Runoff Depth>0.61" Flow Length=180' Tc=24.1 min CN=60 Runoff=0.13 cfs 0.019 af
Subcatchment4S: Subcatchment4S Flow Length=68	Runoff Area=7,905 sf 42.56% Impervious Runoff Depth>1.44" S' Slope=0.0290 '/' Tc=12.6 min CN=75 Runoff=0.24 cfs 0.022 af
Subcatchment5S: Subcatchment5S	Runoff Area=22,358 sf 25.08% Impervious Runoff Depth>1.87" Flow Length=87' Tc=7.2 min CN=81 Runoff=1.07 cfs 0.080 af
Subcatchment6S: Subcatchment6S	Runoff Area=29,310 sf 31.34% Impervious Runoff Depth>1.13" Flow Length=137' Tc=16.7 min CN=70 Runoff=0.60 cfs 0.063 af
Reach 1R: Swale n=0.150 L	Avg. Flow Depth=0.43' Max Vel=0.52 fps Inflow=0.99 cfs 0.072 af =140.0' S=0.0214 '/' Capacity=8.19 cfs Outflow=0.86 cfs 0.072 af
Reach AP1: Wooded Depression	Inflow=0.60 cfs 0.063 af Outflow=0.60 cfs 0.063 af
Reach AP2: Shoulder of Road	Inflow=0.86 cfs 0.072 af Outflow=0.86 cfs 0.072 af
Reach AP3: Detention Pond	Inflow=1.20 cfs 0.086 af Outflow=1.20 cfs 0.086 af
Reach AP4: Rear of Site	Inflow=0.24 cfs 0.022 af Outflow=0.24 cfs 0.022 af
Pond 1P: Shallow Depression	Peak Elev=37.14' Storage=590 cf Inflow=1.07 cfs 0.080 af Outflow=1.16 cfs 0.067 af
Pond 2P: Wetland Ponding Area Primary=0.00 cfs	Peak Elev=30.48' Storage=3,609 cf Inflow=0.75 cfs 0.083 af 0.000 af Secondary=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Total Runoff Area = 2.921	ac Runoff Volume = 0.339 af Average Runoff Depth = 1.39

Total Runoff Area = 2.921 acRunoff Volume = 0.339 afAverage Runoff Depth = 1.39"78.16% Pervious = 2.283 ac21.84% Impervious = 0.638 ac

Prepared by Jones and Beach Engineers, Inc.

Type III 24-hr 10 Yr 24 Hr(+15%) Rainfall=5.61" Printed 5/10/2022 HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC Page 5

> Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1S: Subcatchment 1S F	Runoff Area=34,729 sf 15.46% Impervious Runoff Depth>2.67" low Length=112' Tc=20.1 min CN=72 Runoff=1.67 cfs 0.177 af
Subcatchment2S: Subcatchment2S Flow Length=45'	Runoff Area=16,495 sf 25.67% Impervious Runoff Depth>4.04" Slope=0.0400 '/' Tc=6.0 min CN=86 Runoff=1.72 cfs 0.127 af
Subcatchment3S: Subcatchment3S F	Runoff Area=16,448 sf 0.17% Impervious Runoff Depth>1.66" low Length=180' Tc=24.1 min CN=60 Runoff=0.43 cfs 0.052 af
Subcatchment4S: Subcatchment4S Flow Length=68'	Runoff Area=7,905 sf 42.56% Impervious Runoff Depth>2.95" Slope=0.0290 '/' Tc=12.6 min CN=75 Runoff=0.50 cfs 0.045 af
Subcatchment5S: Subcatchment5S	Runoff Area=22,358 sf 25.08% Impervious Runoff Depth>3.53" Flow Length=87' Tc=7.2 min CN=81 Runoff=2.00 cfs 0.151 af
Subcatchment6S: Subcatchment6S F	Runoff Area=29,310 sf 31.34% Impervious Runoff Depth>2.49" Tow Length=137' Tc=16.7 min CN=70 Runoff=1.40 cfs 0.140 af
Reach 1R: Swale A n=0.150 L=1	vg. Flow Depth=0.53' Max Vel=0.60 fps Inflow=1.72 cfs 0.127 af 140.0' S=0.0214 '/' Capacity=8.19 cfs Outflow=1.53 cfs 0.127 af
Reach AP1: Wooded Depression	Inflow=1.40 cfs 0.140 af Outflow=1.40 cfs 0.140 af
Reach AP2: Shoulder of Road	Inflow=1.53 cfs 0.127 af Outflow=1.53 cfs 0.127 af
Reach AP3: Detention Pond	Inflow=2.24 cfs 0.228 af Outflow=2.24 cfs 0.228 af
Reach AP4: Rear of Site	Inflow=0.50 cfs 0.045 af Outflow=0.50 cfs 0.045 af
Pond 1P: Shallow Depression	Peak Elev=37.17' Storage=590 cf Inflow=2.00 cfs 0.151 af Outflow=2.06 cfs 0.138 af
Pond 2P: Wetland Ponding Area Primary=0.10 cfs	Peak Elev=31.32' Storage=6,101 cf Inflow=1.67 cfs 0.177 af 0.038 af Secondary=0.00 cfs 0.000 af Outflow=0.10 cfs 0.038 af
Total Runoff Area = 2.921 a	c Runoff Volume = 0.692 af Average Runoff Depth = 2.84"

78.16% Pervious = 2.283 ac 21.84% Impervious = 0.638 ac

21047-EXISTINGType III 24-hr 10 Yr 24 Hr(+15%) Rainfall=5.61"Prepared by Jones and Beach Engineers, Inc.Printed 5/10/2022HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLCPage 6

Summary for Subcatchment 1S: Subcatchment 1S

Runoff = 1.67 cfs @ 12.29 hrs, Volume= 0.177 af, Depth> 2.67"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Yr 24 Hr(+15%) Rainfall=5.61"

A	Area (sf)	CN	Description		
	4,202	55	Woods, Go	od, HSG B	
	191	61	>75% Gras	s cover, Go	ood, HSG B
	9,900	61	>75% Gras	s cover, Go	bod, HSG B
	4,049	96	Gravel surfa	ace, HSG E	3
	2,054	98	Paved road	s w/curbs &	& sewers, HSG B
	5,450	55	Woods, Go	od, HSG B	
	745	98	Roofs, HSC	B	
*	1,274	98	Ledge Outo	rop, HSG [)
	1,901	77	Woods, Go	od, HSG D	
	666	96	Gravel surfa	ace, HSG D)
	3,000	80	>75% Gras	s cover, Go	ood, HSG D
	534	98	Paved road	s w/curbs &	& sewers, HSG D
	763	98	Roofs, HSC	5 D	
	34,729	72	Weighted A	verage	
	29,359		84.54% Pe	vious Area	
	5,370		15.46% Imp	pervious Ar	ea
			-		
Тс	Length	Slope	e Velocity	Capacity	Description
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
20.0	100	0.0200	0.08		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.70"
0.1	12	0.3300	2.87		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
20.1	112	Total			

Summary for Subcatchment 2S: Subcatchment 2S

Runoff = 1.72 cfs @ 12.09 hrs, Volume= 0.127 af, Depth> 4.04"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Yr 24 Hr(+15%) Rainfall=5.61"

	Area (sf)	CN	Description
*	401	98	Ledge Outcrop, HSG D
	1,855	96	Gravel surface, HSG D
	7,620	80	>75% Grass cover, Good, HSG D
	1,200	98	Paved roads w/curbs & sewers, HSG D
	908	98	Roofs, HSG D
	2,786	80	>75% Grass cover, Good, HSG D
-	1,725	98	Roofs, HSG D
	16,495	86	Weighted Average
	12,261		74.33% Pervious Area
	4,234		25.67% Impervious Area

Prepared by Jones and Beach Engineers, Inc. HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC

Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
3.6	45	0.0400	0.21		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.70"
			1.4		To 0.0 mile

3.6 45 Total, Increased to minimum Tc = 6.0 min

Summary for Subcatchment 3S: Subcatchment 3S

Runoff = 0.43 cfs @ 12.37 hrs, Volume= 0.052 af, Depth> 1.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Yr 24 Hr(+15%) Rainfall=5.61"

	А	rea (sf)	CN I	Description		
*		28	98 I	_edge Outo	rop, HSG [)
		660	96 (Gravel surfa	ace, HSG D)
		1,114	77 \	Noods, Go	od, HSG D	
		291	80 3	>75% Gras	s cover, Go	bod, HSG D
		4,820	61 >	>75% Gras	s cover, Go	bod, HSG B
		9,535	55	Noods, Go	od, HSG B	
		16,448	60	Weighted A	verage	
		16,420	9	99.83% Pei	vious Area	L
		28	(0.17% Impe	ervious Are	a
	Тс	Length	Slope			Description
(m	iin)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	1.5	11	0.0230	0.12		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.70"
	5.4	18	0.0167	0.06		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.70"
;	3.2	19	0.0100	0.10		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.70"
4	4.0	22	0.0540	0.09		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.70"
1	B.O	30	0.0180	0.06		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.70"
	2.0	80	0.0180	0.67		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
24	4.1	180	Total			

Summary for Subcatchment 4S: Subcatchment 4S

Runoff = 0.50 cfs @ 12.18 hrs, Volume= 0.045 af, Depth> 2.95"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Yr 24 Hr(+15%) Rainfall=5.61"

Type III 24-hr 10 Yr 24 Hr(+15%) Rainfall=5.61" Printed 5/10/2022

Page 8

Prepared by Jones and Beach Engineers, Inc. HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC

	A	rea (sf)	CN	Description					
*		2,545	98	Ledge Outo	rop, HSG E	D			
		27	96	Gravel surfa	ace, HSG D)			
		21	98	Roofs, HSG D					
		111	77	Woods, Go	od, HSG D				
		174	80	>75% Gras	s cover, Go	bod, HSG D			
		798	98	Roofs, HSC	βB				
		1,028	61	>75% Gras	s cover, Go	bod, HSG B			
_		3,201	55	Woods, Go	od, HSG B				
		7,905	75	Weighted A	verage				
		4,541		57.44% Pe	rvious Area	1			
		3,364		42.56% lmp	pervious Ar	ea			
_(Tc min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description			
	12.6	68	0.0290	0.09		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.70"			

Summary for Subcatchment 5S: Subcatchment 5S

Runoff = 2.00 cfs @ 12.10 hrs, Volume= 0.151 af, Depth> 3.53"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Yr 24 Hr(+15%) Rainfall=5.61"

	Area (sf)	CN	Description				
*	2,532	98	Ledge Outcrop, HSG D				
	1,442	96	Gravel surface, HSG D				
	59	98	Roofs, HSG D				
	715	77	Woods, Good, HSG D				
	3,730	80	>75% Grass cover, Good, HSG D				
	1,158	98	Roofs, HSG B				
	852	98	Paved parking, HSG B				
	1,842	96	Gravel surface, HSG B				
	6,869	>75% Grass cover, Good, HSG B					
	256	256 55 Woods, Good, HSG B					
	1,896	80	>75% Grass cover, Good, HSG D				
	1,007	98	Roofs, HSG D				
	22,358	81	Weighted Average				
	16,750		74.92% Pervious Area				
	5,608		25.08% Impervious Area				
	-		•				

Type III 24-hr 10 Yr 24 Hr(+15%) Rainfall=5.61" Printed 5/10/2022

Page 9

Prepared by Jones and Beach Engineers, Inc. HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
0.7	6	0.0500	0.15		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.70"
0.2	15	0.0200	1.01		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 3.70"
3.8	31	0.0167	0.13		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.70"
0.9	14	0.1400	0.27		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.70"
1.6	21	0.0676	0.22		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.70"

7.2 87 Total

Summary for Subcatchment 6S: Subcatchment 6S

Runoff	=
--------	---

1.40 cfs @ 12.24 hrs, Volume= 0

0.140 af, Depth> 2.49"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Yr 24 Hr(+15%) Rainfall=5.61"

A	rea (sf)	CN E	Description		
-	9,085	98 F	Paved parking, HSG B		
	5,246	61 >	75% Ġras	s cover, Go	bod, HSG B
	14,877	55 V	Voods, Go	od, HSG B	
	102	98 F	Roofs, HSG	B	
	29,310	70 V	Veighted A	verage	
	20,123	6	8.66% Per	vious Area	l de la constante de
	9,187	3	1.34% Imp	pervious Ar	ea
_		~		• •	Description
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
16.0	100	0.0350	0.10		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.70"
0.7	37	0.0300	0.87		Shallow Concentrated Flow,
g					Woodland Kv= 5.0 fps
16.7	137	Total			

Summary for Reach 1R: Swale

Inflow Area	a =	0.379 ac, 25.67% Impervious, Inflow Depth > 4.04" for 10 Yr 24 Hr(+15%) event
Inflow	=	1.72 cfs @ 12.09 hrs, Volume= 0.127 af
Outflow	=	1.53 cfs @ 12.13 hrs, Volume= 0.127 af, Atten= 11%, Lag= 2.7 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Max. Velocity= 0.60 fps, Min. Travel Time= 3.9 min Avg. Velocity = 0.24 fps, Avg. Travel Time= 9.6 min

Peak Storage= 358 cf @ 12.13 hrs Average Depth at Peak Storage= 0.53', Surface Width= 9.59' Bank-Full Depth= 1.00' Flow Area= 9.0 sf, Capacity= 8.19 cfs

Type III 24-hr 10 Yr 24 Hr(+15%) Rainfall=5.61" Prepared by Jones and Beach Engineers, Inc. Printed 5/10/2022 HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC Page 10

0.00' x 1.00' deep channel, n= 0.150 Sheet flow over Short Grass Side Slope Z-value= 10.0 8.0 '/' Top Width= 18.00' Length= 140.0' Slope= 0.0214 '/' Inlet Invert= 40.00', Outlet Invert= 37.00'

‡

Summary for Reach AP1: Wooded Depression

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.673 ac, 31.34% Impervious, Inflow I	Depth > 2.49" for 10 Yr 24 Hr(+15%) event
Inflow =	1.40 cfs @ 12.24 hrs, Volume=	0.140 af
Outflow =	1.40 cfs @ 12.24 hrs, Volume=	0.140 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP2: Shoulder of Road

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =		0.379 ac, 25.67% Impervious, Inflow Depth > 4.03" for 10 Yr 24 Hr(+15%) event
Inflow :	=	1.53 cfs @ 12.13 hrs, Volume= 0.127 af
Outflow =	=	1.53 cfs @ 12.13 hrs, Volume= 0.127 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP3: Detention Pond

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	1 =	1.688 ac, 14.97% Impervious, Inflow Depth > 1.62" for 10 Yr 24 Hr(+15%) event
Inflow	=	2.24 cfs @ 12.11 hrs, Volume= 0.228 af
Outflow	=	2.24 cfs @ 12.11 hrs, Volume= 0.228 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP4: Rear of Site

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	0.181 ac, 42.56% Impervious, Inflow Depth > 2.95" for 10 Yr 24 Hr(+15%) event
Inflow	=	0.50 cfs @ 12.18 hrs, Volume= 0.045 af
Outflow	=	0.50 cfs @ 12.18 hrs, Volume= 0.045 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

Summary for Pond 1P: Shallow Depression

[93] Warning: Storage range exceeded by 0.09'

[90] Warning: Qout>Qin may require smaller dt or Finer Routing

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=39)

Inflow Area =	0.513 ac, 25.08% Impervious, Inflow Depth > 3.53" for 10 Yr 24 Hr(+15%) event
Inflow =	2.00 cfs @ 12.10 hrs, Volume= 0.151 af
Outflow =	2.06 cfs @ 12.10 hrs, Volume= 0.138 af, Atten= 0%, Lag= 0.0 min
Primary =	2.06 cfs @ 12.10 hrs, Volume= 0.138 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 37.17' @ 12.10 hrs Surf.Area= 3,088 sf Storage= 590 cf

Plug-Flow detention time= 64.1 min calculated for 0.138 af (91% of inflow) Center-of-Mass det. time= 20.8 min (835.5 - 814.7)

Volume	Inv	ert Avail.Sto	rage Storage [Description	
#1	36.	75' 5	90 cf Custom	Stage Data (P	rismatic)Listed below (Recalc)
Elevatio	et)	Surf.Area (sq-ft)	Inc.Store (cubic-feet) 0	Cum.Store (cubic-feet) 0	
36.7 36.8	38	417 1,613	132	132	
37.0 37.0		2,380 3,088	240 219	372 590	
Device	Routing	Invert	Outlet Devices		
#1	Primary	37.07'	Head (feet) 0. 2.50 3.00 3.5	20 0.40 0.60 0 4.00 4.50) 2.44 2.58 2.	oad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 68 2.67 2.65 2.64 2.64 2.68 2.68 3.32

Primary OutFlow Max=2.04 cfs @ 12.10 hrs HW=37.17' TW=0.00' (Dynamic Tailwater) **1=Broad-Crested Rectangular Weir** (Weir Controls 2.04 cfs @ 0.77 fps)

Summary for Pond 2P: Wetland Ponding Area

Inflow Area =	0.797 ac, 15.46% Impervious, Inflow De	epth > 2.67" for 10 Yr 24 Hr(+15%) event
Inflow =	1.67 cfs @ 12.29 hrs, Volume=	0.177 af
Outflow =	0.10 cfs @ 16.12 hrs, Volume=	0.038 af, Atten= 94%, Lag= 230.1 min
Primary =	0.10 cfs @ 16.12 hrs, Volume=	0.038 af
	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 31.32' @ 16.12 hrs Surf.Area= 4,120 sf Storage= 6,101 cf

Plug-Flow detention time= 438.2 min calculated for 0.038 af (21% of inflow)

Type III 24-hr 10 Yr 24 Hr(+15%) Rainfall=5.61" Prepared by Jones and Beach Engineers, Inc. Printed 5/10/2022 HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC Page 12

Volume Invert Avail.Storage Storage Description Custom Stage Data (Irregular)Listed below (Recalc) #1 28.00' 6.968 cf Elevation Surf.Area Perim. Inc.Store Cum.Store Wet.Area (feet) (cubic-feet) (cubic-feet) (feet) (sq-ft) (sq-ft) 28.00 619 194.0 0 619 0 2,610 29.00 1,245 914 914 250.0 30.00 2,036 357.0 1,624 2,538 7,787 31.00 2.891 433.0 2,451 4,989 12,582 31.50 4.916 435.0 1.929 6.919 12.839 31.51 4.916 435.0 49 6,968 12,843 Device Routing Invert **Outlet Devices** #1 Secondary 31.50' 70.0' long x 10.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64 #2 Primary 31.30' 16.0' long x 4.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.38 2.54 2.69 2.68 2.67 2.67 2.65 2.66 2.66 2.68 2.72 2.73 2.76 2.79 2.88 3.07 3.32

Center-of-Mass det. time= 299.4 min (1,146.8 - 847.3)

Primary OutFlow Max=0.10 cfs @ 16.12 hrs HW=31.32' TW=0.00' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir (Weir Controls 0.10 cfs @ 0.33 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=28.00' TW=0.00' (Dynamic Tailwater) -1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Prepared by Jones and Beach Engineers, Inc.

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: Subcatchment1S Run Flow Lo	off Area=34,729 sf 15.46% Impervious Runoff Depth>3.92" ength=112' Tc=20.1 min CN=72 Runoff=2.46 cfs 0.260 af		
Subcatchment2S: Subcatchment2S Run Flow Length=45' Slop	off Area=16,495 sf 25.67% Impervious Runoff Depth>5.48" be=0.0400 '/' Tc=6.0 min CN=86 Runoff=2.30 cfs 0.173 af		
Subcatchment3S: Subcatchment3S Ru Flow L	noff Area=16,448 sf 0.17% Impervious Runoff Depth>2.67" ength=180' Tc=24.1 min CN=60 Runoff=0.72 cfs 0.084 af		
	noff Area=7,905 sf 42.56% Impervious Runoff Depth>4.25" =0.0290 '/' Tc=12.6 min CN=75 Runoff=0.73 cfs 0.064 af		
Subcatchment5S: Subcatchment5S Run Flow	off Area=22,358 sf 25.08% Impervious Runoff Depth>4.91" / Length=87' Tc=7.2 min CN=81 Runoff=2.77 cfs 0.210 af		
Subcatchment6S: Subcatchment6S Run Flow L	off Area=29,310 sf 31.34% Impervious Runoff Depth>3.71" ength=137' Tc=16.7 min CN=70 Runoff=2.11 cfs 0.208 af		
Reach 1R: Swale Avg. Fill n=0.150 L=140.0'	ow Depth=0.60' Max Vel=0.64 fps Inflow=2.30 cfs 0.173 af S=0.0214 '/' Capacity=8.19 cfs Outflow=2.06 cfs 0.172 af		
Reach AP1: Wooded Depression	Inflow=2.11 cfs 0.208 af Outflow=2.11 cfs 0.208 af		
Reach AP2: Shoulder of Road	Inflow=2.06 cfs 0.172 af Outflow=2.06 cfs 0.172 af		
Reach AP3: Detention Pond	Inflow=3.14 cfs 0.402 af Outflow=3.14 cfs 0.402 af		
Reach AP4: Rear of Site	Inflow=0.73 cfs 0.064 af Outflow=0.73 cfs 0.064 af		
Pond 1P: Shallow Depression	Peak Elev=37.19' Storage=590 cf Inflow=2.77 cfs 0.210 af Outflow=2.81 cfs 0.197 af		
Pond 2P: Wetland Ponding Area F Primary=0.55 cfs 0.121	Peak Elev=31.36' Storage=6,271 cf Inflow=2.46 cfs 0.260 af af Secondary=0.00 cfs 0.000 af Outflow=0.55 cfs 0.121 af		
Total Runoff Area = 2.921 ac Runoff Volume = 0.999 af Average Runoff Depth = 4.11"			

Total Runoff Area = 2.921 ac Runoff Volume = 0.999 af Average Runoff Depth = 4.11" 78.16% Pervious = 2.283 ac 21.84% Impervious = 0.638 ac

21047-EXISTING Prepared by Jones and Beach Engineers, Inc	Type III 24-hr 50 Yr 24 Hr(+15%) Rainfall=8.53" Printed 5/10/2022
HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD	
Runoff by SCS TR-20 n	hrs, dt=0.05 hrs, 481 points x 3 nethod, UH=SCS, Weighted-CN nod - Pond routing by Dyn-Stor-Ind method
	noff Area≃34,729 sf 15.46% Impervious Runoff Depth>5.14" .ength=112' Tc=20.1 min CN=72 Runoff=3.23 cfs 0.342 af
	noff Area=16,495 sf 25.67% Impervious Runoff Depth>6.84" pe=0.0400 '/' Tc=6.0 min CN=86 Runoff=2.84 cfs 0.216 af
	unoff Area=16,448 sf 0.17% Impervious Runoff Depth>3.72" .ength=180' Tc=24.1 min CN=60 Runoff=1.01 cfs 0.117 af
	unoff Area=7,905 sf 42.56% Impervious Runoff Depth>5.51" e=0.0290 '/' Tc=12.6 min CN=75 Runoff=0.94 cfs 0.083 af
	noff Area=22,358 sf 25.08% Impervious Runoff Depth>6.24" w Length=87' Tc=7.2 min CN=81 Runoff=3.48 cfs 0.267 af

Subcatchment6S: Subcatchment6S Runoff Area=29,310 sf 31.34% Impervious Runoff Depth>4.91" Flow Length=137' Tc=16.7 min CN=70 Runoff=2.80 cfs 0.275 af

 Reach 1R: Swale
 Avg. Flow Depth=0.65'
 Max Vel=0.68 fps
 Inflow=2.84 cfs
 0.216 af

 n=0.150
 L=140.0'
 S=0.0214 '/'
 Capacity=8.19 cfs
 Outflow=2.56 cfs
 0.215 af

Reach AP1: Wooded Depression

Reach AP2: Shoulder of Road

Reach AP3: Detention Pond

Reach AP4: Rear of Site

Pond 1P: Shallow Depression

Peak Elev=37.21' Storage=590 cf Inflow=3.48 cfs 0.267 af Outflow=3.48 cfs 0.253 af

Inflow=2.80 cfs 0.275 af Outflow=2.80 cfs 0.275 af

Inflow=2.56 cfs 0.215 af Outflow=2.56 cfs 0.215 af

Inflow=3.98 cfs 0.573 af Outflow=3.98 cfs 0.573 af

Inflow=0.94 cfs 0.083 af Outflow=0.94 cfs 0.083 af

Pond 2P: Wetland Ponding Area Peak Elev=31.44' Storage=6,611 cf Inflow=3.23 cfs 0.342 af Primary=1.90 cfs 0.202 af Secondary=0.00 cfs 0.000 af Outflow=1.90 cfs 0.202 af

Total Runoff Area = 2.921 ac Runoff Volume = 1.300 af Average Runoff Depth = 5.34" 78.16% Pervious = 2.283 ac 21.84% Impervious = 0.638 ac

Prepared by Jones and Beach Engineers, Inc.

Type III 24-hr 50 Yr 24 Hr(+15%) Rainfall=8.53" Printed 5/10/2022 HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC

Page 15

Summary for Subcatchment 1S: Subcatchment 1S

0.342 af, Depth> 5.14" 3.23 cfs @ 12.28 hrs, Volume= Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Yr 24 Hr(+15%) Rainfall=8.53"

A	rea (sf)	CN E	Description		
	4,202	55 V	Voods, Goo	od, HSG B	
	191	61 >	75% Grass	s cover, Go	od, HSG B
	9,900	61 >	75% Grass	s cover, Go	ood, HSG B
	4,049	96 (Gravel surfa	ace, HSG B	
	2,054	98 F	Paved road	s w/curbs &	k sewers, HSG B
	5,450	55 V	Voods, Goo	od, HSG B	
	745	98 F	Roofs, HSG	БB	
*	1,274	98 L	edge Outc	rop, HSG [)
	1,901	77 V	Voods, Go	od, HSG D	
	666			ace, HSG D	
	3,000				ood, HSG D
	534	98 F	Paved road	s w/curbs &	& sewers, HSG D
	763	98 F	Roofs, HSG) D	
	34,729	72 \	Veighted A	verage	
	29,359	8	34.54% Per	vious Area	
	5,370	1	15.46% Imp	pervious Are	ea
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
20.0	100	0.0200	0.08		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.70"
0.1	12	0.3300	2.87		Shallow Concentrated Flow,
54					Woodland Kv= 5.0 fps
20.1	112	Total			

Summary for Subcatchment 2S: Subcatchment 2S

0.216 af, Depth> 6.84" 2.84 cfs @ 12.09 hrs, Volume= Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Yr 24 Hr(+15%) Rainfall=8.53"

	Area (sf)	CN	Description
*	401	98	Ledge Outcrop, HSG D
	1,855	96	Gravel surface, HSG D
	7,620	80	>75% Grass cover, Good, HSG D
	1,200	98	Paved roads w/curbs & sewers, HSG D
	908	98	Roofs, HSG D
	2,786	80	>75% Grass cover, Good, HSG D
	1,725	98	Roofs, HSG D
	16,495	86	Weighted Average
	12,261		74.33% Pervious Area
	4,234		25.67% Impervious Area

Prepare		es and E		gineers, In	
-IydroCA	D® 10.10-	4a s/n 10	589 © 202	0 HydroCAE	D Software Solutions LLC Page 16
То	Length	Slope	Velocity	Conosity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	Capacity (cfs)	Description
3.6	45	0.0400	0.21	(010)	Sheet Flow,
0.0		0.0100	0.21		Grass: Short n= 0.150 P2= 3.70"
3.6	45	Total, I	ncreased t	o minimum	n Tc = 6.0 min
		Sur	nmary fo	or Subcat	tchment 3S: Subcatchment 3S
Runoff	=	1.01 cfs	s@ 12.3	5 hrs, Volu	ume= 0.117 af, Depth> 3.72"
Runoff b	y SCS TF	R-20 meth	nod, UH=S	CS, Weigh	ited-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Гуре III 2́	24-hr 50	Yr 24 Hr(+15%) Ra	infall=8.53'	
A	rea (sf)		escription		
•	28 660			rop, HSG [
	1,114			ace, HSG [od, HSG D	
	291				ood, HSG D
	4,820				bod, HSG B
	9,535			od, HSG B	
	16,448		Veighted A		
	16,420			vious Area	
	28			ervious Are	
	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
1.5	11	0.0230	0.12		Sheet Flow,
E 4	10	0.0407	0.00		Grass: Short n= 0.150 P2= 3.70"
5.4	18	0.0167	0.06		Sheet Flow,
3.2	19	0.0100	0.10		Woods: Light underbrush n= 0.400 P2= 3.70" Sheet Flow,
J.Z	19	0.0100	0.10		Grass: Short n= 0.150 P2= 3.70"
4.0	22	0.0540	0.09		Sheet Flow,
τ.Ψ		0.00-10	0.00		Woods: Light underbrush n= 0.400 P2= 3.70"
8.0	30	0.0180	0.06		Sheet Flow,
			0.00		Woods: Light underbrush n= 0.400 P2= 3.70"
2.0	80	0.0180	0.67		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
24.1	180	Total			

Summary for Subcatchment 4S: Subcatchment 4S

Runoff = 0.94 cfs @ 12.17 hrs, Volume= 0.083 af, Depth> 5.51"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Yr 24 Hr(+15%) Rainfall=8.53"

Type III 24-hr 50 Yr 24 Hr(+15%) Rainfall=8.53" Printed 5/10/2022

Page 17

Prepared by Jones and Beach Engineers, Inc. HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description				
*	2,545	98	Ledge Outc	rop, HSG D)		
	27	96	Gravel surfa	ace, HSG D)		
	21	98	Roofs, HSG	D			
	111	77	Woods, Go	od, HSG D			
	174	80	>75% Gras	s cover, Go	ood, HSG D		
	798	98	Roofs, HSG	БB			
	1,028	61	>75% Gras	s cover, Go	ood, HSG B		
	3,201	55	Woods, Go	od, HSG B			
	7,905	75	Weighted A	verage			
	4,541		57.44% Pei	vious Area			
	3,364		42.56% Imp	pervious Are	ea		
	•						
Тс	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft	(ft/sec)	(cfs)			
12.6	68	0.0290	0.09		Sheet Flow, Woods: Light underbrush	n= 0.400	P2= 3.70"

Summary for Subcatchment 5S: Subcatchment 5S

Runoff = 3.48 cfs @ 12.10 hrs, Volume=

hrs, Volume= 0.267 af, Depth> 6.24"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Yr 24 Hr(+15%) Rainfall=8.53"

	Area (sf)	CN	Description
*	2,532	98	Ledge Outcrop, HSG D
	1,442	96	Gravel surface, HSG D
	59	98	Roofs, HSG D
	715	77	Woods, Good, HSG D
	3,730	80	>75% Grass cover, Good, HSG D
	1,158	98	Roofs, HSG B
	852	98	Paved parking, HSG B
	1,842	96	Gravel surface, HSG B
	6,869	61	>75% Grass cover, Good, HSG B
	256	55	Woods, Good, HSG B
	1,896	80	>75% Grass cover, Good, HSG D
	1,007	98	Roofs, HSG D
33 	22,358	81	Weighted Average
	16,750		74.92% Pervious Area
	5,608		25.08% Impervious Area

Type III 24-hr 50 Yr 24 Hr(+15%) Rainfall=8.53" Printed 5/10/2022

Page 18

Prepared by Jones and Beach Engineers, Inc. HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
0.7	6	0.0500	0.15		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.70"
0.2	15	0.0200	1.01		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 3.70"
3.8	31	0.0167	0.13		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.70"
0.9	14	0.1400	0.27		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.70"
1.6	21	0.0676	0.22		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.70"
7 2	07	Total			

7.2 87 Total

Summary for Subcatchment 6S: Subcatchment 6S

Runoff = 2.80 cfs @ 12.23 hrs, Volume= 0.275 af, Depth> 4.91"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Yr 24 Hr(+15%) Rainfall=8.53"

A	rea (sf)	CN E	Description							
	9,085	98 F	98 Paved parking, HSG B							
	5,246	61 >	•75% Gras	s cover, Go	ood, HSG B					
	14,877	55 V	Voods, Go	od, HSG B						
	102	98 F	Roofs, HSG	B						
	29,310	70 V	70 Weighted Average							
	20,123	6	58.66% Pei	vious Area						
	9,187	3	31.34% Imp	pervious Are	ea					
Tc	Length	Slope		Capacity	Description					
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)						
16.0	100	0.0350	0.10		Sheet Flow,					
					Woods: Light underbrush n= 0.400 P2= 3.70"					
0.7	37	0.0300	0.87		Shallow Concentrated Flow,					
					Woodland Kv= 5.0 fps					
16.7	137	Total								

Summary for Reach 1R: Swale

Inflow Are	a =	0.379 ac, 25.67% Impervious, Inflow Depth > 6.84" for 50 Yr 24 Hr(+15%) event
Inflow	=	2.84 cfs @ 12.09 hrs, Volume= 0.216 af
Outflow	=	2.56 cfs @ 12.13 hrs, Volume= 0.215 af, Atten= 10%, Lag= 2.3 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Max. Velocity= 0.68 fps, Min. Travel Time= 3.4 min Avg. Velocity = 0.27 fps, Avg. Travel Time= 8.6 min

Peak Storage= 527 cf @ 12.13 hrs Average Depth at Peak Storage= 0.65', Surface Width= 11.65' Bank-Full Depth= 1.00' Flow Area= 9.0 sf, Capacity= 8.19 cfs

Type III 24-hr 50 Yr 24 Hr(+15%) Rainfall=8.53" Printed 5/10/2022 Prepared by Jones and Beach Engineers, Inc. HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC Page 19

0.00' x 1.00' deep channel, n= 0.150 Sheet flow over Short Grass Side Slope Z-value= 10.0 8.0 '/' Top Width= 18.00' Length= 140.0' Slope= 0.0214 '/' Inlet Invert= 40.00', Outlet Invert= 37.00'

‡

Summary for Reach AP1: Wooded Depression

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	0.673 ac, 31.34% Impervious, Inflow Depth > 4.91" for 50 Yr 24 Hr(+15%) event
Inflow	=	2.80 cfs @ 12.23 hrs, Volume= 0.275 af
Outflow	=	2.80 cfs @ 12.23 hrs, Volume= 0.275 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP2: Shoulder of Road

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	0.379 ac, 25.67% Impervious, Inflow Depth > 6.83" for 50 Yr 24 Hr(+15%) event
Inflow	=	2.56 cfs @ 12.13 hrs, Volume= 0.215 af
Outflow	=	2.56 cfs @ 12.13 hrs, Volume= 0.215 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP3: Detention Pond

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	1.688 ac, 14.97% Impervious, Inflow Depth > 4.07" for 50 Yr 24 Hr(+15%) event
Inflow	=	3.98 cfs @ 12.11 hrs, Volume= 0.573 af
Outflow	=	3.98 cfs @ 12.11 hrs, Volume= 0.573 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP4: Rear of Site

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.181 ac, 42.56% Impervious, Inflow Dept	th > 5.51" for 50 Yr 24 Hr(+15%) event
Inflow =	0.94 cfs @ 12.17 hrs, Volume= 0	.083 af
Outflow =	0.94 cfs @ 12.17 hrs, Volume= 0	.083 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

Summary for Pond 1P: Shallow Depression

[93] Warning: Storage range exceeded by 0.13'

Inflow Area =	0.513 ac, 25.08% Impervious, Inflow Depth > 6.24" for 50 Yr 24 Hr(+1	5%) event
Inflow =	3.48 cfs @ 12.10 hrs, Volume= 0.267 af	
Outflow =	3.48 cfs @ 12.10 hrs, Volume= 0.253 af, Atten= 0%, Lag= 0.0 n	nin
Primary =	3.48 cfs @ 12.10 hrs, Volume= 0.253 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 37.21' @ 12.10 hrs Surf.Area= 3,088 sf Storage= 590 cf

Plug-Flow detention time= 43.0 min calculated for 0.253 af (95% of inflow) Center-of-Mass det. time= 15.6 min (814.3 - 798.7)

Volume	Inv	ert Avail.Sto	rage Stora	age Description
#1	36.	75' 5	90 cf Cust	tom Stage Data (Prismatic)Listed below (Recalc)
Elevatio (fee 36.7 36.8 37.0 37.0	et) 75 38 00	Surf.Area (sq-ft) 417 1,613 2,380 3,088	Inc.Store (cubic-feet) 0 132 240 219) (cubic-feet) 0 0 2 132 0 372
Device #1	Routing Primary	<u>Invert</u> 37.07'	Outlet Dev 27.0' long Head (feet 2.50 3.00 Coef. (Eng	

Primary OutFlow Max=3.45 cfs @ 12.10 hrs HW=37.21' TW=0.00' (Dynamic Tailwater)

Summary for Pond 2P: Wetland Ponding Area

Inflow Area =	0.797 ac, 15.46% Impervious, Inflow De	epth > 5.14" for 50 Yr 24 Hr(+15%) event
Inflow =	3.23 cfs @ 12.28 hrs, Volume=	0.342 af
Outflow =	1.90 cfs @_ 12.57 hrs, Volume=	0.202 af, Atten= 41%, Lag= 17.7 min
Primary =	1.90 cfs @ 12.57 hrs, Volume=	0.202 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 31.44' @ 12.57 hrs Surf.Area= 4,625 sf Storage= 6,611 cf

Plug-Flow detention time= 192.9 min calculated for 0.202 af (59% of inflow) Center-of-Mass det. time= 88.0 min (916.6 - 828.7)

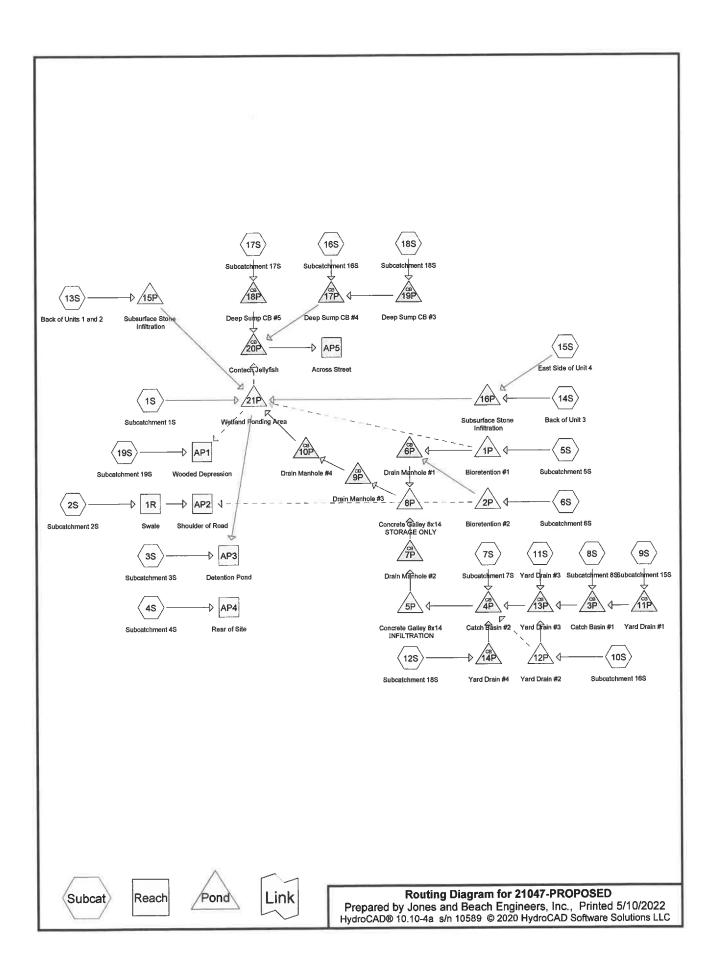
Type III 24-hr 50 Yr 24 Hr(+15%) Rainfall=8.53" Printed 5/10/2022

Page 21

HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC

Volume	Invert	Avail.St	orage	Storage Description		
#1	28.00'	6,9	968 cf	Custom Stage Data	(Irregular)Listed	below (Recalc)
Elevatio (fee		urf.Area l (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
28.0	00	619	194.0	0	0	619
29.0	00	1,245	250.0	914	914	2,610
30.0	00	2,036	357.0	1,624	2,538	7,787
31.0	00	2,891	433.0	2,451	4,989	12,582
31.5	50	4,916	435.0	1,929	6,919	12,839
31.	51	4,916	435.0	49	6,968	12,843
Device	Routing	Invert	Outlet	Devices		
#1	Secondary	31.50'	70.0'	long x 10.0' breadth	Broad-Crested	Rectangular Weir
			Head	(feet) 0.20 0.40 0.6	0.80 1.00 1.20	0 1.40 1.60
				(English) 2.49 2.56		
#2	Primary	31.30'		long x 4.0' breadth		
				. ,		0 1.40 1.60 1.80 2.00
				3.00 3.50 4.00 4.50		
						2.67 2.65 2.66 2.66
			2.68	2.72 2.73 2.76 2.79	2.88 3.07 3.32	

Primary OutFlow Max=1.86 cfs @ 12.57 hrs HW=31.43' TW=0.00' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir (Weir Controls 1.86 cfs @ 0.87 fps)


Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=28.00' TW=0.00' (Dynamic Tailwater) —1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Prepared by Jones and Beach Engineers, Inc.

APPENDIX II

PROPOSED CONDITIONS DRAINAGE ANALYSIS

Summary 2 YEAR Complete 10 YEAR Summary 25 YEAR Complete 50 YEAR

21047-PROPOSED Prepared by Jones and Beach Engineers, Inc. P HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC P

Area Listing (all nodes)

Area	a CN	Description
(acres)	(subcatchment-numbers)
0.673	3 61	>75% Grass cover, Good, HSG B (1S, 3S, 4S, 5S, 6S, 7S, 8S, 9S, 10S, 11S, 12S,
		19S)
0.400	0 80	>75% Grass cover, Good, HSG D (1S, 2S, 6S, 7S, 8S, 9S, 10S, 12S)
0.095	5 98	Ledge Outcrop, HSG D (2S, 4S, 8S)
0.522	2 98	Paved parking, HSG B (5S, 6S, 7S, 8S, 17S, 18S, 19S)
0.136	5 98	Paved parking, HSG D (5S, 6S, 7S, 8S, 17S)
0.042	2 98	Paved roads w/curbs & sewers, HSG B (1S, 16S)
0.007	7 98	Paved roads w/curbs & sewers, HSG D (2S)
0.257	7 98	Roofs, HSG B (1S, 3S, 4S, 5S, 7S, 8S, 9S, 11S, 12S, 13S, 15S, 19S)
0.289	98	Roofs, HSG D (1S, 2S, 6S, 7S, 8S, 9S, 12S, 14S, 15S)
0.487	7 55	Woods, Good, HSG B (1S, 3S, 4S, 19S)
0.014	4 77	Woods, Good, HSG D (1S, 4S)
2.921	1 80	TOTAL AREA

Prepared by Jones and Beach Engineers, Inc. HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC

Soil Listing (all nodes)

Area (acres)	Soil Group	Subcatchment Numbers
0.000	HSG A	
1.980	HSG B	1S, 3S, 4S, 5S, 6S, 7S, 8S, 9S, 10S, 11S, 12S, 13S, 15S, 16S, 17S, 18S, 19S
0.000	HSG C	
0.941	HSG D	1S, 2S, 4S, 5S, 6S, 7S, 8S, 9S, 10S, 12S, 14S, 15S, 17S
0.000	Other	
2.921		TOTAL AREA

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: Subcatchment1S	Runoff Area=13,938 sf 18.32% Impervious Runoff Depth>0.96" Flow Length=48' Tc=6.6 min CN=67 Runoff=0.31 cfs 0.026 af
Subcatchment 2S: Subcatchment 2S	Runoff Area=14,773 sf 41.02% Impervious Runoff Depth>2.36" Flow Length=126' Tc=12.0 min CN=87 Runoff=0.76 cfs 0.067 af
Subcatchment3S: Subcatchment3S	Runoff Area=8,436 sf 21.48% Impervious Runoff Depth>1.07" Tc=6.0 min CN=69 Runoff=0.22 cfs 0.017 af
Subcatchment4S: Subcatchment4S	Runoff Area=5,429 sf 56.24% Impervious Runoff Depth>1.87" Flow Length=87' Tc=13.2 min CN=81 Runoff=0.21 cfs 0.019 af
Subcatchment5S: Subcatchment5S	Runoff Area=6,946 sf 73.74% Impervious Runoff Depth>2.45" Tc=6.0 min CN=88 Runoff=0.44 cfs 0.033 af
Subcatchment6S: Subcatchment6S	Runoff Area=10,412 sf 62.71% Impervious Runoff Depth>2.63" Flow Length=60' Tc=6.0 min CN=90 Runoff=0.71 cfs 0.052 af
Subcatchment7S: Subcatchment7S	Runoff Area=9,749 sf 83.39% Impervious Runoff Depth>2.93" Flow Length=135' Tc=6.0 min CN=93 Runoff=0.72 cfs 0.055 af
Subcatchment8S: Subcatchment8S	Runoff Area=13,276 sf 70.01% Impervious Runoff Depth>2.63" Flow Length=86' Tc=11.2 min CN=90 Runoff=0.77 cfs 0.067 af
Subcatchment9S: Subcatchment15S Flow Length=67	Runoff Area=3,072 sf 26.66% Impervious Runoff Depth>1.58" Slope=0.0160 '/' Tc=7.2 min CN=77 Runoff=0.12 cfs 0.009 af
Subcatchment 10S: Subcatchment 16S Flow Length=83'	Runoff Area=3,155 sf 0.00% Impervious Runoff Depth>0.71" Slope=0.0060 '/' Tc=12.7 min CN=62 Runoff=0.04 cfs 0.004 af
Subcatchment11S: Yard Drain #3 Flow Length=60	Runoff Area=2,881 sf 15.97% Impervious Runoff Depth>0.96" Slope=0.0150 '/' Tc=6.8 min CN=67 Runoff=0.06 cfs 0.005 af
Subcatchment 12S: Subcatchment 18S Flow Length=37	Runoff Area=1,341 sf 25.58% Impervious Runoff Depth>2.03" Slope=0.0190 '/' Tc=6.0 min CN=83 Runoff=0.07 cfs 0.005 af
Subcatchment13S: Back of Units 1 and 2	Runoff Area=918 sf 100.00% Impervious Runoff Depth>3.46" Tc=6.0 min CN=98 Runoff=0.07 cfs 0.006 af
Subcatchment 14S: Back of Unit 3	Runoff Area=310 sf 100.00% Impervious Runoff Depth>3.46" Tc=6.0 min CN=98 Runoff=0.03 cfs 0.002 af
Subcatchment15S: East Side of Unit 4	Runoff Area=502 sf 100.00% Impervious Runoff Depth>3.46" Tc=6.0 min CN=98 Runoff=0.04 cfs 0.003 af
Subcatchment 16S: Subcatchment 16S	Runoff Area=1,247 sf 100.00% Impervious Runoff Depth>3.46" Tc=6.0 min CN=98 Runoff=0.10 cfs 0.008 af

21047-PROPOSEDType III 24-hr 2 Yr 24 Hr (+15%) Rainfall=3.70"Prepared by Jones and Beach Engineers, Inc.Printed 5/10/2022HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLCPage 5
Subcatchment 17S: Subcatchment 17S Runoff Area=2,806 sf 100.00% Impervious Runoff Depth>3.46" Tc=6.0 min CN=98 Runoff=0.23 cfs 0.019 af
Subcatchment 18S: Subcatchment 18S Runoff Area=4,475 sf 100.00% Impervious Runoff Depth>3.46" Tc=6.0 min CN=98 Runoff=0.36 cfs 0.030 af
Subcatchment19S: Subcatchment19S Runoff Area=23,588 sf 18.01% Impervious Runoff Depth>0.80" Flow Length=137' Tc=16.7 min CN=64 Runoff=0.31 cfs 0.036 af
Reach 1R: Swale Avg. Flow Depth=0.61' Max Vel=0.64 fps Inflow=0.76 cfs 0.067 af n=0.150 L=140.0' S=0.0214 '/' Capacity=2.65 cfs Outflow=0.72 cfs 0.067 af
Reach AP1: Wooded DepressionInflow=0.31 cfs0.036 afOutflow=0.31 cfs0.036 af
Reach AP2: Shoulder of RoadInflow=0.72 cfs0.067 afOutflow=0.72 cfs0.067 af
Reach AP3: Detention Pond Inflow=0.22 cfs 0.017 af Outflow=0.22 cfs 0.017 af
Reach AP4: Rear of Site Inflow=0.21 cfs 0.019 af Outflow=0.21 cfs 0.019 af
Reach AP5: Across StreetInflow=0.69 cfs0.082 afOutflow=0.69 cfs0.082 af
Pond 1P: Bioretention #1 Peak Elev=35.21' Storage=137 cf Inflow=0.44 cfs 0.033 af Primary=0.44 cfs 0.030 af Secondary=0.00 cfs 0.000 af Outflow=0.44 cfs 0.030 af
Pond 2P: Bioretention #2 Peak Elev=35.40' Storage=218 cf Inflow=0.71 cfs 0.052 af Primary=0.60 cfs 0.051 af Secondary=0.00 cfs 0.000 af Outflow=0.60 cfs 0.051 af
Pond 3P: Catch Basin #1 Peak Elev=35.59' Inflow=0.89 cfs 0.076 af 15.0" Round Culvert n=0.013 L=47.0' S=0.0053 '/' Outflow=0.89 cfs 0.076 af
Peak Elev=35.08' Inflow=1.70 cfs 0.145 af 15.0" Round Culvert n=0.013 L=36.0' S=0.0056 '/' Outflow=1.70 cfs 0.145 af
Pond 5P: Concrete Galley 8x14 INFILTRATIONPeak Elev=34.18' Storage=0.050 af Inflow=1.70 cfs 0.145 af Discarded=0.46 cfs 0.144 af Primary=0.00 cfs 0.000 af Outflow=0.46 cfs 0.144 af
Peak Elev=34.70' Inflow=1.02 cfs 0.081 af 12.0" Round Culvert n=0.013 L=48.0' S=0.0056 '/' Outflow=1.02 cfs 0.081 af
Pond 7P: Drain Manhole #2 Peak Elev=34.20' Inflow=0.00 cfs 0.000 at 12.0" Round Culvert n=0.013 L=40.0' S=0.0050 '/' Outflow=0.00 cfs 0.000 af
Pond 8P: Concrete Galley 8x14 STORAGE Peak Elev=33.77' Storage=0.021 af Inflow=1.02 cfs 0.081 af Primary=0.38 cfs 0.080 af Secondary=0.00 cfs 0.000 af Outflow=0.38 cfs 0.080 af
Peak Elev=31.97' Inflow=0.38 cfs 0.080 af 12.0" Round Culvert n=0.013 L=85.0' S=0.0059 '/' Outflow=0.38 cfs 0.080 af

Type III 24-hr 2 Yr 24 Hr (+15%) Rainfall=3.70"

Prepared by Jones and Beach Engineers	·
HydroCAD® 10.10-4a s/n 10589 © 2020 Hydro	oCAD Software Solutions LLC Page
Pond 10P: Drain Manhole #4	Peak Elev=31.47' Inflow=0.38 cfs 0.080
12.0" Round	d Culvert n=0.013 L=40.0' S=0.0050 '/' Outflow=0.38 cfs 0.080
Pond 11P: Yard Drain #1	Peak Elev=36.03' Inflow=0.12 cfs 0.009
8.0* Round	d Culvert n=0.013 L=40.0' S=0.0055 '/' Outflow=0.12 cfs 0.009
Pond 12P: Yard Drain #2	Peak Elev=39.02' Storage=1 cf Inflow=0.04 cfs 0.004 0.004 af Secondary=0.00 cfs 0.000 af Outflow=0.04 cfs 0.004
Filmary=0.04 Cis	0.004 al Secondary-0.00 cis 0.000 al Outhow-0.04 cis 0.004
Pond 13P: Yard Drain #3	Peak Elev=35.31' Inflow=0.98 cfs 0.086 d Culvert n=0.013 L=48.0' S=0.0052 '/' Outflow=0.98 cfs 0.086
	d Cuiven 11-0.013 L-40.0 3-0.0032 / Outilow-0.90 Cis 0.000
Pond 14P: Yard Drain #4	Peak Elev=36.66' Inflow=0.07 cfs 0.005 d Culvert n=0.013 L=40.0' S=0.0100 '/' Outflow=0.07 cfs 0.005
Pond 15P: Subsurface Stone Infiltration Discarded=0.01.c	Peak Elev=29.07' Storage=0.002 af Inflow=0.07 cfs 0.006 cfs 0.006 af Primary=0.00 cfs 0.000 af Outflow=0.01 cfs 0.006
Pond 16P: Subsurface Stone Infiltration Discarded=0.02.c	Peak Elev=32.44' Storage=0.002 af Inflow=0.07 cfs 0.005 cfs 0.005 af Primary=0.00 cfs 0.000 af Outflow=0.02 cfs 0.005
Pond 17P: Deep Sump CB #4 12.0" Round	Peak Elev=29.99' Inflow=0.46 cfs 0.038 d Culvert n=0.013 L=67.0' S=0.0060 '/' Outflow=0.46 cfs 0.038
Pond 18P: Deep Sump CB #5 12.0" Rour	Peak Elev=29.53' Inflow=0.23 cfs 0.019 nd Culvert n=0.013 L=3.0' S=0.0167 '/' Outflow=0.23 cfs 0.019
Pond 19P: Deep Sump CB #3 12.0" Round	Peak Elev=30.20' Inflow=0.36 cfs 0.030 d Culvert n=0.013 L=40.0' S=0.0050 '/' Outflow=0.36 cfs 0.030
Pond 20P: Contech Jellyfish 15.0" Round	Peak Elev=29.41' Inflow=0.69 cfs 0.082 d Culvert n=0.013 L=42.0' S=0.0060 '/' Outflow=0.69 cfs 0.082
Pond 21P: Wetland Ponding Area Primary=0.00 cfs 0.000 af Secondary=0.00 c	Peak Elev=30.42' Storage=3,584 cf Inflow=0.63 cfs 0.106 cfs 0.000 af Tertiary=0.05 cfs 0.026 af Outflow=0.05 cfs 0.026

Total Runoff Area = 2.921 acRunoff Volume = 0.464 afAverage Runoff Depth = 1.91"53.89% Pervious = 1.574 ac46.11% Impervious = 1.347 ac

Prepared by Jones and Beach Engineers, Inc.

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: Subcatchment1S	Runoff Area=13,938 sf 18.32% Impervious Runoff Depth>2.24" Flow Length=48' Tc=6.6 min CN=67 Runoff=0.80 cfs 0.060 af
Subcatchment 2S: Subcatchment 2S F	Runoff Area=14,773 sf 41.02% Impervious Runoff Depth>4.14" Flow Length=126' Tc=12.0 min CN=87 Runoff=1.32 cfs 0.117 af
Subcatchment3S: Subcatchment3S	Runoff Area=8,436 sf 21.48% Impervious Runoff Depth>2.41" Tc=6.0 min CN=69 Runoff=0.53 cfs 0.039 af
Subcatchment4S: Subcatchment4S	Runoff Area=5,429 sf 56.24% Impervious Runoff Depth>3.52" Flow Length=87' Tc=13.2 min CN=81 Runoff=0.40 cfs 0.037 af
Subcatchment5S: Subcatchment5S	Runoff Area=6,946 sf 73.74% Impervious Runoff Depth>4.25" Tc=6.0 min CN=88 Runoff=0.75 cfs 0.056 af
Subcatchment6S: Subcatchment6S	Runoff Area=10,412 sf 62.71% Impervious Runoff Depth>4.46" Flow Length=60' Tc=6.0 min CN=90 Runoff=1.17 cfs 0.089 af
Subcatchment7S: Subcatchment7S	Runoff Area=9,749 sf 83.39% Impervious Runoff Depth>4.79" Flow Length=135' Tc=6.0 min CN=93 Runoff=1.15 cfs 0.089 af
Subcatchment8S: Subcatchment8S	Runoff Area=13,276 sf 70.01% Impervious Runoff Depth>4.46" Flow Length=86' Tc=11.2 min CN=90 Runoff=1.28 cfs 0.113 af
Subcatchment9S: Subcatchment15S Flow Length=67	Runoff Area=3,072 sf 26.66% Impervious Runoff Depth>3.14" Slope=0.0160 '/' Tc=7.2 min CN=77 Runoff=0.25 cfs 0.018 af
Subcatchment10S: Subcatchment16S Flow Length=83	Runoff Area=3,155 sf 0.00% Impervious Runoff Depth>1.82" Slope=0.0060 '/' Tc=12.7 min CN=62 Runoff=0.12 cfs 0.011 af
Subcatchment11S: Yard Drain #3 Flow Length=60	Runoff Area=2,881 sf 15.97% Impervious Runoff Depth>2.24" Slope=0.0150 '/' Tc=6.8 min CN=67 Runoff=0.16 cfs 0.012 af
Subcatchment 12S: Subcatchment 18S Flow Length=37	Runoff Area=1,341 sf 25.58% Impervious Runoff Depth>3.73" Slope=0.0190 '/' Tc=6.0 min CN=83 Runoff=0.13 cfs 0.010 af
Subcatchment 13S: Back of Units 1 and 2	Runoff Area=918 sf 100.00% Impervious Runoff Depth>5.37" Tc=6.0 min CN=98 Runoff=0.11 cfs 0.009 af
Subcatchment 14S: Back of Unit 3	Runoff Area=310 sf 100.00% Impervious Runoff Depth>5.37" Tc=6.0 min CN=98 Runoff=0.04 cfs 0.003 af
Subcatchment15S: East Side of Unit 4	Runoff Area=502 sf 100.00% Impervious Runoff Depth>5.37" Tc=6.0 min CN=98 Runoff=0.06 cfs 0.005 af
Subcatchment16S: Subcatchment16S	Runoff Area=1,247 sf 100.00% Impervious Runoff Depth>5.37" Tc=6.0 min CN=98 Runoff=0.15 cfs 0.013 af

21047-PROPOSED Prepared by Jones and Beac HydroCAD® 10.10-4a s/n 10589			4-hr 10 Yr ns LLC	,	%) Rainfai Printed 5/	
Subcatchment17S: Subcatch	ment17S Run	off Area=2,806 s Te	sf 100.00% c=6.0 min C			
Subcatchment18S: Subcatch	ment18S Run	off Area=4,475 s To	sf 100.00% c=6.0 min C			
Subcatchment 19S: Subcatch		off Area=23,588 ength=137' Tc=				
Reach 1R: Swale	Avg. Fl n=0.150 L=140.0'	ow Depth=0.76' S=0.0214 '/' (
Reach AP1: Wooded Depress	ion				w=0.87 cfs w=0.87 cfs	
Reach AP2: Shoulder of Road					w=1.25 cfs w=1.25 cfs	
Reach AP3: Detention Pond					w=0.53 cfs w=0.53 cfs	
Reach AP4: Rear of Site					w=0.40 cfs w=0.40 cfs	
Reach AP5: Across Street					w=1.05 cfs w=1.05 cfs	
Pond 1P: Bioretention #1 Prim	ary=0.73 cfs 0.054	Peak Elev=35.0 af Secondary=				
Pond 2P: Bioretention #2 Prim	ary=1.03 cfs 0.087	Peak Elev=36. af Secondary=				
Pond 3P: Catch Basin #1	15.0" Round Culve	ert n=0.013 L=4		35.87' Inflo 53 '/' Outflo		
Pond 4P: Catch Basin #2	15.0" Round Culve	ert n=0.013 L=:		35.75' Inflo 56 '/' Outflo		
Pond 5P: Concrete Galley 8x1 Disc	4 INFILTRATION carded=0.67 cfs 0.2					
Pond 6P: Drain Manhole #1	12.0" Round Culve	ert n=0.013 L=4		34.96' Inflo 56 '/' Outflo		
Pond 7P: Drain Manhole #2	12.0" Round Culve	ert n=0.013 L=4		34.71' Inflo 50 '/' Outflo		
Pond 8P: Concrete Galley 8x1 Prim	4 STORAGE F ary=0.50 cfs 0.140	Peak Elev=34.73 af Secondary=	' Storage=0. 0.00 cfs 0.00	041 af Inflo 00 af Outflo	w=1.76 cfs w=0.50 cfs	0.141 af 0.140 af
Pond 9P: Drain Manhole #3	12.0" Round Culve	ert n=0.013 L=1		32.03' Inflo 59 '/' Outflo		

Type III 24-hr 10 Yr 24 Hr(+15%) Rainfall=5.61" Printed 5/10/2022

Page 9

Prepared by Jones and Beach Engineers, Inc. Printed HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC

Peak Elev=31.53' Inflow=0.50 cfs 0.140 af Pond 10P: Drain Manhole #4 12.0" Round Culvert n=0.013 L=40.0' S=0.0050 '/' Outflow=0.50 cfs 0.140 af Peak Elev=36.14' Inflow=0.25 cfs 0.018 af Pond 11P: Yard Drain #1 8.0" Round Culvert n=0.013 L=40.0' S=0.0055 '/' Outflow=0.25 cfs 0.018 af Peak Elev=39.04' Storage=2 cf Inflow=0.12 cfs 0.011 af Pond 12P: Yard Drain #2 Primary=0.12 cfs 0.011 af Secondary=0.00 cfs 0.000 af Outflow=0.12 cfs 0.011 af Peak Elev=35.76' Inflow=1.76 cfs 0.155 af Pond 13P: Yard Drain #3 15.0" Round Culvert n=0.013 L=48.0' S=0.0052 '/' Outflow=1.76 cfs 0.155 af Peak Elev=36.72' Inflow=0.13 cfs 0.010 af Pond 14P: Yard Drain #4 8.0" Round Culvert n=0.013 L=40.0' S=0.0100 '/' Outflow=0.13 cfs 0.010 af Peak Elev=30.07' Storage=0.004 af Inflow=0.11 cfs 0.009 af Pond 15P: Subsurface Stone Infiltration Discarded=0.02 cfs 0.009 af Primary=0.00 cfs 0.000 af Outflow=0.02 cfs 0.009 af Pond 16P: Subsurface Stone Infiltration Peak Elev=32.81' Storage=0.003 af Inflow=0.10 cfs 0.008 af Discarded=0.03 cfs 0.008 af Primary=0.00 cfs 0.000 af Outflow=0.03 cfs 0.008 af Peak Elev=30.09' Inflow=0.70 cfs 0.059 af Pond 17P: Deep Sump CB #4 12.0" Round Culvert n=0.013 L=67.0' S=0.0060 '/' Outflow=0.70 cfs 0.059 af Peak Elev=29.64' Inflow=0.35 cfs 0.029 af Pond 18P: Deep Sump CB #5 12.0" Round Culvert n=0.013 L=3.0' S=0.0167 '/' Outflow=0.35 cfs 0.029 af Peak Elev=30.31' Inflow=0.55 cfs 0.046 af Pond 19P: Deep Sump CB #3 12.0" Round Culvert n=0.013 L=40.0' S=0.0050 '/' Outflow=0.55 cfs 0.046 af Peak Elev=29.53' Inflow=1.05 cfs 0.206 af Pond 20P: Contech Jellyfish 15.0" Round Culvert n=0.013 L=42.0' S=0.0060 '/' Outflow=1.05 cfs 0.206 af Peak Elev=30.65' Storage=4,209 cf Inflow=1.19 cfs 0.200 af Pond 21P: Wetland Ponding Area Primary=0.00 cfs 0.000 af Secondary=0.00 cfs 0.000 af Tertiary=0.44 cfs 0.119 af Outflow=0.44 cfs 0.119 af Total Runoff Area = 2.921 ac Runoff Volume = 0.846 af Average Runoff Depth = 3.48"

53.89% Pervious = 1.574 ac 46.11% Impervious = 1.347 ac

Summary for Subcatchment 1S: Subcatchment 1S

Runoff = 0.80 cfs @ 12.10 hrs, Volume= 0.060 af, Depth> 2.24"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Yr 24 Hr(+15%) Rainfall=5.61"

A	Area (sf)	CN	Description				
	586	98	Paved road	s w/curbs &	& sewers, HSG B		
	1,864	55	Woods, Go	od, HSG B			
	3,396	61	>75% Gras	s cover, Go	ood, HSG B		
	611	80	>75% Gras	s cover, Go	ood, HSG D		
	541	77	Woods, Go	od, HSG D			
	3,408	55	Woods, Go	od, HSG B			
	1,564	61	>75% Gras	s cover, Go	ood, HSG B		
	1,600	98	Roofs, HSC	βB			
	368	98	Roofs, HSC	G D			
	13,938	67	Weighted A	verage			
	11,384		81.68% Pe	rvious Area	L		
	2,554		18.32% Imp	pervious Ar	ea		
Тс	Length	Slope		Capacity	Description		
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
5.1	32	0.0625	0.10		Sheet Flow,		
					Woods: Light underbrush	n= 0.400	P2= 3.70"
1.5	16	0.3300	0.18		Sheet Flow,		
					Woods: Light underbrush	n= 0.400	P2= 3.70"
6.6	48	Total					

Summary for Subcatchment 2S: Subcatchment 2S

Runoff = 1.32 cfs @ 12.16 hrs, Volume= 0.117 af, Depth> 4.14"

	Area (sf)	CN	Description				
	4,812 80 >75% Grass cover, Good, HSG D						
	319	319 98 Paved roads w/curbs & sewers, HSG D					
	2,823	98	Roofs, HSG D				
*	186	98	Ledge Outcrop, HSG D				
	3,901	80	>75% Grass cover, Good, HSG D				
	2,732	98	Roofs, HSG D				
	14,773	87	Weighted Average				
	8,713		58.98% Pervious Area				
	6,060		41.02% Impervious Area				

Type III 24-hr 10 Yr 24 Hr(+15%) Rainfall=5.61" Printed 5/10/2022

Prepared by Jones and Beach Engineers, Inc. HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC

Page 11

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
2.2	38	0.1000	0.29		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.70"
0.7	17	0.3300	0.39		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.70"
9.1	71	0.0100	0.13		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.70"
40.0	400	Total			

12.0 126 Total

Summary for Subcatchment 3S: Subcatchment 3S

Runoff = 0.53 cfs @ 12.10 hrs, Volume= 0.039 af, Depth> 2.41"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Yr 24 Hr(+15%) Rainfall=5.61"

A	rea (sf)	CN	Description									
	6,481	61	>75% Gras	75% Grass cover, Good, HSG B								
	143	55	Woods, Go	loods, Good, HSG B								
	1,812	98	Roofs, HSG	oofs, HSG B								
	8,436	69	Weighted Average									
	6,624		78.52% Per									
	1,812		21.48% Imp	21.48% Impervious Area								
Tc (min)	Length (feet)	Slope (ft/ft	4	Capacity (cfs)	Description							
6.0					Direct Entry,							

Summary for Subcatchment 4S: Subcatchment 4S

Runoff = 0.40 cfs @ 12

0.40 cfs @ 12.18 hrs, Volume= 0.037 af, Depth> 3.52"

	Area (sf)	CN	Description
*	2,343	98	Ledge Outcrop, HSG D
	73	77	Woods, Good, HSG D
	917	Woods, Good, HSG B	
	1,386	>75% Grass cover, Good, HSG B	
	710	98	Roofs, HSG B
	5,429	81	Weighted Average
	2,376		43.76% Pervious Area
	3,053		56.24% Impervious Area
	3,053		56.24% Impervious Area

Type III 24-hr 10 Yr 24 Hr(+15%) Rainfall=5.61"

Prepared by Jones and Beach Engineers, Inc.	Printed 5/10/2022
HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC	Page 12
To Longth Class Malasity Conseity Description	

	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.2	38	0.2100	3.12		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.70"
	0.8	7	0.2860	0.14		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.70"
	12.2	42	0.0120	0.06		Sheet Flow,
-						Woods: Light underbrush n= 0.400 P2= 3.70"
	13.2	87	Total			

Summary for Subcatchment 5S: Subcatchment 5S

Runoff = 0.75 cfs @ 12.09 hrs, Volume= 0.056 af, Depth> 4.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Yr 24 Hr(+15%) Rainfall=5.61"

ΑΑ	rea (sf)	CN	Description								
	1,824	61	>75% Grass cover, Good, HSG B								
	14	98	Paved parking, HSG D								
	3,268	98	Paved parking, HSG B								
	1,840	98	Roofs, HSC	βB							
	6,946	6 88 Weighted Average									
	1,824		26.26% Pervious Area								
	5,122		73.74% Impervious Area								
_											
Tc	Length	Slope		Capacity	•						
<u>(min)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)							
6.0					Direct Entry,						

Summary for Subcatchment 6S: Subcatchment 6S

Runoff = 1.17 cfs @ 12.09 hrs, Volume= 0.089 af, Depth> 4.46"

	Area (sf)	Area (sf) CN Description						
	687	61	>75% Grass cover, Good, HSG B					
	1,334	Paved parking, HSG B						
	Paved parking, HSG D							
	3,196 80 >75% Grass cover, Good, HSG D							
	2,382	98	Roofs, HSG D					
	10,412	90	Weighted Average					
	3,883		37.29% Pervious Area					
	6,529		62.71% Impervious Area					

Type III 24-hr 10 Yr 24 Hr(+15%) Rainfall=5.61" Printed 5/10/2022

Page 13

Prepared by Jones and Beach Engineers, Inc. HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC

21047-PROPOSED

		Length	Slope	201 B		Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
2	1.7	20	0.0500	0.19		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.70"
	0.7	40	0.0100	0.93		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.70"
-	2.4	60	Total, I	ncreased t	o minimum	Tc = 6.0 min

Summary for Subcatchment 7S: Subcatchment 7S

Runoff = 1.15 cfs @ 12.09 hrs, Volume= 0.089 af, Depth> 4.79"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Yr 24 Hr(+15%) Rainfall=5.61"

A	rea (sf)	CN [Description						
	1,935	98 F	Roofs, HSG	В					
	2,857	98 F	Paved parki	ng, HSG B					
	1,047	61 >	>75% Grass	s cover, Go	od, HSG B				
	857		Roofs, HSG						
	2,481								
	572	80 >	>75% Grass	s cover, Go	od, HSG D				
	9,749	93 Weighted Average							
	1,619		16.61% Per	vious Area					
	8,130	8	33.39% Imp	ervious Are	ea				
				_					
Тс	Length	Slope		Capacity	Description				
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)					
4.6	40								
4.0	40	0.0175	0.14	- A	Sheet Flow,				
4.0	40	0.0175			Grass: Short n= 0.150 P2= 3.70"				
4.0		0.0175 0.0100			Grass: Short n= 0.150 P2= 3.70" Sheet Flow,				
					Grass: Short n= 0.150 P2= 3.70" Sheet Flow, Smooth surfaces n= 0.011 P2= 3.70"				
	60		1.01		Grass: Short n= 0.150 P2= 3.70" Sheet Flow, Smooth surfaces n= 0.011 P2= 3.70" Shallow Concentrated Flow,				
1.0	60 35	0.0100 0.0100	1.01 2.03		Grass: Short n= 0.150 P2= 3.70" Sheet Flow, Smooth surfaces n= 0.011 P2= 3.70"				

Summary for Subcatchment 8S: Subcatchment 8S

Runoff = 1.28 cfs @ 12.15 hrs, Volume= 0.113 af, Depth> 4.46"

Type III 24-hr 10 Yr 24 Hr(+15%) Rainfall=5.61" Printed 5/10/2022

Page 14

Prepared by Jones and Beach Engineers, Inc. HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC

	Area (sf)	CN [Description									
	1,788	61 >	>75% Grass cover, Good, HSG B									
	4,412	98 F	8 Paved parking, HSG B									
	1,219	98 F										
	2,194	80 >										
*	1,608	98 L	.edge Outc	rop, HSG [)							
	39			ing, HSG D)							
	2,016	<u>98</u> F	Roofs, HSG	5 D								
	13,276	90 V	Veighted A	verage								
	3,982	2	9.99% Per	vious Area								
	9,294	7	'0.01% Imp	pervious Are	ea							
To		Slope	Velocity	Capacity	Description							
(min)		(ft/ft)	(ft/sec)	(cfs)								
3.3	40	0.0400	0.20		Sheet Flow,							
					Grass: Short	n= 0.150	P2= 3.70"					
2.5	20	0.0200	0.13		Sheet Flow,							
					Grass: Short	n= 0.150	P2= 3.70"					
5.4	26	0.0050	0.08		Sheet Flow,							
					Grass: Short	n= 0.150	P2= 3.70"					
11.2	86	Total										

Summary for Subcatchment 9S: Subcatchment 15S

Runoff = 0.25 cfs @ 12.11 hrs, Volume= 0.018 af, Depth> 3.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Yr 24 Hr(+15%) Rainfall=5.61"

A	rea (sf)	CN	Description					
	1,238	61	>75% Gras	s cover, Go	ood, HSG B			
	1,015	80	>75% Gras	s cover, Go	ood, HSG D			
	72	98	Roofs, HSC	ЗB				
	747	98	Roofs, HSC	6 D				
	3,072	77	Weighted A	verage				
	2,253		73.34% Pei	vious Area	ł			
	819		26.66% Imp	pervious Ar	ea			
Тс	Length	Slope	the state of the s	Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)				
7.2	67	0.0160	0.15		Sheet Flow,			0
					Grass: Short	n= 0.150	P2= 3.70"	

Summary for Subcatchment 10S: Subcatchment 16S

Runoff = 0.12 cfs @ 12.19 hrs, Volume= 0.011 af, Depth> 1.82"

Type III 24-hr 10 Yr 24 Hr(+15%) Rainfall=5.61" Printed 5/10/2022

Page 15

Prepared by Jones and Beach Engineers, Inc. HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC

A	rea (sf)	CN D	escription				
	2,918	61 >	75% Gras	s cover, Go	ood, HSG B		
	237	80 >75% Grass cover, Good, HSG D					
	3,155	62 V	Veighted A	verage			
	3,155			ervious Are	ea		
Tc	Length	Slope		Capacity			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
12.7	83	0.0060	0.11		Sheet Flow,		
					Grass: Short n= 0.150 P2= 3.70"		
		-			-taken aut 140. Vard Drain #2		
		SL	ummary	tor Subc	atchment 11S: Yard Drain #3		
				4 L - 1 - L	0.040 of Doubles 0.04"		
Runoff	=	0.16 ct	s@ 12.1	1 hrs, Volu	ume= 0.012 af, Depth> 2.24"		
Dunoff b		2 20 moti	hod UH=9	CS Weigh	hted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs		
Type III.	y 303 11 24_hr 10	Vr 24 Hr/	(+15%) Ra	infall=5.61			
Type III 2	L	116710	(*1070)110				
А	rea (sf)	CN E	Description				
	2,421	61 >	75% Gras	s cover, Go	ood, HSG B		
	460		Roofs, HSC				
	2,881	67 V	Veighted A	verage			
	2,421			rvious Area	а		
	460	1	5.97% lm	pervious Ar	rea		
Тс	Length	Slope	Velocity				
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)			
6.8	60	0.0150	0.15		Sheet Flow,		

Grass: Short n= 0.150 P2= 3.70"

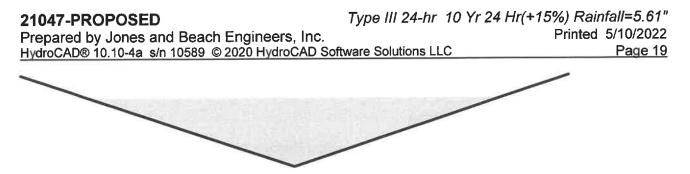
Summary for Subcatchment 12S: Subcatchment 18S

Runoff = 0.13 cfs @ 12.09 hrs, Volume= 0.010 af, Depth> 3.73"

Area (sf)	CN	Description
94	61	>75% Grass cover, Good, HSG B
904	80	>75% Grass cover, Good, HSG D
11	98	Roofs, HSG B
332	98	Roofs, HSG D
1,341	83	Weighted Average
998		74.42% Pervious Area
343		25.58% Impervious Area

	/ Jones and I			C.	Type III 24-hr 10 Yr 24 Hr(+15%) Rainfall Printed 5/1 foftware Solutions LLC			
Tc Ler (min) (f	ngth Slope eet) (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
4.2	37 0.0190	0.15		Sheet Flow Grass: Sho		P2= 3.70"		
4.2	37 Total, I	ncreased to	minimum	Tc = 6.0 min				
	Sumn	nary for S	ubcatch	ment 13S:	Back of l	Jnits 1 and 2		
Runoff =	0.11 cf	s@ 12.09	hrs, Volu	ime=	0.009 af, E)epth> 5.37"		
	CS TR-20 met r 10 Yr 24 Hr				e Span= 0.0	0-24.00 hrs, dt= 0.0)5 hrs	
Area	(sf) CN E	escription						
9	918 98 F	loofs, HSG	В					
9	918 1	00.00% Im	pervious A	rea				
	ngth Slope eet) (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0				Direct Entr	у,			
	Sı	Immary f	or Subca	atchment 1	4S: Back	of Unit 3		
Runoff =	0.04 cf	s@ 12.09	hrs, Volu	ime=	0.003 af, E	Depth> 5.37"		
	CS TR-20 met r 10 Yr 24 Hr				e Span= 0.0	0-24.00 hrs, dt= 0.0	95 hrs	
Area	(sf) CN D	escription						
3	310 98 F	oofs, HSG	D					
3	310 1	00.00% Im	pervious A	rea				
Tc Ler (min) (f	ngth Slope eet) (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0				Direct Entr	у,			
	Sum	mary for	Subcato	hment 15S	6: East Sid	de of Unit 4		
Runoff =	0.06 cf	s@ 12.09	hrs, Volu	ime=	0.005 af, E	Depth> 5.37"		

Area (sf)	CN	Description	
500	98	Roofs, HSG B	
2	98	Roofs, HSG D	
502 502	98	Weighted Average 100.00% Impervious Area	


					Software Sol		C		Page 17
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Ent	у,			
		Sum	mary for	Subcate	hment 16	S: Subo	atchment	16S	
Runoff	=	0.15 cf	s @ 12.0	9 hrs, Volu	ıme=	0.013 a	f, Depth> 5	.37"	
Runoff by Type III 2	y SCS TR 24-hr 10 \	2-20 metl Yr 24 Hr	hod, UH=S (+15%) Ra	CS, Weigh infall=5.61'	ited-CN, Time	e Span=	0.00-24.00 h	nrs, dt= 0.05	hrs
A	rea (sf)		Description						
	1,247				& sewers, HS	G B			
	1,247	1	00.00% in	npervious A	Alea				
Tc (min)	Length (feet)		Velocity		Description	1			
	liect	(ft/ft)	(ft/sec)	(cfs)					
6.0	(1661)	(1711)	(IVSEC)	(CfS)	Direct Ent	ry,			
	(ieet)				Direct Ent		catchment	175	
	=	Sum	mary fo		chment 17	S: Subo	satchment If, Depth> 5		
6.0 Runoff Runoff b	= y SCS TR	Sum 0.35 cf 8-20 met	m ary fo s @ 12.0 hod, UH=S	r Subcato 9 hrs, Volu	chment 17: ume= nted-CN, Tim	S: Subo 0.029 a	ıf, Depth> 5	.37"	hrs
6.0 Runoff Runoff b Type III :	= y SCS TR	Sum 0.35 cf R-20 met Yr 24 Hr	m ary fo s @ 12.0 hod, UH=S	r Subcato 9 hrs, Volu SCS, Weigh hinfall=5.61	chment 17: ume= nted-CN, Tim	S: Subo 0.029 a	ıf, Depth> 5	.37"	hrs
6.0 Runoff Runoff b Type III :	= y SCS TR 24-hr 10 ` <u>.rea (sf)</u> 2,230	Sum 0.35 cf R-20 met Yr 24 Hr <u>CN [</u> 98 F	mary for s @ 12.0 hod, UH=S (+15%) Ra Description Paved park	r Subcato 9 hrs, Volu SCS, Weigh hinfall=5.61	chment 17: ume= nted-CN, Tim	S: Subo 0.029 a	ıf, Depth> 5	.37"	hrs
6.0 Runoff Runoff b Type III :	= 24-hr 10 2,230 576	Sum 0.35 cf R-20 met Yr 24 Hr <u>CN [</u> 98 F 98 F	mary for s @ 12.0 hod, UH=S (+15%) Ra Description Paved park Paved park	r Subcato 9 hrs, Volu 6CS, Weigh hinfall=5.61 king, HSG E	chment 17: ume= nted-CN, Tim	S: Subo 0.029 a	ıf, Depth> 5	.37"	hrs
6.0 Runoff Runoff b Type III :	= y SCS TR 24-hr 10 ` <u>.rea (sf)</u> 2,230	Sum 0.35 cf R-20 met Yr 24 Hr <u>CN [</u> 98 F 98 F 98 V	mary for s @ 12.0 hod, UH=S (+15%) Ra Description Paved park Paved park Veighted A	r Subcato 9 hrs, Volu 6CS, Weigh hinfall=5.61 king, HSG E	chment 17: ume= nted-CN, Tim	S: Subo 0.029 a	ıf, Depth> 5	.37"	hrs
6.0 Runoff Type III : A Tc	= 24-hr 10 ⁻ 2,230 576 2,806 2,806 2,806 Length	Sum 0.35 cf 2-20 met Yr 24 Hr <u>CN E</u> 98 F 98 F 98 V 1 Slope	mary for s @ 12.0 hod, UH=S (+15%) Ra Description Paved park Paved park Veighted A 100.00% In Velocity	r Subcato 9 hrs, Volu SCS, Weigh infall=5.61 ing, HSG E ing, HSG E ing, HSG E ing, HSG E	chment 17: ume= nted-CN, Tim	5: Subo 0.029 a e Span=	ıf, Depth> 5	.37"	hrs
6.0 Runoff Runoff b Type III 2 A	= 24-hr 10 ⁻ 2,230 576 2,806 2,806 2,806	Sum 0.35 cf 2-20 met Yr 24 Hr <u>CN E</u> 98 F 98 F 98 V	mary for s @ 12.0 hod, UH=S (+15%) Ra Description Paved park Paved park Veighted A 100.00% In Velocity	r Subcato 9 hrs, Volu SCS, Weigh infall=5.61 ting, HSG E ting, HSG E ting, HSG E ting, HSG E ting, HSG E ting, HSG E	chment 17: ume= nted-CN, Tim " 3 2	5: Subo 0.029 a e Span=	ıf, Depth> 5	.37"	hrs
6.0 Runoff Runoff b Type III 2 A Tc (min)	= 24-hr 10 ⁻ 2,230 576 2,806 2,806 2,806 Length	Sum 0.35 cf 2-20 met Yr 24 Hr <u>CN [</u> 98 F 98 F 98 V 1 Slope (ft/ft)	mary for s @ 12.0 hod, UH=S (+15%) Ra Description Paved park Paved park Paved park Paved park Paved park Veighted A 100.00% In Velocity (ft/sec)	r Subcato 9 hrs, Volu SCS, Weigh infall=5.61 ing, HSG E ing, HSG E verage npervious A Capacity (cfs)	chment 17: ume= nted-CN, Tim " 3 3 3 Area Descriptior	S: Subo 0.029 a e Span=	if, Depth> 5 0.00-24.00 h	.37" hrs, dt= 0.05	hrs

	Area (sf)	CN	Description
	4,475	98	Paved parking, HSG B
_	4,475		100.00% Impervious Area

Prepare	PROPO ed by Jon D® 10.10-	es and E	Type III 24-hr 10 Yr 24 Hr(+15%) Rainfall=5.61" c. Printed 5/10/2022 O Software Solutions LLC Page 18		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry,
		Sum	mary for	Subcate	hment 19S: Subcatchment 19S
Runoff	=	0.87 cfs	s @ 12.2	5 hrs, Volu	Ime= 0.089 af, Depth> 1.98"
Type III	24-hr 10	Yr 24 Hr(+15%) Ra	infall=5.61	ted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
A	rea (sf)		escription		
	4,147			ing, HSG E	
	4,462				ood, HSG B
	102 14,877		oofs, HSC		
				od, HSG B	
	23,588		Veighted A	verage vious Area	
	19,339 4,249				
	4,249	L.	0.01% 111	pervious Ar	ea
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description
16.0	100	0.0350	0.10	(010)	Sheet Flow,
10.0		0.0000	0.10		Woods: Light underbrush n= 0.400 P2= 3.70"
0.7	37	0.0300	0.87		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
16.7	137	Total			
			Sı	ummary f	or Reach 1R: Swale

Inflow Area = 0.339 ac, 41.02% Impervious, Inflow Depth > 4.14" for 10 Yr 24 Hr(+15%) event 1.32 cfs @ 12.16 hrs, Volume= 1.25 cfs @ 12.21 hrs, Volume= Inflow = 0.117 af Outflow = 0.117 af, Atten= 5%, Lag= 2.6 min Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Max. Velocity= 0.73 fps, Min. Travel Time= 3.2 min Avg. Velocity = 0.30 fps, Avg. Travel Time= 7.7 min Peak Storage= 240 cf @ 12.21 hrs Average Depth at Peak Storage= 0.76', Surface Width= 4.53' Bank-Full Depth= 1.00' Flow Area= 3.0 sf, Capacity= 2.65 cfs 0.00' x 1.00' deep channel, n= 0.150 Sheet flow over Short Grass Side Slope Z-value= 3.0 '/' Top Width= 6.00' Length= 140.0' Slope= 0.0214 '/'

Inlet Invert= 40.00', Outlet Invert= 37.00'

Summary for Reach AP1: Wooded Depression

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	0.542 ac, 18.01% Impervious, Inflow Depth > 1.98" for 10 Yr 24 Hr(+15%) event
Inflow	=	0.87 cfs @ 12.25 hrs, Volume= 0.089 af
Outflow	=	0.87 cfs $\hat{@}$ 12.25 hrs, Volume= 0.089 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP2: Shoulder of Road

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	=	0.339 ac, 41.02% Impervious, Inflow Depth > 4.13" for 10 Yr 24 Hr(+15%) event
Inflow	=	1.25 cfs @ 12.21 hrs, Volume= 0.117 af
Outflow	=	1.25 cfs @ 12.21 hrs, Volume= 0.117 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP3: Detention Pond

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	1.720 ac, 49.10% Impervious, Inflow Depth > 0.27" for 10 Yr 24 Hr(+15%) event
Inflow =	0.53 cfs @ 12.10 hrs, Volume= 0.039 af
Outflow =	0.53 cfs @ 12.10 hrs, Volume= 0.039 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP4: Rear of Site

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.125 ac, 56.24% Impervious, Inflow Depth > 3.52" for 10 Yr 24 Hr(+15%) event
Inflow =	0.40 cfs @ 12.18 hrs, Volume= 0.037 af
Outflow =	0.40 cfs @ 12.18 hrs, Volume= 0.037 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP5: Across Street

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	0.196 ac,100.00% Impervious, Inflow Depth > 12.64" for 10 Yr 24 Hr(+15%) event
Inflow	=	1.05 cfs @ 12.09 hrs, Volume= 0.206 af
Outflow	=	1.05 cfs @ 12.09 hrs, Volume= 0.206 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

Summary for Pond 1P: Bioretention #1

Inflow Area =	0.159 ac, 73.74% Impervious, Inflow De	epth > 4.25" for 10 Yr 24 Hr(+15%) event
Inflow =	0.75 cfs @ 12.09 hrs, Volume=	0.056 af
Outflow =	0.73 cfs @ 12.11 hrs, Volume=	0.054 af, Atten= 3%, Lag= 1.1 min
Primary =	0.73 cfs @ 12.11 hrs, Volume=	0.054 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 35.60' @ 12.11 hrs Surf.Area= 315 sf Storage= 155 cf

Plug-Flow detention time= 39.0 min calculated for 0.054 af (96% of inflow) Center-of-Mass det. time= 15.9 min (809.2 - 793.3)

Volume	Invert	Avai	I.Stora	ige Storage Desci	ription	
#1	33.99' 6		694	cf Custom Stag	e Data (Prismatio	:)Listed below (Recalc)
Elevatio	Su Su	Irf.Area	Void	s Inc.Store	Cum.Store	
(fee		(sq-ft)	(%)		(cubic-feet)	
33.9		315	0.0			
33.: 34.(315	40.0	-	0	
					100	
34.9 35.0		315	40.0		126	
		315	15.0		126	
36.4 36.5		315	15.0 100.0		197	
30.0		315	100.0		200	
37.0		484	100.0		400	
37.5	-	668 668	100.0		688	
57.3	11	000	100.0) 7	694	
Device	Routing	In	vert	Outlet Devices		
#1	Primary	34	.58'	8.0" Round Culve	rt	
	•			L= 40.0' CPP, proj	ecting, no headwa	all, Ke= 0.900
						S= 0.0045 '/' Cc= 0.900
				n= 0.013 Corrugate	ed PE, smooth inte	erior, Flow Area= 0.35 sf
#2	Device 1	34	.75'			Limited to weir flow at low heads
#3	Device 1	37	.30'	18.0" Horiz. Orifice	e/Grate C= 0.600)
				Limited to weir flow	at low heads	
#4	Secondary	37	.50'	31.0' long x 4.0' bi	readth Broad-Cre	ested Rectangular Weir
				Head (feet) 0.20 0	.40 0.60 0.80 1.	00 1.20 1.40 1.60 1.80 2.00
				2.50 3.00 3.50 4.0	0 4.50 5.00 5.5	0
				Coef. (English) 2.3	8 2.54 2.69 2.68	3 2.67 2.67 2.65 2.66 2.66
				2.68 2.72 2.73 2.7	76 2.79 2.88 3.0	7 3.32

 21047-PROPOSED
 Type III 24-hr
 10 Yr 24 Hr(+15%) Rainfall=5.61"

 Prepared by Jones and Beach Engineers, Inc.
 Printed 5/10/2022

 HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC
 Page 21

Primary OutFlow Max=0.72 cfs @ 12.11 hrs HW=35.58' TW=34.94' (Dynamic Tailwater) 1=Culvert (Passes 0.72 cfs of 1.00 cfs potential flow) 2=Orifice/Grate (Orifice Controls 0.72 cfs @ 3.68 fps) 3=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=33.99' TW=28.00' (Dynamic Tailwater) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 2P: Bioretention #2

Inflow Area =	0.239 ac, 62.71% Impervious, Inflow Depth > 4.46" for 10 Yr 24 Hr(+15%) event
Inflow =	1.17 cfs @ 12.09 hrs, Volume= 0.089 af
Outflow =	1.03 cfs @ 12.13 hrs, Volume= 0.087 af, Atten= 12%, Lag= 2.7 min
Primary =	1.03 cfs @ 12.13 hrs, Volume= 0.087 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 36.19' @ 12.13 hrs Surf.Area= 600 sf Storage= 303 cf

Plug-Flow detention time= 24.2 min calculated for 0.087 af (98% of inflow) Center-of-Mass det. time= 12.3 min (798.7 - 786.4)

Volume	Invert	Ava	il.Storage	e Storage Descri	ption	
#1	34.49'	34.49' 1,24		f Custom Stage	Data (Prismatic)L	isted below (Recalc)
Elevatio	on Su	rf.Area	Voids	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(%)	(cubic-feet)	(cubic-feet)	
34.4	9	600	0.0	0	0	
34.5	50	600	40.0	2	2	
35.4	19	600	40.0	238	240	
35.5	50	600	15.0	1	241	
36.9	99	600	15.0	134	375	
37.0	00	600	100.0	6	381	
38.0	00	1,113	100.0	857	1,237	
38.0)1	1,113	100.0	11	1,249	
Device	Routing	In	vert O	utlet Devices		
				0" Round Culver	+	
#1	Primary	34			cting, no headwall	Ke= 0.900
			 In	let / Outlet Invert=	34 58' / 34 40' S=	0.0055 '/' Cc= 0.900
						ior, Flow Area= 0.35 sf
#2	Device 1	34	.75' 6 .	N" Vert Orifice/G	rate C=0.600 li	mited to weir flow at low heads
#2	Device 1	-		3.0" Horiz. Orifice		
#0	Bettee	0,		mited to weir flow		
#4	Secondary	38	3.00' 13 He	3.0' long x 4.0' br ead (feet) 0.20 0.	eadth Broad-Cres	ted Rectangular Weir) 1.20 1.40 1.60 1.80 2.00
			C	pef. (English) 2.38		2.67 2.67 2.65 2.66 2.66 3.32

 21047-PROPOSED
 Type III 24-hr 10 Yr 24 Hr(+15%) Rainfall=5.61"

 Prepared by Jones and Beach Engineers, Inc.
 Printed 5/10/2022

 HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC
 Page 22

Primary OutFlow Max=1.02 cfs @ 12.13 hrs HW=36.15' TW=34.94' (Dynamic Tailwater) 1=Culvert (Passes 1.02 cfs of 1.46 cfs potential flow) -2=Orifice/Grate (Orifice Controls 1.02 cfs @ 5.17 fps) -3=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=34.49' TW=0.00' (Dynamic Tailwater) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 3P: Catch Basin #1

Inflow Area =	0.375 ac, 61.86% Impervious, Inflow I	Depth > 4.21" for 10 Yr 24 Hr(+15%) event
Inflow =	1.50 cfs @ 12.15 hrs, Volume=	0.132 af
Outflow =	1.50 cfs @ 12.15 hrs, Volume=	0.132 af, Atten= 0%, Lag= 0.0 min
Primary =	1.50 cfs @ 12.15 hrs, Volume=	0.132 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 35.87' @ 12.13 hrs Flood Elev= 38.50'

Device	Routing	Invert	Outlet Devices
#1	Primary		15.0" Round Culvert L= 47.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 35.00' / 34.75' S= 0.0053 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf
			-

Primary OutFlow Max=1.49 cfs @ 12.15 hrs HW=35.86' TW=35.61' (Dynamic Tailwater) -1=Culvert (Outlet Controls 1.49 cfs @ 2.33 fps)

Summary for Pond 4P: Catch Basin #2

Inflow Area =	0.768 ac, 56.90% Impervious, Inflow Depth > 3.97" for 10 Yr 24 Hr(+15%) event
Inflow =	2.93 cfs @ 12.11 hrs, Volume= 0.254 af
Outflow =	2.93 cfs @ 12.11 hrs, Volume= 0.254 af, Atten= 0%, Lag= 0.0 min
Primary =	2.93 cfs @ 12.11 hrs, Volume= 0.254 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 35.75' @ 12.55 hrs Flood Elev= 38.80'

Device	Routing	Invert	Outlet Devices
#1	Primary	34.30'	15.0" Round Culvert L= 36.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 34.30' / 34.10' S= 0.0056 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=2.88 cfs @ 12.11 hrs HW=35.38' TW=34.39' (Dynamic Tailwater) -1=Culvert (Barrel Controls 2.88 cfs @ 3.42 fps)

Prepared by Jones and Beach Engineers, Inc.

Summary for Pond 5P: Concrete Galley 8x14 INFILTRATION

Inflow Area =	0.768 ac, 56.90% Impervious, Inflow Depth > 3.97" for 10 Yr 24 Hr(+15%) event
Inflow =	2.93 cfs @ 12.11 hrs, Volume= 0.254 af
Outflow =	0.68 cfs @ 12.57 hrs, Volume= 0.251 af, Atten= 77%, Lag= 27.6 min
Discarded =	0.67 cfs @ 12.57 hrs, Volume= 0.251 af
Primary =	0.00 cfs @ 12.57 hrs, Volume= 0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 35.72' @ 12.57 hrs Surf.Area= 0.071 ac Storage= 0.094 af

Plug-Flow detention time= 79.0 min calculated for 0.251 af (99% of inflow) Center-of-Mass det. time= 71.3 min (865.5 - 794.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	33.90'	0.000 af	24.00'W x 42.00'L x 3.67'H Field A
			0.085 af Overall - 0.085 af Embedded = 0.000 af x 40.0% Voids
#2A	33.90'	0.062 af	Shea Leaching Chamber 8x14x3.7 x 9 Inside #1
			Inside= 84.0"W x 36.0"H => 23.08 sf x 13.00'L = 300.0 cf
			Outside= 96.0"W x 44.0"H => 29.36 sf x 14.00'L = 411.0 cf
			9 Chambers in 3 Rows
#3	30.90'	0.035 af	28.00'W x 46.00'L x 3.00'H Prismatoid
			0.089 af Overall x 40.0% Voids
#4	30.90'	0.007 af	8.00'W x 32.00'L x 3.00'H Prismatoid
			0.018 af Overall x 40.0% Voids
#5	33.90'	0.010 af	2.00'W x 148.00'L x 3.67'H Prismatoid
			0.025 af Overall x 40.0% Voids
#6B	33.90'	0.000 af	8.00'W x 28.00'L x 3.67'H Field B
			0.019 af Overall - 0.019 af Embedded = 0.000 af x 40.0% Voids
# 7B	33.90'	0.014 af	Shea Leaching Chamber 8x14x3.7 x 2 Inside #6
			Inside= 84.0"W x 36.0"H => 23.08 sf x 13.00'L = 300.0 cf
			Outside= 96.0"W x 44.0"H => 29.36 sf x 14.00'L = 411.0 cf
.S 		0 128 af	Total Available Storage

0.128 af Total Available Storage

Storage Group A created with Chamber Wizard Storage Group B created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	30.90'	0.300 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 30.82' Phase-In= 0.01'
#2	Primary	35.70'	12.0" Round Culvert L= 60.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 35.70' / 34.30' S= 0.0233 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#3	Primary	37.56'	160.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32

Discarded OutFlow Max=0.67 cfs @ 12.57 hrs HW=35.72' (Free Discharge) **1=Exfiltration** (Controls 0.67 cfs)

Primary OutFlow Max=0.00 cfs @ 12.57 hrs HW=35.72' TW=34.69' (Dynamic Tailwater) -2=Culvert (Inlet Controls 0.00 cfs @ 0.39 fps) -3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 6P: Drain Manhole #1

Inflow Area =	0.398 ac, 67.12% Impervious, Inflow De	epth > 4.25" for 10 Yr 24 Hr(+15%) event
Inflow =	1.76 cfs @ 12.12 hrs, Volume=	0.141 af
Outflow =	1.76 cfs @ 12.12 hrs, Volume=	0.141 af, Atten= 0%, Lag= 0.0 min
Primary =	1.76 cfs @ 12.12 hrs, Volume=	0.141 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 34.96' @ 12.12 hrs Flood Elev= 38.90'

Device	Routing	Invert	Outlet Devices
#1	Primary	34.07'	12.0" Round Culvert L= 48.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 34.07' / 33.80' S= 0.0056 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.71 cfs @ 12.12 hrs HW=34.94' TW=33.93' (Dynamic Tailwater) —1=Culvert (Barrel Controls 1.71 cfs @ 3.16 fps)

Summary for Pond 7P: Drain Manhole #2

Inflow Area =	0.768 ac, 56.90% Impervious, Inflow I	Depth = 0.00" for 10 Yr 24 Hr(+15%) event
Inflow =	0.00 cfs @ 12.57 hrs, Volume=	0.000 af
Outflow =	0.00 cfs @ 12.57 hrs, Volume=	0.000 af, Atten= 0%, Lag= 0.0 min
Primary =	0.00 cfs @ 12.57 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 34.71' @ 12.54 hrs Flood Elev= 39.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	34.20'	12.0" Round Culvert
			L= 40.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 34.20' / 34.00' S= 0.0050 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.00 cfs @ 12.57 hrs HW=34.69' TW=34.71' (Dynamic Tailwater) -1=Culvert (Controls 0.00 cfs)
 21047-PROPOSED
 Type III 24-hr
 10 Yr 24 Hr(+15%) Rainfall=5.61"

 Prepared by Jones and Beach Engineers, Inc.
 Printed
 5/10/2022

 HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC
 Page 25

Summary for Pond 8P: Concrete Galley 8x14 STORAGE ONLY

[92] Warning: Device #4 is above defined storage [80] Warning: Exceeded Pond 7P by 0.41' @ 12.70 hrs (0.46 cfs 0.010 af)

Inflow Area =	1.167 ac, 60.39% Impervious, Inflow D	Depth > 1.45" for 10 Yr 24 Hr(+15%) event
Inflow =	1.76 cfs @ 12.12 hrs, Volume=	0.141 af
Outflow =	0.50 cfs @ 12.50 hrs, Volume=	0.140 af, Atten= 72%, Lag= 22.8 min
Primary =	0.50 cfs @ 12.50 hrs, Volume=	0.140 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 34.73' @ 12.50 hrs Surf.Area= 0.055 ac Storage= 0.041 af

Plug-Flow detention time= 38.0 min calculated for 0.140 af (99% of inflow) Center-of-Mass det. time= 32.6 min (835.3 - 802.8)

Volume	Invert	Avail.Storage	Storage Description
#1A	33.30'	0.000 af	16.00'W x 56.00'L x 3.67'H Field A
			0.075 af Overall - 0.075 af Embedded = 0.000 af x 40.0% Voids
#2A	33.30'	0.055 af	Shea Leaching Chamber 8x14x3.7 x 8 Inside #1
			Inside= 84.0"W x 36.0"H => 23.08 sf x 13.00'L = 300.0 cf
			Outside= 96.0"W x 44.0"H => 29.36 sf x 14.00'L = 411.0 cf
			8 Chambers in 2 Rows
#3	32.30'	0.011 af	20.00'W x 60.00'L x 1.00'H Prismatoid
			0.028 af Overall x 40.0% Voids
#4	33.30'	0.010 af	2.00'W x 144.00'L x 3.67'H Prismatoid
			0.024 af Overall x 40.0% Voids
		0.076 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	32.30'	4.0" Round Culvert
	-		L= 3.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 32.30' / 32.27' S= 0.0100 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.09 sf
#2	Device 1	32.30'	4.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Primary	34.70'	8.0" Round Culvert
	•		L= 3.0' CPP, projecting, no headwall, Ke= 0.900
			inlet / Outlet Invert= 34.70' / 34.67' S= 0.0100 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.35 sf
#4	Secondary	39.80'	160.0' long x 1.0' breadth Broad-Crested Rectangular Weir
	occontairy	00.00	Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31
			3.30 3.31 3.32
			3.00 0.01 0.02

Primary OutFlow Max=0.50 cfs @ 12.50 hrs HW=34.73' TW=32.03' (Dynamic Tailwater) 1=Culvert (Inlet Controls 0.50 cfs @ 5.72 fps) 2=Orifice/Grate (Passes 0.50 cfs of 0.63 cfs potential flow) -3=Culvert (Barrel Controls 0.00 cfs @ 0.60 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=32.30' TW=31.60' (Dynamic Tailwater) -4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 9P: Drain Manhole #3

Inflow Area =	1.167 ac, 60.39% Impervious, Inflow D	epth > 1.44" for 10 Yr 24 Hr(+15%) event
Inflow =	0.50 cfs @ 12.50 hrs, Volume=	0.140 af
Outflow =	0.50 cfs @ 12.50 hrs, Volume=	0.140 af, Atten= 0%, Lag= 0.0 min
Primary =	0.50 cfs @ 12.50 hrs, Volume=	0.140 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 32.03' @ 12.50 hrs Flood Elev= 39.90'

Device	Routing	Invert	Outlet Devices
#1	Primary	31.60'	12.0" Round Culvert L= 85.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 31.60' / 31.10' S= 0.0059 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.50 cfs @ 12.50 hrs HW=32.03' TW=31.53' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.50 cfs @ 2.30 fps)

Summary for Pond 10P: Drain Manhole #4

Inflow Area =	1.167 ac, 60.39% Impervious, Inflow Depth > 1.44" for 10 Yr 24 Hr(+15%) event
Inflow =	0.50 cfs @ 12.50 hrs, Volume= 0.140 af
Outflow =	0.50 cfs @ 12.50 hrs, Volume= 0.140 af, Atten= 0%, Lag= 0.0 min
Primary =	0.50 cfs @ 12.50 hrs, Volume= 0.140 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 31.53' @ 12.50 hrs Flood Elev= 36.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	31.10'	12.0" Round Culvert L= 40.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 31.10' / 30.90' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.50 cfs @ 12.50 hrs HW=31.53' TW=30.20' (Dynamic Tailwater) -1=Culvert (Barrel Controls 0.50 cfs @ 2.28 fps)

Prepared by Jones and Beach Engineers, Inc.

Summary for Pond 11P: Yard Drain #1

Inflow Area =	0.071 ac, 26.66% Impervious, Inflow Depth > 3.14" for 10 Yr 24 Hr(+15%) event
	0.25 cfs @ 12.11 hrs, Volume= 0.018 af
Outflow =	0.25 cfs @ 12.11 hrs, Volume= 0.018 af, Atten= 0%, Lag= 0.0 min
Primary =	0.25 cfs @ 12.11 hrs, Volume= 0.018 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 36.14' @ 12.12 hrs Flood Elev= 39.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	35.80'	8.0" Round Culvert L= 40.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 35.80' / 35.58' S= 0.0055 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.35 sf

Primary OutFlow Max=0.24 cfs @ 12.11 hrs HW=36.13' TW=35.85' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 0.24 cfs @ 1.98 fps)

Summary for Pond 12P: Yard Drain #2

Inflow Area =	0.072 ac,	0.00% Impervious, Inflow Depth	n > 1.82" for 10 Yr 24 Hr(+15%) event
Inflow =	0.12 cfs @)11 af
Outflow =	0.12 cfs @	12.20 hrs, Volume= 0.0	011 af, Atten= 0%, Lag= 0.4 min
Primary =	0.12 cfs @		011 af
Secondary =	0.00 cfs @	0.00 hrs, Volume= 0.0	000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 39.04' @ 12.20 hrs Surf Area= 107 sf Storage= 2 cf

Plug-Flow detention time= 0.2 min calculated for 0.011 af (100% of inflow) Center-of-Mass det. time= 0.2 min (866.4 - 866.2)

Volume	Invert	Avail.Sto		Description		
#1	39.00'	1,35	58 cf Custom	Stage Data (Pr	ismatic)Listed belo	ow (Recalc)
Elevatio (fee 39.0 40.0	et) 00	urf.Area (sq-ft) 5 2,685	Inc.Store (cubic-feet) 0 1,358	Cum.Store (cubic-feet) 0 1,358		
Device	Routing	Invert	Outlet Devices	3		
#1	Primary	36.00'	8.0" Round C			
					headwall, Ke= 0.9 5.33' S= 0.0134 '/	
					ooth interior, Flow	
#2	Device 1	39.00'		Drifice/Grate		
	201100			r flow at low hea		
#3	Secondary	40.00'	100.0' long x Head (feet) 0.	2.0' breadth B	road-Crested Rec 0.80 1.00 1.20 1.	tangular Weir 40 1.60 1.80 2.00

Type III 24-hr 10 Yr 24 Hr(+15%) Rainfall=5.61" Printed 5/10/2022

Page 28

HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC

Prepared by Jones and Beach Engineers, Inc.

2.50 3.00 3.50 Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32

Primary OutFlow Max=0.12 cfs @ 12.20 hrs HW=39.04' TW=35.55' (Dynamic Tailwater) 1=Culvert (Passes 0.12 cfs of 2.18 cfs potential flow) 2=Orifice/Grate (Weir Controls 0.12 cfs @ 0.64 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=39.00' TW=34.30' (Dynamic Tailwater) -3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 13P: Yard Drain #3

Inflow Area =	0.514 ac, 47.23% Impervious, Inflow Depth > 3.62" for 10 Yr 24 Hr(+15%) event
Inflow =	1.76 cfs @ 12.14 hrs, Volume= 0.155 af
Outflow =	1.76 cfs @ 12.14 hrs, Volume= 0.155 af, Atten= 0%, Lag= 0.0 min
Primary =	1.76 cfs @ 12.14 hrs, Volume= 0.155 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 35.76' @ 12.53 hrs Flood Elev= 38.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	34.65'	15.0" Round Culvert
			L= 48.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 34.65' / 34.40' S= 0.0052 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.74 cfs @ 12.14 hrs HW=35.61' TW=35.36' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 1.74 cfs @ 2.38 fps)

Summary for Pond 14P: Yard Drain #4

 Inflow Area =
 0.031 ac, 25.58% Impervious, Inflow Depth > 3.73" for 10 Yr 24 Hr(+15%) event

 Inflow =
 0.13 cfs @ 12.09 hrs, Volume=
 0.010 af

 Outflow =
 0.13 cfs @ 12.09 hrs, Volume=
 0.010 af, Atten= 0%, Lag= 0.0 min

 Primary =
 0.13 cfs @ 12.09 hrs, Volume=
 0.010 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 36.72' @ 12.09 hrs Flood Elev= 39.10'

Device	Routing	Invert	Outlet Devices
#1	Primary	36.50'	8.0" Round Culvert L= 40.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 36.50' / 36.10' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.35 sf

Primary OutFlow Max=0.13 cfs @ 12.09 hrs HW=36.72' TW=35.37' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.13 cfs @ 1.26 fps) 21047-PROPOSEDType III 24-hr10 Yr 24 Hr(+15%) Rainfall=5.61"Prepared by Jones and Beach Engineers, Inc.Printed 5/10/2022HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLCPage 29

Summary for Pond 15P: Subsurface Stone Infiltration

Inflow Area =	0.021 ac,100.00% Impervious, Inflow Depth > 5.37" for 10 Yr 24 Hr(+15%) event
Inflow =	0.11 cfs @ 12.09 hrs, Volume= 0.009 af
Outflow =	0.02 cfs @ 12.58 hrs, Volume= 0.009 af, Atten= 85%, Lag= 29.4 min
Discarded =	0.02 cfs @ 12.58 hrs, Volume= 0.009 af
Primary =	0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 30.07' @ 12.58 hrs Surf.Area= 0.004 ac Storage= 0.004 af

Plug-Flow detention time= 111.7 min calculated for 0.009 af (100% of inflow) Center-of-Mass det. time= 111.0 min (856.8 - 745.7)

Volume	Invert	Avail.Storage	Storage Description
#1	27.50'	0.007 af	f 4.00'W x 40.00'L x 4.51'H Prismatoid 0.017 af Overall x 40.0% Voids
Device	Routing	Invert O	outlet Devices
#1	Discarded	27.50' 0 .	.650 in/hr Exfiltration over Surface area
		С	conductivity to Groundwater Elevation = 27.08' Phase-In= 0.01'
#2	Primary	H 2. C	8.0' long x 1.0' breadth Broad-Crested Rectangular Weir lead (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 .50 3.00 coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 .30 3.31 3.32

Discarded OutFlow Max=0.02 cfs @ 12.58 hrs HW=30.07' (Free Discharge) **1=Exfiltration** (Controls 0.02 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=27.50' TW=28.00' (Dynamic Tailwater) **2=Broad-Crested Rectangular Weir** (Controls 0.00 cfs)

Summary for Pond 16P: Subsurface Stone Infiltration

Inflow Area =	0.019 ac,100.00% Impervious, Inflow Dep	oth > 5.37" for 10 Yr 24 Hr(+15%) event
Inflow =		0.008 af
Outflow =	0.03 cfs @ 12.44 hrs, Volume= (0.008 af, Atten= 73%, Lag= 21.3 min
Discarded =	0.03 cfs @ 12.44 hrs, Volume= (0.008 af
Primary =	0.00 cfs $\overline{@}$ 0.00 hrs, Volume= 0	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 32.81' @ 12.44 hrs Surf.Area= 0.006 ac Storage= 0.003 af

Plug-Flow detention time= 51.1 min calculated for 0.008 af (100% of inflow) Center-of-Mass det. time= 50.1 min (795.8 - 745.7)

Volume	Invert	Avail.Storage	Storage Description
#1	31.80'	0.004 af	8.00'W x 35.00'L x 1.71'H Prismatoid 0.011 af Overall x 40.0% Voids

Prepared by Jones and Beach Engineers, Inc.

Type III 24-hr 10 Yr 24 Hr(+15%) Rainfall=5.61" Printed 5/10/2022 HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC Page 30

Device	Routing	Invert	Outlet Devices
#1	Discarded	31.80'	0.300 in/hr Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 31.72' Phase-In= 0.01'
#2	Primary	33.50'	86.0' long x 1.0' breadth Broad-Crested Rectangular Weir
	•		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31
			3.30 3.31 3.32

Discarded OutFlow Max=0.03 cfs @ 12.44 hrs HW=32.81' (Free Discharge) -1=Exfiltration (Controls 0.03 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=31.80' TW=28.00' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 17P: Deep Sump CB #4

Inflow Area =	0.131 ac,100.00% Impervious, Inflow Depth > 5.37" for 10 Yr 24 Hr(+15%) event
Inflow =	0.70 cfs @ 12.09 hrs, Volume= 0.059 af
Outflow =	0.70 cfs @ 12.09 hrs, Volume= 0.059 af, Atten= 0%, Lag= 0.0 min
Primary =	0.70 cfs @ 12.09 hrs, Volume= 0.059 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 30.09' @ 12.09 hrs Flood Elev= 33.10'

Device Routing Invert Outlet Devices Primary 29.60' 12.0" Round Culvert #1 L= 67.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 29.60' / 29.20' S= 0.0060 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.69 cfs @ 12.09 hrs HW=30.08' TW=29.52' (Dynamic Tailwater) 1=Culvert (Barrel Controls 0.69 cfs @ 2.66 fps)

Summary for Pond 18P: Deep Sump CB #5

Inflow Area =	0.064 ac,100.00% Impervious, Inflow De	epth > 5.37" for 10 Yr 24 Hr(+15%) event
Inflow =	0.35 cfs @ 12.09 hrs, Volume=	0.029 af
Outflow =	0.35 cfs @ 12.09 hrs, Volume=	0.029 af, Atten= 0%, Lag= 0.0 min
Primary =	0.35 cfs @ 12.09 hrs, Volume=	0.029 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 29.64' @ 12.09 hrs Flood Elev= 34.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	29.25'	12.0" Round Culvert
	_		L= 3.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 29.25' / 29.20' S= 0.0167 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.34 cfs @ 12.09 hrs HW=29.63' TW=29.52' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.34 cfs @ 1.84 fps)

Summary for Pond 19P: Deep Sump CB #3

Inflow Area =	0.103 ac,100.00% Impervious, Inflow Depth > 5.37" for 10 Yr 24 Hr(+15%) event
Inflow =	0.55 cfs @ 12.09 hrs, Volume= 0.046 af
Outflow =	0.55 cfs @ 12.09 hrs, Volume= 0.046 af, Atten= 0%, Lag= 0.0 min
Primary =	0.55 cfs @ 12.09 hrs, Volume= 0.046 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 30.31' @ 12.09 hrs Flood Elev= 33.10'

Device	Routing	Invert	Outlet Devices
#1	Primary		12.0" Round Culvert L= 40.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 29.80' / 29.60' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.54 cfs @ 12.09 hrs HW=30.30' TW=30.08' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.54 cfs @ 1.99 fps)

Summary for Pond 20P: Contech Jellyfish

Inflow Area = Inflow = Outflow = Primary =	0.196 ac,100.00% Impervious, Inflow Depth > 12.64" for 10 Yr 24 Hr(+15%) event 1.05 cfs @ 12.09 hrs, Volume= 0.206 af 1.05 cfs @ 12.09 hrs, Volume= 0.206 af, Atten= 0%, Lag= 0.0 min 1.05 cfs @ 12.09 hrs, Volume= 0.206 af
Frinary -	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 29.53' @ 12.09 hrs Flood Elev= 33.60'

Device	Routing	Invert	Outlet Devices
#1	Primary		15.0" Round Culvert L= 42.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 28.95' / 28.70' S= 0.0060 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.02 cfs @ 12.09 hrs HW=29.52' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 1.02 cfs @ 2.76 fps)

Summary for Pond 21P: Wetland Ponding Area

Page 32

Prepared by Jones and Beach Engineers, Inc. HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC

Inflow Area =	1.527 ac, 52.60% Impervious, Inflow [Depth > 1.57" for 10 Yr 24 Hr(+15%) event
Inflow =	1.19 cfs @ 12.11 hrs, Volume=	0.200 af
Outflow =	0.44 cfs @ 13.61 hrs, Volume=	0.119 af, Atten= 63%, Lag= 90.1 min
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af
Tertiary =	0.44 cfs @ 13.61 hrs, Volume=	0.119 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 30.65' @ 13.61 hrs Surf.Area= 2,746 sf Storage= 4,209 cf

Plug-Flow detention time= 216.1 min calculated for 0.119 af (59% of inflow) Center-of-Mass det. time= 112.2 min (951.6 - 839.4)

Volume	Invert	Avail.Sto	orage	Storage Description		
#1	28.00'	7,2	42 cf	Custom Stage Data	(Irregular)Listed t	below (Recalc)
Elevatio	on Si	urf.Area F	Perim.	Inc.Store	Cum.Store	Wet.Area
(fee		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
28.0	00	619	194.0	0	0	619
29.0	00	1,245	250.0	914	914	2,610
30.0	00	2,174	307.0	1,688	2,602	5,152
31.0	00	3,074	298.0	2,611	5,213	5,680
31.5	50	4,916	435.0	1,980	7,193	13,674
31.5	51	4,916	435.0	49	7,242	13,678
Device	Routing	Invert	Outle	et Devices		
#1	Secondary	31.50'	70.0	long x 10.0' breadth	Broad-Crested	Rectangular Weir
				d (feet) 0.20 0.40 0.6		
				f. (English) 2.49 2.56		
#2	Primary	31.30'		long x 4.0' breadth		
						0 1.40 1.60 1.80 2.00
				3.00 3.50 4.00 4.50		
				f. (English) 2.38 2.54		2.67 2.65 2.66 2.66
	—	~~~~~		2.72 2.73 2.76 2.79	2.88 3.07 3.32	
#3	Tertiary	30.30'		" Round Culvert		
				4.0' CPP, square edg		
				/ Outlet Invert= 30.30'		
			n= 0	.013 Corrugated PE, s	smooth interior, F	low Area= 1.23 sf
Primary	Primary OutFlow Max=0.00 cfs @ 0.00 hrs $HW=28.00'$ TW=0.00' (Dynamic Tailwater)					

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=28.00' TW=0.00' (Dynamic Tailwater) —2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=28.00' TW=0.00' (Dynamic Tailwater) —1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Tertiary OutFlow Max=0.44 cfs @ 13.61 hrs HW=30.65' TW=29.34' (Dynamic Tailwater) -3=Culvert (Barrel Controls 0.44 cfs @ 2.30 fps)

Prepared by Jones and Beach Engineers, Inc.

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1S: Subcatchment 1S	Runoff Area=13,938 sf 18.32% Impervious Runoff Depth>3.40" Flow Length=48' Tc=6.6 min CN=67 Runoff=1.23 cfs 0.091 af
Subcatchment2S: Subcatchment2S	Runoff Area=14,773 sf 41.02% Impervious Runoff Depth>5.59" Flow Length=126' Tc=12.0 min CN=87 Runoff=1.75 cfs 0.158 af
Subcatchment3S: Subcatchment3S	Runoff Area=8,436 sf 21.48% Impervious Runoff Depth>3.61" Tc=6.0 min CN=69 Runoff=0.80 cfs 0.058 af
Subcatchment4S: Subcatchment4S	Runoff Area=5,429 sf 56.24% Impervious Runoff Depth>4.91" Flow Length=87' Tc=13.2 min CN=81 Runoff=0.56 cfs 0.051 af
Subcatchment5S: Subcatchment5S	Runoff Area=6,946 sf 73.74% Impervious Runoff Depth>5.71" Tc=6.0 min CN=88 Runoff=1.00 cfs 0.076 af
Subcatchment6S: Subcatchment6S	Runoff Area=10,412 sf 62.71% Impervious Runoff Depth>5.94" Flow Length=60' Tc=6.0 min CN=90 Runoff=1.53 cfs 0.118 af
Subcatchment7S: Subcatchment7S	Runoff Area=9,749 sf 83.39% Impervious Runoff Depth>6.29" Flow Length=135' Tc=6.0 min CN=93 Runoff=1.48 cfs 0.117 af
Subcatchment8S: Subcatchment8S	Runoff Area=13,276 sf 70.01% Impervious Runoff Depth>5.93" Flow Length=86' Tc=11.2 min CN=90 Runoff=1.68 cfs 0.151 af
Subcatchment9S: Subcatchment15S Flow Length=67	Runoff Area=3,072 sf 26.66% Impervious Runoff Depth>4.47" ' Slope=0.0160 '/' Tc=7.2 min CN=77 Runoff=0.35 cfs 0.026 af
Subcatchment 10S: Subcatchment 16S Flow Length=83'	Runoff Area=3,155 sf 0.00% Impervious Runoff Depth>2.88" Slope=0.0060 '/' Tc=12.7 min CN=62 Runoff=0.19 cfs 0.017 af
Subcatchment11S: Yard Drain #3 Flow Length=60	Runoff Area=2,881 sf 15.97% Impervious Runoff Depth>3.40" ' Slope=0.0150 '/' Tc=6.8 min CN=67 Runoff=0.25 cfs 0.019 af
Subcatchment 12S: Subcatchment 18S Flow Length=37	Runoff Area=1,341 sf 25.58% Impervious Runoff Depth>5.14" ' Slope=0.0190 '/' Tc=6.0 min CN=83 Runoff=0.18 cfs 0.013 af
Subcatchment 13S: Back of Units 1 and 2	Runoff Area=918 sf 100.00% Impervious Runoff Depth>6.88" Tc=6.0 min CN=98 Runoff=0.14 cfs 0.012 af
Subcatchment 14S: Back of Unit 3	Runoff Area=310 sf 100.00% Impervious Runoff Depth>6.88" Tc=6.0 min CN=98 Runoff=0.05 cfs 0.004 af
Subcatchment15S: East Side of Unit 4	Runoff Area=502 sf 100.00% Impervious Runoff Depth>6.88" Tc=6.0 min CN=98 Runoff=0.08 cfs 0.007 af
Subcatchment 16S: Subcatchment 16S	Runoff Area=1,247 sf 100.00% Impervious Runoff Depth>6.88" Tc=6.0 min CN=98 Runoff=0.20 cfs 0.016 af

21047-PROPOSED Prepared by Jones and Bear	h Engineers, Inc.	-	<i>Hr</i> (+15%) <i>Rainfall</i> =7.12" Printed 5/10/2022
HydroCAD® 10.10-4a s/n 10589	© 2020 HydroCAD Softwa	re Solutions LLC	Page 34
Subcatchment 17S: Subcatch	ment17S Runoff Are		pervious Runoff Depth>6.88" 98 Runoff=0.44 cfs 0.037 af
Subcatchment18S: Subcatch	ment 18S Runoff Are		pervious Runoff Depth>6.88" 98 Runoff=0.70 cfs 0.059 af
Subcatchment 19S: Subcatch			pervious Runoff Depth>3.08" 64 Runoff=1.40 cfs 0.139 af
Reach 1R: Swale			fps Inflow=1.75 cfs 0.158 af fs Outflow=1.68 cfs 0.158 af
Reach AP1: Wooded Depress	ion		Inflow=1.40 cfs 0.139 af Outflow=1.40 cfs 0.139 af
Reach AP2: Shoulder of Road	I		Inflow=1.68 cfs 0.158 af Outflow=1.68 cfs 0.158 af
Reach AP3: Detention Pond			Inflow=0.80 cfs 0.058 af Outflow=0.80 cfs 0.058 af
Reach AP4: Rear of Site			Inflow=0.56 cfs 0.051 af Outflow=0.56 cfs 0.051 af
Reach AP5: Across Street			Inflow=1.50 cfs 0.343 af Outflow=1.50 cfs 0.343 af
Pond 1P: Bioretention #1 Prin			8 cf Inflow=1.00 cfs 0.076 af af Outflow=0.93 cfs 0.073 af
Pond 2P: Bioretention #2 Prin			2 cf Inflow=1.53 cfs 0.118 af af Outflow=1.30 cfs 0.116 af
Pond 3P: Catch Basin #1	15.0" Round Culvert n=0		.58' Inflow=1.99 cfs 0.177 af '/' Outflow=1.99 cfs 0.177 af
Pond 4P: Catch Basin #2	15.0" Round Culvert n=0		.51' Inflow=3.93 cfs 0.343 af '/' Outflow=3.93 cfs 0.343 af
Pond 5P: Concrete Galley 8x1 Dis			0 af Inflow=3.93 cfs 0.343 af af Outflow=1.86 cfs 0.339 af
Pond 6P: Drain Manhole #1	12.0" Round Culvert n=0		.66' Inflow=2.22 cfs 0.190 af '/' Outflow=2.22 cfs 0.190 af
Pond 7P: Drain Manhole #2	12.0" Round Culvert n=0		.71' Inflow=1.10 cfs 0.033 af '/' Outflow=1.10 cfs 0.033 af
Pond 8P: Concrete Galley 8x1 Prim			9 af Inflow=2.22 cfs 0.223 af af Outflow=1.59 cfs 0.222 af
Pond 9P: Drain Manhole #3	12.0" Round Culvert n=0		48' Inflow=1.59 cfs 0.222 af '/' Outflow=1.59 cfs 0.222 af

"Type III 24-hr 25 Yr 24 Hr(+15%) Rainfall=7.12 Printed 5/10/2022

Page 35

Prepared by Jones and Beach Engineers, Inc. HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC

Peak Elev=31.95' Inflow=1.59 cfs 0.222 af Pond 10P: Drain Manhole #4 12.0" Round Culvert n=0.013 L=40.0' S=0.0050 '/' Outflow=1.59 cfs 0.222 af Peak Elev=36.67' Inflow=0.35 cfs 0.026 af Pond 11P: Yard Drain #1 8.0" Round Culvert n=0.013 L=40.0' S=0.0055 '/' Outflow=0.35 cfs 0.026 af Peak Elev=39.05' Storage=4 cf Inflow=0.19 cfs 0.017 af Pond 12P: Yard Drain #2 Primary=0.19 cfs 0.017 af Secondary=0.00 cfs 0.000 af Outflow=0.19 cfs 0.017 af Peak Elev=36.62' Inflow=2.39 cfs 0.213 af Pond 13P: Yard Drain #3 15.0" Round Culvert n=0.013 L=48.0' S=0.0052 '/' Outflow=2.39 cfs 0.213 af Peak Elev=36.76' Inflow=0.18 cfs 0.013 af Pond 14P: Yard Drain #4 8.0" Round Culvert n=0.013 L=40.0' S=0.0100 '/' Outflow=0.18 cfs 0.013 af Peak Elev=30.87' Storage=0.005 af Inflow=0.14 cfs 0.012 af Pond 15P: Subsurface Stone Infiltration Discarded=0.02 cfs 0.012 af Primary=0.00 cfs 0.000 af Outflow=0.02 cfs 0.012 af Peak Elev=33.11' Storage=0.003 af Inflow=0.13 cfs 0.011 af Pond 16P: Subsurface Stone Infiltration Discarded=0.03 cfs 0.011 af Primary=0.00 cfs 0.000 af Outflow=0.03 cfs 0.011 af Peak Elev=30.16' Inflow=0.90 cfs 0.075 af Pond 17P: Deep Sump CB #4 12.0" Round Culvert n=0.013 L=67.0' S=0.0060 '/' Outflow=0.90 cfs 0.075 af Peak Elev=29.72' Inflow=0.44 cfs 0.037 af Pond 18P: Deep Sump CB #5 12.0" Round Culvert n=0.013 L=3.0' S=0.0167 '/' Outflow=0.44 cfs 0.037 af Peak Elev=30.39' Inflow=0.70 cfs 0.059 af Pond 19P: Deep Sump CB #3 12.0" Round Culvert n=0.013 L=40.0' S=0.0050 '/' Outflow=0.70 cfs 0.059 af Peak Elev=29.66' Inflow=1.50 cfs 0.343 af Pond 20P: Contech Jellyfish 15.0" Round Culvert n=0.013 L=42.0' S=0.0060 '/' Outflow=1.50 cfs 0.343 af Peak Elev=30.96' Storage=5,086 cf Inflow=2.00 cfs 0.312 af Pond 21P: Wetland Ponding Area Primary=0.00 cfs 0.000 af Secondary=0.00 cfs 0.000 af Tertiary=1.35 cfs 0.230 af Outflow=1.35 cfs 0.230 af Total Runoff Area = 2.921 ac Runoff Volume = 1.169 af Average Runoff Depth = 4.80" 53.89% Pervious = 1.574 ac 46.11% Impervious = 1.347 ac

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1S: Subcatchment 1S	Runoff Area=13,938 sf 18.32% Impervious Runoff Depth>4.56" Flow Length=48' Tc=6.6 min CN=67 Runoff=1.65 cfs 0.122 af
Subcatchment2S: Subcatchment2S	Runoff Area=14,773 sf 41.02% Impervious Runoff Depth>6.95" Flow Length=126' Tc=12.0 min CN=87 Runoff=2.16 cfs 0.197 af
Subcatchment3S: Subcatchment3S	Runoff Area=8,436 sf 21.48% Impervious Runoff Depth>4.80" Tc=6.0 min CN=69 Runoff=1.07 cfs 0.077 af
Subcatchment4S: Subcatchment4S	Runoff Area=5,429 sf 56.24% Impervious Runoff Depth>6.23" Flow Length=87' Tc=13.2 min CN=81 Runoff=0.70 cfs 0.065 af
Subcatchment5S: Subcatchment5S	Runoff Area=6,946 sf 73.74% Impervious Runoff Depth>7.08" Tc=6.0 min CN=88 Runoff=1.22 cfs 0.094 af
Subcatchment6S: Subcatchment6S	Runoff Area=10,412 sf 62.71% Impervious Runoff Depth>7.32" Flow Length=60' Tc=6.0 min CN=90 Runoff=1.87 cfs 0.146 af
Subcatchment7S: Subcatchment7S	Runoff Area=9,749 sf 83.39% Impervious Runoff Depth>7.68" Flow Length=135' Tc=6.0 min CN=93 Runoff=1.79 cfs 0.143 af
Subcatchment8S: Subcatchment8S	Runoff Area=13,276 sf 70.01% Impervious Runoff Depth>7.32" Flow Length=86' Tc=11.2 min CN=90 Runoff=2.05 cfs 0.186 af
Subcatchment9S: Subcatchment15S Flow Length=67	Runoff Area=3,072 sf 26.66% Impervious Runoff Depth>5.76" "Slope=0.0160 '/' Tc=7.2 min CN=77 Runoff=0.45 cfs 0.034 af
Subcatchment 10S: Subcatchment 16S Flow Length=83'	Runoff Area=3,155 sf 0.00% Impervious Runoff Depth>3.96" Slope=0.0060 '/' Tc=12.7 min CN=62 Runoff=0.27 cfs 0.024 af
Subcatchment11S: Yard Drain #3 Flow Length=60	Runoff Area=2,881 sf 15.97% Impervious Runoff Depth>4.56" Slope=0.0150 '/' Tc=6.8 min CN=67 Runoff=0.34 cfs 0.025 af
Subcatchment 12S: Subcatchment 18S Flow Length=37	Runoff Area=1,341 sf 25.58% Impervious Runoff Depth>6.48" "Slope=0.0190 '/' Tc=6.0 min CN=83 Runoff=0.22 cfs 0.017 af
Subcatchment 13S: Back of Units 1 and 2	Runoff Area=918 sf 100.00% Impervious Runoff Depth>8.28" Tc=6.0 min CN=98 Runoff=0.17 cfs 0.015 af
Subcatchment 14S: Back of Unit 3	Runoff Area=310 sf 100.00% Impervious Runoff Depth>8.28" Tc=6.0 min CN=98 Runoff=0.06 cfs 0.005 af
Subcatchment 15S: East Side of Unit 4	Runoff Area=502 sf 100.00% Impervious Runoff Depth>8.28" Tc=6.0 min CN=98 Runoff=0.09 cfs 0.008 af
Subcatchment 16S: Subcatchment 16S	Runoff Area=1,247 sf 100.00% Impervious Runoff Depth>8.28" Tc=6.0 min CN=98 Runoff=0.23 cfs 0.020 af

21047-PROPOSED	Type III 24-hr 50 Yr 24 Hr(+15%) Rainfall=8.53"
Prepared by Jones and Beach Engine	ers, Inc. Printed 5/10/2022
HydroCAD® 10.10-4a s/n 10589 © 2020 Hy	droCAD Software Solutions LLC Page 37
Subcatchment 17S: Subcatchment 17S	Runoff Area=2,806 sf 100.00% Impervious Runoff Depth>8.28" Tc=6.0 min CN=98 Runoff=0.53 cfs 0.044 af
Subcatchment 18S: Subcatchment 18S	Runoff Area=4,475 sf 100.00% Impervious Runoff Depth>8.28" Tc=6.0 min CN=98 Runoff=0.84 cfs 0.071 af
Subcatchment 19S: Subcatchment 19S	Runoff Area=23,588 sf 18.01% Impervious Runoff Depth>4.19" Flow Length=137' Tc=16.7 min CN=64 Runoff=1.92 cfs 0.189 af
Reach 1R: Swale n=0.150	Avg. Flow Depth=0.91' Max Vel=0.83 fps Inflow=2.16 cfs 0.197 af L=140.0' S=0.0214 '/' Capacity=2.65 cfs Outflow=2.07 cfs 0.196 af
Reach AP1: Wooded Depression	Inflow=1.92 cfs 0.189 af Outflow=1.92 cfs 0.189 af
Reach AP2: Shoulder of Road	Inflow=2.07 cfs 0.196 af Outflow=2.07 cfs 0.196 af
Reach AP3: Detention Pond	Inflow=1.07 cfs 0.077 af Outflow=1.07 cfs 0.077 af
Reach AP4: Rear of Site	Inflow=0.70 cfs 0.065 af Outflow=0.70 cfs 0.065 af
Reach AP5: Across Street	Inflow=2.40 cfs 0.478 af Outflow=2.40 cfs 0.478 af
Pond 1P: Bioretention #1	Peak Elev=36.75' Storage=289 cf Inflow=1.22 cfs 0.094 af
Primary=1.06 c	fs 0.092 af Secondary=0.00 cfs 0.000 af Outflow=1.06 cfs 0.092 af
Pond 2P: Bioretention #2	Peak Elev=37.27' Storage=561 cf Inflow=1.87 cfs 0.146 af
Primary=1.29 c	fs 0.144 af Secondary=0.00 cfs 0.000 af Outflow=1.29 cfs 0.144 af
Pond 3P: Catch Basin #1	Peak Elev=37.51' Inflow=2.44 cfs 0.220 af
15.0" Ro	ound Culvert n=0.013 L=47.0' S=0.0053 '/' Outflow=2.44 cfs 0.220 af
Pond 4P: Catch Basin #2	Peak Elev=37.27' Inflow=4.86 cfs 0.429 af
15.0" Ro	ound Culvert n=0.013 L=36.0' S=0.0056 '/' Outflow=4.86 cfs 0.429 af
Pond 5P: Concrete Galley 8x14 INFILTE	RATIONPeak Elev=36.86' Storage=0.125 af Inflow=4.86 cfs 0.429 af
Discarded=0.8	33 cfs 0.353 af Primary=1.90 cfs 0.070 af Outflow=2.70 cfs 0.423 af
Pond 6P: Drain Manhole#1	Peak Elev=36.79' Inflow=2.35 cfs 0.236 af
12.0" Ro	ound Culvert n=0.013 L=48.0' S=0.0056 '/' Outflow=2.35 cfs 0.236 af
Pond 7P: Drain Manhole #2	Peak Elev=36.75' Inflow=1.90 cfs 0.070 af
12.0" Ro	ound Culvert n=0.013 L=40.0' S=0.0050 '/' Outflow=1.90 cfs 0.070 af
Pond 8P: Concrete Galley 8x14 STORA	GE Peak Elev=36.26' Storage=0.073 af Inflow=3.62 cfs 0.305 af
Primary=2.10 c	cfs 0.304 af Secondary=0.00 cfs 0.000 af Outflow=2.10 cfs 0.304 af
Pond 9P: Drain Manhole #3	Peak Elev=32.75' Inflow=2.10 cfs 0.304 af
12.0" Ro	ound Culvert n=0.013 L=85.0' S=0.0059 '/' Outflow=2.10 cfs 0.304 af

Type III 24-hr 50 Yr 24 Hr(+15%) Rainfall=8.53" Drintod 5/10/2022

Type III 24-III 50 TI 24 HI(+15%) Raimaii=6.53
Printed 5/10/2022
ftware Solutions LLC Page 38
Twale Solutions LLO Fage 30
Peak Elev=32.13' Inflow=2.10 cfs 0.304 af
n=0.013 L=40.0' S=0.0050 '/' Outflow=2.10 cfs 0.304 af
Peak Elev=37.85' Inflow=0.45 cfs 0.034 af
n=0.013 L=40.0' S=0.0055 '/' Outflow=0.45 cfs 0.034 af
Peak Elev=39.07' Storage=6 cf Inflow=0.27 cfs 0.024 af
Secondary=0.00 cfs 0.000 af Outflow=0.27 cfs 0.024 af
Deels Elever 27 601 Jufferren 2.00 efe. 0.000 ef
Peak Elev=37.69' Inflow=3.00 cfs 0.269 af
n=0.013 L=48.0' S=0.0052 '/' Outflow=3.00 cfs 0.269 af
Peak Elev=37.28' Inflow=0.22 cfs 0.017 af
n=0.013 L=40.0' S=0.0100 '/' Outflow=0.22 cfs 0.017 af
ak Elev=31.61' Storage=0.006 af Inflow=0.17 cfs 0.015 af
af Primary=0.00 cfs 0.000 af Outflow=0.03 cfs 0.014 af
ak Elev=33.39' Storage=0.004 af Inflow=0.15 cfs 0.013 af
af Primary=0.00 cfs 0.000 af Outflow=0.04 cfs 0.013 af
Peak Elev=30.24' Inflow=1.07 cfs 0.091 af
n=0.013 L=67.0' S=0.0060 '/' Outflow=1.07 cfs 0.091 af
Peak Elev=29.90' Inflow=0.53 cfs 0.044 af
rt n=0.013 L=3.0' S=0.0167 '/' Outflow=0.53 cfs 0.044 af
Peak Elev=30.47' Inflow=0.84 cfs 0.071 af
n=0.013 L=40.0' S=0.0050 '/' Outflow=0.84 cfs 0.071 af

Pond 20P: Contech Jellyfish Peak Elev=29.89' Inflow=2.40 cfs 0.478 af 15.0" Round Culvert n=0.013 L=42.0' S=0.0060 '/' Outflow=2.40 cfs 0.478 af

Pond 21P: Wetland Ponding Area Peak Elev=31.18' Storage=5,810 cf Inflow=2.73 cfs 0.426 af Primary=0.00 cfs 0.000 af Secondary=0.00 cfs 0.000 af Tertiary=2.20 cfs 0.343 af Outflow=2.20 cfs 0.343 af

> Total Runoff Area = 2.921 ac Runoff Volume = 1.481 af Average Runoff Depth = 6.08" 53.89% Pervious = 1.574 ac 46.11% Impervious = 1.347 ac

Summary for Subcatchment 1S: Subcatchment 1S

Runoff	=	1.65 cfs @	12.10 hrs,	Volume=	0.122 af, Depth> 4.56"
--------	---	------------	------------	---------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Yr 24 Hr(+15%) Rainfall=8.53"

A	rea (sf)	CN [Description				
	586	98 F	Paved road	s w/curbs &	k sewers, HSG B		
	1,864	55 \	Noods, Go	od, HSG B			
	3,396	61 >	>75% Gras	s cover, Go	ood, HSG B		
	611	80 >	>75% Gras	s cover, Go	ood, HSG D		
	541		Noods, Go				
	3,408	55 \	Noods, Go	od, HSG B			
	1,564	61 >	>75% Gras	s cover, Go	ood, HSG B		
	1,600	98 I	Roofs, HSG	B			
	368	98 I	Roofs, HSG	D			
	13,938	67 \	Neighted A	verage			
	11,384		31.68% Per	-			
	2,554		18.32% Imp	pervious Ar	ea		
	_,		I				
Tc	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
5.1	32	0.0625	0.10		Sheet Flow,		
••••		••••			Woods: Light underbrush	n= 0.400	P2= 3.70"
1.5	16	0.3300	0.18		Sheet Flow,		
					Woods: Light underbrush	n= 0.400	P2= 3.70"
6.6	48	Total					

Summary for Subcatchment 2S: Subcatchment 2S

Runoff = 2.16 cfs @ 12.16 hrs, Volume= 0.197 af, Depth> 6.95"

	Area (sf)	CN	Description		
	4,812	80	>75% Grass cover, Good, HSG D		
	319	98	Paved roads w/curbs & sewers, HSG D		
	2,823	98	Roofs, HSG D		
*	186	98	Ledge Outcrop, HSG D		
	3,901	80	>75% Grass cover, Good, HSG D		
	2,732				
	14,773	87	Weighted Average		
	8,713		58.98% Pervious Area		
	6,060		41.02% Impervious Area		

Type III 24-hr 50 Yr 24 Hr(+15%) Rainfall=8.53"

Prepared by Jones and Beach Engineers, Inc. HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC

Printed	5/10/2022
	Page 40

	Length		Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Y Contraction of the second
2.2	38	0.1000	0.29		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.70"
0.7	17	0.3300	0.39		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.70"
9.1	71	0.0100	0.13		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.70"
12.0	100	Total			

12.0 126 Total

Summary for Subcatchment 3S: Subcatchment 3S

Runoff = 1.07 cfs @ 12.09 hrs, Volume= 0.077 af, Depth> 4.80"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Yr 24 Hr(+15%) Rainfall=8.53"

A	rea (sf)	CN	Description					
	6,481	61	>75% Gras	s cover, Go	ood, HSG B			
	143	55	Woods, Go	od, HSG B				
	1,812	98	Roofs, HSC	B				
	8,436	69	Neighted A	Veighted Average				
	6,624		78.52% Pervious Area					
	1,812	:	21. 48% Im p	pervious Ar	ea			
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description			
6.0					Direct Entry,			

Summary for Subcatchment 4S: Subcatchment 4S

Runoff = 0.70 cfs @ 12.18 hrs, Volume= 0.065 af, Depth> 6.23"

Area (sf)	CN	Description
2,343	98	Ledge Outcrop, HSG D
73	77	Woods, Good, HSG D
917	55	Woods, Good, HSG B
1,386	61	>75% Grass cover, Good, HSG B
710	98	Roofs, HSG B
5,429	81	Weighted Average
2,376		43.76% Pervious Area
3,053		56.24% Impervious Area
	2,343 73 917 1,386 710 5,429 2,376	2,343 98 73 77 917 55 1,386 61 710 98 5,429 81 2,376

Type III 24-hr 50 Yr 24 Hr(+15%) Rainfall=8.53" Printed 5/10/2022

Page 41

Prepared by Jones and Beach Engineers, Inc. HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	0.2	38	0.2100	3.12		Sheet Flow, Smooth surfaces n= 0.011 P2= 3.70"
	0.8	7	0.2860	0.14		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.70"
	12.2	42	0.0120	0.06		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.70"
-	13.2	87	Total			

Summary for Subcatchment 5S: Subcatchment 5S

Runoff = 1.22 cfs @ 12.09 hrs, Volume= 0.094 af, Depth> 7.08"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Yr 24 Hr(+15%) Rainfall=8.53"

rea (sf)	CN [Description					
1,824	61 >	75% Grass	s cover, Go	ood, HSG B			
14							
3,268				В			
1,840	98 F	<u>Roofs, HSG</u>	6 B		-		
6,946	88 \	Weighted Average					
1,824		26.26% Pervious Area					
5,122	7	'3.74% lmp	pervious Ar	rea			
	0		0	Description			
		(1)					
(feet)	(π/π)	(ft/sec)	(CIS)		-0		
				Direct Entry,			
	1,824 14 3,268 1,840 6,946 1,824	1,824 61 > 14 98 F 3,268 98 F 1,840 98 F 6,946 88 V 1,824 2 5,122 7 Length Slope	1,824 61 >75% Grass 14 98 Paved parki 3,268 98 Paved parki 1,840 98 Roofs, HSC 6,946 88 Weighted A 1,824 26.26% Per 5,122 73.74% Imp Length Slope Velocity	1,82461>75% Grass cover, G1498Paved parking, HSG3,26898Paved parking, HSG1,84098Roofs, HSG B6,94688Weighted Average1,82426.26% Pervious Area5,12273.74% Impervious ALengthSlopeVelocityCapacity	1,82461>75% Grass cover, Good, HSG B1498Paved parking, HSG D3,26898Paved parking, HSG B1,84098Roofs, HSG B6,94688Weighted Average1,82426.26% Pervious Area5,12273.74% Impervious AreaLengthSlopeVelocityCapacityDescription		

Summary for Subcatchment 6S: Subcatchment 6S

Runoff = 1.87 cfs @ 12.09 hrs, Volume= 0.146 af, Depth> 7.32"

Area (sf)	CN	Description			
687	61	>75% Grass cover, Good, HSG B			
1,334	98	Paved parking, HSG B			
2,813	98	Paved parking, HSG D			
3,196	80	>75% Grass cover, Good, HSG D			
2,382	98	Roofs, HSG D			
10,412	90	Weighted Average			
3,883		37.29% Pervious Area			
6,529		62.71% Impervious Area			

21047-PROPOSED Type III 24-hr 50 Yr 24 Hr(+15%) Rainfall=8.53" Prepared by Jones and Beach Engineers, Inc. Printed 5/10/2022 HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC

Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
1.7	20	0.0500	0.19		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.70"
0.7	40	0.0100	0.93		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 3.70"
2.4	60	Total, I	ncreased t	o minimum	Tc = 6.0 min

Page 42

60 Total, Increased to minimum Tc = 6.0 min

Summary for Subcatchment 7S: Subcatchment 7S

Runoff = 1.79 cfs @ 12.09 hrs, Volume= 0.143 af, Depth> 7.68"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Yr 24 Hr(+15%) Rainfall=8.53"

A	vrea (sf)	CN E	Description						
	1,935	98 F	B Roofs, HSG B						
	2,857	98 F	Paved parking, HSG B						
	1,047	61 >	>75% Grass cover, Good, HSG B						
	857	98 F	Roofs, HSG D						
	2,481		Paved parking, HSG D						
	572	80 >	75% Gras	s cover, Go	bod, HSG D				
	9,749	93 V	Veighted A	verage					
	1,619	1	6.61% Per	vious Area	l				
	8,130	8	83.39% Impervious Area						
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
4.6	40	0.0175	0.14		Sheet Flow,				
					Grass: Short n= 0.150 P2= 3.70"				
1.0	60	0.0100	1.01		Sheet Flow,				
		0.0100	1.01		oncert iow,				
			1.01		Smooth surfaces n= 0.011 P2= 3.70"				
0.3		0.0100	2.03		Smooth surfaces n= 0.011 P2= 3.70" Shallow Concentrated Flow,				
					Smooth surfaces n= 0.011 P2= 3.70"				

Summary for Subcatchment 8S: Subcatchment 8S

Runoff 2.05 cfs @ 12.15 hrs, Volume= = 0.186 af, Depth> 7.32"

Type III 24-hr 50 Yr 24 Hr(+15%) Rainfall=8.53" Printed 5/10/2022

Page 43

Prepared by Jones and Beach Engineers, Inc. HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC

A	rea (sf)	CN E	Description						
	1,788	61 >75% Grass cover, Good, HSG B							
	4,412	98 F							
	1,219	98 F	Roofs, HSG	βB					
	2,194	80 >							
*	1,608	98 L	edge Outc	rop, HSG [C				
	39	98 F	Paved park	ing, HSG D)				
	2,016	<u>98 F</u>	Roofs, HSC	D					
	13,276	90 V	Veighted A	verage					
	3,982	2	9.99% Per	vious Area	l				
	9,294 70.01% Impervious Area								
					-				
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
3.3	40	0.0400	0.20		Sheet Flow,				
					Grass: Short	n= 0.150	P2= 3.70"		
2.5	20	0.0200	0.13		Sheet Flow,				
					Grass: Short	n= 0.150	P2= 3.70"		
5.4	26	0.0050	0.08		Sheet Flow,	0 4 5 0	DO 0 701		
					Grass: Short	n= 0.150	P2= 3.70"		
11.2	86	Total							

Summary for Subcatchment 9S: Subcatchment 15S

Runoff = 0.45 cfs @ 12.10 hrs, Volume= 0.034 af, Depth> 5.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Yr 24 Hr(+15%) Rainfall=8.53"

	A	rea (sf)	CN	Description					
1		1,238	61	>75% Grass cover, Good, HSG B					
		1,015	80	>75% Gras	s cover, Go	ood, HSG D			
		72	98	Roofs, HSC	B				
		747	98	Roofs, HSC	5 D				
		3,072		Weighted A					
		2,253		73.34% Per					
		819		26.66% Imp	bervious Al	ea			
	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description			
	7.2	67	0.0160) 0.15		Sheet Flow, Grass: Short	n= 0.150	P2= 3.70"	

Summary for Subcatchment 10S: Subcatchment 16S

Runoff = 0.27 cfs @ 12.18 hrs, Volume= 0.024 af, Depth> 3.96"

 Type III 24-hr
 50 Yr 24 Hr(+15%) Rainfall=8.53"

 Printed
 5/10/2022

 ftware Solutions LLC
 Page 44

Prepared by Jones and Beach Engineers, Inc. HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC

A	rea (sf)	CN Description							
	2,918	61 >75% Grass cover, Good, HSG B							
	237 80 >75% Grass cover, Good, HSG D								
	3,155	62 Weighted Average							
	3,155	5 100.00% Pervious Area							
Ta	المرب مرال								
Tc (min)	Length (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)							
12.7	83								
12.7	03	0.0060 0.11 Sheet Flow, Grass: Short n= 0.150 P2= 3.70"							
		Grass. Short II- 0.150 1 2- 5.10							
Summary for Subcatchment 11S: Yard Drain #3									
		Cummary for Cubcatonment 110. Tara Brain #0							
Runoff	=	0.34 cfs @ 12.10 hrs, Volume= 0.025 af, Depth> 4.56"							
Dunoffh		20 method III I-SCC Mainbled CNI Time Creans 0.00.04.00 km dts 0.05 km							
		R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Yr 24 Hr(+15%) Rainfall=8.53"							
туре пл	24-111 30	11 24 (1(15%) (Kaiman=0.55							
A	rea (sf)	CN Description							
	2,421	61 >75% Grass cover, Good, HSG B							
-	460	98 Roofs, HSG B							
	2,881	67 Weighted Average							
	2,421	84.03% Pervious Area							
	460	15.97% Impervious Area							
-									
	Length	Slope Velocity Capacity Description							
<u>(min)</u>	(feet)	(ft/ft) (ft/sec) (cfs)							
6.8	60	0.0150 0.15 Sheet Flow,							
		Grass: Short n= 0.150 P2= 3.70"							
		Summany for Subactobrant 12St Subactobrant 19S							
		Summary for Subcatchment 12S: Subcatchment 18S							
Runoff	_	0.22 cfc = 0.12.00 hrc Volume $0.017 of$ Dopths 6.49"							

Runoff = 0.22 cfs @ 12.09 hrs, Volume= 0.017 af, Depth> 6.48"

a (sf)	CN	Description
94	61	>75% Grass cover, Good, HSG B
904	80	>75% Grass cover, Good, HSG D
11	98	Roofs, HSG B
332	98	Roofs, HSG D
1,341	83	Weighted Average
998		74.42% Pervious Area
343		25.58% Impervious Area
	94 904 11 332 1,341 998	94 61 904 80 11 98 332 98 1,341 83 998

	D® 10.10-	4a s/n 10	589 © 202	gineers, In HydroCAE	O Software Solutions LLC	Page 4
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
4.2	37	0.0190	0.15		Sheet Flow, Grass: Short n= 0.150 P2= 3.70"	
4.2	37	Total, Ir	ncreased t	o minimum	$T_{c} = 6.0 \text{ min}$	
		Summ	ary for s	Subcatch	nment 13S: Back of Units 1 and 2	
Runoff	=	0.17 cfs	s @ 12.09	9 hrs, Volu	ume= 0.015 af, Depth> 8.28"	
Runoff b Fype III 2	y SCS TF 24-hr 50	≀-20 meth Yr 24 Hr(od, UH=S +15%) Ra	CS, Weigh infall=8.53'	nted-CN, Time Span= 0.00-24.00 hrs, dt= 0 "	.05 hrs
А	rea (sf)	CN D	escription			
	918		coofs, HSG			
	918	1	00.00% lm	pervious A	Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
6.0					Direct Entry,	
		Su	immary f	for Subca	atchment 14S: Back of Unit 3	
Runoff	=	0.06 cfs	s @ 12.0	9 hrs, Volu	ume= 0.005 af, Depth> 8.28"	
		2 20 moth			nted-CN, Time Span= 0.00-24.00 hrs, dt= 0 "	.05 hrs
Runoff b			(+15%) Ra			
Runoff b Type III 2		Yr 24 Hr((+15%) Ra Description			
Runoff b Type III 2	24-hr 50 rea (sf) 310	Yr 24 Hr(<u>CN D</u> 98 R	Description Roofs, HSC) D		
Runoff b Type III 2	24-hr 50 rea (sf)	Yr 24 Hr(<u>CN D</u> 98 R	Description Roofs, HSC		Area	
Runoff b Type III 2	24-hr 50 rea (sf) 310	Yr 24 Hr(<u>CN D</u> 98 R	Description Roofs, HSC 00.00% In Velocity	D pervious A Capacity		
Runoff b Type III : A Tc (min)	24-hr 50 <u>rea (sf)</u> <u>310</u> 310	Yr 24 Hr(<u>CN D</u> 98 R 1	Description Roofs, HSC 00.00% Im	D Dervious A	Description	
Runoff b Type III : A A	24-hr 50 <u>rea (sf)</u> <u>310</u> 310 Length	Yr 24 Hr(<u>CN D</u> <u>98 R</u> 1 Slope	Description Roofs, HSC 00.00% In Velocity	D pervious A Capacity		
Runoff b Type III : A Tc (min)	24-hr 50 <u>rea (sf)</u> <u>310</u> 310 Length	Yr 24 Hr(<u>CN</u> D 98 1 Slope (ft/ft)	Description Roofs, HSG 00.00% In Velocity (ft/sec)	D pervious A Capacity (cfs)	Description	

	Area (sf)	CN	Description	-
-	500	98	Roofs, HSG B	
	2	98	Roofs, HSG D	
	502	98	Weighted Average	
	502		100.00% Impervious Area	

	PROPO		Beach En	gineers, In	••	ll 24-hr t	50 Yr 24 Hr([.]	,	nfall=8.53" 5/10/2022
) Software So	lutions LLC	2	Thinted	Page 46
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	l			
6.0	(1001)	(1011)	(10300)	(013)	Direct Ent	rv.			
		Sum	mary for	Subcatc	hment 168	S: Subca	atchment 1	6S	
Runoff	=	0.23 cf	s@ 12.0	9 hrs, Volu	ime=	0.020 af,	, Depth> 8.2	28"	
				CS, Weigh infall=8.53'		e Span= 0).00-24.00 hrs	s, dt= 0.05 h	rs
Α	rea (sf)	CN D	escription						
	1,247				& sewers, HS	G B			
	1,247	1	00.00% lm	npervious A	rea				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	l			
6.0					Direct Ent	ry,			
		0		0					
		Sum	mary for	Subcate	nment 1/3	s: Subca	atchment 1	15	
Runoff	=	0.53 cf	s@ 12.0	9 hrs, Volu	ime=	0.044 af,	, Depth> 8.2	.8"	
				CS, Weigh infall=8.53"		e Span= ().00-24.00 hrs	s, dt= 0.05 h	rs
A	rea (sf)	CN E	escription						
	2,230			ing, HSG B					
	576			ing, HSG D)				
	2,806 2,806		Veighted A 00.00% Im	verage pervious A	rea				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	I			
6.0	(1001)	(1010)	(10000)	(010)	Direct Ent	ry,			
		Sum	mary for	Subcatc	hment 18	S: Subca	atchment 1	8S	
Runoff	=	0.84 cfs	s@ 12.0	9 hrs, Volu	ime=	0.071 af,	, Depth> 8.2	8"	
				CS, Weigh infall=8.53"		e Span= ().00-24.00 hrs	s, dt= 0.05 h	rs
A	rea (sf)	CN D	escription						
	4,475			ing, HSG B					
	4,475	1	00.00% In	npervious A	rea				

Prepare	PROPO d by Jon D® 10.10-	es and I	Beach Eng 589 © 202	gineers, In 0 HydroCAD	Type III 24-hr 50 Yr 24 Hr(+15%) Rainfall=8.53 nc. Printed 5/10/2022 D Software Solutions LLC Page 47
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry,
		Sum	mary for	Subcatc	chment 19S: Subcatchment 19S
Runoff		1.92 cf	s @ 12.2	4 hrs, Volu	ume= 0.189 af, Depth> 4.19"
Runoff b Type III 2	y SCS TF 24-hr 50	R-20 met Yr 24 Hr	nod, UH=S (+15%) Ra	CS, Weigh infall=8.53"	nted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs "
A	rea (sf)		Description		
	4,147 4,462			ing, HSG B	3 ood, HSG B
	4,402		Roofs, HSG		
	14,877			od, HSG B	
	23,588		Veighted A		
	19,339			vious Area	
	4,249		8.01% IM	pervious Ar	lea
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	
16.0	100	0.0350	0.10		Sheet Flow,
0.7	37	0.0300	0.87		Woods: Light underbrush n= 0.400 P2= 3.70" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
16.7	137	Total			
			S	ummary f	for Reach 1R: Swale
Inflow A Inflow Outflow	rea = = =	2.16 c	fs @ 12.1	% Impervio 6 hrs, Volu 0 hrs, Volu	
Max. Ve	locity= 0.	83 fps, N	/lin. Travel	ne Span= 0 Time= 2.8 I Time= 6.9	0.00-24.00 hrs, dt= 0.05 hrs / 3 9 min 9 min
Peak St	Peak Storage= 349 cf @ 12.20 hrs				

Average Depth at Peak Storage= 0.91', Surface Width= 5.47' Bank-Full Depth= 1.00' Flow Area= 3.0 sf, Capacity= 2.65 cfs

0.00' x 1.00' deep channel, n= 0.150 Sheet flow over Short Grass Side Slope Z-value= 3.0 '/' Top Width= 6.00' Length= 140.0' Slope= 0.0214 '/' Inlet Invert= 40.00', Outlet Invert= 37.00'

21047-PROPOSED Type III 24-hr 50 Yr 24 Hr(+15%) Rainfall=8.53" Prepared by Jones and Beach Engineers, Inc. Printed 5/10/2022 HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC Page 48

Summary for Reach AP1: Wooded Depression

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.542 ac, 18.01% Impervious, Inflow Depth > 4.19" for 5	0 Yr 24 Hr(+15%) event
Inflow =	1.92 cfs @ 12.24 hrs, Volume= 0.189 af	. ,
Outflow =	1.92 cfs @ 12.24 hrs, Volume= 0.189 af, Atten= 0%	5, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP2: Shoulder of Road

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.339 ac, 41.02% Impervious, Inflow	Depth > 6.94" for 50 Yr 24 Hr(+15%) event
Inflow =	2.07 cfs @ 12.20 hrs, Volume=	0.196 af
Outflow =	2.07 cfs @ 12.20 hrs, Volume=	0.196 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP3: Detention Pond

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	1.720 ac, 49.10% Impervious, Inflow Depth > 0.54" for 50 Yr 24 Hr(+15%) event
Inflow	=	1.07 cfs @ 12.09 hrs, Volume= 0.077 af
Outflow	=	1.07 cfs @ 12.09 hrs, Volume= 0.077 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP4: Rear of Site

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	0.125 ac, 56.24% Impervious, Inflow Depth > 6.23" for 50 Yr 24 Hr(+15%) event
Inflow	=	0.70 cfs @ 12.18 hrs, Volume= 0.065 af
Outflow	=	0.70 cfs @ 12.18 hrs, Volume= 0.065 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP5: Across Street

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	0.196 ac,100.00% Impervious, Inflow Depth > 29.31" for 50 Yr 24 Hr(+15%) event
Inflow	=	2.40 cfs @ 12.52 hrs, Volume= 0.478 af
Outflow	=	2.40 cfs @ 12.52 hrs, Volume= 0.478 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

Summary for Pond 1P: Bioretention #1

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=1)

Inflow Area =	0.159 ac, 73.74% Impervious, Inflow Depth > 7.08" for 50 Yr 24 Hr(+15%) event
Inflow =	1.22 cfs @ 12.09 hrs, Volume= 0.094 af
Outflow =	1.06 cfs @ 12.10 hrs, Volume= 0.092 af, Atten= 13%, Lag= 0.5 min
Primary =	1.06 cfs @_ 12.10 hrs, Volume= 0.092 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 36.75' @ 12.49 hrs Surf.Area= 400 sf Storage= 289 cf

Plug-Flow detention time= 28.5 min calculated for 0.092 af (97% of inflow) Center-of-Mass det. time= 13.5 min (793.2 - 779.6)

Volume	Invert	Avai	il.Storage	Storage Descri	ption	
#1	33.99'		694 cf	Custom Stage	Data (Prismatic)Lis	ted below (Recalc)
Elevatio		urf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
33.9		315	0.0	0	0	
34.0		315	40.0	1	1	
34.9	99	315	40.0	125	126	
35.0	00	315	15.0	0	126	
36.4	19	315	15.0	70	197	
36.5	50	315	100.0	3	200	
37.0	00	484	100.0	200	400	
37.5	50	668	100.0	288	688	
37.5	51	668	100.0	7	694	
Device	Routing	In	vert Ou	tlet Devices		
#1	Primary	34	.58' 8.0	" Round Culver	t	
	•				cting, no headwall,	
						.0045 '/' Cc= 0.900
			n=	0.013 Corrugated	d PE, smooth interior	r, Flow Area= 0.35 sf
#2	Device 1	34				ited to weir flow at low heads
#3	Device 1	37		0" Horiz. Orifice/		
				nited to weir flow a		
#4	Secondary	37	He	ad (feet) 0.20 0.4	eadth Broad-Creste 40 0.60 0.80 1.00 0 4.50 5.00 5.50	d Rectangular Weir 1.20 1.40 1.60 1.80 2.00

21047-PROPOSED Type III 24-hr 50 Yr 24 Hr(+15%) Rainfall=8.53" Printed 5/10/2022 Prepared by Jones and Beach Engineers, Inc. HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC Page 50

> Coef. (English) 2.38 2.54 2.69 2.68 2.67 2.67 2.65 2.66 2.66 2.68 2.72 2.73 2.76 2.79 2.88 3.07 3.32

Primary OutFlow Max=1.06 cfs @ 12.10 hrs HW=36.49' TW=35.24' (Dynamic Tailwater) -1=Culvert (Passes 1.06 cfs of 1.48 cfs potential flow) -2=Orifice/Grate (Orifice Controls 1.06 cfs @ 5.38 fps) -3=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=33.99' TW=28.00' (Dynamic Tailwater) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 2P: Bioretention #2

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=3)

Inflow Area =	0.239 ac, 62.71% Impervious, Inflow D	epth > 7.32" for 50 Yr 24 Hr(+15%) event
Inflow =	1.87 cfs @ 12.09 hrs, Volume=	0.146 af
Outflow =	1.29 cfs @ 12.09 hrs, Volume=	0.144 af, Atten= 31%, Lag= 0.3 min
Primary =	1.29 cfs @ 12.09 hrs, Volume=	0.144 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 37.27' @ 12.22 hrs Surf.Area= 738 sf Storage= 561 cf

Plug-Flow detention time= 19.5 min calculated for 0.144 af (99% of inflow) Center-of-Mass det. time= 11.5 min (785.1 - 773.6)

Invert	Ava	il.Storage	Storage Descri	otion	
34.49'		1,249 cf	Custom Stage	Data (Prismatic)Listed	below (Recalc)
		Voids	Inc.Store	Cum.Store	
			•	2	
			_	240	
	600	15.0	1	241	
99	600	15.0	134	375	
00	600	100.0	6	381	
	1,113	100.0	857	1,237	
01	1,113	100.0	11	1,249	
Routing	In	vert Ou	tlet Devices		
Primary	34	.58' 8.0	" Round Culvert		
					to weir flow at low heads
Device 1	37				
Secondon	20				ootongular Mair
Secondary	30				
			· · ·		J 1.40 1.00 1.00 2.00
	34.49' on Su 49 50 49 50 99 00 00 01 Routing	34.49' on Surf.Area et) (sq-ft) 49 600 50 600 50 600 50 600 50 600 50 600 50 600 50 600 50 600 50 1,113 01 1,113 Routing In Primary 34 Device 1 37	34.49' 1,249 cf on Surf.Area Voids et) (sq-ft) (%) 49 600 0.0 50 600 40.0 50 600 40.0 50 600 15.0 99 600 15.0 00 600 100.0 00 1,113 100.0 01 1,113 100.0 Routing Invert Out Primary 34.58' 8.0 L= Inle n= Device 1 34.75' 6.0 Device 1 37.70' 18. Lim Secondary 38.00' 13.	34.49' $1,249$ cf Custom Stage on Surf.Area Voids Inc.Store et) (sq-ft) (%) (cubic-feet) 49 600 0.0 0 50 600 40.0 238 50 600 40.0 238 50 600 45.0 134 50 600 15.0 134 50 600 100.0 6 50 600 100.0 6 50 600 100.0 6 50 1113 100.0 857 50 $1,113$ 100.0 11 Routing Invert Outlet Devices Primary $34.58'$ $8.0"$ Round Culvert $L= 33.0'$ CPP, proje Inlet / Outlet Invert= 3 $n= 0.013$ Corrugated Device 1 $34.75'$ $6.0"$ Vert. Orifice/Gr Limited to weir flow a Secondary $38.00'$ $13.0'$ Iong x 4.0' <t< td=""><td>34.49' 1,249 cf Custom Stage Data (Prismatic)Listed on Surf.Area Voids Inc.Store Cum.Store et) (sq-ft) (%) (cubic-feet) (cubic-feet) 49 600 0.0 0 0 50 600 40.0 2 2 49 600 40.0 238 240 50 600 15.0 1 241 99 600 15.0 134 375 00 600 100.0 6 381 00 1,113 100.0 857 1,237 01 1,113 100.0 11 1,249 Routing Invert Outlet Devices Primary 34.58' 8.0" Round Culvert L= 33.0' CPP, projecting, no headwall, Ke= Inlet / Outlet Invert= 34.58' / 34.40' S= 0.003 n= 0.013 Corrugated PE, smooth interior, F Device 1 34.75' 6.0" Vert. Orifice/Grate C= 0.600 Limited Device 1 37.70' 18.0" Ho</td></t<>	34.49' 1,249 cf Custom Stage Data (Prismatic)Listed on Surf.Area Voids Inc.Store Cum.Store et) (sq-ft) (%) (cubic-feet) (cubic-feet) 49 600 0.0 0 0 50 600 40.0 2 2 49 600 40.0 238 240 50 600 15.0 1 241 99 600 15.0 134 375 00 600 100.0 6 381 00 1,113 100.0 857 1,237 01 1,113 100.0 11 1,249 Routing Invert Outlet Devices Primary 34.58' 8.0" Round Culvert L= 33.0' CPP, projecting, no headwall, Ke= Inlet / Outlet Invert= 34.58' / 34.40' S= 0.003 n= 0.013 Corrugated PE, smooth interior, F Device 1 34.75' 6.0" Vert. Orifice/Grate C= 0.600 Limited Device 1 37.70' 18.0" Ho

21047-PROPOSED

Prepared by Jones and Beach Engineers, Inc.

Type III 24-hr 50 Yr 24 Hr(+15%) Rainfall=8.53" Printed 5/10/2022 HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC Page 51

> Coef. (English) 2.38 2.54 2.69 2.68 2.67 2.67 2.65 2.66 2.66 2.68 2.72 2.73 2.76 2.79 2.88 3.07 3.32

Primary OutFlow Max=1.28 cfs @ 12.09 hrs HW=37.06' TW=35.23' (Dynamic Tailwater) -1=Culvert (Passes 1.28 cfs of 1.80 cfs potential flow) -2=Orifice/Grate (Orifice Controls 1.28 cfs @ 6.52 fps) -3=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=34.49' TW=0.00' (Dynamic Tailwater) -4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 3P: Catch Basin #1

[80] Warning: Exceeded Pond 11P by 0.20' @ 12.10 hrs (0.59 cfs 0.005 af)

Inflow Area =	0.375 ac, 61.86% Impervious, Inflow Depth > 7.02" for 50 Yr 24 Hr(+15%) event
Inflow =	2.44 cfs @ 12.14 hrs, Volume= 0.220 af
Outflow =	2.44 cfs @ 12.14 hrs, Volume= 0.220 af, Atten= 0%, Lag= 0.0 min
Primary =	2.44 cfs @ 12.14 hrs, Volume= 0.220 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 37.51' @ 12.20 hrs Flood Elev= 38.50'

Device	Routing	Invert	Outlet Devices
#1	Primary		15.0" Round Culvert L= 47.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 35.00' / 34.75' S= 0.0053 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.00 cfs @ 12.14 hrs HW=37.34' TW=37.59' (Dynamic Tailwater) -1=Culvert (Controls 0.00 cfs)

Summary for Pond 4P: Catch Basin #2

[80] Warning: Exceeded Pond 14P by 0.01' @ 12.30 hrs (0.12 cfs 0.001 af)

Inflow Area =	0.768 ac, 56.90% Impervious, Inflow De	epth > 6.69" for 50 Yr 24 Hr(+15%) event
Inflow =		0.429 af
Outflow =	4.86 cfs @ 12.11 hrs, Volume=	0.429 af, Atten= 0%, Lag= 0.0 min
Primary =	4.86 cfs @ 12.11 hrs, Volume=	0.429 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 37.27' @ 12.18 hrs Flood Elev= 38.80'

Device	Routing	Invert	Outlet Devices
#1	Primary	34.30'	15.0" Round Culvert L= 36.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 34.30' / 34.10' S= 0.0056 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=4.77 cfs @ 12.11 hrs HW=36.94' TW=35.90' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 4.77 cfs @ 3.89 fps)

Summary for Pond 5P: Concrete Galley 8x14 INFILTRATION

[80] Warning: Exceeded Pond 4P by 0.01' @ 12.50 hrs (0.51 cfs 0.002 af)

Inflow Area =	0.768 ac, 56.90% Impervious, Inflow E	Depth > 6.69" for 50 Yr 24 Hr(+15%) event
Inflow =	4.86 cfs @ 12.11 hrs, Volume=	0.429 af
Outflow =	2.70 cfs @ 12.22 hrs, Volume=	0.423 af, Atten= 44%, Lag= 6.2 min
Discarded =	0.83 cfs @ 12.40 hrs, Volume=	0.353 af
Primary =	1.90 cfs @ 12.21 hrs, Volume=	0.070 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 36.86' @ 12.40 hrs Surf.Area= 0.071 ac Storage= 0.125 af

Plug-Flow detention time= 69.4 min calculated for 0.422 af (98% of inflow) Center-of-Mass det. time= 61.1 min (843.7 - 782.6)

Volume	Invert	Avail.Storage	Storage Description
#1A	33.90'	0.000 af	24.00'W x 42.00'L x 3.67'H Field A
			0.085 af Overall - 0.085 af Embedded = 0.000 af x 40.0% Voids
#2A	33.90'	0.062 af	Shea Leaching Chamber 8x14x3.7 x 9 Inside #1
			Inside= 84.0"W x 36.0"H => 23.08 sf x 13.00'L = 300.0 cf
			Outside= 96.0"W x 44.0"H => 29.36 sf x 14.00'L = 411.0 cf
			9 Chambers in 3 Rows
#3	30.90'	0.035 af	28.00'W x 46.00'L x 3.00'H Prismatoid
			0.089 af Overall x 40.0% Voids
#4	30.90'	0.007 af	8.00'W x 32.00'L x 3.00'H Prismatoid
			0.018 af Overall x 40.0% Voids
#5	33.90'	0.010 af	2.00'W x 148.00'L x 3.67'H Prismatoid
			0.025 af Overall x 40.0% Voids
# 6B	33.90'	0.000 af	8.00'W x 28.00'L x 3.67'H Field B
			0.019 af Overall - 0.019 af Embedded = 0.000 af x 40.0% Voids
#7B	33.90'	0.014 af	Shea Leaching Chamber 8x14x3.7 x 2 Inside #6
			Inside= 84.0"W x 36.0"H => 23.08 sf x 13.00'L = 300.0 cf
			Outside= 96.0"W x 44.0"H => 29.36 sf x 14.00'L = 411.0 cf
		0 128 af	Total Available Storage

0.128 af Total Available Storage

Storage Group A created with Chamber Wizard Storage Group B created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	30.90'	0.300 in/hr Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 30.82' Phase-In= 0.01'
#2	Primary	35.70'	12.0" Round Culvert
	-		L= 60.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 35.70' / 34.30' S= 0.0233 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#3	Primary	37.56'	160.0' long x 1.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

21047-PROPOSED

Type III 24-hr 50 Yr 24 Hr(+15%) Rainfall=8.53" Printed 5/10/2022

Page 53

Prepared by Jones and Beach Engineers, Inc. HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC

> 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32

Discarded OutFlow Max=0.83 cfs @ 12.40 hrs HW=36.86' (Free Discharge) **1=Exfiltration** (Controls 0.83 cfs)

Primary OutFlow Max=1.96 cfs @ 12.21 hrs HW=36.63' TW=35.99' (Dynamic Tailwater) 2=Culvert (Inlet Controls 1.96 cfs @ 2.59 fps) -3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 6P: Drain Manhole #1

[80] Warning: Exceeded Pond 1P by 0.04' @ 12.50 hrs (0.20 cfs 0.001 af)

Inflow Area =	0.398 ac, 67.12% Impervious, Inflow Depth > 7.10" for 50 Yr 24 Hr(+15%) event			
Inflow =	2.35 cfs @ 12.09 hrs, Volume= 0.236 af			
Outflow =	2.35 cfs @ 12.09 hrs, Volume= 0.236 af, Atten= 0%, Lag= 0.0 min			
Primary =	2.35 cfs @ 12.09 hrs, Volume= 0.236 af			
Douting by Dyn Stor Ind mothod, Time Span= 0.00.24.00 hrs. $dt= 0.05$ hrs. / 3				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 36.79' @ 12.50 hrs Flood Elev= 38.90'

Device	Routing	Invert	Outlet Devices
#1	Primary		12.0" Round Culvert L= 48.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 34.07' / 33.80' S= 0.0056 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=2.39 cfs @ 12.09 hrs HW=35.23' TW=34.59' (Dynamic Tailwater)

Summary for Pond 7P: Drain Manhole #2

Inflow Area =	=	0.768 ac, 56.90% Impervious, Inflow Depth = 1.09" for 50 Yr 24 Hr(+15%) event
inflow =	:	1.90 cfs @ 12.21 hrs, Volume= 0.070 af
Outflow =		1.90 cfs @ 12.21 hrs, Volume= 0.070 af, Atten= 0%, Lag= 0.0 min
Primary =	:	1.90 cfs @ 12.21 hrs, Volume= 0.070 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 36.75' @ 12.50 hrs Flood Elev= 39.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	34.20'	12.0" Round Culvert L= 40.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 34.20' / 34.00' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.91 cfs @ 12.21 hrs HW=35.99' TW=35.58' (Dynamic Tailwater)

Summary for Pond 8P: Concrete Galley 8x14 STORAGE ONLY

Page 54

[92] Warning: Device #4 is above defined storage [80] Warning: Exceeded Pond 6P by 0.01' @ 12.70 hrs (0.31 cfs 0.004 af) [80] Warning: Exceeded Pond 7P by 0.61' @ 13.30 hrs (0.91 cfs 0.022 af)

Inflow Area =	1.167 ac, 60.39% Impervious, Inflow D	epth > 3.14" for 50 Yr 24 Hr(+15%) event
Inflow =	3.62 cfs @ 12.20 hrs, Volume=	0.305 af
Outflow =	2.10 cfs @ 12.44 hrs, Volume=	0.304 af, Atten= 42%, Lag= 14.4 min
Primary =	2.10 cfs @ 12.44 hrs, Volume=	0.304 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 36.26' @ 12.44 hrs Surf Area= 0.055 ac Storage= 0.073 af

Plug-Flow detention time= 31.6 min calculated for 0.304 af (99% of inflow) Center-of-Mass det. time= 28.4 min (807.3 - 779.0)

Volume	Invert	Avail.Storage	Storage Description
#1A	33.30'	0.000 af	16.00'W x 56.00'L x 3.67'H Field A
			0.075 af Overall - 0.075 af Embedded = 0.000 af x 40.0% Voids
#2A	33.30'	0.055 af	Shea Leaching Chamber 8x14x3.7 x 8 Inside #1
			Inside= 84.0"W x 36.0"H => 23.08 sf x 13.00'L = 300.0 cf
			Outside= 96.0"W x 44.0"H => 29.36 sf x 14.00'L = 411.0 cf
			8 Chambers in 2 Rows
#3	32.30'	0.011 af	20.00'W x 60.00'L x 1.00'H Prismatoid
			0.028 af Overall x 40.0% Voids
#4	33.30'	0.010 af	2.00'W x 144.00'L x 3.67'H Prismatoid
s			0.024 af Overall x 40.0% Voids
		0.076 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	32.30'	4.0" Round Culvert
			L= 3.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 32.30' / 32.27' S= 0.0100 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.09 sf
#2	Device 1	32.30'	4.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Primary	34.70'	8.0" Round Culvert
			L= 3.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 34.70' / 34.67' S= 0.0100 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.35 sf
#4	Secondary	39.80'	160.0' long x 1.0' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31
			3.30 3.31 3.32

21047-PROPOSEDType III 24-hr50 Yr 24 Hr(+15%) Rainfall=8.53"Prepared by Jones and Beach Engineers, Inc.Printed5/10/2022HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLCPage 55

Primary OutFlow Max=2.09 cfs @ 12.44 hrs HW=36.25' TW=32.70' (Dynamic Tailwater) 1=Culvert (Inlet Controls 0.63 cfs @ 7.16 fps) 2=Orifice/Grate (Passes 0.63 cfs of 0.79 cfs potential flow) -3=Culvert (Inlet Controls 1.47 cfs @ 4.20 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=32.30' TW=31.60' (Dynamic Tailwater) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 9P: Drain Manhole #3

Inflow Are	a =	1.167 ac, 60.39% Impervious, Inflow Depth > 3.13" for 50 Yr 24 Hr(+15%) event
Inflow	=	2.10 cfs @ 12.44 hrs, Volume= 0.304 af
Outflow	=	2.10 cfs @ 12.44 hrs, Volume= 0.304 af, Atten= 0%, Lag= 0.0 min
Primary	=	2.10 cfs @_ 12.44 hrs, Volume= 0.304 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 32.75' @ 12.49 hrs Flood Elev= 39.90'

Device	Routing	Invert	Outlet Devices
	Primary		12.0" Round Culvert L= 85.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 31.60' / 31.10' S= 0.0059 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=2.12 cfs @ 12.44 hrs HW=32.70' TW=32.13' (Dynamic Tailwater)

Summary for Pond 10P: Drain Manhole #4

Inflow Area	a =	1.167 ac, 60.39% Impervious, Inflow Depth > 3.13" for 50 Yr 24 Hr(+15%) event
Inflow	=	2.10 cfs @ 12.44 hrs, Volume= 0.304 af
Outflow	=	2.10 cfs @ 12.44 hrs, Volume= 0.304 af, Atten= 0%, Lag= 0.0 min
Primary	=	2.10 cfs @ 12.44 hrs, Volume= 0.304 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 32.13' @ 12.44 hrs Flood Elev= 36.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	31.10'	12.0" Round Culvert L= 40.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 31.10' / 30.90' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=2.09 cfs @ 12.44 hrs HW=32.13' TW=31.11' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 2.09 cfs @ 3.21 fps) **21047-PROPOSED**Type III 24-hr50 Yr 24 Hr(+15%) Rainfall=8.53"Prepared by Jones and Beach Engineers, Inc.Printed 5/10/2022HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLCPage 56

Summary for Pond 11P: Yard Drain #1

 Inflow Area =
 0.071 ac, 26.66% Impervious, Inflow Depth > 5.76" for 50 Yr 24 Hr(+15%) event

 Inflow =
 0.45 cfs @ 12.10 hrs, Volume=
 0.034 af

 Outflow =
 0.45 cfs @ 12.10 hrs, Volume=
 0.034 af, Atten= 0%, Lag= 0.0 min

 Primary =
 0.45 cfs @ 12.10 hrs, Volume=
 0.034 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 37.85' @ 12.20 hrs Flood Elev= 39.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	35.80'	8.0" Round Culvert L= 40.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 35.80' / 35.58' S= 0.0055 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.35 sf

Primary OutFlow Max=0.00 cfs @ 12.10 hrs HW=36.78' TW=36.94' (Dynamic Tailwater)

Summary for Pond 12P: Yard Drain #2

Inflow Area =	0.072 ac,	0.00% Impervious, Inflow D	epth > 3.96"	for 50 Yr 24 Hr(+15%) event
Inflow =	0.27 cfs @	12.18 hrs, Volume=	0.024 af	
Outflow =	0.27 cfs @	12.19 hrs, Volume=	0.024 af, Atte	en= 0%, Lag= 0.6 min
Primary =	0.27 cfs @	12.19 hrs, Volume=	0.024 af	-
Secondary =	0.00 cfs @	0.00 hrs, Volume=	0.000 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 39.07' @ 12.19 hrs Surf.Area= 183 sf Storage= 6 cf

Plug-Flow detention time= 0.3 min calculated for 0.024 af (100% of inflow) Center-of-Mass det. time= 0.2 min (843.5 - 843.2)

Volume	Invert	Avail.Sto	rage Storage E	Description			
#1	39.00'	1,35	58 cf Custom	Stage Data (Pris	smatic)Listed b	elow (Recalc)	
Elevatio		rf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)			
39.0	00	5	0	0			
40.0)1	2,685	1,358	1,358			
Device	Routing	Invert	Outlet Devices				
#1	Primary	36.00'	Inlet / Outlet In	ulvert , projecting, no h vert= 36.00' / 35. ugated PE, smoo	.33' S= 0.0134	4 '/' Cc= 0.900	f
#2	Device 1	39.00'		rifice/Grate C= flow at low head			
#3	Secondary	40.00'		2.0' breadth Bro 20 0.40 0.60 0.			

21047-PROPOSED

 Type III 24-hr
 50 Yr
 24 Hr(+15%) Rainfall=8.53"

 Printed
 5/10/2022

 ware Solutions LLC
 Page 57

Prepared by Jones and Beach Engineers, Inc. HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC

> 2.50 3.00 3.50 Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32

Primary OutFlow Max=0.26 cfs @ 12.19 hrs HW=39.07' TW=37.60' (Dynamic Tailwater) 1=Culvert (Passes 0.26 cfs of 1.58 cfs potential flow) 2=Orifice/Grate (Weir Controls 0.26 cfs @ 0.84 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=39.00' TW=34.30' (Dynamic Tailwater) -3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 13P: Yard Drain #3

[80] Warning: Exceeded Pond 3P by 0.32' @ 12.10 hrs (2.64 cfs 0.032 af)

Inflow Area =	C	.514 ac, 47.23% Impervious, Inflow Depth > 6.28" for 50 Yr 24 Hr(+15%) event	
inflow =		.00 cfs @ 12.14 hrs, Volume= 0.269 af	
Outflow =	3	.00 cfs @ 12.14 hrs, Volume= 0.269 af, Atten= 0%, Lag= 0.0 min	
Primary =	3	.00 cfs @ 12.14 hrs, Volume= 0.269 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 37.69' @ 12.17 hrs Flood Elev= 38.50'

Device Routing Invert Outlet Devices	
#1 Primary 34.65' 15.0'' Round Culvert L= 48.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 34.65' / 34.40' S= 0.0052 '/' Cc= 0.9 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.22	

Primary OutFlow Max=2.96 cfs @ 12.14 hrs HW=37.58' TW=37.17' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 2.96 cfs @ 2.41 fps)

Summary for Pond 14P: Yard Drain #4

Inflow Area	a =	0.031 ac, 25.58% Impervious, Inflow Depth > 6.48" for 50 Yr 24 Hr(+15%) event
Inflow	=	0.22 cfs @ 12.09 hrs, Volume= 0.017 af
Outflow	=	0.22 cfs @ 12.09 hrs, Volume= 0.017 af, Atten= 0%, Lag= 0.0 min
Primary	=	0.22 cfs @ 12.09 hrs, Volume= 0.017 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 37.28' @ 12.18 hrs Flood Elev= 39.10'

Device	Routing	Invert	Outlet Devices
#1	Primary	36.50'	8.0" Round Culvert L= 40.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 36.50' / 36.10' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.35 sf

Primary OutFlow Max=0.31 cfs @ 12.09 hrs HW=36.91' TW=36.65' (Dynamic Tailwater)

21047-PROPOSEDType III 24-hr 50 Yr 24 Hr(+15%) Rainfall=8.53"Prepared by Jones and Beach Engineers, Inc.Printed 5/10/2022HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLCPage 58

Summary for Pond 15P: Subsurface Stone Infiltration

Inflow Area = Inflow = Outflow = Discarded = Primary =	0.021 ac,100.00% Impervious, Inflow Depth > 8.28" for 50 Yr 24 Hr(+15%) event 0.17 cfs @ 12.09 hrs, Volume= 0.015 af 0.03 cfs @ 12.58 hrs, Volume= 0.014 af, Atten= 85%, Lag= 29.4 min 0.03 cfs @ 12.58 hrs, Volume= 0.014 af 0.00 cfs @ 0.00 hrs, Volume= 0.000 af			
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 31.61' @ 12.58 hrs Surf.Area= 0.004 ac Storage= 0.006 af				
Plug-Flow detention time= 130.4 min calculated for 0.014 af (99% of inflow) Center-of-Mass det. time= 122.9 min(862.9 - 740.0)				
Volume Inve	rt Avail.Storage Storage Description			

Tolamo	Invort	/ wan.otorago	Clorage Decomption
#1	27.50'	0.007 at	f 4.00'W x 40.00'L x 4.51'H Prismatoid 0.017 af Overall x 40.0% Voids
Device	Routing	Invert O	outlet Devices
#1	Discarded		.650 in/hr Exfiltration over Surface area onductivity to Groundwater Elevation = 27.08' Phase-In= 0.01'
#2	Primary	32.00' 83 H 2. C	8.0' long x 1.0' breadth Broad-Crested Rectangular Weir ead (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 .50 3.00 coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 .30 3.31 3.32

Discarded OutFlow Max=0.03 cfs @ 12.58 hrs HW=31.61' (Free Discharge) **1=Exfiltration** (Controls 0.03 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=27.50' TW=28.00' (Dynamic Tailwater) **2=Broad-Crested Rectangular Weir** (Controls 0.00 cfs)

Summary for Pond 16P: Subsurface Stone Infiltration

Inflow Area =	0.019 ac,100.00% Impervious, Inflow Depth > 8.28" for 50 Yr 24 Hr(+15%) event
Inflow =	0.15 cfs @ 12.09 hrs, Volume= 0.013 af
Outflow =	0.04 cfs @ 12.44 hrs, Volume= 0.013 af, Atten= 73%, Lag= 21.3 min
Discarded =	0.04 cfs @ 12.44 hrs, Volume= 0.013 af
Primary =	0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 33.39' @ 12.44 hrs Surf.Area= 0.006 ac Storage= 0.004 af

Plug-Flow detention time= 56.9 min calculated for 0.013 af (100% of inflow) Center-of-Mass det. time= 55.9 min (796.0 - 740.0)

Volume	Invert	Avail.Storage	Storage Description
#1	31.80'	0.004 af	8.00'W x 35.00'L x 1.71'H Prismatoid 0.011 af Overall x 40.0% Voids

21047-PROPOSED

Type III 24-hr 50 Yr 24 Hr(+15%) Rainfall=8.53" Printed 5/10/2022

Page 59

Prepared by Jones and Beach Engineers, Inc. HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Discarded	31.80'	0.300 in/hr Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 31.72' Phase-In= 0.01'
#2	Primary	33.50'	86.0' long x 1.0' breadth Broad-Crested Rectangular Weir
	•		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31
			3.30 3.31 3.32

Discarded OutFlow Max=0.04 cfs @ 12.44 hrs HW=33.39' (Free Discharge) **1=Exfiltration** (Controls 0.04 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=31.80' TW=28.00' (Dynamic Tailwater)

Summary for Pond 17P: Deep Sump CB #4

Inflow Area	=	0.131 ac,100.00% Impervious, Inflow Depth > 8.28" for 50 Yr 24 Hr(+15%) event
Inflow	=	1.07 cfs @ 12.09 hrs, Volume= 0.091 af
Outflow	=	1.07 cfs @ 12.09 hrs, Volume= 0.091 af, Atten= 0%, Lag= 0.0 min
Primary	=	1.07 cfs @ 12.09 hrs, Volume= 0.091 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 30.24' @ 12.09 hrs Flood Elev= 33.10'

Device	Routing	Invert	Outlet Devices
#1	Primary		12.0" Round Culvert L= 67.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 29.60' / 29.20' S= 0.0060 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.05 cfs @ 12.09 hrs HW=30.23' TW=29.70' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 1.05 cfs @ 2.88 fps)

Summary for Pond 18P: Deep Sump CB #5

Inflow Area = Inflow = Outflow = Primary =	0.064 ac,100.00% Impervious, Inflow Depth > 8.28"for 50 Yr 24 Hr(+15%) event0.53 cfs @12.09 hrs, Volume=0.044 af0.53 cfs @12.09 hrs, Volume=0.044 af, Atten= 0%, Lag= 0.0 min0.53 cfs @12.09 hrs, Volume=0.044 af				
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 29.90' @ 12.51 hrs					

Flood Elev= 34.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	29.25'	12.0" Round Culvert L= 3.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 29.25' / 29.20' S= 0.0167 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.51 cfs @ 12.09 hrs HW=29.79' TW=29.70' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.51 cfs @ 1.17 fps)

Summary for Pond 19P: Deep Sump CB #3

Inflow Area =	0.103 ac,100.00% Impervious, Inflow Depth >	> 8.28" for 50 Yr 24 Hr(+15%) event
inflow =	0.84 cfs @ 12.09 hrs, Volume= 0.07	'1 af
Outflow =	0.84 cfs @ 12.09 hrs, Volume= 0.07	'1 af, Atten= 0%, Lag= 0.0 min
Primary =	0.84 cfs @ 12.09 hrs, Volume= 0.07	'1 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 30.47' @ 12.09 hrs Flood Elev= 33.10'

Device	Routing	Invert	Outlet Devices
#1	Primary	29.80'	12.0" Round Culvert
	·		L= 40.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 29.80' / 29.60' S= 0.0050 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.82 cfs @ 12.09 hrs HW=30.45' TW=30.23' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.82 cfs @ 2.14 fps)

Summary for Pond 20P: Contech Jellyfish

Inflow Are	a =	0.196 ac,100.00% Impervious, Inflow Depth > 29.31" for 50 Yr 24 Hr(+15%) event
Inflow	=	2.40 cfs @ 12.52 hrs, Volume= 0.478 af
Outflow	=	2.40 cfs @ 12.52 hrs, Volume= 0.478 af, Atten= 0%, Lag= 0.0 min
Primary	=	2.40 cfs @ 12.52 hrs, Volume= 0.478 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 29.89' @ 12.52 hrs Flood Elev= 33.60'

Device	Routing	Invert	Outlet Devices
#1	Primary		15.0" Round Culvert L= 42.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 28.95' / 28.70' S= 0.0060 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf
			n= 0.010 Confugateur E, shiotin intendi, 110w Alea- 1.25 si

Primary OutFlow Max=2.39 cfs @ 12.52 hrs HW=29.89' TW=0.00' (Dynamic Tailwater) —1=Culvert (Barrel Controls 2.39 cfs @ 3.35 fps)

Summary for Pond 21P: Wetland Ponding Area

21047-PROPOSED

Prepared by Jones and Beach Engineers, Inc.

Inflow Area =	1.527 ac, 52.60% Impervious, Inflow D	Depth > 3.34" for 50 Yr 24 Hr(+15%) event
Inflow =	2.73 cfs @ 12.33 hrs, Volume=	0.426 af
Outflow =	2.20 cfs @ 12.69 hrs, Volume=	0.343 af, Atten= 19%, Lag= 21.7 min

Outflow =	2.20 cfs @ 12.69 hrs, Volume=	0.343 af, Atten= 19%, Lag= 21.7 min
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af
Tertiary =	2.20 cfs @ 12.69 hrs, Volume=	0.343 af
rentary		0.040 al

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 31.18' @ 12.69 hrs Surf.Area= 3,677 sf Storage= 5,810 cf

Plug-Flow detention time= 121.0 min calculated for 0.343 af (81% of inflow) Center-of-Mass det. time= 56.5 min (869.7 - 813.3)

Volume	Invert	Avail.St	orage	Storage Description		
#1	28.00'	7,5	242 cf	Custom Stage Data	(Irregular)Listed	below (Recalc)
Elevatio	on Su	ırf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(fee		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
28.0	00	619	194.0	0	0	619
29.0	00	1,245	250.0	914	914	2,610
30.0	00	2,174	307.0	1,688	2,602	5,152
31.0	00	3,074	298.0	2,611	5,213	5,680
31.5	50	4,916	435.0	1,980	7,193	13,674
31.	51	4,916	435.0	49	7,242	13,678
Device	Routing	Inver	Outle	et Devices		
#1	Secondary	31.50	70.0	long x 10.0' breadt	h Broad-Crested	Rectangular Weir
				d (feet) 0.20 0.40 0.		
				f. (English) 2.49 2.56		
#2	Primary	31.30		' long x 4.0' breadth		
						0 1.40 1.60 1.80 2.00
				3.00 3.50 4.00 4.5		
						2.67 2.65 2.66 2.66
				2.72 2.73 2.76 2.7	9 2.88 3.07 3.32	
#3	Tertiary	30.30		" Round Culvert		
				4.0' CPP, square ed		
				/ Outlet Invert= 30.30		
			n= 0	.013 Corrugated PE,	smooth interior, F	low Area= 1.23 sf

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=28.00' TW=0.00' (Dynamic Tailwater)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=28.00' TW=0.00' (Dynamic Tailwater) —1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Tertiary OutFlow Max=2.20 cfs @ 12.69 hrs HW=31.18' TW=29.89' (Dynamic Tailwater) **3=Culvert** (Barrel Controls 2.20 cfs @ 3.37 fps)

APPENDIX III

Test Pit Logs

GOVE ENVIRONMENTAL SERVICES, INC.

TEST PIT DATA

	I LA		IA	
Client Ga GES Project No. 20	69 &1171 Sagam arrepy Planning Co 21039 3-23-2021	,	LC	H JAMES JAMES P. COL
Test Pit No. ESHWT: Termination @ Refusal: Obs. Water:	1 None Observed 60" Yes none	Roo SCS	No.: PCD Group: ts to: Soil: Type:	AND SCHUTT
Depth Color Fill - 0-12" 10YR3/2 Fill - 12-35" 10YR3/3 Apb - 35-45" 10YR3/2 Bwb - 45-60" 10YR4/3 Bedrock - 60" 10YR4/3	Texture SL SL SL SL SL	Structure Gr Gr Gr Om	Consistence Fr Fr Fr Fr	Redox None None None None
Test Pit No. ESHWT: Termination @ Refusal: Obs. Water:	2 None Observed 55" Yes none	Roo SCS	No.: PCD Group: ts to: Soil: Type:	
Depth Color Ap - 0-10" 10YR3/2 Bw - 10-55" 7.5YR3/4 Rippable Bedrock - 55"	Texture SL SL	Structure Gr Gr	Consistence Fr Fr	Redox None None
Test Pit No. ESHWT: Termination @ Refusal: Obs. Water:	3 31" 51" Yes none	Roo SCS	No.: PCD Group: ts to: Soil: Type:	
$\begin{array}{ccc} Depth & Color \\ Ap-0-11" & 10YR3/3 \\ Bw-11-31" & 10YR4/4 \\ Bw2-31-51" & 7.5YR5/4 \\ Rippable Bedrock-51" \end{array}$	Texture SL GRLS CBSL	Structure Gr Gr Om	Consistence Fr Fr Fr	Redox None None Yes

8 Continental Dr Bldg 2 Unit H, Exeter, NH 03833-7526 Ph (603) 778 0644 / Fax (603) 778 0654 info@gesinc.biz www.gesinc.biz

Test Pit No.		4	Lot No.:		
ESHWT:		None Observed	WSPCD Group:		
Termination @		33"	Roots to:		
Refusal:		Yes	SCS Soil:		
Obs. Water:		none	HIS Type:		
Depth Ap - 0-11" Bw - 11-33" Bedrock - 33"	Color 10YR3/2 10YR4/4	Texture SL CBSL	Structure Gr Gr	Consistence Fr Fr	Redox None None

Test Pit No.		5	Lot No.:		
ESHWT:		None Observed	WSPCD Group:		
Termination @		22"	Roots to:		
Refusal:		Yes	SCS Soil:		
Obs. Water:		none	HIS Type:		
Depth Ap – 0-10" Bw – 10-22" Bedrock – 22"	Color 10YR3/3 10YR4/4	Texture SL CBSL	Structure Gr Gr	Consistence Fr Fr	Redox None None

Test Pit No. 6		6	Lot	No.:	
ESHWT: None Observe		None Observed	WS	PCD Group:	
Termination @ 2'		2"	Roots to:		
Refusal:		Yes	SCS Soil:		
Obs. Water:		none	HIS	Type:	
Depth A - 0-2"	Color 10YR3/2	Texture CBSL	Structure Gr	Consistence Fr	Redox None
Bedrock 2"					

Test Pit No.		7	Lot No.:		
ESHWT:		None Observed	WSPCD Group:		
Termination @		21"	Roots to:		
Refusal:		Yes	SCS Soil:		
Obs. Water:		none	HIS Type:		
Depth A – 0-21" Bedrock – 21"	Color 10YR3/3	Texture CBSL	Structure Gr	Consistence Fr	Redox None

Test Pit No. ESHWT: Termination @ Refusal: Obs. Water:		8 None Observed 31" Yes none	WS Roc SC	No.: PCD Group: ots to: S Soil: S Type:	
Depth Ap - 0-10" Bw - 10-31" Bedrock - 31"	Color 10YR3/2 10YR4/6	Texture SL CBSL	Structure Gr Gr	Consistence Fr Fr	Redox None None

Legend: GRLS = gravelly loamy sand CBSL = cobbly sandy loam SL= sandy loam Gr = granular Fr = friable Om = massive Ap = top soil Bw = subsoil Apb = buried topsoil Bwb = buried subsoil

GOVE ENVIRONMENTAL SERVICES, INC. TEST PIT DATA

Project1169 Sagamore Avenue, PortsmouthClientGarrepy Planning Consultants, LLCGES Project No. 2021039MM/DD/YY Staff11-10-2021JP Gove

Test Pit No. B1

ESHWT: 54 Termination @ 84 Refusal: 84 Obs. Water: None

Depth	Color	Texture	Structure	Consistence	Redox %, Layer
0–29"	10YR 4/4	GRS	OM	FR	NONE , Fill
29–33"	10YR 3/2	FSL	GR	FR	NONE, buried A
33–54"	10YR 5/6	FSL	GR	FR	NONE, buried B
54-84"	2.5Y 5/3	FSL	OM	FR	30%, C

Test Pit No. B2

ESHWT: 50 Termination @ 65 Refusal: 65 Obs. Water: None

Depth	Color	Texture	Structure	Consistence	Redox %, Layer
0-31"	10YR 4/4	GRS	OM	FR	NONE, Fill
31–35"	10YR 3/2	FSL	GR	FR	NONE, buried A
35–50"	10YR 5/6	FSL	GR	FR	NONE, buried B
50-65"	2.5Y 4/3	FSL	OM	FR	30%, C

Test Pit No. B3

ESHWT: 33 Termination @ 47 Refusal: 47 Obs. Water: None Depth Color Texture Structure Consistence Redox %, Layer 0-33" 10YR 4/4 GRS NONE, Fill OM FR 33-47" FSL OM FR 20%, buried A/B 10YR 4/3

> 8 Continental Dr Bldg 2 Unit H, Exeter, NH 03833-7526 Ph (603) 778 0644 / Fax (603) 778 0654 info@gesinc.biz www.gesinc.biz

Test Pit No ESHWT: 4 Termination Refusal: 60 Obs. Water:	2 n @ 60				
Depth 0–21" 21–29" 29–42" 42–60"	Color 10YR 4/4 10YR 3/2 10YR 5/6 2.5Y 5/3	Texture GRS FSL FSL FSL	Structure OM GR GR OM	Consistence FR FR FR FR FR	Redox %, Layer NONE , Fill NONE, buried A NONE, buried B 30%, C
Test Pit No ESHWT: 4 Termination Refusal: 62 Obs. Water:	7 n @ 62				
Depth 0–25" 25–36" 36–47" 47–62"	Color 10YR 4/4 10YR 3/2 10YR 4/6 2.5Y 5/3	Texture GRS FSL FSL FSL	Structure OM GR GR OM	Consistence FR FR FR FR FR	Redox %, Layer NONE , Fill NONE, buried A NONE, buried B 30%, C
Test Pit No ESHWT: n Termination Refusal: 38 Obs. Water:	one n @ 38				
Depth 0–20" 20–38"	Color 10YR 4/4 10YR 5/6	Texture FSL FSL	Structure OM GR	Consistence FR FR	Redox %, Layer NONE , A/Fill NONE, B
Test Pit No ESHWT: n Termination Refusal: 49 Obs. Water:	one 1 @ 49				
Depth 0–36" 20–38"	Color 10YR 3/3 - Fill 10YR 5/6 – bur B	Texture FSL ied FSL		Structure OM GR	Consistence FR FR

Test Pit Data: Sagamore Ave. 11/10-2021—Page 3 of 3

11-11-2021

GOVE ENVIRONMENTAL SERVICES, INC. TEST PIT DATA

Project – 1169 &1171 Sagamore Ave., Portsmouth, NH – TM 224, Lots 14 & 15. Client - Jones & Beach Engineers, Inc. GES Project No. 2021039 MM/DD/YY Staff 1-25-2022 JPG

Test Pit No. X1

ESHWT: n/a Termination @ 20" Refusal: 20" Obs. Water: None

Depth	Color	Texture	Structure	Consistence	Redox %, Layer
0–12"	10YR 3/2	FSL	GR	FR	NONE , Ap
12–20" 20"	10YR 4/4 Bedrock	FSL	GR	FR	NONE, Bw

Test Pit No. X2

ESHWT: n/a Termination @ 36" Refusal: 36" Obs. Water: None

Depth	Color 10YR 3/2	Texture FSL	Structure GR	Consistence FR	Redox %, Layer NONE , Ap
6–36"	10YR 4/6	FSL	GR	FR	NONE, Bw
36"	Bedrock				

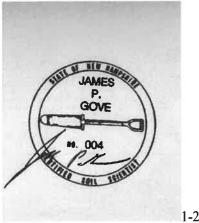
Test Pit No. X3

ESHWT: n/a Termination @ 57" Refusal: 57" Obs. Water: None

Depth	Color	Texture	Structure	Consistence	Redox %, Layer
0-12"	10YR 3/2	FSL	GR	FR	NONE , Ap
12-57"	10YR 4/6	FSL	GR	FR	NONE, Bw
57"	Bedrock				

Test Pit No ESHWT: n Termination Refusal: n/ Obs. Water	n/a n @ 75" a				
Depth 0–70" 70-75"	Color 10YR 3/3 10YR 4/6	Texture FSL FSL	Structure OM GR	Consistence FR FR	Redox %, Layer NONE , Fill NONE, Bw
Test Pit No ESHWT: 5 Termination Refusal: 66 Obs. Water	51" n @ 66" 5"				
Depth 0-6" 6-39" 39-51" 51-66" 66"	Color 10YR 3/3 10YR 5/6 10YR3/2 7.5YR4/6 Bedrock	Texture LS LS FSL FSL	Structure GR OM GR GR	Consistence FR FR FR FR FR	Redox %, Layer NONE , Fill NONE, Fill Buried Ap 5%, Bw
Test Pit No ESHWT: 5 Termination Refusal: 65 Obs. Water	51" n @ 65" 5"				
Depth 0-5" 5-51" 51-65" 65"	Color 10YR 3/3 10YR 4/6 10YR3/2 Bedrock	Texture LS LS FSL	Structure GR OM GR	Consistence FR FR FR FR	Redox %, Layer NONE , Fill NONE, Fill 5%, Buried Ap
Test Pit No ESHWT: 4 Termination Refusal: 65 Obs. Water	19" n @ 65" 5"				
Depth 0–10" 10–49" 49–65" 65"	Color 10YR 3/2 10YR 4/4 10YR3/2 Bedrock	Texture LS LS FSL	Structure GR OM GR	Consistence FR FR FR FR	Redox %, Layer NONE , Fill NONE, Fill 5%, Buried Ap

Test Pit No. X8


ESHWT: n/a Termination @ 58" Refusal: 58" Obs. Water: None

Depth 0–25"	Color 10YR 3/3	Texture LS	Structure GR	Consistence FR	Redox %, Layer NONE , Fill
25-37"	10YR 3/2	FSL	GR	FR	NONE, Buried Ap
37–58"	10YR4/6	FSL	GR	FR	NONE, Bw
58"	Bedrock				

Test Pit No. X9

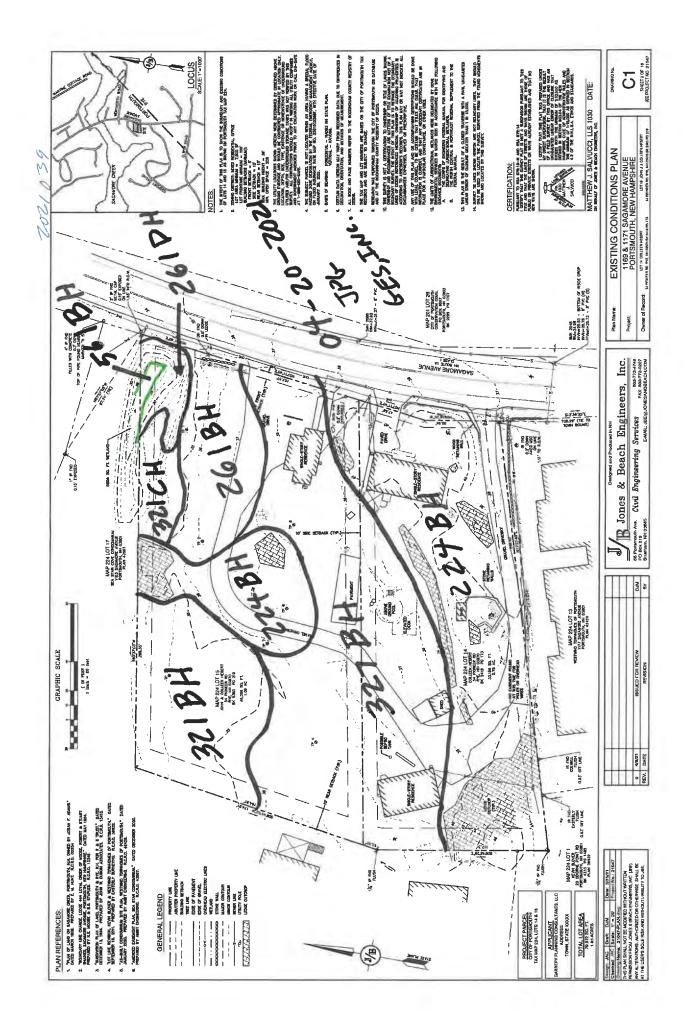
ESHWT: n/a Termination @ 20" Refusal: 20" Obs. Water: None

Depth	Color	Texture	Structure	Consistence	Redox %, Layer
0–16"	10YR 3/2	FSL	GR	FR	NONE , Ap
16–20" 20"	10YR 4/6 Bedrock	FSL	GR	FR	NONE, Bw

1-26-2022

APPENDIX IV

HISS Soil Note and Map


This soil map was prepared by a professional soil scientist and meets the technical standards of the SSSNNE Publication No. 1, High Intensity Soil Maps for NH, December 2017. Soil map was prepared on 4 April 2021. Soil map site was 1169 & 1171 Sagamore Avenue, Portsmouth, NH.

Soil Map Units were identified using the Key to Soil Types. The conversion of High Intensity Soil Map Unit to NRCS Soil Map Unit Name was based upon the observed soil profiles, as was hydrologic soil group, as taken from SSSNNE Special Publication No. 5.

Soil mapping was performed by James Gove, CSS # 004.

HISS Soil Map Unit	Soil Map Unit Name	Hydrologic Soil Group
224 (slope) H	Hollis-Rock Outcrop Complex	D
261 (slope) H	Made land – similar to Canton	В
321 (slope) H	Newfields	В
327 (slope) H	Chatfield Variant	В
561 (slope) H	Made land- similar to Walpole	С
\mathbf{P} along $= 0.8\%$ C along $= 8.15\%$ D alo	$n_{0} = 15.250/$	

B slope = 0-8%, C slope = 8-15%, D slope = 15-25%

APPENDIX V

NRCS Soil Map

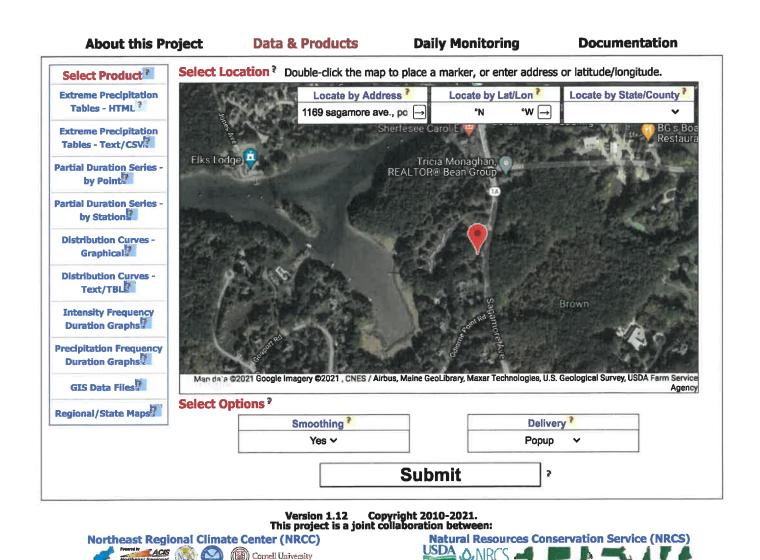
National Cooperative Soil Survey

Conservation Service

Page 1 of 3

Soil Map—Rockingham County, New Hampshire (1169 & 1171 Sagamore Ave)

Ì				
	Area of Interest (AOI) Area of Interest (AOI)	<u>ا</u>	Spoil Area	The soil surveys that comprise your AOI were mapped at 1:24,000.
_		0	Story Spot	Maminan Oxil Man man and ha culled at this availa
	Soil Map Unit Polygons	8	Very Stony Spot	varning: Soli map may not be valid at this scale.
	Soil Map Unit Lines	Ð	Wet Spot	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil
	Soil Map Unit Pointe	4	Other	line placement. The maps do not show the small areas of
4		1	Special Line Features	contrasting soils that could have been shown at a more detailed
eciai fol	Point reatures Blowout	Water Features	atures	
) [2	Borrow Pit	2	Streams and Canals	Please rely on the bar scale on each map sheet for map
a :	Ser Ser	Transportation	tation	
æ	clay spot	ŧ	Rails	Source of Map: Natural Resources Conservation Service
0	Closed Depression	5	Interstate Highways	veb Soli Sulvey UKL. Coordinate Svstem: VVeb Mercator (EPSG:3857)
X	Gravel Pit	2	US Routes	Maps from the Web Soil Survey are based on the Web Mercator
	Gravelly Spot		Major Roads	projection, which preserves direction and shape but distorts
a	Landfill		Local Roads	distance and area. A projection that preserves area, such as the Atbers equal-area conic projection, should be used if more
فير	Lava Flow	Background	und	accurate calculations of distance or area are required.
	Marsh or swamp	P	Aerial Photography	This product is generated from the USDA-NRCS certified data as of the version data(s) listed helow
Æ	Mine or Quarry			or are version date(o) isota below. Soil Survey Ares: Dowlingham County Naw Hamnehire
0	Miscellaneous Water			
0	Perennial Water			
>	Rock Outcrop			1:50,000 or larger.
e de la	Saline Spot			Date(s) aerial images were photographed: Dec 31, 2009—Jun 14. 2017
14	Sandy Spot			The orthophoto or other base map on which the soil lines were
\$	Severely Eroded Spot			compiled and digitized probably differs from the background
0	Sinkhole			imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
A	Slide or Slip			
ø	Sodic Spot			



Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
140B	Chatfield-Hollis-Canton complex, 0 to 8 percent slopes, rocky	3.5	53.7%
140C	Chatfield-Hollis-Canton complex, 8 to 15 percent slopes, rocky	2.7	40.6%
699	Urban land	0.4	5.7%
Totals for Area of Interest		6.6	100.0%

Map Unit Legend

APPENDIX VI

Extreme Precipitation Estimates

Contact: precip@cornell.edu

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Smoothing	Yes
State	
Location	
Longitude	70.748 degrees West
Latitude	43.051 degrees North
Elevation	0 feet
Date/Time	Wed, 16 Jun 2021 12:03:11 -0400

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day		
1yr	0.26	0.40	0.50	0.65	0.82	1.04	1yr	0.70	0.98	1.21	1.56	2.03	2.67	2.94	1yr	2.36	2.82	3.24	3.96	4.57	1yr	
2yr	0.32	0.50	0.62	0.82	1.03	1.30	2yr	0.89	1.18	1.52	1.94	2.49	3.22	3.58	2yr	2.85	3.45	3.95	4.70	5.35	2yr	3
5yr	0.37	0.58	0.73	0.98	1.25	1.61	5уг	1.08	1.47	1.89	2.44	3.15	4.08	4.60	5yr	3.61	4.42	5.07	5.96	6.73	5yr	8
10yr	0.41	0.65	0.82	1.12	1.46	1.90	10yr	1.26	1.73	2.24	2.91	3.76	4.88	5.55	10yr	4.32	5.34	6.12	7.14	8.01	10yr	1
25yr	0.48	0.77	0.97	1.34	1.78	2.35	25yr	1.54	2.15	2.79	3.65	4.76	6.19	7.13	25yr	5.48	6.85	7.85	9.07	10.09	25yr	-
50yr	0.54	0.87	1.11	1.55	2.09	2.78	50yr	1.80	2.54	3.31	4.35	5.69	7.42	8.62	50yr	6.56	8.29	9.48	10.87	12.02	50yr	1
100yr	0.60	0.97	1.26	1.79	2.44	3.28	100yr	2.10	3.00	3.93	5.19	6.80	8.88	10.42	100yr	7.86	10.02	11.46	13.03	14.33	100yr	
200yr	0.68	1.11	1.44	2.07	2.85	3.87	200yr	2.46	3.54	4.65	6.17	8.12	10.65	12.60	200yr	9.42	12.11	13.85	15.63	17.08	200yr	
500yr	0.81	1.33	1.73	2.51	3.52	4.81	500yr	3.03	4.42	5.82	7.76	10.28	13.53	16.20	500yr	11.97	15.58	17.81	19.89	21.57	500yr	

+15%

Lower Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	<u>6hr</u>	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.23	0.36	0.44	0.59	0.72	0.88	1yr	0.62	0.86	0.93	1.34	1.69	2.26	2.50	1yr	2.00	2.41	2.88	3.21	3.94	1yr
2yr	0.31	0.49	0.60	0.81	1.00	1.19	2yr	0.86	1.16	1.37	1.81	2.33	3.07	3.47	2yr	2.72	3.33	3.84	4.56	5.11	2yr
5yr	0.35	0.54	0.67	0.92	1.17	1.40	5yr	1.01	1.37	1.61	2.11	2.72	3.80	4.20	5yr	3.36	4.04	4.74	5.56	6.26	5yr
10yr	0.39	0.59	0.74	1.03	1.33	1.60	10yr	1.15	1.57	1.80	2.38	3.05	4.38	4.88	10yr	3.88	4.69	5.47	6.44	7.22	10yr
25yr	0.44	0.67	0.83	1.19	1.56	1.90	25yr	1.35	1.86	2.10	2.74	3.52	4.78	5.91	25yr	4.23	5.68	6.69	7.83	8.72	25yr
50yr	0.48	0.73	0.91	1.31	1.77	2.17	50yr	1.53	2.12	2.35	3.05	3.91	5.41	6.82	50yr	4.79	6.56	7.77	9.10	10.06	50yr
100yr	0.54	0.81	1.02	1.47	2.02	2.47	100yr	1.74	2.41	2.63	3.39	4.31	6.10	7.87	100yr	5.40	7.57	9.04	10.58	11.63	100yr
200yr	0.59	0.89	1.13	1.64	2.28	2.81	200yr	1.97	2.75	2.94	3.74	4.74	6.86	9.09	200yr	6.07	8.74	10.50	12.32	13.45	200yr
500yr	0.69	1.02	1.31	1.91	2.72	3.36	500yr	2.34	3.29	3.42	4.26	5.39	8.01	10.98	500yr	7.09	10.56	12.80	15.09	16.30	500yr

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.29	0.44	0.54	0.72	0.89	1.09	1yr	0.77	1.06	1.26	1.74	2.20	2.98	3.18	1yr	2.64	3.06	3.59	4.38	5.05	1yr
2yr	0.34	0.52	0.64	0.87	1.07	1.27	2уг	0.92	1.24	1.48	1.96	2.52	3.43	3.72	2yr	3.03	3.58	4.11	4.86	5.64	2yr
5yr	0.40	0.62	0.77	1.05	1.34	1.63	5yr	1.16	1.59	1.89	2.54	3.26	4.36	4.98	5yr	3.85	4.79	5.40	6.40	7.18	5yr
10yr	0.47	0.72	0.89	1.25	1.62	1.99	10yr	1.39	1.94	2.29	3.11	3.97	5.36	6.23	10yr	4.74	5.99	6.85	7.87	8.79	10yr
25yr	0.58	0.88	1.10	1.57	2.06	2.59	25yr	1.78	2.53	2.97	4.08	5.18	7.75	8.38	25yr	6.86	8.05	9.20	10.38	11.45	25yr
50yr	0.68	1.03	1.28	1.84	2.48	3.15	50yr	2.14	3.08	3.61	5.02	6.36	9.69	10.50	50yr	8.57	10.10	11.51	12.78	14.01	50yr
100yr	0.80	1.20	1.51	2.18	2.99	3.84	100yr	2.58	3.76	4.40	6.19	7.83	12.11	13.16	100yr	10.71	12.65	14.40	15.76	17.15	100yr
200yr	0.93	1.41	1.78	2.58	3.60	4.70	200yr	3.10	4.59	5.37	7.63	9.63	15.17	16.51	200yr	13.43	15.87	18.04	19.43	20.98	200yr
500yr	1.16	1.73	2.22	3.23	4.59	6.11	500yr	3.96	5.97	6.97	10.10	12.71	20.46	22.28	500yr	18.11	21.43	24.31	25.62	27.41	500yr

APPENDIX VII

Rip Rap Calculations

RIP RAP CALCULATIONS

Sagamore Avenue Condominiums 1169 & 1171 Sagamore Avenue Portsmouth, NH 03801

Jones & Beach Engineers, Inc.

P.O. Box 219

Stratham, NH 03885 8/11/2021, Rev 9/20/2021, Rev 12/22/2021, Rev 1/28/2022, Rev 3/21/22, Rev 4/18/22, Rev 5/10/22

Rip Rap equations were obtained from the Stormwater Management and Erosion Control Handbook for Urban and Developing Areas in New Hampshire. Aprons are sized for the 25-Year storm event.

TAILWATER < HALF THE D_0

$$\begin{split} L_{a} &= (1.8 \text{ x } \text{Q}) / \text{D}_{0}^{-3/2} + (7 \text{ x } \text{D}_{o}) \\ W &= L_{a} + (3 \text{ x } \text{D}_{o}) \text{ or defined channel width} \\ d_{50} &= (0.02 \text{ x } \text{Q}^{4/3}) / (\text{T}_{w} \text{ x } \text{D}_{0}) \end{split}$$

Culvert or	Tailwater	Discharge	Diameter	Length of	Width of	d ₅₀ -Median Stone
Catch Basin	(Feet)	(C.F.S.)	of Pipe	Rip Rap	Rip Rap	Rip Rap
(Sta. No.)	T _w	Q	D _o	L _a (feet)	W (feet)	d50 (feet)
15" HDPE (Pond 20P)	0.47	1.5	1.25	10.7	14	0.06

TAILWATER > HALF THE D_o

$$\begin{split} & L_a = (3.0 \text{ x } \text{Q}) \, / \, {D_0}^{3/2} + (7 \text{ x } D_o) \\ & W = (0.4 \text{ x } L_a) + (3 \text{ x } D_o) \text{ or defined channel width} \\ & d_{50} = (0.02 \text{ x } \text{Q}^{4/3}) \, / \, (T_w \text{ x } D_0) \end{split}$$

Culvert or Catch Basin	Tailwater (Feet)	Discharge (C.F.S.)	Diameter of Pipe	Length of Rip Rap	Width of Rip Rap	d ₅₀ -Median Stone Rip Rap
(Sta. No.)	T _w	Q	D _o	L _a (feet)	W (feet)	d50 (feet)
12" HDPE (Pond 10P)	0.63	1.59	1	11.8	8	0.06

d_{50} Size =	0.25	Feet	3	Inches
% of Weight Smaller		Siz	e of Stone (In	iches)
Than the Given d ₅₀ Size		From		То
100%		5		6
85%		4		5
50%		3		5
15%		1		2

d_{50} Size =	0.5	Feet	6	Inches
% of Weight Smaller		Siz	e of Stone (In	iches)
Than the Given d ₅₀ Size		From		То
100%		9		12
85%		8		11
50%		6		9
15%		2		3

APPENDIX VIII

BMP Worksheets

FILTRATION PRACTICE DESIGN CRITERIA (Env-Wg 1508.07)

Type/Node Name:

Bioretention #1 (1P)

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable.

	Yes/No	Access grate provided?	← yes
Sheet		Note what sheet in the plan set contains the filter course specification.	
	inches	D _{FC} = Filter course thickness	18", or 24" if within GPA
	cf	V = Volume of storage ³ (attach a stage-storage table)	≥ 75%WQV
YES	ас	Drainage Area check.	< 10 ac
If a surface	sand filter	or underground sand filter is proposed:	
C. S. S. L	C. Star	50 peak elevation < Elevation of the top of the practice	← yes
	ft	Elevation of the top of the practice	
	ft	Peak elevation of the 50-year storm event (infiltration can be used in analysis)	_
	feet	D _{FC to SHWT} = Depth to SHWT from the bottom of the filter course	≥ 1'
	feet	D _{FC to ROCk} = Depth to bedrock from the bottom of the filter course	≥1'
	feet	D _{FC to UD} = Depth to UD from the bottom of the filter course	<u>> 1'</u>
	feet	E _{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test	pit)
	feet	E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p	it)
	feet	E _{UD} = Invert elevation of the underdrain (UD), if applicable	
	feet	E _{FC} = Elevation of the bottom of the filter course material ²	
March and	hours	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$	≤ 72-hrs
	cfs	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table)	
	ft	E_{WQV} = Elevation of WQV (attach stage-storage table)	
Calculate ti		if system IS underdrained:	
	hours	$T_{DRAIN} = Drain time = V / (A_{SA} * I_{DESIGN})$	<u><</u> 72-hrs
	Yes/No	(Use the calculations below)	
		If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	
	iph	Ksat _{DESIGN} = Design infiltration rate ¹	
	sf	A _{SA} = Surface area of the practice	
Calculate ti		if system IS NOT underdrained:	
	cf	V _{SED} = Sediment forebay volume, if used for pretreatment	<u>≥ 25%WQV</u>
		Method of Pretreatment? (not required for clean or roof runoff)	
320		75% x WQV (check calc for surface sand filter volume)	
107		25% x WQV (check calc for sediment forebay volume)	
427		WQV = 1 ANVAO WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
the second se	unitless ac-in	Rv = Runoff coefficient = 0.05 + (0.9 x I) WQV= 1" x Rv x A	
And in case of the local division of the loc	decimal	I = Percent impervious area draining to the practice, in decimal form	
0.12		A _I = Impervious area draining to the practice	
0.16	-	A = Area draining to the practice	
		Check if you reviewed the restrictions on unlined systems outlined in Env-Wq 1508.0	7(a).

f a biorete	ention ar	ea is proposed:	
YES	ac	Drainage Area no larger than 5 ac?	← yes
430	cf	V = Volume of storage ³ (attach a stage-storage table)	<u>></u> WQV
18.0	inches	D _{FC} = Filter course thickness	18", or 24" if within GPA
Sheet	- -	D5 Note what sheet in the plan set contains the filter course specification	
3.0	:1	Pond side slopes	<u>> 3</u> :1
Sheet		1 Note what sheet in the plan set contains the planting plans and surface cover	
f porous p	avement	is proposed:	
		Type of pavement proposed (Concrete? Asphalt? Pavers? Etc.)	
	acres	A _{SA} = Surface area of the pervious pavement	
	:1	Ratio of the contributing area to the pervious surface area	≤ 5:1
	inches	D _{FC} = Filter course thickness	12", or 18" if within GPA
Sheet	:	Note what sheet in the plan set contains the filter course spec.	mod. 304.1 (se spec)

1. Rate of the limiting layer (either the filter course or the underlying soil). Ksat_{design} includes factor of safey. See Env-Wq 1504.14 for guidance on determining the infiltration rate.

2. See lines 34, 40 and 48 for required depths of filter media.

3. Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet stucture, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.

Designer's Notes:

NHDES Alteration of Terrain

Last Revised: January 2019

Type III 24-hr 10 Yr 24 Hr(+15%) Rainfall=5.61" 21047-PROPOSED-2022-04-18 Printed 4/18/2022 Prepared by Jones and Beach Engineers, Inc. HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC

			-	-			
	Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	
	33.99	315	0	36.64	362	247	
	34.04	315	6	36.69	379	266	
	34.09	315	13	36.74	396	285	
	34.14	315	19	36.79	413	306	
	34.19	315	25	36.84	430	327	
	34.24	315	32	36.89	447	349	
	34.29	315	38	36.94	464	371	
	34.29	315	44	36.99	481	395	
	34.34 34.39	315	50	37.04	499	419	
			57	37.09	517	445	
	34.44 34.49	315 315	63	37.14	536	471	
		315	69	37.19	554	498	
	34.54		76	37.24	572	527	
	34.59	315 315	82	37.29	591	556	Riser
	34.64	315	88	37.34	609	586	
	34.69		95	37.39	628	617	Stora
	34.74	315	101		646	648	
	34.79	315	107	37.44 37.49	664	681	
	34.84 34.89	315 315	113	51.45	004	001	
	34.89	315	120				
Botton	a of 34.94	315	126				
filter c	ourse 35.04	315	128	WQV	Required = 427 cf		
= 35.0	35.04	315	131	WOV	Provided = 556-12	26 = 430 cf > 427	cf
	35.14	315	133				
Storage	35.19	315	135				
below =	35.24	315	138				
126 cf	35.29	315	140				
	35.34	315	143				
	35.39	315	145				
	35.44	315	147				
	35.49	315	150				
	35.54	315	152				
	35.59	315	154				
	35.64	315	157				
	35.69	315	159				
	35.74	315	161				
	35.79	315	164				
	35.84	315	166				
	35.89	315	169				
	35.94	315	171				
	35.99	315	173				
	36.04	315	176				
	36.09	315	178				
	36.14	315	180				
	36.19	315	183				
	36.24	315	185				
	36.29	315	187				
	36.34	315	190				
	36.39	315	192				
	36.44	315	195				
	36.49	315	197				
	36.54	329	213				
	36.59	345	230				
				E			

Stage-Area-Storage for Pond 1P: Bioretention #1

er Grate El. = 37.3

Page 1

age below = 556 cf

FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.07)

Type/Node Name:

Bioretention #2 (2P)

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable.

		Check if you reviewed the restrictions on unlined systems outlined in Env-Wq 1508.0	7(a).
0.24	ас	A = Area draining to the practice	
0.15	ас	A _I = Impervious area draining to the practice	
0.63	decimal	I = Percent impervious area draining to the practice, in decimal form	
0.62	unitless	$Rv = Runoff coefficient = 0.05 + (0.9 \times I)$	
0.15	ac-in	WQV= 1" x Rv x A	
533	cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
133		25% x WQV (check calc for sediment forebay volume)	
400	cf	75% x WQV (check calc for surface sand filter volume)	
		Method of Pretreatment? (not required for clean or roof runoff)	
	cf	V _{SED} = Sediment forebay volume, if used for pretreatment	<u>≥</u> 25%WQV
Calculate ti		if system IS NOT underdrained:	
	sf	A _{SA} = Surface area of the practice	
	iph	Ksat _{DESIGN} = Design infiltration rate ¹	
	-	If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	
	Yes/No	(Use the calculations below)	
-	hours	$T_{DRAIN} = Drain time = V / (A_{SA} * I_{DESIGN})$	≤ 72-hrs
Calculate ti	me to drain	if system IS underdrained:	
	ft	E _{wQv} = Elevation of WQV (attach stage-storage table)	
	cfs	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table)	
A search	hours	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$	<u><</u> 72-hrs
	feet	E _{FC} = Elevation of the bottom of the filter course material ²	
	feet	E _{UD} = Invert elevation of the underdrain (UD), if applicable	
	feet	E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p	it)
	feet	E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test	pit)
Martin .	feet	D _{FC to UD} = Depth to UD from the bottom of the filter course	<u>></u> 1'
	feet	$D_{FC \text{ to ROCK}}$ = Depth to bedrock from the bottom of the filter course	<u>></u> 1'
	feet	$D_{FC \text{ to SHWT}}$ = Depth to SHWT from the bottom of the filter course	<u>≥</u> 1'
	ft	Peak elevation of the 50-year storm event (infiltration can be used in analysis)	
	ft	Elevation of the top of the practice	
Pitter of	L.S. BY	50 peak elevation < Elevation of the top of the practice	← yes
	and the second se	or underground sand filter is proposed:	
YES	ас	Drainage Area check.	< 10 ac
	cf	V = Volume of storage ³ (attach a stage-storage table)	<u>></u> 75%WQV
	inches	D _{FC} = Filter course thickness	18", or 24" if within GPA
Sheet		Note what sheet in the plan set contains the filter course specification.	
	Yes/No	Access grate provided?	← yes

			the second se
f a biorete	ntion ar	ea is proposed:	
YES	36	Drainage Area no larger than 5 ac?	← yes
677	cf	V = Volume of storage ³ (attach a stage-storage table)	<u>></u> WQV 18", or 24" if
18.0	inches	D _{FC} = Filter course thickness	within GPA
Sheet		05 Note what sheet in the plan set contains the filter course specification	
3.0	:1	Pond side slopes	<u>> 3</u> :1
Sheet		L1 Note what sheet in the plan set contains the planting plans and surface cover	
f porous p	avemen	t is proposed:	
		Type of pavement proposed (Concrete? Asphalt? Pavers? Etc.)	
	acres	A _{SA} = Surface area of the pervious pavement	
	:1	Ratio of the contributing area to the pervious surface area	≤ 5:1
	inches	D _{FC} = Filter course thickness	12", or 18" if within GPA
			mod. 304.1 (se
Sheet		Note what sheet in the plan set contains the filter course spec.	spec)

1. Rate of the limiting layer (either the filter course or the underlying soil). Ksat_{design} includes factor of safey. See Env-Wq 1504.14 for guidance on determining the infiltration rate.

2. See lines 34, 40 and 48 for required depths of filter media.

3. Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet stucture, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.

Designer's Notes:

NHDES Alteration of Terrain

Last Revised: January 2019

Type III 24-hr 10 Yr 24 Hr(+15%) Rainfall=5.61" 21047-PROPOSED-2022-04-18 Prepared by Jones and Beach Engineers, Inc. HydroCAD® 10.10-4a s/n 10589 © 2020 HydroCAD Software Solutions LLC Printed 4/18/2022

Ele	evation	Surface	Storage	Elevation	Surface	Storage	
	(feet)	(Sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)	
	34.49	600	0	37.14	672	470	
	34.54	600	12	37.19	697	504	
	34.59	600	24	37.24	723	540	
	34.64	600	36	37.29	749	577	
	34.69	600	48	37.34	774	615	
	34.74	600	60	37.39	800	654	
	34.79	600	72	37.44	826	695	
	34.84	600	84	37.49	851	737	
	34.89	600	96	37.54	877	780	
	34.94	600	108	37.59	903	824	
	34.99	600	120	37.64	928	870	Riser Grate El. = 37.7
	35.04	600	132	37.69	954	917 965	
	35.09	600	144	37.74	980	1,015	Storage below = 917 ct
	35.14	600	156	37.79 37.84	1,005		
	35.19	600 600	168 180	37.89	1,031 1,057	1,066	
	35.24 35.29	600	192	37.94	1,082	1,118 1,172	
	35.34	600	204	37.99	1,108	1,1/2	
	35.39	600	216	51.88	1,100	1,220	
Bottom of	35.44	600	228				
	35.49	600	240				
filter course =	35.54	600	244				
35.5	35.59	600	249	WQV R	equired = 533 cf		
Storage below	35.64	600	253	WQV P	rovided = 917-240 =	= 677 cf	
= 240 cf	35.69	600	258				
	35.74	600	263				
	35.79	600	267				
	35.84	600	272				
	35.89	600	276				
	35,94	600	281				
	35.99	600	285				
	36.04	600	289				
	36.09	600	294				
	36.14	600	298				
	36.19	600	303				
	36.24	600	308				
	36.29	600	312				
	36.34	600	317				
	36.39	600	321				
	36.44	600	326				
	36.49	600	330				
	36.54	600 600	334 339				
	36.59 36.64	600	343				
	36.69	600	348				
	36.74	600	353				
	36.79	600	357				
	36.84	600	362				
	36.89	600	366				
	36.94	600	371				
	36.99	600	375				
	37.04	621	405				
	37.09	646	437				
			-				

Stage-Area-Storage for Pond 2P: Bioretention #2

Page 2

INFILTRATION PRACTICE CRITERIA (Env-Wq 1508.06)

Type/Node Name: Concrete Galley 8x14 (Subsurface infiltration basin, 5P)

Enter the type of infiltration practice (e.g., basin, trench) and the node name in the drainage analysis, if applicable.

Yes		Have you reviewed Env-Wq 1508.06(a) to ensure that infiltration is allowed?	← yes	
0.77	ac	A = Area draining to the practice		
0.44	0.44 ac A ₁ = Impervious area draining to the practice			
0.57	decimal	I = Percent impervious area draining to the practice, in decimal form		
0.57	unitless	$Rv = Runoff coefficient = 0.05 + (0.9 \times I)$		
0.43	ac-in	WQV= 1" x Rv x A		
1,577	cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")		
394	cf	25% x WQV (check calc for sediment forebay volume)		
		Method of pretreatment? (not required for clean or roof runoff)		
	cf	V _{SED} = Sediment forebay volume, if used for pretreatment	<u>≥ 25%WQV</u>	
2,178	cf	V = Volume ¹ (attach a stage-storage table)	≥ WQV	
1,232	sf	A _{SA} = Surface area of the bottom of the pond		
0.30	-	Ksat _{DESIGN} = Design infiltration rate ²		
51.2	hours	$I_{DRAIN} = Drain time = V / (A_{SA} ~ I_{DESIGN})$	< 72-hrs	
33.90	feet	E _{BTM} = Elevation of the bottom of the basin		
30.82		E _{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p		
29.57	feet	E _{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the tes		
3.08	feet	D _{SHWT} = Separation from SHWT	≥ ^{*³}	
4.3	feet	D _{ROCK} = Separation from bedrock	≥* ³	
	ft	D _{amend} = Depth of amended soil, if applicable due high infiltation rate	 ≥ 24″	
	ft	$D_T = Depth of trench, if trench proposed$	4 - 10 ft	
Yes	Yes/No	If a trench or underground system is proposed, has observation well been provid	led? ←yes	
		If a trench is proposed, does materialmeet Env-Wg 1508.06(k)(2) requirements. ⁴		
	Yes/No	If a basin is proposed, is the perimeter curvilinear, and basin floor flat?	← yes	
	:1	If a basin is proposed, pond side slopes.	<u>≥</u> 3:1	
35.72	ft	Peak elevation of the 10-year storm event (infiltration can be used in analysis)		
36.86	ft	Peak elevation of the 50-year storm event (infiltration can be used in analysis)		
36.90	ft	Elevation of the top of the practice (if a basin, this is the elevation of the berm)		
YES	11773."	10 peak elevation \leq Elevation of the top of the trench? ⁵	← yes	
YES		If a basin is proposed, 50-year peak elevation \leq Elevation of berm?	← yes	

1. Volume below the lowest invert of the outlet structure and excludes forebay volume

2. Ksat_{DESIGN} includes a factor of safety. See Env-Wq 1504.14 for requirements for determining the infiltr. rate

3. 1' separation if treatment not required; 4' for treatment in GPAs & WSIPAs; & 3' in all other areas.

4. Clean, washed well graded diameter of 1.5 to 3 inches above the in-situ soil.

5. If 50-year peak elevation exceeds top of trench, the overflow must be routed in HydroCAD as secondary discharge.

Designer's Notes:

Last Revised: March 2019

Stage-Area-Storage for Pond 5P: Concrete Galley 8x14 INFILTRATION

Elevation Surface Storage (refet) (acree) (ac			-				
$ \begin{array}{c} 30.60 & 0.035 & 0.000 \\ 31.00 & 0.035 & 0.001 \\ 31.00 & 0.035 & 0.004 \\ 31.20 & 0.035 & 0.004 \\ 31.20 & 0.035 & 0.004 \\ 31.20 & 0.035 & 0.006 \\ 31.40 & 0.035 & 0.007 \\ 31.60 & 0.035 & 0.007 \\ 31.80 & 0.035 & 0.010 \\ 31.80 & 0.035 & 0.011 \\ 31.80 & 0.035 & 0.011 \\ 31.80 & 0.035 & 0.011 \\ 31.80 & 0.035 & 0.011 \\ 31.80 & 0.035 & 0.014 \\ 37.20 & 0.071 & 0.127 \\ 32.20 & 0.035 & 0.016 \\ 37.30 & 0.071 & 0.128 \\ 32.20 & 0.035 & 0.026 \\ 32.40 & 0.035 & 0.026 \\ 32.20 & 0.035 & 0.026 \\ 32.20 & 0.035 & 0.026 \\ 32.20 & 0.035 & 0.026 \\ 32.20 & 0.035 & 0.026 \\ 32.20 & 0.035 & 0.026 \\ 32.20 & 0.035 & 0.026 \\ 32.20 & 0.035 & 0.026 \\ 33.20 & 0.035 & 0.026 \\ 33.30 & 0.035 & 0.026 \\ 33.30 & 0.035 & 0.034 \\ 33.30 & 0.035 & 0.034 \\ 33.40 & 0.071 & 0.046 \\ 33.80 & 0.071 & 0.046 \\ 33.80 & 0.071 & 0.046 \\ 33.80 & 0.071 & 0.046 \\ 33.80 & 0.071 & 0.046 \\ 33.80 & 0.071 & 0.046 \\ 33.80 & 0.071 & 0.046 \\ 33.80 & 0.071 & 0.046 \\ 33.80 & 0.071 & 0.046 \\ 33.80 & 0.071 & 0.046 \\ 34.40 & 0.071 & 0.046 \\ 34.40 & 0.071 & 0.046 \\ 34.40 & 0.071 & 0.046 \\ 34.50 & 0.071 & 0.067 \\ 34.60 & 0.071 & 0.067 \\ 34.60 & 0.071 & 0.067 \\ 34.60 & 0.071 & 0.067 \\ 35.20 & 0.071 & 0.068 \\ 34.60 & 0.071 & 0.068 \\ 34.60 & 0.071 & 0.068 \\ 34.60 & 0.071 & 0.068 \\ 34.60 & 0.071 & 0.068 \\ 34.60 & 0.071 & 0.068 \\ 34.60 & 0.071 & 0.068 \\ 34.60 & 0.071 & 0.068 \\ 34.60 & 0.071 & 0.068 \\ 34.60 & 0.071 & 0.068 \\ 34.60 & 0.071 & 0.068 \\ 34.60 & 0.071 & 0.068 \\ 35.60 & 0.071 & 0.068 \\ 35.80 & 0.071 & 0.086 \\ 35.80 & 0.071 & 0.086 \\ 35.80 & 0.071 & 0.086 \\ 35.80 & 0.071 & 0.086 \\ 35.80 & 0.071 & 0.086 \\ 35.80 & 0.071 & 0.086 \\ 35.90 & 0.071 & 0.086 \\ 35.90 & 0.071 & 0.086 \\ 35.90 & 0.071 & 0.086 \\ 35.90 & 0.071 & 0.086 \\ 35.90 & 0.071 & 0.086 \\ 35.90 & 0.071 & 0.086 \\ 35.90 & 0.071 & 0.086 \\ 35.90 & 0.071 & 0.086 \\ 35.90 & 0.071 & 0.086 \\ 35.90 & 0.071 & 0.086 \\ 35.90 & 0.071 & 0.086 \\ 35.90 & 0.071 & 0.086 \\ 35.90 & 0.071 & 0.086 \\ 35.90 & 0.071 & 0.086 \\ 35.90 & 0.071 & 0.086 \\ 35.90 & 0.071 & 0.086 \\ 35.90 & 0.071 & 0.086 \\ 35.90 & 0.071 & 0.086 \\ 35.90 & 0.071 & 0.086 $		Elevation	Surface	Elevation			
$ \begin{array}{c} 31 00 & 0.035 & 0.004 \\ 31 120 & 0.035 & 0.004 \\ 31 20 & 0.035 & 0.004 \\ 31 30 & 0.035 & 0.006 \\ 31 30 & 0.035 & 0.007 \\ 31 30 & 0.035 & 0.007 \\ 31 30 & 0.035 & 0.007 \\ 31 30 & 0.035 & 0.007 \\ 31 31 60 & 0.035 & 0.010 \\ 31 31 60 & 0.035 & 0.011 \\ 31 70 & 0.035 & 0.011 \\ 31 30 & 0.035 & 0.014 \\ 31 20 & 0.035 & 0.014 \\ 31 20 & 0.035 & 0.014 \\ 31 20 & 0.035 & 0.014 \\ 32 200 & 0.035 & 0.014 \\ 32 200 & 0.035 & 0.017 \\ 32 200 & 0.035 & 0.017 \\ 32 200 & 0.035 & 0.017 \\ 32 200 & 0.035 & 0.014 \\ 32 200 & 0.035 & 0.017 \\ 32 200 & 0.035 & 0.017 \\ 32 200 & 0.035 & 0.017 \\ 32 200 & 0.035 & 0.024 \\ 32 200 & 0.035 & 0.024 \\ 32 200 & 0.035 & 0.024 \\ 32 200 & 0.035 & 0.024 \\ 32 200 & 0.035 & 0.024 \\ 32 200 & 0.035 & 0.024 \\ 32 200 & 0.035 & 0.024 \\ 32 200 & 0.035 & 0.026 \\ 33 20 & 0.035 & 0.028 \\ 33 40 & 0.035 & 0.034 \\ 33 40 & 0.035 & 0.034 \\ 33 40 & 0.035 & 0.034 \\ 33 40 & 0.035 & 0.034 \\ 33 40 & 0.035 & 0.034 \\ 33 80 & 0.035 & 0.034 \\ 33 40 & 0.035 & 0.034 \\ 33 40 & 0.035 & 0.034 \\ 33 40 & 0.035 & 0.034 \\ 33 40 & 0.035 & 0.034 \\ 33 40 & 0.035 & 0.034 \\ 33 60 & 0.035 & 0.034 \\ 33 80 & 0.035 & 0.034 \\ 33 40 & 0.035 & 0.034 \\ 33 80 & 0.035 & 0.034 \\ 33 80 & 0.035 & 0.034 \\ 33 80 & 0.035 & 0.034 \\ 33 80 & 0.071 & 0.043 \\ 34 40 & 0.071 & 0.048 \\ 34 40 & 0.071 & 0.057 \\ 34 40 & 0.071 & 0.057 \\ 34 40 & 0.071 & 0.057 \\ 34 40 & 0.071 & 0.057 \\ 34 40 & 0.071 & 0.057 \\ 34 40 & 0.071 & 0.057 \\ 34 40 & 0.071 & 0.057 \\ 34 40 & 0.071 & 0.057 \\ 34 40 & 0.071 & 0.057 \\ 35 70 & 0.071 & 0.057 \\$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
31:20 0.035 0.004 36.50 0.071 0.115 31:30 0.035 0.009 36.60 0.071 0.124 31:50 0.035 0.009 36.80 0.071 0.124 31:70 0.035 0.011 37.00 0.071 0.124 31:80 0.035 0.011 37.00 0.071 0.127 31:80 0.035 0.014 37.20 0.071 0.127 31:80 0.035 0.014 37.20 0.071 0.128 32:00 0.035 0.014 37.30 0.071 0.128 32:20 0.035 0.020 37.50 0.071 0.128 32:20 0.035 0.022 37.50 0.071 0.128 32:20 0.035 0.022 37.50 0.071 0.128 33:20 0.035 0.023 0.33 0.33 0.035 0.33 33:20 0.035 0.034 0.33 0.33 0.071 0.43 33:40 0.035 0.038 0.33 0.33							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c} 31.40 & 0.035 & 0.007 \\ 31.60 & 0.035 & 0.010 \\ 31.80 & 0.035 & 0.011 \\ 31.70 & 0.035 & 0.011 \\ 31.70 & 0.035 & 0.011 \\ 31.70 & 0.035 & 0.014 \\ 37.20 & 0.071 & 0.127 \\ 31.90 & 0.035 & 0.014 \\ 37.20 & 0.071 & 0.127 \\ 32.10 & 0.035 & 0.014 \\ 37.20 & 0.071 & 0.128 \\ 32.20 & 0.035 & 0.017 \\ 37.40 & 0.071 & 0.128 \\ 32.20 & 0.035 & 0.023 \\ 32.40 & 0.035 & 0.023 \\ 32.60 & 0.035 & 0.023 \\ 32.60 & 0.035 & 0.026 \\ 32.80 & 0.035 & 0.026 \\ 32.80 & 0.035 & 0.026 \\ 32.80 & 0.035 & 0.026 \\ 32.80 & 0.035 & 0.026 \\ 32.80 & 0.035 & 0.026 \\ 33.00 & 0.035 & 0.026 \\ 33.00 & 0.035 & 0.036 \\ 33.00 & 0.035 & 0.036 \\ 33.00 & 0.035 & 0.036 \\ 33.80 & 0.035 & 0.035 \\ 33.60 & 0.035 & 0.038 \\ 33.70 & 0.035 & 0.038 \\ 33.80 & 0.035 & 0.038 \\ 33.80 & 0.035 & 0.038 \\ 33.80 & 0.035 & 0.038 \\ 33.80 & 0.071 & 0.043 \\ 83.80 & 0.071 & 0.043 \\ 84.80 & 0.071 & 0.043 \\ 84.80 & 0.071 & 0.065 \\ 34.80 & 0.071 & 0.065 \\ 34.80 & 0.071 & 0.065 \\ 34.80 & 0.071 & 0.065 \\ 34.80 & 0.071 & 0.065 \\ 34.80 & 0.071 & 0.065 \\ 34.80 & 0.071 & 0.065 \\ 34.80 & 0.071 & 0.065 \\ 35.50 & 0.071 & 0.068 \\ 35.50 & 0.071 & 0.088 \\ 35.50 & 0.071 & 0.088 \\ 35.50 & 0.071 & 0.088 \\ 35.60 & 0.071 & 0.088 \\ 35.60 & 0.071 & 0.088 \\ 35.60 & 0.071 & 0.088 \\ 35.60 & 0.071 & 0.088 \\ 35.60 & 0.071 & 0.098 \\ 35.60 & 0.071 & 0.098 \\ 35.60 & 0.071 & 0.098 \\ 35.60 & 0.071 & 0.098 \\ 35.60 & 0.071 & 0.098 \\ 35.60 & 0.071 & 0.098 \\ 35.60 & 0.071 & 0.098 \\ 35.60 & 0.071 & 0.098 \\ 35.60 & 0.071 & 0.098 $							
31.50 0.035 0.009 38.80 0.071 0.124 31.60 0.035 0.011 37.00 0.071 0.127 31.80 0.035 0.014 37.20 0.071 0.127 32.00 0.035 0.014 37.20 0.071 0.127 32.00 0.035 0.016 37.30 0.071 0.128 32.10 0.035 0.016 37.30 0.071 0.128 32.20 0.035 0.021 37.40 0.071 0.128 32.20 0.035 0.021 37.50 0.071 0.128 32.20 0.035 0.024 WQV Required = 1,577 cf WQV Provided = 4,051 cf - 1,873 cf = 2,178 cf > 1,577 cf 32.80 0.035 0.034 0.035 0.034 33.30 0.035 0.034 33.30 0.035 0.041 33.30 0.035 0.034 33.30 0.035 0.041 33.30 0.035 0.041 33.80 0.037 33.80 0.037 33.40 0.071 0.046 34.40 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>							
31.80 0.035 0.010 36.90 0.071 0.127 31.70 0.035 0.011 37.00 0.071 0.127 31.80 0.035 0.014 37.20 0.071 0.127 31.80 0.035 0.014 37.20 0.071 0.127 32.00 0.035 0.017 37.40 0.071 0.128 32.10 0.035 0.021 37.50 0.071 0.128 32.20 0.035 0.021 37.50 0.071 0.128 32.20 0.035 0.021 37.50 0.071 0.128 32.20 0.035 0.022 WQV Required = 1,577 cf WQV Provided = 4,051 cf - 1,873 cf = 2,178 cf > 1,577 cf 32.80 0.035 0.033 33.00 0.035 0.033 33.10 0.035 0.033 33.00 0.035 0.034 33.80 0.035 0.033 0.034 0.041 0.043 33.80 0.071 0.043 0.041 0.057 0.057 34.40 0.071 0.043 0.054 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>							
31.70 0.036 0.011 37.00 0.071 0.127 31.80 0.035 0.014 37.20 0.071 0.127 32.00 0.035 0.014 37.20 0.071 0.127 32.00 0.035 0.014 37.20 0.071 0.128 32.10 0.035 0.018 37.50 0.071 0.128 32.20 0.035 0.021 0.071 0.128 32.40 0.035 0.021 0.071 0.128 32.40 0.035 0.024 WQV Required = 1,577 cf 32.60 0.035 0.026 WQV Provided = 4,051 cf - 1,873 cf = 2,178 cf > 1,577 cf 32.90 0.035 0.034 0.33 0.33 33.10 0.035 0.034 0.34 0.071 0.045 33.40 0.035 0.034 0.33 0.071 0.046 33.80 0.071 0.046 33.80 0.071 0.046 34.00 0.071 0.046 34.40 0.071 0.057 34.60 0.071 0.056 34.6							
$ \begin{array}{c} 31.80 & 0.035 & 0.013 \\ 31.90 & 0.035 & 0.016 \\ 32.00 & 0.035 & 0.016 \\ 32.10 & 0.035 & 0.017 \\ 32.20 & 0.035 & 0.017 \\ 32.20 & 0.035 & 0.017 \\ 32.20 & 0.035 & 0.021 \\ 32.20 & 0.035 & 0.021 \\ 32.20 & 0.035 & 0.022 \\ 32.40 & 0.035 & 0.024 \\ 32.60 & 0.035 & 0.024 \\ 32.60 & 0.035 & 0.024 \\ 32.80 & 0.035 & 0.024 \\ 33.00 & 0.035 & 0.024 \\ 33.00 & 0.035 & 0.024 \\ 33.00 & 0.035 & 0.024 \\ 33.00 & 0.035 & 0.024 \\ 33.00 & 0.035 & 0.024 \\ 33.00 & 0.035 & 0.024 \\ 33.00 & 0.035 & 0.034 \\ 33.20 & 0.035 & 0.034 \\ 33.20 & 0.035 & 0.034 \\ 33.80 & 0.035 & 0.034 \\ 33.80 & 0.035 & 0.034 \\ 33.80 & 0.035 & 0.034 \\ 33.80 & 0.035 & 0.034 \\ 33.80 & 0.035 & 0.034 \\ 33.80 & 0.035 & 0.044 \\ 5 \ Storage below \\ = 1.873 \ cf \\ 34.40 & 0.071 & 0.054 \\ = 1.873 \ cf \\ 34.40 & 0.071 & 0.054 \\ = 1.873 \ cf \\ 34.40 & 0.071 & 0.054 \\ = 1.873 \ cf \\ 34.60 & 0.071 & 0.054 \\ = 1.873 \ cf \\ 35.60 & 0.071 & 0.054 \\ = 35.70 & 0.071 & 0.054 \\ = 35.70 & 0.071 & 0.054 \\ = 35.70 & 0.071 & 0.054 \\ = 35.70 & 0.071 & 0.054 \\ = 35.70 & 0.071 & 0.056 \\ 35.80 & 0.071 & 0.058 \\ 35.80 & 0.071 & 0.058 \\ 35.80 & 0.071 & 0.068 \\ 35.80 & 0.071 & 0.078 \\ 35.80 & 0.071 & 0.068 \\ 35.80 & 0.071 & 0.078 \\ 35.80 & 0.071 & 0.078 \\ 35.80 & 0.071 & 0.078 \\ 35.80 & 0.071 & 0.098 \\ 35.90 & 0.071 & 0.091 \\ 35.90 & 0.071 & 0.098 \\ 35.90 & 0.071$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					0.071		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
32.20 0.035 0.018 37.50 0.071 0.128 32.40 0.035 0.021 0.035 0.024 0.035 0.024 32.60 0.035 0.024 0.035 0.024 0.035 0.024 32.60 0.035 0.026 0.035 0.026 WQV Required = 1,577 cf 32.80 0.035 0.035 0.028 (see below calculations) (see below calculations) 33.00 0.035 0.034 0.035 0.035 (see below calculations) 33.80 0.035 0.038 0.038 0.035 0.034 33.80 0.035 0.038 0.035 0.034 33.80 0.035 0.041 0.043 basin = 33.9 34.00 0.071 0.045 Storage below 34.10 0.071 0.045 34.60 0.071 0.057 34.60 0.071 35.00 0.071 0.065 34.80 0.071 0.065 35.00 0.071 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
$Bottom of 33.90 0.035 0.024 \\ 32.20 0.035 0.023 \\ 32.20 0.035 0.024 \\ 32.20 0.035 0.026 \\ 33.00 0.035 0.028 \\ 33.00 0.035 0.030 \\ 33.10 0.035 0.031 \\ 33.20 0.035 0.034 \\ 33.40 0.035 0.034 \\ 33.40 0.035 0.034 \\ 33.80 0.035 0.034 \\ 33.80 0.035 0.034 \\ 33.80 0.035 0.041 \\ 33.80 0.035 0.041 \\ 33.80 0.035 0.041 \\ 33.80 0.035 0.041 \\ 5torage below 34.10 0.071 0.048 \\ 5torage below 34.00 0.071 0.054 \\ = 1873 cf 34.40 0.071 0.054 \\ = 1873 cf 34.40 0.071 0.054 \\ 34.50 0.071 0.055 \\ 34.60 0.071 0.055 \\ 34.60 0.071 0.056 \\ 34.80 0.071 0.056 \\ 34.80 0.071 0.056 \\ 34.80 0.071 0.056 \\ 34.80 0.071 0.066 \\ 34.80 0.071 0.066 \\ 35.00 0.071 0.076 \\ 35.00 0.071 0.084 \\ 35.00 0.071 0.076 \\ 35.00 0.071 0.076 \\ 35.00 0.071 0.076 \\ 35.00 0.071 0.084 \\ 35.00 0.071 0.076 \\ 35.00 0.071 0.084 \\ 35.00 0.071 0.084 \\ 35.00 0.071 0.076 \\ 35.00 0.071 0.084 \\ 35.00 0.071 0.084 \\ 35.00 0.071 0.084 \\ 35.00 0.071 0.084 \\ 35.00 0.071 0.084 \\ 35.00 0.071 0.098 \\ 35.00 0.097 \\ 35.00 0.097 \\ 35.00 0.097 \\ 35.00 0.097 \\ 35.00 0.09$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				37.50	0.071	0.128	
32.60 0.035 0.023 32.60 0.035 0.024 32.70 0.035 0.026 32.80 0.035 0.027 32.90 0.035 0.028 33.00 0.035 0.028 33.00 0.035 0.036 33.10 0.035 0.035 33.30 0.035 0.035 33.80 0.035 0.035 33.80 0.035 0.040 33.80 0.035 0.040 33.80 0.071 0.045 Storage below 34.00 0.071 0.046 44.00 0.071 0.057 34.50 0.071 0.057 34.60 0.071 0.065 34.80 0.071 0.068 34.80 0.071 0.068 34.80 0.071 0.076 35.00 0.071 0.076 35.20 0.071 0.076 35.80 0.071 0.087 35.80 0.071 0.087 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
32.60 0.035 0.024 32.70 0.035 0.026 32.80 0.035 0.027 32.90 0.035 0.028 33.00 0.035 0.026 33.00 0.035 0.027 33.00 0.035 0.031 33.20 0.035 0.033 33.30 0.035 0.034 33.40 0.035 0.034 33.50 0.035 0.034 33.60 0.035 0.041 33.80 0.035 0.041 33.80 0.035 0.041 basin = 33.9 34.00 0.071 0.043 Storage below 34.40 0.071 0.054 = 1873 cf 34.30 0.071 0.052 34.60 0.071 0.062 34.60 0.071 0.076 35.20 0.071 0.071 35.80 0.071 0.082 35.80 0.071 0.082 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c} 32.80 & 0.035 & 0.027 \\ 32.90 & 0.035 & 0.028 \\ 33.00 & 0.035 & 0.030 \\ 33.10 & 0.035 & 0.031 \\ 33.20 & 0.035 & 0.033 \\ 33.30 & 0.035 & 0.034 \\ 33.40 & 0.035 & 0.035 \\ 33.50 & 0.035 & 0.037 \\ 33.80 & 0.035 & 0.041 \\ 33.80 & 0.035 & 0.041 \\ 33.80 & 0.035 & 0.041 \\ 33.80 & 0.071 & 0.043 \\ 33.80 & 0.071 & 0.043 \\ 34.00 & 0.071 & 0.054 \\ = 1873 cf & 34.40 & 0.071 & 0.054 \\ = 1873 cf & 34.60 & 0.071 & 0.054 \\ = 1873 cf & 34.60 & 0.071 & 0.054 \\ = 34.60 & 0.071 & 0.056 \\ 34.80 & 0.071 & 0.056 \\ 34.80 & 0.071 & 0.056 \\ 34.80 & 0.071 & 0.062 \\ 34.70 & 0.071 & 0.062 \\ 34.70 & 0.071 & 0.062 \\ 34.70 & 0.071 & 0.068 \\ 34.90 & 0.071 & 0.076 \\ 35.20 & 0.071 & 0.076 \\ 35.20 & 0.071 & 0.076 \\ 35.20 & 0.071 & 0.076 \\ 35.20 & 0.071 & 0.076 \\ 35.50 & 0.071 & 0.076 \\ 35.50 & 0.071 & 0.086 \\ 35.90 & 0.071 & 0.093 \\ 35.80 & 0.071 & 0.093 \\ 35.80 & 0.071 & 0.093 \\ 35.80 & 0.071 & 0.093 \\ 35.80 & 0.071 & 0.094 \\ 35.90 & 0.071 & 0.096 \\ 35.90 & 0$				WQV Re	equired $= 1,57$	7 cf	
33.00 0.035 0.030 33.10 0.035 0.031 33.20 0.035 0.033 33.20 0.035 0.034 33.40 0.035 0.035 33.50 0.035 0.035 33.60 0.035 0.036 33.60 0.035 0.041 33.80 0.035 0.041 33.80 0.035 0.041 33.80 0.035 0.041 33.80 0.071 0.043 33.80 0.071 0.044 34.10 0.071 0.045 Storage below 34.20 0.071 0.054 34.40 0.071 0.055 34.60 0.071 0.056 34.60 0.071 0.062 34.40 0.071 0.068 34.40 0.071 0.067 35.30 0.071 0.076 35.20 0.071 0.087 35.60 0.071 0.087 35.80 0.071 <t< th=""><th></th><th></th><th></th><th>WQV Pr</th><th>ovided = 4,051</th><th>l cf - 1,873 cf = 2,17</th><th>$78 \text{ cf} \ge 1,577 \text{ cf}$</th></t<>				WQV Pr	ovided = 4,051	l cf - 1,873 cf = 2,17	$78 \text{ cf} \ge 1,577 \text{ cf}$
33.00 0.035 0.030 33.10 0.035 0.031 33.20 0.035 0.033 33.20 0.035 0.034 33.40 0.035 0.037 33.60 0.035 0.037 33.60 0.035 0.041 Bottom of 33.80 0.035 0.041 Basin = 33.9 34.00 0.071 0.043 Storage below 34.20 0.071 0.045 = 0.043 ac-ft 34.30 0.071 0.054 = 1873 cf 34.40 0.071 0.054 34.60 0.071 0.062 34.40 0.071 0.062 34.40 0.071 0.062 34.40 0.071 0.062 34.40 0.071 0.076 35.20 0.071 0.076 35.20 0.071 0.087 35.60 0.071 0.086 35.60 0.071 0.087 35.80 0.071 0.098 35.80 0.071 0.098		32.90	0.035	(see belo	w calculations		
33.20 0.035 0.033 33.30 0.035 0.034 33.40 0.035 0.035 33.50 0.035 0.038 33.60 0.035 0.040 33.80 0.035 0.041 33.80 0.035 0.041 33.80 0.035 0.041 33.80 0.035 0.041 33.80 0.035 0.041 33.80 0.071 0.045 Storage below 34.10 0.071 0.051 = 0.043 ac-ft 34.30 0.071 0.054 = 1873 cf 34.40 0.071 0.065 34.60 0.071 0.065 34.80 0.071 0.067 35.00 0.071 0.073 35.10 0.071 0.073 35.40 0.071 0.084 35.50 0.071 0.084 35.50 0.071 0.084 35.80 0.071 0.093 35.80 0.071 0.093 35.80 0.071 0.09						<i>,</i>	
33.30 0.035 0.034 33.40 0.035 0.035 33.50 0.035 0.037 33.60 0.035 0.040 33.80 0.035 0.040 33.80 0.071 0.043 basin = 33.9 34.00 0.071 0.045 Storage below 34.20 0.071 0.045 34.00 0.071 0.046 34.20 Storage below 34.20 0.071 0.051 = 0.043 ac-ft 34.30 0.071 0.057 34.60 0.071 0.062 34.70 0.071 34.80 0.071 0.062 34.80 0.071 35.00 0.071 0.078 35.30 0.071 0.079 35.30 0.071 0.082 35.40 0.071 0.082 35.40 0.071 0.082 35.40 0.071 0.093 35.80 0.071 0.093 35.80 0.071 0.093 35.80							
33.40 0.035 0.035 33.50 0.035 0.037 33.60 0.035 0.038 33.70 0.035 0.040 33.80 0.035 0.041 basin = 33.9 34.00 0.071 0.045 Storage below 34.10 0.071 0.046 storage below 34.20 0.071 0.051 = 0.043 ac-ft 34.30 0.071 0.052 34.60 0.071 0.052 34.60 0.071 0.062 34.70 0.071 0.062 34.80 0.071 0.062 34.80 0.071 0.073 35.10 0.071 0.073 35.20 0.071 0.073 35.30 0.071 0.087 35.60 0.071 0.087 35.60 0.071 0.093 35.80 0.071 0.093 35.90 0.071 0.093 35.90 0.071 0.098 35.90 0.071 0.098 36.00							
33.50 0.035 0.037 33.60 0.035 0.038 33.70 0.035 0.040 33.80 0.035 0.041 Bottom of 33.90 0.071 0.043 basin = 33.9 34.00 0.071 0.0445 Storage below 34.10 0.071 0.045 = 0.043 ac-ft 34.20 0.071 0.054 = 1873 cf 34.40 0.071 0.057 34.60 0.071 0.062 34.70 0.071 0.0665 34.80 0.071 0.068 34.90 0.071 0.076 35.10 0.071 0.078 35.10 0.071 0.082 35.40 0.071 0.082 35.80 0.071 0.087 35.80 0.071 0.093 35.80 0.071 0.093 35.90 0.071 0.093 35.90 0.071 0.098 36.00 0.071 0.098 36.00 0.071 0.098							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
Bottom of 33.80 0.035 0.041 basin = 33.9 34.00 0.071 0.043 basin = 33.9 34.00 0.071 0.045 Storage below = 0.043 ac-ft = 1873 cf 34.20 0.071 0.054 = 1873 cf 34.40 0.071 0.057 34.50 0.071 0.065 34.60 0.071 0.065 34.80 0.071 0.068 34.90 0.071 0.078 35.00 0.071 0.073 35.10 0.071 0.073 35.10 0.071 0.073 35.20 0.071 0.082 35.30 0.071 0.082 35.50 0.071 0.084 35.50 0.071 0.084 35.50 0.071 0.084 35.50 0.071 0.084 35.50 0.071 0.093 35.80 0.071 0.093 35.80 0.071 0.093 35.80 0.071 0.093 35.90 0.071 0.093 35.90 0.071 0.093							
basin = 33.9 34.00 0.071 0.045 Storage below 34.10 0.071 0.048 = 0.043 ac-ft 34.30 0.071 0.051 = 1873 of 34.40 0.071 0.059 34.60 0.071 0.062 34.70 0.071 0.065 34.80 0.071 0.065 34.80 0.071 0.065 34.80 0.071 0.071 35.00 0.071 0.073 35.10 0.071 0.079 35.30 0.071 0.082 35.40 0.071 0.082 35.50 0.071 0.082 35.80 0.071 0.087 35.80 0.071 0.093 35.80 0.071 0.093 35.80 0.071 0.098 36.00 0.071 0.098 36.00 0.071 0.098 36.00 0.071 0.098 36.00 0.071 0.098							
Storage below 34.10 0.071 0.048 = 0.043 ac-ft 34.30 0.071 0.051 = 1873 cf 34.40 0.071 0.057 34.50 0.071 0.052 34.60 0.071 0.065 34.60 0.071 0.065 34.80 0.071 0.065 34.80 0.071 0.068 34.90 0.071 0.073 35.10 0.071 0.076 35.20 0.071 0.082 35.40 0.071 0.082 35.50 0.071 0.082 35.60 0.071 0.090 35.50 0.071 0.093 35.80 0.071 0.093 35.80 0.071 0.098 36.00 0.071 0.098 36.00 0.071 0.101	Bottom of						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	basin = 33						
$= 0.043 \text{ ac-ft} 34.30 0.071 0.054 \\ = 1873 \text{ cf} 34.40 0.071 0.057 \\ 34.50 0.071 0.059 \\ 34.60 0.071 0.062 \\ 34.70 0.071 0.065 \\ 34.80 0.071 0.065 \\ 34.80 0.071 0.073 \\ 35.00 0.071 0.073 \\ 35.10 0.071 0.076 \\ 35.20 0.071 0.079 \\ 35.30 0.071 0.082 \\ 35.40 0.071 0.082 \\ 35.50 0.071 0.084 \\ 35.50 0.071 0.084 \\ 35.50 0.071 0.093 \\ 35.80 0.071 0.093 \\ 35.80 0.071 0.093 \\ 35.80 0.071 0.098 \\ 36.00 0.071 0.101 $	Storage b						
= 1873 cf 34.30 0.071 0.057 34.50 0.071 0.059 34.60 0.071 0.062 34.70 0.071 0.065 34.80 0.071 0.068 34.90 0.071 0.071 35.00 0.071 0.073 35.10 0.071 0.076 35.20 0.071 0.079 35.30 0.071 0.082 35.40 0.071 0.084 35.50 0.071 0.084 35.60 0.071 0.087 35.60 0.071 0.087 35.60 0.071 0.090 35.80 0.071 0.090 35.80 0.071 0.090 35.80 0.071 0.096 35.90 0.071 0.098 35.90 0.071 0.098	= 0.043 a						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		34.30					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
35.20 0.071 0.079 35.30 0.071 0.082 35.40 0.071 0.084 35.50 0.071 0.087 35.60 0.071 0.090 35.70 0.071 0.093 35.80 0.071 0.096 35.90 0.071 0.098 36.00 0.071 0.101							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
35.40 0.071 0.084 35.50 0.071 0.087 35.60 0.071 0.090 35.70 0.071 0.093 35.80 0.071 0.096 35.90 0.071 0.098 36.00 0.071 0.101							
35.50 0.071 0.087 35.60 0.071 0.090 35.70 0.071 0.093 35.80 0.071 0.093 35.80 0.071 0.096 35.90 0.071 0.098 36.00 0.071 0.101							
35.60 0.071 0.090 Overflow invert = 35.7 35.70 0.071 0.093 Storage below = 0.093 ac-ft = 4051 cf 35.80 0.071 0.098 Storage below = 0.093 ac-ft = 4051 cf 35.90 0.071 0.098 Overflow invert = 35.7 36.00 0.071 0.098 Storage below = 0.093 ac-ft = 4051 cf							
35.80 0.071 0.096 35.90 0.071 0.098 36.00 0.071 0.101				Overflow inve	rt = 35.7		
35.80 0.071 0.096 35.90 0.071 0.098 36.00 0.071 0.101				Storage below	0.093 ac-ft	4051 cf	
36.00 0.071 0.101				Ť			
			0.071	ļ			

APPENDIX IX

Jellyfish Design Information

CONTECH Stormwater Solutions Inc. Engineer:	JBS
Date Prepared:	5/4/2022
Site Information	
Project Name	Sagamore Avenue Condominiums
Project State	NH
Project City	Portsmouth
Site Designation	Jellyfish
Total Drainage Area, Ad	0.19 ac
Post Development Impervious Area, Ai	0.19 ac
Pervious Area, Ap	0.00 ac
% Impervious	100%
Runoff Coefficient, Rc	0.95
Mass Loading Calculations	
Mean Annual Rainfall, P	50 in
Agency Required % Removal	80%
Percent Runoff Capture	90%
Mean Annual Runoff, Vt	29,485 ft ³
Event Mean Concentration of Pollutant, EMC	75 mg/l
Annual Mass Load, M total	138 lbs
Filter System	
Filtration Brand	Jelly Fish
Cartridge Length	40 in
Jelly Fish Sizing Parameters	
Mass to be Captured by Fitler Vault	110 lbs
Water Quality Flow to be treated by Filter Vault	0.18 cfs
Method to Use	FLOW BASED

The Street	Summary	
Elaur	Required Size	JF4-1-1
Flow	Treatment Flow Rate provided:	0.20 cfs

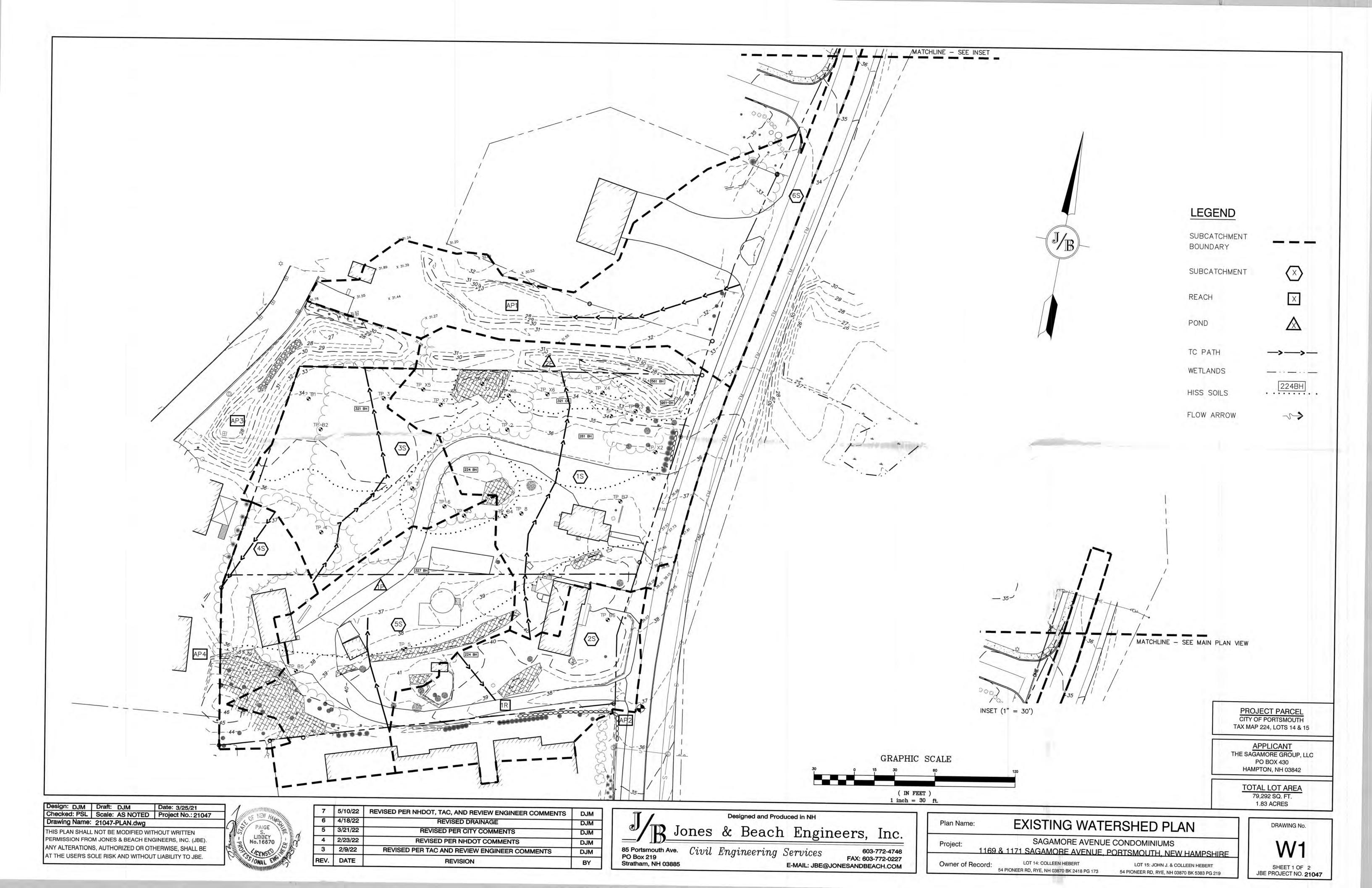
GENERAL CALCULATIONS - WQV and WQF (optional worksheet)

This worksheet may be useful when designing a BMP **that does not fit into one of the specific worksheets already provided** (i.e. for a technology which is not a stormwater wetland, infiltration practice, etc.)

Water Quality Volume (WQV)

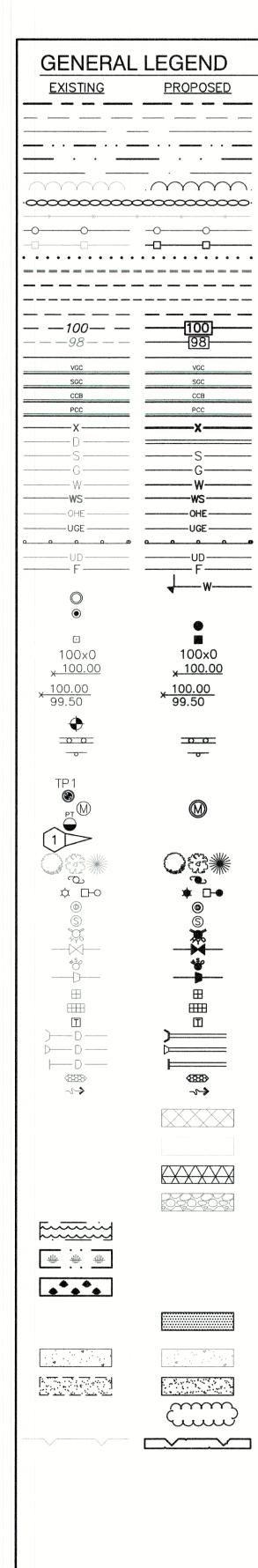
0.19	ас	A = Area draining to the practice
0.19	ac	A _I = Impervious area draining to the practice
1.00	decimal	I = Percent impervious area draining to the practice, in decimal form
0.95	unitless	$Rv = Runoff coefficient = 0.05 + (0.9 \times I)$
0.18	ac-in	WQV= 1" x Rv x A
655	cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")

Water Quality Flow (WQF)


Distantion of the local distance of the loca	
1 inches	P = Amount of rainfall. For WQF in NH, $P = 1$ ".
0.95 inches	Q = Water quality depth. Q = WQV/A
100 unitless	CN = Unit peak discharge curve number. CN =1000/(10+5P+10Q-10*[Q ² + 1.25*Q*P] ^{0.5})
0.0 inches	S = Potential maximum retention. $S = (1000/CN) - 10$
0.009 inches	la = Initial abstraction. la = 0.2S
. minutes	T _c = Time of Concentration
650.0 cfs/mi ² /in	q_u is the unit peak discharge. Obtain this value from TR-55 exhibits 4-II and 4-III.
0.183 cfs	WQF = $q_u x$ WQV. Conversion: to convert "cfs/mi ² /in * ac-in" to "cfs" multiply by $1 mi^2/640 ac$.

Designer's Notes:

This sheet is for the design of the Jellyfish filter system. System is designed to only treat runoff from Sagamore Ave., as all other impervious runoff directed toward it is already treated.


APPENDIX X

Pre- and Post-Construction Watershed Plans

SUBCATCHMENT BOUNDARY	
SUBCATCHMENT	$\langle \times \rangle$
REACH	×
POND	\land
TC PATH	->>
WETLANDS	
HISS SOILS	224BH
FLOW ARROW	~~>

DESCRIPTION PROPERTY LINES SETBACK LINES CENTERLINE SHWATER WETLANDS LINE FIDAL WETLANDS LINE STREAM CHANNEL TREE LINE STONEWALI BARBED WIR FENCE STOCKADE FENCE SOIL BOUNDARY AQUIFER PROTECTION LINE FLOOD PLAIN LINE EASEMENT MAJOR CONTOUR MINOR CONTOUR EDGE OF PAVEMENT VERTICAL GRANITE CURB SLOPE GRANITE CURB CAPE COD BERM POURED CONCRETE CURB SILT FENCE DRAINAGE LINE SEWER LINE GAS LINE WATER LINE WATER SERVICE OVERHEAD ELECTRIC UNDERGROUND ELECTRI GUARDRAIL UNDERDRAIN FIRE PROTECTION LINE THRUST BLOCK IRON PIPE/IRON ROD DRILL HOLE IRON ROD/DRILL HOLE STONE/GRANITE BOUND SPOT GRADE PAVEMENT SPOT GRADE CURB SPOT GRADE BENCHMARK (TBM) DOUBLE POST SIGN SINGLE POST SIGN WELL TEST PIT FAILED TEST PIT MONITORING WELL PERC TEST PHOTO LOCATION TREES AND BUSHES UTILITY POLE LIGHT POLES DRAIN MANHOLE SEWER MANHOLE HYDRANT WATER GATE WATER SHUT OFF REDUCER SINGLE GRATE CATCH BASIN DOUBLE GRATE CATCH BASIN TRANSFORMER CULVERT W/WINGWALLS CULVERT W/FLARED END SECTION CULVERT W/STRAIGHT HEADWALL STONE CHECK DAM DRAINAGE FLOW DIRECTION 4K SEPTIC AREA WETLAND IMPACT

VEGETATED FILTER STRIP RIPRAP

OPEN WATER

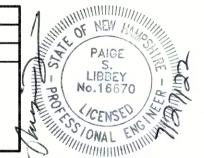
FRESHWATER WETLANDS

TIDAL WETLANDS

STABILIZED CONSTRUCTION ENTRANCE CONCRETE

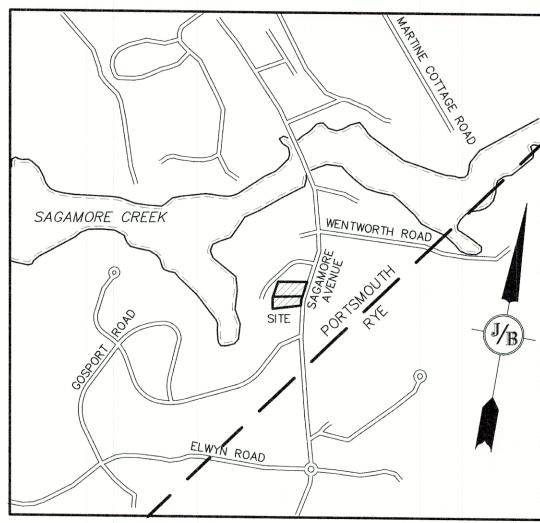
GRAVEL

SNOW STORAGE


RETAINING WALL

CIVIL ENGINEER / SURVEYOR JONES & BEACH ENGINEERS, INC. **85 PORTSMOUTH AVENUE** PO BOX 219 STRATHAM, NH 03885 (603) 772-4746 CONTACT: JOSEPH CORONATI

LIGHTING CONSULTANT CHARRON, INC. P.O BOX 4550 MANCHESTER, NH 03108 (603) 945-3500 CONTACT: KEN SWEENEY EMAIL: KSWEENEY@CHARRONINC.COM


WETLAND CONSULTANT GOVE ENVIRONMENTAL SERVICES, INC. 8 CONTINENTAL DR., BLDG 2, UNIT H EXETER, NH 03833-7507 (603) 418-7260 CONTACT: JAMES GOVE EMAIL: JGOVE@GESINC.BIZ

Design: JAC Draft: DJM Date: 3/25/21 Checked: JAC Scale: AS NOTED Project No.: 21047 Drawing Name: 21047-PLAN.dwg THIS PLAN SHALL NOT BE MODIFIED WITHOUT WRITTEN PERMISSION FROM JONES & BEACH ENGINEERS, INC. (JBE). ANY ALTERATIONS, AUTHORIZED OR OTHERWISE, SHALL BE AT THE USER'S SOLE RISK AND WITHOUT LIABILITY TO JBE.

17	7/27/22	ADDED CON COMM APPROVAL CO
16	7/13/22	OFFSITE IMPROVEMENTS PLAN F
15	6/28/22	REVISED FOR CON COMM SUB
14	5/10/22	REVISED PER NHDOT, TAC, AND REVIEW EN
13	4/18/22	DRAINAGE REVISIONS
REV.	DATE	REVISION

CONDOMINIUM SITE PLAN "SAGAMORE AVENUE CONDOMINIUMS" TAX MAP 224, LOTS 14 & 15 1169 & 1171 SAGAMORE AVENUE, PORTSMOUTH, NH

LOCUS MAP SCALE 1" = 1000

EMAIL: JCORONATI@JONESANDBEACH.COM

CONDITIONS DJM DJM REVISIONS DJM BMISSION NGINEER COMMENTS DJM DJM BY

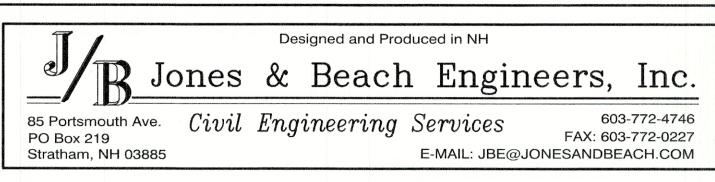
LANDSCAPE DESIGNER

LM LAND DESIGN, LLC 11 SOUTH ROAD BRENTWOOD, NH 03833 (603) 770-7728 CONTACT: LISE MCNAUGHTON

WATER **CITY OF PORTMOUTH** DEPARTMENT OF PUBLIC WORKS WATER DIVISION 680 PEVERLY HILL ROAD PORTSMOUTH, NH 03801 CONTACT: BRIAN GOETZ, P.E. (603) 427-1530

SEWER **CITY OF PORTMOUTH** DEPARTMENT OF PUBLIC WORKS SEWER DIVISION 680 PEVERLY HILL ROAD PORTSMOUTH, NH 03801 CONTACT: TERRY DESMARAIS, P.E. (603) 766-1421

ELECTRIC


EVERSOURCE 74 OLD DOVER ROAD ROCHESTER, NH 03867 (800) 555-5334 CONTACT: NICHOLAI KOSKO

TELEPHONE

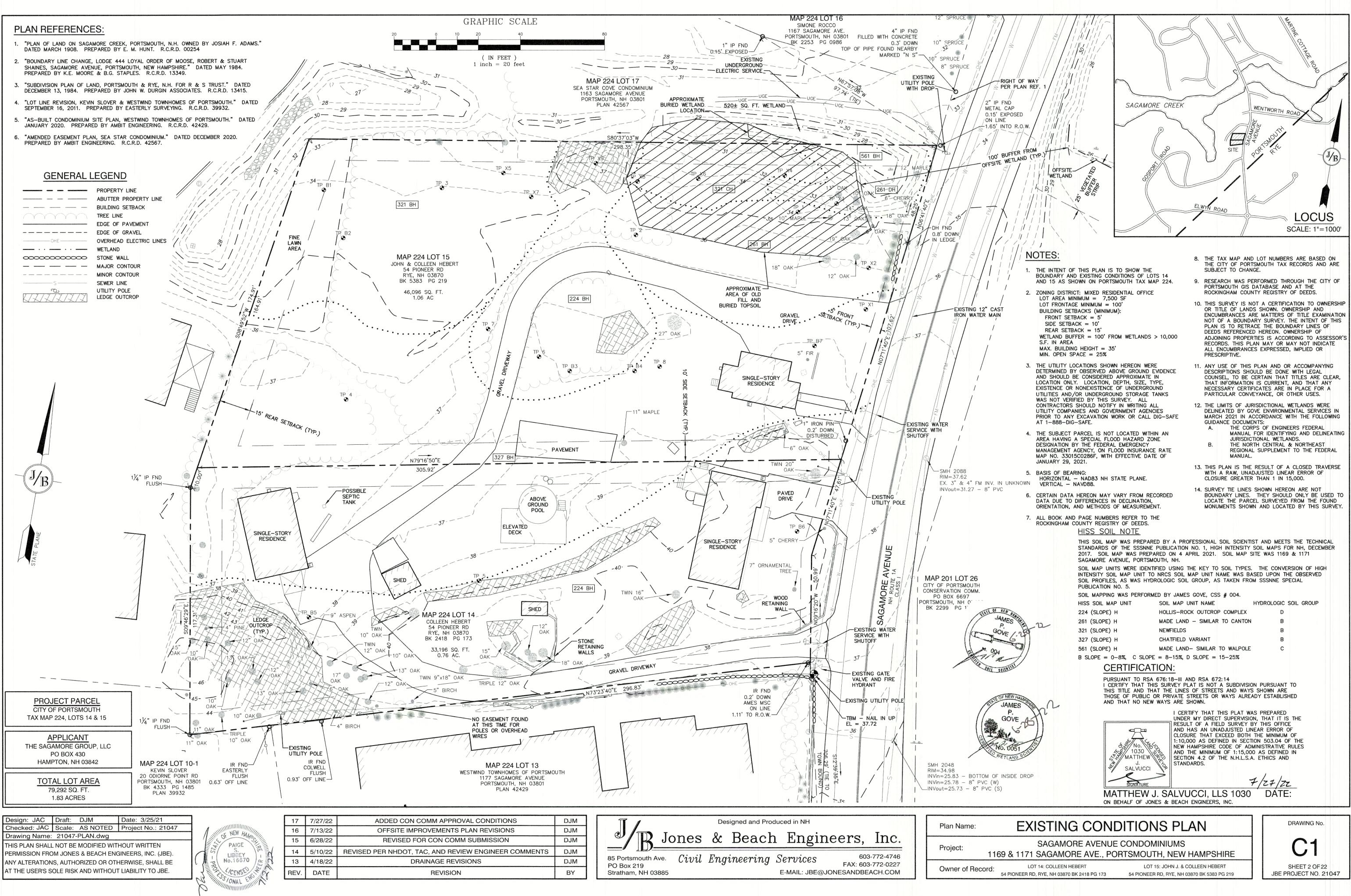
FAIRPOINT COMMUNICATIONS 1575 GREENLAND ROAD GREENLAND, NH 03840 (603) 427-5525 CONTACT: JOE CONSIDINE

CABLE TV

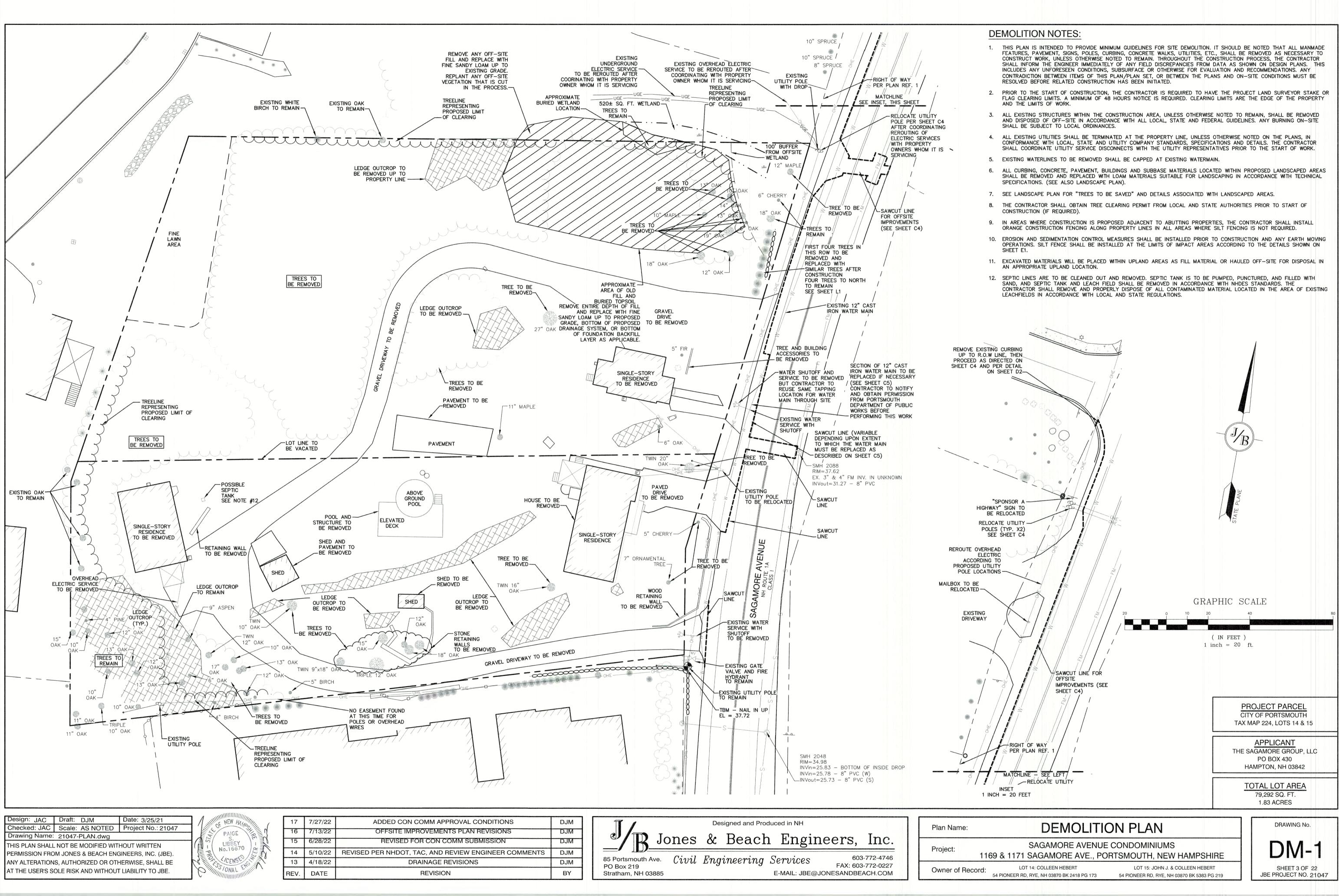
COMCAST COMMUNICATION CORPORATION 334-B CALEF HIGHWAY EPPING, NH 03042-2325 (603) 679-5695

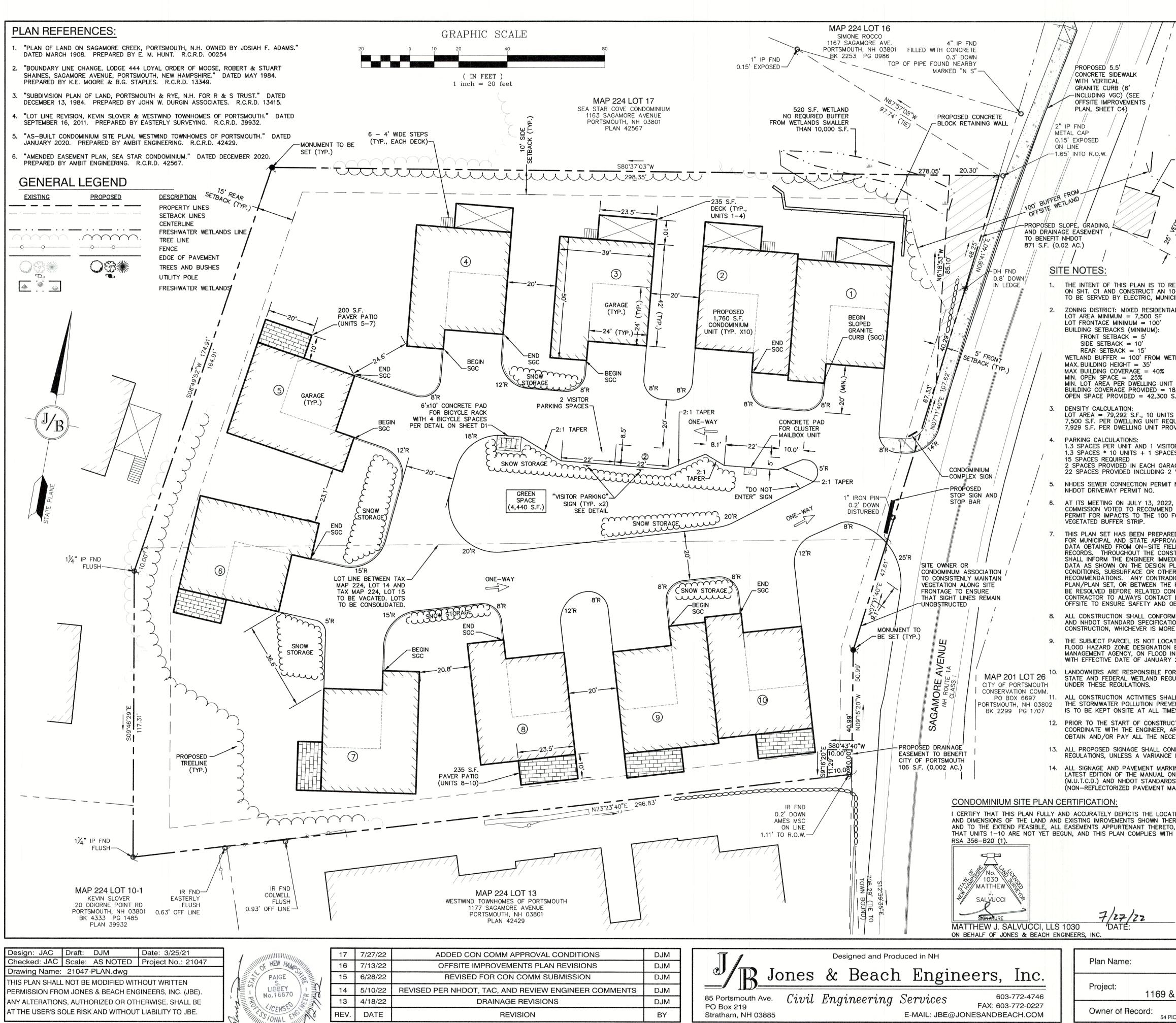
Plan Name: Project:

Owner of Record:


1169 & 1171 S

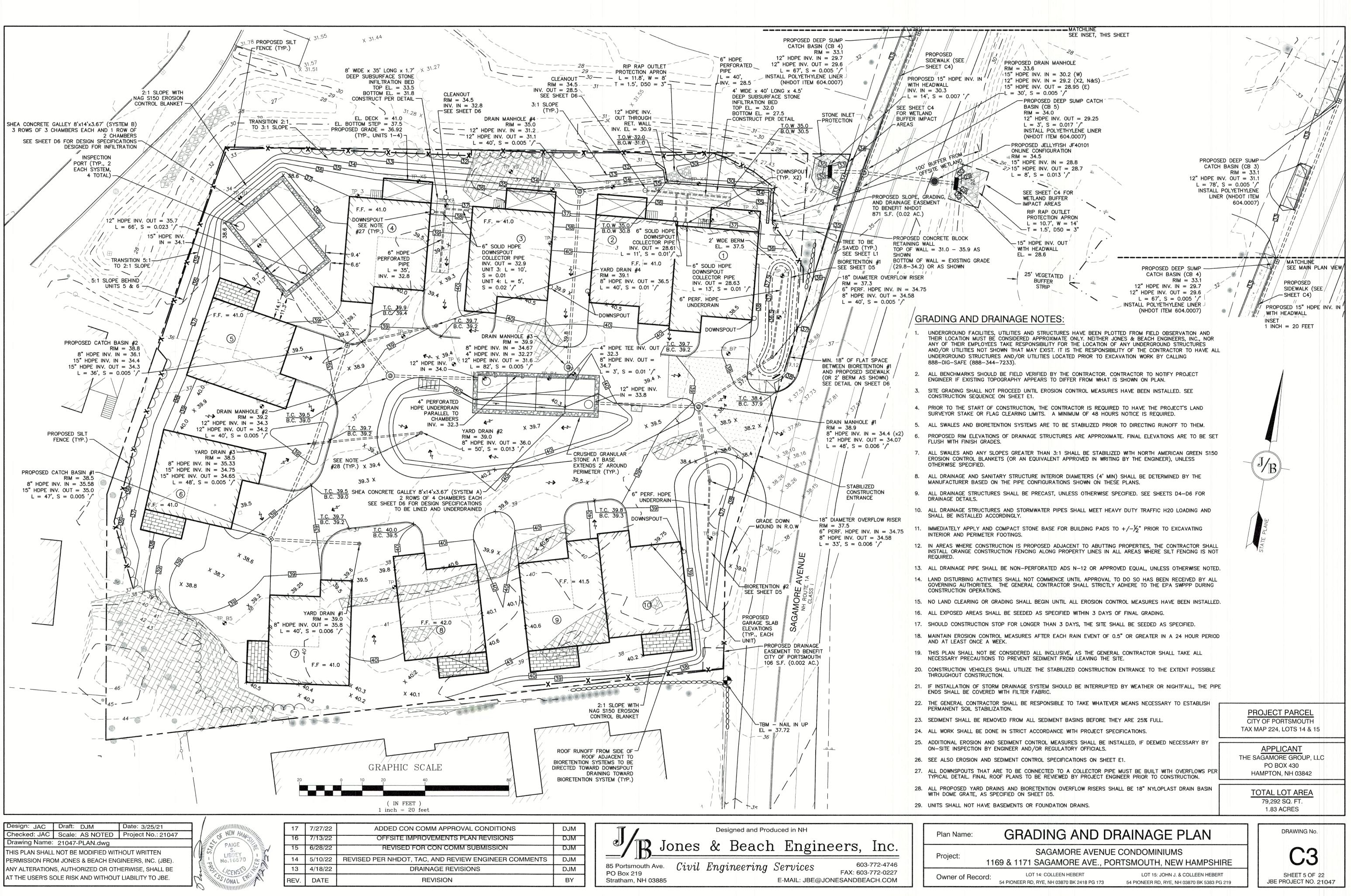
SHEET INDEX

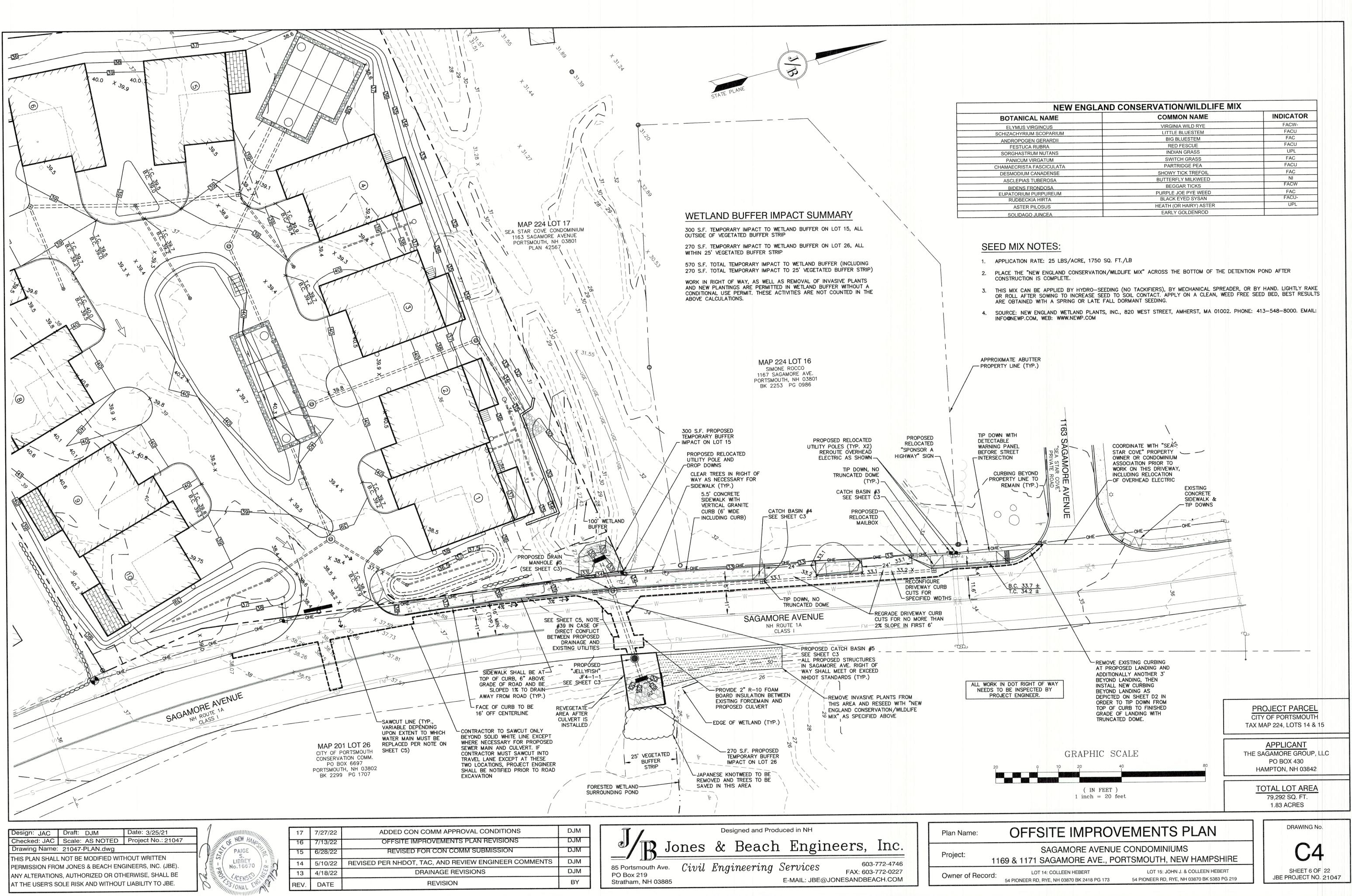

COVER SHEET


CS

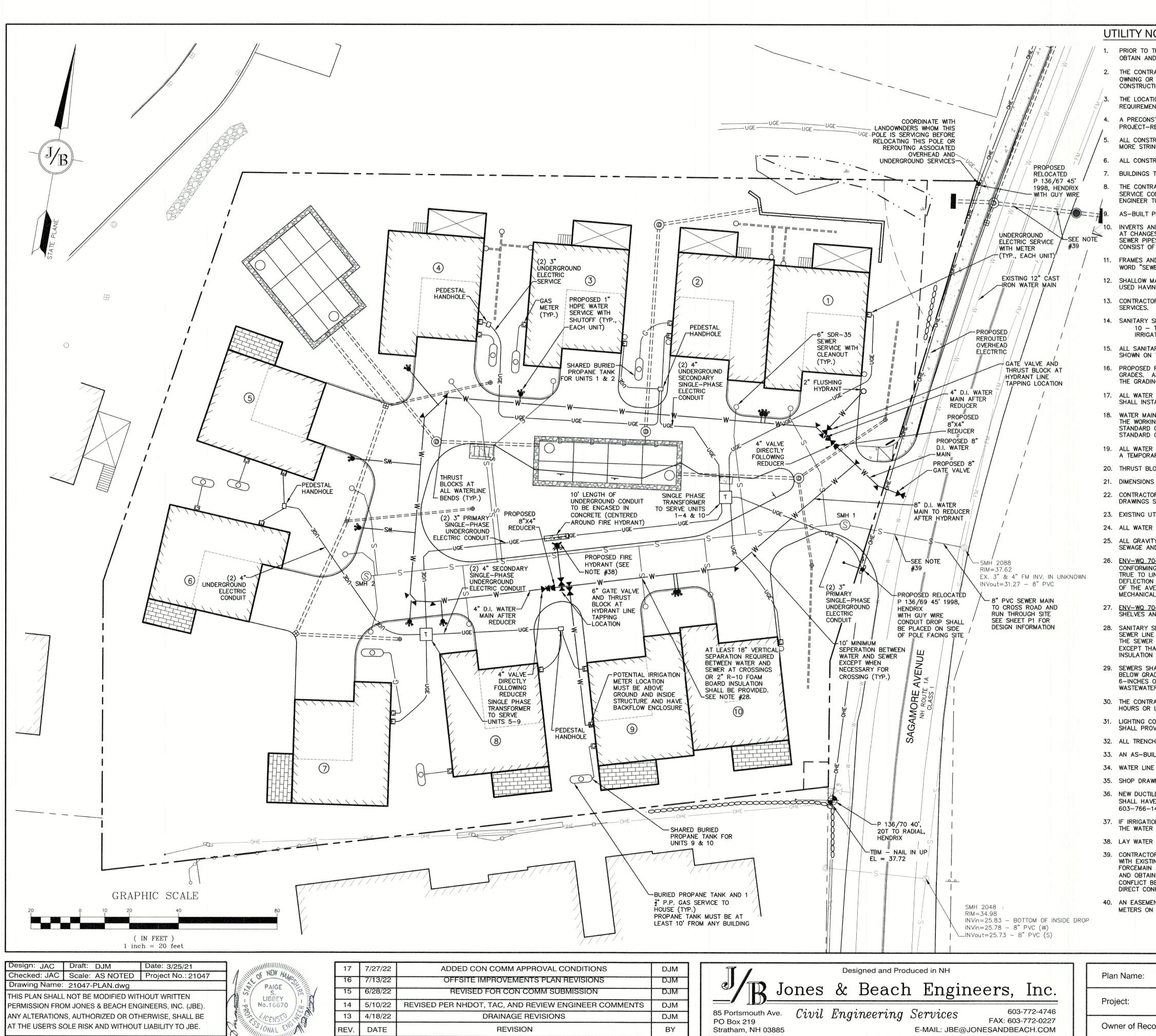
		C1	EXISTING CONDITIO	NSPLAN
		C1	DEMOLITION PLAN	
		C2	CONDOMINIUM SITE	ΡΙΔΝ
		C3	GRADING AND DRAI	
		C4	OFFSITE IMPROVEM	
		C4		ENTSFLAN
		P1	SEWER PLAN AND P	
				ROFILE
		L1	LANDSCAPE PLAN	
		L2	LIGHTING PLAN	
		D1-D6	DETAIL SHEET	
		E1		MENT CONTROL DETAILS
		T1-T4 H1	TRUCK TURNING PL	
N	APPRO	VED — PO PLANNING	ORTSMOUTH, NH G BOARD	PROJECT PARCEL CITY OF PORTSMOUTH TAX MAP 224, LOTS 14 & 15
N	APPRO			CITY OF PORTSMOUTH
N	APPRO DATE:			CITY OF PORTSMOUTH TAX MAP 224, LOTS 14 & 15 APPLICANT THE SAGAMORE GROUP, LLC PO BOX 430
N	 DATE:	PLANNIN	G BOARD	CITY OF PORTSMOUTH TAX MAP 224, LOTS 14 & 15 APPLICANT THE SAGAMORE GROUP, LLC PO BOX 430 HAMPTON, NH 03842 TOTAL LOT AREA 79,292 SQ. FT.
	 DATE:	PLANNIN ER SHI	G BOARD	CITY OF PORTSMOUTH TAX MAP 224, LOTS 14 & 15 APPLICANT THE SAGAMORE GROUP, LLC PO BOX 430 HAMPTON, NH 03842 TOTAL LOT AREA 79,292 SQ. FT. 1.83 ACRES

	PAGE NUMBERS REFER TO TH OUNTY REGISTRY OF DEEDS. HISS SOIL NOTE	E			
	STANDARDS OF THE SSSNNE	D BY A PROFESSIONAL SOIL SCIENTIST / PUBLICATION NO. 1, HIGH INTENSITY SOIL RED ON 4 APRIL 2021. SOIL MAP SITE UTH, NH.	_ MAPS FOR NH, DECEMBER		
	INTENSITY SOIL MAP UNIT TO	FIED USING THE KEY TO SOIL TYPES. TH NRCS SOIL MAP UNIT NAME WAS BASED OLOGIC SOIL GROUP, AS TAKEN FROM S	UPON THE OBSERVED		
	SOIL MAPPING WAS PERFORME	D BY JAMES GOVE, CSS # 004.			
	HISS SOIL MAP UNIT	SOIL MAP UNIT NAME HYE	DROLOGIC SOIL GROUP		
	224 (SLOPE) H	HOLLIS-ROCK OUTCROP COMPLEX	D		
12 .	261 (SLOPE) H	MADE LAND - SIMILAR TO CANTON	В		
d u	321 (SLOPE) H	NEWFIELDS	В		
	327 (SLOPE) H	CHATFIELD VARIANT	В		
/	561 (SLOPE) H	MADE LAND- SIMILAR TO WALPOLE	С		
/	B SLOPE = $0-8\%$, C SLOPE	= 8-15%, D SLOPE = 15-25%			
	CERTIFICAT	ION:			
OP	I CERTIFY THAT THIS THIS TITLE AND THAT THOSE OF PUBLIC O AND THAT NO NEW	676:18-III AND RSA 672:14 S SURVEY PLAT IS NOT A SUBDIVISION F T THE LINES OF STREETS AND WAYS SH R PRIVATE STREETS OR WAYS ALREADY WAYS ARE SHOWN. I CERTIFY THAT THIS PLAT WAS F UNDER MY DIRECT SUPERVISION, RESULT OF A FIELD SURVEY BY T AND HAS AN UNADJUSTED LINEAF CLOSURE THAT EXCEED BOTH THE 1:10,000 AS DEFINED IN SECTION NEW HAMPSHIRE CODE OF ADMINI AND THE MINIMUM OF 1:15,000 A SECTION 4.2 OF THE N.H.L.S.A. E STANDARDS. SALVUCCI, LLS 1030 ES & BEACH ENGINEERS, INC.	IOWN ARE ESTABLISHED PREPARED THAT IT IS THE HIS OFFICE R ERROR OF 503.04 OF THE STRATIVE RULES S DEFINED IN		
entere mount in an it says to a sub in the second second second second second	u dan menangkan sike serang		gen stehe in status an gen an demonstra as an element of the survey of the second status of the second status in the first first of the second status in the s		
XISTING	CONDITION	IS PLAN	DRAWING No.		
	RE AVENUE CONDOM RE AVE., PORTSMOUT		C1		




			ARTINE CS.
PROPOSED TEMPORARY			COTTACE ROAD
CONSTRUCTION EASEMENT, PERMANENT FLOWAGE EASEMENT, AND PERMANENT EASEMENT FOR INSTALLATION AND PLACEMENT OF MATERIALS			
UPON TAX MAP 201, LOT 26, TO BENEFIT CITY OF PORTSMOUTH SUBJECT TO CHANGE AS NO BOUNDARY SURVEY HAS BEEN	SAGAMORE CREEK		WENTWORTH ROAD
-PERFORMED BY THIS OFFICE.		SITE	JB
يللد	C S S S S S S S S S S S S S S S S S S S		
BUCCETA RD STRIDER		ELWYN ROAD	
		ROAD	SCALE: 1"=1000'
EMOVE EXISTING STRUCTURES AS SHOWN 0-UNIT CONDOMINIUM COMPLEX. PROJECT	ARROWS SHALL BE	PAINTED IN A COLO	
AL OFFICE	STRUCTURAL PLANS BE BROUGHT TO TH START OF CONSTRU	S PROVIDED BY THE IE ATTENTION OF TH	ERIFIED WITH THE ARCHITECTURAL AND OWNER. ANY DISCREPANCIES SHOULD IE ENGINEER AND OWNER PRIOR TO TH IMENSIONS AND AREAS TO BE TO VISE NOTED.
			EMENT AND IN AREAS SHOWN ON THE PPROVED SNOW DUMPING LOCATION.
TLANDS > 10,000 S.F. IN AREA	STAMPED BY THE N COORDINATE WITH /	APPROVED MANUFAC	WALLS ARE TO BE DESIGNED AND RUCTURAL ENGINEER. CONTRACTOR TO TURER PRIOR TO INSTALLATION.
= 7,500 S.F. 8,610 S.F. = 23.5% S.F. = 53.3%	20. ALL CONDITIONS ON	H ADMINISTRATION (I THIS PLAN SHALL	CONFORM TO LABOR OCCUPATIONAL OSHA) RULES AND REGULATIONS. REMAIN IN EFFECT IN PERPETUITY
S PROPOSED DUIRED DVIDED > 7,500 S.F.			THE SITE PLAN REVIEW REGULATIONS. N THE ROCKINGHAM COUNTY REGISTRY
DR SPACE PER 5 UNITS REQUIRED ES * (10 UNITS $/$ 5) =	MAINTAINED IN ACC ALL FUTURE PROPE	ORDANCE WITH THE RTY OWNERS. NO CI	TE PLAN SHALL BE CONSTRUCTED AN PLAN BY THE PROPERTY OWNER AND HANGES SHALL BE MADE TO THE SITE L OF THE PORTSMOUTH PLANNING
	23. THE OWNER OF EAC WILL BE PICKED UP	CH UNIT SHALL STOP BY A PRIVATE HAU	RE TRASH IN THEIR GARAGE. TRASH JLER.
NO. , DATED . , DATED . , THE PORTSMOUTH CONSERVATION APPROVAL OF A CONDITIONAL USE FOOT WETLANDS BUFFER AND THE 25 FOOT	ABOVE GROUND EVI LOCATION ONLY. L OF UNDERGROUND NOT VERIFIED BY T WRITING ALL UTILIT	DENCE AND SHOULD OCATION, DEPTH, SI UTILITIES AND/OR UI HIS SURVEY. ALL C Y COMPANIES AND G	WERE DETERMINED BY OBSERVED BE CONSIDERED APPROXIMATE IN ZE, TYPE, EXISTENCE OR NONEXISTENC NDERGROUND STORAGE TANKS WAS ONTRACTORS SHOULD NOTIFY IN OVERNMENT AGENCIES PRIOR TO ANY AT 1-888-DIG-SAFE.
ED BY JONES & BEACH ENGINEERS, INC., VALS AND FOR CONSTRUCTION BASED ON LD SURVEY AND EXISTING MUNICIPAL STRUCTION PROCESS, THE CONTRACTOR	25. BASIS OF BEARING: HORIZONTAL - NH	STATE PLANE. VER	TICAL – NAVD88.
DIATELY OF ANY FIELD DISCREPANCY FROM LANS, INCLUDING ANY UNFORESEEN RWISE, FOR EVALUATION AND	TAX RECORDS AND	ARE SUBJECT TO C	HANGE.
ICTION BETWEEN ITEMS ON THIS PLANS AND ON-SITE CONDITIONS, MUST NSTRUCTION HAS BEEN INITIATED. DIG SAFE PRIOR TO DIGGING ONSITE OR DBEY THE LAW.	SHOWN. OWNERSHIP EXAMINATION NOT (RETRACE THE BOUN OF ADJOINING PROF	AND ENCUMBRANCE OF A BOUNDARY SUI IDARY LINES OF DEE PERTIES IS ACCORDIN	TO OWNERSHIP OR TITLE OF LANDS ES ARE MATTERS OF TITLE RVEY. THE INTENT OF THIS PLAN IS T DS REFERENCED HEREON. OWNERSHIP IG TO ASSESSOR'S RECORDS. THIS ENCUMBRANCES EXPRESSED, IMPLIED
M TO TOWN STANDARDS AND REGULATIONS, ONS FOR ROAD AND BRIDGE E STRINGENT.	OR PRESCRIPTIVE. 28. SURVEY TIE LINES	SHOWN HEREON ARE	NOT BOUNDARY LINES. THEY SHOUL
TED WITHIN AN AREA HAVING A SPECIAL BY THE FEDERAL EMERGENCY NSURANCE RATE MAP NO. 33015C0286F,	MONUMENTS SHOWN 29. AN ACCESS EASEMI	I AND LOCATED BY ENT SHALL BE GRAN	ITED TO THE CITY OF PORTSMOUTH FO
29, 2021. R COMPLYING WITH ALL APPLICABLE LOCAL, ULATIONS, INCLUDING PERMITTING REQUIRED	ON THE PROPERTY. CITY'S LEGAL DEPA	EASEMENT DESCRIP RTMENT AND ACCEP	WATER MAIN, SHUTOFFS, AND METERS TION MUST BE APPROVED BY THE TED BY THE CITY COUNCIL.
LL BE PERFORMED IN ACCORDANCE WITH ENTION PLAN (S.W.P.P.P.). THIS DOCUMENT ES AND UPDATED AS REQUIRED.	31. ON-SITE SALT STO	CLOSURE GREATER 1 RAGE IS PROHIBITIED	WITHIN 250' OF AN INLAND WETLAND
CTION, THE CONTRACTOR SHALL RCHITECT AND/OR OWNER, IN ORDER TO		ONDOMINIUM ASSOCI	NTAINED IN A STRUCTURE. ATION SHALL BE RESPONSIBLE FOR
ESSARY LOCAL PERMITS, FEES AND BONDS. NFORM WITH THE TOWN ZONING IS OTHERWISE REQUESTED.	SPECIES ARE TO BE REMOVAL AND THE	E REMOVED IN ORDE HEALTH OF THE NE	MONITOR THE SITE WHERE INVASIVE R TO DETERMINE THE SUCCESS OF TH W WETLAND PLANTINGS WITHIN THE
INGS SHALL BE IN ACCORDANCE WITH THE N UNIFORM TRAFFIC CONTROL DEVICES S AND SPECIFICATIONS ARKINGS), UNLESS OTHERWISE NOTED.	RATE AFTER ONE Y 34. NOFA STANDARDS I	EAR. IF NOT APPLIC FOR LAND CARE SHA NIQUES SHALL BE U	AVE A GREATER THAN 80% SUCCESS ANT SHALL REPLANT. ALL BE USED AND ONLY ORGANIC LAN SED WITHIN THE WETLAND AND
	PORTSMOUTH, NG BOARD	NH	PROJECT PARCEL
			TAX MAP 224, LOTS 14 & 15
		 	APPLICANT THE SAGAMORE GROUP, LLC PO BOX 430 HAMPTON, NH 03842
			TOTAL LOT AREA
DATE:			79,292 SQ. FT. 1.83 ACRES
CONDOMINIUM	SITE PLA	N	DRAWING No.
SAGAMORE AVENUE C	ONDOMINIUMS	a Marana an	

X


SAGAMORE AVENUE CONDOMINIUMS 1169 & 1171 SAGAMORE AVE., PORTSMOUTH, NEW HAMPSHIRE Ind: LOT 14: COLLEEN HEBERT 54 PIONEER RD, RYE, NH 03870 BK 2418 PG 173 LOT 15: JOHN J. & COLLEEN HEBERT 54 PIONEER RD, RYE, NH 03870 BK 2418 PG 173

SHEET 4 OF 22 JBE PROJECT NO. 21047

BOTANICAL NAME	COMMON NAME	INDICATOR
ELYMUS VIRGINCUS	VIRGINIA WILD RYE	FACW-
CHIZACHYRIUM SCOPARIUM	LITTLE BLUESTEM	FACU
ANDROPOGEN GERARDII	BIG BLUESTEM	FAC
FESTUCA RUBRA	RED FESCUE	FACU
SORGHASTRUM NUTANS	INDIAN GRASS	UPL
PANICUM VIRGATUM	SWITCH GRASS	FAC
AMAECRISTA FASCICULATA	PARTRIDGE PEA	FACU
DESMODIUM CANADENSE	SHOWY TICK TREFOIL	FAC
ASCLEPIAS TUBEROSA	BUTTERFLY MILKWEED	NI
BIDENS FRONDOSA	BEGGAR TICKS	FACW
	PURPLE JOE PYE WEED	FAC
RUDBECKIA HIRTA	BLACK EYED SYSAN	FACU-
ASTER PILOSUS	HEATH (OR HAIRY) ASTER	UPL
SOLIDAGO JUNCEA	EARLY GOLDENROD	

UTILITY NOTES:

CONSTRUCTION ACTIVITIES.

THE LOCATION, SIZE, DEPTH AND SPECIFICATIONS FOR CONSTRUCTION OF PROPOSED PRIVATE UTILITY SERVICES SHALL BE TO THE STANDARDS AND REQUIREMENTS OF THE RESPECTIVE UTILITY COMPANY (ELECTRIC, TELEPHONE, CABLE TELEVISION, FIRE ALARM, GAS, WATER, AND SEWER). A PRECONSTRUCTION MEETING SHALL BE HELD WITH THE OWNER, ENGINEER, ARCHITECT, CONTRACTOR, LOCAL OFFICIALS, AND ALL

PROJECT-RELATED UTILITY COMPANIES (PUBLIC AND PRIVATE) PRIOR TO START OF CONSTRUCTION. ALL CONSTRUCTION SHALL CONFORM TO THE CITY STANDARDS AND REGULATIONS, AND NHDES STANDARDS AND SPECIFICATIONS, WHICHEVER ARE MORE STRINGENT, UNLESS OTHERWISE SPECIFIED. 6. ALL CONSTRUCTION ACTIVITIES SHALL CONFORM TO LABOR OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION (OSHA) RULES AND REGULATIONS. BUILDINGS TO BE SERVICED BY UNDERGROUND UTILITIES UNLESS OTHERWISE NOTED.

THE CONTRACTOR IS TO VERIFY LOCATION AND DEPTH OF ALL EXISTING UTILITY STUBS PRIOR TO CONSTRUCTION AND DISCONNECT ALL EXISTING SERVICE CONNECTIONS AT THEIR RESPECTIVE MAINS IN ACCORDANCE WITH THE RESPECTIVE UTILITY COMPANY'S STANDARDS AND SPECIFICATIONS. ENGINEER TO BE NOTIFIED. AS-BUILT PLANS SHALL BE SUBMITTED TO DEPARTMENT OF PUBLIC WORKS.

INVERTS AND SHELVES: MANHOLES SHALL HAVE A BRICK PAVED SHELF AND INVERT, CONSTRUCTED TO CONFORM TO THE SIZE OF PIPE AND FLOW AT CHANGES IN DIRECTION. THE INVERTS SHALL BE LAID OUT IN CURVES OF THE LONGEST RADIUS POSSIBLE TANGENT TO THE CENTER LINE OF THE SEWER PIPES. SHELVES SHALL BE CONSTRUCTED TO THE ELEVATION OF THE THROUGH CHANNEL UNDERLAYMENT OF INVERT, AND SHELF SHALL CONSIST OF BRICK MASONRY. 11. FRAMES AND COVERS: MANHOLE FRAMES AND COVERS SHALL BE OF HEAVY DUTY DESIGN AND PROVIDE A 30 INCH DIA, CLEAR OPENING, THE WORD "SEWER" OR "DRAIN" SHALL BE CAST INTO THE CENTER OF THE UPPER FACE OF EACH COVER WITH RAISED, 3" LETTERS.

12. SHALLOW MANHOLE: IN LIEU OF A CONE SECTION, WHEN MANHOLE DEPTH IS LESS THAN 6 FEET, A REINFORCED CONCRETE SLAB COVER MAY BE USED HAVING AN ECCENTRIC ENTRANCE OPENING AND CAPABLE OF SUPPORTING H20 LOADS. 13. CONTRACTOR SHALL PLACE 2" WIDE METAL WIRE IMPREGNATED RED PLASTIC WARNING TAPE OVER ENTIRE LENGTH OF ALL GRAVITY SEWERS AND

14. SANITARY SEWER FLOW CALCULATIONS:

IRRIGATION USE = 1,000 GPD \pm 15. ALL SANITARY STRUCTURE INTERIOR DIAMETERS (4' MIN) SHALL BE DETERMINED BY THE MANUFACTURER BASED ON THE PIPE CONFIGURATIONS

SHOWN ON THESE PLANS. 16. PROPOSED RIM ELEVATIONS OF DRAINAGE AND SANITARY MANHOLES ARE APPROXIMATE. FINAL ELEVATIONS ARE TO BE SET FLUSH WITH FINISH GRADES. ADJUST ALL OTHER RIM ELEVATIONS OF MANHOLES, WATER GATES, GAS GATES AND OTHER UTILITIES TO FINISH GRADE AS SHOWN ON THE GRADING AND DRAINAGE PLAN.

17. ALL WATER MAINS AND SERVICE PIPES SHALL HAVE A MINIMUM 12" VERTICAL AND 24" HORIZONTAL SEPARATION TO MANHOLES, OR CONTRACTOR SHALL INSTALL BOARD INSULATION FOR FREEZING PROTECTION.

18. WATER MAINS SHALL BE HYDROSTATICALLY PRESSURE TESTED FOR LEAKAGE PRIOR TO ACCEPTANCE. WATERMAINS SHALL BE TESTED AT 1.5 TIMES THE WORKING PRESSURE OR 150 PSI, WHICH EVER IS GREATER. TESTING SHALL BE CONDUCTED IN ACCORDANCE WITH SECTION 4 OF AWWA STANDARD C 600. WATERMAINS SHALL BE DISINFECTED AFTER THE ACCEPTANCE OF THE PRESSURE AND LEAKAGE TESTS ACCORDING TO AWWA STANDARD C 651.

22. CONTRACTOR TO FURNISH SHOP DRAWINGS FOR UTILITY RELATED ITEMS TO ENSURE CONFORMANCE WITH THE PLANS AND SPECIFICATIONS. SHOP DRAWINGS SHOULD BE SENT IN TRIPLICATE TO THE DESIGN ENGINEER FOR REVIEW AND APPROVAL PRIOR TO INSTALLATION. 23. EXISTING UTILITIES SHALL BE DIGSAFED BEFORE CONSTRUCTION.

ALL GRAVITY SEWER PIPE, MANHOLES, AND FORCE MAINS SHALL BE TESTED ACCORDING TO NHDES STANDARDS OF DESIGN AND CONSTRUCTION FOR SEWAGE AND WASTEWATER TREATMENT FACILITIES, CHAPTER ENV-WQ 700. ADOPTED ON 10-15-14.

26. ENV-WQ 704.06 GRAVITY SEWER PIPE TESTING: GRAVITY SEWERS SHALL BE TESTED FOR WATER TIGHTNESS BY USE OF LOW-PRESSURE AIR TESTS CONFORMING WITH ASTM F1417-92(2005) OR UNI-BELL PVC PIPE ASSOCIATION UNI-B-6. LINES SHALL BE CLEANED AND VISUALLY INSPECTED AND TRUE TO LINE AND GRADE. DEFLECTION TESTS SHALL TAKE PLACE AFTER 30 DAYS FOLLOWING INSTALLATION AND THE MAXIMUM ALLOWABLE DEFLECTION OF FLEXIBLE SEWER PIPE SHALL BE 5% OF AVERAGE INSIDE DIAMETER. A RIGID BALL OR MANDREL WITH A DIAMETER OF AT LEAST 95% OF THE AVERAGE INSIDE PIPE DIAMETER SHALL BE USED FOR TESTING PIPE DEFLECTION. THE DEFLECTION TEST SHALL BE CONDUCTED WITHOUT MECHANICAL PULLING DEVICES.

27. ENV-WQ 704.17 SEWER MANHOLE TESTING: SHALL BE TESTED FOR LEAKAGE USING A VACUUM TEST PRIOR TO BACKFILLING AND PLACEMENT OF SHELVES AND INVERTS.

28. SANITARY SEWER LINES SHALL BE LOCATED AT LEAST TEN (10) FEET HORIZONTALLY FROM AN EXISTING OR PROPOSED WATER LINE. WHEN A SEWER LINE CROSSES UNDER A WATER LINE, THE SEWER PIPE JOINTS SHALL BE LOCATED AT LEAST 6 FEET HORIZONTALLY FROM THE WATERMAIN. THE SEWER LINE SHALL ALSO MAINTAIN A VERTICAL SEPARATION OF NOT LESS THAN 18 INCHES FROM AN EXISTING OR PROPOSED WATER LINE. EXCEPT THAT WHERE 18" VERTICAL SEPARATION CANNOT BE ACHIEVED (AS DEPICTED ON SHEET P1), PROVIDE TWO INCHES R-10 FOAM BOARD INSULATION ABOVE THE SEWER AND BELOW THE WATER LINE.

29. SEWERS SHALL BE BURIED TO A MINIMUM DEPTH OF 6 FEET BELOW GRADE IN ALL ROADWAY LOCATIONS, AND TO A MINIMUM DEPTH OF 4 FEET BELOW GRADE IN ALL CROSS-COUNTRY LOCATIONS. PROVIDE TWO-INCHES OF R-10 FOAM BOARD INSULATION 2-FOOT WIDE TO BE INSTALLED 6-INCHES OVER SEWER PIPE IN AREAS WHERE DEPTH IS NOT ACHIEVED. A WAIVER FROM THE DEPARTMENT OF ENVIRONMENTAL SERVICES WASTEWATER ENGINEERING BUREAU IS REQUIRED PRIOR TO INSTALLING SEWER AT LESS THAN MINIMUM COVER.

30. THE CONTRACTOR SHALL MINIMIZE THE DISRUPTIONS TO THE EXISTING SEWER FLOWS AND THOSE INTERRUPTIONS SHALL BE LIMITED TO FOUR (4) HOURS OR LESS AS DESIGNATED BY THE CITY SEWER DEPARTMENT.

31. LIGHTING CONDUIT SHALL BE SCHEDULE 40 PVC, AND SHALL BE INSTALLED IN CONFORMANCE WITH THE NATIONAL ELECTRIC CODE. CONTRACTOR SHALL PROVIDE EXCAVATION AND BACKFILL.

32. ALL TRENCHING, PIPE LAYING, AND BACKFILLING SHALL BE IN ACCORDANCE WITH FEDERAL OSHA REGULATIONS.

36. NEW DUCTILE IRON WATER LINE SHALL BE WRAPPED WITH A WATER TIGHT POLYETHYLENE WRAPPING FOR THE FULL LENGTH. ALL WATER LINE JOINTS SHALL HAVE THREE (3) BRASS WEDGES PER JOINT. CONTRACTOR SHALL CONTACT CITY OF PORTSMOUTH WATER DEPARTMENT (JIM TOW AT 603-766-1439) PRIOR TO WATER LINE INSTALLATION.

39. CONTRACTOR TO DIG TEST PITS AT CROSSING OF PROPOSED SEWER AND EXISTING WATER MAIN, AND AT CROSSINGS OF PROPOSED DRAINAGE PIPE WITH EXISTING WATER MAIN AND FORCEMAIN. IF THE EXISTING WATER MAIN IS IN CONFLICT WITH THE PROPOSED SEWER, OR IF EXISTING WATER OR FORCEMAIN ARE IN CONFLICT WITH THE PROPOSED DRAINAGE PIPE, NOTIFY PROJECT ENGINEER AND PORTSMOUTH DEPARTMENT OF PUBLIC WORKS AND OBTAIN PERMISSION FROM PORTSMOUTH DPW AND REPLACE SECTION OF 12" CAST IRON WATER MAIN AS NECESSARY TO AVOID DIRECT CONFLICT BETWEEN WATER AND SEWER, OR TO REPLACE SECTION OF 12" CAST IRON WATER MAIN OR 3" & 4" FORCEMAIN AS NECESSARY TO AVOID DIRECT CONFLICT WITH PROPOSED DRAINAGE PIPE.

40. AN EASEMENT SHALL BE GRANTED TO THE CITY OF PORTSMOUTH FOR VALVE ACCESS AND LEAK DETECTION OF THE WATER MAIN, SHUTOFFS, AND METERS ON THE PROPERTY. EASEMENT DESCRIPTION MUST BE APPROVED BY THE CITY'S LEGAL DEPARTMENT AND ACCEPTED BY THE CITY COUNCIL

Owner of Record:

PRIOR TO THE START OF CONSTRUCTION, THE CONTRACTOR SHALL COORDINATE WITH THE ENGINEER, ARCHITECT AND/OR OWNER, IN ORDER TO OBTAIN AND/OR PAY ALL THE NECESSARY LOCAL PERMITS, CONNECTION FEES AND BONDS.

THE CONTRACTOR SHALL PROVIDE A MINIMUM NOTICE OF FOURTEEN (14) DAYS TO ALL CORPORATIONS, COMPANIES AND/OR LOCAL AUTHORITIES OWNING OR HAVING A JURISDICTION OVER UTILITIES RUNNING TO, THROUGH OR ACROSS PROJECT AREAS PRIOR TO DEMOLITION AND/OR

10 - THREE BEDROOM UNITS @ 150 GPD/BEDROOM = 4,500 GPD

19. ALL WATER AND SANITARY LEADS TO BUILDING(S) SHALL END 5' OUTSIDE THE BUILDING LIMITS AS SHOWN ON PLANS AND SHALL BE PROVIDED WITH A TEMPORARY PLUG AND WITNESS AT END.

20. THRUST BLOCKS SHALL BE PROVIDED AT ALL BENDS, TEES, MECHANICAL JOINTS AND HYDRANTS.

21. DIMENSIONS ARE SHOWN TO CENTERLINE OF PIPE OR FITTING.

24. ALL WATER LINES SHOULD HAVE TESTABLE BACKFLOW PREVENTERS AT THE ENTRANCE TO EACH BUILDING.

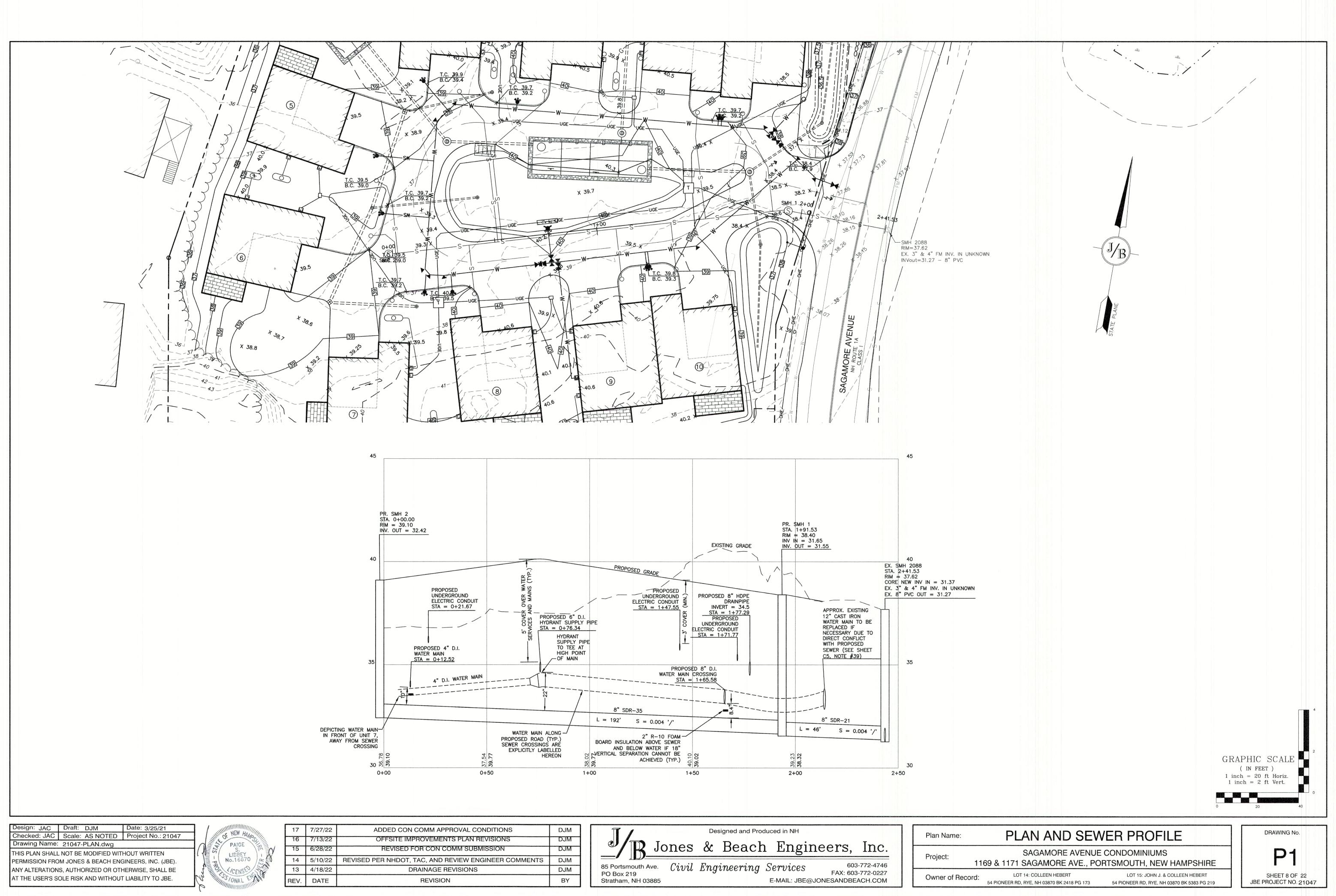
33. AN AS-BUILT PLAN OF THE WATER LINE IS TO BE PREPARED AND SUBMITTED TO THE CITY OF PORTSMOUTH WATER DEPARTMENT.

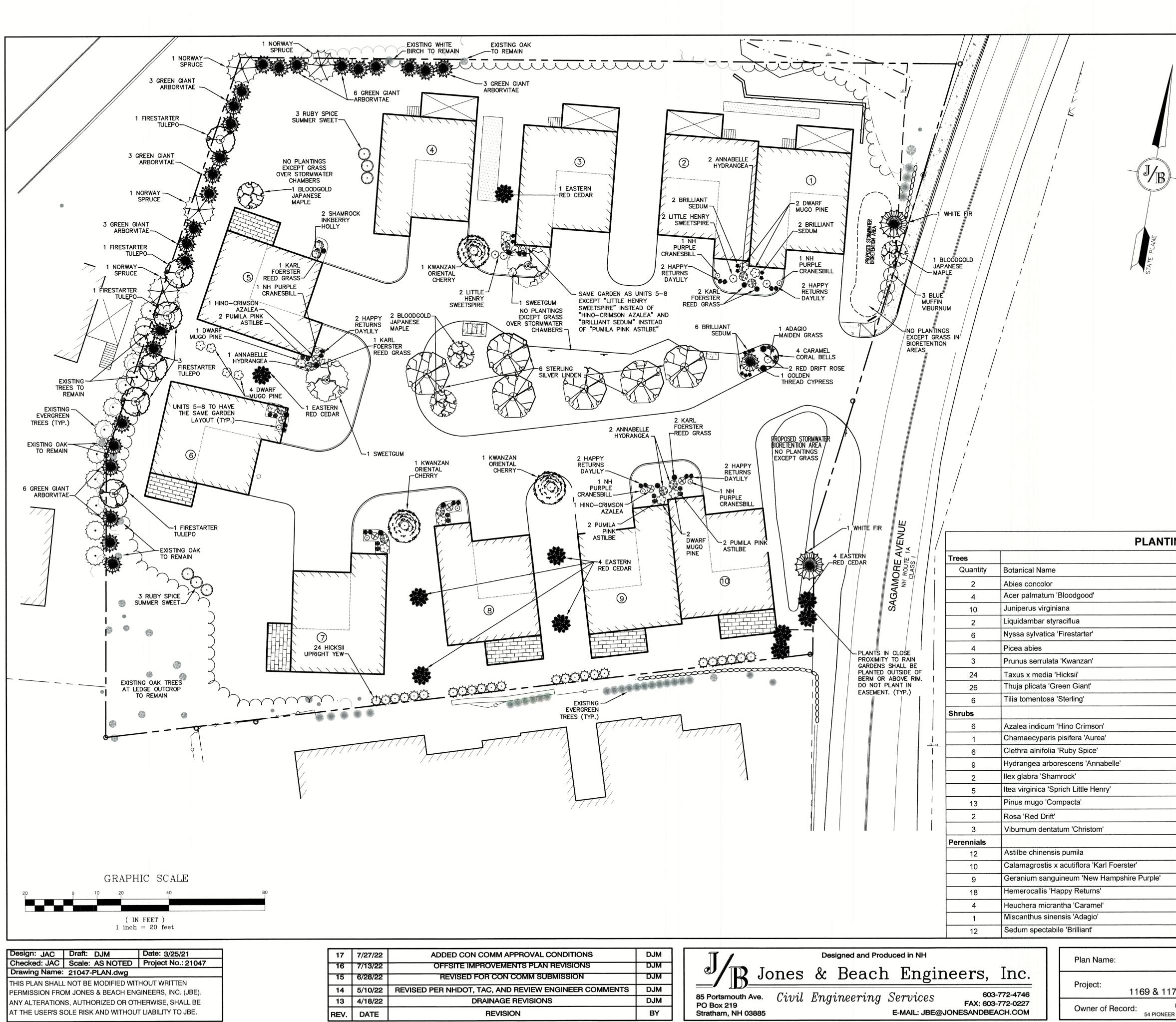
34. WATER LINE TO BE CONSTRUCTED PER CITY OF PORTSMOUTH SPECIFICATIONS.

35. SHOP DRAWINGS TO BE SUBMITTED TO CITY OF PORTSMOUTH FOR REVIEW AND APPROVAL.

37. IF IRRIGATION IS TO BE USED, THE PIPING SYSTEM SHALL BE REVIEWED AND APPROVED BY THE PORTSMOUTH CITY PLANNER, CITY ENGINEER, AND THE WATER DEPARTMENT PRIOR TO INSTALLATION.

38. LAY WATER MAIN WITH FIRE HYDRANT AT HIGH SPOT TO ALLOW FOR AIR TO BE RELEASED DURING FILLING OF THE WATER MAIN.


UTILITY PLAN


SAGAMORE AVENUE CONDOMINIUMS 1169 & 1171 SAGAMORE AVE., PORTSMOUTH, NEW HAMPSHIRE

DRAWING No.

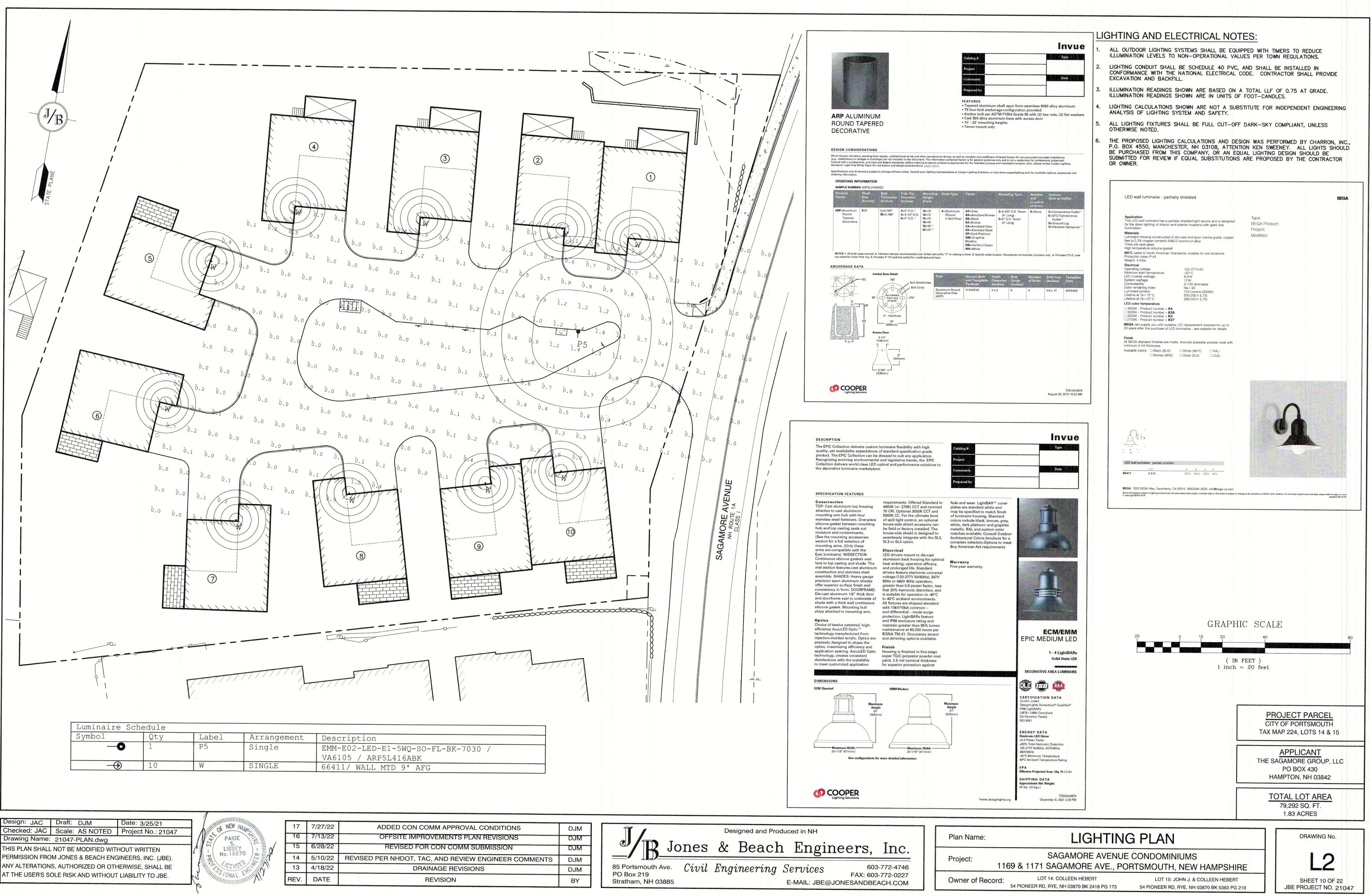
LANDSCAPE NOTES:

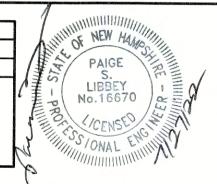
- THE CONTRACTOR SHALL LOCATE AND VERIFY THE EXISTENCE OF ALL UTILITIES PRIOR TO STARTING WORK.
- THE CONTRACTOR SHALL SUPPLY ALL PLANT 2. MATERIALS IN QUANTITIES SUFFICIENT TO COMPLETE THE PLANTINGS SHOWN ON THE DRAWINGS.
- ALL MATERIAL SHALL CONFORM TO THE 3. GUIDELINES ESTABLISHED BY THE CURRENT AMERICAN STANDARD FOR NURSERY STOCK PUBLISHED BY THE AMERICAN ASSOCIATION OF NURSERYMEN.
- PLANTS SHALL BE SUBJECT TO INSPECTION AND APPROVAL AT THE PLACE OF GROWTH, UPON DELIVERY OR AT THE JOB SITE WHILE WORK IS ON-GOING FOR CONFORMITY TO SPECIFIED QUALITY, SIZE AND VARIETY.
- PLANTS FURNISHED IN CONTAINERS SHALL 5. HAVE THE ROOTS WELL ESTABLISHED IN THE SOIL MASS AND SHALL HAVE AT LEAST ONE (1) GROWING SEASON. ROOT-BOUND PLANTS OR INADEQUATELY SIZED CONTAINERS TO SUPPORT THE PLANT MAY BE DEEMED UNACCEPTABLE.
- ALL WORK AND PLANTS SHALL BE DONE, 6. INSTALLED AND DETAILED IN STRICT ACCORDANCE WITH PROJECT SPECIFICATIONS.
- 7. ALL PLANTS SHALL BE WATERED THOROUGHLY TWICE DURING THE FIRST 24-HOUR PERIOD AFTER PLANTING. ALL PLANTS SHALL BE WATERED WEEKLY, OR MORE OFTEN IF NECESSARY, DURING THE FIRST GROWING SEASON.
- ALL LANDSCAPE AREAS TO BE GRASS 8. COMMON TO REGION, EXCEPT FOR INTERIOR LANDSCAPED ISLANDS OR WHERE OTHER PLANT MATERIAL IS SPECIFIED.
- 9. ALL TREES AND SHRUBS SHALL BE PLANTED IN MULCH BEDS WITH EDGE STRIPS TO SEPARATE TURF GRASS AREAS.
- 10. THE CONTRACTOR SHALL REMOVE WEEDS, ROCKS, CONSTRUCTION ITEMS. ETC. FROM ANY LANDSCAPE AREA SO DESIGNATED TO REMAIN WHETHER ON OR OFF-SITE. GRASS SEED OR PINE BARK MULCH SHALL BE APPLIED AS DEPICTED ON PLANS.
- 11. FINISHED GRADES IN LANDSCAPED ISLANDS SHALL BE INSTALLED SO THAT THEY ARE 1" HIGHER THAN THE TOP OF THE SURROUNDING CURB.

- 12. ALL LANDSCAPING SHALL MEET THE CITY OF PORTSMOUTH STANDARDS AND REGULATIONS.
- 13. EXISTING TREES TO REMAIN SHALL BE PROTECTED WITH TEMPORARY SNOW FENCING AT THE DRIPLINE OF THE TREE. THE CONTRACTOR SHALL NOT STORE VEHICLES OR MATERIALS WITHIN THE LANDSCAPED AREAS. ANY DAMAGE TO EXISTING TREES, SHRUBS OR LAWN SHALL BE REPAIRED BY THE CONTRACTOR AT NO ADDITIONAL COST TO THI
- 14. ALL MULCH AREAS SHALL RECEIVE A 3" LAYER OF SHREDDED PINE BARK MULCH OVER A 10 MIL WEED MAT EQUAL TO 'WEEDBLOCK' BY EASY GARDENER OR DEWITT WEED BARRIER.
- 15. ALL LANDSCAPED AREAS SHALL HAVE SELECT MATERIALS REMOVED TO A DEPTH OF AT LEAST 9" BELOW FINISH GRADE. THE RESULTING VOID IS TO BE FILLED WITH A MINIMUM OF 9" HIGH-QUALITY SCREENED LOAM AMENDED WITH 3" OF AGED ORGANIC COMPOST.
- 16. THIS PLAN IS INTENDED FOR LANDSCAPING PURPOSES ONLY. REFER TO CIVIL/SITE DRAWINGS FOR OTHER SITE CONSTRUCTION INFORMATION.
- IRRIGATION PIPING SYSTEM SHALL BE 17. REVIEWED AND APPROVED BY OWNER AND ENGINEER PRIOR TO INSTALLATION.
- 18. THE PROPERTY OWNER AND ALL FUTURE PROPERTY OWNERS SHALL BE RESPONSIBLE FOR THE MAINTENANCE, REPAIR, AND REPLACEMENT OF ALL REQUIRED SCREENING AND LANDSCAPE MATERIALS.
- 19. ALL REQUIRED PLANT MATERIALS SHALL BE TENDED AND MAINTAINED IN A HEALTHY GROWING CONDITION, REPLACED WHEN NECESSARY, AND KEPT FREE OF REFUSE AND DEBRIS. ALL REQUIRED FENCES AND WALLS SHALL BE MAINTAINED IN GOOD REPAIR.
- 20. THE PROPERTY OWNER SHALL BE RESPONSIBLE TO REMOVE AND REPLACE DEAD OR DISEASED PLANT MATERIALS IMMEDIATELY WITH THE SAME TYPE, SIZE, AND QUANTITY OF PLANT MATERIALS AS ORIGINALLY INSTALLED, UNLESS ALTERNATIVE PLANTINGS ARE REQUESTED, JUSTIFIED, AND APPROVED BY THE PLANNING BOARD OR PLANNING DIRECTOR.
- 21. SEE TYPICAL PLANTING DETAILS ON SHEET DA

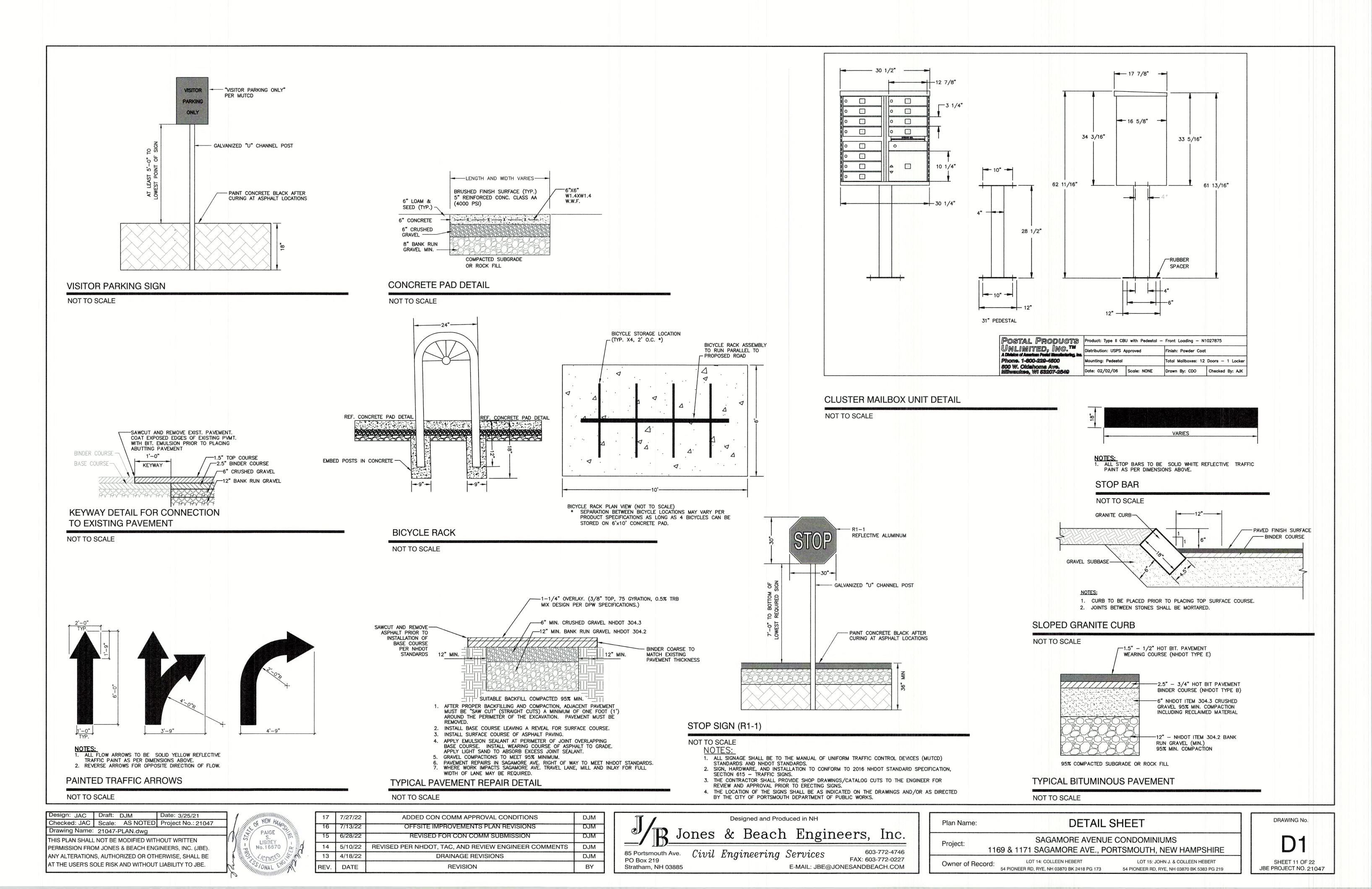
ANT			
	Common Name	Size	
	WHITE FIR	7-8 ft. ht.	
	BLOODGOOD JAPANESE MAPLE	15 Gallon	
	EASTERN RED CEDAR	7-8 ft. ht.	
	SWEETGUM	2.5" Caliper	
	FIRESTARTER TUPELO	4.5" Caliper	
	NORWAY SPRUCE	10-12 ft. ht.	
	KWANZAN ORIENTAL CHERRY	2" Caliper	
	HICKSII UPRIGHT YEW	6-7 ft. ht.	
	GREEN GIANT ARBORVITAE	10-12 ft. ht.	
	STERLING SILVER LINDEN	3" Caliper	
- J			
	HINO CRIMSON AZALEA	3 Gallon	
	GOLDEN THREAD CYPRESS	7 Gallon	
	RUBY SPICE SUMMER SWEET	5 Gallon	
	ANNABELLE HYDRANGEA	5 Gallon	
_	SHAMROCK INKBERRY HOLLY	5 Gallon	
	LITTLE HENRY SWEETSPIRE	3 Gallon	
	DWARF MUGO PINE	5 Gallon	
	RED DRIFT ROSE	3 Gallon	PROJECT PARCEL
	BLUE MUFFIN VIBURNUM	5 Gallon	CITY OF PORTSMOUTH
			TAX MAP 224, LOTS 14 & 15
	PUMILA PINK ASTILBE	1 Gallon	
	KARL FOERSTER REED GRASS	2 Gallon	APPLICANT THE SAGAMORE GROUP, LLC
ole'	NH PURPLE CRANESBILL	1 Gallon	PO BOX 430
	HAPPY RETURNS DAYLILY	1 Gallon	HAMPTON, NH 03842
	CARAMEL CORALBELLS	1 Gallon	
	ADAGIO MAIDEN GRASS	2 Gallon	TOTAL LOT AREA 79,292 SQ. FT.
	BRILLIANT SEDUM	1 Gallon	1.83 ACRES

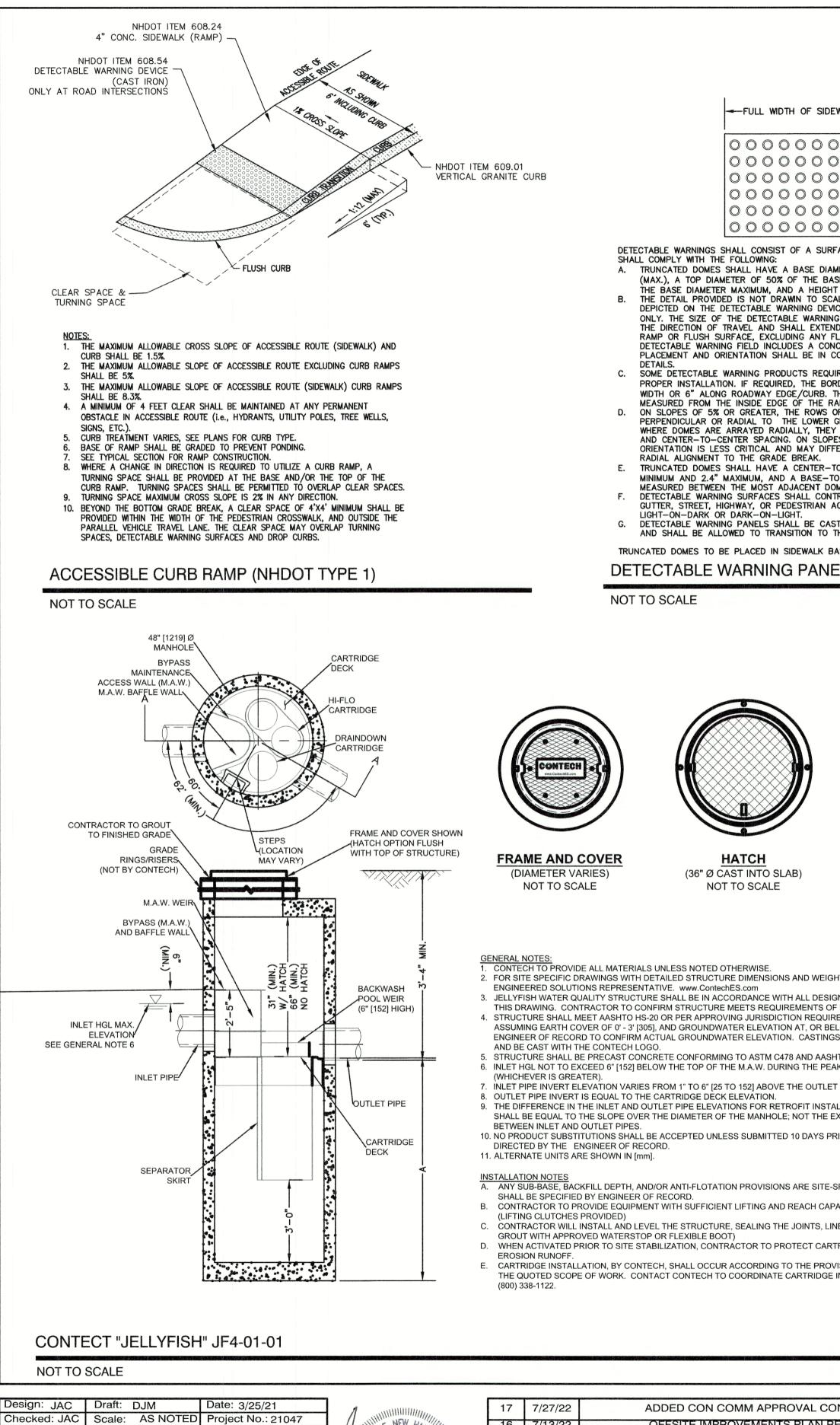
LANDSCAPE PLAN

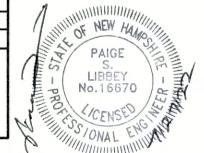

SAGAMORE AVENUE CONDOMINIUMS 1169 & 1171 SAGAMORE AVE., PORTSMOUTH, NEW HAMPSHIRE LOT 14: COLLEEN HEBERT LOT 15: JOHN J. & COLLEEN HEBERT


54 PIONEER RD, RYE, NH 03870 BK 2418 PG 173

54 PIONEER RD, RYE, NH 03870 BK 5383 PG 219


DRAWING No.





17	7/27/22	ADDED CON COMM APPROVAL CON
16	7/13/22	OFFSITE IMPROVEMENTS PLAN RE
15	6/28/22	REVISED FOR CON COMM SUBMI
14	5/10/22	REVISED PER NHDOT, TAC, AND REVIEW ENG
13	4/18/22	DRAINAGE REVISIONS
REV.	DATE	REVISION

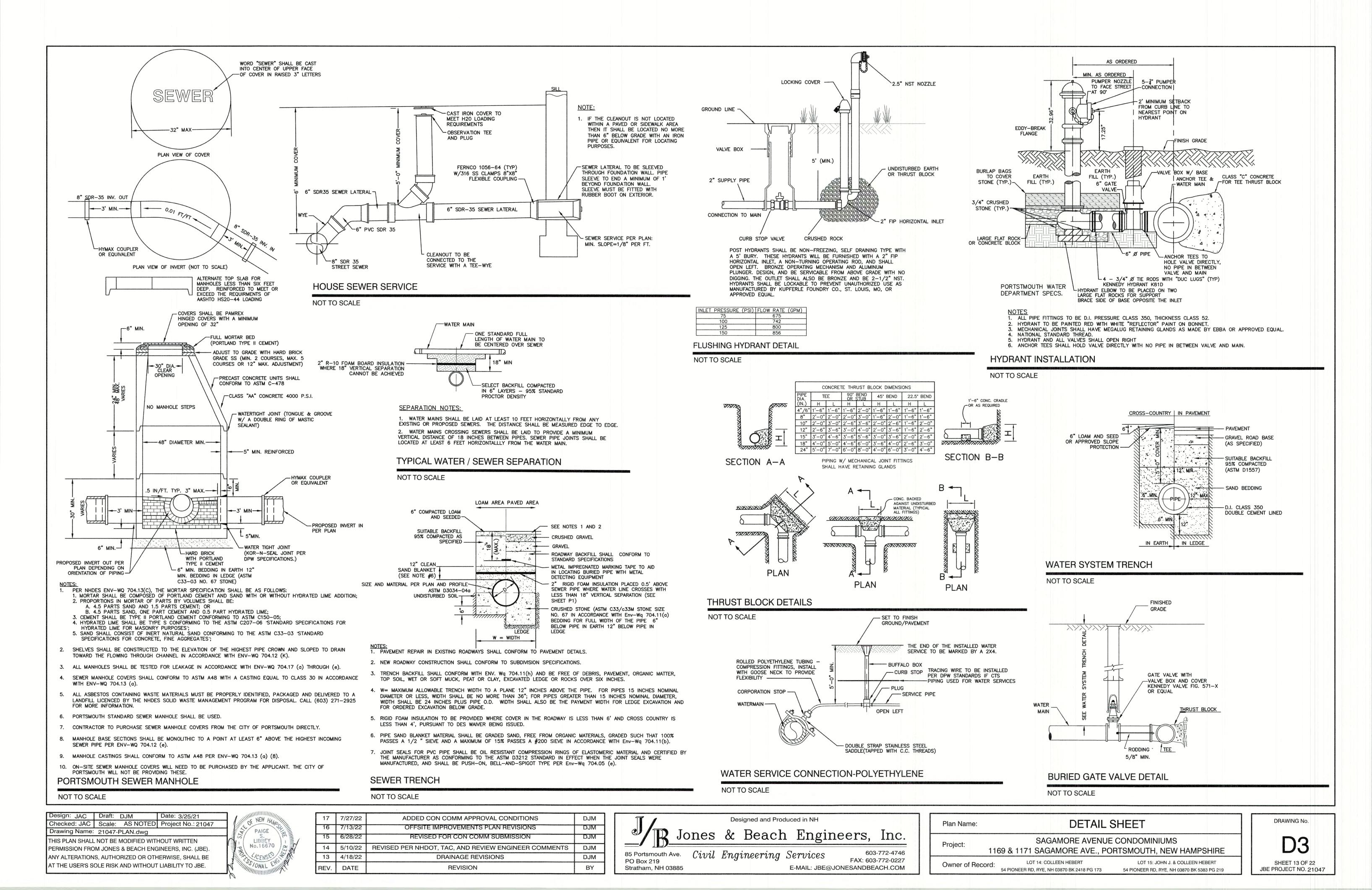
Drawing Name: 21047-PLAN.dwg THIS PLAN SHALL NOT BE MODIFIED WITHOUT WRITTEN PERMISSION FROM JONES & BEACH ENGINEERS, INC. (JBE). ANY ALTERATIONS, AUTHORIZED OR OTHERWISE, SHALL BE AT THE USER'S SOLE RISK AND WITHOUT LIABILITY TO JBE.

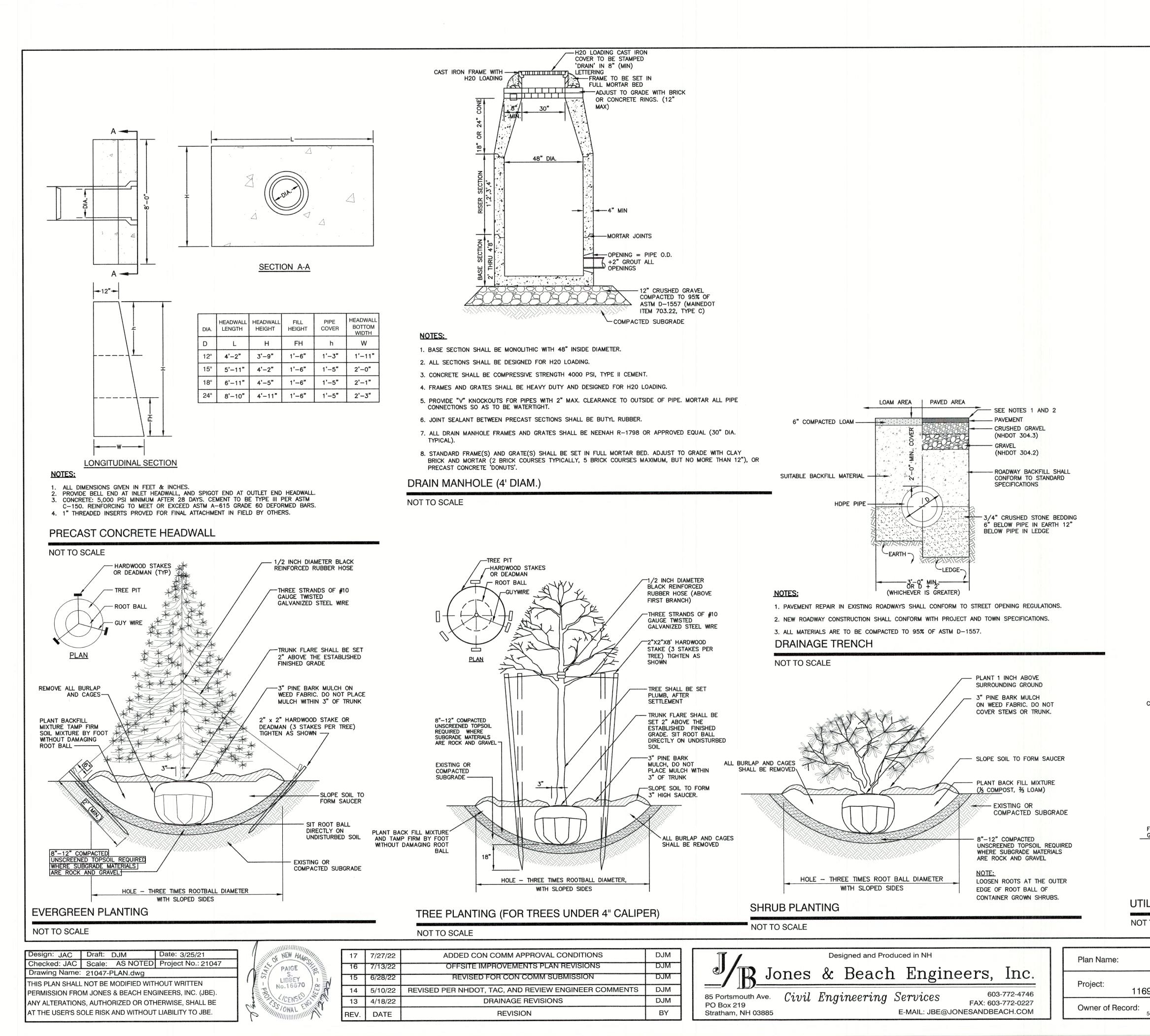
17	7/27/22	ADDED CON COMM APPROVAL CO
16	7/13/22	OFFSITE IMPROVEMENTS PLAN R
15	6/28/22	REVISED FOR CON COMM SUBN
14	5/10/22	REVISED PER NHDOT, TAC, AND REVIEW EN
13	4/18/22	DRAINAGE REVISIONS
REV.	DATE	REVISION

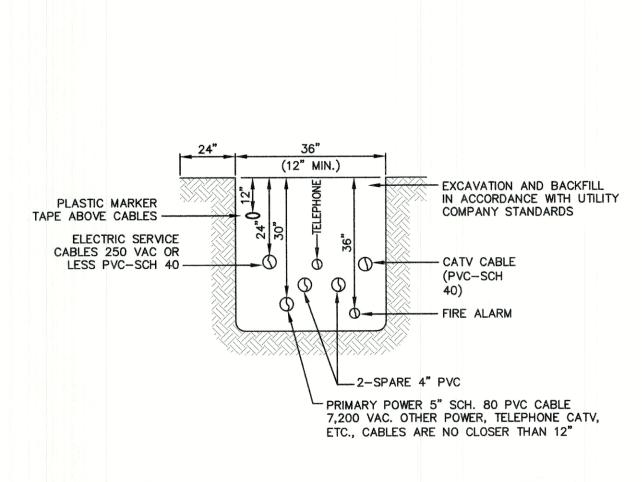
DEWALK	PROPOSED 6 16.7% SLOPE	
000	PROPOSED LANDING PROPOSED CURB TRANSITION	
-24"	CONTRACTOR SHALL NOT REMOVE ANY CURBING BEYOND SEA STAR COVE CONDOMINIUM	
	PROPERTY LINE. THE CURBING AT THE PROPOSED TIP DOWN LANDING AND 3' BEYOND IT IN THE DIRECTION OF THE SEA STAR COVE PROPERTY LINE SHALL BE REMOVED. THEN 3' OF NEW CURBING SHALL BE SET IMMEDIATELY FOLLOWING THE TIP DOWN LANDING AT A 16.7% SLOPE IN ORDER TO TRANSITION FROM THE GRADE OF THE EXISTING CURBING TO THE GRADE OF THE	
JRFACE OF TRUNCATED DOMES AND	CURB TRANSITION AT SEA STAR COVE R.O.W LINE	
MAMETER OF 0.9" (MIN.) AND 1.4" BASE DIAMETER MINIMUM TO 65% OF GHT OF 0.2". SCALE. THE QUANTITY OF DOMES	NOT TO SCALE	
EVICE DETAIL IS FOR ILLUSTRATION IING FIELD SHALL BE 2' MINIMUM IN TEND THE FULL WIDTH OF THE CURB Y FLARED SIDES. THE WIDTH OF THE		
ONCRETE BORDER, IF PROVIDED. I COMPLIANCE WITH THE PLANS AND QUIRE A CONCRETE BORDER FOR	GL FACE OF CURB TO BE 16' FROM CENTERLINE 6" 5.5' CONCRETE	
BORDER SHALL NOT EXCEED 2" IN . THE BORDER DIMENSION SHALL BE RADIUS. S OF DOMES SHALL BE ALIGNED TO BE	SYL SYL SWL VERTICAL SIDEWALK GRANITE CURB	
IFFER FROM PERPENDICULAR OR	11' ±5' ±5'	
-TO-CENTER SPACING OF 1.6" -TO-BASE SPACING OF .65" MINIMUM,	THE INTENT OF THIS DETAIL IS TO ILLUSTRATE THE LOCATION	
DOMES ON A SQUARE GRID. DNTRAST VISUALLY WITH ADJACENT I ACCESS ROUTE SURFACE, EITHER	OF THE PROPOSED SIDEWALK IN RELATION TO THE CROSS SECTION OF SAGAMORE AVE. SEE BELOW CONCRETE SIDEWALK WITH VERTICAL GRANITE CURB DETAIL AS WELL	
CAST IRON WITH NO SURFACE COATING O THEIR NATURAL PATINA. BASE IN PUBLIC TRAFFIC AREAS.	SAGAMORE AVE AND CONCRETE SIDEWALK CROSS SECTION	
NEL WITH TRUNCATED DOMES	NOT TO SCALE	
	BRUSHED FINISH SURFACE (TYP., CURB INCLUDED) 4" REINFORCED CONC.	
	6" LOAM & SEED (TYP) CLASS AA (4000 PSI) 6"x6" W1.4xW1.4 W.W.F.	
	4" CONCRETE 6" CRUSHED AT A CROSS SLOPE 6" A CONCRETE 6" A	
	GRAVEL A BOLLAND	
	GRAVEL MIN.	
	EXPANSION EXPANSION BACKFILL ROADWAY SIDE OF GRANITE CURB WITH CLASS A CONCRETE. CONCRETE THICKNESS SHALL NOT BE LESS	
	JOINT SEALANT (WHEN REQ'D)	
	 CONCRETE TO BE 4000 PSI. CONTRACTION JOINTS SPACE TO BE EQUAL TO SIDEWALK WIDTH. ALL JOINTS SEALED PER 	
	CONCRETE SIDEWALK BLDG. FACE OF FIXED OBJECT 4. SPECIFICATIONS. 4. PROVIDE A 1/2" NON-EXTRUDING EXPANSION JOINT AGAINST	
	1/2" PREFORMED EXPANSION JOINT 4 5. PROVIDE BROOM FINISH IN DIRECTION PERPENDICULAR TO CURB.	
IGHT, PLEASE CONTACT YOUR CONTECH	CONCRETE SIDEWALK W/ VERTICAL GRANITE CURB	
SIGN DATA AND INFORMATION CONTAINED IN OF PROJECT. JIREMENTS, WHICHEVER IS MORE STRINGENT,	NOT TO SCALE	
BELOW, THE OUTLET PIPE INVERT ELEVATION. NGS SHALL MEET AASHTO M306 LOAD RATING NSHTO LOAD FACTOR DESIGN METHOD.	PAVEMENT DIMENSIONS REFER TO THIS POINT GRANITE CURB	
EAK DESIGN STORM, OR 10-YEAR STORM	PAVEMENT ELEVATIONS REFER TO THIS POINT	
TALLATIONS TO EXISTING STORM DRAIN PIPES E EXCEED 6" [152] IN VERTICAL DIFFERENTIAL	PARKING LOT SURFACE	
PRIOR TO PROJECT BID DATE, OR AS		
E-SPECIFIC DESIGN CONSIDERATIONS AND		
APACITY TO LIFT AND SET THE STRUCTURE LINE ENTRY AND EXIT POINTS (NON-SHRINK	BACKFILL ROADWAY SIDE OF GRANITE CURB WITH CLASS A CONCRETE. CONCRETE THICKNESS SHALL NOT BE LESS THAN THAT OF THE ADJACENT	
ARTRIDGES FROM CONSTRUCTION-RELATED	NOTES 1. EDGING TO BE PLACED PRIOR TO PLACING TOP SURFACE COURSE.	
GE INSTALLATION WITH SITE STABILIZATION AT	 2. JOINTS BETWEEN STONES SHALL BE MORTARED. 3. PROPOSED VERTICAL GRANITE CURB WITHIN NHDOT RIGHT OF WAY SHALL MEET THE REQUIREMENTS OF NHDOT STANDARD 	
	VERTICAL GRANITE CURB	
	NOT TO SCALE	
CONDITIONS DJM	Designed and Produced in NH Plan Name:	No and Advantage of the second state
REVISIONS DJM BMISSION DJM		
PO I	Portsmouth Ave. Civil Engineering Services 603-772-4746 110 Box 219 FAX: 603-772-0227 Owner of Becord:	69 & 1
BY Strat	E-MAIL: JBE@JONESANDBEACH.COM	54 PION

EXISTING CURBING

COND COND

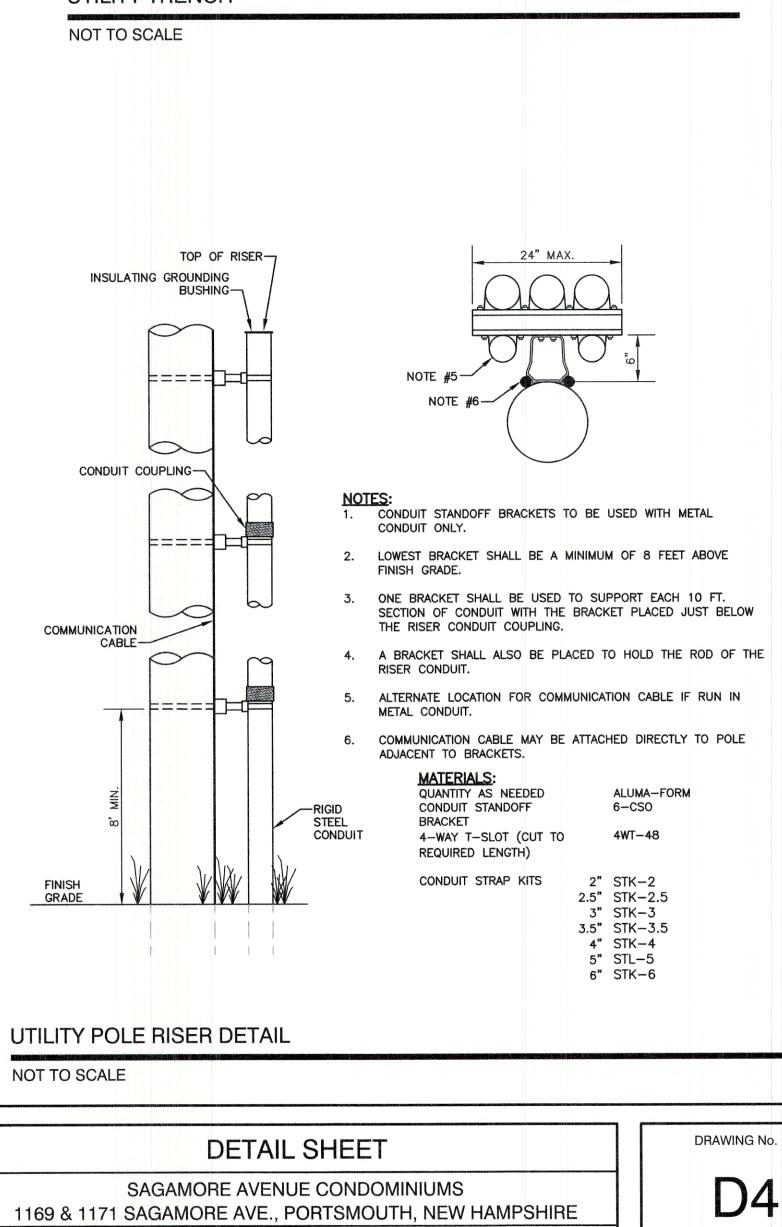

EXISTING CURBING


TO BE REMOVED _____ TO BE REMOVED _____


EXISTING CURBING

TO REMAIN

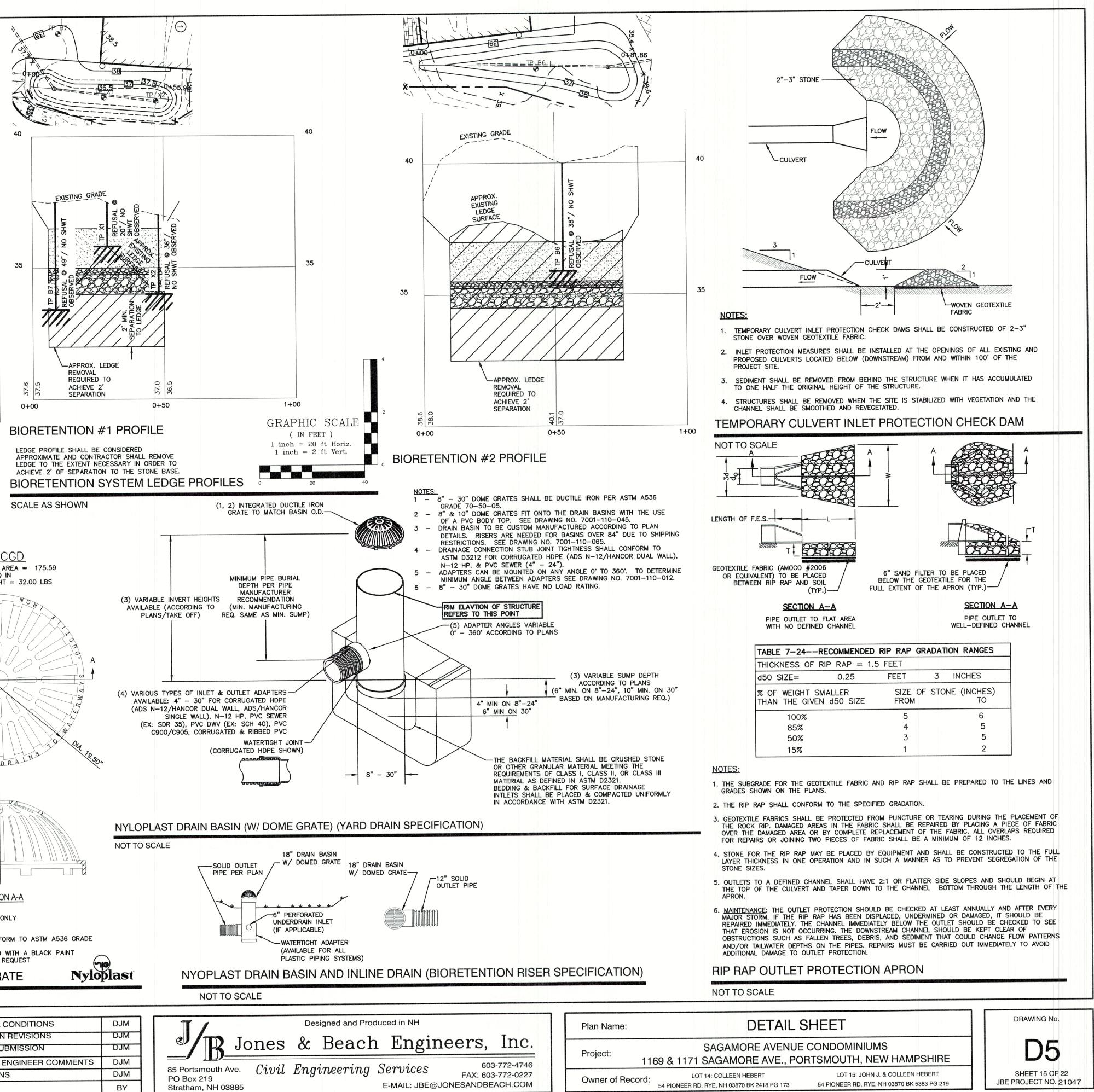
	ALT. SLAB TOP REINFO EXCEED REQUIREMENT	
CAST IRON FRAME AND GRATE WITH H20 LOADING (TYPE B	AS REQU	
NEEENAH MODEL R-3570)-		
FINISH GRADE	FRAME TO B	
	ADJUST TO	GRADE WITH PRE-CAST
z	OPENING CONCRETE	
TOP SECTION		
TOP S		
		ENT SEAL ALL DINTS
	5" MIN	
RISER 3, 4, 2, 4, 4, 9, 1, 2, 4, 1, 2, 1,		FLEXIBLE BOOT CONFORMING ASTM
		SPEC. C-443 CAST-IN-PLACE OR FIELD INSTALLED
BASE SECTION 2' THRU 4'-8"	7 48" (SEE #9)	IN .12 SQ. IN. STEEL PER
L S S S S S S S S S S S S S S S S S S S		ERTICAL FOOT PLACED CCORDING TO AASHTO ESIGNATION M199
	AAAAAA	
	-6" OF 3/4" CRUS	SHED STONE
COMPACIED SUBGRADE	COMPACTED TO 95% OF ASTM	-1557
NOTES:	(NHDOT ITEM 304	
1. BASE SECTION SHALL BE MON 2. ALL SECTIONS SHALL BE DESI		.TER.
3. CONCRETE SHALL BE COMPRE		PE II CEMENT.
4. FRAMES AND GRATES SHALL	BE HEAVY DUTY AND DESIGNED	FOR H20 LOADING
5. PROVIDE "V" KNOCKOUTS FOR OF PIPE. MORTAR ALL PIPE C	PIPES WITH 2" MAX. CLEARAN ONNECTIONS SO AS TO BE WAT	
6. JOINT SEALANT BETWEEN PRE	CAST SECTIONS SHALL BE BUT	/L RUBBER.
	ID GRATES SHALL BE NHDOT C. 3570 OR APPROVED EQUAL (24 ATE IN NHDOT RIGHT OF WAY N	Fx24" TYPICAL).
8. STANDARD CATCH BASIN FRAME		
MORTAR BED. ADJUST TO GRA COURSES TYPICALLY, 5 BRICK	DE WITH CLAY BRICK AND MOR COURSES MAXIMUM, BUT NO M	TAR (2 BRICK
OR PRECAST CONCRETE 'DON 9. CATCH BASINS CALLED OUT A		J" SHALL HAVE A
48" SUMP; ALL OTHER CATCH	BASINS SHALL HAVE A 36" S	UMP.
10. INSTALL POLYETHYLENE LINER BASINS IN SAGAMORE AVE. R		OPOSED CATCH
11. PROPOSED CATCH BASINS WIT THE REQUIREMENTS OF NHOO	HIN SAGAMORE AVE. RIGHT OF STANDARD SPECIFICATIONS SE	
CATCH BASIN		
NOT TO SCALE		
	1) AY	
	NOTE 1) DRIVEWAY	
18" WIDE WHITE STOP BAR TO END 12" FROM		
EDGE OF PAVEMENT	PROPOSE	
EDGE OF PAVEMENT		EDGE OF PAVEMENT
SOLID WHITE LINE	800 1990 1990 1990 1990 1990 1990 1990 1	SOLID WHITE LINE
	SAGAMORE AVE.	
DOUBLE SOLID YELLOW LINE	DC	DUBLE SOLID YELLOW LINE
		nender nach in den der Annender auf die Geschnen einen zwie einen einen einen der Annender an der Annender anne Annender Marin andere Baser von der Annender zu der die Schleden annender Annender annen einen Baser von die Sch
	SOLID WHITE LINE	
NOTES:		
1. LOCATION OF STOP BAR MAY VAP VEHICLE TURNING RADIUS AND MA		
THE STOP SIGN. 2. END STOP BAR 12" FROM EDGE C	F PAVEMENT.	
3. STOP BARS, WORDS, LANE LINES,		BE THERMOPLASTIC.
4. SOLID WHITE LINE AND DOUBLE S PROPOSED DRIVEWAY.	DLID YELLOW LINE SHALL NOT E	BREAK AT THE
NHDOT PAVEMENT MAR	RKINGS	
NOT TO SCALE		
DETAIL SHE	ET	DRAWING No.
SAGAMORE AVENUE CON	DOMINIUMS	
9 & 1171 SAGAMORE AVE., PORTSM	OUTH, NEW HAMPSH	
LOT 14: COLLEEN HEBERT 54 PIONEER RD, RYE, NH 03870 BK 2418 PG 173 54 P	LOT 15: JOHN J. & COLLEEN HEBE ONEER RD, RYE, NH 03870 BK 5383 P	

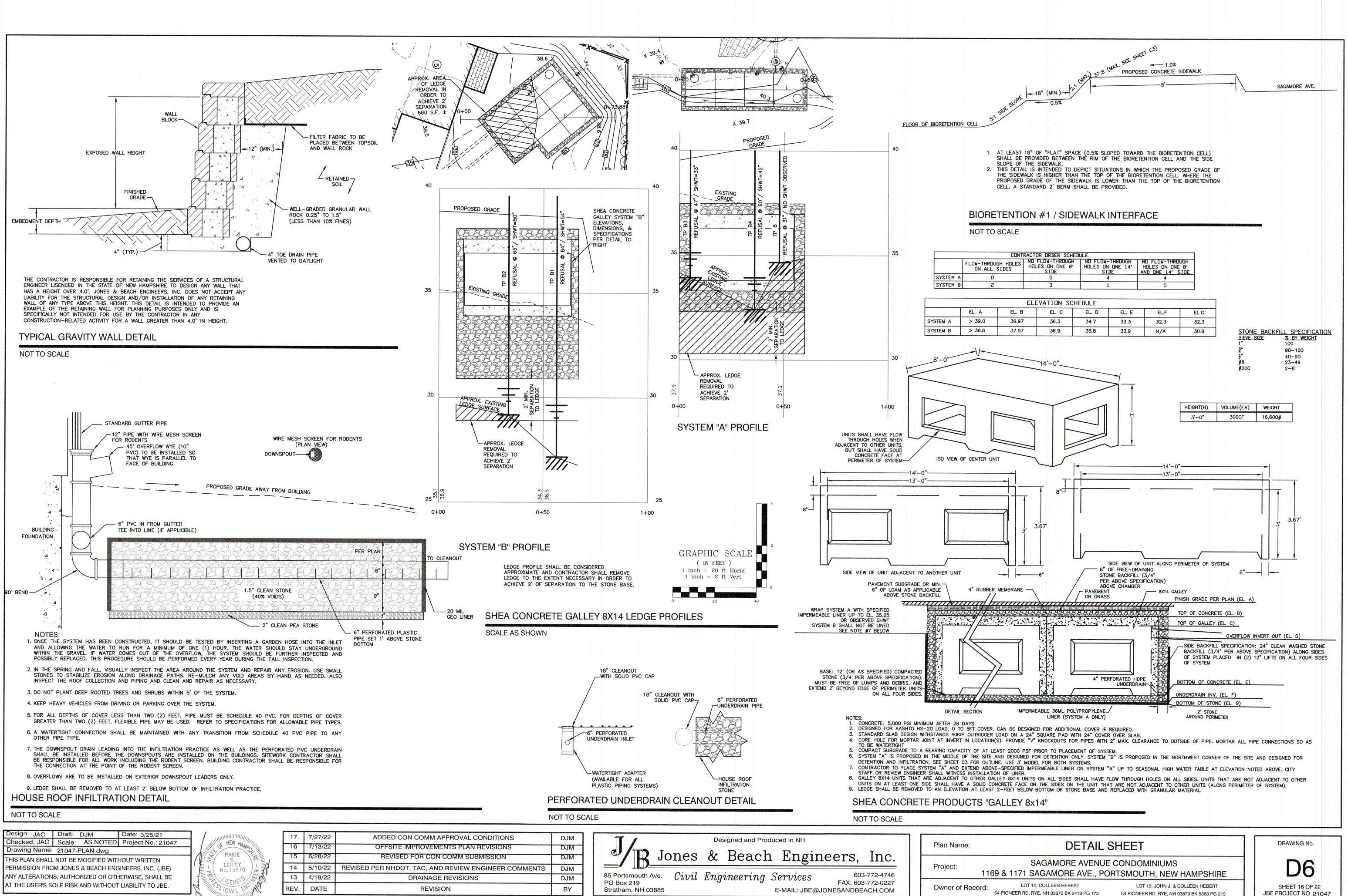


NOTE: ALL UTILITIES SHALL BE REVIEWED AND APPROVED BY APPROPRIATE UTILITY COMPANY.

UTILITY TRENCH

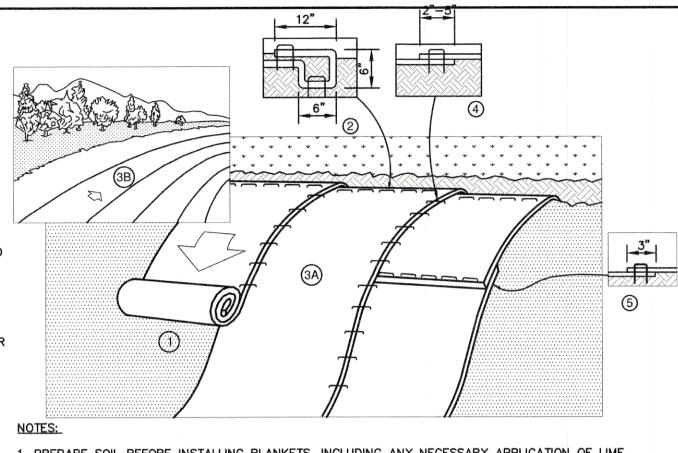
54 PIONEER RD, RYE, NH 03870 BK 2418 PG 173 54 PIONEER RD, RYE, NH 03870 BK 5383 PG 219


LOT 14: COLLEEN HEBERT


LOT 15: JOHN J. & COLLEEN HEBERT

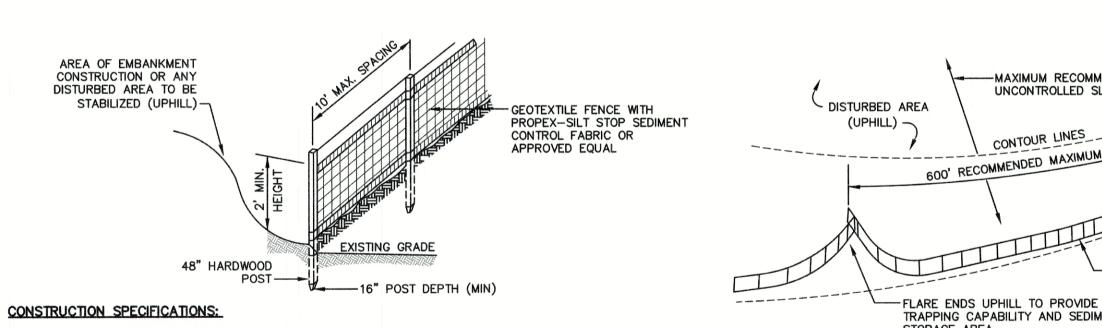
SHEET 14 OF 22

JBE PROJECT NO. 21047


BIORETENTION SYSTEM ELEVATIONS	ELEV. G SHWT LEDGE
BIORETENTION BOTTOM (S.F.) ELEV. A ELEV. B ELEV. C ELEV. B ELEV. C	34.00VARIESVARIES34.50VARIESVARIES
	TE #4 UNDER DESIGN CONSIDERATIONS
SIEVE SIZE% BY WEIGHTLOAMY SAND TOPSOIL WITHSIEVE SIZE% BY WEIGHT3"100MINIMAL CLAY CONTENT AND1"100#495-100BETWEEN 15 TO 25% FINES3"85-100	SIEVE_SIZE % BY_WEIGHT 1" 90-100 2" 75-100 #4 50-100
#16 50-85 #4 10 10 #30 25-60 MULCH SPECIFICATION #8 0-10 FLOW #60 10-30 MODERATELY FINE, SHREDDED #16 0-15 FLOW #60 10-30 BARK OR WOOD FIBER MULCH #16 0-15	#20 15-80 #50 0-15 #200 0-5
# 100 2-10 WITH LESS THAN 5% PASSING BIORETENTION TO BE #200 0-5 THE #200 SIEVE. PLANTED WITH GRASS EL. A = TOP OF BE RISER OVERFLOW EL. B = RIM OF RIS	
STRUCTURE EL. C = TOP OF F COURSE	APPROX. DRAIN
18"	APPROX. WEIGH
T	EL. F =
9" BOTTOM 9" BOTTOM 6" PERFORATED	A C C C C C C C C C C C C C C C C C C C
DESIGN CONSIDERATIONS	
1. DO NOT PLACE BIORETENTION SYSTEMS INTO SERVICE UNTIL THE BMP HAS BEEN SEEDED AND ITS CONTRIBUTING AREAS HAVE BEEN FULLY STABILIZED.	
 DO NOT DISCHARGE SEDIMENT-LADEN WATERS FROM CONSTRUCTION ACTIVITIES (RUN-OFF, WATER FROM EXCAVATIONS) TO THE BIORETENTION AREA DURING ANY STAGE OF CONSTRUCTION. DO NOT TRAFFIC EXPOSED SOIL SURFACE WITH CONSTRUCTION EQUIPMENT. IF FEASIBLE, PERFORM 	·
 BUT NOT INATTIC LAFOSED SOLE SOLE SOLE OF THE LIMITS OF THE INFILTRATION COMPONENTS OF THE SYSTEM. REMOVE LEDGE TO AT LEAST 6" BELOW BOTTOM OF COARSE GRAVEL LAYER IF ENCOUNTERED. 	
MAINTENANCE REQUIREMENTS: 1. SYSTEMS SHOULD BE INSPECTED AT LEAST TWICE ANNUALLY, AND FOLLOWING ANY RAINFALL EVENT EXCEEDING 2.5 INCHES IN A 24 HOUR PERIOD, WITH MAINTENANCE OR REHABILITATION CONDUCTED AS	
WARRANTED BY SUCH INSPECTION. 2. PRETREATMENT MEASURES SHOULD BE INSPECTED AT LEAST TWICE ANNUALLY, AND CLEANED OF ACCUMULATED SEDIMENT AS WARRANTED BY INSPECTION, BUT NO LESS THAN ONCE ANNUALLY.	
 TRASH AND DEBRIS SHOULD BE REMOVED AT EACH INSPECTION. AT LEAST ONCE ANNUALLY, SYSTEM SHOULD BE INSPECTED FOR DRAWDOWN TIME. IF BIORETENTION SYSTEM 	
4. AT LEAST ONCE ANNOLLIT, STOLLAT, STOLLOWING A RAINFALL EVENT, THEN A QUALIFIED PROFESSIONAL DOES NOT DRAIN WITHIN 72 HOURS FOLLOWING A RAINFALL EVENT, THEN A QUALIFIED PROFESSIONAL SHOULD ASSESS THE CONDITION OF THE FACILITY TO DETERMINE MEASURES REQUIRED TO RESTORE FILTRATION FUNCTION OR INFILTRATION FUNCTION (AS APPLICABLE), INCLUDING BUT NOT LIMITED TO REMOVAL OF ACCUMULATED SEDIMENTS OR RECONSTRUCTION OF THE FILTER MEDIA.	SECTION NOTES:
5. VEGETATION SHOULD BE INSPECTED AT LEAST ANNUALLY, AND MAINTAINED IN HEALTHY CONDITION, INCLUDING PRUNING, REMOVAL AND REPLACEMENT OF DEAD OR DISEASED VEGETATION, AND REMOVAL OF INVASIVE SPECIES.	 DIMENSIONS ARE FOR REFERENCE (ACTUAL DIMENSIONS MAY VARY DIMENSIONS ARE IN INCHES QUALITY: MATERIALS SHALL CONF
6. COMPACTION AND MATERIALS TESTING SERVICES SHALL BE PERFORMED BY AN INDEPENDENT GEOTECHNICAL ENGINEER RETAINED BY THE OWNER.	70-50-05 5. PAINT: CASTINGS ARE FURNISHED 6. LOCKING DEVICE AVAILABLE UPON
BIORETENTION SYSTEM WITH UNDERDRAIN	18" NYLOPLAST DOME GR
	ADDED CON COMM APPROVAL
Checked: JAC Scale: AS NOTED Project No.: 21047 Drawing Name: 21047-PLAN.dwg 16 7/13/22 THIS PLAN SHALL NOT BE MODIFIED WITHOUT WRITTEN 15 6/28/22 DEFENSION FORM FORM FORM FORM FORM FORM FORM FORM	OFFSITE IMPROVEMENTS PLAN REVISED FOR CON COMM SU VISED PER NHDOT, TAC, AND REVIEW
Design: JAC Draft: DJM Date: 3/25/21 Checked: JAC Scale: AS NOTED Project No.: 21047 Drawing Name: 21047-PLAN.dwg PAIGE 16 7/13/22 THIS PLAN SHALL NOT BE MODIFIED WITHOUT WRITTEN PERMISSION FROM JONES & BEACH ENGINEERS, INC. (JBE). Image: Paige State 14 5/10/22 RE ANY ALTERATIONS, AUTHORIZED OR OTHERWISE, SHALL BE AT THE USER'S SOLE RISK AND WITHOUT LIABILITY TO JBE. Image: Paige State Imad	DRAINAGE REVISION

TEMPORARY EROSION CONTROL NOTES

- THE SMALLEST PRACTICAL AREA OF LAND SHALL BE EXPOSED AT ANY ONE TIME. AT NO TIME SHALL AN AREA IN EXCESS OF 5 ACRES BE EXPOSED AT ANY ONE TIME BEFORE DISTURBED AREAS ARE STABILIZED.
- EROSION, SEDIMENT AND DETENTION MEASURES SHALL BE INSTALLED AS SHOWN ON THE PLANS AND AT LOCATIONS AS REQUIRED, DIRECTED BY THE ENGINEER.
- ALL DISTURBED AREAS (INCLUDING POND AREAS BELOW THE PROPOSED WATERLINE) SHALL BE RETURNED TO PROPOSED GRADES AND ELEVATIONS. DISTURBED AREAS SHALL BE LOAMED WITH A MINIMUM OF 6" OF SCREENED ORGANIC LOAM AND SEEDED WITH SEED MIXTURE 'C' AT A RATE NOT LESS THAN 1.10 POUNDS OF SEED PER 1,000 S.F. OF AREA (48 LBS. / ACRE).
- SILT FENCES AND OTHER BARRIERS SHALL BE INSPECTED EVERY SEVEN CALENDAR DAYS AND WITHIN 24 HOURS OF A RAINFALL OF 0.5" OR GREATER. ALL DAMAGED AREAS SHALL BE REPAIRED, AND SEDIMENT DEPOSITS SHALL PERIODICALLY BE REMOVED AND DISPOSED OF.
- AFTER ALL DISTURBED AREAS HAVE BEEN STABILIZED, THE TEMPORARY EROSION CONTROL MEASURES SHALL BE REMOVED AND THE AREA DISTURBED BY THE REMOVAL SMOOTHED AND RE-VEGETATED.
- AREAS MUST BE SEEDED AND MULCHED OR OTHERWISE PERMANENTLY STABILIZED WITHIN 3 DAYS OF FINAL GRADING, OR TEMPORARILY STABILIZED WITHIN 14 DAYS OF THE INITIAL DISTURBANCE OF SOIL. ALL AREAS SHALL BE STABILIZED WITHIN 45 DAYS OF INITIAL DISTURBANCE.
- ALL PROPOSED VEGETATED AREAS THAT DO NOT EXHIBIT A MINIMUM OF 85 PERCENT VEGETATIVE GROWTH BY OCTOBER 15, OR WHICH ARE DISTURBED AFTER OCTOBER 15, SHALL BE STABILIZED BY SEEDING AND INSTALLING NORTH AMERICAN GREEN S150 EROSION CONTROL BLANKETS (OR AN EQUIVALENT APPROVED IN WRITING BY THE ENGINEER) ON SLOPES GREATER THAN 3:1, AND SEEDING AND PLACING 3 TO 4 TONS OF MULCH PER ACRE, SECURED WITH ANCHORED NETTING, ELSEWHERE. THE INSTALLATION OF EROSION CONTROL BLANKETS OR MULCH AND NETTING SHALL NOT OCCUR OVER ACCUMULATED SNOW OR ON FROZEN GROUND AND SHALL BE COMPLETED IN ADVANCE OF THAW OR SPRING MELT EVENTS.
- ALL DITCHES OR SWALES WHICH DO NOT EXHIBIT A MINIMUM OF 85 PERCENT VEGETATIVE GROWTH BY OCTOBER 15, OR WHICH ARE DISTURBED AFTER OCTOBER 15, SHALL BE STABILIZED TEMPORARILY WITH STONE OR EROSION CONTROL BLANKETS APPROPRIATE FOR THE DESIGN FLOW CONDITIONS.
- AFTER OCTOBER 15th, INCOMPLETE ROAD OR PARKING SURFACES, WHERE WORK HAS STOPPED FOR THE WINTER SEASON, SHALL BE PROTECTED WITH A MINIMUM OF 3" OF CRUSHED GRAVEL PER NHDOT ITEM 304.3.
-). AN AREA SHALL BE CONSIDERED STABLE IF ONE OF THE FOLLOWING HAS OCCURRED:
 - a. BASE COURSE GRAVELS HAVE BEEN INSTALLED IN AREAS TO BE PAVED;
 - b. A MINIMUM OF 85% VEGETATED GROWTH HAS BEEN ESTABLISHED;
 - C. A MINIMUM OF 3" OF NON-EROSIVE MATERIAL SUCH STONE OR RIPRAP HAS BEEN INSTALLED; OR
 - d. EROSION CONTROL BLANKETS HAVE BEEN PROPERLY INSTALLED.
- FUGITIVE DUST CONTROL IS REQUIRED TO BE CONTROLLED IN ACCORDANCE WITH ENV-A 1000, AND THE PROJECT IS TO MEET THE REQUIREMENTS AND INTENT OF RSA 430:53 AND AGR 3800 RELATIVE TO INVASIVE SPECIES.



- CELL-O-SEED MUST BE INSTALLED WITH PAPER SIDE DOWN.
- THE WIDTH OF THE BLANKET.
- THE PREVIOUSLY INSTALLED BLANKET.

NORTH AMERICAN GREEN 14649 HIGHWAY 41 NORTH EVANSVILLE, INDIANA 47725 1-800-772-2040 EROSION CONTROL BLANKET SLOPE INSTALLATION NORTH AMERICAN GREEN (800) 772-2040 GRAVEL PIT, SEE NH-PM-24 IN APPENDIX FOR RECOMMENDATION REGARDING RECLAMATION OF SAND AND GRAVEL PITS. / REFER TO SEEDING MIXTURES AND RATES IN TABLE BELOW. 27 POORLY DRAINED SOILS ARE NOT DESIRABLE FOR USE AS PLAYING AREA AND ATHLETIC FIELDS. NOTE: TEMPORARY SEED MIX FOR STABILIZATION OF TURF SHALL BE WINTER RYE OR OATS AT A RATE OF 2.5 LBS. PER 1000 S.F. AND SHALL BE PLACED PRIOR TO OCTOBER 15th, IF PERMANENT SEEDING NOT YET COMPLETE. -MAXIMUM RECOMMENDED SEEDING GUIDE UNCONTROLLED SLOPE LENGTH POUNDS PER POUNDS CONTOUR LINES MIXTURE PER ACRE 1.000 Sq. Fi 600' RECOMMENDED MAXIMUM . TALL FESCUE CREEPING RED FESCUE 0 45 RED TOP 42 0.95 TOTAL **B. TALL FESCUE** CREEPING RED FESCUE 0.25 CROWN VETCH 0.35 FENCING IS TO RUN WITH THE FLAT PEA CONTOURS ACROSS A SLOPE 0.95 OR 1.35 40 OR 55 TOTAL TRAPPING CAPABILITY AND SEDIMENT TALL FESCUE 0.45 STORAGE AREA CREEPING RED FESCUE 0.45 BIRDS FOOT TREFOIL 7. SILT FENCES SHALL BE REMOVED WHEN NO LONGER NEEDED AND THE SEDIMENT COLLECTED SHALL BE DISPOSED AS DIRECTED BY THE ENGINEER. THE AREA DISTURBED BY THE REMOVAL SHALL BE 0.20 TOTAL D. TALL FESCUE FLAT PEA 0.75 TOTAL 1. SILT FENCES SHALL BE INSPECTED IMMEDIATELY AFTER EACH RAINFALL AND AT LEAST DAILY DURING . CREEPING RED FESCUE 1/ 1.15KENTUCKY BLUEGRASS 1/ PROLONGED RAINFALL. ANY REPAIRS THAT ARE REQUIRED SHALL BE DONE IMMEDIATELY. 2.30 TOTAL 2. IF THE FABRIC ON A SILT FENCE SHOULD DECOMPOSE OR BECOME INEFFECTIVE DURING THE EXPECTED LIFE OF THE FENCE, THE FABRIC SHALL BE REPLACED PROMPTLY. F. TALL FESCUE 3.60 3. SEDIMENT DEPOSITS SHOULD BE INSPECTED AFTER EVERY STORM EVENT. THE DEPOSITS SHOULD BE ✓ FOR HEAVY USE ATHLETIC FIELDS CONSULT THE UNIVERSITY OF REMOVED WHEN THEY REACH APPROXIMATELY ONE HALF THE HEIGHT OF THE BARRIER. NEW HAMPSHIRE COOPERATIVE EXTENSION TURF SPECIALIST FOR CURRENT VARIETIES AND SEEDING RATES. 4. SEDIMENT DEPOSITS THAT ARE REMOVED, OR LEFT IN PLACE AFTER THE FABRIC HAS BEEN REMOVED, SHALL BE GRADED TO CONFORM WITH THE EXISTING TOPOGRAPHY AND VEGETATED. SEEDING RATES CONDITIONS Designed and Produced in NH DJM REVISIONS Inc. Jones & Engineers, BMISSIO ENGINEER COMMENTS DJM 85 Portsmouth Ave. Civil Engineering Services 603-772-4746 DJM FAX: 603-772-0227 PO Box 219

NOT TO SCALE

- WOVEN FABRIC FENCE TO BE FASTENED SECURELY TO FENCE POSTS WITH WIRE TIES OR STAPLES. FILTER CLOTH SHALL BE FASTENED TO WOVEN WIRE EVERY 24" AT TOP, MID AND BOTTOM AND EMBEDDED IN THE GROUND A MINIMUM OF 8" AND THEN COVERED WITH SOIL.
- 2. THE FENCE POSTS SHALL BE A MINIMUM OF 48" LONG, SPACED A MAXIMUM 10' APART, AND DRIVEN A MINIMUM OF 16" INTO THE GROUND.
- . WHEN TWO SECTIONS OF FILTER CLOTH ADJOIN EACH OTHER, THE ENDS OF THE FABRIC SHALL BE OVERLAPPED 6", FOLDED AND STAPLED TO PREVENT SEDIMENT FROM BY-PASSING.
- I. MAINTENANCE SHALL BE PERFORMED AS NEEDED AND SEDIMENT REMOVED AND PROPERLY DISPOSED OF WHEN IT IS 6" DEEP OR VISIBLE 'BULGES' DEVELOP IN THE SILT FENCE.
- 5. PLACE THE ENDS OF THE SILT FENCE UP CONTOUR TO PROVIDE FOR SEDIMENT STORAGE.
- 6. SILT FENCE SHALL REMAIN IN PLACE FOR 24 MONTHS.

SILT FENCE

NOT TO SCALE

Design: JAC Draft: DJM Date: 3/25/21 Checked: JAC Scale: AS NOTED Project No.: 21047 Drawing Name: 21047-PLAN.dwg THIS PLAN SHALL NOT BE MODIFIED WITHOUT WRITTEN PERMISSION FROM JONES & BEACH ENGINEERS, INC. (JBE). ANY ALTERATIONS, AUTHORIZED OR OTHERWISE, SHALL BE AT THE USER'S SOLE RISK AND WITHOUT LIABILITY TO JBE.

17	7/27/22	ADDED CON COMM APPROVAL C
16	7/13/22	OFFSITE IMPROVEMENTS PLAN
15	6/28/22	REVISED FOR CON COMM SUE
14	5/10/22	REVISED PER NHDOT, TAC, AND REVIEW EI
13	4/18/22	DRAINAGE REVISIONS
REV.	DATE	REVISION
Statement of the state		

SMOOTHED AND REVEGETATED.

MAINTENANCE:

PREPARE SOIL BEFORE INSTALLING BLANKETS, INCLUDING ANY NECESSARY APPLICATION OF LIME, FERTILIZER, AND SEED. NOTE: WHEN USING CELL-O-SEED DO NOT SEED PREPARED AREA.

2. BEGIN AT THE TOP OF THE SLOPE BY ANCHORING THE BLANKET IN A 6" DEEP BY 6" WIDE TRENCH WITH APPROXIMATELY 12" OF BLANKET EXTENDED BEYOND THE UP-SLOPE PORTION OF THE TRENCH. ANCHOR THE BLANKET WITH A ROW OF STAPLES/STAKES APPROXIMATELY 12" APART IN THE BOTTOM OF THE TRENCH. BACKFILL AND COMPACT THE TRENCH AFTER STAPLING. APPLY SEED TO COMPACTED SOIL AND FOLD REMAINING 12" PORTION OF BLANKET BACK OVER SEED AND COMPACTED SOIL. SECURE BLANKET OVER COMPACTED SOIL WITH A ROW OF STAPLES/STAKES SPACED APPROXIMATELY 12" APART ACROSS

3. ROLL THE BLANKETS (A) DOWN OR (B) HORIZONTALLY ACROSS THE SLOPE. BLANKETS WILL UNROLL WITH APPROPRIATE SIDE AGAINST THE SOIL SURFACE. ALL BLANKETS MUST BE SECURELY FASTENED TO SOIL SURFACE BY PLACING STAPLES/STAKES IN APPROPRIATE LOCATIONS AS SHOWN IN THE STAPLE PATTERN GUIDE. WHEN USING OPTIONAL DOT SYSTEMM, STAPLES/STAKES SHOULD BE PLACED THROUGH EACH OF THE COLORED DOTS CORRESPONDING TO THE APPROPRIATE STAPLE PATTERN.

4. THE EDGES OF PARALLEL BLANKETS MUST BE STAPLED WITH APPROXIMATELY 2"-5" OVERLAP DEPENDING ON BLANKET TYPE. TO ENSURE PROPER SEAM ALIGNMENT. PLACE THE EDGE OF THE OVERLAPPING BLANKET (BLANKET BEING INSTALLED ON TOP) EVEN WITH THE COLORED SEAM STITCH ON

5. CONSECUTIVE BLANKETS SPLICED DOWN THE SLOPE MUST BE PLACED END OVER END (SHINGLE STYLE) WITH AN APPROXIMATE 3" OVERLAP. STAPLE THROUGH OVERLAPPED AREA, APPROXIMATELY 12" APART ACROSS ENTIRE BLANKET WIDTH. NOTE: IN LOOSE SOIL CONDITIONS, THE USE OF STAPLE OR STAKE LENGTHS GREATER THAN 6" MAY BE NECESSARY TO PROPERLY SECURE THE BLANKETS.

BY

Stratham, NH 03885

SEEDING SPECIFICATIONS

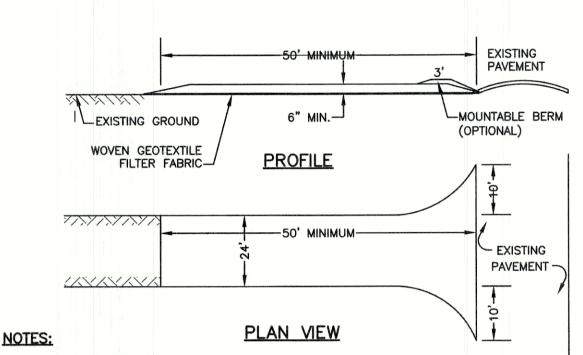
- . GRADING AND SHAPING A. SLOPES SHALL NOT BE STEEPER THAN 2:1 WITHOUT APPROPRIATE EROSION CONTROL MEASURES AS SPECIFIED ON THE PLANS (3:1 SLOPES OR FLATTER ARE PREFERRED)
- B. WHERE MOWING WILL BE DONE, 3:1 SLOPES OR FLATTER ARE RECOMMENDED.

2. SEEDBED PREPARATION

- A. SURFACE AND SEEPAGE WATER SHOULD BE DRAINED OR DIVERTED FROM THE SITE TO PREVENT DROWNING OR WINTER KILLING OF THE PLANTS.
- B. STONES LARGER THAN 4 INCHES AND TRASH SHOULD BE REMOVED BECAUSE THEY INTERFERE WITH SEEDING AND FUTURE MAINTENANCE OF THE AREA. WHERE FEASIBLE, THE SOIL SHOULD BE TILLED TO A DEPTH OF ABOUT 4 INCHES TO PREPARE A SEEDBED AND FERTILIZER AND LIME MIXED INTO THE SOIL. THE SEEDBED SHOULD BE LEFT IN A REASONABLY FIRM AND SMOOTH CONDITION. THE LAST TILLAGE OPERATION SHOULD BE PERFORMED ACROSS THE SLOPE WHEREVER PRACTICAL.

3. ESTABLISHING A STAND

- A. LIME AND FERTILIZER SHOULD BE APPLIED PRIOR TO OR AT THE TIME OF SEEDING AND INCORPORATED INTO THE SOIL. TYPES AND AMOUNTS OF LIME AND FERTILIZER SHOULD BE BASED ON AN EVALUATION OF SOIL TESTS. WHEN A SOIL TEST IS NOT AVAILABLE, THE FOLLOWING MINIMUM AMOUNTS SHOULD BE APPLIED:
- AGRICULTURAL LIMESTONE, 2 TONS PER ACRE OR 100 LBS. PER 1,000 SQ.FT.
- NITROGEN(N), 50 LBS. PER ACRE OR 1.1 LBS. PER 1,000 SQ.FT. PHOSPHATE(P205), 100 LBS. PER ACRE OR 2.2 LBS. PER 1,000 SQ.FT.
- POTASH(K2O), 100 LBS. PER ACRE OR 2.2 LBS. PER 1,000 SQ.FT.
- (NOTE: THIS IS THE EQUIVALENT OF 500 LBS. PER ACRE OF 10-20-20 FERTILIZER OR 1,000 LBS. PER ACRE OF 5-10-10.)
- B. SEED SHOULD BE SPREAD UNIFORMLY BY THE METHOD MOST APPROPRIATE FOR THE SITE. METHODS INCLUDE BROADCASTING, DRILLING AND HYDROSEEDING. WHERE BROADCASTING IS USED, COVER SEED WITH .25 INCH OF SOIL OR LESS, BY CULTIPACKING OR RAKING
- C. REFER TO THE 'SEEDING GUIDE' AND 'SEEDING RATES' TABLES ON THIS SHEET FOR APPROPRIATE SEED MIXTURES AND RATES OF SEEDING. ALL LEGUMES (CROWNVETCH, BIRDSFOOT, TREFOIL AND FLATPEA) MUST BE INOCULATED WITH THEIR SPECIFIC INOCULANT PRIOR TO THEIR INTRODUCTION TO THE SITE.
- WHEN SEEDED AREAS ARE MULCHED, PLANTINGS MAY BE MADE FROM EARLY SPRING TO EARLY OCTOBER. WHEN SEEDED AREAS ARE NOT MULCHED, PLANTINGS SHOULD BE MADE FROM EARLY SPRING TO MAY 20th OR FROM AUGUST 10th TO SEPTEMBER 1st.


. MULCH

- A. HAY, STRAW, OR OTHER MULCH, WHEN NEEDED, SHOULD BE APPLIED IMMEDIATELY AFTER SEEDING. B. MULCH WILL BE HELD IN PLACE USING APPROPRIATE TECHNIQUES FROM THE BEST MANAGEMENT PRACTICE FOR MULCHING. HAY OR STRAW MULCH SHALL BE PLACED AT A RATE OF 90 LBS PER 1000 S.F.
- 5. MAINTENANCE TO ESTABLISH A STAND A. PLANTED AREAS SHOULD BE PROTECTED FROM DAMAGE BY FIRE, GRAZING, TRAFFIC, AND DENSE WEED GROWTH
- B. FERTILIZATION NEEDS SHOULD BE DETERMINED BY ONSITE INSPECTIONS. SUPPLEMENTAL FERTILIZER IS USUALLY THE KEY TO FULLY COMPLETE THE ESTABLISHMENT OF THE STAND BECAUSE MOST PERENNIALS
- TAKE 2 TO 3 YEARS TO BECOME FULLY ESTABLISHED. C. IN WATERWAYS, CHANNELS, OR SWALES WHERE UNIFORM FLOW CONDITIONS ARE ANTICIPATED, ANNUAL MOWING MAY BE NECESSARY TO CONTROL GROWTH OF WOODY VEGETATION.

USE	SEEDING MIXTURE 1/	DROUGHTY	WELL DRAINED	MODERATELY WELL DRAINED	POORLY DRAINED
STEEP CUTS AND FILLS, BORROW AND DISPOSAL AREAS	A B C D	FAIR POOR POOR FAIR	GOOD GOOD GOOD EXCELLENT	GOOD FAIR EXCELLENT EXCELLENT	FAIR FAIR GOOD POOR
WATERWAYS, EMERGENC' SPILLWAYS, AND OTHER CHANNELS WITH FLOWING WATER.		GOOD GOOD	GOOD EXCELLENT	GOOD EXCELLENT	FAIR FAIR
LIGHTLY USED PARKING LOTS, ODD AREAS, UNUSED LANDS, AND LOW INTENSITY USE RECREATION SITES.	A B C	GOOD GOOD GOOD	GOOD GOOD EXCELLENT	GOOD FAIR EXCELLENT	FAIR POOR FAIR
PLAY AREAS AND ATHLETIC FIELDS. (TOPSOIL IS ESSENTIAL FOR GOOD TURF.)	E F	FAIR FAIR	EXCELLENT EXCELLENT	EXCELLENT EXCELLENT	<u>2/</u> 2/

E-MAIL: JBE@JONESANDBEACH.COM

n zan yang baran da	and both Science Laure of Adult Confe
Plan Name:	ERC
Project:	1169
Owner of Re	cord:

- 1. STONE FOR STABILIZED CONSTRUCTION ENTRANCE SHALL BE 1 TO 2 INCH STONE, RECLAIMED STONE, OR RECYCLED CONCRETE EQUIVALENT. 2. THE LENGTH OF THE STABILIZED ENTRANCE SHALL NOT BE LESS THAN 50 FEET, EXCEPT FOR A SINGLE
- RESIDENTIAL LOT WHERE A 30 FOOT MINIMUM LENGTH WOULD APPLY. 3. THICKNESS OF THE STONE FOR THE STABILIZED ENTRANCE SHALL NOT BE LESS THAN 6 INCHES
- 4. THE WIDTH OF THE ENTRANCE SHALL NOT BE LESS THAN THE FULL WIDTH OF THE ENTRANCE WHERE INGRESS OR EGRESS OCCURS, OR 10 FEET, WHICHEVER IS GREATER.
- 5. GEOTEXTILE FILTER FABRIC SHALL BE PLACED OVER THE ENTIRE AREA PRIOR TO PLACING THE STONE.
- FILTER FABRIC IS NOT REQUIRED FOR A SINGLE FAMILY RESIDENTIAL LOT. 6. ALL SURFACE WATER THAT IS FLOWING TO OR DIVERTED TOWARD THE CONSTRUCTION ENTRANCE SHALL BE PIPED BENEATH THE ENTRANCE. IF PIPING IS IMPRACTICAL, A STONE BERM WITH 5:1 SLOPES THAT CAN BE CROSSED BY VEHICLES MAY BE SUBSTITUTED FOR THE PIPE
- 7. THE ENTRANCE SHALL BE MAINTAINED IN A CONDITION THAT WILL PREVENT TRACKING OR FLOWING OF SEDIMENT ONTO THE PUBLIC RIGHT-OF-WAY. THIS MAY REQUIRE PERIODIC TOP DRESSING WITH ADDITIONAL STONE AS CONDITIONS DEMAND AND REPAIR AND/OR CLEAN OUT OF ANY MEASURES USED TO TRAP SEDIMENT. ALL SEDIMENT SPILLED, WASHED, OR TRACKED ONTO THE PUBLIC RIGHT-OF-WAY MUST BE REMOVED PROMPTLY.

STABILIZED CONSTRUCTION ENTRANCE

NOT TO SCALE

CONSTRUCTION SEQUENCE

1. PRIOR TO THE START OF ANY ACTIVITY, IT IS THE RESPONSIBILITY OF THE SITE'S SITE DEVELOPER (OR OWNER) TO FILE A NOTICE OF INTENT (NOI) FORM WITH THE ENVIRONMENTAL PROTECTION AGENCY (EPA) IN ORDER TO GAIN COVERAGE UNDER THE NPDES GENERAL PERMIT FOR STORM WATER DISCHARGES FROM CONSTRUCTION ACTIVITIES. A PRE CONSTRUCTION MEETING IS TO BE HELD WITH ALL DEPARTMENT HEADS PRIOR TO THE START OF CONSTRUCTION.

2. WETLAND BOUNDARIES ARE TO BE CLEARLY MARKED PRIOR TO THE START OF CONSTRUCTION.

3. CUT AND REMOVE TREES IN CONSTRUCTION AREA AS REQUIRED OR DIRECTED.

INSTALL SILT FENCING, HAY BALES AND CONSTRUCTION ENTRANCES PRIOR TO THE START OF CONSTRUCTION. THESE ARE TO BE MAINTAINED UNTIL THE FINAL PAVEMENT SURFACING AND LANDSCAPING AREAS ARE ESTABLISHED.

5. CLEAR, CUT, GRUB AND DISPOSE OF DEBRIS IN APPROVED FACILITIES. THIS INCLUDES ANY REQUIRED DEMOLITION OF EXISTING STRUCTURES, UTILITIES, ETC.

6. CONSTRUCT AND/OR INSTALL TEMPORARY OR PERMANENT SEDIMENT AND/OR DETENTION BASIN(S) (INCLUDING RAIN GARDENS AND UNDERGROUND DETENTION SYSTEM) AS REQUIRED. THESE FACILITIES SHALL BE INSTALLED AND STABILIZED PRIOR TO DIRECTING RUN-OFF TO THEM.

7. STRIP LOAM AND PAVEMENT PER THE RECOMMENDATIONS OF THE PROJECT ENGINEER AND STOCKPILE EXCESS MATERIAL. STABILIZE STOCKPILE AS NECESSARY.

8. PERFORM PRELIMINARY SITE GRADING IN ACCORDANCE WITH THE PLANS.

9. PREPARE BUILDING PADS TO ENABLE BUILDING CONSTRUCTION TO BEGIN.

10. INSTALL THE SEWER AND DRAINAGE SYSTEMS FIRST, THEN ANY OTHER UTILITIES IN ACCORDANCE WITH THE PLAN AND DETAILS. ANY CONFLICTS BETWEEN UTILITIES ARE TO BE RESOLVED WITH THE INVOLVEMENT AND APPROVAL OF THE ENGINEER. 11. ALL SWALES AND DRAINAGE STRUCTURES ARE TO BE CONSTRUCTED AND STABILIZED PRIOR TO HAVING RUN-OFF DIRECTED TO THEM.

12. DAILY, OR AS REQUIRED, CONSTRUCT TEMPORARY BERMS, DRAINAGE DITCHES, CHECK DAMS, SEDIMENT TRAPS, ETC., TO PREVENT EROSION ON THE SITE AND PREVENT ANY SILTATION OF ABUTTING WATERS AND/OR PROPERTY.

13. PERFORM FINAL FINE GRADING, INCLUDING PLACEMENT OF 'SELECT' SUBGRADE MATERIALS.

14. PAVE DRIVEWAYS AND ROADWAY WITH INITIAL 'BASE COURSE'.

15. PERFORM ALL REMAINING SITE CONSTRUCTION (i.e. BUILDING, CURBING, UTILITY CONNECTIONS, ETC.).

16. LOAM AND SEED ALL DISTURBED AREAS AND INSTALL ANY REQUIRED SEDIMENT AND EROSION CONTROL FACILITIES (i.e. RIP RAP, EROSION CONTROL BLANKETS, ETC.).

17. FINISH PAVING ALL DRIVEWAYS AND ROADWAY WITH 'FINISH' COURSE.

18. DRIVEWAYS AND ROADWAY SHALL BE STABILIZED WITHIN 72 HOURS OF ACHIEVING FINISHED GRADE.

19. ALL CUT AND FILL SLOPES SHALL BE SEEDED/LOAMED WITHIN 72 HOURS OF ACHIEVING FINISHED GRADE.

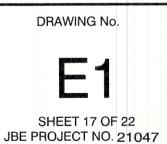
20. COMPLETE PERMANENT SEEDING AND LANDSCAPING.

21. REMOVE TEMPORARY EROSION CONTROL MEASURES AFTER SEEDING AREAS HAVE BEEN 75%-85% ESTABLISHED AND SITE IMPROVEMENTS ARE COMPLETE. SMOOTH AND RE-VEGETATE ALL DISTURBED AREAS.

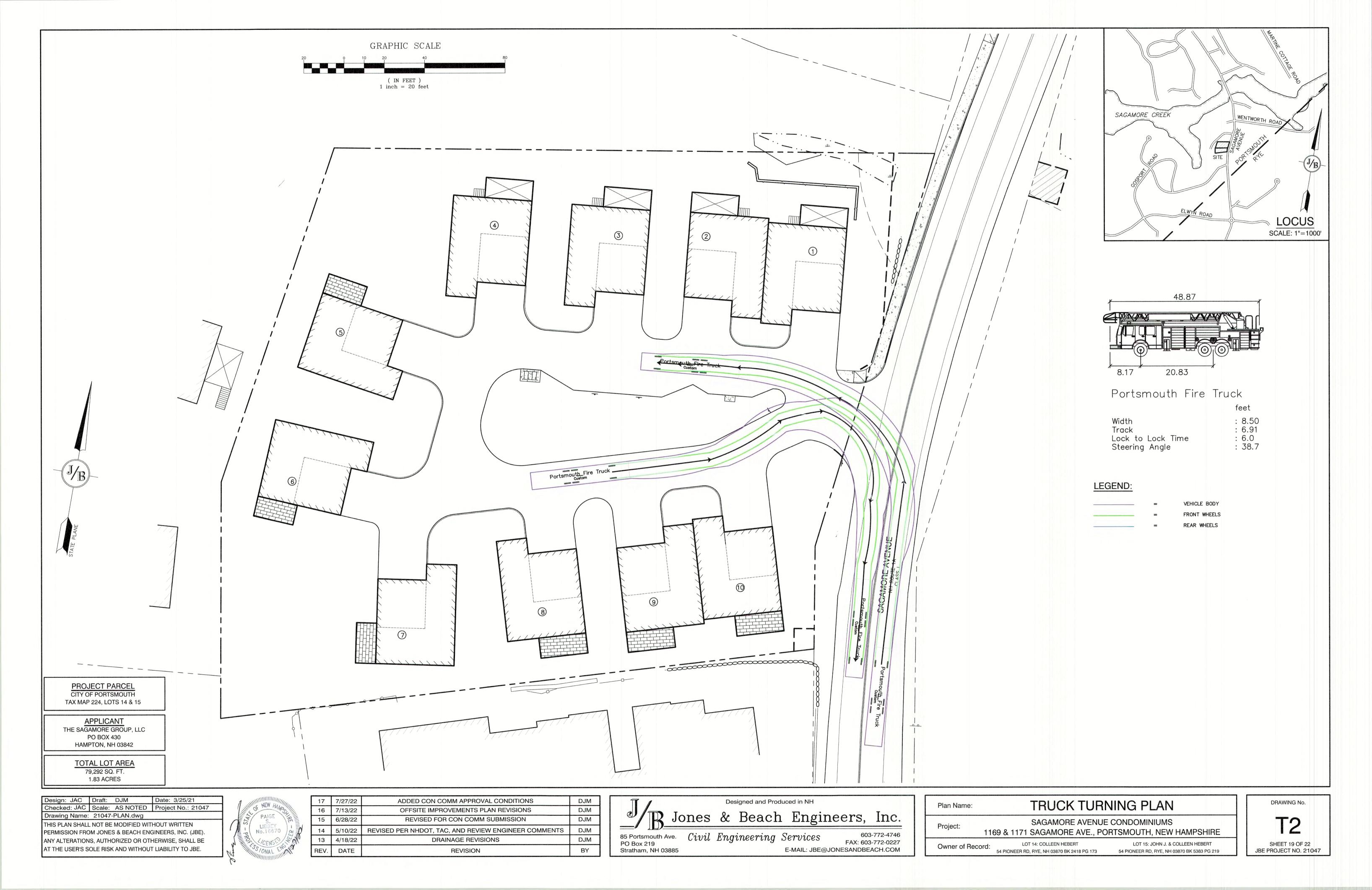
22. CLEAN SITE AND ALL DRAINAGE STRUCTURES, PIPES AND SUMPS OF ALL SILT AND DEBRIS.

23. INSTALL ALL PAINTED PAVEMENT MARKINGS AND SIGNAGE PER THE PLANS AND DETAILS.

24. ALL EROSION CONTROLS SHALL BE INSPECTED WEEKLY AND AFTER EVERY HALF-INCH OF RAINFALL

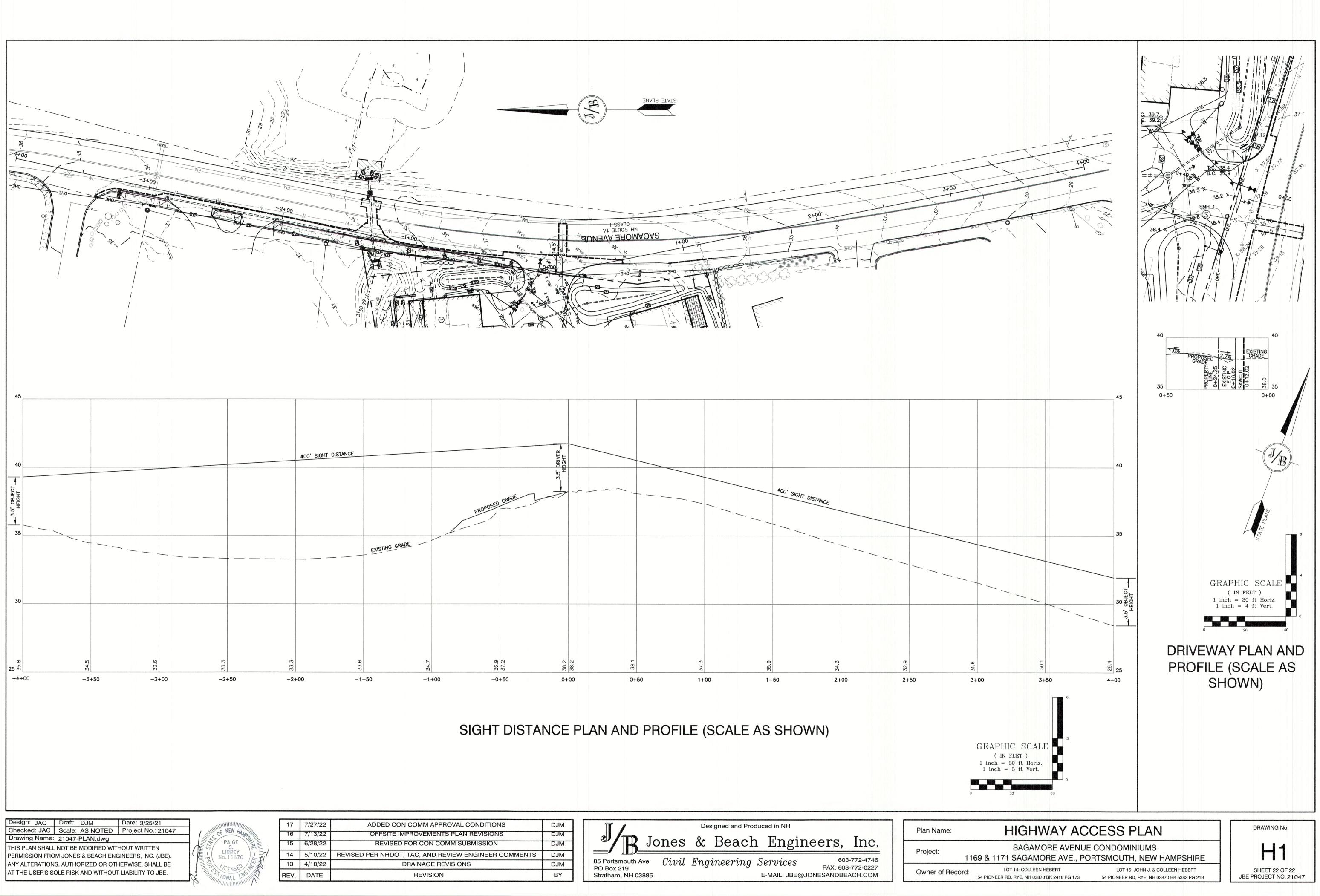

25. UPON COMPLETION OF CONSTRUCTION, IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO NOTIFY ANY RELEVANT PERMITTING AGENCIES THAT THE CONSTRUCTION HAS BEEN FINISHED IN A SATISFACTORY MANNER.

OSION AND SEDIMENT CONTROL DETAILS

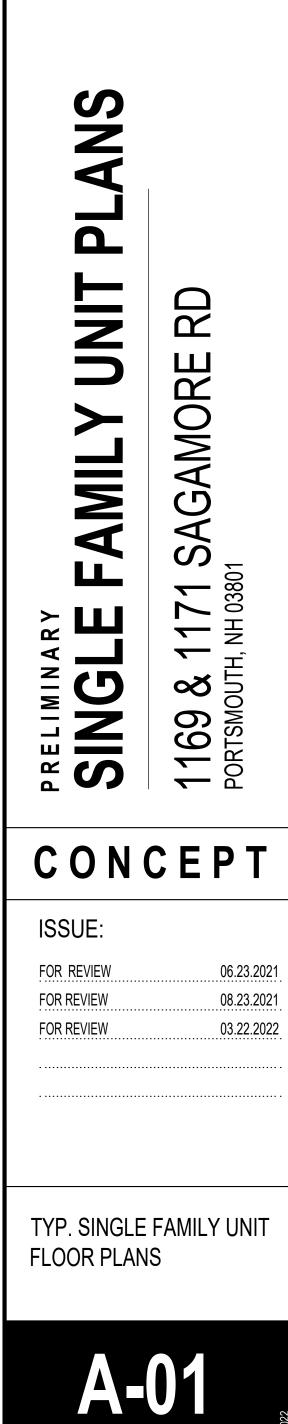

SAGAMORE AVENUE CONDOMINIUMS & 1171 SAGAMORE AVE., PORTSMOUTH, NEW HAMPSHIRE

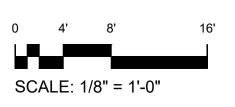
LOT 14: COLLEEN HEBERT 54 PIONEER RD, RYE, NH 03870 BK 2418 PG 173


LOT 15: JOHN J. & COLLEEN HEBERT 54 PIONEER RD, RYE, NH 03870 BK 5383 PG 219



AX. 603-772-0227	
SANDBEACH.COM	


SINGLE DETATCHED


TYPE MAY MIRROR



40 HARRISON AVENUE PORTSMOUTH, NH 03801

603 502 0985 KHAVARI.COM

EXAMPLE UNIT GROSS FLOOR AREA	
FIRST FLOOR: SECOND FLOOR:	1,130 SF 1,700 SF
TOTAL	2,830 SF

40 HARRISON AVENUE PORTSMOUTH, NH 03801

603 502 0985 KHAVARI.COM

EXTERIOR RENDERING 1169 & 1171 SAGAMORF RD

1169 & 1171 SAGAMORE RD PORTSMOUTH, NH 03801

CONCEPT

ISSUE:

06.23.2021
08.23.2021
03.22.2022

EXTERIOR RENDERING -EXAMPLE SINGLE & DUPLEX UNITS



A - FRONT ELEVATION

C - REAR ELEVATION

TYPICAL RESIDENTIAL UNIT - ELEVATIONS 3/16" = 1'-0"

Civil Site Planning Environmental Engineering

133 Court Street Portsmouth, NH 03801-4413

July 19, 2022

Peter Stith, Principal Planner Planning Department 1 Junkins Avenue, 3rd Floor Portsmouth, NH

Re: Peer Review for Proposed Sagamore Avenue Condominiums – Review 6 Portsmouth Tax Map 224, Lots 14 & 15 Altus Project No. 5261

Transmitted via email to: pmstith@cityofportsmouth.com

Dear Peter:

In accordance with the Three-Party Services agreement between the City of Portsmouth, The Sagamore Group, LLC and Altus Engineering, Inc. (Altus) dated October 6, 2021, Altus has reviewed the revised plans prepared by Jones & Beach Engineers, Inc. (JBE):

 Plan set titled "Condominium Site Plan "Sagamore Avenue Condominiums" Tax Map 224, Lots 14 & 15, 1169 & 1171 Sagamore Avenue, Portsmouth, NH", dated July 13, 2022

At the direction of City Staff, Altus was requested to comment on the location of the "Jellyfish" treatment device.

Following Altus' July 11, 2022 review and the Conservation Commission meeting, JBE relocated the "Jellyfish" to the east side of Sagamore Avenue. The structure is now off the pavement, in the roadway shoulder. The proposed location eliminates our concerns for noise and conflicts with the curbing. Altus has no further concerns with the design as presented.

Peter Stith, Principal Planner Planning Department July 19, 2022

Please contact me directly if you have any questions or need further assistance.

Respectfully submitted,

ALTUS ENGINEERING, INC.

Eric D. Weinrieb, PE President

Ecopy: Michael Garrepy Paige Libbey, PE Beverly Zendt, Planning Director David Desfosses

wde/5261-review 5.DOCX