

P0595-015 March 29, 2023

Mr. Peter Britz, Director of Planning and Sustainability City of Portsmouth Planning Department 1 Junkins Avenue Portsmouth, New Hampshire 03801

Re: Site Review Permit & Subdivision Applications Proposed Advanced Manufacturing Facility

Dear Peter:

On behalf of Aviation Avenue Group, LLC, we are pleased to submit one (1) set of hard copies and one electronic file (.pdf) of the following information to support a request to the Planning Board for a recommendation for approval to the Pease Development Authority (PDA) for Site Plan Review and Subdivision for a proposed Advanced Manufacturing Facility on a previously developed site located at 80 Rochester Avenue:

- One (1) full size & one (1) half size copy of the Site Plan Set, last revised March 29, 2023
- Three (3) full size & one (1) half size copy of the Subdivision Plan, dated March 29, 2023
- PDA Application for Site Review, dated December 19, 2022;
- PDA Application for Subdivision, dated January 25, 2023;
- Owner Authorization, dated October 25, 2022;
- TAC Conditions Response Report, dated March 29, 2023
- Drainage Analysis, last revised March 29, 2023;
- Drainage Peer Review Documents
 - Underwood Engineers No Further Comments Memo, dated March 1, 2023;
 - Drainage Peer Review Comment Response Letter 2, dated February 23, 2023;
 - Drainage Peer Review Comment Response Letter 1, dated February 7, 2023;
- Operations and Maintenance Plan, dated December 19, 2022;
- Traffic Impact Assessment, last revised February 17, 2023;
- Traffic Peer Review Documents
 - VHB Peer Review Letter 2, dated March 7, 2023;
 - Traffic Peer Review Comment Response Letter 1, dated February 17, 2023;
- Truck Turning Exhibits, dated January 25,2023;
- Eversource Will Serve Letter, dated December 6, 2022;
- Correspondence with Unitil; dated January 5, 2023;
- Proposed Light Poles and Fixtures Cut Sheets;

The proposed project is located at 80 Rochester Avenue which is identified as Map 308 Lot 1 on the City of Portsmouth Tax Maps. The proposed project is for the construction of a $\pm 209,750$ SF advanced manufacturing building including $\pm 18,145$ SF of office space, two (2) parking areas, two (2) loading dock areas, minor realignment of a portion of Rochester Avenue, and associated site improvements consisting of underground utilities, landscaping, lighting, and a stormwater management system.

There is approximately 196,665 SF of existing impervious area that is currently untreated before entering the municipal drainage system. The proposed stormwater management system has been designed to provide treatment for the existing impervious surface that is currently untreated and for $\pm 161,130$ SF of additional impervious that results from the proposed project as required by the PDA Site Plan Regulations.

On October 20, 2022, the PDA Board granted conceptual approval for the proposed project. The project was granted a variance from the Zoning Board of Adjustment (ZBA) for the front yard setback requirements at their meeting on November 15, 2022, and was granted a variance for the rear yard setback requirements at their meeting on March 21, 2023.

We respectfully request to be placed on the Planning Board (PB) meeting agenda meeting agenda for the April 20, 2023, meeting. If you have any questions or need any additional information, please contact Patrick Crimmins by phone at (603) 433-8818 or by email at pmcrimmins@tighebond.com.

Sincerely,

TIGHE & BOND, INC.

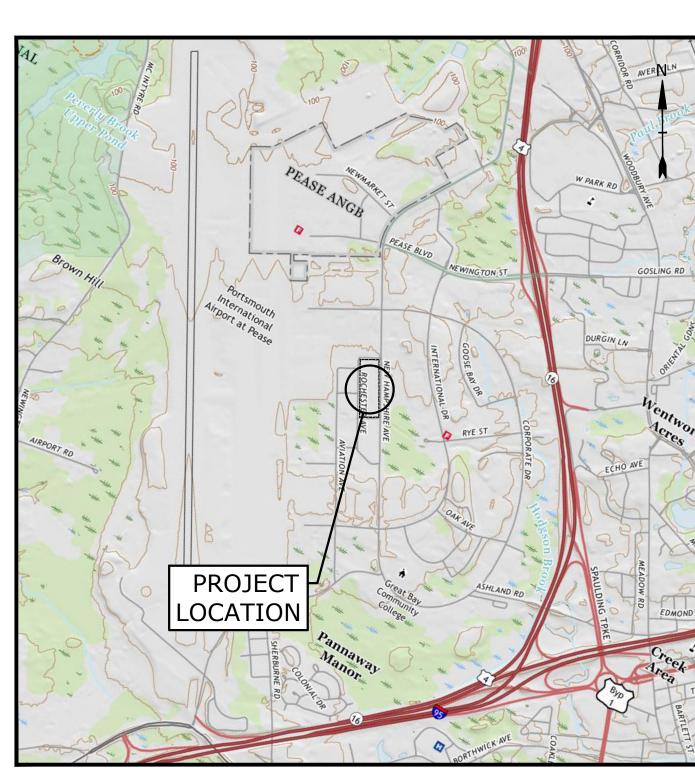
Patrick M. Crimmins, PE

Vice President

Copy: Aviation Avenue Group, LLC (via email)

Pease Development Authority

Neil A. Hansen, PE Project Manager


PROPOSED ADVANCED MANUFACTURING FACILITY

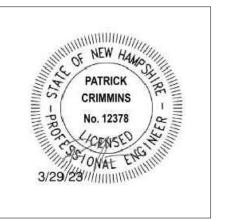
100 NEW HAMPSHIRE AVENUE PORTSMOUTH, NEW HAMPSHIRE PERMIT DRAWINGS

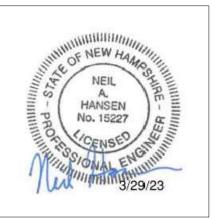
DECEMBER 10, 2022

LAST REVISED: MARCH 29, 2023

LICT OF DRAWING			
	LIST OF DRAWINGS		
SHEET NO.	SHEET TITLE	LAST REVISED	
	COVER SHEET	03/29/2023	
1 OF 8	EXISTING CONDITIONS PLAN	09/21/2022	
2 OF 8	EXISTING CONDITIONS PLAN	09/21/2022	
7 OF 8	EXISTING CONDITIONS PLAN	09/21/2022	
8 OF 8	EXISTING CONDITIONS PLAN	09/21/2022	
C-101	OVERALL EXISTING CONDITIONS / DEMOLITION PLAN	03/29/2023	
C-101.1	EXISTING CONDITIONS / DEMOLITION PLAN	03/29/2023	
C-101.2	EXISTING CONDITIONS / DEMOLITION PLAN	03/29/2023	
C-102	OVERALL SITE PLAN	03/29/2023	
C-102.1	SITE PLAN	03/29/2023	
C-102.2	SITE PLAN	03/29/2023	
C-103	OVERALL GRADING, DRAINAGE & EROSION CONTROL PLAN	03/29/2023	
C-103.1	GRADING, DRAINAGE & EROSION CONTROL PLAN	03/29/2023	
C-103.2	GRADING, DRAINAGE & EROSION CONTROL PLAN	03/29/2023	
C-104	UTILITY PLAN	03/29/2023	
C-105	OVERALL LANDSCAPE PLAN	03/29/2023	
C-105.1	LANDSCAPE PLAN	03/29/2023	
C-105.2	LANDSCAPE PLAN	03/29/2023	
C-501	EROSION CONTROL NOTES & DETAILS SHEET	03/29/2023	
C-502	DETAILS SHEET	03/29/2023	
C-503	DETAILS SHEET	03/29/2023	
C-504	DETAILS SHEET	03/29/2023	
C-505	DETAILS SHEET	03/29/2023	
C-506	DETAILS SHEET	03/29/2023	
A1	PROPOSED EXTERIOR ELEVATIONS	12/12/2022	
C-701	PHOTOMETRICS PLAN	03/29/2023	

LOCATION MAP


SCALE: 1" = 2,000'


VILDLIFE PROTECTION NOTES: • ALL OBSERVATIONS OF THREATENED OR ENDANGERED SPECIES SHALL BE REPORTED

- IMMEDIATELY TO THE NEW HAMPSHIRE FISH AND GAME DEPARTMENT NONGAME AND ENDANGERED WILDLIFE ENVIRONMENTAL REVIEW PROGRAM BY PHONE AT 603-271-2461 AND BY EMAIL AT NHFGREVIEW@WILDLIFE.NH.GOV. EMAIL SUBJECT LINE: NHB23-0148, PROPOSED ADVANCED MANUFACTURING FACILITY, WILDLIFE SPECIES OBSERVATION.
 PHOTOGRAPHS OF THE OBSERVED SPECIES AND NEARBY ELEMENTS OF HABITAT OR AREAS OF
- PHOTOGRAPHS OF THE OBSERVED SPECIES AND NEARBY ELEMENTS OF HABITAT OR AREAS OF LAND DISTURBANCE SHALL BE PROVIDED TO NHF&G IN DIGITAL FORMAT AT THE ABOVE EMAIL ADDRESS FOR VERIFICATION AS FEASIBLE.
- IN THE EVENT A THREATENED OR ENDANGERED SPECIES IS OBSERVED ON THE PROJECT SITE DURING THE TERM OF THE PERMIT, THE SPECIES SHALL NOT BE DISTURBED, HANDLED, OR HARMED IN ANY WAY PRIOR TO CONSULTATION WITH NHF&G AND IMPLEMENTATION OF CORRECTIVE ACTIONS RECOMMENDED BY NHF&G, IF ANY, TO ASSURE THE PROJECT DOES NOT APPRECIABLY JEOPARDIZE THE CONTINUED EXISTENCE OF THREATENED AND ENDANGERED SPECIES AS DEFINED IN FIS 1002.04.
- THE NHF&G, INCLUDING ITS EMPLOYEES AND AUTHORIZED AGENTS, SHALL HAVE ACCESS TO THE PROPERTY DURING THE TERM OF THE PERMIT.

<u>PREPARED BY:</u>

Tighe&Bond 177 Corporate Drive

LESSOR:

APPLICANT:

Pease Development Authority 55 International Drive Portsmouth, NH 03801 603.433.6088

Aviation Avenue Group, LLC 210 Commerce Way, Suite 300 Portsmouth New Hampshire, 03801 603.427.5500

SURVEY CONSULTANT:

Serving Your Professional Surveying & Mapping Needs 102 Kent Place, Newmarket, NH 03857 (603) 659-6560 2 Commerce Drive (Suite 202) Bedford, NH 03110 (603) 614-4060 10 Storer Street (Riverview Suite) Kennebunk, ME (207) 502-7005 http://www.doucetsurvey.com

1. REFERENCE:

PEASE HANGAR 227 AREA (ENCOMPASSING PARTS OF NEW HAMPSHIRE AVE, AVIATION AVE, STRATHAM ST, ROCHESTER AVE, NEWFIELD ST, LEE STREET, & FLIGHTLINE ROAD IN PORTSMOUTH, NH)

D.S.I. PROJECT NO. 7239

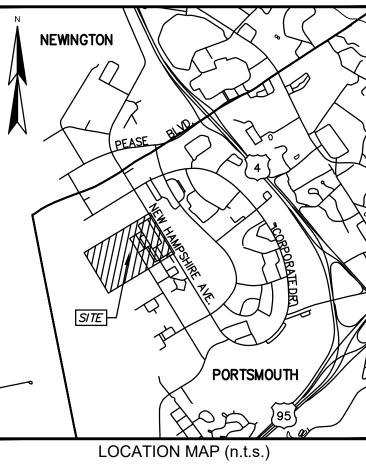
55 INTERNATIONAL DRIVE PORTSMOUTH NH 03801

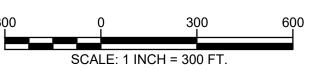
> NEW ENGLAND TELEGRAPH & TELEPHONE (MAP 308 LOT 6 ONLY) NKA FAIRPOINT COMMUNICATIONS

770 ELM STREET MANCHESTER, NH 03101

2. OWNER OF RECORD: PEASE DEVELOPMENT AUTHORITY (ALL BUT ONE PARCEL)

- 3. FIELD SURVEY PERFORMED BY DOUCET SURVEY LLC STAFF DURING JANUARY & FEBRUARY 2022 USING A TRIMBLE S7 TOTAL STATION AND A TRIMBLE R10 SURVEY GRADE GPS WITH A TRIMBLE TSC3 DATA COLLECTOR AND A SOKKIA B21 AUTO LEVEL. TRAVERSE ADJUSTMENT BASED ON LEAST SQUARE ANALYSIS.
- 4. HORIZONTAL DATUM BASED ON NAD83(2011) NEW HAMPSHIRE STATE PLANE COORDINATE ZONE (2800) DERIVED FROM REDUNDANT GPS OBSERVATIONS UTILIZING THE KEYNET GPS VRS NETWORK INCLUDING OBSERVATIONS ON PRIMARY AIRPORT CONTROL STATION PSM C AND PSM D.
- 5. VERTICAL DATUM IS BASED PRIMARY AIRPORT CONTROL STATION PSM C (NAVD88 ELEVATION = 78.70 AS PUBLISHED BY NATIONAL GEODETIC SURVEY).
- 6. JURISDICTIONAL WETLANDS DELINEATED BY TIGHE & BOND DURING DECEMBER 2021 IN ACCORDING TO THE: • US ARMY CORPS OF ENGINEERS WETLANDS DELINEATION MANUAL, TECHNICAL REPORT Y-87-1
 - REGIONAL SUPPLEMENT TO THE CORPS OF ENGINEERS WETLAND DELINEATION MANUAL: NORTHCENTRAL
 - AND NORTHEAST REGION (2012). NATIONAL LIST OF PLANT SPECIES THAT OCCUR IN WETLANDS: NORTHEAST (REGION 1). U.S. FISH AND
 - WILDLIFE SERVICE (2013). CODE OF ADMINISTRATIVE RULES. WETLANDS BOARD, STATE OF NEW HAMPSHIRE (CURRENT)
 - FIELD INDICATORS OF HYDRIC SOILS IN THE UNITED STATES, VERSION 8.0, 2016 AND (FOR DISTURBED SITES) FIELD INDICATORS FOR IDENTIFYING HYDRIC SOILS IN NEW ENGLAND, VERSION 4. NEHSTC (MAY
- PROPER FIELD PROCEDURES WERE FOLLOWED IN ORDER TO GENERATE CONTOURS AT 2' INTERVALS. ANY MODIFICATION OF THIS INTERVAL WILL DIMINISH THE INTEGRITY OF THE DATA, AND DOUCET SURVEY. WILL NOT BE RESPONSIBLE FOR ANY SUCH ALTERATION PERFORMED BY THE USER.
- 8. UNDERGROUND UTILITIES SHOWN HEREON ARE BASED ON OBSERVED PHYSICAL EVIDENCE AND PAINT MARKS FOUND ON-SITE.
- 9. THE ACCURACY OF MEASURED UTILITY INVERTS AND PIPE SIZES/TYPES IS SUBJECT TO NUMEROUS FIELD CONDITIONS, INCLUDING: THE ABILITY TO MAKE VISUAL OBSERVATIONS, DIRECT ACCESS TO THE VARIOUS ELEMENTS, MANHOLE CONFIGURATION, ETC. SEVERAL STRUCTURES SHOWN HEREON WERE INACCESSIBLE FOR INVERT MEASUREMENTS DUE TO WINTER CONDITIONS.
- 10. DUE TO THE COMPLEXITY OF RESEARCHING ROAD RECORDS AS A RESULT OF INCOMPLETE, UNORGANIZED. INCONCLUSIVE, OBLITERATED, OR LOST DOCUMENTS, THERE IS AN INHERENT UNCERTAINTY INVOLVED WHEN ATTEMPTING TO DETERMINE THE LOCATION AND WIDTH OF A ROADWAY RIGHT OF WAY. THE EXTENT OF (THE ROAD(S)) AS DEPICTED HEREON IS/ARE BASED ON RESEARCH CONDUCTED AT THE PEASE DEVELOPMENT AUTHORITY (PDA), NHDOT, PORTSMOUTH ENGINEERING DEPARTMENT, AND ROCKINGHAM COUNTY REGISTRY OF DEEDS. AN OFFICIAL AT PDA ADVISED DOUCET SURVEY THAT THEY HAVE PREVIOUSLY SEARCHED AND BELIEVE THAT THERE WERE NEVER ANY LAYOUT PLANS DEVELOPED FOR THE RIGHT-OF-WAYS AT PEASE. ROAD LAYOUTS FOR THE STREETS SHOWN HEREON WERE ALSO NOT FOUND AT NHDOT PROJECT VIEWER OR AT THE PORTSMOUTH CITY ENGINEERING OFFICES.
- 11. ALL UNDERGROUND UTILITIES (ELECTRIC, GAS, TEL. WATER, SEWER DRAIN SERVICES) ARE SHOWN IN SCHEMATIC FASHION, THEIR LOCATIONS ARE NOT PRECISE OR NECESSARILY ACCURATE. NO WORK WHATSOEVER SHALL BE UNDERTAKEN USING THIS PLAN TO LOCATE THE ABOVE SERVICES. CONSULT WITH THE PROPER AUTHORITIES CONCERNED WITH THE SUBJECT SERVICE LOCATIONS FOR INFORMATION REGARDING SUCH. CALL DIG-SAFE AT 1-888-DIG-SAFE.
- 12. AERIAL TOPOGRAPHY WAS CONDUCTED BY EASTERN TOPOGRAPHICS FROM IMAGES TAKEN DURING DECEMBER 2021 WITH A PHOTO SCALE OF 40 FEET. AERIAL MAPPING CONTOURS AND OBJECTS SHOWN WITHIN OBSCURED AREAS ARE APPROXIMATE AND SHOULD BE VERIFIED BEFORE USE FOR DESIGN & CONSTRUCTION PURPOSES.
- 13. THIS FIELD SURVEY WAS PERFORMED IN WINTER CONDITIONS WITH SNOW AND ICE COVER ON THE GROUND. A SITE CHECK IS RECOMMENDED IN THE SPRING TO ENSURE THE COMPLETENESS/ACCURACY OF THE INFORMATION
- 14. THIS PLAN WAS PREPARED FROM RECORD RESEARCH, OTHER MAPS, LIMITED FIELD MEASUREMENTS AND OTHER SOURCES. IT IS NOT TO BE CONSTRUED AS A PROPERTY / BOUNDARY SURVEY FOR THE COMPLETE SET OF TAX MAP AND LOTS SHOWN HEREON, AND IS SUBJECT TO SUCH FACTS AS SAID SURVEYS MAY DISCLOSE. THIS PLAN DOES, HOWEVER, ILLSTRATE THE BOUNDARIES OF THE FOLLOWING TAX MAP AND LOT NUMBERS PER THE REFERENCE PLANS INDICATED BELOW AND RECORD MONUMENTS RECOVERED BY THIS SURVEY:
 - A. MAP 307 LOT 1 (PER REF. PLAN 3) B. MAP 307 LOT 2 (PER REF. PLAN 7) C. MAP 306 LOT 4 (PER REF. PLAN 12)
- 15. THE LOCATIONS OF THE VARIOUS RESTRICTED ZONES CALLED FOR IN REFERENCE PLANS 8, 9, 10, 12, AND 14 SHOWN HEREON BASED ON COORDINATE VALUES PROVIDED IN THOSE PLANS AND/OR FEATURES SHOWN IN THOSE PLANS (E.G. MONITORING WELLS) THAT WERE LOCATED DURING THIS SURVEY.


REFERENCE PLANS:


1. "SUBLEASE BOUNDARY PLAN FOR PEASE DEVELOPMENT AUTHORITY — BUILDINGS 115 AND 116 — 31 ROCHESTER AVENUE - PEASE INTERNATIONAL TRADEPORT - PORTSMOUTH, N.H.: DATED NOV. 6, 1995 AND LAST REVISED (REV-2) ON 03/03/97 BY RICHARD P. MILLETTE AND ASSOCIATES.

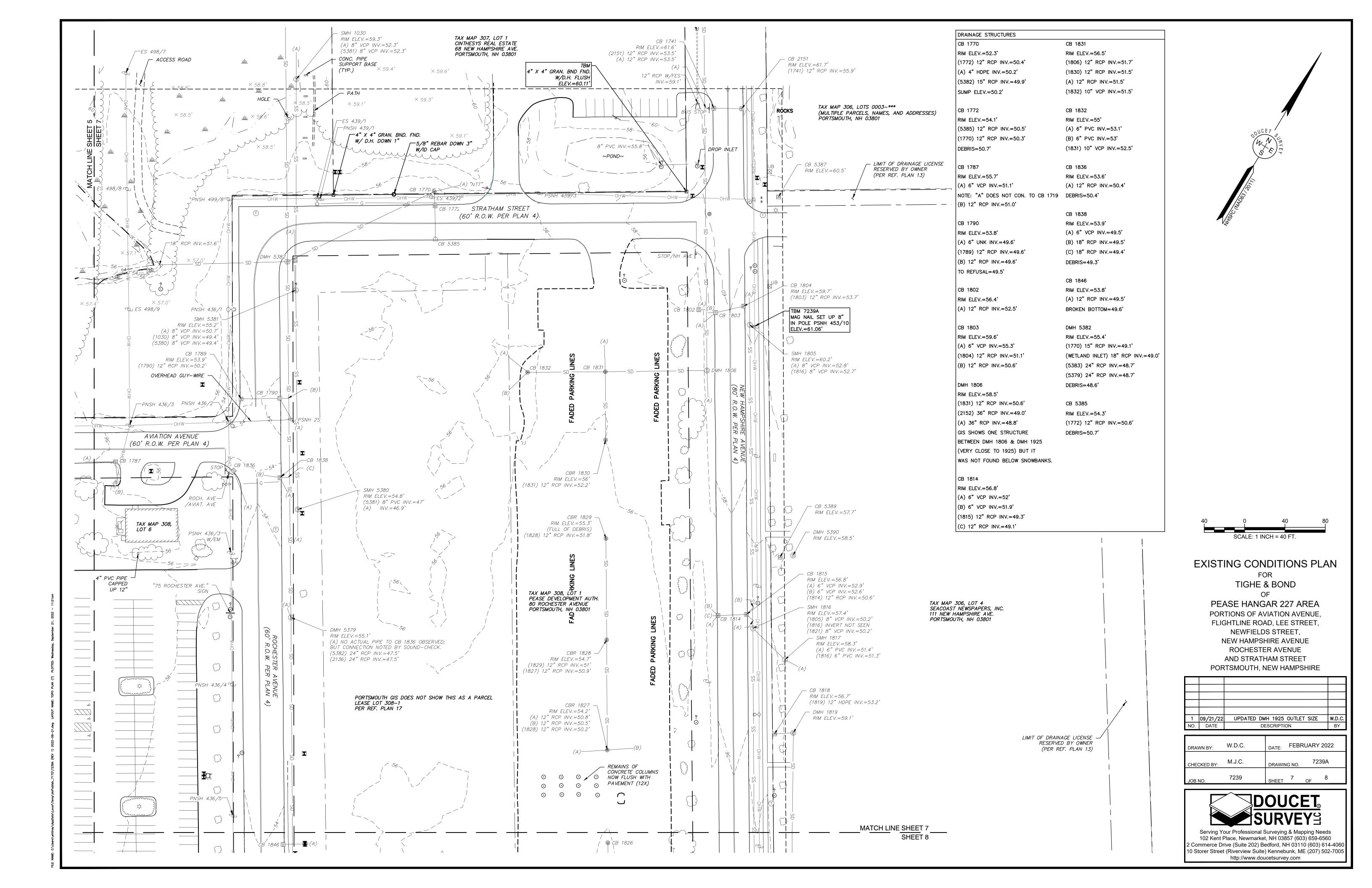
- "SUBDIVISION PLAN FOR 5, 7, 19, AND 21 HAMPTON STREET PORTSMOUTH, NH LAND OF PEASE DEVELOPMENT AUTHORITY LEASED TO EXECUTIVE AIRDOCK, LLC (A PORTION OF TAX MAP 310, LOT 0) HAMPTON ST. & AVIATION AVE. PORTSMOUTH, NEW HAMPSHIRE" DATED JULY 1, 2021 AND REVISED (REV-1) NOV 30, 2021 BY DOUCET SURVEY LLC
- "ALTA/NSPS LAND TITLE SURVEY FOR CINTHESYS REAL ESTATE MANAGEMENT LLC (LESSEE) C/O THE KANE COMPANY AND PEASE DEVELOPMENT AUTHORITY (LESSOR) OF TAX MAP 307, LOT 1 - 68 NEW HAMPSHIRE AVE. PORTSMOUTH, NEW HAMPSHIRE" DATED DECEMBER 21, 2021 BY DOUCET SURVEY LLC.
- "APPENDIX VI MUNICIPAL SERVICES AGREEMENT BETWEEN CITY OF PORTSMOUTH TOWN OF NEWINGTON- AND PEASE DEVELOPMENT AUTHORITY EFFECTIVE AS OF JULY 1, 1998".
- "SUBDIVISION PLAN 68 NEW HAMPSHIRE AVENUE" FOR LONDAVIA, INC. DATED 29-SEPT-1998 BY KIMBALL CHASE.
- "SUBDIVISION PLAN AIR CARGO FACILITY 139 FLIGHTLINE ROAD" DATED 20-FEB-1998 AND REVISED (REV-1) 26-OCT-98 BY KIMBALL CHASE. R.C.R.D. PLAN 26778.
- "SUBDIVISON PLAN FOR LAND TO BE LEASED TO PAN-AM 14 AVIATION AVE. PEASE INTERNATIONAL TRADEPORT PORTSMOUTH, NH" LAST REVISED (REV-3) ON AUG. 26, 1999 BY EMANUEL ENGINEERING, INC. R.C.R.D. PLAN 27540.
- 'EXCEPTED SUBPARCEL ZONE 3 PEASE AIR FORCE BASE PORTSMOUTH AND NEWINGTON, NEW HAMPSHIRE PREPARED FOR MWH AMERICAS MALVERN, PA" DATED OCTOBER 22, 2002 AND LAST REVISED (REV-3) 10/22-03 BY TFM. R.C.R.D.
- 'PLAN OF GROUNDWATER MANAGEMENT ZONE ZONE 3 PEASE AIR FORCE BASE PORTSMOUTH AND NEWINGTON, NEW HAMPSHIRE PREPARED FOR MWH AMERICAS MALVERN, PA" DATED JUNE 4, 2002 AND LAST REVISED (REV-2) 6/27/02 BY TFM. R.C.R.D. PLAN 31503.
- 10. 'PLAN OF USE RESTRICTION ZONE SITE 32 PEASE AIR FORCE BASE PORTSMOUTH, NEW HAMPSHIRE PREPARED FOR MWH AMERICAS MALVERN, PA" DATED JULY 11, 2002 AND REVISED (REV-1) 7/18/02 BY TFM. R.C.R.D. PLAN 31506.
- 11. "PLAN OF USE RESTRICTION ZONE SITE 81 PEASE AIR FORCE BASE PORTSMOUTH, NEW HAMPSHIRE PREPARED FOR MWH AMERICAS MALVERN, PA" DATED JUNE 10, 2005 BY TFM. R.C.R.D. PLAN 33301.
- 12. 'PLAN OF USE RESTRICTION ZONE SITE 72 BASE MOTOR POOL PEASE AIR FORCE BASE PORTSMOUTH, NEW HAMPSHIRE PREPARED FOR MWH AMERICAS MALVERN, PA" DATED JUNE 10, 2005 BY TFM. R.C.R.D. PLAN 33302.
- "SUBDIVISION PLAN DEPICTING PORTSMOUTH TAX MAP 306 LOT 3" DATED AUGUST 1, 2005 AND LAST REVISED (REV-2) SAME DATE AUGUST 1, 2005 BY ALTUS ENGINEERING. R.C.R.D. PLAN 33592.
- 14. 'USE RESTRICTION ZONE ZONE 3 PEASE AIR FORCE BASE PORTSMOUTH AND NEWINGTON, NEW HAMPSHIRE PREPARED FOR MWH AMERICAS MALVERN, PA" DATED JUNE 10, 2005 AND REVISED (REV-1) JUNE 17, 2005 BY TFM.
- "SUBDIVISION PLAN FOR 75 NEW HAMPSHIRE LLC 75 NEW HAMPSHIRE AVENUE 50 INTERNATIONAL DRIVE & 80 INTERNATIONAL DRIVE (TAX MAP 306, LOTS 1, 2, 4 & 5) PEASE INTERNATIONAL TRADEPORT ROCKINGHAM COUNTY PORTSMOUTH, NEW HAMPSHIRE" DATED AUG 14, 2007 AND LAST REVISED (REV-4) 10/15/07 BY DOUCET SURVEY INC.
- "PLAN FOR NEW HAMPSHIRE AIR NATIONAL GUARD PEASE BLVD, AIRLINE AVE & NEW HAMSHIRE AVE PEASE INTERNATIONAL TRADEPORT, NEWINGTON ROCKINGHAM COUNTY, NH" DATED 7-DEC-2009 AND LAST REVISED 1/21/11 BY EASTERLY SURVEYING, INC.
- 17. "PROPOSED 4 STORY OFFICE BUILDING 100 NEW HAMPSHIRE AVENUE PORTSMOUTH, NH" DATED NOVEMBER 16, 2018 AND LAST REVISED 12/04/18 BY HOYLE, TANNER & ASSOCIATES.

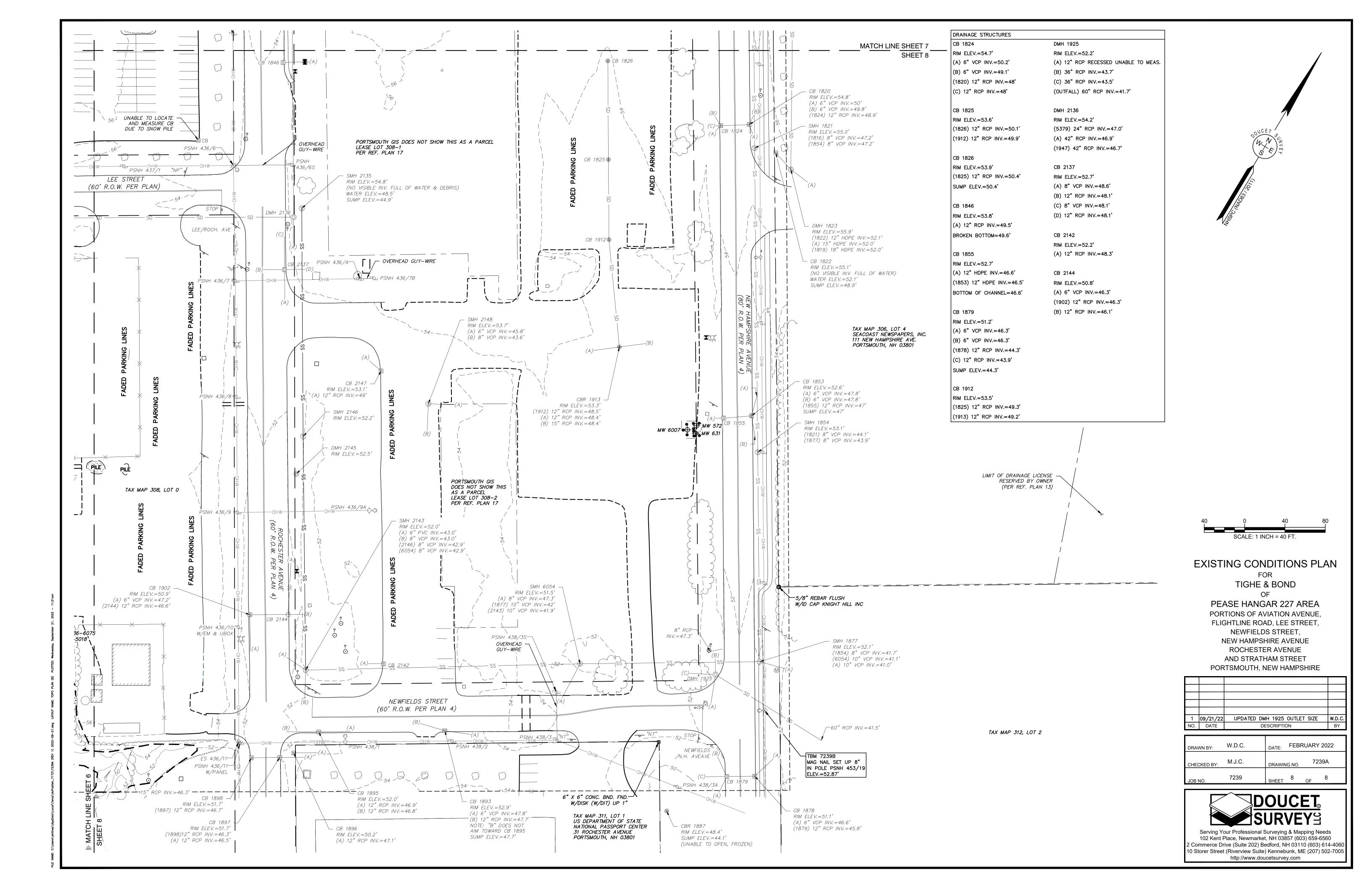
LEGEND

EXISTING CONDITIONS PLAN

TIGHE & BOND

PEASE HANGAR 227 AREA PORTIONS OF AVIATION AVENUE. FLIGHTLINE ROAD, LEE STREET, NEWFIELDS STREET, NEW HAMPSHIRE AVENUE ROCHESTER AVENUE AND STRATHAM STREET PORTSMOUTH, NEW HAMPSHIRE


1	09/21/22	UPDATED DMH 1925 OUTLET SIZE	W.D.C.
NO.	DATE	DESCRIPTION	BY


DRAWN BY:	W.D.C.	DATE: FEBRUARY 2022
CHECKED BY:	M.J.C.	DRAWING NO. 7239A
JOB NO.	7239	SHEET 1 OF 8

Serving Your Professional Surveying & Mapping Needs 102 Kent Place, Newmarket, NH 03857 (603) 659-6560 2 Commerce Drive (Suite 202) Bedford, NH 03110 (603) 614-4060 10 Storer Street (Riverview Suite) Kennebunk, ME (207) 502-7005 http://www.doucetsurvey.com

EXISTING CONDITIONS PLAN NOTES: 1. EXISTING CONDITIONS ARE BASED ON A FIELD SURVEY BY DOUCET SURVEY LLC DURING JANUARY & FEBRUARY 2022. JURISDICTIONAL WETLANDS DELINEATED BY TIGHE & BOND, DURING DECEMBER 2021. **REFERENCE PLANS:** "EXISTING CONDITIONS PLAN FOR TIGHE & BOND OF PEASE HANGAR 227 AREA, PORTIONS OF AVIATION AVENUE, FLIGHTLINE ROAD, LEE STREET, NEWFIELDS STREET, NEW HAMPSHIRE AVENUE, ROCHESTER AVENUE, AND STRATHEM STREET" PREPARED BY DOUCET SURVEY LLC, LAST REVISED 09/21/2022. **DEMOLITION NOTES:** THE LOCATIONS OF UNDERGROUND UTILITIES ARE APPROXIMATE AND THE LOCATIONS ARE NOT GUARANTEED BY THE OWNER OR THE ENGINEER. IT IS THE CONTRACTOR'S RESPONSIBILITY TO LOCATE ALL UTILITIES, ANTICIPATE CONFLICTS, REPAIR EXISTING UTILITIES AND RELOCATE EXISTING UTILITIES REQUIRED TO COMPLETE THE WORK. THE CONTRACTOR SHALL VERIFY LOCATION OF ALL EXISTING UTILITIES. CALL DIG SAFE AT LEAST 72 HOURS PRIOR TO THE COMMENCEMENT OF ANY DEMOLITION/CONSTRUCTION ACTIVITIES. ALL MATERIALS SCHEDULED TO BE REMOVED SHALL BECOME THE PROPERTY OF THE CONTRACTOR UNLESS OTHERWISE SPECIFIED. THE CONTRACTOR SHALL DISPOSE OF ALL MATERIALS OFF-SITE IN ACCORDANCE WITH ALL FEDERAL, STATE, AND LOCAL

COORDINATE REMOVAL, RELOCATION, DISPOSAL OR SALVAGE OF UTILITIES WITH THE

EXISTING CONDITIONS BY THE CONTRACTOR AT NO ADDITIONAL COST TO THE OWNER.

SAW CUT AND REMOVE PAVEMENT ONE (1) FOOT OFF PROPOSED EDGE OF PAVEMENT OR

EXISTING CURB LINE IN ALL AREAS WHERE PAVEMENT TO BE REMOVED ABUTS EXISTING

THE CONTRACTOR SHALL OBTAIN AND PAY FOR ADDITIONAL PERMITS, NOTICES AND FEES

THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL DEMOLITION AND OFF-SITE DISPOSAL

ANY EXISTING WORK OR PROPERTY DAMAGED OR DISRUPTED BY CONSTRUCTION/

DEMOLITION ACTIVITIES SHALL BE REPLACED OR REPAIRED TO MATCH ORIGINAL

IT IS THE CONTRACTOR'S RESPONSIBILITY TO FAMILIARIZE THEMSELVES WITH THE

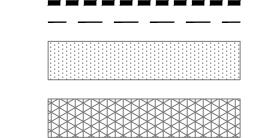
NECESSARY TO COMPLETE THE WORK AND ARRANGE FOR AND PAY FOR NECESSARY

INSPECTIONS AND APPROVALS FROM THE AUTHORITIES HAVING JURISDICTION.

REGULATIONS, ORDINANCES AND CODES.

PAVEMENT OR CONCRETE TO REMAIN.

OWNER AND APPROPRIATE UTILITY COMPANY.

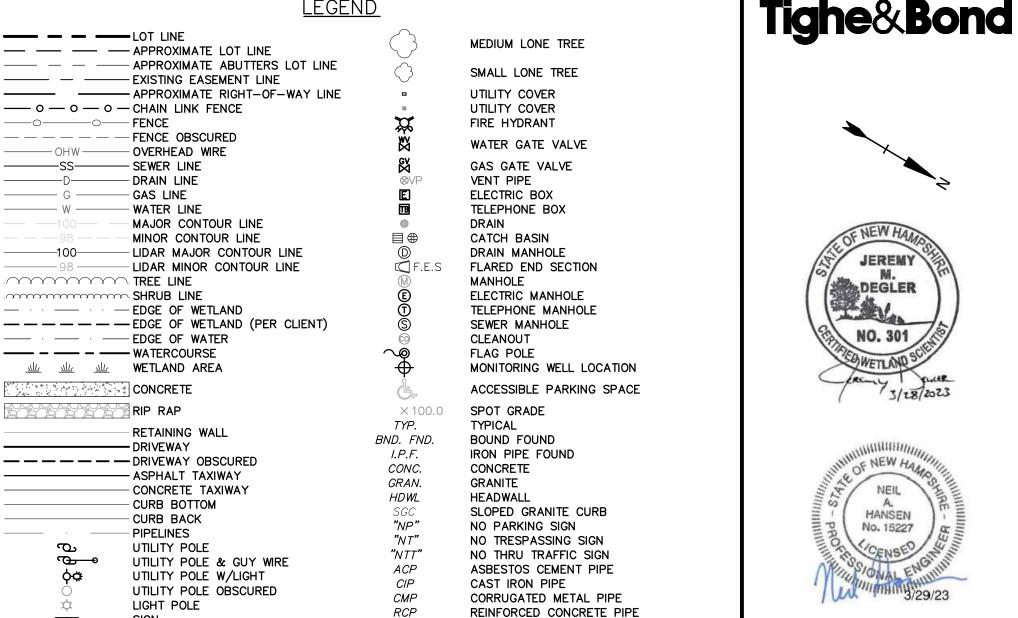

CONDITIONS OF ALL OF THE PERMIT APPROVALS.

- 10. UTILITIES SHALL BE TERMINATED AT THE MAIN LINE PER UTILITY COMPANY AND CITY OF PORTSMOUTH STANDARD. THE CONTRACTOR SHALL REMOVE ALL ABANDONED UTILITIES LOCATED WITHIN THE LIMITS OF WORK.
- 11. CONTRACTOR SHALL VERIFY ORIGIN OF ALL DRAINS AND UTILITIES PRIOR TO REMOVAL/TERMINATION TO DETERMINE IF DRAINS OR UTILITY IS ACTIVE, AND SERVICES ANY ON OR OFF-SITE STRUCTURE TO REMAIN. THE CONTRACTOR SHALL NOTIFY ENGINEER IMMEDIATELY OF ANY SUCH UTILITY FOUND AND SHALL MAINTAIN THESE UTILITIES UNTIL PERMANENT SOLUTION IS IN PLACE.
- 12. PAVEMENT REMOVAL LIMITS ARE SHOWN FOR CONTRACTOR'S CONVENIENCE. ADDITIONAL PAVEMENT REMOVAL MAY BE REQUIRED DEPENDING ON THE CONTRACTOR'S OPERATION. CONTRACTOR TO VERIFY FULL LIMITS OF PAVEMENT REMOVAL PRIOR TO BID
- 13. THE CONTRACTOR SHALL REMOVE AND DISPOSE OF ALL EXISTING STRUCTURES, CONCRETE PADS, UTILITIES AND PAVEMENT WITHIN THE WORK LIMITS SHOWN UNLESS SPECIFICALLY IDENTIFIED TO REMAIN. ITEMS TO BE REMOVED INCLUDE BUT ARE NOT LIMITED TO: CONCRETE, PAVEMENT, CURBS, MANHOLES, CATCH BASINS, UNDER GROUND PIPING, POLES, SIGNS, BOLLARDS, TREES AND LANDSCAPING.
- 14. COORDINATE ALL WORK WITHIN THE PUBLIC RIGHT OF WAYS WITH THE CITY OF PORTSMOUTH AND PEASE DEVELOPMENT AUTHORITY.
- 15. REMOVE TREES AND BRUSH AS REQUIRED FOR COMPLETION OF WORK. CONTRACTOR SHALL GRUB AND REMOVE ALL STUMPS WITHIN LIMITS OF WORK AND DISPOSE OF OFF SITE IN ACCORDANCE WITH FEDERAL, STATE, AND LOCAL LAWS AND REGULATIONS.
- 16. CONTRACTOR SHALL PROTECT ALL PROPERTY MONUMENTATION THROUGHOUT DEMOLITION AND CONSTRUCTION OPERATIONS. SHOULD ANY MONUMENTATION BE DISTURBED BY THE CONTRACTOR, THE CONTRACTOR SHALL EMPLOY A NEW HAMPSHIRE LICENSED SURVEYOR TO REPLACE DISTURBED MONUMENTS
- 17. PROVIDE INLET PROTECTION BARRIERS AT ALL CATCH BASINS/CURB INLETS WITHIN CONSTRUCTION LIMITS AS WELL AS CATCH BASINS/CURB INLETS THAT RECEIVE RUNOFF FROM CONSTRUCTION ACTIVITIES. INLET PROTECTION BARRIERS SHALL BE MAINTAINED FOR THE DURATION OF THE PROJECT. INLET PROTECTION BARRIERS SHALL BE "HIGH FLOW SILT SACK" BY ACF ENVIRONMENTAL OR EQUAL. INSPECT BARRIERS WEEKLY AND AFTER EACH RAIN EVENT OF 0.25 INCHES OR GREATER. CONTRACTOR SHALL COMPLETE A MAINTENANCE INSPECTION REPORT AFTER EACH INSPECTION. SEDIMENT DEPOSITS SHALL BE REMOVED AFTER EACH STORM EVENT OR MORE OFTEN IF THE FABRIC BECOMES CLOGGED OR SEDIMENT HAS ACCUMULATED TO 1/3 THE DESIGN DEPTH OF THE BARRIER. . THE CONTRACTOR SHALL PHASE DEMOLITION AND CONSTRUCTION AS REQUIRED TO
- PROVIDE CONTINUOUS SERVICE TO EXISTING BUSINESSES AND HOMES THROUGHOUT THE CONSTRUCTION PERIOD. EXISTING BUSINESS AND HOME SERVICES INCLUDE, BUT ARE NOT LIMITED TO ELECTRICAL, COMMUNICATION, FIRE PROTECTION, DOMESTIC WATER AND SEWER SERVICES. TEMPORARY SERVICES, IF REQUIRED, SHALL COMPLY WITH ALL FEDERAL, STATE, LOCAL AND UTILITY COMPANY STANDARDS. CONTRACTOR SHALL PROVIDE DETAILED CONSTRUCTION SCHEDULE TO OWNER PRIOR TO ANY DEMOLITION/CONSTRUCTION ACTIVITIES AND SHALL COORDINATE TEMPORARY SERVICES

19. EROSION CONTROL MEASURES SHALL BE INSTALLED PRIOR TO THE START OF ANY CLEARING OR DEMOLITION ACTIVITIES.

- 20. THE CONTRACTOR SHALL PAY ALL COSTS NECESSARY FOR TEMPORARY PARTITIONING, BARRICADING, FENCING, SECURITY AND SAFETY DEVICES REQUIRED FOR THE MAINTENANCE OF A CLEAN AND SAFE CONSTRUCTION SITE.
- 21. SAW CUT AND REMOVE PAVEMENT AND CONSTRUCT PAVEMENT TRENCH PATCH FOR ALI UTILITIES TO BE REMOVED AND PROPOSED UTILITIES LOCATED IN EXISTING PAVEMENT AREAS TO REMAIN.
- 22. BEFORE ANY DEWATERING IS PERFORMED A TEMPORARY DISCHARGE PERMIT FROM THE
- 23. THE SITE IS IN A GROUNDWATER MANAGEMENT ZONE (GMZ). THE APPLICANT SHALL COORDINATE WITH PDA, NHDES AND THE AIR FORCE TO DETERMINE IF ANY SPECIAL MEASURES ARE REQUIRED DURING CONSTRUCTION TO ENSURE THE SAFETY OF WORKERS AND PROPER HANDLING OF MATERIALS. NO EXISTING SOILS OR MATERIALS MAY BE REMOVED AND DISPOSED OF OFFSITE UNLESS TESTING AND PROTOCOLS ESTABLISHED ARE FOLLOWED. ALL WORK SHALL BE DONE IN ACCORDANCE WITH THE APPROVED AREA OF SPECIAL NOTICE PROVISIONS ISSUED BY THE AIR FORCE.
- 24. THE CONTRACTOR SHALL ACQUIRE A PDA DIG PERMIT BEFORE ANY DISTURBANCE CAN TAKE PLACE. ALLOW 7 CALENDAR DAYS FOR PROCESSING.
- 25. ALL MONITORING WELLS WITHIN THE LIMIT OF WORK SHALL BE PROTECTED DURING CONSTRUCTION. IF ANY MONITORING WELL NEEDS TO BE REMOVED OR ADJUSTED THIS WORK SHALL BE COORDINATED WITH PDA AND THE AIR FORCE.

DEMOLITION LEGEND



NHDES IS REQUIRED.

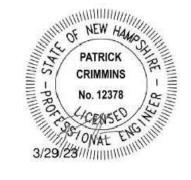
APPROXIMATE LIMIT OF WORK APPROXIMATE LIMIT OF SAWCUT

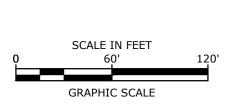
APPROXIMATE LIMIT OF PAVEMENT TO BE REMOVED

APPROXIMATE LIMIT OF PAVEMENT TO BE RECLAIMED

HDPE

SIGN (TWO POSTS)


HIGH DENSITY POLYETHYLENE PIPE


LEGEND

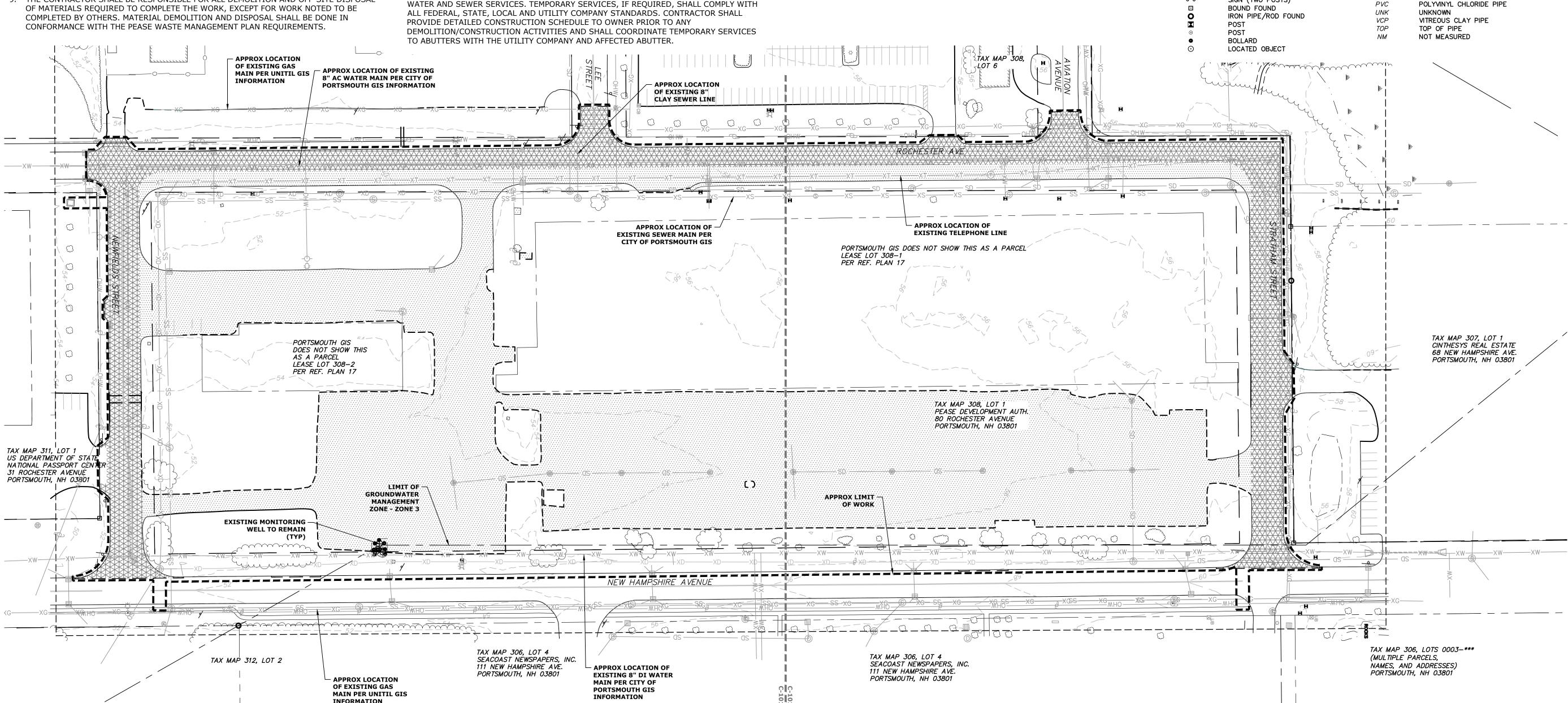
JEREMY

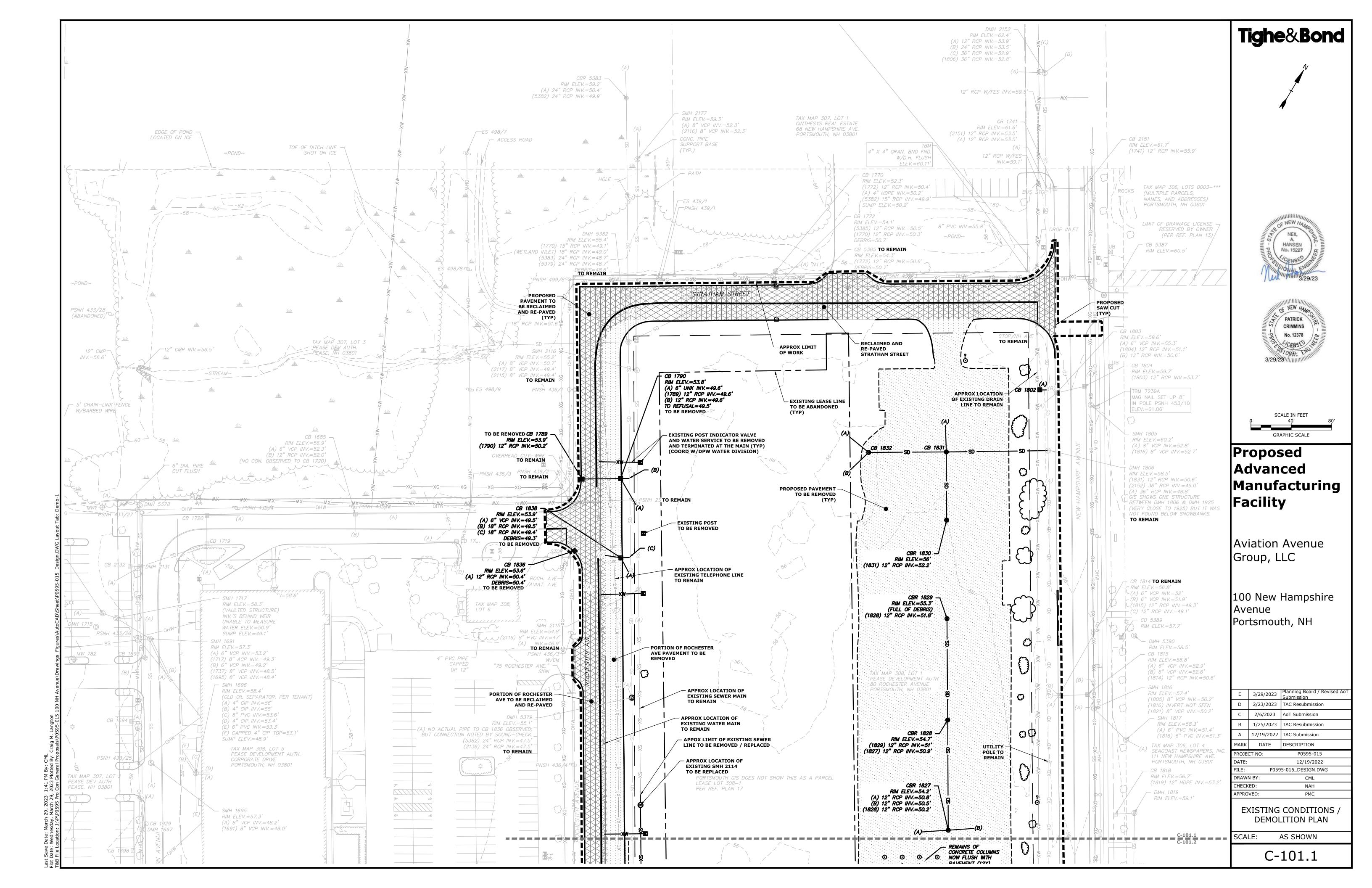
BDEGLER

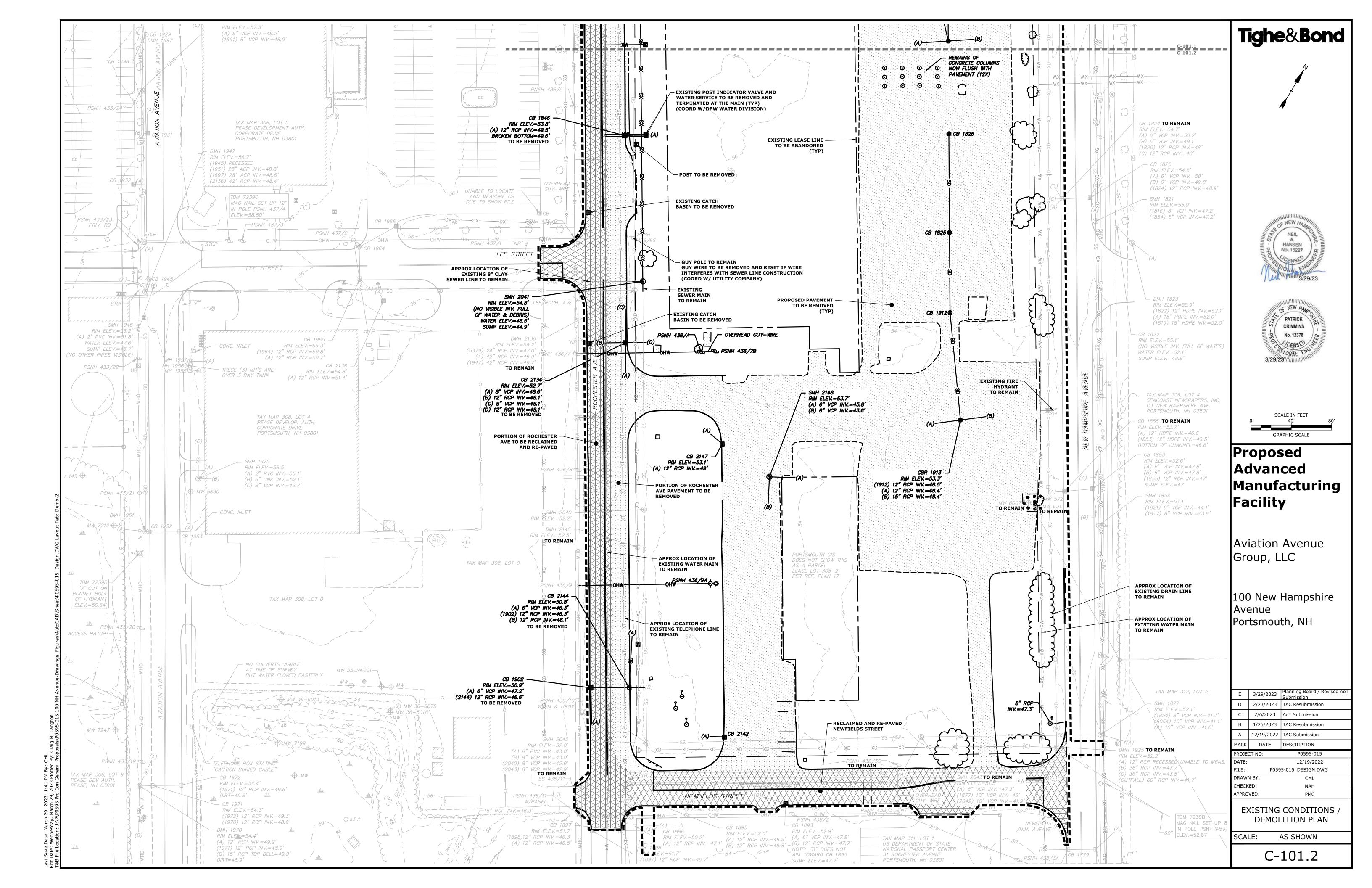
|Proposed |Advanced Manufacturing **Facility**

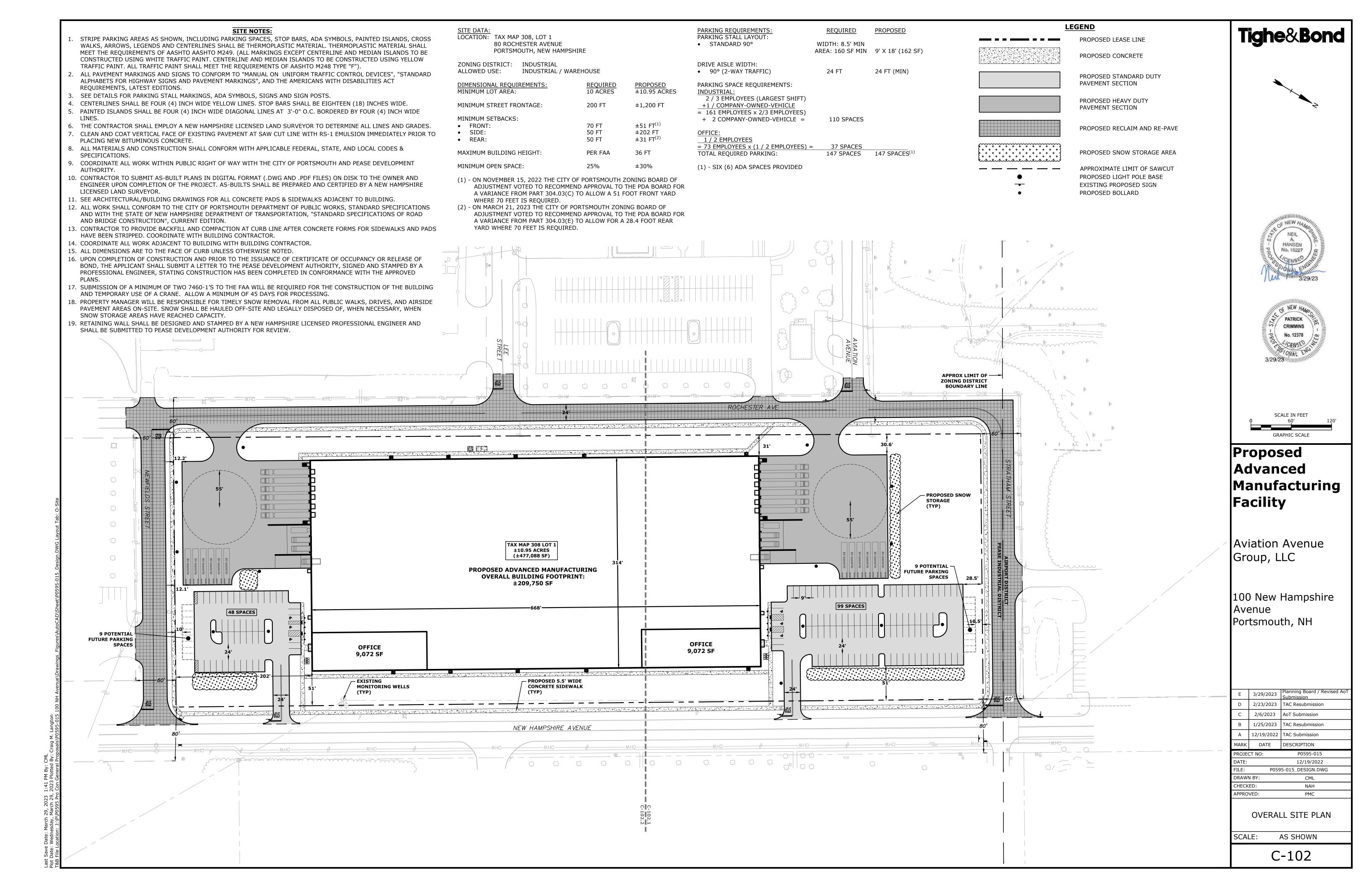
Aviation Avenue Group, LLC

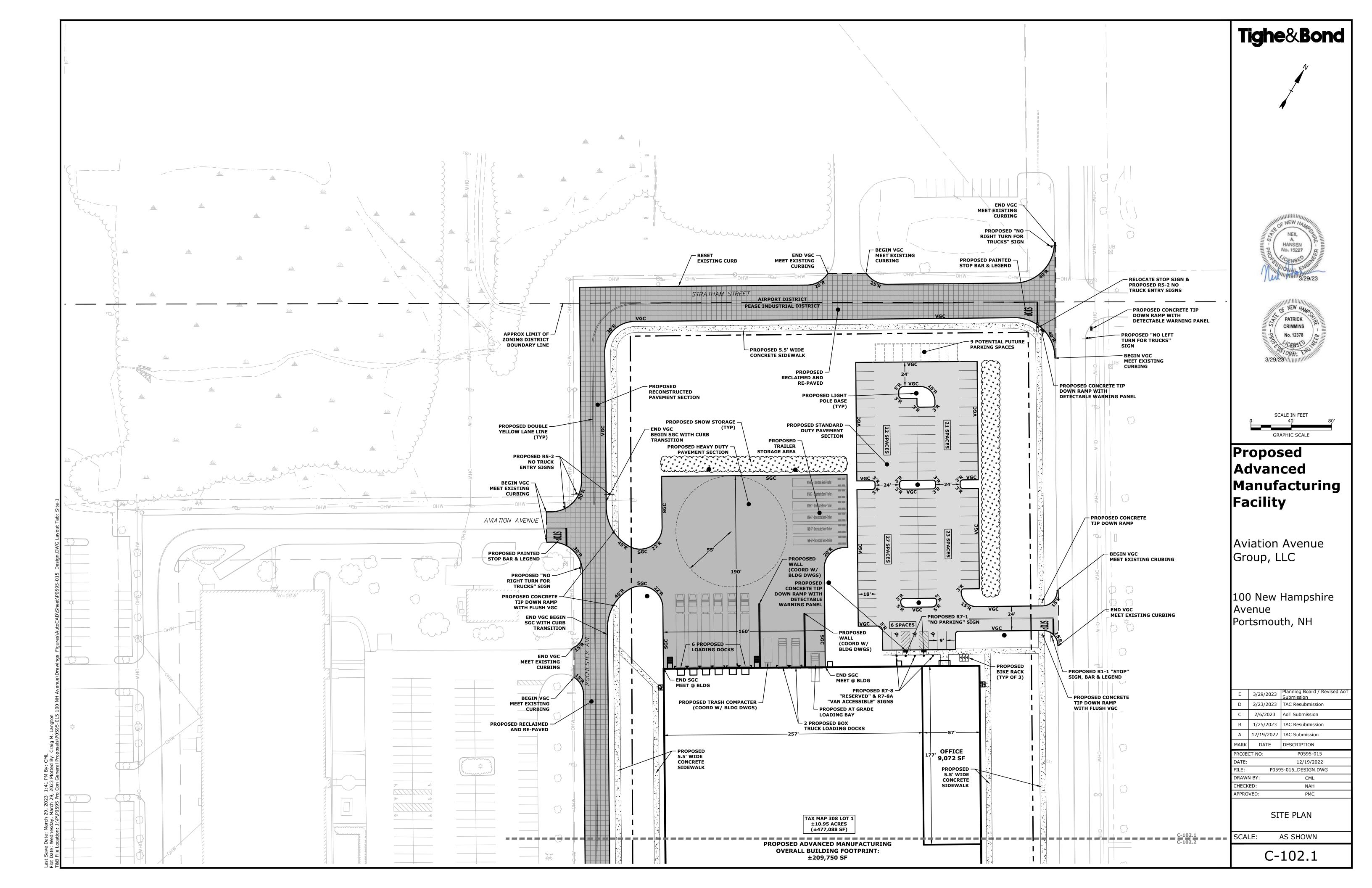
100 New Hampshire Avenue Portsmouth, NH

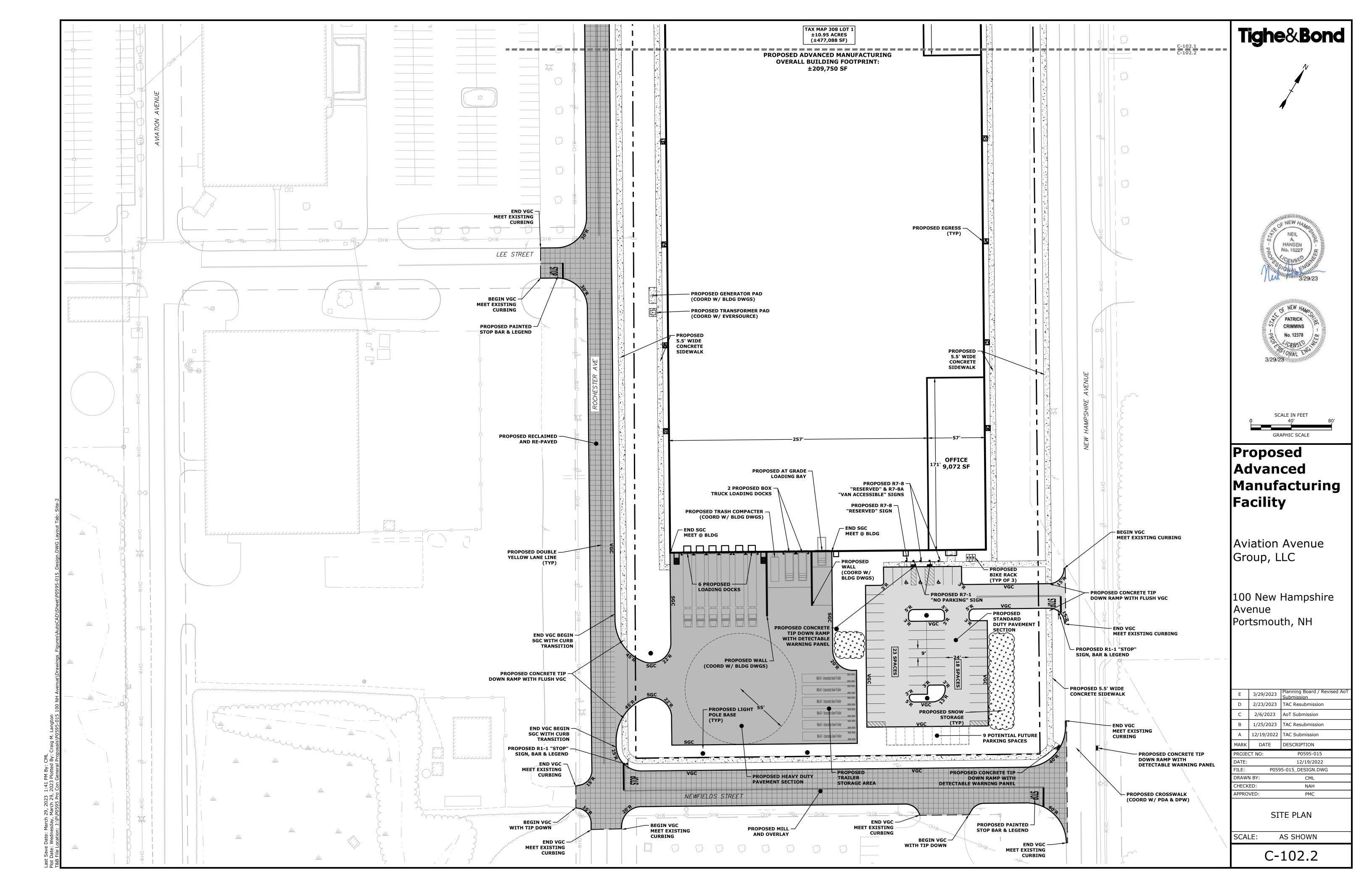

Е	3/29/2023	Planning Board / Revised AoT Submission
D	2/23/2023	TAC Resubmission
С	2/6/2023	AoT Submission
В	1/25/2023	TAC Resubmission
Α	12/19/2022	TAC Submission
MARK	DATE	DESCRIPTION
PROJECT NO:		P0595-015
DATE:		12/19/2022

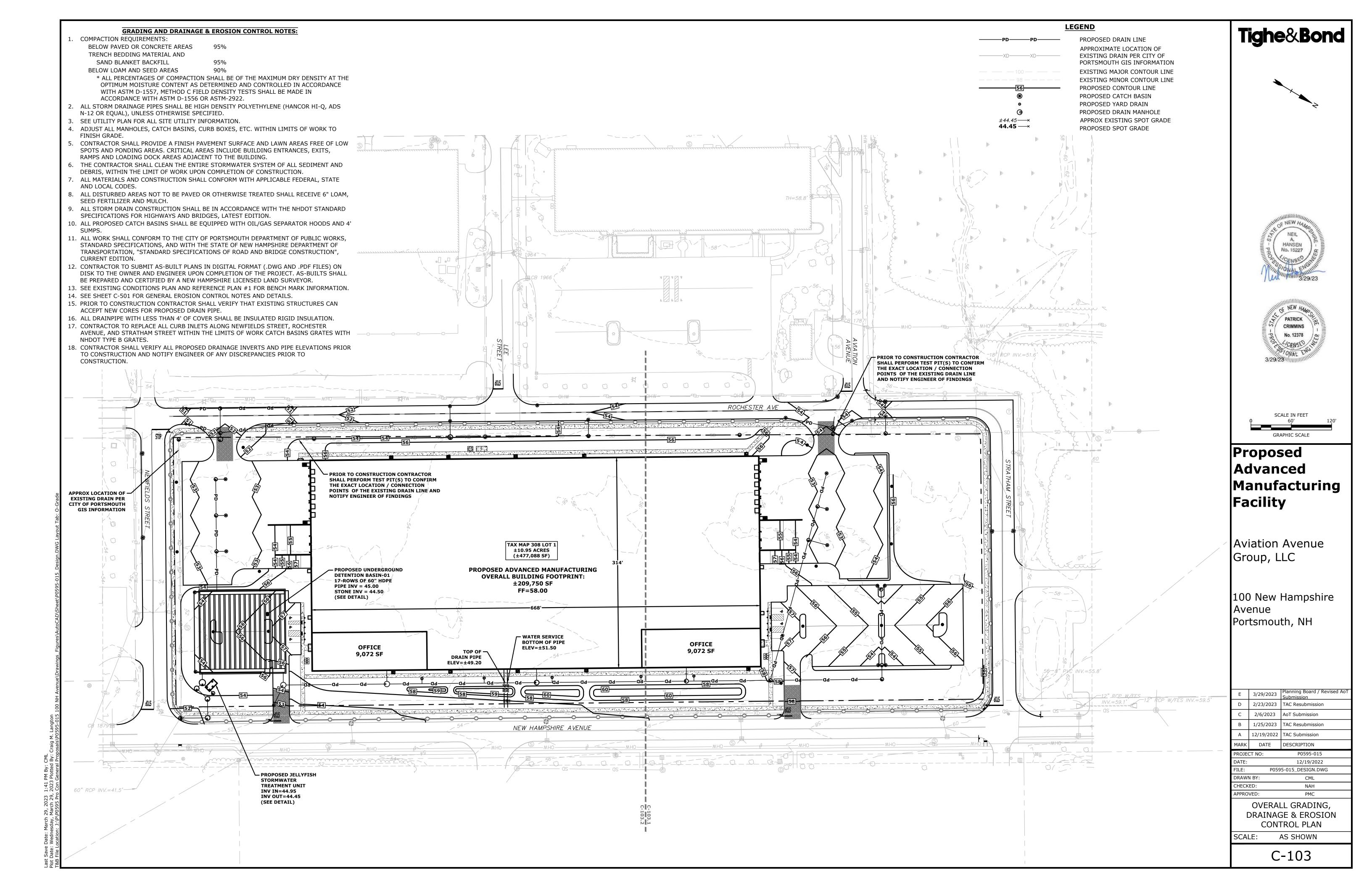

P0595-015_DESIGN.DWG DRAWN BY: CML CHECKED: NAH APPROVED: PMC

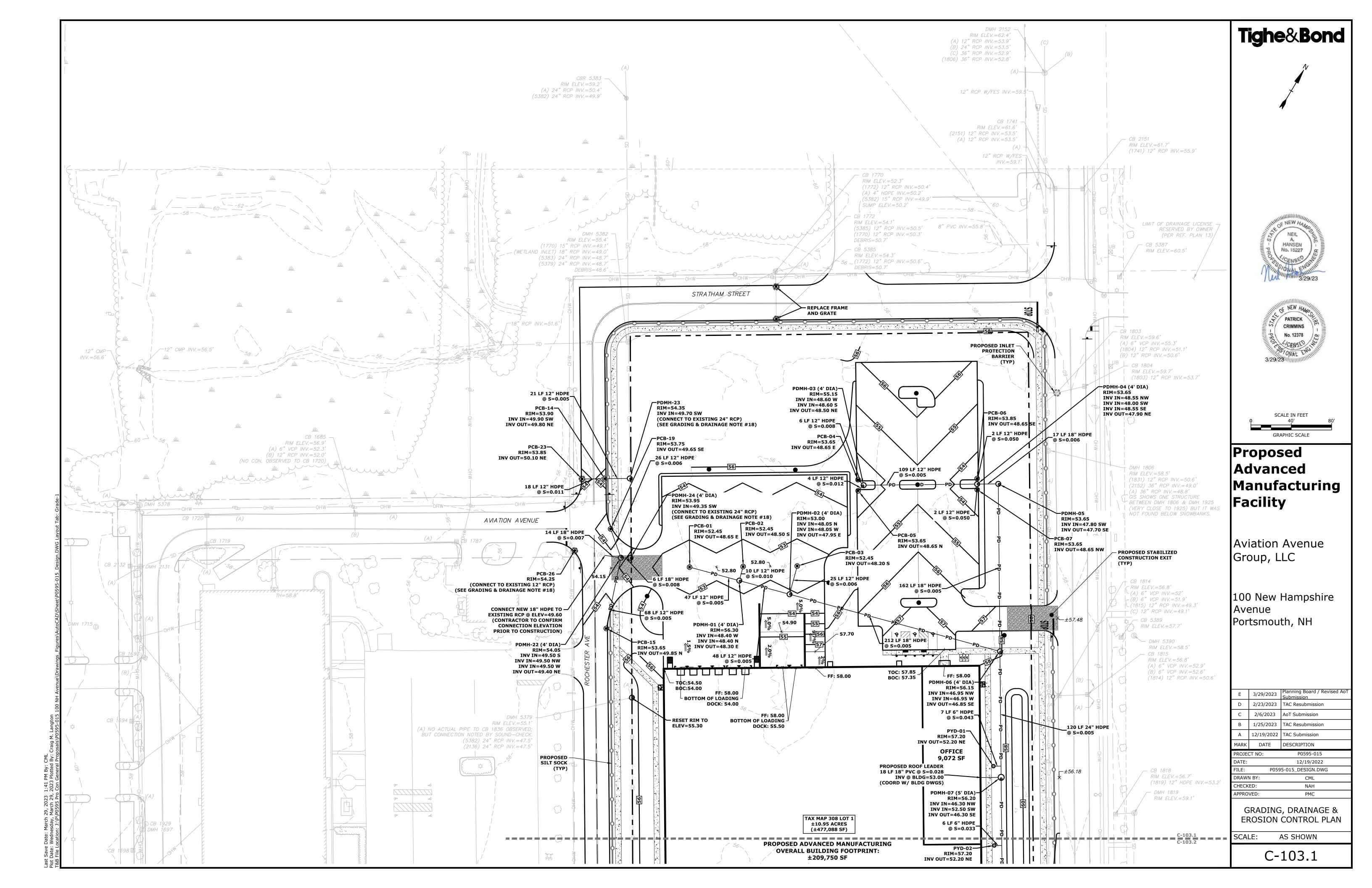

OVERALL EXISTING CONDITIONS / DEMOLITION PLAN

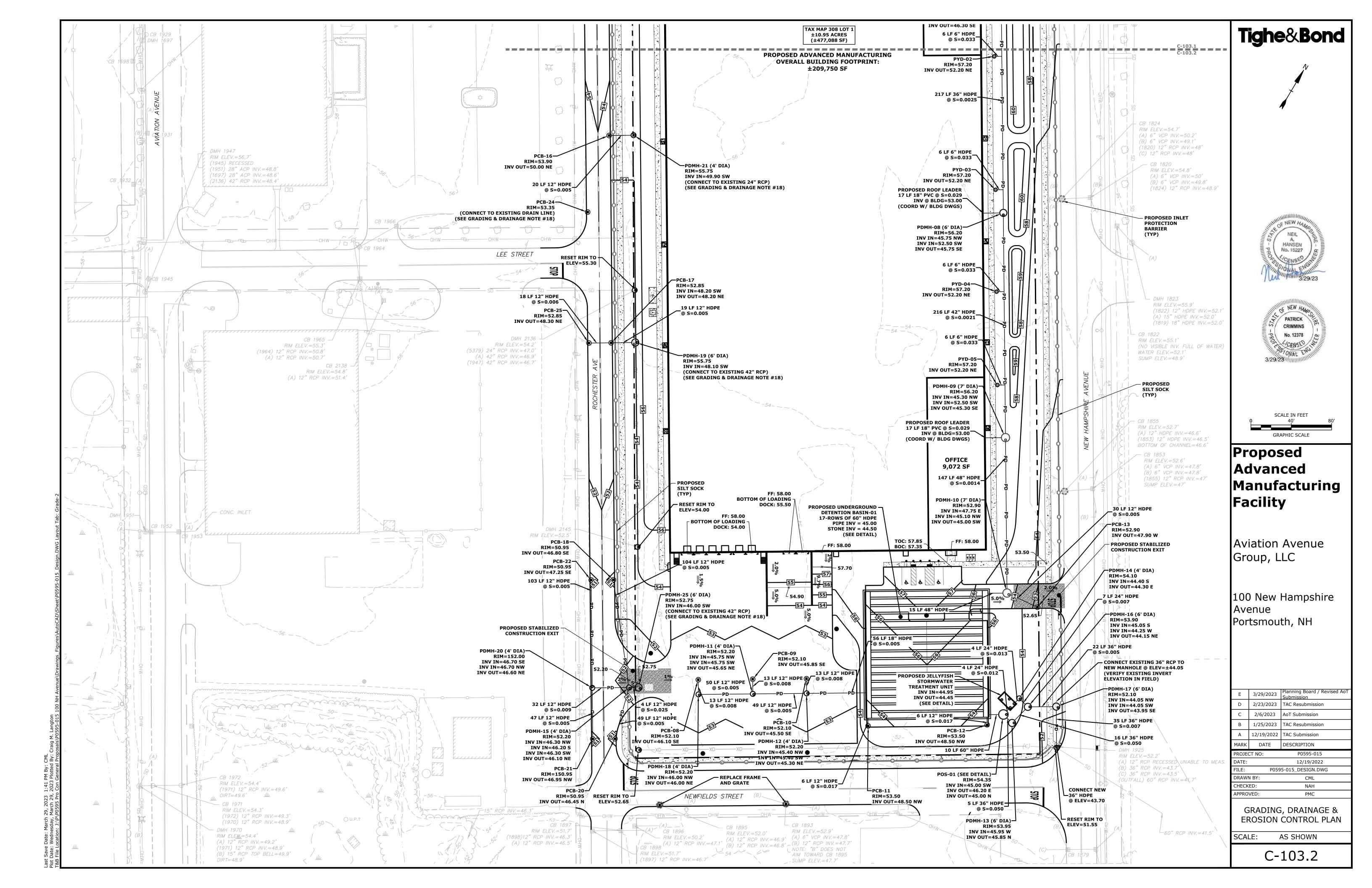

SCALE: AS SHOWN

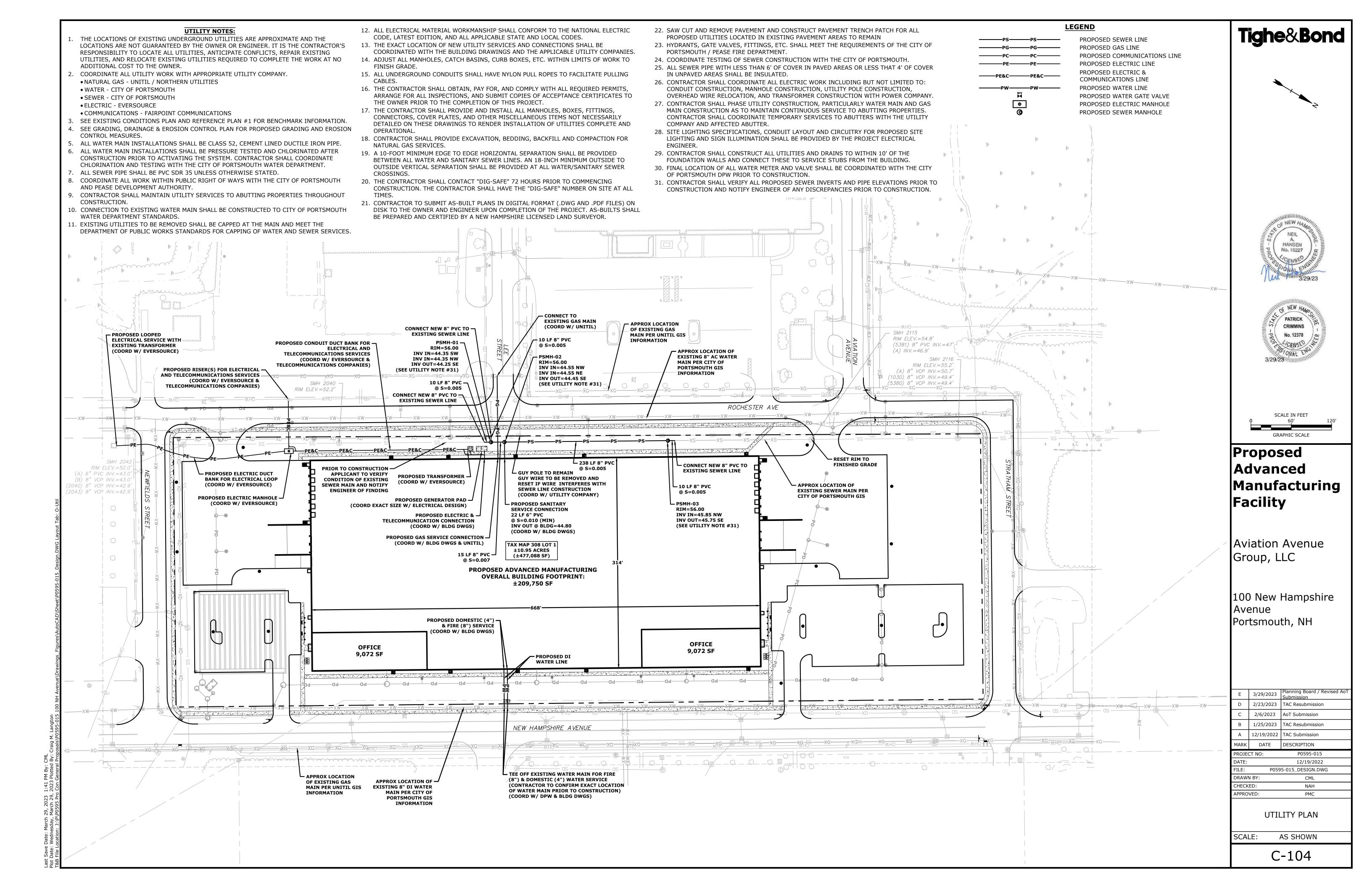

C-101

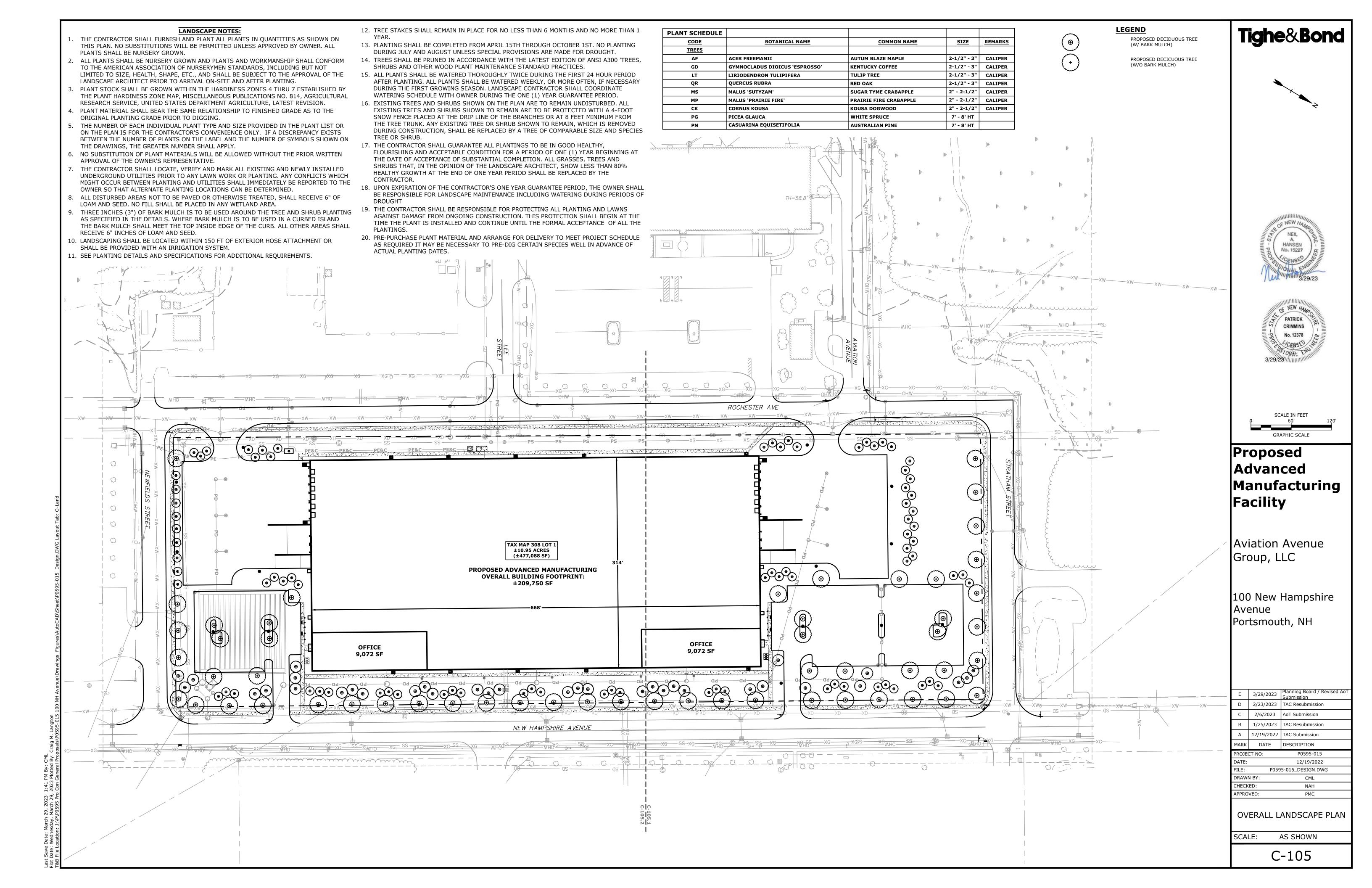


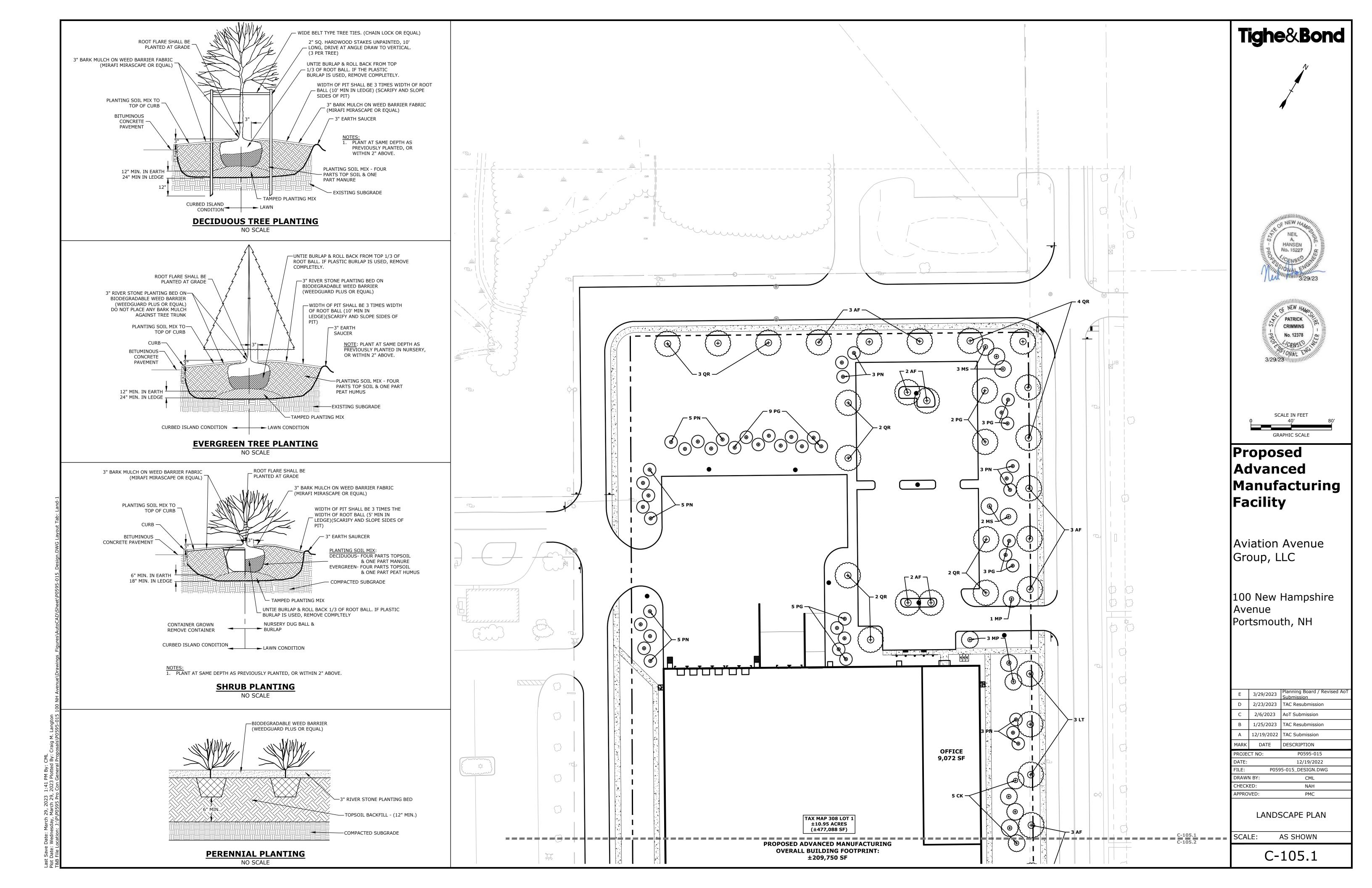


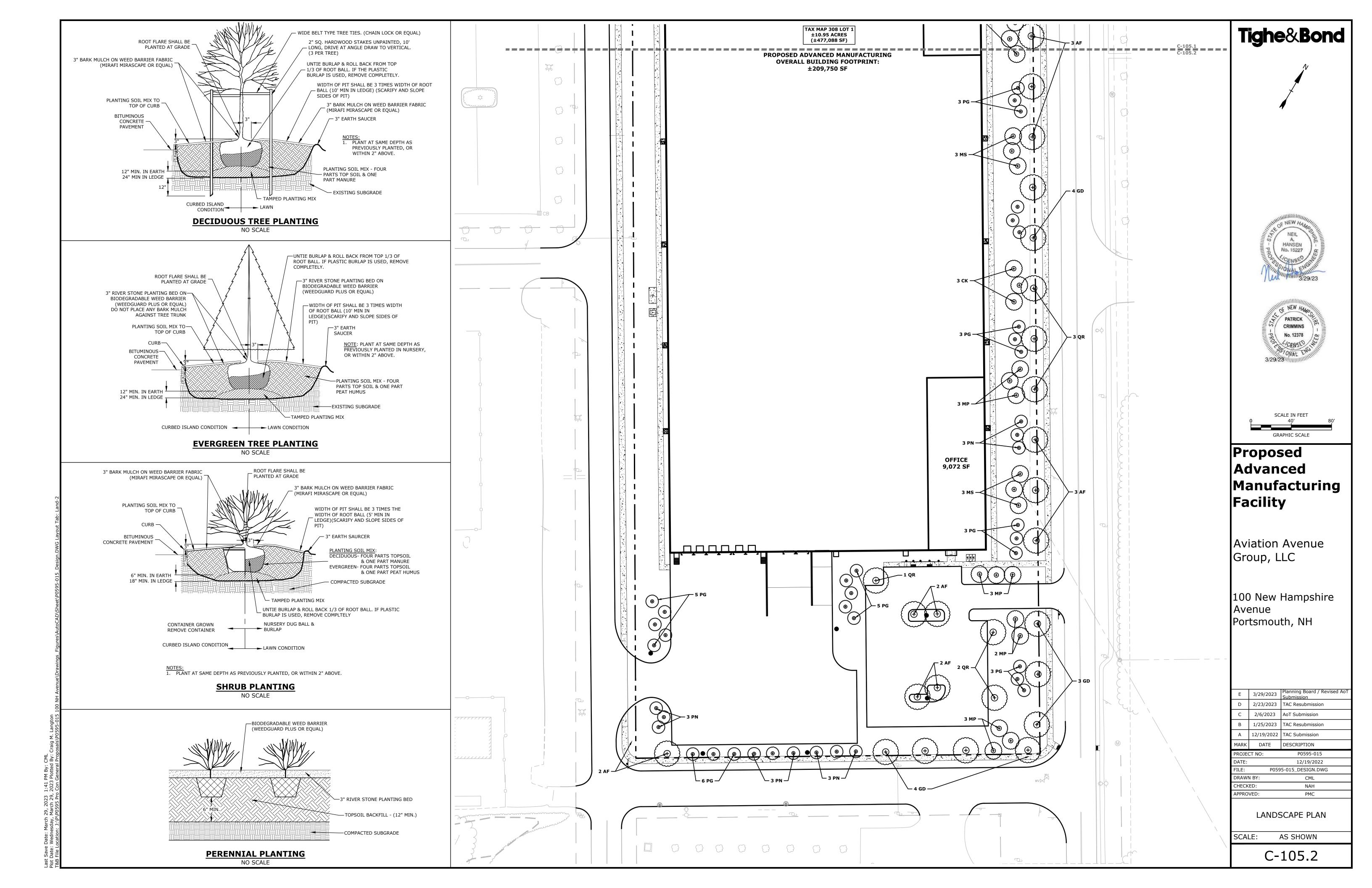












PROJECT ADDRESS: 80 ROCHESTER AVE (100 NEW HAMPSHIRE AVE) PORTSMOUTH, NH 03801

PROJECT MAP / LOT: MAP 308 / LOT 1 PROJECT LATITUDE: 43°04'49.9"N PROJECT LONGITUDE: 70°48'33.6"W

PROJECT DESCRIPTION

THE PROJECT CONSISTS OF THE CONSTRUCTION OR A NEW INDUSTRIAL WAREHOUSE ON A PREVIOUSLY DEVELOPED LOT THE WORK IS ANTICIPATED TO START IN SUMMER OF 2023, AND BE COMPLETED BY WINTER OF 2025.

DISTURBED AREA

THE TOTAL AREA TO BE DISTURBED IS APPROXIMATELY 11.4 ACRES.

SOIL CHARACTERISTICS

BASED ON THE NRCS WEB SOIL SURVEY FOR ROCKINGHAM COUNTY - NEW HAMPSHIRE. THE SOILS ON SITE CONSIST OF URBAN LAND AS THE SITE HAS BEEN PREVIOUSLY DEVELOPED AND THE HYDROLOGIC SOIL GROUP RATING(S) IS ASSUMED TO BE "C".

NAME OF RECEIVING WATERS

THE STORMWATER RUNOFF FROM THE SITE WILL BE DISCHARGED VIA OVERLAND FLOW TO A CLOSED DRAINAGE SYSTEM AND ULTIMATELY FLOWS TO NEWFIELDS DITCH. (STATE WATERBODY ID: NHRIV600031001-10).

CONSTRUCTION SEQUENCE OF MAJOR ACTIVITIES:

- CUT AND CLEAR TREES.
- CONSTRUCT TEMPORARY AND PERMANENT SEDIMENT, EROSION AND DETENTION CONTROL FACILITIES. EROSION, SEDIMENT AND DETENTION MEASURES SHALL BE INSTALLED PRIOR TO ANY EARTH MOVING OPERATIONS THAT WILL INFLUENCE STORMWATER RUNOFF SUCH AS:
 - NEW CONSTRUCTION
 - CONTROL OF DUST CONSTRUCTION OF ACCESS DRIVES
 - NEARNESS OF CONSTRUCTION SITE TO RECEIVING WATERS
- CONSTRUCTION DURING LATE WINTER AND EARLY SPRING
- ALL PERMANENT DITCHES, SWALES, DETENTION, RETENTION AND SEDIMENTATION BASINS TO BE STABILIZED USING THE VEGETATIVE AND NON-STRUCTURAL BMPS PRIOR TO DIRECTING RUNOFF TO THEM
- CLEAR AND DISPOSE OF DEBRIS.
- CONSTRUCT TEMPORARY CULVERTS AND DIVERSION CHANNELS AS REQUIRED.
- GRADE AND GRAVEL ROADWAYS AND PARKING AREAS ALL ROADS AND PARKING AREA SHALL BE STABILIZED WITHIN 72 HOURS OF ACHIEVING FINISHED GRADE.
- BEGIN PERMANENT AND TEMPORARY SEEDING AND MULCHING. ALL CUT AND FILL SLOPES
- SHALL BE SEEDED AND MULCHED WITHIN 72 HOURS OF ACHIEVING FINISHED GRADE. DAILY, OR AS REQUIRED, CONSTRUCT TEMPORARY BERMS, DRAINS, DITCHES, PERIMETER
- EROSION CONTROL MEASURES, SEDIMENT TRAPS, ETC., MULCH AND SEED AS REQUIRED. SEDIMENT TRAPS AND/OR BASINS SHALL BE USED AS NECESSARY TO CONTAIN RUNOFF UNTIL SOILS ARE STABILIZED.
- 10. FINISH PAVING ALL ROADWAYS AND PARKING LOTS.
- INSPECT AND MAINTAIN ALL EROSION AND SEDIMENT CONTROL MEASURES.
- 12. COMPLETE PERMANENT SEEDING AND LANDSCAPING. REMOVE TRAPPED SEDIMENTS FROM COLLECTOR DEVICES AS APPROPRIATE AND THEN REMOVE TEMPORARY EROSION CONTROL MEASURES.

SPECIAL CONSTRUCTION NOTES:

- THE CONSTRUCTION SEQUENCE MUST LIMIT THE DURATION AND AREA OF DISTURBANCE. THE PROJECT IS TO BE MANAGED IN A MANNER THAT MEETS THE REQUIREMENTS AND INTENT
- OF RSA 430:53 AND CHAPTER AGR 3800 RELATIVE TO INVASIVE SPECIES
- NO MORE THAN 5 ACRES SHALL BE DISTURBED (NOT STABILIZED) AT ANY TIME.

- ALL EROSION CONTROL MEASURES AND PRACTICES SHALL CONFORM TO THE "NEV HAMPSHIRE STORMWATER MANUAL VOLUME 3: EROSION AND SEDIMENT CONTROLS DURING CONSTRUCTION" PREPARED BY THE NHDES.
- PRIOR TO ANY WORK OR SOIL DISTURBANCE, CONTRACTOR SHALL SUBMIT SHOP DRAWINGS FOR EROSION CONTROL MEASURES AS REQUIRED IN THE PROJECT MANUAL.
- CONTRACTOR SHALL INSTALL TEMPORARY EROSION CONTROL BARRIERS, INCLUDING HAY BALES, SILT FENCES, MULCH BERMS, SILT SACKS AND SILT SOCKS AS SHOWN IN THESE DRAWINGS AS THE FIRST ORDER OF WORK.
- SILT SACK INLET PROTECTION SHALL BE INSTALLED IN ALL EXISTING AND PROPOSED CATCH BASIN INLETS WITHIN THE WORK LIMITS AND BE MAINTAINED FOR THE DURATION OF THE
- PERIMETER CONTROLS INCLUDING SILT FENCES, MULCH BERM, SILT SOCK, AND/OR HAY BALE BARRIERS SHALL BE MAINTAINED FOR THE DURATION OF THE PROJECT UNTIL NON-PAVED AREAS HAVE BEEN STABILIZED.
- THE CONTRACTOR SHALL REMOVE AND PROPERLY DISPOSE OF ALL TEMPORARY EROSION CONTROL DEVICES UPON COMPLETION OF CONSTRUCTION. ALL DISTURBED AREAS NOT OTHERWISE BEING TREATED SHALL RECEIVE 6" LOAM, SEED AND
- FERTILIZER. INSPECT ALL INLET PROTECTION AND PERIMETER CONTROLS WEEKLY AND AFTER EACH RAIN STORM OF 0.25 INCH OR GREATER. REPAIR/MODIFY PROTECTION AS NECESSARY TO
- MAXIMIZE EFFICIENCY OF FILTER. REPLACE ALL FILTERS WHEN SEDIMENT IS 1/3 THE FILTER
- CONSTRUCT EROSION CONTROL BLANKETS ON ALL SLOPES STEEPER THAN 3:1

- AN AREA SHALL BE CONSIDERED STABLE WHEN ONE OF THE FOLLOWING HAS OCCURRED:
- A. BASE COURSE GRAVELS HAVE BEEN INSTALLED IN AREAS TO BE PAVED; B. A MINIMUM OF 85% VEGETATED GROWTH HAS BEEN ESTABLISHED;
- C. A MINIMUM OF 3" OF NON-EROSIVE MATERIAL SUCH AS STONE OR RIPRAP HAS BEEN INSTALLED;
- EROSION CONTROL BLANKETS HAVE BEEN PROPERLY INSTALLED.;
- IN AREAS TO BE PAVED, "STABLE" MEANS THAT BASE COURSE GRAVELS MEETING THE REQUIREMENTS OF NHDOT STANDARD FOR ROAD AND BRIDGE CONSTRUCTION, LATEST EDITION, ITEM 304.2 HAVE BEEN INSTALLED.
- WINTER STABILIZATION PRACTICES: A. ALL PROPOSED VEGETATED AREAS THAT DO NOT EXHIBIT A MINIMUM OF 85 PERCENT VEGETATIVE GROWTH BY OCTOBER 15, OR WHICH ARE DISTURBED AFTER OCTOBER 15, SHALL BE STABILIZED BY SEEDING AND INSTALLING EROSION CONTROL BLANKETS ON SLOPES GREATER THAN 3:1, AND SEEDING AND PLACING 3 TO 4 TONS OF MULCH PER ACRE, SECURED WITH ANCHORED NETTING, ELSEWHERE. THE INSTALLATION OF
 - EROSION CONTROL BLANKETS OR MULCH AND NETTING SHALL NOT OCCUR OVER ACCUMULATED SNOW OR ON FROZEN GROUND AND SHALL BE COMPLETED IN ADVANCE OF THAW OR SPRING MELT EVENTS; ALL DITCHES OR SWALES WHICH DO NOT EXHIBIT A MINIMUM OF 85 PERCENT

VEGETATIVE GROWTH BY OCTOBER 15, OR WHICH ARE DISTURBED AFTER OCTOBER 15,

SHALL BE STABILIZED TEMPORARILY WITH STONE OR EROSION CONTROL BLANKETS APPROPRIATE FOR THE DESIGN FLOW CONDITIONS; AFTER OCTOBER 15, INCOMPLETE ROAD OR PARKING SURFACES, WHERE WORK HAS STOPPED FOR THE WINTER SEASON, SHALL BE PROTECTED WITH A MINIMUM OF 3 INCHES OF CRUSHED GRAVEL PER NHDOT ITEM 304.3, OR IF CONSTRUCTION IS TO

CONTINUE THROUGH THE WINTER SEASON BE CLEARED OF ANY ACCUMULATED SNOW

AFTER EACH STORM EVENT; STABILIZATION SHALL BE INITIATED ON ALL LOAM STOCKPILES, AND DISTURBED AREAS, WHERE CONSTRUCTION ACTIVITY SHALL NOT OCCUR FOR MORE THAN TWENTY-ONE (21) CALENDAR DAYS BY THE FOURTEENTH (14TH) DAY AFTER CONSTRUCTION ACTIVITY HAS PERMANENTLY OR TEMPORARILY CEASED IN THAT AREA. STABILIZATION MEASURES TO BE USED INCLUDE

- TEMPORARY SEEDING;
- B. MULCHING 4. ALL AREAS SHALL BE STABILIZED WITHIN 45 DAYS OF INITIAL DISTURBANCE
- 5. WHEN CONSTRUCTION ACTIVITY PERMANENTLY OR TEMPORARILY CEASES WITHIN 100 FEET OF NEARBY SURFACE WATERS OR DELINEATED WETLANDS, THE AREA SHALL BE STABILIZED WITHIN SEVEN (7) DAYS OR PRIOR TO A RAIN EVENT. ONCE CONSTRUCTION ACTIVITY CEASES PERMANENTLY IN AN THESE AREAS, SILT FENCES, MULCH BERMS, HAY BALE BARRIERS AND ANY EARTH/DIKES SHALL BE REMOVED ONCE PERMANENT MEASURES ARE
- 6. DURING CONSTRUCTION, RUNOFF WILL BE DIVERTED AROUND THE SITE WITH EARTH DIKES, PIPING OR STABILIZED CHANNELS WHERE POSSIBLE. SHEET RUNOFF FROM THE SITE WILL BE FILTERED THROUGH SILT FENCES, MULCH BERMS, HAY BALE BARRIERS, OR SILT SOCKS. ALL STORM DRAIN BASIN INLETS SHALL BE PROVIDED WITH FLARED END SECTIONS AND TRASH RACKS. THE SITE SHALL BE STABILIZED FOR THE WINTER BY OCTOBER 15.

- THE CONTRACTOR SHALL BE RESPONSIBLE TO CONTROL DUST THROUGHOUT THE
- CONSTRUCTION PERIOD. 2. DUST CONTROL METHODS SHALL INCLUDE, BUT BE NOT LIMITED TO SPRINKLING WATER ON EXPOSED AREAS, COVERING LOADED DUMP TRUCKS LEAVING THE SITE, AND TEMPORARY
- 3. DUST CONTROL MEASURES SHALL BE UTILIZED SO AS TO PREVENT THE MIGRATION OF DUST FROM THE SITE TO ABUTTING AREAS.

- LOCATE STOCKPILES A MINIMUM OF 50 FEET AWAY FROM CATCH BASINS, SWALES, AND
- 2. ALL STOCKPILES SHOULD BE SURROUNDED WITH TEMPORARY EROSION CONTROL MEASURES PRIOR TO THE ONSET OF PRECIPITATION.
- 3. PERIMETER BARRIERS SHOULD BE MAINTAINED AT ALL TIMES, AND ADJUSTED AS NEEDED TO ACCOMMODATE THE DELIVERY AND REMOVAL OF MATERIALS FROM THE STOCKPILE. THE INTEGRITY OF THE BARRIER SHOULD BE INSPECTED AT THE END OF EACH WORKING DAY. 4. PROTECT ALL STOCKPILES FROM STORMWATER RUN-OFF USING TEMPORARY EROSION
- CONTROL MEASURES SUCH AS BERMS, SILT SOCK, OR OTHER APPROVED PRACTICE TO PREVENT MIGRATION OF MATERIAL BEYOND THE IMMEDIATE CONFINES OF THE STOCKPILES.

1. THE CONTRACTOR SHALL CONSTRUCT STABILIZED CONSTRUCTION ENTRANCE(S) PRIOR TO ANY EXCAVATION ACTIVITIES.

- TEMPORARY GRASS COVER: A. SEEDBED PREPARATION:
 - a. APPLY FERTILIZER AT THE RATE OF 600 POUNDS PER ACRE OF 10-10-10. APPLY LIMESTONE (EQUIVALENT TO 50 PERCENT CALCIUM PLUS MAGNESIUM OXIDE) AT A RATE OF THREE (3) TONS PER ACRE;
- a. UTILIZE ANNUAL RYE GRASS AT A RATE OF 40 LBS/ACRE;
- b. WHERE THE SOIL HAS BEEN COMPACTED BY CONSTRUCTION OPERATIONS, LOOSEN SOIL TO A DEPTH OF TWO (2) INCHES BEFORE APPLYING FERTILIZER, LIME AND
- c. APPLY SEED UNIFORMLY BY HAND, CYCLONE SEEDER, OR HYDROSEEDER (SLURRY INCLUDING SEED AND FERTILIZER). HYDROSEEDINGS, WHICH INCLUDE MULCH, MAY BE LEFT ON SOIL SURFACE. SEEDING RATES MUST BE INCREASED 10% WHEN HYDROSEEDING;
- C. MAINTENANCE:
- a. TEMPORARY SEEDING SHALL BE PERIODICALLY INSPECTED. AT A MINIMUM, 95% OF THE SOIL SURFACE SHOULD BE COVERED BY VEGETATION. IF ANY EVIDENCE OF EROSION OR SEDIMENTATION IS APPARENT, REPAIRS SHALL BE MADE AND OTHER TEMPORARY MEASURES USED IN THE INTERIM (MULCH, FILTER BARRIERS, CHECK DAMS, ETC.).
- 2. PERMANENT MEASURES AND PLANTINGS:
- A. LIMESTONE SHALL BE THOROUGHLY INCORPORATED INTO THE LOAM LAYER AT A RATE OF THREE (3) TONS PER ACRE IN ORDER TO PROVIDE A PH VALUE OF 5.5 TO 6.5;
- B. FERTILIZER SHALL BE SPREAD ON THE TOP LAYER OF LOAM AND WORKED INTO THE SURFACE. FERTILIZER APPLICATION RATE SHALL BE 800 POUNDS PER ACRE OF 10-20-20
- C. SOIL CONDITIONERS AND FERTILIZER SHALL BE APPLIED AT THE RECOMMENDED RATES AND SHALL BE THOROUGHLY WORKED INTO THE LOAM. LOAM SHALL BE RAKED UNTIL THE SURFACE IS FINELY PULVERIZED, SMOOTH AND EVEN, AND THEN COMPACTED TO AN EVEN SURFACE CONFORMING TO THE REQUIRED LINES AND GRADES WITH APPROVED ROLLERS WEIGHING BETWEEN 4-1/2 POUNDS AND 5-1/2 POUNDS PER INCH OF WIDTH; D. SEED SHALL BE SOWN AT THE RATE SHOWN BELOW. SOWING SHALL BE DONE ON A
- CALM, DRY DAY, PREFERABLY BY MACHINE, BUT IF BY HAND, ONLY BY EXPERIENCED WORKMEN. IMMEDIATELY BEFORE SEEDING, THE SOIL SHALL BE LIGHTLY RAKED. ONE HALF THE SEED SHALL BE SOWN IN ONE DIRECTION AND THE OTHER HALF AT RIGHT ANGLES TO THE ORIGINAL DIRECTION. IT SHALL BE LIGHTLY RAKED INTO THE SOIL TO A DEPTH NOT OVER 1/4 INCH AND ROLLED WITH A HAND ROLLER WEIGHING NOT OVER 100 POUNDS PER LINEAR FOOT OF WIDTH
- HAY MULCH SHALL BE APPLIED IMMEDIATELY AFTER SEEDING AS INDICATED ABOVE; F. THE SURFACE SHALL BE WATERED AND KEPT MOIST WITH A FINE SPRAY AS REQUIRED, WITHOUT WASHING AWAY THE SOIL, UNTIL THE GRASS IS WELL ESTABLISHED. ANY AREAS WHICH ARE NOT SATISFACTORILY COVERED WITH GRASS SHALL BE RESEEDED, AND ALL NOXIOUS WEEDS REMOVED;
- G. THE CONTRACTOR SHALL PROTECT AND MAINTAIN THE SEEDED AREAS UNTIL ACCEPTED; H. A GRASS SEED MIXTURE CONTAINING THE FOLLOWING SEED REQUIREMENTS SHALL BE
- APPLIED AT THE INDICATED RATE: SEED APPLICATION MINIMUM MINIMUM MIX GERMINATION (%) PURITY (%) RATE TALL FESCUE 85% (FESTUCA ARUNDINACEA) 72 LBS/ACRE SALTY ALKALI GRASS
- RELIANT HARD FESCUE CREEPING RED FESCUE 12 LBS/ACRE IN NO CASE SHALL THE WEED CONTENT EXCEED ONE (1) PERCENT BY WEIGHT. ALL SEED SHALL COMPLY WITH STATE AND FEDERAL SEED LAWS. SEEDING SHALL BE DONE NO LATER THAN SEPTEMBER 15. IN NO CASE SHALL SEEDING TAKE PLACE OVER SNOW.
- 3. DORMANT SEEDING (SEPTEMBER 15 TO FIRST SNOWFALL): A. FOLLOW PERMANENT MEASURES SLOPE, LIME, FERTILIZER AND GRADING REQUIREMENTS. APPLY SEED MIXTURE AT TWICE THE INDICATED RATE. APPLY MULCH AS

CONCRETE WASHOUT AREA:

- 1. THE FOLLOWING ARE THE ONLY NON-STORMWATER DISCHARGES ALLOWED. ALL OTHER NON-STORMWATER DISCHARGES ARE PROHIBITED ON SITE:
- A. THE CONCRETE DELIVERY TRUCKS SHALL, WHENEVER POSSIBLE, USE WASHOUT FACILITIES AT THEIR OWN PLANT OR DISPATCH FACILITY;
- B. IF IT IS NECESSARY, SITE CONTRACTOR SHALL DESIGNATE SPECIFIC WASHOUT AREAS AND DESIGN FACILITIES TO HANDLE ANTICIPATED WASHOUT WATER;
- C. CONTRACTOR SHALL LOCATE WASHOUT AREAS AT LEAST 150 FEET AWAY FROM STORM DRAINS, SWALES AND SURFACE WATERS OR DELINEATED WETLANDS; D. INSPECT WASHOUT FACILITIES DAILY TO DETECT LEAKS OR TEARS AND TO IDENTIFY

ALLOWABLE NON-STORMWATER DISCHARGES:

WHEN MATERIALS NEED TO BE REMOVED.

INDICATED FOR PERMANENT MEASURES.

- FIRE-FIGHTING ACTIVITIES;
- FIRE HYDRANT FLUSHING
- WATERS USED TO WASH VEHICLES WHERE DETERGENTS ARE NOT USED; WATER USED TO CONTROL DUST;
- 5. POTABLE WATER INCLUDING UNCONTAMINATED WATER LINE FLUSHING;

(PUCCINELLIA TENUIFLORA) 36 LBS/ACRE

- ROUTINE EXTERNAL BUILDING WASH DOWN WHERE DETERGENTS ARE NOT USED;
- 7. PAVEMENT WASH WATERS WHERE DETERGENTS ARE NOT USED
- UNCONTAMINATED AIR CONDITIONING/COMPRESSOR CONDENSATION;
- UNCONTAMINATED GROUND WATER OR SPRING WATER; FOUNDATION OR FOOTING DRAINS WHICH ARE UNCONTAMINATED;
- 11. UNCONTAMINATED EXCAVATION DEWATERING;

WASTE DISPOSAL

LANDSCAPE IRRIGATION.

- WASTE MATERIAL
- A. ALL WASTE MATERIALS SHALL BE COLLECTED AND STORED IN SECURELY LIDDED RECEPTACLES. ALL TRASH AND CONSTRUCTION DEBRIS FROM THE SITE SHALL BE DEPOSITED IN A DUMPSTER;
- NO CONSTRUCTION WASTE MATERIALS SHALL BE BURIED ON SITE;
- C. ALL PERSONNEL SHALL BE INSTRUCTED REGARDING THE CORRECT PROCEDURE FOR WASTE DISPOSAL BY THE SUPERINTENDENT.
- 2. HAZARDOUS WASTE: A. ALL HAZARDOUS WASTE MATERIALS SHALL BE DISPOSED OF IN THE MANNER SPECIFIED BY LOCAL OR STATE REGULATION OR BY THE MANUFACTURER;
- SITE PERSONNEL SHALL BE INSTRUCTED IN THESE PRACTICES BY THE SUPERINTENDENT. 3. SANITARY WASTE:
- A. ALL SANITARY WASTE SHALL BE COLLECTED FROM THE PORTABLE UNITS A MINIMUM OF ONCE PER WEEK BY A LICENSED SANITARY WASTE MANAGEMENT CONTRACTOR.

- CONTRACTOR SHALL BE FAMILIAR WITH SPILL PREVENTION MEASURES REQUIRED BY LOCAL, STATE AND FEDERAL AGENCIES. AT A MINIMUM, CONTRACTOR SHALL FOLLOW THE BEST MANAGEMENT SPILL PREVENTION PRACTICES OUTLINED BELOW
- 2. THE FOLLOWING ARE THE MATERIAL MANAGEMENT PRACTICES THAT SHALL BE USED TO REDUCE THE RISK OF SPILLS OR OTHER ACCIDENTAL EXPOSURE OF MATERIALS AND SUBSTANCES DURING CONSTRUCTION TO STORMWATER RUNOFF:
- A. GOOD HOUSEKEEPING THE FOLLOWING GOOD HOUSEKEEPING PRACTICE SHALL BE FOLLOWED ON SITE DURING CONSTRUCTION:

a. ONLY SUFFICIENT AMOUNTS OF PRODUCTS TO DO THE JOB SHALL BE STORED ON

- b. ALL REGULATED MATERIALS STORED ON SITE SHALL BE STORED IN A NEAT, ORDERLY MANNER IN THEIR PROPER (ORIGINAL IF POSSIBLE) CONTAINERS AND, IF POSSIBLE, UNDER A ROOF OR OTHER ENCLOSURE, ON AN IMPERVIOUS SURFACE;
- c. MANUFACTURER'S RECOMMENDATIONS FOR PROPER USE AND DISPOSAL SHALL BE FOLLOWED;
- d. THE SITE SUPERINTENDENT SHALL INSPECT DAILY TO ENSURE PROPER USE AND DISPOSAL OF MATERIALS;
- e. SUBSTANCES SHALL NOT BE MIXED WITH ONE ANOTHER UNLESS RECOMMENDED BY THE MANUFACTURER;
- f. WHENEVER POSSIBLE ALL OF A PRODUCT SHALL BE USED UP BEFORE DISPOSING OF g. THE TRAINING OF ON-SITE EMPLOYEES AND THE ON-SITE POSTING OF RELEASE
- RESPONSE INFORMATION DESCRIBING WHAT TO DO IN THE EVENT OF A SPILL OF REGULATED SUBSTANCES. B. HAZARDOUS PRODUCTS - THE FOLLOWING PRACTICES SHALL BE USED TO REDUCE THE
- RISKS ASSOCIATED WITH HAZARDOUS MATERIALS: a. PRODUCTS SHALL BE KEPT IN THEIR ORIGINAL CONTAINERS UNLESS THEY ARE NOT
- b. ORIGINAL LABELS AND MATERIAL SAFETY DATA SHALL BE RETAINED FOR IMPORTANT PRODUCT INFORMATION;
- c. SURPLUS PRODUCT THAT MUST BE DISPOSED OF SHALL BE DISCARDED ACCORDING TO THE MANUFACTURER'S RECOMMENDED METHODS OF DISPOSAL
- C. PRODUCT SPECIFIC PRACTICES THE FOLLOWING PRODUCT SPECIFIC PRACTICES SHALL BE FOLLOWED ON SITE:
 - a. PETROLEUM PRODUCTS: • ALL ON SITE VEHICLES SHALL BE MONITORED FOR LEAKS AND RECEIVE REGULAR
 - PREVENTIVE MAINTENANCE TO REDUCE LEAKAGE; PETROLEUM PRODUCTS SHALL BE STORED IN TIGHTLY SEALED CONTAINERS WHICH ARE CLEARLY LABELED. ANY ASPHALT BASED SUBSTANCES USED ON SITE SHALL BE APPLIED ACCORDING TO THE MANUFACTURER'S RECOMMENDATIONS.
 - SECURE FUEL STORAGE AREAS AGAINST UNAUTHORIZED ENTRY;
 - INSPECT FUEL STORAGE AREAS WEEKLY; WHEREVER POSSIBLE, KEEP REGULATED CONTAINERS THAT ARE STORED OUTSIDE MORE THAN 50 FEET FROM SURFACE WATER AND STORM DRAINS, 75 FEET FROM PRIVATE WELLS, AND 400 FEET FROM PUBLIC WELLS;
 - COVER REGULATED CONTAINERS IN OUTSIDE STORAGE AREAS SECONDARY CONTAINMENT IS REQUIRED FOR CONTAINERS CONTAINING REGULATED SUBSTANCES STORED OUTSIDE, EXCEPT FOR ON PREMISE USE HEATING FUEL TANKS, OR ABOVEGROUND OR UNDERGROUND STORAGE TANKS
 - OTHERWISE REGULATED. • THE FUEL HANDLING REQUIREMENTS SHALL INCLUDE:
 - (1) EXCEPT WHEN IN USE, KEEP CONTAINERS CONTAINING REGULATED SUBSTANCES CLOSED AND SEALED;
 - (2) PLACE DRIP PANS UNDER SPIGOTS, VALVES, AND PUMPS; (3) HAVE SPILL CONTROL AND CONTAINMENT EQUIPMENT READILY AVAILABLE
 - IN ALL WORK AREAS: (4) USE FUNNELS AND DRIP PANS WHEN TRANSFERRING REGULATED
 - (5) PERFORM TRANSFERS OF REGULATED SUBSTANCES OVER AN IMPERVIOUS SURFACE. FUELING AND MAINTENANCE OF EXCAVATION, EARTHMOVING AND OTHER CONSTRUCTION RELATED EQUIPMENT SHALL COMPLY WITH THE REGULATIONS OF

THE NEW HAMPSHIRE DEPARTMENT OF ENVIRONMENTAL SERVICES THESE

REQUIREMENTS ARE SUMMARIZED IN WD-DWGB-22-6 BEST MANAGEMENT

- PRACTICES FOR FUELING AND MAINTENANCE OF EXCAVATION AND EARTHMOVING EQUIPMENT, OR ITS SUCCESSOR DOCUMENT. HTTPS://WWW.DES.NH.GOV/ORGANIZATION/COMMISSIONER/PIP/FACTSHEETS/DWGB/DOCUMENTS/DWGB-22-6.PDF
- b. FERTILIZERS: FERTILIZERS USED SHALL BE APPLIED ONLY IN THE MINIMUM AMOUNTS DIRECTED BY THE SPECIFICATIONS;
- ONCE APPLIED FERTILIZER SHALL BE WORKED INTO THE SOIL TO LIMIT EXPOSURE STORAGE SHALL BE IN A COVERED SHED OR ENCLOSED TRAILERS. THE CONTENTS OF ANY PARTIALLY USED BAGS OF FERTILIZER SHALL BE TRANSFERRED TO A
- ALL CONTAINERS SHALL BE TIGHTLY SEALED AND STORED WHEN NOT REQUIRED FOR USE;
- EXCESS PAINT SHALL NOT BE DISCHARGED TO THE STORM SEWER SYSTEM; • EXCESS PAINT SHALL BE DISPOSED OF PROPERLY ACCORDING TO

SEALABLE PLASTIC BIN TO AVOID SPILLS.

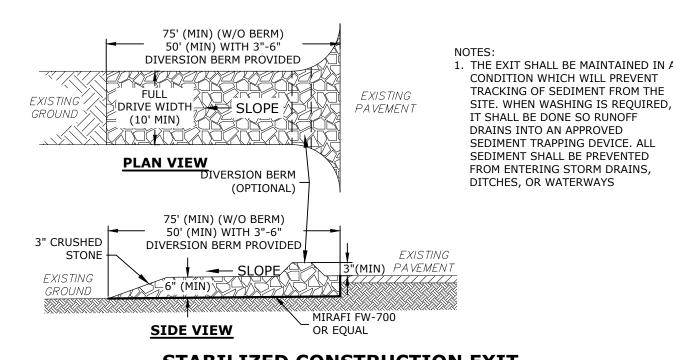
- MANUFACTURER'S INSTRUCTIONS OR STATE AND LOCAL REGULATIONS. SPILL CONTROL PRACTICES - IN ADDITION TO GOOD HOUSEKEEPING AND MATERIAL MANAGEMENT PRACTICES DISCUSSED IN THE PREVIOUS SECTION, THE FOLLOWING PRACTICES SHALL BE FOLLOWED FOR SPILL PREVENTION AND CLEANUP:
- POSTED AND SITE PERSONNEL SHALL BE MADE AWARE OF THE PROCEDURES AND THE LOCATION OF THE INFORMATION AND CLEANUP SUPPLIES; b. MATERIALS AND EQUIPMENT NECESSARY FOR SPILL CLEANUP SHALL BE KEPT IN THE MATERIAL STORAGE AREA ON SITE. EQUIPMENT AND MATERIALS SHALL INCLUDE BUT

NOT BE LIMITED TO BROOMS, DUSTPANS, MOPS, RAGS, GLOVES, GOGGLES, KITTY

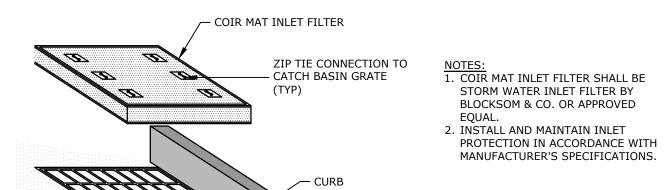
LITTER, SAND, SAWDUST AND PLASTIC OR METAL TRASH CONTAINERS SPECIFICALLY

a. MANUFACTURER'S RECOMMENDED METHODS FOR SPILL CLEANUP SHALL BE CLEARLY

- FOR THIS PURPOSE; c. ALL SPILLS SHALL BE CLEANED UP IMMEDIATELY AFTER DISCOVERY;
- d. THE SPILL AREA SHALL BE KEPT WELL VENTILATED AND PERSONNEL SHALL WEAR APPROPRIATE PROTECTIVE CLOTHING TO PREVENT INJURY FROM CONTACT WITH A HAZARDOUS SUBSTANCE;
- e. SPILLS OF TOXIC OR HAZARDOUS MATERIAL SHALL BE REPORTED TO THE APPROPRIATE LOCAL, STATE OR FEDERAL AGENCIES AS REQUIRED;

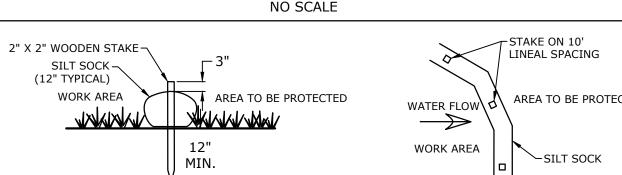

- f. THE SITE SUPERINTENDENT RESPONSIBLE FOR DAY-TO-DAY SITE OPERATIONS SHAL BE THE SPILL PREVENTION AND CLEANUP COORDINATOR.
- E. VEHICLE FUELING AND MAINTENANCE PRACTICE a. CONTRACTOR SHALL MAKE AN EFFORT TO PERFORM EQUIPMENT/VEHICLE FUELING
- AND MAINTENANCE AT AN OFF-SITE FACILITY;
- b. CONTRACTOR SHALL PROVIDE AN ON-SITE FUELING AND MAINTENANCE AREA THAT
- IS CLEAN AND DRY;
- IF POSSIBLE THE CONTRACTOR SHALL KEEP AREA COVERED;
- d. CONTRACTOR SHALL KEEP A SPILL KIT AT THE FUELING AND MAINTENANCE AREA; e. CONTRACTOR SHALL REGULARLY INSPECT VEHICLES FOR LEAKS AND DAMAGE;

f. CONTRACTOR SHALL USE DRIP PANS, DRIP CLOTHS, OR ABSORBENT PADS WHEN


EROSION CONTROL OBSERVATIONS AND MAINTENANCE PRACTICES

REPLACING SPENT FLUID.

- 1. THIS PROJECT EXCEEDS ONE (1) ACRE OF DISTURBANCE AND THUS REQUIRES CONSTRUCTION GENERAL PERMIT (CGP), FILING OF AN NOTICE OF INTENT (NOI), AND THE
- PREPARATION OF A STORMWATER POLLUTION PREVENTION PLAN (SWPPP). THE SWPPP SHALL BE PREPARED BY A QUALIFIED ENGINEER. THE CONTRACTOR SHALL BE FAMILIAR WITH THE SWPPP AND KEEP AN UPDATED COPY OF THE SWPPP ONSITE AT ALL
- 3. THE FOLLOWING REPRESENTS THE GENERAL OBSERVATION AND REPORTING PRACTICES THAT SHALL BE FOLLOWED AS PART OF THIS PROJECT:
- A. OBSERVATIONS OF THE PROJECT FOR COMPLIANCE WITH THE SWPPP SHALL BE MADE BY A QUALIFIED PERSON AT LEAST ONCE A WEEK OR WITHIN 24 HOURS OF A STORM 0.25 INCHES OR GREATER;
- B. AN OBSERVATION REPORT SHALL BE MADE AFTER EACH OBSERVATION AND DISTRIBUTED
- TO THE ENGINEER, THE OWNER, AND THE CONTRACTOR; C. A REPRESENTATIVE OF THE SITE CONTRACTOR, SHALL BE RESPONSIBLE FOR
- MAINTENANCE AND REPAIR ACTIVITIES; D. IF A REPAIR IS NECESSARY, IT SHALL BE INITIATED WITHIN 24 HOURS OF REPORT.



CATCH BASIN GRATE (DIMENSIONS VARY) **INLET PROTECTION BARRIER**

SECTION VIEW

1. SILT SOCK SHALL BE SILT SOXX BY FILTREXX OR APPROVED EQUAL 2. SILT SOCK SHALL BE FILLED WITH FILTERMEDIA BY FILTREXX OR APPROVED EQUAL. 3. WHERE TWO SILT SOCKS ARE JOINED, A MINIMUM OF 2 FEET OF OVERLAP SHALL BE MAINTAINED. 4. SILT SOCKS SHALL BE INSTALLED IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS.

SILT SOCK

─FLOW FLOW ---EXCAVATION REQUIRED FOR -STORAGE DIKE, IF EXCAVATION-111/ REQUIRED FOR NECESSARY, TO STORAGE DIVERT FLOW INTO TRAP 3:1 MAX. SLOPE-SIDE SLOPES TO BE STABILIZED

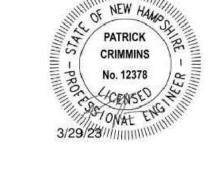
WEIR OR EMBANKMENT IF

3. THE MINIMUM VOLUME OF THE TRAP SHALL BE 3,600 CUBIC FEET OF STORAGE FOR EACH ACRE OF DRAINAGE AREA.

USING STONE OUTLET OR

PIPE OUTLET

SECTION VIEW NOTES:


1. THE TRAP SHALL BE INSTALLED AS CLOSE TO THE DISTURBED AREA AS POSSIBLE. 2. THE MAXIMUM CONTRIBUTING AREA TO A SINGLE TRAP SHALL BE LESS THAN 5 ACRES.

4. TRAP OUTLET SHALL BE MINIMUM OF ONE FOOT BELOW THE CREST OF THE TRAP.

5. TRAP SHALL DISCHARGE TO A STABILIZED AREA. 6. TRAP SHALL BE CLEANED WHEN 50 PERCENT OF THE ORIGINAL VOLUME IS FILLED. 7. MATERIALS REMOVED FROM THE TRAP SHALL BE PROPERLY DISPOSED OF AND STABILIZED. 8. SEDIMENT TRAPS MUST BE USED AS NEEDED TO CONTAIN RUNOFF UNTIL SOILS ARE STABILIZED.

> **SEDIMENT TRAP** NO SCALE

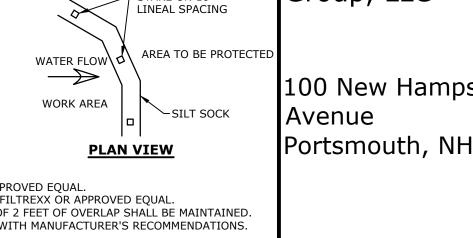
No. 15227

Proposed Advanced Manufacturing **Facility**

Aviation Avenue Group, LLC

100 New Hampshire Avenue

Planning Board / Revised Ao E 3/29/2023 D 2/23/2023 TAC Resubmission 2/6/2023 AoT Submission B 1/25/2023 TAC Resubmission A 12/19/2022 TAC Submission MARK DATE DESCRIPTION ROJECT NO: P0595-015 12/19/2022

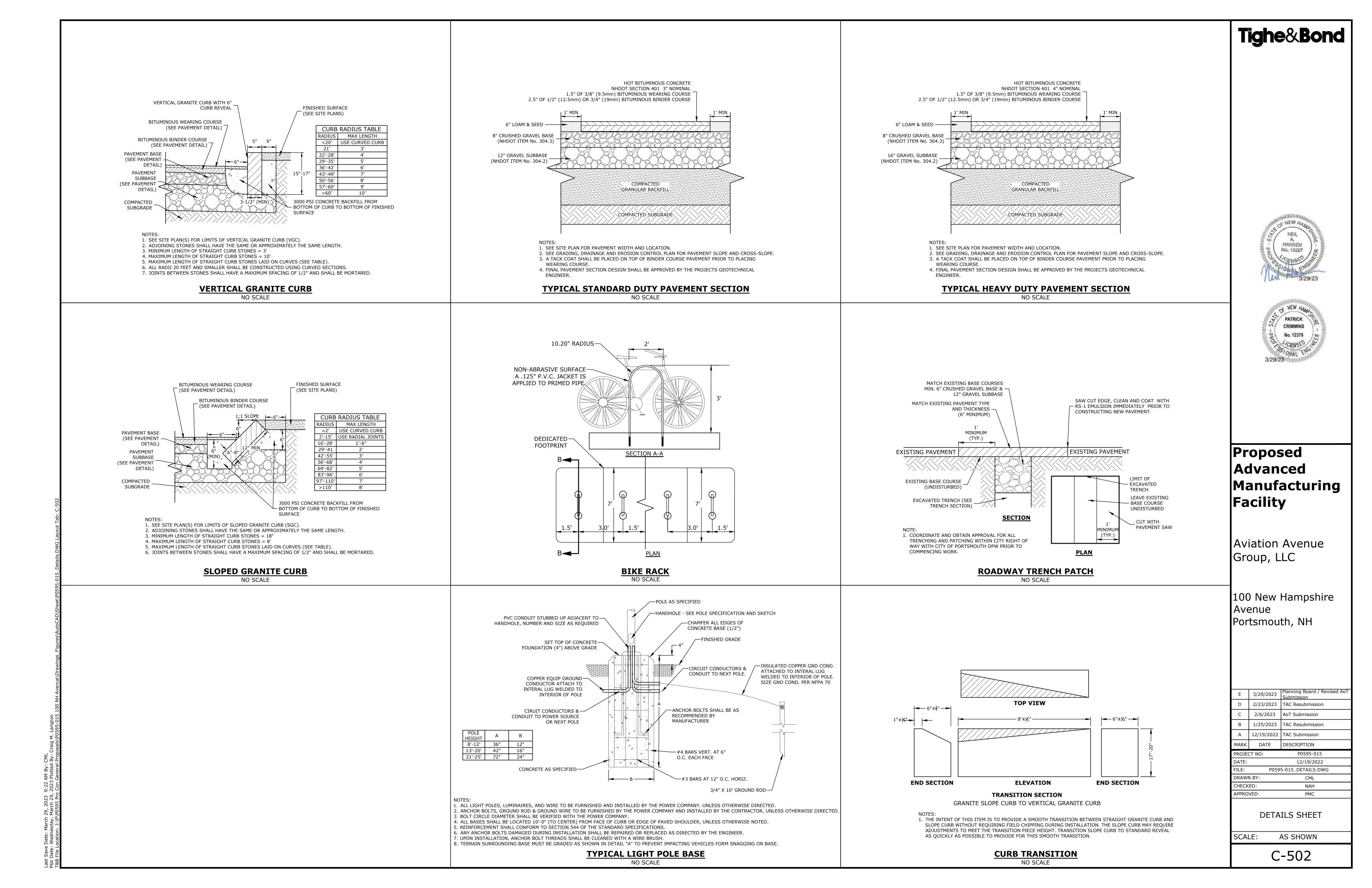

CML NAH ROSION CONTROL NOTES &

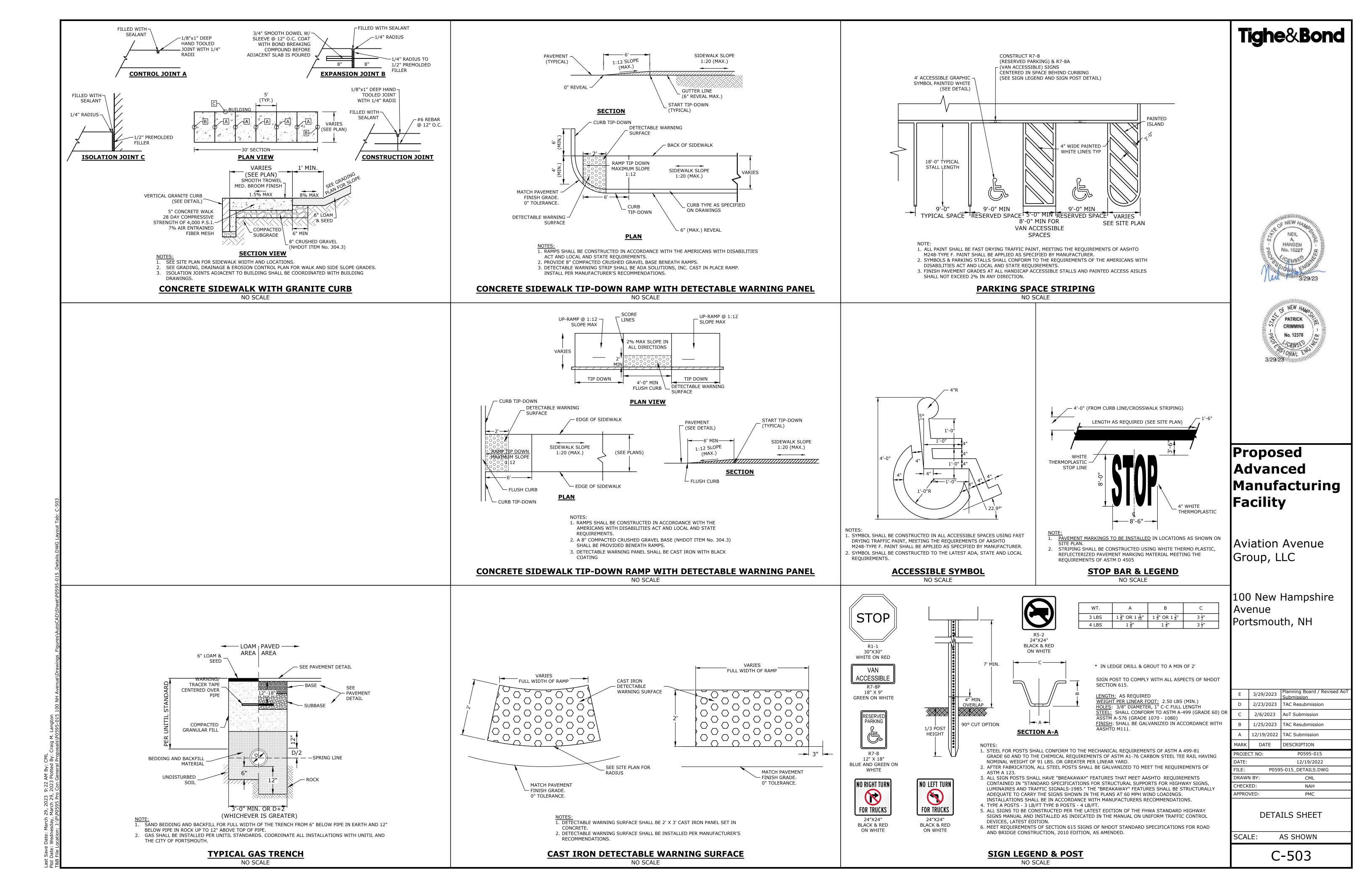
AS SHOWN

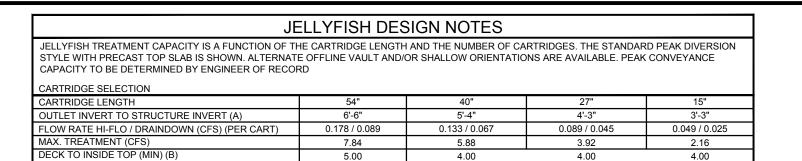
RISER IF USING

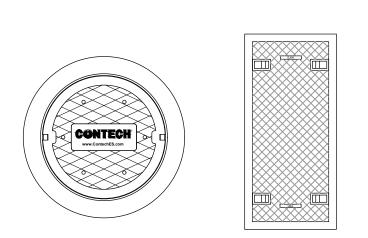
PIPE OUTLET

PLAN VIEW


P0595-015_DETAILS.DWG -PERFORATED

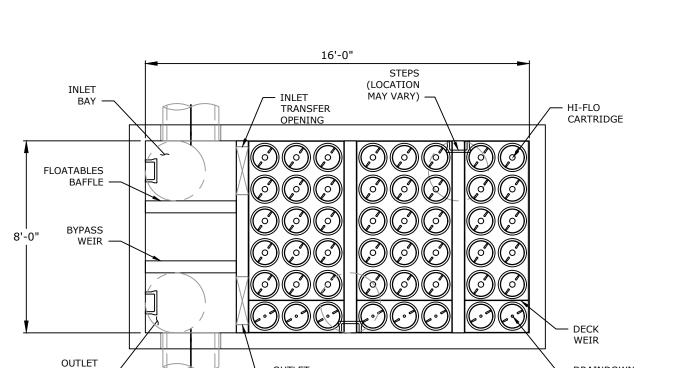

> RAWN BY: HECKED: PPROVED:


> > **DETAILS SHEET**


C-501

SCALE:

FRAME AND COVER


(DIAMETER VARIES)

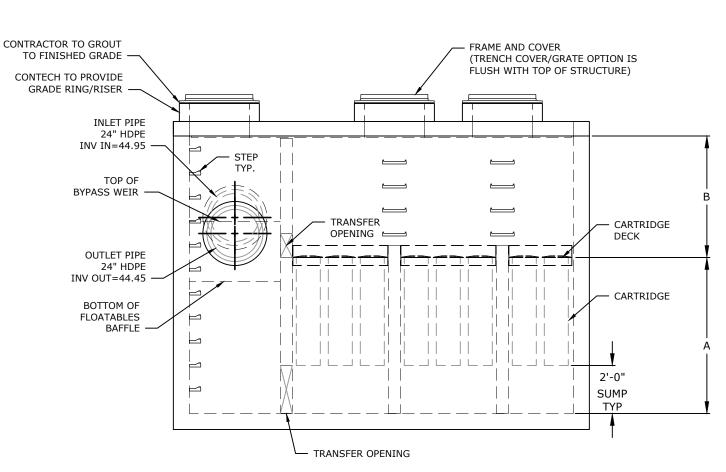
N.T.S.

SITE SPECIFIC DATA REQUIREMENTS	
STRUCTURE ID	JFPD081
WATER QUALITY FLOW RATE (cfs)	7.46
PEAK FLOW RATE (cfs)	22.64
RETURN PERIOD OF PEAK FLOW (yrs)	50
# OF CARTRIDGES REQUIRED (HF / DD)	(40/8)
CARTRIDGE LENGTH	54"

DRAINDOWN

CARTRIDGE

TRENCH COVER

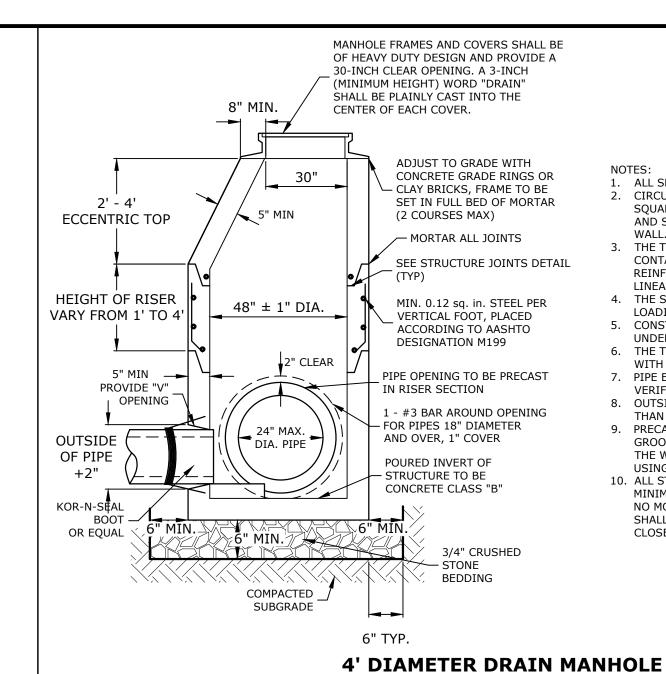

(LENGTH VARIES)

N.T.S.

PLAN VIEW

OUTLET

TRANSFER



ELEVATION VIEW

- <u>GENERAL NOTES:</u>
 1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE. 2. FOR SITE SPECIFIC DRAWINGS WITH DETAILED STRUCTURE DIMENSIONS AND WEIGHT, PLEASE CONTACT YOUR CONTECH ENGINEERED
- SOLUTIONS REPRESENTATIVE. www.ContechES.com
- 3. JELLYFISH WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS DRAWING. CONTRACTOR TO CONFIRM STRUCTURE MEETS REQUIREMENTS OF PROJECT.
- 4. STRUCTURE SHALL MEET AASHTO HS-20 OR PER APPROVING JURISDICTION REQUIREMENTS, WHICHEVER IS MORE STRINGENT, ASSUMING EARTH COVER OF 0' - 10', AND GROUNDWATER ELEVATION AT, OR BELOW, THE OUTLET PIPE INVERT ELEVATION. ENGINEER OF RECORD TO CONFIRM ACTUAL GROUNDWATER ELEVATION. CASTINGS SHALL MEET AASHTO M306 LOAD RATING AND BE CAST WITH THE CONTECH LOGO
- 5. STRUCTURE SHALL BE PRECAST CONCRETE CONFORMING TO ASTM C-857, ASTM C-918, AND AASHTO LOAD FACTOR DESIGN METHOD. 6. OUTLET PIPE INVERT IS EQUAL TO THE CARTRIDGE DECK ELEVATION.
- 7. THE OUTLET PIPE DIAMETER FOR NEW INSTALLATIONS IS RECOMMENDED TO BE ONE PIPE SIZE LARGER THAN THE INLET PIPE AT EQUAL
- 8. NO PRODUCT SUBSTITUTIONS SHALL BE ACCEPTED UNLESS SUBMITTED 10 DAYS PRIOR TO PROJECT BID DATE, OR AS DIRECTED BY THE ENGINEER OF RECORD.

- A. ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE
- B. CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE STRUCTURE. C. CONTRACTOR WILL INSTALL AND LEVEL THE STRUCTURE, SEALING THE JOINTS, LINE ENTRY AND EXIT POINTS (NON-SHRINK GROUT WITH APPROVED WATERSTOP OR FLEXIBLE BOOT).
- D. CARTRIDGE INSTALLATION, BY CONTECH, SHALL OCCUR ONLY AFTER SITE HAS BEEN STABILIZED AND THE JELLYFISH UNIT IS CLEAN AND FREE OF DEBRIS. CONTACT CONTECH TO COORDINATE CARTRIDGE INSTALLATION WITH SITE STABILIZATION.

JELLYFISH (JFPD0816) TREATMENT UNIT

- ALL SECTIONS SHALL BE 4,000 PSI CONCRETE. CIRCUMFERENTIAL REINFORCEMENT SHALL BE 0.12
- SQUARE INCHES PER LINEAR FOOT IN ALL SECTIONS AND SHALL BE PLACED IN THE CENTER THIRD OF THE THE TONGUE AND THE GROOVE OF THE JOINT SHALL CONTAIN ONE LINE OF CIRCUMFERENTIAL REINFORCEMENT EQUAL TO 0.12 SQUARE INCHES PER
- THE STRUCTURES SHALL BE DESIGNED FOR H20
- LOADING. 5. CONSTRUCT CRUSHED STONE BEDDING AND BACKFILL
- UNDER (6" MINIMUM THICKNESS) THE TONGUE AND GROOVE JOINT SHALL BE SEALED
- WITH ONE STRIP OF BUTYL RUBBER SEALANT. PIPE ELEVATIONS SHOWN ON PLANS SHALL BE FIELD
- VERIFIED PRIOR TO PRECASTING. OUTSIDE EDGES OF PIPES SHALL PROJECT NO MORE THAN 3" BEYOND INSIDE WALL OF STRUCTURE.
- 9. PRECAST SECTIONS SHALL HAVE A TONGUE AND GROOVE JOINT 4" HIGH AT AN 11° ANGLE CENTERED IN THE WIDTH OF THE WALL AND SHALL BE ASSEMBLED USING AN APPROVED FLEXIBLE SEALANT IN JOINTS.

10. ALL STRUCTURES WITH MULTIPLE PIPES SHALL HAVE A MINIMUM OF 12" OF INSIDE SURFACE BETWEEN HOLES, NO MORE THAN 75% OF A HORIZNTAL CROSS SECTION SHALL BE HOLES, AND THERE SHALL BE NO HOLES CLOSER THAN 3" TO JOINTS.

(SEE DETAIL) NOTE 6 **FLAT TOP SECTION** NOTE 7 20" b.D. POLYETHYLENE LINER 12" LONG KOR-N-SEAL BOOT RISER ALL OUTLETS TO HAVE "ELIMINATOR" OIL/WATER SEPARATOR **PLAN VIEW** OR EQUAL HOLE CAST TO PLAN 4' SUMP SEE DETAIL A

DETAIL A ELEVATION VIEW (TONGUE AND GROOVE JOINT)

4' DIAMETER CATCH BASIN

3/4" CRUSHED

STONE

NO SCALE

POLYETHYLENE LINER

1. ALL SECTIONS SHALL BE CONCRETE CLASS

CIRCUMFERÉNTIAL REINFORCEMENT SHALL BE

3. THE TONGUE AND GROOVE OF THE JOINT SHALL

REINFORCEMENT EQUAL TO 0.12 SQ. IN. PER

4. RISERS OF 1', 2', 3' & 4' CAN BE USED TO REACH

5. THE STRUCTURES SHALL BE DESIGNED FOR H20

6. FITTING FRAME TO GRADE MAY BE DONE WITH

BRICKS (2 COURSES MAX.).

PREFABRICATED ADJUSTMENT RINGS OR CLAY

CONE SECTIONS MAY BE EITHER CONCENTRIC OF

ECCENTRIC, OR FLAT SLAB TOPS MAY BE USED

WHERE PIPE WOULD OTHERWISE ENTER INTO

THE CONE SECTION OF THE STRUCTURE AND

PIPE ELEVATIONS SHOWN ON PLANS SHALL BE

FIELD VERIFIED PRIOR TO PRECASTING.

9. OUTSIDE EDGES OF PIPES SHALL PROJECT NO

MORE THAN 3" BEYOND INSIDE WALL OF

10. PRECAST SECTIONS SHALL HAVE A TONGUE AND

CENTERED IN THE WIDTH OF THE WALL AND

SHALL BE ASSEMBLED USING AN APPROVED

SEALED WITH ONE STRIP OF BUTYL RUBBER

12. "ELIMINATOR" OIL/WATER SEPARATOR SHALL BE

INSTALLED TIGHT TO INSIDE OF CATCHBASIN.

GROOVE JOINT 4" HIGH AT AN 11° ANGLE

11. THE TONGUE AND GROOVE JOINT SHALL BE

6" LOAM & SEED -

60" HDPE HEADER

(TYP OF ALL)

60" HDPE

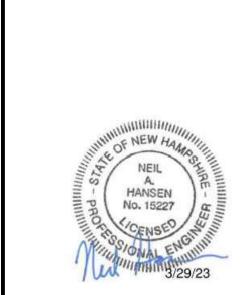
INV OUT=46.20

PLAN VIEW

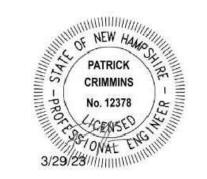
PAV/FMFNT

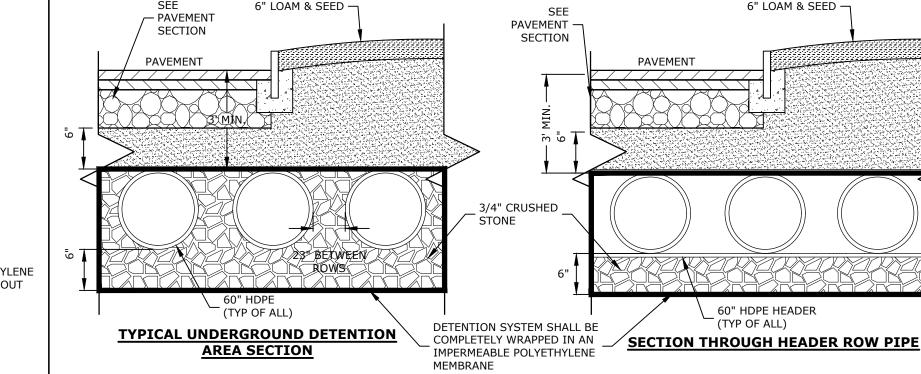
FLEXIBLE SEALANT IN JOINTS.

CONTAIN ONE LINE OF CIRCUMFERENTIAL


0.12 SQ.IN. PER LINEAR FT. IN ALL SECTIONS

AND SHALL BE PLACED IN THE CENTER THIRD OF


AA(4000 psi).


DESIRED DEPTH

WHERE PERMITTE

Tighe&Bond

OF CIRCUMFERENTIAL REINFORCEMENT EQUAL TO 0.12 SQUARE INCHES

5. ALL JOINTS ON THE STRUCTURE AND PIPING SHALL BE WATERTIGHT.

4. THE STRUCTURES SHALL BE DESIGNED FOR H20 LOADING.

PER LINEAR FOOT.

FIELD ELEVATIONS ELEV PIPE ELEV STONE ELEV

- 1. UNDERGROUND DETENTION SYSTEM TO BE 60" HDPE PIPE DESIGNED FOR H-20 LOADING. CONTRACTOR TO SUBMIT PIPE SPECIFICATIONS AND FINAL MANUFACTURES DESIGN TO ENGINEER FOR APPROVAL.
- 2. MANUFACTURER TO SUBMIT PLANS STAMPED BY A PROFESSIONAL ENGINEER LICENSED IN THE STATE OF NEW HAMPSHIRE. 3. THE DESIGN ENGINEER SHALL PROVIDE SUFFICIENT INSPECTION TO CERTIFY THAT THE SYSTEM HAS BEEN INSTALLED PER THE APPROVED

__ 36"X48" ACCESS COVER - BILCO MODEL #: J-7AL OR EQUAL

UNDERGROUND DETENTION SYSTEM

100 New Hampshire Avenue Portsmouth, NH

Aviation Avenue

|Proposed

Advanced

Facility

Group, LLC

Manufacturing

RIM ELEV=53.70	
A A	
TOP OF WEIR ELEV=47.50 ——	The second secon
SEE STRUCTURE	
JOINTS DETAIL	58-\{
WEIR TO BE CAST	96"
INTEGRAL WITH UNIT	
SEE STRUCTURE 8" MIN - 1	
JOINT DETAILS 6" MIN	
(96" ±1" - 96" ±1"	
36" HDPE OUTLET PIPE	24"-
() INV OUT=46.20	
24" HDPE	
60" HDPE OUTLET PIPE INV OUT=45.00	
INV OUT=45.00 INV OUT=45.00	
24" DIA ORIFICE WITH GALVANIZEI	
STEEL TRASH RACK	
BOTTOM ELEV=45.00	
The state of the s	SECTION A-A
3/4" CRUSHED TO MINTO MINTO A TOWN A	24" HDPE
ELEVATION VIEW	INV OUT=45.00 —
	TO TREATMENT UNIT A
NOTES:	SS COVER BILCO J-7AL OR EQUAL
1. ALL SECTIONS SHALL BE 4,000 PSI CONCRETE (TIPE II CEMENT).	J /AL ON LOOPL
2. CIRCUMFERENTIAL REINFORCEMENT SHALL BE 0.12 SQUARE INCHES PER LINEAR FOOT IN ALL SECTIONS AND SHALL BE PLACED IN THE CENTER 6" WIDE TO	1 11 11 11 11 11 11 11
THIRD OF THE WALL.	
3. THE TONGUE OR THE GROOVE OF THE JOINT SHALL CONTAIN ONE LINE (SEE SEC	CTION A-A)

PROPOSED OUTLET STRUCTURE-01

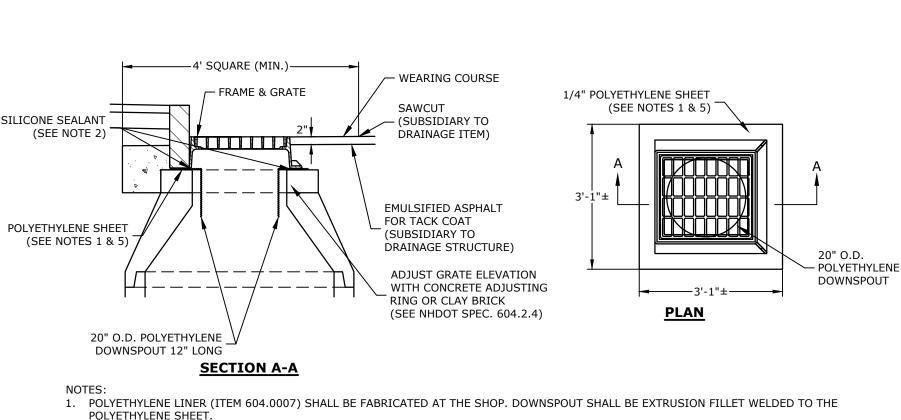
NO SCALE

E 3/29/2023 Planning Board / Revised Ac D 2/23/2023 TAC Resubmission C 2/6/2023 AoT Submission B 1/25/2023 TAC Resubmission A 12/19/2022 TAC Submission MARK DATE DESCRIPTION PROJECT NO: DRAWN BY CHECKED: APPROVED: SCALE:

DETAILS SHEET

AS SHOWN

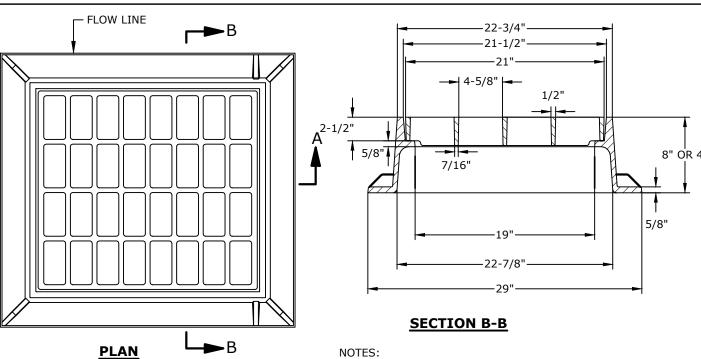
P0595-015


12/19/2022

CML

NAH

P0595-015_DETAILS.DWG


C-504

NO SCALE

- 2. PLACE A CONTINUOUS BEAD OF AN APPROVED SILICONE SEALANT (SUBSIDIARY TO ITEM 604.0007) BETWEEN FRAME AND POLYETHYLENE
- 3. PLACE CLASS AA CONCRETE TO 2" BELOW THE TOP OF THE GRATE ELEVATION (SUBSIDIARY TO DRAINAGE STRUCTURE). 4. USE ON DRAINAGE STRUCTURES 4' MIN. DIAMETER ONLY.
- 5. TRIM POLYETHYLENE SHEET A MAXIMUM OF 4" OUTSIDE THE FLANGE ON THE FRAME FOR THE CATCH BASIN BEFORE PLACING CONCRETE (EXCEPT AS SHOWN WHEN USED WITH 3-FLANGE FRAME AND CURB).
- THE CENTER OF THE GRATE & FRAME MAY BE SHIFTED A MAXIMUM OF 6" FROM THE CENTER OF THE DOWNSPOUT IN ANY DIRECTION. 7. PLACED ONLY IN DRAINAGE STRUCTURES IN PAVEMENT.
- 8. SEE NHDOT DR-04, "DI-DB, UNDERDRAIN FLUSHING BASIN AND POLYETHYLENE LINER DETAILS", FOR ADDITIONAL INFORMATION. 9. CATCHBASINS WITHIN CITY RIGHT OF WAY SHALL HAVE A POLYETHYLENE LINER

POLYETHYLENE LINER NO SCALE

1. ALL DIMENSIONS ARE NOMINAL 2. FRAMES USING NARROWER DIMENSIONS FOR THICKNESS ARE ALLOWED PROVIDED: 2.1. THE FRAMES MEET OR EXCEED THE SPECIFIED LOAD RATING. 2.2. THE INTERIOR PERIMETER (SEAT AREA) DIMENSIONS OF THE FRAMES REMAIN THE SAME TO ALLOW CONTINUED

USE OF EXISTING GRATES/COVERS AS THE EXISTING FRAMES ALLOW, WITHOUT SHIMS OR OTHER MODIFICATIONS OR ACCOMMODATIONS.

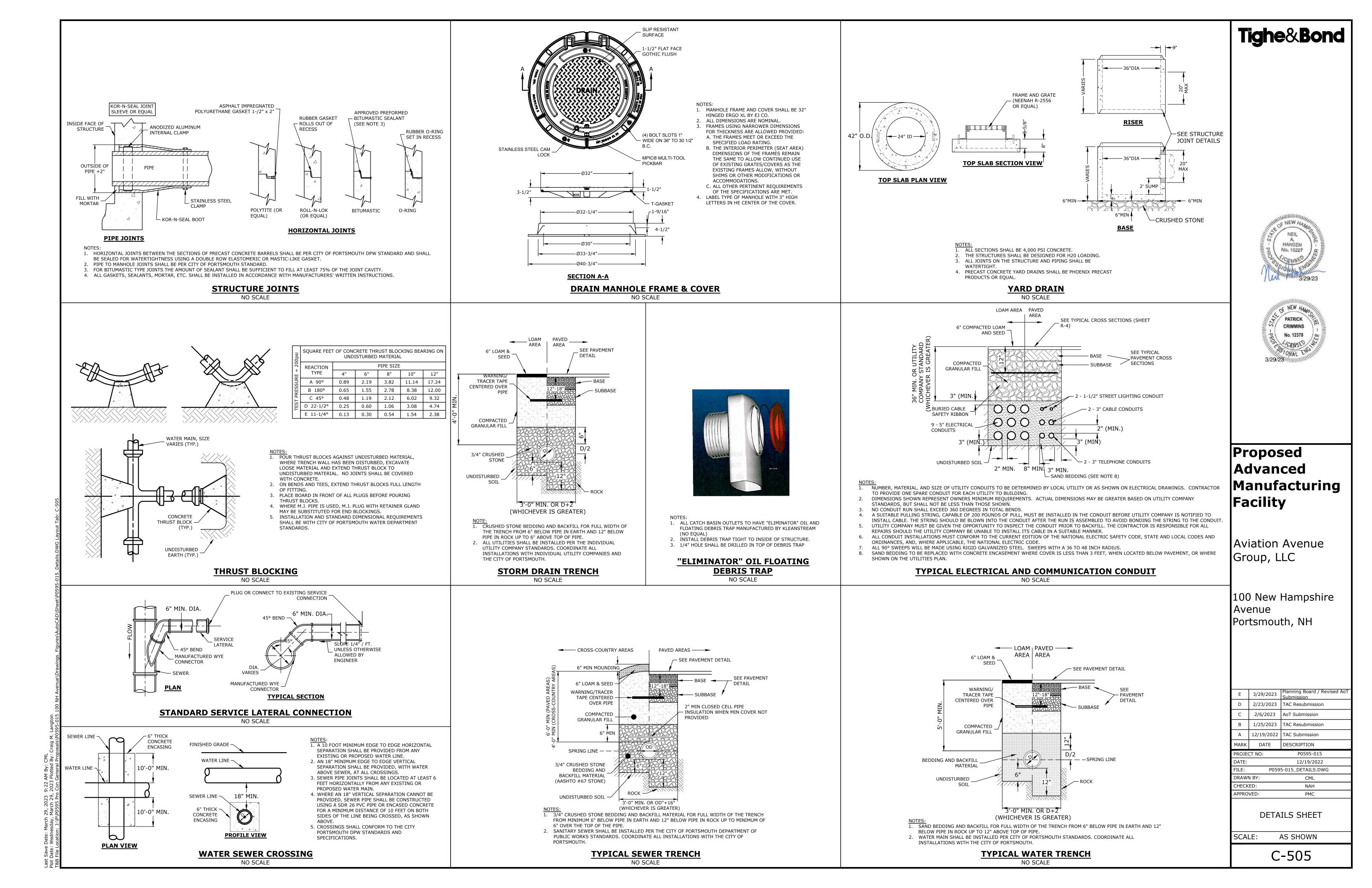
2.3. ALL OTHER PERTINENT REQUIREMENTS OF THE SPECIFICATIONS ARE MET. 3. FRAME AVAILABLE IN 4" OR 8" HEIGHTS

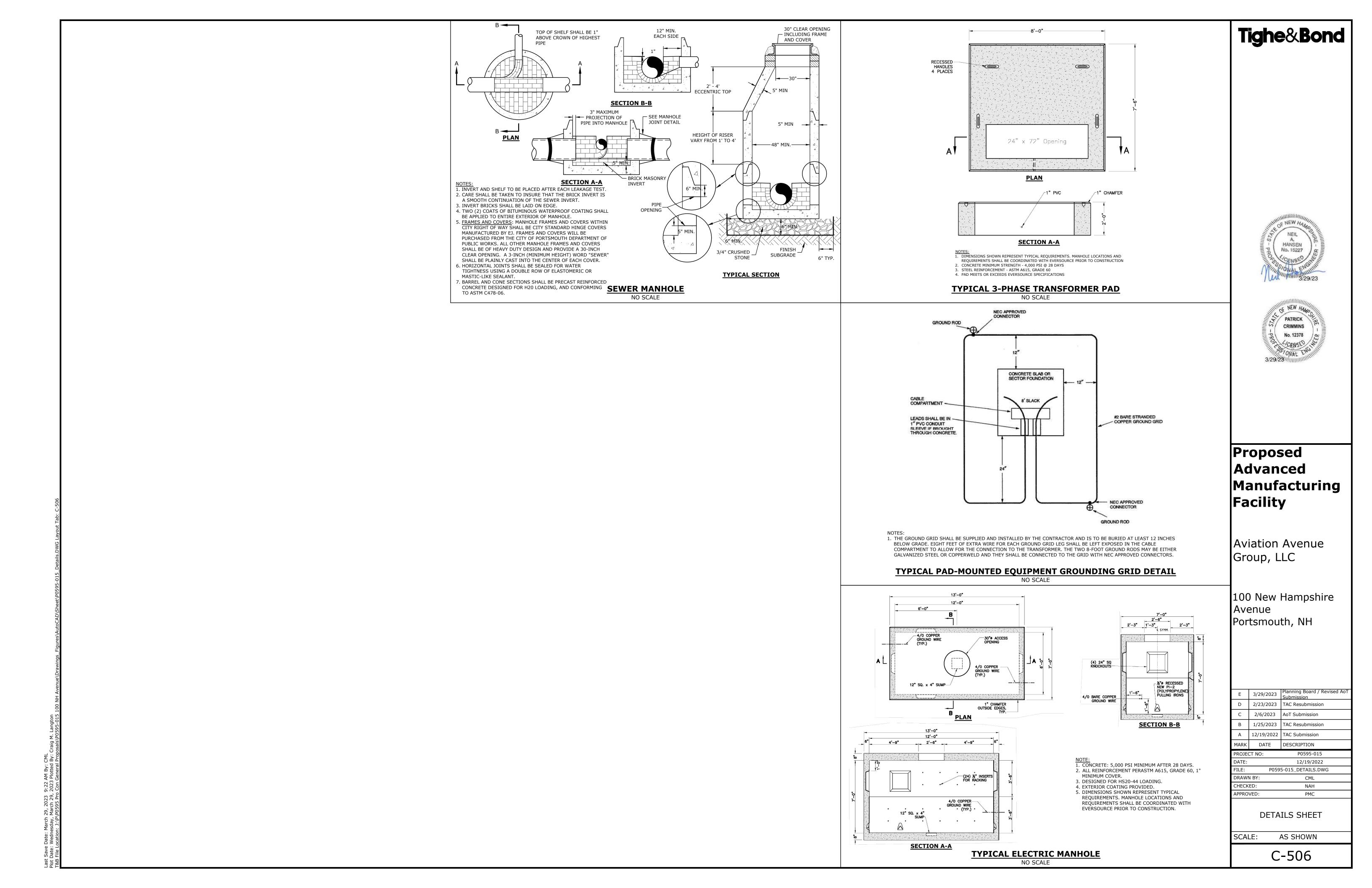
FREE OPEN AREA = 2.55 SQ. FT.

USE 3-FLANGE FRAME IF INSTALLED ADJACENT TO GRANITE

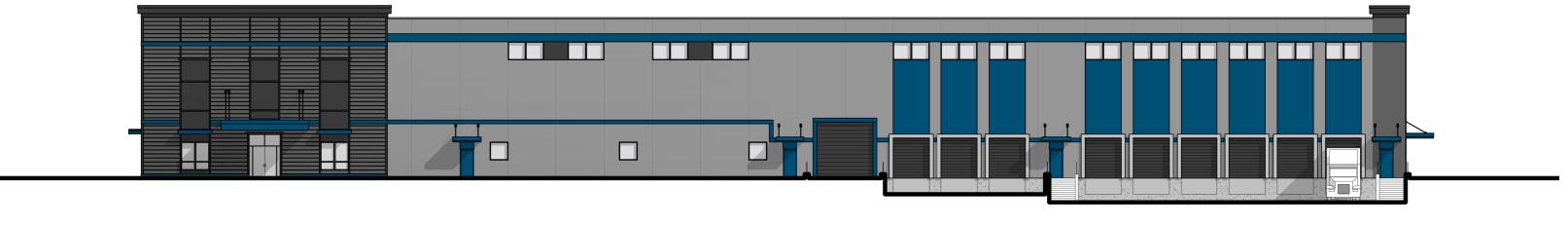
SECTION A-A CATCH BASIN FRAME & GRATE

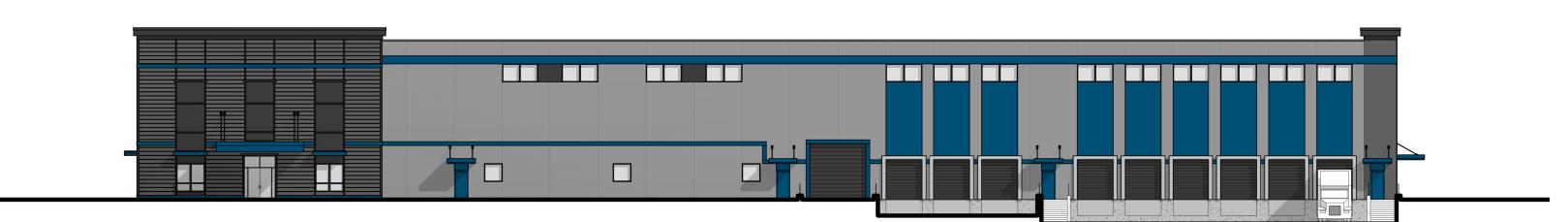
–24-15/16"-


—23-11/16"*—*

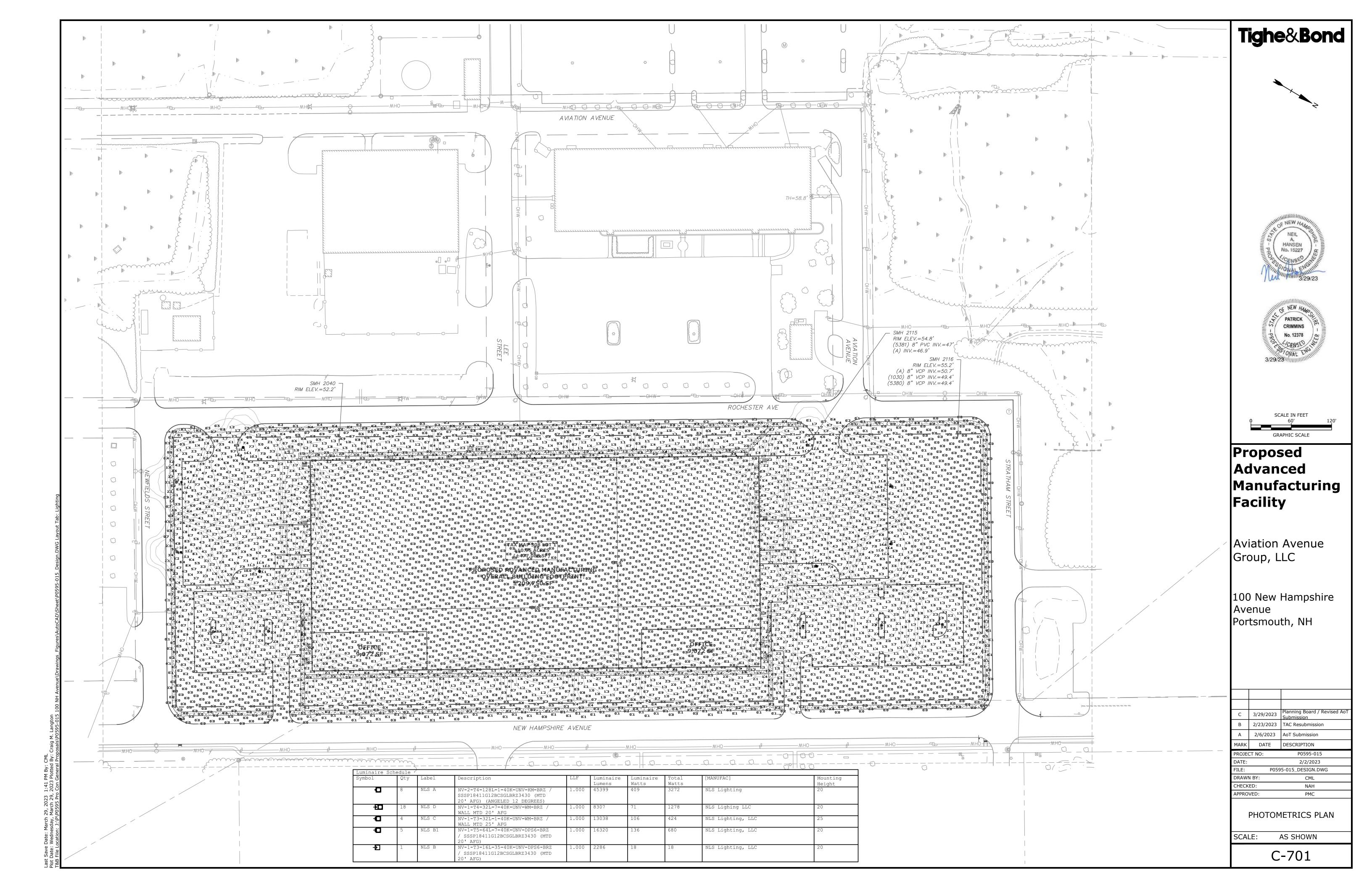

—23-3/16"-

—21-3/16"-


3/8"


2-5/16"

4 STRATHAM STREET ELEVATION 3/64" = 1'-0"



3 NEWFIELDS AVENUE ELEVATION 3/64" = 1'-0"

2 ROCHESTER AVENUE ELEVATION
3/64" = 1'-0"

1 NEW HAMPSHIRE AVENUE ELEVATION 3/64" = 1'-0"

Pease Development Authority 55 International Drive, Portsmouth, NH 03801, (603) 433-6088

Application for Site Review

	Application for	<u> </u>	PORTSMOUTH, NH
For PDA Use Only			
Date Submitted:	Municipal Review:	Fee:	
Application Complete:	Date Forwarded:	Paid:	Check #:
	Applican	t Information	
Applicant: Aviation Aven		Agent: Tighe & B	ond
Address: 210 Commerce Portsmouth, Ni	Way, Suite 300, H	Address: 177 Corp Portsmo	oorate Drive uth, NH
Business Phone: 603-430-	4000	Business Phone: 603-433	3-8818
Mobile Phone:		Mobile Phone:	
Fax: 603-430-8940		Fax:	
Portsmouth Tax Map: 308	Lot #: 1	Iformation Zone: Pease Industrial	(PI)
Site Address / Location : 80 Ro	ochester Ave (100 Ne		
Site Address / Location :		Area of On-site Wetlands:	
Change of Use: Yes [X] No [] Existing Use: Vacant Proposed Use: Manufacturing Description of Project: The proposed project is for the construction of a ±209,750 SF advanced manufacturing building including ±18,145 SF of office space, two (2) parking areas, two (2) loading dock areas, minor realignment of a portion of Rochester Avenue, and associated site improvements consisting of underground utilities, landscaping, lighting, and a stormwater management system.			
All above information shall be shown on a site plan submitted with this application. Provide 3 full size hard copies and one PDF copy of all application materials as well as one half-size set of drawings to PDA. Applicant shall supply additional copies as may be required by applicable municipality. Refer to Chapter 400 of PDA land Use Controls for additional information. Certification			
are true and complete to the best any conditions established	t of my knowledge. I hereby apply	nformation and accompanying plans for Site Review and acknowledge I I PDA Board in the development and 12/19/22	will comply with all regulations and
Neil A. Han	sen		

N:\Engineer\ ApplicationforSiteReview.xlsx

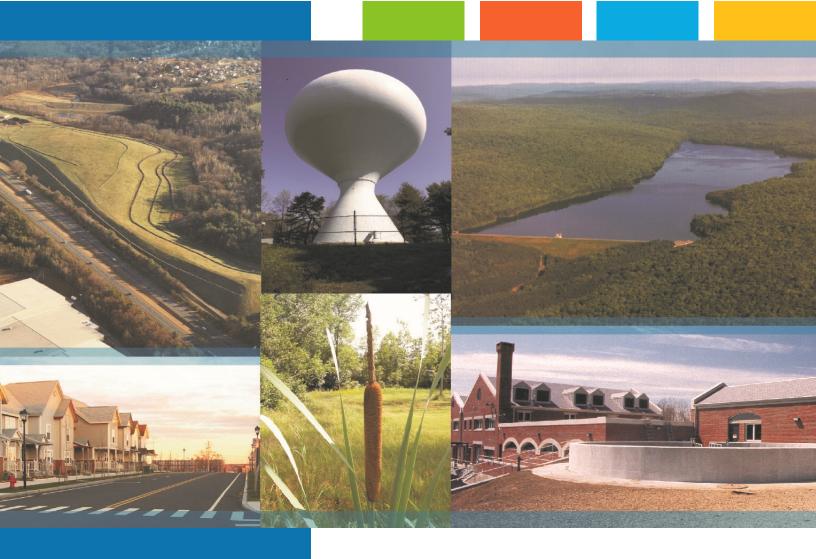
Printed Name

AUTHORIZATION 100 New Hampshire Avenue Map 308, Lot 1

The undersigned owner of the above referenced property hereby authorizes representatives of Bosen & Associates, PLLC, and Tighe & Bond to represent the company's interests before the Portsmouth land use boards and to submit any and all applications and materials related thereto on its behalf.

Date: October 25, 2022

Aviation Avenue Group, LLC


By: Name: JOHN STEBBER
Title: MANAGRE MRINBER

PROPOSED ADVANCED MANUFACTURING FACILITY - TAC CONDITIONS (3/13/2023) RESPONSE

80 Rochester Avenue (100 New Hampshire Avenue)
Portsmouth, New Hampshire
March 29, 2023

Prepared by: CML Project # P0595-015

	<u>Conditions</u>	<u>Response</u>	Corresponding Plan Sheet #
1	Approval is received from the Zoning Board of Adjustment.	Approval was granted by the ZBA at their March 21, 2023 meeting.	
	Applicant monitor pedestrian safety for the first six months or up to a year after full occupancy and		
2	report back to City staff. Applicant will coordinate with DPW and City staff to set up and schedule	Acknowledged	
	monitoring.		
3	All previous comments be addressed.	Confirmed all previous comments have been addressed.	

Proposed Advanced Manufacturing Facility

Portsmouth, NH

Drainage Analysis

Prepared For:

Aviation Avenue Group, LLC 210 Commerce Way Suite 300 Portsmouth, NH 03801

December 19, 2022

Last Revised: March 29, 2023

Е

F

BMP Worksheets

NRCS Web Soil Survey

Section 1 Drainage Analysis

	1.1	Calculation Methods1-1
	1.2	Pre-Development Conditions1-2
		2.1 Pre-Development Watershed Plan1-2
		2.2 Pre-Development Soil Plan1-3
		2.3 Pre-Development Calculation1-4
	1.3	Post-Development Conditions1-5
		3.1 Post-Development Watershed Plan1-5
		3.2 Post-Development Soil Plan1-6
		3.3 Post-Development Calculation1-7
	1.4	Peak Rate Comparisons1-8
	1.5	1itigation Description1-8
		5.1 Mitigation Calculations1-8
		5.2 Pre-Treatment Methods for Protecting Water Quality1-8
		5.3 Treatment Methods for Protecting Water Quality1-8
Appen	dices	
	Α	Civil Plans (Bound Separately)
	В	Extreme Precipitation Tables
	C D	Contech Engineered Solutions – Jellyfish Filter Maintenance Guide Remediation Site Documentation
		Circulation Site Documentation

Section 1 Drainage Analysis

The project site is identified as Map 308 Lot 1 on the City of Portsmouth Tax Maps. The site is located on a piece of land that is bound by Stratham Street to the north, New Hampshire Avenue to the east, Newfields Street to the south, and Rochester Avenue to the west. The proposed project is for the construction of a $\pm 209,750$ SF advanced manufacturing facility including $\pm 18,145$ SF of office space, two (2) parking areas, two (2) loading dock areas, minor realignment of a portion of Rochester Avenue, and associated site improvements consisting of underground utilities, landscaping, lighting, and a stormwater management system. There is approximately 196,665 SF of existing impervious area that is currently untreated before entering the municipal drainage system. The proposed stormwater management system has been designed to provide treatment for the existing impervious surface that are currently untreated and for $\pm 161,130$ SF of additional impervious that results from the proposed project. In addition to the on-site stormwater treatment the proposed project decreases the impervious area within the Rochester Avenue Right of Way by $\pm 15,900$ SF, while also adding seven (7) new offline catch basins to provide additional stormwater treatment within the Right of Way.

The Stormwater Management System was designed in accordance with the requirements of the New Hampshire Department of Environmental Services (NHDES) Alteration of Terrain (AoT) rules and regulations (Env-Wq 1500). The system includes deep sump catch basins with oil water separator hoods, an underground detention system and a proprietary Jellyfish Filter Treatment Unit. In accordance with Env-Wq 1500 the proposed Jellyfish Filter Treatment Unit was sized to treat the Water Quality Flow (WQF). The WQF is the peak flow rate associated with the Water Quality Volume (WQV), which is based on equivalent to the volume of runoff attributable to the first one (1) inch of rainfall. The use of a proprietary treatment unit is proposed due to the site being located within multiple remediation areas as well a Groundwater Management Zone (GMZ), and per the requirements of Env-Wq 1507.02 (c) no infiltration, filtering, or groundwater recharge practices are permitted in these areas.

1.1 Calculation Methods

The design storms analyzed in this study are the 1-year, 2-year, 10-year, 25-year and 50-year 24-hour Type III duration storm events. The stormwater modeling system, HydroCAD 10.0 was utilized to predict the peak runoff rates from these storm events. A Type III storm pattern was used in the model. The rainfall data for these storm events was obtained from the data published by the Northeast Regional Climate Center (NRCC) at Cornell University, with an additional 15% added factor of safety as required by Env-Wq 1503.08(I) and shown in Table 1.1.

Drainage Analysis 1-1

TABLE 1.1 - EXTREME PRECIPITATION ESTIMATES (INCC)				
YEAR	24-hr Estimate (inches)	+ 15% (inches)		
1	2.66	3.06		
2	3.21	3.69		
10	4.87	5.60		
25	6.17	7.10		
50	7.40	8.51		

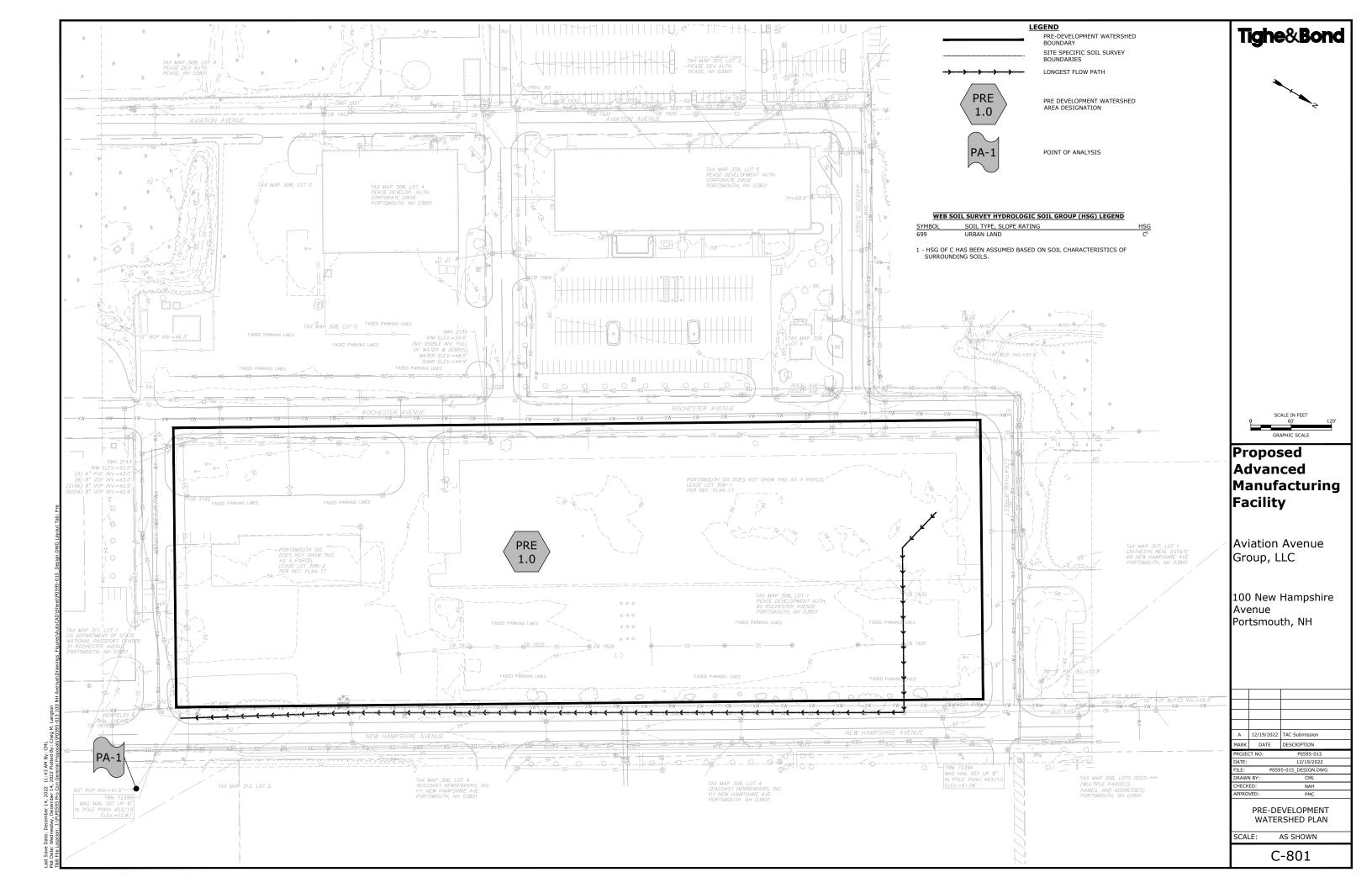
TABLE 1.1 - EXTREME PRECIPITATION ESTIMATES (NRCC)

The time of concentration was computed using the TR-55 Method, which provides a means of determining the time for an entire watershed to contribute runoff to a specific location via sheet flows, shallow concentrated flow, and channel flow. Runoff curve numbers were calculated by estimating the coverage areas and then summing the curve number for the coverage area as a percent of the entire watershed.

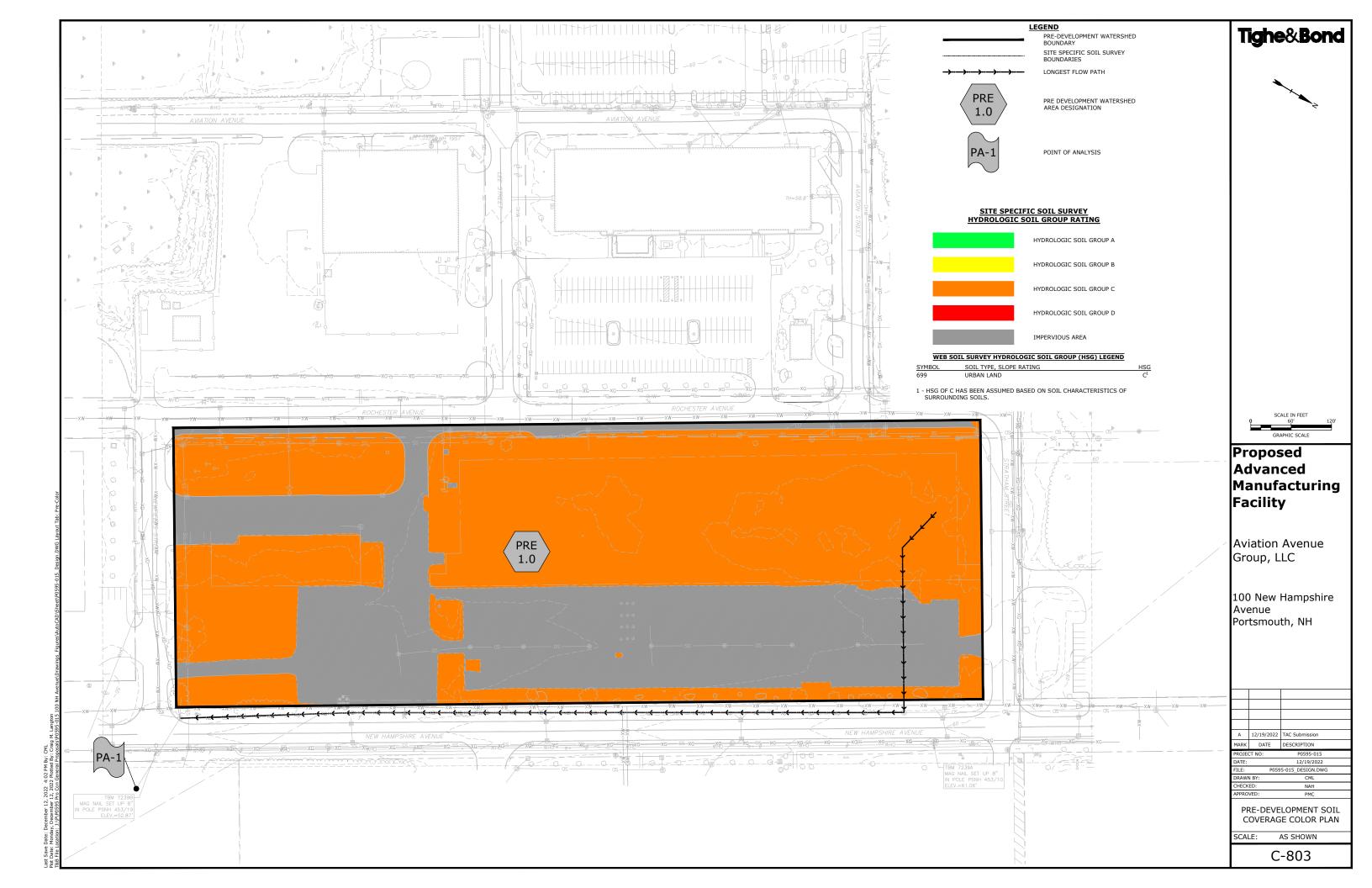
References:

- 1. HydroCAD Stormwater Modeling System, by HydroCAD Software Solutions LLC, Chocorua, New Hampshire.
- 2. New Hampshire Stormwater Management Manual, Volume 2, Post-Construction Best Management Practices Selection and Design, December 2008.
- 3. "Extreme Precipitation in New York & New England." Extreme Precipitation in New York & New England by Northeast Regional Climate Center (NRCC), 26 June 2012.

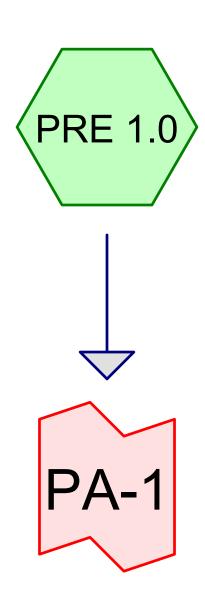
1.2 Pre-Development Conditions


To analyze the Pre-Development condition, the site has been modeled utilizing one (1) sub-catchment area (PRE-1.0) with the distinct point of analysis (PA-1). This point of analysis and watershed are depicted on the plan entitled "Pre-Development Watershed Plan", Sheet C-801.

The point of analysis and their contributing watershed area is described below:


Point of Analysis One (PA-1)

Point of analysis PA-1 is comprised of one (1) watershed area (PRE-1.0). This area includes the land that is currently utilized as an abandoned parking lot along with a grassed area. Runoff from this area travels southwest to northeast across the site via overland flow which is then collected in a closed drainage system then flowing through Point of Analysis 1 (PA-1).


1.2.1 Pre-Development Watershed Plan

1.2.2 Pre-Development Soil Plan

1.2.3 Pre-Development Calculation

Routing Diagram for P0595-015_Pre
Prepared by Tighe & Bond, Printed 12/14/2022
HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Printed 12/14/2022 Page 2

Area Listing (all nodes)

Area	CN	Description
 (acres)		(subcatchment-numbers)
6.914	74	>75% Grass cover, Good, HSG C (PRE 1.0)
4.515	98	Paved parking, HSG C (PRE 1.0)
11.429	83	TOTAL AREA

P0595-015_Pre

Type III 24-hr 1-Year Rainfall=3.06"

Prepared by Tighe & Bond

Printed 12/14/2022

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 3

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPRE 1.0:

Runoff Area=497,841 sf 39.50% Impervious Runoff Depth>1.49" Flow Length=1,512' Tc=5.0 min CN=83 Runoff=20.01 cfs 1.423 af

Link PA-1:

Inflow=20.01 cfs 1.423 af Primary=20.01 cfs 1.423 af

Total Runoff Area = 11.429 ac Runoff Volume = 1.423 af Average Runoff Depth = 1.49" 60.50% Pervious = 6.914 ac 39.50% Impervious = 4.515 ac

P0595-015_Pre

Type III 24-hr 2-Year Rainfall=3.69"

Prepared by Tighe & Bond

Printed 12/14/2022

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 4

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPRE 1.0:

Runoff Area=497,841 sf 39.50% Impervious Runoff Depth>2.02" Flow Length=1,512' Tc=5.0 min CN=83 Runoff=27.08 cfs 1.922 af

Link PA-1:

Inflow=27.08 cfs 1.922 af Primary=27.08 cfs 1.922 af

Total Runoff Area = 11.429 ac Runoff Volume = 1.922 af Average Runoff Depth = 2.02" 60.50% Pervious = 6.914 ac 39.50% Impervious = 4.515 ac

Printed 12/14/2022

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 5

Summary for Subcatchment PRE 1.0:

Runoff = 49.71 cfs @ 12.07 hrs, Volume= 3.542 af, Depth> 3.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.60"

	Α	rea (sf)	CN D	escription		
	3	01,177	74 >	75% Gras	s cover, Go	ood, HSG C
_	1	96,664	98 P	aved park	ing, HSG C	
	4	97,841	83 V	Veighted A	verage	
		01,177	_		vious Area	
	196,664			9.50% Imp	ervious Ar	ea
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description
	0.2	10	0.0150	0.83		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.69"
	0.2	38	0.0050	3.47	2.73	Pipe Channel,
						12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
						n= 0.012 Concrete pipe, finished
	2.3	595	0.0030	4.27	13.42	•
						24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
	2.2	000	0.0000	6.00	E0 70	n= 0.012 Concrete pipe, finished
	2.3	869	0.0030	6.20	59.70	Pipe Channel, 42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88'
						n= 0.012 Concrete pipe, finished
-	5 0	1 512	Total			11- 0.012 Condicte pipe, iiiished

5.0 1,512 Total

Summary for Link PA-1:

Inflow Area = 11.429 ac, 39.50% Impervious, Inflow Depth > 3.72" for 10-Year event

Inflow = 49.71 cfs @ 12.07 hrs, Volume= 3.542 af

Primary = 49.71 cfs @ 12.07 hrs, Volume= 3.542 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

P0595-015_Pre

Type III 24-hr 25-Year Rainfall=7.10"

Prepared by Tighe & Bond HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC Printed 12/14/2022

Page 6

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPRE 1.0:

Runoff Area=497,841 sf 39.50% Impervious Runoff Depth>5.12" Flow Length=1,512' Tc=5.0 min CN=83 Runoff=67.64 cfs 4.876 af

Link PA-1:

Inflow=67.64 cfs 4.876 af Primary=67.64 cfs 4.876 af

Total Runoff Area = 11.429 ac Runoff Volume = 4.876 af Average Runoff Depth = 5.12" 60.50% Pervious = 6.914 ac 39.50% Impervious = 4.515 ac

P0595-015_Pre

Type III 24-hr 50-Year Rainfall=8.51"

Prepared by Tighe & Bond HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC Printed 12/14/2022

<u> Page 7</u>

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPRE 1.0:

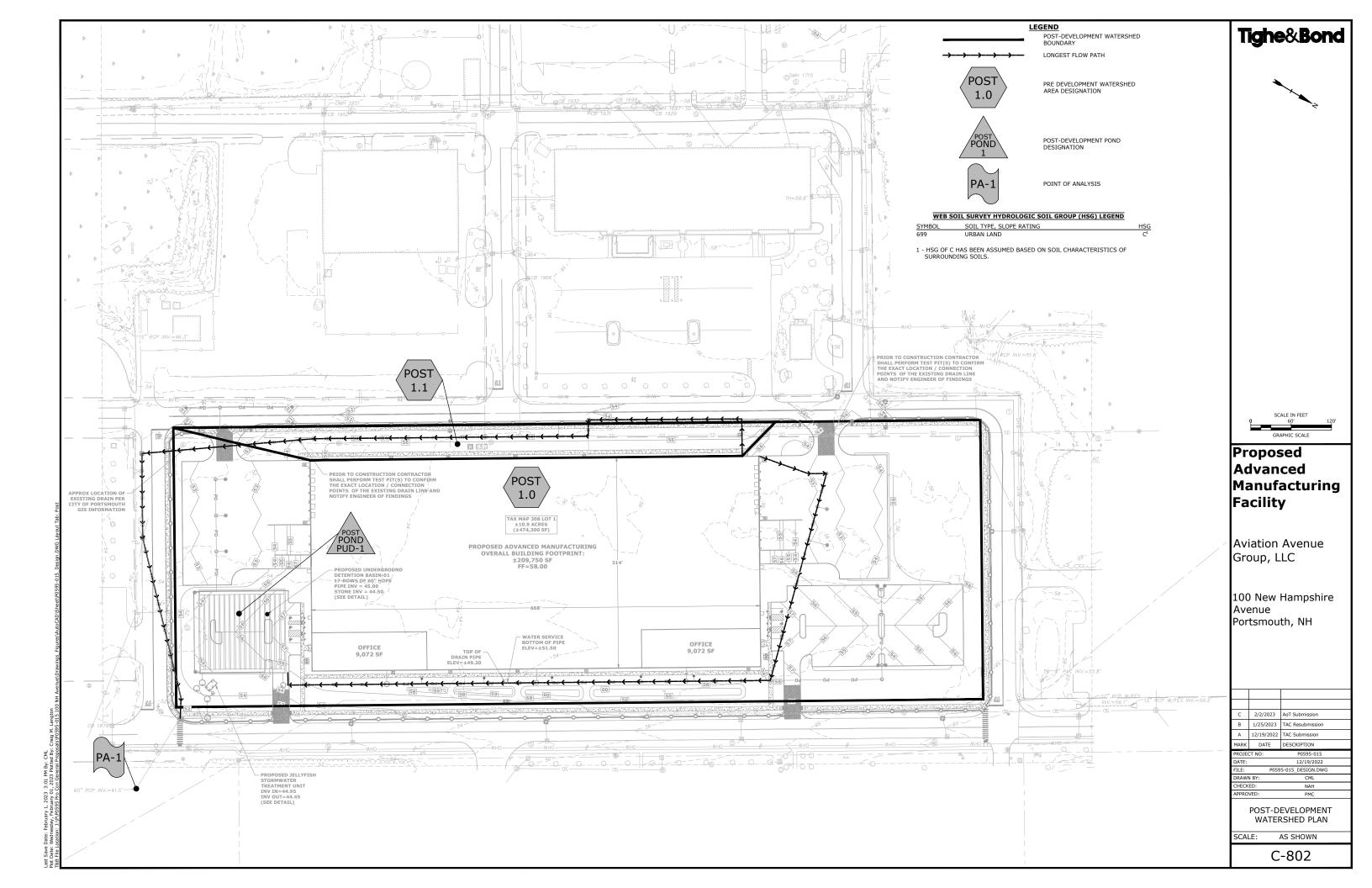
Runoff Area=497,841 sf 39.50% Impervious Runoff Depth>6.46" Flow Length=1,512' Tc=5.0 min CN=83 Runoff=84.49 cfs 6.154 af

Link PA-1:

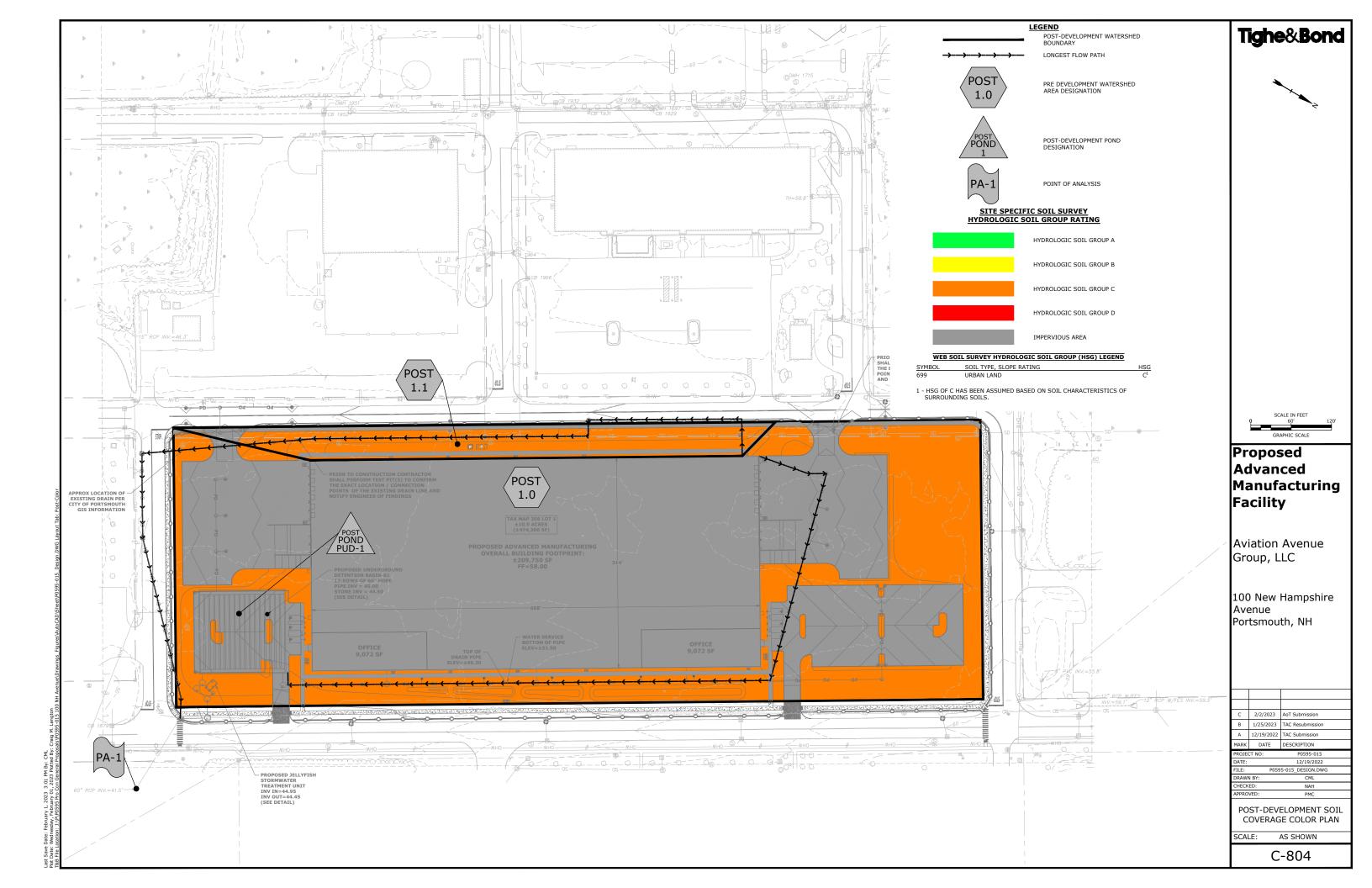
Inflow=84.49 cfs 6.154 af Primary=84.49 cfs 6.154 af

Total Runoff Area = 11.429 ac Runoff Volume = 6.154 af Average Runoff Depth = 6.46" 60.50% Pervious = 6.914 ac 39.50% Impervious = 4.515 ac

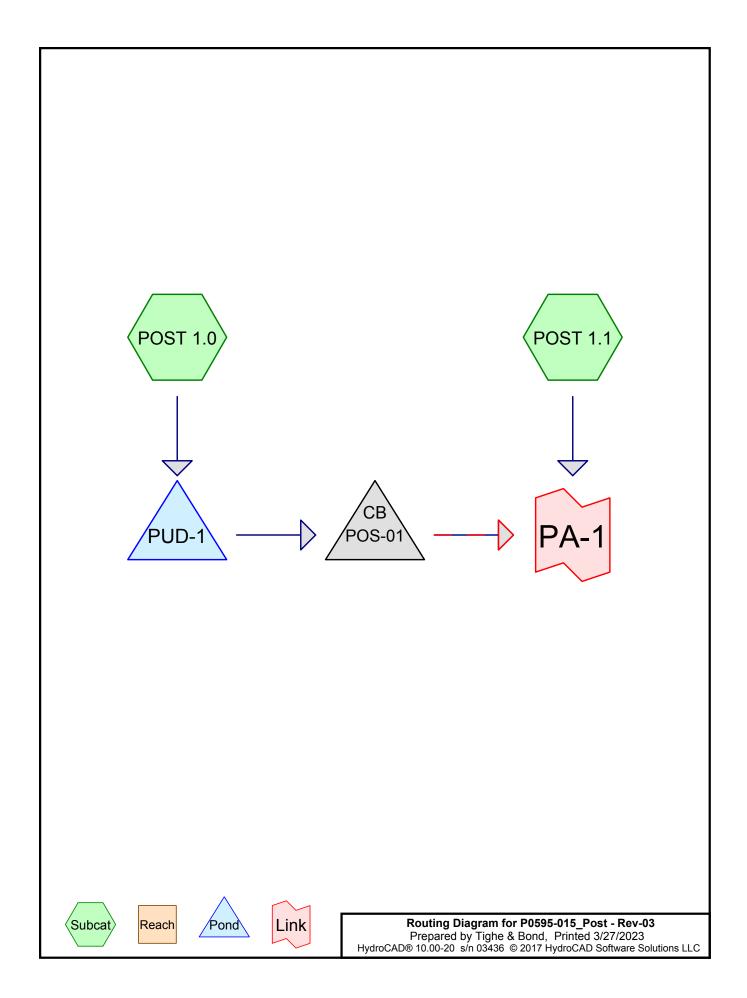
1.3 Post-Development Conditions


The post-development drainage condition is characterized by two (2) sub watershed areas POST-1.0 and POST-1.1modeled at the same point of analysis as the pre-development condition. This point of analysis and watersheds are depicted on the plan entitled "Post Development Watershed Plan", Sheets C-802.

The point of analysis and their contributing watershed area is described below:


Point of Analysis One (PA-1)

Point of analysis PA-1 is comprised of two (2) sub watershed areas POST-1.0 and POST-1.1 as shown on the Post-Development Watershed Plan (Sheet C-802). These areas include the additional proposed impervious area on site as well the proposed green / landscaped areas on site. The proposed impervious areas generating runoff on site include roofs, parking lots, concrete sidewalks, and loading dock areas. Runoff from site is captured via overland flow then captured in the proposed onsite drainage system where it is detained and treated prior to being discharged through Point of Analysis 1 (PA-1).


1.3.1 Post-Development Watershed Plan

1.3.2 Post-Development Soil Plan

1.3.3 Post-Development Calculation

Prepared by Tighe & Bond HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	CN	Description
 (acres)		(subcatchment-numbers)
3.146	74	>75% Grass cover, Good, HSG C (POST 1.0, POST 1.1)
2.538	98	Paved parking, HSG C (POST 1.0, POST 1.1)
5.745	98	Roofs, HSG C (POST 1.0)
11.429	91	TOTAL AREA

Printed 3/27/2023 Page 2

Type III 24-hr 1-Year Rainfall=3.06"

Prepared by Tighe & Bond

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Printed 3/27/2023 Page 3

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPOST 1.0: Runoff Area=459,347 sf 76.46% Impervious Runoff Depth>2.22"

Flow Length=1,156' Tc=5.3 min CN=92 Runoff=26.64 cfs 1.948 af

SubcatchmentPOST 1.1: Runoff Area=38,495 sf 24.82% Impervious Runoff Depth>1.29"

Flow Length=1,333' Tc=11.1 min CN=80 Runoff=1.11 cfs 0.095 af

Pond POS-01: Peak Elev=46.60' Inflow=12.75 cfs 1.948 af

Primary=11.57 cfs 1.909 af Secondary=1.19 cfs 0.039 af Outflow=12.75 cfs 1.948 af

Pond PUD-1: Peak Elev=47.30' Storage=15,408 cf Inflow=26.64 cfs 1.948 af

Outflow=12.75 cfs 1.948 af

Link PA-1:Inflow=13.78 cfs 2.043 af
Primary=13.78 cfs 2.043 af

•

Total Runoff Area = 11.429 ac Runoff Volume = 2.043 af Average Runoff Depth = 2.14" 27.53% Pervious = 3.146 ac 72.47% Impervious = 8.283 ac

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 4

Summary for Subcatchment POST 1.0:

Runoff = 26.64 cfs @ 12.08 hrs, Volume= 1.948 af, Depth> 2.22"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 1-Year Rainfall=3.06"

A	rea (sf)	CN D	escription			
2	50,258	98 F	,			
1	08,108	74 >	75% Gras	s cover, Go	ood, HSG C	
1	00,981	98 P	aved park	ing, HSG C		
4	59,347	92 V	Veighted A	verage		
1	08,108	2	3.54% Per	vious Area		
3	51,239	7	6.46% Imp	pervious Ar	ea	
			·			
Tc	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
1.1	77	0.0125	1.16		Sheet Flow,	
					Smooth surfaces n= 0.011 P2= 3.69"	
0.2	27	0.0125	2.27		Shallow Concentrated Flow,	
					Paved Kv= 20.3 fps	
0.5	102	0.0050	3.21	2.52		
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'	
					n= 0.013 Corrugated PE, smooth interior	
0.9	216	0.0050	4.20	7.43		
					18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'	
					n= 0.013 Corrugated PE, smooth interior	
0.4	125	0.0050	5.09	16.00		
					24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'	
					n= 0.013 Corrugated PE, smooth interior	
0.8	223	0.0025	4.72	33.35	r · · · · · · · · · · · · · · · · · · ·	
					36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75'	
					n= 0.013 Corrugated PE, smooth interior	
0.8	222	0.0020	4.68	44.99		
					42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88'	
0.0	404	0.0045	4.40	55.00	n= 0.013 Corrugated PE, smooth interior	
0.6	164	0.0015	4.43	55.63		
					48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00'	
					n= 0.013 Corrugated PE, smooth interior	
5.3	1,156	Total				

Summary for Subcatchment POST 1.1:

Runoff = 1.11 cfs @ 12.16 hrs, Volume= 0.095 af, Depth> 1.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 1-Year Rainfall=3.06"

Prepared by Tighe & Bond

Printed 3/27/2023

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 5

	Α	rea (sf)	CN E	Description		
0 98 Roofs, HSG C						
28,940 74 >75% Grass cover, Good, HSG C						ood, HSG C
_		9,555	98 F	Paved park	ing, HSG C	
		38,495	80 V	Veighted A	verage	
		28,940	7	'5.18% Pei	rvious Area	l e e e e e e e e e e e e e e e e e e e
		9,555	2	4.82% Imp	pervious Ar	ea
	_		٥.			-
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	3.9	55	0.0500	0.23		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.69"
	1.7	228	0.0125	2.27		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	5.5	1,050	0.0050	3.21	2.52	Pipe Channel,
						12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
						n= 0.013 Corrugated PE, smooth interior
	11 1	1 333	Total		-	

Summary for Pond POS-01:

Inflow Area =	10.545 ac, 76.46% Impervious, Inflow I	Depth > 2.22" for 1-Year event
Inflow =	12.75 cfs @ 12.22 hrs, Volume=	1.948 af
Outflow =	12.75 cfs @ 12.22 hrs, Volume=	1.948 af, Atten= 0%, Lag= 0.0 min
Primary =	11.57 cfs @ 12.22 hrs, Volume=	1.909 af
Secondary =	1.19 cfs @ 12.22 hrs, Volume=	0.039 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 46.60' @ 12.22 hrs Flood Elev= 54.35'

Device	Routing	Invert	Outlet Devices
#1	Primary	45.00'	24.0" Vert. To JellyFish Treatment Unit C= 0.600
#2	Secondary		36.0" Vert. To PDMH-13 C= 0.600

Primary OutFlow Max=11.54 cfs @ 12.22 hrs HW=46.59' TW=0.00' (Dynamic Tailwater) 1=To JellyFish Treatment Unit(Orifice Controls 11.54 cfs @ 4.30 fps)

Secondary OutFlow Max=1.17 cfs @ 12.22 hrs HW=46.59' TW=0.00' (Dynamic Tailwater) 2=To PDMH-13 (Orifice Controls 1.17 cfs @ 2.14 fps)

Summary for Pond PUD-1:

Inflow Area =	10.545 ac, 76.46% Impervious, Inflow	Depth > 2.22" for 1-Year event
Inflow =	26.64 cfs @ 12.08 hrs, Volume=	1.948 af
Outflow =	12.75 cfs @ 12.22 hrs, Volume=	1.948 af, Atten= 52%, Lag= 8.2 min
Primary =	12.75 cfs @ 12.22 hrs, Volume=	1.948 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Type III 24-hr 1-Year Rainfall=3.06" Printed 3/27/2023

P0595-015_Post - Rev-03

Prepared by Tighe & Bond

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 6

Starting Elev= 45.00' Surf.Area= 16,096 sf Storage= 0 cf
Peak Elev= 47.30' @ 12.24 hrs Surf.Area= 16,096 sf Storage= 15,408 cf
Flood Elev= 50.00' Surf.Area= 16,096 sf Storage= 40,389 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 13.8 min (812.1 - 798.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	44.50'	0 cf	128.59'W x 125.17'L x 6.08'H Field A
			97,923 cf Overall - 48,988 cf Embedded = 48,934 cf x 0.0% Voids
#2A	45.00'	41,267 cf	ADS N-12 60" x 85 Inside #1
			Inside= 59.5"W x 59.5"H => 19.30 sf x 20.00'L = 386.0 cf
			Outside= 67.0"W x 67.0"H => 22.91 sf x 20.00'L = 458.2 cf
			Row Length Adjustment= +11.00' x 19.30 sf x 17 rows
			125.59' Header x 19.30 sf x 2 = 4,847.8 cf Inside

41,267 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	45.00'	24.0" Vert. Orifice C= 0.600
#2	Primary	47.50'	8.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Primary OutFlow Max=12.60 cfs @ 12.22 hrs HW=47.29' TW=46.59' (Dynamic Tailwater)

1=Orifice (Orifice Controls 12.60 cfs @ 4.01 fps)

2=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Link PA-1:

Inflow Area = 11.429 ac, 72.47% Impervious, Inflow Depth > 2.15" for 1-Year event

Inflow = 13.78 cfs @ 12.20 hrs, Volume= 2.043 af

Primary = 13.78 cfs @ 12.20 hrs, Volume= 2.043 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Type III 24-hr 2-Year Rainfall=3.69"

Prepared by Tighe & Bond

Printed 3/27/2023

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 7

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPOST 1.0: Runoff Area=459,347 sf 76.46% Impervious Runoff Depth>2.82"

Flow Length=1,156' Tc=5.3 min CN=92 Runoff=33.46 cfs 2.476 af

SubcatchmentPOST 1.1: Runoff Area=38,495 sf 24.82% Impervious Runoff Depth>1.78"

Flow Length=1,333' Tc=11.1 min CN=80 Runoff=1.55 cfs 0.131 af

Pond POS-01: Peak Elev=46.84' Inflow=16.92 cfs 2.476 af

Primary=13.94 cfs 2.380 af Secondary=2.98 cfs 0.095 af Outflow=16.92 cfs 2.476 af

Pond PUD-1: Peak Elev=47.71' Storage=19,725 cf Inflow=33.46 cfs 2.476 af

Outflow=16.92 cfs 2.476 af

Link PA-1: Inflow=18.35 cfs 2.607 af

Primary=18.35 cfs 2.607 af

Total Runoff Area = 11.429 ac Runoff Volume = 2.607 af Average Runoff Depth = 2.74" 27.53% Pervious = 3.146 ac 72.47% Impervious = 8.283 ac HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Printed 3/27/2023

Page 8

Summary for Subcatchment POST 1.0:

Runoff = 33.46 cfs @ 12.08 hrs, Volume= 2.476 af, Depth> 2.82"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.69"

A	rea (sf)	CN D	escription		
2	50,258	98 F	oofs, HSG	G C	
1	08,108	74 >	75% Gras	s cover, Go	ood, HSG C
	00,981			ing, HSG C	
4	59,347	92 V	Veighted A	verage	
	08,108	-	_	vious Area	
	51,239			pervious Ar	
Ū	01,200	•	0.1070	, o. v. o a o , a .	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
1.1	77		1.16	,	Sheet Flow,
	• •	0.0120	1.10		Smooth surfaces n= 0.011 P2= 3.69"
0.2	27	0.0125	2.27		Shallow Concentrated Flow,
0.2		0.0120	2.27		Paved Kv= 20.3 fps
0.5	102	0.0050	3.21	2.52	
0.0	102	0.0000	0.21	2.02	12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.013 Corrugated PE, smooth interior
0.9	216	0.0050	4.20	7.43	·
0.0	2.0	0.0000	1.20	7.10	18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
					n= 0.013 Corrugated PE, smooth interior
0.4	125	0.0050	5.09	16.00	
0. 1	0	0.0000	0.00	. 0.00	24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
					n= 0.013 Corrugated PE, smooth interior
0.8	223	0.0025	4.72	33.35	
0.0		0.00_0		33.33	36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75'
					n= 0.013 Corrugated PE, smooth interior
0.8	222	0.0020	4.68	44.99	
-					42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88'
					n= 0.013 Corrugated PE, smooth interior
0.6	164	0.0015	4.43	55.63	Pipe Channel,
					48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00'
					n= 0.013 Corrugated PE, smooth interior
5.3	1,156	Total			, , , , , , , , , , , , , , , , , , ,
0.0	.,	. 0			

Summary for Subcatchment POST 1.1:

Runoff = 1.55 cfs @ 12.16 hrs, Volume= 0.131 af, Depth> 1.78"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.69"

Prepared by Tighe & Bond

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Printed 3/27/2023

Page 9

_	Α	rea (sf)	CN E	Description					
0 98 Roofs, HSG C									
		28,940 74 >75% Grass cover, Good, HSG C							
_		9,555							
		38,495		Veighted A					
		28,940	=		rvious Area				
		9,555	2	4.82% lmp	pervious Ar	ea			
	_		01		0 "	D 18			
	Tc	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	3.9	55	0.0500	0.23		Sheet Flow,			
						Grass: Short n= 0.150 P2= 3.69"			
	1.7	228	0.0125	2.27		Shallow Concentrated Flow,			
						Paved Kv= 20.3 fps			
	5.5	1,050	0.0050	3.21	2.52				
						12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'			
_						n= 0.013 Corrugated PE, smooth interior			
	11.1	1,333	Total						

Summary for Pond POS-01:

Inflow Area =	10.545 ac, 76.46% Impervious, Inflow I	Depth > 2.82" for 2-Year event
Inflow =	16.92 cfs @ 12.21 hrs, Volume=	2.476 af
Outflow =	16.92 cfs @ 12.21 hrs, Volume=	2.476 af, Atten= 0%, Lag= 0.0 min
Primary =	13.94 cfs @ 12.21 hrs, Volume=	2.380 af
Secondary =	2.98 cfs @ 12.21 hrs, Volume=	0.095 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 46.84' @ 12.21 hrs Flood Elev= 54.35'

Device	Routing	Invert	Outlet Devices
#1	Primary	45.00'	24.0" Vert. To JellyFish Treatment Unit C= 0.600
#2	Secondary	46.20'	36.0" Vert. To PDMH-13 C= 0.600

Primary OutFlow Max=13.88 cfs @ 12.21 hrs HW=46.83' TW=0.00' (Dynamic Tailwater)
1=To JellyFish Treatment Unit(Orifice Controls 13.88 cfs @ 4.61 fps)

Secondary OutFlow Max=2.92 cfs @ 12.21 hrs HW=46.83' TW=0.00' (Dynamic Tailwater) 2=To PDMH-13 (Orifice Controls 2.92 cfs @ 2.70 fps)

Summary for Pond PUD-1:

Inflow Area	a =	10.545 ac, 76.46% Impervious, Inflow Depth > 2.82" for 2-Year event	
Inflow	=	33.46 cfs @ 12.08 hrs, Volume= 2.476 af	
Outflow	=	16.92 cfs @ 12.21 hrs, Volume= 2.476 af, Atten= 49%, Lag= 7.9 min	1
Primary	=	16.92 cfs @ 12.21 hrs, Volume= 2.476 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Type III 24-hr 2-Year Rainfall=3.69"

P0595-015_Post - Rev-03

Prepared by Tighe & Bond

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Printed 3/27/2023 Page 10

Starting Elev= 45.00' Surf.Area= 16,096 sf Storage= 0 cf Peak Elev= 47.71' @ 12.23 hrs Surf.Area= 16,096 sf Storage= 19,725 cf Flood Elev= 50.00' Surf.Area= 16,096 sf Storage= 40,389 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 14.6 min (806.3 - 791.7)

Volume	Invert	Avail.Storage	Storage Description
#1A	44.50'	0 cf	128.59'W x 125.17'L x 6.08'H Field A
			97,923 cf Overall - 48,988 cf Embedded = 48,934 cf x 0.0% Voids
#2A	45.00'	41,267 cf	ADS N-12 60" x 85 Inside #1
			Inside= 59.5"W x 59.5"H => 19.30 sf x 20.00'L = 386.0 cf
			Outside= 67.0"W x 67.0"H => 22.91 sf x 20.00'L = 458.2 cf
			Row Length Adjustment= +11.00' x 19.30 sf x 17 rows
			125.59' Header x 19.30 sf x 2 = 4,847.8 cf Inside

41,267 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	45.00'	24.0" Vert. Orifice C= 0.600
#2	Primary	47.50'	8.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Primary OutFlow Max=16.48 cfs @ 12.21 hrs HW=47.70' TW=46.83' (Dynamic Tailwater)

-1=Orifice (Orifice Controls 14.12 cfs @ 4.49 fps)

—2=Sharp-Crested Rectangular Weir (Weir Controls 2.36 cfs @ 1.47 fps)

Summary for Link PA-1:

Inflow Area = 11.429 ac, 72.47% Impervious, Inflow Depth > 2.74" for 2-Year event

Inflow = 18.35 cfs @ 12.20 hrs, Volume= 2.607 af

Primary = 18.35 cfs @ 12.20 hrs, Volume= 2.607 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Type III 24-hr 10-Year Rainfall=5.60"

Prepared by Tighe & Bond HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC Printed 3/27/2023 Page 11

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment POST 1.0: Runoff Area = 459,347 sf 76.46% Impervious Runoff Depth > 4.67"

Flow Length=1,156' Tc=5.3 min CN=92 Runoff=53.97 cfs 4.107 af

SubcatchmentPOST 1.1: Runoff Area=38,495 sf 24.82% Impervious Runoff Depth>3.42"

Flow Length=1,333' Tc=11.1 min CN=80 Runoff=2.97 cfs 0.252 af

Pond POS-01: Peak Elev=47.82' Inflow=37.25 cfs 4.106 af

Primary=20.40 cfs 3.648 af Secondary=16.85 cfs 0.458 af Outflow=37.25 cfs 4.106 af

Pond PUD-1: Peak Elev=48.50' Storage=27,992 cf Inflow=53.97 cfs 4.107 af

Outflow=37.25 cfs 4.106 af

Link PA-1: Inflow=40.21 cfs 4.357 af

Primary=40.21 cfs 4.357 af

Total Runoff Area = 11.429 ac Runoff Volume = 4.359 af Average Runoff Depth = 4.58" 27.53% Pervious = 3.146 ac 72.47% Impervious = 8.283 ac HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Printed 3/27/2023

Page 12

Summary for Subcatchment POST 1.0:

Runoff = 53.97 cfs @ 12.08 hrs, Volume= 4.107 af, Depth> 4.67"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.60"

A	rea (sf)	CN D	escription		
2	50,258	98 F	Roofs, HSG	G C	
1	08,108	74 >	75% Gras	s cover, Go	ood, HSG C
1	00,981	98 P	aved park	ing, HSG C	
4	59,347	92 V	Veighted A	verage	
1	08,108	2	3.54% Per	vious Area	
3	51,239	7	6.46% Imp	pervious Ar	ea
			·		
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
1.1	77	0.0125	1.16		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 3.69"
0.2	27	0.0125	2.27		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
0.5	102	0.0050	3.21	2.52	
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.013 Corrugated PE, smooth interior
0.9	216	0.0050	4.20	7.43	
					18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
					n= 0.013 Corrugated PE, smooth interior
0.4	125	0.0050	5.09	16.00	
					24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
					n= 0.013 Corrugated PE, smooth interior
0.8	223	0.0025	4.72	33.35	r · · · · · · · · · · · · · · · · · · ·
					36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75'
					n= 0.013 Corrugated PE, smooth interior
0.8	222	0.0020	4.68	44.99	
					42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88'
0.0	404	0.0045	4.40	55.00	n= 0.013 Corrugated PE, smooth interior
0.6	164	0.0015	4.43	55.63	
					48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00'
					n= 0.013 Corrugated PE, smooth interior
5.3	1,156	Total			

Summary for Subcatchment POST 1.1:

Runoff = 2.97 cfs @ 12.16 hrs, Volume= 0.252 af, Depth> 3.42"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.60"

Prepared by Tighe & Bond

Printed 3/27/2023

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 13

	Α	rea (sf)	CN E	Description		
		0	98 F	Roofs, HSC	G C	
		28,940	74 >	75% Gras	s cover, Go	ood, HSG C
_		9,555	98 F	Paved park	ing, HSG C	
		38,495	80 V	Veighted A	verage	
		28,940	7	'5.18% Pei	rvious Area	l e e e e e e e e e e e e e e e e e e e
		9,555	2	4.82% Imp	pervious Ar	ea
	_		٥.			-
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	3.9	55	0.0500	0.23		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.69"
	1.7	228	0.0125	2.27		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	5.5	1,050	0.0050	3.21	2.52	Pipe Channel,
						12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
						n= 0.013 Corrugated PE, smooth interior
	11 1	1 333	Total		-	

Summary for Pond POS-01:

Inflow Area =	10.545 ac, 76.46% Impervious, Inflow	v Depth > 4.67" for 10-Year event
Inflow =	37.25 cfs @ 12.15 hrs, Volume=	4.106 af
Outflow =	37.25 cfs @ 12.15 hrs, Volume=	4.106 af, Atten= 0%, Lag= 0.0 min
Primary =	20.40 cfs @ 12.15 hrs, Volume=	3.648 af
Secondary =	16.85 cfs @ 12.15 hrs, Volume=	0.458 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 47.82' @ 12.15 hrs Flood Elev= 54.35'

Device	Routing	Invert	Outlet Devices
#1	Primary	45.00'	24.0" Vert. To JellyFish Treatment Unit C= 0.600
#2	Secondary		36.0" Vert. To PDMH-13 C= 0.600

Primary OutFlow Max=20.37 cfs @ 12.15 hrs HW=47.81' TW=0.00' (Dynamic Tailwater) 1=To JellyFish Treatment Unit (Orifice Controls 20.37 cfs @ 6.48 fps)

Secondary OutFlow Max=16.75 cfs @ 12.15 hrs HW=47.81' TW=0.00' (Dynamic Tailwater) 2=To PDMH-13 (Orifice Controls 16.75 cfs @ 4.32 fps)

Summary for Pond PUD-1:

Inflow Are	a =	10.545 ac, 76.46% Impervious, Inflow Depth > 4.67" for 10-Ye	ear event
Inflow	=	53.97 cfs @ 12.08 hrs, Volume= 4.107 af	
Outflow	=	37.25 cfs @ 12.15 hrs, Volume= 4.106 af, Atten= 31%,	Lag= 4.3 min
Primary	=	37.25 cfs @ 12.15 hrs, Volume= 4.106 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Type III 24-hr 10-Year Rainfall=5.60"

P0595-015_Post - Rev-03

Prepared by Tighe & Bond

Printed 3/27/2023

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 14

Starting Elev= 45.00' Surf.Area= 16,096 sf Storage= 0 cf Peak Elev= 48.50' @ 12.17 hrs Surf.Area= 16,096 sf Storage= 27,992 cf Flood Elev= 50.00' Surf.Area= 16,096 sf Storage= 40,389 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 14.5 min (792.7 - 778.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	44.50'	0 cf	128.59'W x 125.17'L x 6.08'H Field A
			97,923 cf Overall - 48,988 cf Embedded = $48,934$ cf x 0.0% Voids
#2A	45.00'	41,267 cf	ADS N-12 60" x 85 Inside #1
			Inside= 59.5"W x 59.5"H => 19.30 sf x 20.00'L = 386.0 cf
			Outside= 67.0"W x 67.0"H => 22.91 sf x 20.00'L = 458.2 cf
			Row Length Adjustment= +11.00' x 19.30 sf x 17 rows
			125.59' Header x 19.30 sf x 2 = 4,847.8 cf Inside
			=

41,267 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	45.00'	24.0" Vert. Orifice C= 0.600
#2	Primary	47.50'	8.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Primary OutFlow Max=35.01 cfs @ 12.15 hrs HW=48.47' TW=47.81' (Dynamic Tailwater)

1=Orifice (Orifice Controls 12.30 cfs @ 3.92 fps)

—2=Sharp-Crested Rectangular Weir (Weir Controls 22.71 cfs @ 2.99 fps)

Summary for Link PA-1:

Inflow Area = 11.429 ac, 72.47% Impervious, Inflow Depth > 4.57" for 10-Year event

Inflow = 40.21 cfs @ 12.15 hrs, Volume= 4.357 af

Primary = 40.21 cfs @ 12.15 hrs, Volume= 4.357 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Type III 24-hr 25-Year Rainfall=7.10" Printed 3/27/2023

Prepared by Tighe & Bond HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 15

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment POST 1.0: Runoff Area = 459,347 sf 76.46% Impervious Runoff Depth > 6.15"

Flow Length=1,156' Tc=5.3 min CN=92 Runoff=69.89 cfs 5.404 af

SubcatchmentPOST 1.1: Runoff Area=38,495 sf 24.82% Impervious Runoff Depth>4.78"

Flow Length=1,333' Tc=11.1 min CN=80 Runoff=4.12 cfs 0.352 af

Pond POS-01: Peak Elev=48.42' Inflow=52.02 cfs 5.400 af

Primary=23.56 cfs 4.569 af Secondary=28.46 cfs 0.831 af Outflow=52.02 cfs 5.400 af

Pond PUD-1: Peak Elev=49.01' Storage=33,043 cf Inflow=69.89 cfs 5.404 af

Outflow=52.02 cfs 5.400 af

Link PA-1:Inflow=55.92 cfs 5.752 af
Primary=55.92 cfs 5.752 af

.ary 66.62 6.6 6.7 62 ar

Total Runoff Area = 11.429 ac Runoff Volume = 5.756 af Average Runoff Depth = 6.04" 27.53% Pervious = 3.146 ac 72.47% Impervious = 8.283 ac HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Printed 3/27/2023 Page 16

Summary for Subcatchment POST 1.0:

Runoff = 69.89 cfs @ 12.08 hrs, Volume= 5.404 af, Depth> 6.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=7.10"

A	rea (sf)	CN D	escription		
2	50,258	98 Roofs, HSG C			
1	08,108	74 >75% Grass cover, Good			ood, HSG C
1	00,981	98 P	aved park	ing, HSG C	
4	59,347	92 V	Veighted A	verage	
1	08,108	2	3.54% Per	vious Area	
3	51,239	7	6.46% Imp	pervious Ar	ea
			·		
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
1.1	77	0.0125	1.16		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 3.69"
0.2	27	0.0125	2.27		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
0.5	102	0.0050	3.21	2.52	
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.013 Corrugated PE, smooth interior
0.9	216	0.0050	4.20	7.43	
					18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
					n= 0.013 Corrugated PE, smooth interior
0.4	125	0.0050	5.09	16.00	
					24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
					n= 0.013 Corrugated PE, smooth interior
0.8	223	0.0025	4.72	33.35	r · · · · · · · · · · · · · · · · · · ·
					36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75'
	000		4.00	44.00	n= 0.013 Corrugated PE, smooth interior
0.8	222	0.0020	4.68	44.99	
					42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88'
0.0	404	0.0045	4.40	FF 00	n= 0.013 Corrugated PE, smooth interior
0.6	164	0.0015	4.43	55.63	
					48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00'
	4 4 5 5				n= 0.013 Corrugated PE, smooth interior
5.3	1,156	Total			

Summary for Subcatchment POST 1.1:

Runoff = 4.12 cfs @ 12.15 hrs, Volume= 0.352 af, Depth> 4.78"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=7.10"

Prepared by Tighe & Bond

Printed 3/27/2023

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 17

_	Α	rea (sf)	CN [Description				
		0	98 F	98 Roofs, HSG C				
		28,940	74 >	75% Gras	s cover, Go	ood, HSG C		
_		9,555	98 F	Paved park	ing, HSG C			
Ī		38,495	80 V	Veighted A	verage			
		28,940	7	75.18% Pei	vious Area			
		9,555	2	24.82% Imp	pervious Ar	ea		
	Тс	Length	Slope		Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	3.9	55	0.0500	0.23		Sheet Flow,		
						Grass: Short n= 0.150 P2= 3.69"		
	1.7	228	0.0125	2.27		Shallow Concentrated Flow,		
						Paved Kv= 20.3 fps		
	5.5	1,050	0.0050	3.21	2.52	1		
						12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'		
_						n= 0.013 Corrugated PE, smooth interior		
	11.1	1.333	Total					

Summary for Pond POS-01:

Inflow Area =	10.545 ac, 76.46%	6 Impervious, Inflow D	epth > 6.14"	for 25-Year event
Inflow =	52.02 cfs @ 12.12	2 hrs, Volume=	5.400 af	
Outflow =	52.02 cfs @ 12.12	2 hrs, Volume=	5.400 af, Atte	en= 0%, Lag= 0.0 min
Primary =	23.56 cfs @ 12.12	2 hrs, Volume=	4.569 af	_
Secondary =	28.46 cfs @ 12.12	2 hrs, Volume=	0.831 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 48.42' @ 12.12 hrs

Flood Elev= 54.35'

Device	Routing	Invert	Outlet Devices
#1	Primary	45.00'	24.0" Vert. To JellyFish Treatment Unit C= 0.600
#2	Secondary		36.0" Vert. To PDMH-13 C= 0.600

Primary OutFlow Max=23.21 cfs @ 12.12 hrs HW=48.36' TW=0.00' (Dynamic Tailwater) 1=To JellyFish Treatment Unit(Orifice Controls 23.21 cfs @ 7.39 fps)

Secondary OutFlow Max=27.18 cfs @ 12.12 hrs HW=48.36' TW=0.00' (Dynamic Tailwater) 2=To PDMH-13 (Orifice Controls 27.18 cfs @ 5.00 fps)

Summary for Pond PUD-1:

Inflow Area :	=	10.545 ac, 76.46% Impervious, Inflow Depth >	6.15" for 25-Year event
Inflow =	=	69.89 cfs @ 12.08 hrs, Volume= 5.404	af
Outflow =	=	52.02 cfs @ 12.12 hrs, Volume= 5.400	af, Atten= 26%, Lag= 2.5 min
Primary =	=	52.02 cfs @ 12.12 hrs, Volume= 5.400	af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Type III 24-hr 25-Year Rainfall=7.10"

P0595-015_Post - Rev-03

Prepared by Tighe & Bond

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Printed 3/27/2023

Page 18

Starting Elev= 45.00' Surf.Area= 16,096 sf Storage= 0 cf
Peak Elev= 49.01' @ 12.16 hrs Surf.Area= 16,096 sf Storage= 33,043 cf
Flood Elev= 50.00' Surf.Area= 16,096 sf Storage= 40,389 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 14.1 min (785.4 - 771.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	44.50'	0 cf	128.59'W x 125.17'L x 6.08'H Field A
			97,923 cf Overall - 48,988 cf Embedded = 48,934 cf x 0.0% Voids
#2A	45.00'	41,267 cf	ADS N-12 60" x 85 Inside #1
			Inside= 59.5"W x 59.5"H => 19.30 sf x 20.00'L = 386.0 cf
			Outside= 67.0"W x 67.0"H => 22.91 sf x 20.00'L = 458.2 cf
			Row Length Adjustment= +11.00' x 19.30 sf x 17 rows
			125.59' Header x 19.30 sf x 2 = 4,847.8 cf Inside
		44 007 -5	Total Aveilable Otenana

41,267 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	45.00'	24.0" Vert. Orifice C= 0.600
#2	Primary	47.50'	8.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Primary OutFlow Max=43.51 cfs @ 12.12 hrs HW=48.90' TW=48.36' (Dynamic Tailwater)

1=Orifice (Orifice Controls 11.12 cfs @ 3.54 fps)

—2=Sharp-Crested Rectangular Weir (Weir Controls 32.39 cfs @ 3.00 fps)

Summary for Link PA-1:

Inflow Area = 11.429 ac, 72.47% Impervious, Inflow Depth > 6.04" for 25-Year event

Inflow = 55.92 cfs @ 12.12 hrs, Volume= 5.752 af

Primary = 55.92 cfs @ 12.12 hrs, Volume= 5.752 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Type III 24-hr 50-Year Rainfall=8.51"

Prepared by Tighe & Bond HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC Printed 3/27/2023 Page 19

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment POST 1.0: Runoff Area=459,347 sf 76.46% Impervious Runoff Depth>7.54"

Flow Length=1,156' Tc=5.3 min CN=92 Runoff=84.75 cfs 6.630 af

SubcatchmentPOST 1.1: Runoff Area=38,495 sf 24.82% Impervious Runoff Depth>6.09"

Flow Length=1,333' Tc=11.1 min CN=80 Runoff=5.21 cfs 0.449 af

Pond POS-01: Peak Elev=48.94' Inflow=64.28 cfs 6.622 af

Primary=25.97 cfs 5.404 af Secondary=38.32 cfs 1.218 af Outflow=64.28 cfs 6.622 af

Pond PUD-1: Peak Elev=49.50' Storage=37,187 cf Inflow=84.75 cfs 6.630 af

Outflow=64.28 cfs 6.622 af

Link PA-1: Inflow=69.21 cfs 7.071 af

Primary=69.21 cfs 7.071 af

Total Runoff Area = 11.429 ac Runoff Volume = 7.079 af Average Runoff Depth = 7.43" 27.53% Pervious = 3.146 ac 72.47% Impervious = 8.283 ac

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Printed 3/27/2023 Page 20

Summary for Subcatchment POST 1.0:

Runoff = 84.75 cfs @ 12.08 hrs, Volume= 6.630 af, Depth> 7.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=8.51"

A	rea (sf)	CN D	escription		
2	50,258	98 Roofs, HSG C			
1	08,108	74 >75% Grass cover, Goo			ood, HSG C
	00,981			ing, HSG C	
4	59,347	92 V	Veighted A	verage	
	08,108	-	_	vious Area	
	51,239			pervious Ar	
Ū	01,200	•	0.1070	, o. v. o a o , a .	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
1.1	77		1.16	()	Sheet Flow,
	• •	0.0120	1.10		Smooth surfaces n= 0.011 P2= 3.69"
0.2	27	0.0125	2.27		Shallow Concentrated Flow,
0.2		0.0120	2.27		Paved Kv= 20.3 fps
0.5	102	0.0050	3.21	2.52	• • • • • • • • • • • • • • • • • • •
0.0	102	0.0000	0.21	2.02	12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.013 Corrugated PE, smooth interior
0.9	216	0.0050	4.20	7.43	·
0.0	2.0	0.0000	1.20	7.10	18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
					n= 0.013 Corrugated PE, smooth interior
0.4	125	0.0050	5.09	16.00	
0. 1	0	0.0000	0.00	. 0.00	24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
					n= 0.013 Corrugated PE, smooth interior
0.8	223	0.0025	4.72	33.35	
0.0		0.00_0		33.33	36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75'
					n= 0.013 Corrugated PE, smooth interior
0.8	222	0.0020	4.68	44.99	
-					42.0" Round Area= 9.6 sf Perim= 11.0' r= 0.88'
					n= 0.013 Corrugated PE, smooth interior
0.6	164	0.0015	4.43	55.63	Pipe Channel,
					48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00'
					n= 0.013 Corrugated PE, smooth interior
5.3	1,156	Total			,
0.0	.,	. 0			

Summary for Subcatchment POST 1.1:

Runoff = 5.21 cfs @ 12.15 hrs, Volume= 0.449 af, Depth> 6.09"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=8.51"

P0595-015_Post - Rev-03

Prepared by Tighe & Bond

Printed 3/27/2023

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 21

	Α	rea (sf)	CN E	escription			
	0 98 Roofs, HSG C						
	28,940 74 >75% Grass cover, Good, HSG C						
_	9,555 98 Paved parking, HSG C						
		38,495		Veighted A	•		
		28,940			rvious Area		
		9,555	2	4.82% lm	pervious Ar	ea	
	_		01			B	
	Tc	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	3.9	55	0.0500	0.23		Sheet Flow,	
						Grass: Short n= 0.150 P2= 3.69"	
	1.7	228	0.0125	2.27		Shallow Concentrated Flow,	
						Paved Kv= 20.3 fps	
	5.5	1,050	0.0050	3.21	2.52	Pipe Channel,	
						12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'	
						n= 0.013 Corrugated PE, smooth interior	
	11 1	1 333	Total				

Summary for Pond POS-01:

Inflow Area =	10.545 ac, 76.46% Impervious, Inflow I	Depth > 7.54" for 50-Year event
Inflow =	64.28 cfs @ 12.12 hrs, Volume=	6.622 af
Outflow =	64.28 cfs @ 12.12 hrs, Volume=	6.622 af, Atten= 0%, Lag= 0.0 min
Primary =	25.97 cfs @ 12.12 hrs, Volume=	5.404 af
Secondary =	38.32 cfs @ 12.12 hrs, Volume=	1.218 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 48.94' @ 12.12 hrs

Flood Elev= 54.35'

Device	Routing	Invert	Outlet Devices
#1	Primary	45.00'	24.0" Vert. To JellyFish Treatment Unit C= 0.600
#2	Secondary		36.0" Vert. To PDMH-13 C= 0.600

Primary OutFlow Max=25.67 cfs @ 12.12 hrs HW=48.88' TW=0.00' (Dynamic Tailwater) 1=To JellyFish Treatment Unit(Orifice Controls 25.67 cfs @ 8.17 fps)

Secondary OutFlow Max=37.15 cfs @ 12.12 hrs HW=48.88' TW=0.00' (Dynamic Tailwater) 2=To PDMH-13 (Orifice Controls 37.15 cfs @ 5.57 fps)

Summary for Pond PUD-1:

Inflow Area	a =	10.545 ac, 76.46% Impervious, Inflow Depth > 7.54" for 50-Year event	
Inflow	=	84.75 cfs @ 12.08 hrs, Volume= 6.630 af	
Outflow	=	64.28 cfs @ 12.12 hrs, Volume= 6.622 af, Atten= 24%, Lag= 2.4 min	1
Primary	=	64.28 cfs @ 12.12 hrs, Volume= 6.622 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Type III 24-hr 50-Year Rainfall=8.51"

P0595-015_Post - Rev-03

Prepared by Tighe & Bond

Printed 3/27/2023

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 22

Starting Elev= 45.00' Surf.Area= 16,096 sf Storage= 0 cf Peak Elev= 49.50' @ 12.16 hrs Surf.Area= 16,096 sf Storage= 37,187 cf Flood Elev= 50.00' Surf.Area= 16,096 sf Storage= 40,389 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 13.8 min (780.2 - 766.4)

Volume	Invert	Avail.Storage	Storage Description
#1A	44.50'	0 cf	128.59'W x 125.17'L x 6.08'H Field A
			97,923 cf Overall - 48,988 cf Embedded = 48,934 cf x 0.0% Voids
#2A	45.00'	41,267 cf	ADS N-12 60" x 85 Inside #1
			Inside= 59.5"W x 59.5"H => 19.30 sf x 20.00'L = 386.0 cf
			Outside= 67.0"W x 67.0"H => 22.91 sf x 20.00'L = 458.2 cf
			Row Length Adjustment= +11.00' x 19.30 sf x 17 rows
			125.59' Header x 19.30 sf x 2 = 4,847.8 cf Inside
		44.007 -5	Total Assilable Otenana

41,267 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	45.00'	24.0" Vert. Orifice C= 0.600
#2	Primary	47.50'	8.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Primary OutFlow Max=52.75 cfs @ 12.12 hrs HW=49.35' TW=48.88' (Dynamic Tailwater)

1=Orifice (Orifice Controls 10.40 cfs @ 3.31 fps)

—2=Sharp-Crested Rectangular Weir (Weir Controls 42.34 cfs @ 2.99 fps)

Summary for Link PA-1:

Inflow Area = 11.429 ac, 72.47% Impervious, Inflow Depth > 7.42" for 50-Year event

Inflow = 69.21 cfs @ 12.12 hrs, Volume= 7.071 af

Primary = 69.21 cfs @ 12.12 hrs, Volume= 7.071 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

GENERAL CALCULATIONS - WQV and WQF (optional worksheet)

This worksheet may be useful when designing a BMP that does not fit into one of the specific worksheets already provided (i.e. for a technology which is not a stormwater wetland, infiltration practice, etc.)

Water Quality Volume (WQV)

10.55 ac	A = Area draining to the practice
7.99 ac	A _I = Impervious area draining to the practice
0.76 decimal	I = Percent impervious area draining to the practice, in decimal form
0.73 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)
7.72 ac-in	WQV= 1" x Rv x A
28,031 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")

Water Quality Flow (WQF)

1	inches	P = Amount of rainfall. For WQF in NH, P = 1".
0.73	inches	Q = Water quality depth. Q = WQV/A
97	unitless	CN = Unit peak discharge curve number. CN = $1000/(10+5P+10Q-10*[Q^2+1.25*Q*P]^{0.5})$
0.3	inches	S = Potential maximum retention. S = (1000/CN) - 10
0.055	inches	Ia = Initial abstraction. Ia = 0.2S
5.0	minutes	T_c = Time of Concentration
600.0	cfs/mi²/in	q_{u} is the unit peak discharge. Obtain this value from TR-55 exhibits 4-II and 4-III.
7.239	cfs	WQF = $q_u \times WQV$. Conversion: to convert "cfs/mi ² /in * ac-in" to "cfs" multiply by 1mi ² /640ac.

Designer's Notes:						
This calculation represents the treatment train directed to Contech Jellyfish Treatment Unit.						
· · · · · · · · · · · · · · · · · · ·						
Full Treatment in compliance with Env-Wq 1508.10 shall be achieved by use of a proprietary flow-through						
device. The proposed Contech Jellyfish Treatment Unit - Model#: JFPD0816 will be used to treat the WQF						
as calculated in the above spreadsheet. The specified device is designed to treat up to 7.84 cfs of flow.						

Prepared by Tighe & Bond
HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Stage-Discharge for Pond POS-01:

Elevation (feet)	Discharge (cfs)	Primary (cfs)	Secondary (cfs)	Elevation (feet)	Discharge (cfs)	Primary (cfs)	Secondary (cfs)
45.00	0.00	0.00	0.00	46.04	5.73	5.73	0.00
45.02	0.00	0.00	0.00	46.06	5.93	5.93	0.00
45.04	0.01	0.01	0.00	46.08	6.12	6.12	0.00
45.06	0.02	0.02	0.00	46.10	6.32	6.32	0.00
45.08	0.04	0.04	0.00	46.12	6.52	6.52	0.00
45.10	0.06	0.06	0.00	46.14	6.72	6.72	0.00
45.12	0.09	0.09	0.00	46.16	6.93	6.93	0.00
45.14	0.12	0.12	0.00	46.18	7.13	7.13	0.00
45.16	0.16	0.16	0.00	46.20	7.34	7.34	0.00
45.18	0.20	0.20	0.00	46.22	7.55	7.55	0.00
45.20	0.25	0.25	0.00	46.24	7.77	7.76	0.01
45.22	0.30	0.30	0.00	46.26	8.00	7.97	0.03
45.24	0.36	0.36	0.00	46.28	8.23	8.18	0.05
45.26	0.42	0.42	0.00	46.30	8.47	8.39	0.08
45.28	0.48	0.48	0.00	46.32	8.72	8.60	0.11
45.30	0.55	0.55	0.00	46.34	8.97	8.82	0.15
45.32	0.62	0.62	0.00	46.36	9.23	9.03	0.20
45.34	0.70	0.70	0.00	46.38	9.50	9.25	0.25
45.36	0.79	0.79	0.00	46.40	9.77	9.46	0.31
45.38	0.87	0.87	0.00	46.42	10.05	9.68	0.37
45.40	0.96	0.96	0.00	46.44	10.34	9.89	0.44
45.42	1.06	1.06	0.00	46.46	10.63	10.11	0.52
45.44	1.16	1.16	0.00	46.48	10.92	10.32	0.60
45.46	1.26	1.26	0.00	46.50	11.23	10.54	0.69
45.48	1.37	1.37	0.00	46.52	11.53	10.75	0.78
45.50	1.48	1.48	0.00	46.54	11.84	10.97	0.88
45.52	1.59	1.59	0.00	46.56	12.16	11.18	0.98
45.54	1.71	1.71	0.00 0.00	46.58	12.48	11.39	1.09
45.56 45.58	1.83 1.96	1.83 1.96	0.00	46.60 46.62	12.81 13.14	11.60 11.81	1.21 1.33
45.60	2.09	2.09	0.00	46.64	13.14	12.02	1.33
45.62	2.22	2.22	0.00	46.66	13.47	12.02	1.59
45.64	2.36	2.36	0.00	46.68	14.15	12.43	1.72
45.66	2.50	2.50	0.00	46.70	14.50	12.63	1.86
45.68	2.64	2.64	0.00	46.72	14.85	12.83	2.01
45.70	2.79	2.79	0.00	46.74	15.20	13.03	2.16
45.72	2.94	2.94	0.00	46.76	15.55	13.23	2.32
45.74	3.09	3.09	0.00	46.78	15.90	13.42	2.49
45.76	3.25	3.25	0.00	46.80	16.26	13.60	2.65
45.78	3.41	3.41	0.00	46.82	16.61	13.79	2.83
45.80	3.57	3.57	0.00	46.84	16.97	13.97	3.01
45.82	3.74	3.74	0.00	46.86	17.33	14.14	3.19
45.84	3.91	3.91	0.00	46.88	17.68	14.31	3.38
45.86	4.08	4.08	0.00	46.90	18.04	14.47	3.57
45.88	4.25	4.25	0.00	46.92	18.39	14.62	3.77
45.90	4.43	4.43	0.00	46.94	18.74	14.77	3.97
45.92	4.61	4.61	0.00	46.96	19.08	14.90	4.18
45.94	4.79	4.79	0.00	46.98	19.42	15.03	4.39
45.96	4.97	4.97	0.00	47.00	19.73	15.13	4.61
45.98	5.16	5.16	0.00	47.02	20.11	15.28	4.83
46.00	5.35	5.35	0.00	47.04	20.48	15.43	5.06
46.02	5.54	5.54	0.00	47.06	20.86	15.57	5.29

1.4 Peak Rate Comparisons

The following table summarizes and compares the pre- and post-development peak runoff rates from the 1-year, 2-year, 10-year, 25-year and 50-year storm events at each point of analysis.

Table 1.4 – Comparison of Pre- and Post-Development Flows (CFS)					
Point of Analysis	1-Year Storm	2-Year Storm	10-Year Storm	25-Year Storm	50-Year Storm
Pre-Development Watershed (PA-1)	20.01	27.08	49.71	67.64	84.49
Post-Development Watershed (PA-1)	13.78	18.35	40.21	55.92	69.21

The Peak Runoff Control Requirements of Env-Wq 1507.06 are required to be met for the point of analysis. As shown in Table 1.4 the Post-Development flows are decreased from the Pre-Development flows at PA-1.

The Channel Protection requirements of Env-Wq 1507.05 are met for the point of analysis as the 2-year, 24-hour Post-Development peak flowrate (18.35 cfs) is less than or equal to the 1-year, 24-hour pre-development peak flowrate (20.01 cfs).

1.5 Mitigation Description

1.5.1 Mitigation Calculations

The proposed project area has been evaluated to treat the required water quality flow (WQF) per the requirements of Env-Wq 1500. These calculations have been provided in appendix E of this report.

1.5.2 Pre-Treatment Methods for Protecting Water Quality

Pretreatment methods for protecting water quality on this site include offline deep sump catch basins with oil water separator hoods.

Table 1.5 - Pollutant Removal Efficiencies						
ВМР	Total Suspended Solids	Total Phosphorus				
Deep Sump Catch Basin w/Hood ¹	15%	5%				

^{1.} Pollutant removal efficiencies from NH Stormwater Manual Volume 2, Appendix B.

1.5.3 Treatment Methods for Protecting Water Quality

The runoff from proposed impervious areas will be captured in the proposed closed drainage system directed to an underground detention system and then treated by an ADS Water Quality Unit. The water quality unit has been sized to treat the Water Quality Flow from the contributing subcatchment areas. The system has been designed with an internal bypass structure that diverts peak flows greater than the 1-inch storm event.

Table 1.6 below, shows design pollutant removal efficient for the proposed Jellyfish Filter Treatment Unit which meets the requirements of Env-Wq 1508.10. Additional reference information on the proposed Jellyfish Filter Treatment Unit can be found in Appendix C.

Table 1.6 - Pollutant Removal Efficiencies									
ВМР	Total Suspended Solids	Total Phosphorus							
Jellyfish Filter Treatment Unit ¹	89%	59%							

1. Pollutant removal efficiencies per Contech Engineered Solutions Jellyfish Filter Performance testing results.

Table 1.7 - Pollutant Removal Calculations											
Total Suspended Solids Removal											
ВМР	TSS Removal Rate	Starting TSS Load	TSS Removed	Remaining TSS Load							
Deep Sump Catch Basin w/Hood ¹	0.15	1.00	0.15	0.85							
Jellyfish Filter Treatment Unit ² 0.89 0.85 0.76 0.09											
Total Suspended Solids Removed: 91%											

Total Phosphorus Removal											
	TP Removal Rate	Starting TP Load	TP Removed	Remaining TP Load							
Deep Sump Catch Basin w/Hood ¹	0.05	1.00	0.05	0.95							
Jellyfish Filter Treatment Unit ²	0.59	0.95	0.56	0.39							
Total Phosphorus Removed: 61%											

- 1. Pollutant removal efficiencies from NH Stormwater Manual Volume 2, Appendix B.
- 2. Pollutant removal efficiencies per Contech Engineered Solutions Jellyfish Filter Performance testing results.

APPENDIX A

(Bound Separately)

APPENDIX B

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Smoothing Yes

State New Hampshire

Location

Longitude 70.808 degrees West **Latitude** 43.075 degrees North

Elevation 0 feet

Date/Time Tue, 29 Jun 2021 09:16:17 -0400

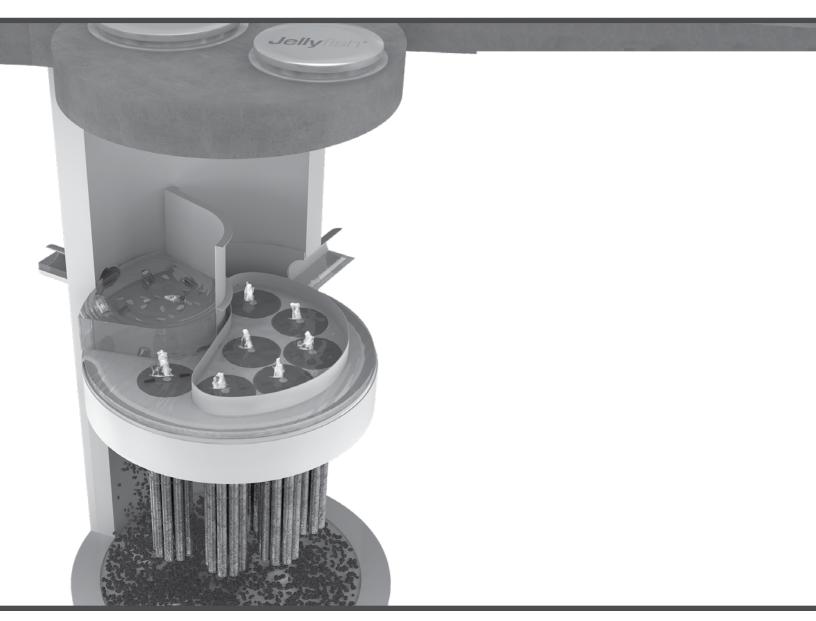
Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.26	0.40	0.50	0.65	0.82	1.04	1yr	0.70	0.98	1.21	1.56	2.03	2.66	2.92	1yr	2.35	2.81	3.21	3.94	4.54	1yr
2yr	0.32	0.50	0.62	0.81	1.02	1.30	2yr	0.88	1.18	1.51	1.94	2.49	3.21	3.57	2yr	2.84	3.43	3.93	4.67	5.32	2yr
5yr	0.37	0.58	0.73	0.97	1.24	1.60	5yr	1.07	1.46	1.88	2.43	3.14	4.07	4.57	5yr	3.60	4.40	5.03	5.93	6.70	5yr
10yr	0.41	0.64	0.81	1.11	1.44	1.88	10yr	1.25	1.72	2.22	2.88	3.74	4.87	5.53	10yr	4.31	5.31	6.07	7.10	7.98	10yr
25yr	0.47	0.75	0.96	1.32	1.76	2.32	25yr	1.52	2.13	2.76	3.61	4.73	6.17	7.10	25yr	5.46	6.82	7.78	9.02	10.06	25yr
50yr	0.53	0.85	1.09	1.52	2.05	2.74	50yr	1.77	2.51	3.27	4.30	5.65	7.40	8.58	50yr	6.55	8.25	9.40	10.81	11.99	50yr
100yr	0.60	0.97	1.25	1.76	2.39	3.22	100yr	2.06	2.96	3.86	5.11	6.74	8.86	10.38	100yr	7.84	9.98	11.35	12.96	14.30	100yr
200yr	0.67	1.09	1.41	2.02	2.79	3.80	200yr	2.41	3.49	4.58	6.09	8.06	10.62	12.55	200yr	9.40	12.07	13.71	15.54	17.05	200yr
500yr	0.79	1.30	1.69	2.45	3.43	4.71	500yr	2.96	4.34	5.71	7.65	10.19	13.50	16.15	500yr	11.95	15.53	17.61	19.77	21.55	500yr

Lower Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.23	0.36	0.44	0.59	0.73	0.89	1yr	0.63	0.87	0.92	1.32	1.66	2.23	2.53	1yr	1.97	2.43	2.85	3.16	3.88	1yr
2yr	0.32	0.49	0.60	0.81	1.00	1.19	2yr	0.86	1.16	1.37	1.82	2.34	3.05	3.46	2yr	2.70	3.32	3.82	4.55	5.07	2yr
5yr	0.35	0.54	0.67	0.92	1.17	1.40	5yr	1.01	1.37	1.61	2.13	2.74	3.80	4.21	5yr	3.36	4.05	4.71	5.54	6.26	5yr
10yr	0.39	0.59	0.73	1.03	1.32	1.60	10yr	1.14	1.56	1.81	2.40	3.07	4.38	4.89	10yr	3.88	4.70	5.46	6.43	7.22	10yr
25yr	0.44	0.67	0.83	1.19	1.56	1.90	25yr	1.35	1.86	2.10	2.78	3.56	4.70	5.94	25yr	4.16	5.72	6.69	7.84	8.73	25yr
50yr	0.48	0.73	0.91	1.31	1.77	2.17	50yr	1.53	2.12	2.35	3.10	3.97	5.31	6.88	50yr	4.70	6.61	7.80	9.11	10.08	50yr
100yr	0.54	0.81	1.02	1.47	2.02	2.47	100yr	1.74	2.42	2.63	3.45	4.40	5.96	7.96	100yr	5.27	7.65	9.09	10.60	11.64	100yr
200yr	0.59	0.89	1.13	1.64	2.29	2.82	200yr	1.98	2.76	2.94	3.83	4.86	6.67	9.21	200yr	5.91	8.85	10.59	12.34	13.46	200yr
500yr	0.69	1.03	1.32	1.92	2.73	3.38	500yr	2.36	3.30	3.41	4.39	5.56	7.76	11.16	500yr	6.87	10.73	12.98	15.12	16.29	500yr

Upper Confidence Limits


	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.28	0.44	0.54	0.72	0.89	1.08	1yr	0.77	1.06	1.26	1.75	2.21	3.00	3.14	1yr	2.66	3.02	3.58	4.37	5.05	1yr
2yr	0.33	0.52	0.64	0.86	1.06	1.26	2yr	0.92	1.24	1.48	1.96	2.51	3.43	3.69	2yr	3.03	3.54	4.07	4.82	5.64	2yr
5yr	0.40	0.61	0.76	1.05	1.33	1.61	5yr	1.15	1.58	1.88	2.53	3.24	4.33	4.93	5yr	3.84	4.74	5.36	6.34	7.13	5yr
10yr	0.47	0.71	0.89	1.24	1.60	1.96	10yr	1.38	1.92	2.27	3.09	3.93	5.33	6.16	10yr	4.72	5.92	6.75	7.80	8.71	10yr
25yr	0.57	0.87	1.08	1.54	2.03	2.55	25yr	1.75	2.49	2.93	4.05	5.10	7.79	8.26	25yr	6.90	7.95	9.02	10.27	11.35	25yr
50yr	0.66	1.01	1.26	1.81	2.43	3.10	50yr	2.10	3.03	3.57	4.96	6.24	9.76	10.34	50yr	8.64	9.94	11.25	12.63	13.88	50yr
100yr	0.78	1.18	1.47	2.13	2.92	3.77	100yr	2.52	3.68	4.34	6.10	7.64	12.21	12.94	100yr	10.81	12.44	14.02	15.57	16.99	100yr
200yr	0.91	1.37	1.73	2.51	3.50	4.59	200yr	3.02	4.49	5.29	7.51	9.36	15.32	16.21	200yr	13.56	15.59	17.49	19.17	20.80	200yr
500yr	1.12	1.67	2.15	3.13	4.44	5.95	500yr	3.84	5.81	6.86	9.90	12.27	20.70	21.84	500yr	18.32	21.00	23.45	25.25	27.19	500yr

APPENDIX C

Jellyfish® Filter Maintenance Guide

JELLYFISH® FILTER INSPECTION & MAINTENANCE GUIDE

Jellyfish units are often just one of many structures in a more comprehensive stormwater drainage and treatment system.

In order for maintenance of the Jellyfish filter to be successful, it is imperative that all other components be properly maintained. The maintenance and repair of upstream facilities should be carried out prior to Jellyfish maintenance activities.

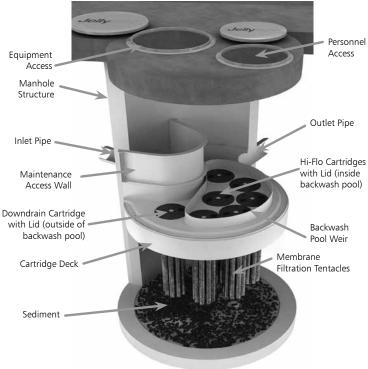
In addition to considering upstream facilities, it is also important to correct any problems identified in the drainage area. Drainage area concerns may include: erosion problems, heavy oil loading, and discharges of inappropriate materials.

TABLE OF CONTENTS

Inspection and Maintenance Overview	3
Inspection Procedure	3
Maintenance Procedure	4
Cartridge Assembly & Cleaning	5
Inspection Process	

1.0 Inspection and Maintenance Overview

The primary purpose of the Jellyfish® Filter is to capture and remove pollutants from stormwater runoff. As with any filtration system, these pollutants must be removed to maintain the filter's maximum treatment performance. Regular inspection and maintenance are required to insure proper functioning of the system.


Maintenance frequencies and requirements are site specific and vary depending on pollutant loading. Additional maintenance activities may be required in the event of non-storm event runoff, such as base-flow or seasonal flow, an upstream chemical spill or due to excessive sediment loading from site erosion or extreme runoff events. It is a good practice to inspect the system after major storm events.

Inspection activities are typically conducted from surface observations and include:

- Observe if standing water is present
- Observe if there is any physical damage to the deck or cartridge lids
- Observe the amount of debris in the Maintenance Access Wall (MAW) or inlet bay for vault systems

Maintenance activities include:

- Removal of oil, floatable trash and debris
- Removal of collected sediments
- Rinsing and re-installing the filter cartridges
- Replace filter cartridge tentacles, as needed

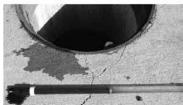
Note: Separator Skirt not shown

2.0 Inspection Timing

Inspection of the Jellyfish Filter is key in determining the maintenance requirements for, and to develop a history of, the site's pollutant loading characteristics. In general, inspections should be performed at the times indicated below; or per the approved project stormwater quality documents (if applicable), whichever is more frequent.

- 1. A minimum of quarterly inspections during the first year of operation to assess the sediment and floatable pollutant accumulation, and to ensure proper functioning of the system.
- 2. Inspection frequency in subsequent years is based on the inspection and maintenance plan developed in the first year of operation. Minimum frequency should be once per year.
- 3. Inspection is recommended after each major storm event.
- 4. Inspection is required immediately after an upstream oil, fuel or other chemical spill.

3.0 Inspection Procedure


The following procedure is recommended when performing inspections:

- 1. Provide traffic control measures as necessary.
- 2. Inspect the MAW or inlet bay for floatable pollutants such as trash, debris, and oil sheen.
- Measure oil and sediment depth in several locations, by lowering a sediment probe until contact is made with the floor of the structure. Record sediment depth, and presences of any oil layers.
- 4. Inspect cartridge lids. Missing or damaged cartridge lids to be replaced.
- 5. Inspect the MAW (where appropriate), cartridge deck and receptacles, and backwash pool weir, for damaged or broken components.

3.1 Dry weather inspections

- Inspect the cartridge deck for standing water, and/or sediment on the deck.
- No standing water under normal operating conditions.
- Standing water inside the backwash pool, but not outside the backwash pool indicates, that the filter cartridges need to be rinsed.

Inspection Utilizing Sediment Probe

- Standing water outside the backwash pool is not anticipated and may indicate a backwater condition caused by high water elevation in the receiving water body, or possibly a blockage in downstream infrastructure.
- Any appreciable sediment (≥1/16") accumulated on the deck surface should be removed.

3.2 Wet weather inspections

- Observe the rate and movement of water in the unit.
 Note the depth of water above deck elevation within the MAW or inlet bay.
- Less than 6 inches, flow should be exiting the cartridge lids of each of the draindown cartridges (i.e. cartridges located outside the backwash pool).
- Greater than 6 inches, flow should be exiting the cartridge lids of each of the draindown cartridges and each of the hi-flo cartridges (i.e. cartridges located inside the backwash pool), and water should be overflowing the backwash pool weir.
- 18 inches or greater and relatively little flow is exiting the cartridge lids and outlet pipe, this condition indicates that the filter cartridges need to be rinsed.

4.0 Maintenance Requirements

Required maintenance for the Jellyfish Filter is based upon results of the most recent inspection, historical maintenance records, or the site specific water quality management plan; whichever is more frequent. In general, maintenance requires some combination of the following:

- Sediment removal for depths reaching 12 inches or greater, or within 3 years of the most recent sediment cleaning, whichever occurs sooner.
- 2. Floatable trash, debris, and oil removal.
- 3. Deck cleaned and free from sediment.
- 4. Filter cartridges rinsed and re-installed as required by the most recent inspection results, or within 12 months of the most recent filter rinsing, whichever occurs sooner.
- 5. Replace tentacles if rinsing does not restore adequate hydraulic capacity, remove accumulated sediment, or if damaged or missing. It is recommended that tentacles should remain in service no longer than 5 years before replacement.
- 6. Damaged or missing cartridge deck components must be repaired or replaced as indicated by results of the most recent inspection.
- 7. The unit must be cleaned out and filter cartridges inspected immediately after an upstream oil, fuel, or chemical spill. Filter cartridge tentacles should be replaced if damaged or compromised by the spill.

5.0 Maintenance Procedure

The following procedures are recommended when maintaining the Jellyfish Filter:

- 1. Provide traffic control measures as necessary.
- Open all covers and hatches. Use ventilation equipment as required, according to confined space entry procedures. Caution: Dropping objects onto the cartridge deck may cause damage.

- 3. Perform Inspection Procedure prior to maintenance activity.
- 4. To access the cartridge deck for filter cartridge service, descend into the structure and step directly onto the deck. Caution: Do not step onto the maintenance access wall (MAW) or backwash pool weir, as damage may result. Note that the cartridge deck may be slippery.
- Maximum weight of maintenance crew and equipment on the cartridge deck not to exceed 450 lbs.

5.1 Filter Cartridge Removal

- 1. Remove a cartridge lid.
- Remove cartridges from the deck using the lifting loops in the cartridge head plate. Rope or a lifting device (available from Contech) should be used. Caution: Should a snag occur, do not force the cartridge upward as damage to the tentacles may result. Wet cartridges typically weigh between 100 and 125 lbs.
- 3. Replace and secure the cartridge lid on the exposed empty receptacle as a safety precaution. Contech does not recommend exposing more than one empty cartridge receptacle at a time.

5.2 Filter Cartridge Rinsing

1. Remove all 11 tentacles from the cartridge head plate. Take care not to lose or damage the O-ring seal as well as the plastic threaded nut and connector.

- Position tentacles in a container (or over the MAW), with the threaded connector (open end) facing down, so rinse water is flushed through the membrane and captured in the container.
- 3. Using the Jellyfish rinse tool (available from Contech) or a low-pressure garden hose sprayer, direct water spray onto the tentacle membrane, sweeping from top to bottom along the length of the tentacle. Rinse until all sediment is removed from the membrane. Caution: Do not use a high pressure sprayer or focused stream of water on the membrane. Excessive water pressure may damage the membrane.

- 4. Collected rinse water is typically removed by vacuum hose.
- 5. Reassemble cartridges as detailed later in this document. Reuse O-rings and nuts, ensuring proper placement on each tentacle.

5.3 Sediment and Flotables Extraction

- 1. Perform vacuum cleaning of the Jellyfish Filter only after filter cartridges have been removed from the system. Access the lower chamber for vacuum cleaning only through the maintenance access wall (MAW) opening. Be careful not to damage the flexible plastic separator skirt that is attached to the underside of the deck on manhole systems. Do not lower the vacuum wand through a cartridge receptacle, as damage to the receptacle will result.
- Vacuum floatable trash, debris, and oil, from the MAW opening or inlet bay. Alternatively, floatable solids may be removed by a net or skimmer.

Vacuuming Sump Through MAW

- 3. Pressure wash cartridge deck and receptacles to remove all sediment and debris. Sediment should be rinsed into the sump area. Take care not to flush rinse water into the outlet pipe.
- Remove water from the sump area. Vacuum or pump equipment should only be introduced through the MAW or inlet bay.
- 5. Remove the sediment from the bottom of the unit through the MAW or inlet bay opening.

Vacuuming Sump Through MAW

6. For larger diameter Jellyfish Filter manholes (≥8-ft) and some vaults complete sediment removal may be facilitated by removing a cartridge lid from an empty receptacle and inserting a jetting wand (not a vacuum wand) through the receptacle. Use the sprayer to rinse loosened sediment toward the vacuum hose in the MAW opening, being careful not to damage the receptacle.

5.4 Filter Cartridge Reinstallation and Replacement

- Cartridges should be installed after the deck has been cleaned.
 It is important that the receptacle surfaces be free from grit and debris.
- 2. Remove cartridge lid from deck and carefully lower the filter cartridge into the receptacle until head plate gasket is seated squarely in receptacle. Caution: Do not force the cartridge downward; damage may occur.
- Replace the cartridge lid and check to see that both male threads are properly seated before rotating approximately 1/3 of a full rotation until firmly seated. Use of an approved rim gasket lubricant may facilitate installation. See next page for additional details.
- 4. If rinsing is ineffective in removing sediment from the tentacles, or if tentacles are damaged, provisions must be made to replace the spent or damaged tentacles with new tentacles. Contact Contech to order replacement tentacles.

5.5 Chemical Spills

Caution: If a chemical spill has been captured, do not attempt maintenance. Immediately contact the local hazard response agency and contact Contech.

5.6 Material Disposal

The accumulated sediment found in stormwater treatment and conveyance systems must be handled and disposed of in accordance with regulatory protocols. It is possible for sediments to contain measurable concentrations of heavy metals and organic chemicals (such as pesticides and petroleum products). Areas with the greatest potential for high pollutant loading include industrial areas and heavily traveled roads. Sediments and water must be disposed of in accordance with all applicable waste disposal regulations. When scheduling maintenance, consideration must be made for the disposal of solid and liquid wastes. This typically requires coordination with a local landfill for solid waste disposal. For liquid waste disposal a number of options are available including a municipal vacuum truck decant facility, local waste water treatment plant or on-site treatment and discharge.

Jellyfish Filter Components & Filter Cartridge Assembly and Installation

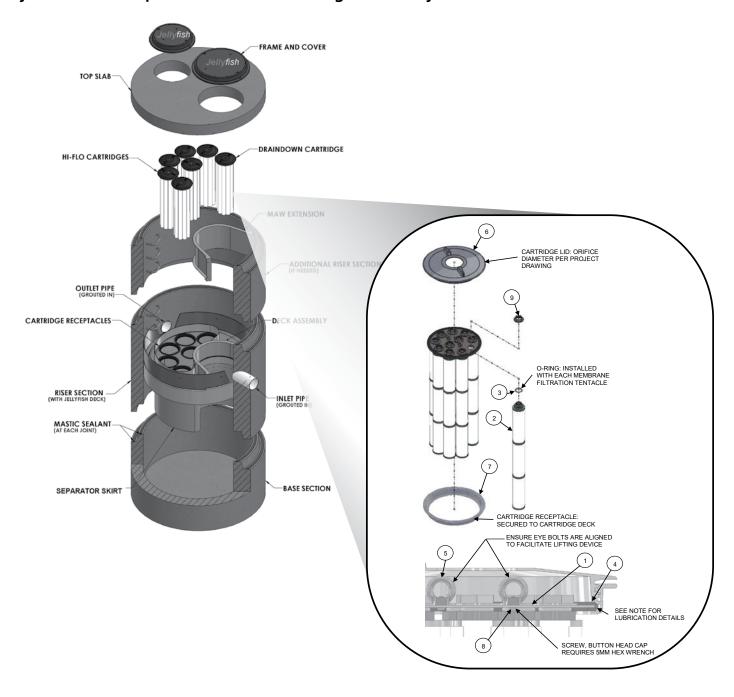


TABLE 1: BOM

ITEM NO.	DESCRIPTION
1	JF HEAD PLATE
2	JF TENTACLE
3	JF O-RING
	JF HEAD PLATE
4	GASKET
5	JF CARTRIDGE EYELET
6	JF 14IN COVER
7	JF RECEPTACLE
	BUTTON HEAD CAP
8	SCREW M6X14MM SS
9	JF CARTRIDGE NUT

TABLE 2: APPROVED GASKET LUBRICANTS

PART NO.	MFR	DESCRIPTION
78713	LA-CO	LUBRI-JOINT
40501	HERCULES	DUCK BUTTER
30600	OATEY	PIPE LUBRICANT
PSLUBXL1Q	PROSELECT	PIPE JOINT LUBRICANT

NOTES:

Head Plate Gasket Installation:

Install Head Plate Gasket (Item 4) onto the Head Plate (Item 1) and liberally apply a lubricant from Table 2: Approved Gasket Lubricants onto the gasket where it contacts the Receptacle (Item 7) and Cartridge Lide (ITem 6). Follow Lubricant manufacturer's instructions.

Lid Assembly:

Rotate Cartridge Lid counter-clockwise until both male threads drop down and properly seat. Then rotate Cartridge Lid clock-wise approximately one-third of a full rotation until Cartridge Lid is firmly secured, creating a watertight seal.

	Jellyfish	Filter Inspe	ction and M	laintenance Lo	og	
Owner:				Jellyfish Model No:		
Location:				GPS Coordinates:		
Land Use:	Commercial:		Industrial:		Service Station:	
Ro	oadway/Highway:		Airport:		Residential:	
Date/Time:						
Inspector:						
Maintenance Contractor:						
Visible Oil Present: (Y/N)						
Oil Quantity Removed:						
Floatable Debris Present: (Y/N)						
Floatable Debris Removed: (Y/N)						
Water Depth in Backwash Pool						
Draindown Cartridges externally rinsed and recommissioned: (Y/N)						
New tentacles put on Draindown Cartridges: (Y/N)						
Hi-Flo Cartridges externally rinsed and recommissioned: (Y/N)						
New tentacles put on Hi-Flo Cartridges: (Y/N)						
Sediment Depth Measured: (Y/N)						
Sediment Depth (inches or mm):						
Sediment Removed: (Y/N)						
Cartridge Lids intact: (Y/N)						
Observed Damage:						
Comments:						

CNTECH

800.338.1122 www.ContechES.com

Support

- Drawings and specifications are available at www.conteches.com/jellyfish.
- Site-specific design support is available from Contech Engineered Solutions.
- Find a Certified Maintenance Provider at www.conteches.com/ccmp

© 2021 Contech Engineered Solutions LLC, a QUIKRETE Company

Contech Engineered Solutions LLC provides site solutions for the civil engineering industry. Contech's portfolio includes bridges, drainage, sanitary sewer, stormwater, wastewater treatment and earth stabilization products. For information on other Contech segment offerings, visit ContechES.com or call 800.338.1122

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION. CONTECH MAKES NO WARRANTY WHATSOEVER, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH-SE CONTECH-SE CONDITIONS OF SALE (AVAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.

APPENDIX D

1/16/2023 **Underground Injection Control Project Report** 1 of 2

Project Number: 0036693 Site Number: 100330336

Responsible Party: BUILDING 119 (SITE 36) 5B6 PORTSMOUTH Name and Address: BUILDING 119 (SITE 36) 5B6

PEASE AIR FORCE BASE

PORTSMOUTH Mapit

Wellhead Protection Area: No Risk Level: DW SUPPLY WITHIN 1000' OR SITE IN SWPA

Assigned To: REGISTRATION Discovery Date: 04/12/2016

Eligibile: Eligibilty Determined on:

MTBE: N Brownfield: N

	Activities (1)								
Submittal Date	Submittal Description	Staff Assigned	Action Date	Action Description	Comments				
04/12/2016	UIC Application Received	LOCKER	04/26/2016	UIC Registration Issued	REGISTERED				

	Document Type	Document Title	Document Date	File Size
<u>4601803</u>	REGISTRATION	SITE #36 INJECTION REGISTRATION (5B6) ISSUED	04/26/2016	.08 MB

1/16/2023 **Underground Injection Control Project Report** 2 of 2 Project Number: 0036693 Site Number: 100330336 Responsible Party: BUILDING 119 (SITE 36) 5B6 PORTSMOUTH Name and Address: BUILDING 119 (SITE 36) 5B6 PEASE AIR FORCE BASE **PORTSMOUTH Mapit** Wellhead Protection Area: No Risk Level: DW SUPPLY WITHIN 1000' OR SITE IN SWPA Assigned To: REGISTRATION Discovery Date: 04/12/2016 Eligibile: Eligibilty Determined on:

Brownfield: N

No Vapor Recovery Information

MTBE: N

1/16/2023 **Superfund Site Project Report** 1 of 11 Site Number: 100330336 Project Number: 0004283 Name and Address: BUILDING 119 (SITE 36) Responsible Party: US AIR FORCE PEASE AIR FORCE BASE 2261 HUGHES AVE, STE 155 **PORTSMOUTH JBSA LACKLAND TX 78236-9853** Mapit PHONE: 210-395-9420 Wellhead Protection Area: Unknown Risk Level: DW SUPPLY WITHIN 1000' OR SITE IN SWPA Assigned To: SANDIN Discovery Date: 05/14/1993 Eligibile: Eligibilty Determined on: MTBE: N Brownfield: N **Activities (31)** Submittal Action Submittal Description Staff Assigned **Action Description** Date Date Comments Non-Permit GW Monitoring Result Received UNASSIGNED 06/09/2022 **Activity Documents (1)** Document **Document Type Document Title** Date File Size REPORT TO DES SITE 36 FALL 2021 SAMPLING EVENT DATA TRANSMITTAL 7-APR-2022 5.00 MB 5001486 06/09/2022 10/19/2021 Additional Information Received **UNASSIGNED Activity Documents (1)** Document **Document Type Document Title** Date File Size REPORT TO DES FINAL SS036 FAALL 2021 REMEDIAL ACTION-OPERATIONS FIELD WORK 4958065 10/19/2021 4.61 MB **NOTIFICATION** 10/23/2020 Annual Report Received **UNASSIGNED Activity Documents (1)** Document File Size **Document Type Document Title** Date REPORT DRAFT 2019 GROUNDWATER MONITORING REPORT 5.00 MB 4884500 10/23/2020 01/22/2019 UNASSIGNED Additional Information Received **Activity Documents (1)** Document **Document Type Document Title** Date File Size 4755436 REPORT TO DES FINAL IN SITU CHEMICAL OXIDATION PILOT STUDY COMPLETION REPORT 01/22/2019 5.00 MB

1/16/2023 **Superfund Site Project Report** 2 of 11 Site Number: 100330336 Project Number: 0004283 Name and Address: BUILDING 119 (SITE 36) Responsible Party: US AIR FORCE PEASE AIR FORCE BASE **2261 HUGHES AVE, STE 155 PORTSMOUTH JBSA LACKLAND TX 78236-9853 Mapit** PHONE: 210-395-9420 Wellhead Protection Area: Unknown Risk Level: DW SUPPLY WITHIN 1000' OR SITE IN SWPA Assigned To: SANDIN Discovery Date: 05/14/1993 Eligibilty Determined on: Eligibile: MTBE: N Brownfield: N **Activities (31)** Submittal Action Date **Submittal Description** Staff Assigned Date **Action Description** Comments 11/14/2018 Additional Information Received SANDIN 12/14/2018 TECHNICAL INFORMATION PROVIDED REPORT INCOMPLETE **Activity Documents (2)** Document **Document Type Document Title** Date File Size 4749416 CORRESPONDENCE DES COMMENTS 12.14.18 12/14/2018 .08 MB 4746936 REPORT TO DES DRAFT IN-SITU CHEMICAL OXIDATION PILOT STUDY COMPLETION REPORT 11/14/2018 5.00 MB 11/07/2018 Additional Information Received OTHER 11/13/2018 No Action Necessary (Report filed) WETLANDS VIOLATIONS CASE CLOSED

		Activity Documents (2)		
	Document Type	Document Title	Document Date	File Size
<u>4747011</u>	CORRESPONDENCE-FROM	WETLANDS CASE CLOSED	11/13/2018	.20 MB
<u>4746460</u>	REPORT TO DES	2018 WETLAND MONITORING REPORT	11/07/2018	2.90 MB

01/31/2018	Additional Information Received	UNASSIGNED			
		Activity Do	cumonte (1)		

	Activity Documents (1)					
	Document Type	Document Title	Document Date	File Size		
<u>4696966</u>	REPORT TO DES	FINAL IN SITU CHEMICAL OXIDATION PILOT STUDY	01/31/2018	5.00 MB		

1/16/2023			Superfund Site	Project Re	port				3 of 11
	Site Number:	100330336		P	roject Number:	0004283			
	e and Address:	BUILDING 119 (SITE 36) PEASE AIR FORCE BASE PORTSMOUTH	:	Res	ponsible Party:	U S AIR FORCE 2261 HUGHES AVE, STE 15 JBSA LACKLAND TX 78230	55 6-9853		
n n	<u>viapit</u>					PHONE: 210-395-9420			
Wellhead P	rotection Area:	Unknown			Risk Level:	DW SUPPLY WITHIN 1000'	OR SITE IN SW	/PA	
	Assigned To:	SANDIN		С	Discovery Date:	05/14/1993			
	Eligibile:			Eligibilty l	Determined on:				
	MTBE:	N			Brownfield:	N			
			Activit	ies (31)					
Submittal Date	Subm	ittal Description	Staff Assigned	Action Date	A	ction Description		Comments	
01/30/2018 A	dditional Informa	ation Received	UNASSIGNED						
			Activity Do	cuments (1)					
		Document Type	Document Title				Document Date	File Size	
	4696071 RE	EPORT TO DES	DRAFT IN SITU CHEMICAL	OXIDATION PII	OT STUDY IMI	PLEMENTATION REPORT	01/30/2018	5.00 MB	
12/20/2017 A	dditional Informa	ation Received	UNASSIGNED						
			Activity Do	cuments (1)					
		Document Type	Document Title				Document Date	File Size	
	4688637 RE	EPORT TO DES	2017 WETLAND MONITORIN	IG REPORT			12/20/2017	5.00 MB	
08/24/2017 Ad	dditional Informa	ation Received	UNASSIGNED						
01/27/2017 A	dditional Informa	ation Received	UNASSIGNED						

	Activity Documents (1)					
	Document Type	Document Title	Document Date	File Size		
4640648		RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION	01/27/2017	1.20 MB		
4040040	CORRESPONDENCE-10	RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION	01/21/2011	1.20 1016		

1/16/2023				Superfund Site	Project Rep	port				4 of 11
	Site Number:	100330336			Р	roject Number:	0004283			
Na	me and Address:	BUILDING 119 (SITE 36) PEASE AIR FORCE BASI PORTSMOUTH	.		Res	ponsible Party:	U S AIR FORCE 2261 HUGHES AVE, STE 1: JBSA LACKLAND TX 7823	55 6-9853		
	mapi .						PHONE: 210-395-9420			
Wellhead	Protection Area:	Unknown				Risk Level:	DW SUPPLY WITHIN 1000	OR SITE IN SW	PA	
	Assigned To:	SANDIN			D	iscovery Date:	05/14/1993			
	Eligibile:				Eligibilty [Determined on:				
	MTBE:	N				Brownfield:	N			
				Activit	ies (31)					
Submittal Date	Subm	nittal Description		Staff Assigned	Action Date	A	ction Description		Comments	
12/21/2016	Additional Inform	ation Received	OTHER							
				Activity Do	cuments (1)			Document		
		Document Type)	Document Title				Date	File Size	
	4635429 R	EPORT TO DES		2016 WETLAND MONITORIN	IG REPORT			12/21/2016	3.81 MB	
11/15/2016	Additional Inform	ation Received	UNASSIGNE)						
				Activity Do	cuments (1)					
		Document Type)	Document Title				Document Date	File Size	
	<u>4632437</u> R	EPORT TO DES		2015 ANNUAL REPORT				11/15/2016	5.00 MB	
11/02/2016	Additional Inform	ation Received	OTHER		11/16/2016	TECHNICAL IN	NFORMATION PROVIDED	RESTORATION PRICE	N PLAN APPROV	ED BY D.
				Activity Do	cuments (2)					

Document Title

WETLANDS RESTORATION PLAN APPROVAL

WETLAND RESTORATION PLAN LEE STREET SITE 36

Document Type

CORRESPONDENCE

REPORT TO DES

4637567

<u>4630201</u>

Document Date

11/16/2016

11/01/2016

File Size

.22 MB

5.00 MB

1/16/2023 **Superfund Site Project Report** 5 of 11 Site Number: 100330336 Project Number: 0004283 Name and Address: BUILDING 119 (SITE 36) Responsible Party: US AIR FORCE PEASE AIR FORCE BASE **2261 HUGHES AVE, STE 155 PORTSMOUTH JBSA LACKLAND TX 78236-9853 Mapit** PHONE: 210-395-9420 Wellhead Protection Area: Unknown Risk Level: DW SUPPLY WITHIN 1000' OR SITE IN SWPA Assigned To: SANDIN Discovery Date: 05/14/1993 Eligibilty Determined on: Eligibile: MTBE: N Brownfield: N **Activities (31)** Submittal Action Date **Submittal Description** Staff Assigned Date Action Description Comments 10/27/2016 HILTON 11/04/2016 Not Approved ISCO FAILURE NOT EVALUATED. DES Additional Information Received DID NOT APPROVE ORIGINALLY, CANNOT CONCUR NOW **Activity Documents (2)** Document **Document Type Document Title** Date File Size CORRESPONDENCE DES COMMENTS 11.4.16 TO ISCO RESTART PLAN 10.27.16 .08 MB 4630401 11/04/2016 4629781 REPORT TO DES IN SITU CHEMICAL OXIDATION (ISCO) INJECTIONS RESTART PLAN 1.75 MB 10/27/2016 10/27/2016 Additional Information Received OTHER 11/01/2016 No Action Necessary (Report filed) WETLANDS BUREAU TO OVERSEE

							VIOLATIONS	
Activity Documents (1)								
		Document Type	e	Document Title			Document Date	File Size
	<u>4629780</u>	CORRESPONDENCE-TO		RESPONSE TO NHDES LRM	1 REGARDING	ISCO	10/25/2016	.13 MB
08/10/2016	Additional Info	ormation Received	UNASSIGNED)				

		Activity Documents (1)		
	Document Type	Document Title	Document Date	File Size
<u>4616481</u>	REPORT TO DES	DRAFT LONG-TERM MONITORING PLAN REVISION 5	08/10/2016	5.00 MB

1/16/2023 **Superfund Site Project Report** 6 of 11 Site Number: 100330336 Project Number: 0004283 Name and Address: BUILDING 119 (SITE 36) Responsible Party: US AIR FORCE PEASE AIR FORCE BASE 2261 HUGHES AVE, STE 155 **PORTSMOUTH JBSA LACKLAND TX 78236-9853** Mapit PHONE: 210-395-9420 Wellhead Protection Area: Unknown Risk Level: DW SUPPLY WITHIN 1000' OR SITE IN SWPA Assigned To: SANDIN Discovery Date: 05/14/1993 Eligibile: Eligibilty Determined on: MTBE: N Brownfield: N **Activities (31)** Submittal Action Submittal Description Staff Assigned **Action Description** Comments Date Date HILTON TECHNICAL INFORMATION PROVIDED AF PROCEEDING WITHOUT REGULATOR 07/27/2016 Additional Information Received 09/14/2016 CONCURRENCE. IMPLEMENTATION RESULTED IN WETLANDS VIOLATIONS **Activity Documents (2)** Document File Size **Document Type Document Title** Date CORRESPONDENCE **DES EMAIL 9.22.16** 4624264 09/22/2016 .07 MB FINAL ADDITIONAL INVESTIGATION AND PILOT STUDY WORK PLAN 01-JUL-2016 4614946 REPORT TO DES 07/27/2016 5.00 MB 06/09/2016 Additional Information Received HILTON 06/30/2016 No Action Necessary (Report filed) EPA TO ADDRESS **Activity Documents (1)** Document **Document Type Document Title** Date File Size CORRESPONDENCE-TO 4606629 RESPONSE TO COMMENTS (EPA) ON DRAFT SUPPLEMENTAL SITE INVEST .17 MB 06/09/2016 STATUS REPORT 22-APR-2016

		Activity Documents (1)			
	Document Type	Document Title	Document Date	File Size	
<u>4606630</u>		RESPONSE TO COMMENTS ON THE DRAFT SUPPPLEMENTAL SITE INVESTIGATION STATUS REPORT 22-APR-2016	06/09/2016	.19 MB	

06/30/2016

Not Approved

SEE 6.30.16 PBC LETTER ATTACHED TO

DRAFT PSWP

HILTON

06/09/2016

Additional Information Received

Site Number: 100330336 Project Number: 0004283

Name and Address: BUILDING 119 (SITE 36)

PEASE AIR FORCE BASE PORTSMOUTH

Mapit

Responsible Party: US AIR FORCE

2261 HUGHES AVE, STE 155 JBSA LACKLAND TX 78236-9853

PHONE: 210-395-9420

Wellhead Protection Area: Unknown Risk Level: DW SUPPLY WITHIN 1000' OR SITE IN SWPA

Assigned To: SANDIN Discovery Date: 05/14/1993

Eligibile: Eligibilty Determined on:

MTBE: N Brownfield: N

	Activities (31)								
Submittal Date	Submittal Description	Staff Assigned	Action Date	Action Description	Comments				
06/09/2016	Work Plan Received	HILTON	06/30/2016		PREVIOUS COMMENTS UNRESOLVED, DES DOES NOT CONCUR WITH APPROACH AS PROPOSED. PROGRAM- WIDE LETTTER OF 6.30.16 APPLIES				

	Activity Documents (3)										
	Document Type	Document Title	Document Date	File Size							
<u>4624250</u>	CORRESPONDENCE	EMAIL TRANSMITING DES 6.30.16 LETTER	06/30/2016	.04 MB							
4624249	CORRESPONDENCE	DES LETTER 6.30.16	06/30/2016	.04 MB							
<u>4606631</u>	REPORT TO DES	DRAFT ADDITIONAL INVESTIGATION AND PILOT STUDY WORK PLAN 01-JUN-2016	06/09/2016	5.00 MB							

06/05/2015	Additional Information Received	UNASSIGNED		
01/27/2015	Additional Information Received	HILTON	03/31/2015	DES EMAIL DETAILING REPORT AND CONCEPTUAL SITE MODEL DEFICIENCIES

	Activity Documents (2)								
	Document Type	Document Title	Document Date	File Size					
<u>4541861</u>	CORRESPONDENCE	DES EMAIL COMMENTS 3.31.15 TO 1.26.15 SSI STATUS REPORT	03/31/2015	.06 MB					
<u>4535965</u>		SUPPLEMENTAL SITE INVESTIGATION STATUS REPORT SITE 36 SS036 BUILDING 119 26-JAN-2015	01/27/2015	5.00 MB					

Project Number: 0004283 Site Number: 100330336

Name and Address: BUILDING 119 (SITE 36)

PEASE AIR FORCE BASE

Mapit

PORTSMOUTH

Responsible Party: US AIR FORCE

2261 HUGHES AVE, STE 155 JBSA LACKLAND TX 78236-9853

PHONE: 210-395-9420

Wellhead Protection Area: Unknown Risk Level: DW SUPPLY WITHIN 1000' OR SITE IN SWPA

Assigned To: SANDIN Discovery Date: 05/14/1993

Eligibile: Eligibilty Determined on:

MTBE: N Brownfield: N

	Activities (31)								
Submittal Date	Submittal Description	Staff Assigned	Action Date	Action Description	Comments				
02/10/2014	Additional Information Received	HILTON	10/02/2014		DES EMAIL COMMENTS TO SITE STATUS AND WORK THROUGH SUMMER 2014				

	Activity Documents (4)										
	Document Type	Document Title	Document Date	File Size							
<u>4520591</u>	CORRESPONDENCE	SITE 36 ADDITIONAL COMMENTS-CONCERNS	11/03/2014	.08 MB							
<u>4521795</u>	CORRESPONDENCE	10-2-14 DES EMAIL	10/02/2014	.07 MB							
<u>4487323</u>	CORRESPONDENCE	SITE 36 STATUS REPORT AND WORK PLAN; DES COMMENTS	03/17/2014	.05 MB							
4484102	REPORT TO DES	STATUS REPORT AND SUPPLEMENTAL SITE INVESTIGATION WORK PLAN ADDENDUM 10-FEB-2014	02/10/2014	3.72 MB							

12/13/2012	Additional Information Received	HILTON	12/13/2012	TECHNICAL INFORMATION PROVIDED	S HILTON HELD CONF CALL WITH SHAW
					TO DISCUSS HYDROPUNCH DRILL &
					SAMPLE DEPTHS.

	Activity Documents (1)							
	Document Type	Document Title	Document Date	File Size				
4424839	CORRESPONDENCE-FROM	SITE 36 S HILTON DEC 13 2012 EMAIL TO SHAW ENV	12/13/2012	.03 MB				

1/16/2023 Superfund Site Project Report 9 of 11

Site Number: 100330336 Project Number: 0004283

Name and Address: BUILDING 119 (SITE 36)

PEASE AIR FORCE BASE

Mapit

PORTSMOUTH

•

Responsible Party: US AIR FORCE

2261 HUGHES AVE, STE 155 JBSA LACKLAND TX 78236-9853

PHONE: 210-395-9420

Wellhead Protection Area: Unknown Risk Level: DW SUPPLY WITHIN 1000' OR SITE IN SWPA

Assigned To: SANDIN Discovery Date: 05/14/1993

Eligibile: Eligibilty Determined on:

MTBE: N Brownfield: N

	Activities (31)									
Submittal Date	Submittal Description	Staff Assigned	Action Date	Action Description	Comments					
11/09/2012	Additional Information Received	HILTON	12/13/2012		SEE DES TELE CONFERENCE E-MAIL DATED 13-DEC-2012					

		Activity Documents (1)		
	Document Type	Document Title	Document Date	File Size
<u>4422065</u>	REPORT TO DES	RESPONSE TO COMMENTS TABLE SUPPLEMENTAL SITE INVESTIGATION WORK PLAN 01-NOV-2012	11/09/2012	.14 MB

DEC 2012

	Activity Documents (1)					
	Document Type	Document Title	Document Date	File Size		
4422064	REPORT TO DES	DRAFT FINAL SUPPLEMENTAL SITE INVESTIGATION WORK PLAN 01-NOV-2012	11/09/2012	2.48 MB		

=

Activity Documents (3)							
	Document Type	Document Title	Document Date	File Size			
<u>4487465</u>	CORRESPONDENCE	SITE 36 COMMENTS TO AUG 2012 DRAFT SOIL GW CONF SAM.	09/13/2012	.05 MB			
<u>4487464</u>	CORRESPONDENCE	SITE 36 COVER TO COMMENTS SI WORK PLAN AUGUST 2012.	09/13/2012	.06 MB			
<u>4402604</u>	REPORT TO DES	DRAFT SUPPLEMENTAL SITE INVESTIGATION WORK PLAN 01-AUG-2012	08/03/2012	1.43 MB			

1/16/2023 **Superfund Site Project Report** 10 of 11

Project Number: 0004283 Site Number: 100330336

Name and Address: BUILDING 119 (SITE 36)

PEASE AIR FORCE BASE

Mapit

PORTSMOUTH

Responsible Party: US AIR FORCE

2261 HUGHES AVE, STE 155 JBSA LACKLAND TX 78236-9853

PHONE: 210-395-9420

Wellhead Protection Area: Unknown Risk Level: DW SUPPLY WITHIN 1000' OR SITE IN SWPA

Assigned To: SANDIN Discovery Date: 05/14/1993

Eligibile: Eligibilty Determined on:

MTBE: N Brownfield: N

	Activities (31)					
Submittal Date Submittal Description Staff Assigned Date Action Description Comments						
12/12/2011	Additional Information Received	UNASSIGNED				

Activity Documents (2)					
	Document Type	Document Title	Document Date	File Size	
<u>4543394</u>	CORRESPONDENCE	PEASE AFB; DES REVIEW OF WHITE PAPER FOR SITE 36	12/12/2011	.02 MB	
<u>4543395</u>	CORRESPONDENCE	CDES REVIEW WHITE PAPER FOR SITE 36	12/12/2011	.02 MB	

06/29/1993	Additional Information Received	SMITH	07/02/1993	Technical Report Approved	
04/07/1993	Additional Information Received	SMITH	05/14/1993	Comments to Waste Management Division	

1/16/2023 **Superfund Site Project Report** 11 of 11 Project Number: 0004283 Site Number: 100330336 Name and Address: BUILDING 119 (SITE 36) Responsible Party: US AIR FORCE PEASE AIR FORCE BASE **2261 HUGHES AVE, STE 155** JBSA LACKLAND TX 78236-9853 **PORTSMOUTH Mapit** PHONE: 210-395-9420 Wellhead Protection Area: Unknown Risk Level: DW SUPPLY WITHIN 1000' OR SITE IN SWPA Assigned To: SANDIN Discovery Date: 05/14/1993 Eligibile: Eligibilty Determined on: MTBE: N Brownfield: N

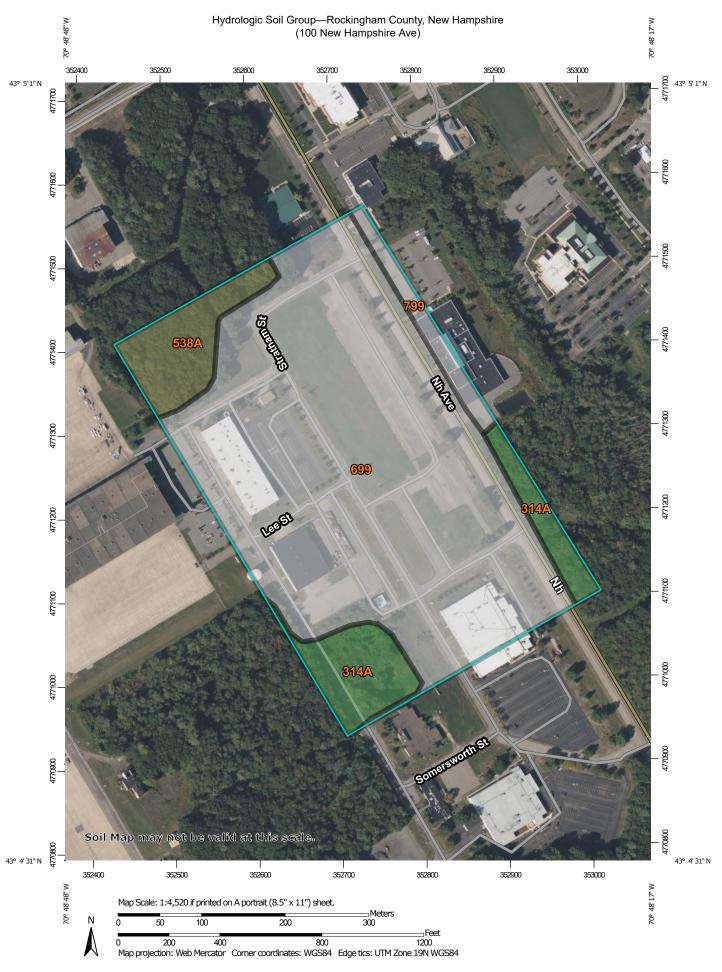
No Vapor Recovery Information

APPENDIX E

GENERAL CALCULATIONS - WQV and WQF (optional worksheet)

This worksheet may be useful when designing a BMP that does not fit into one of the specific worksheets already provided (i.e. for a technology which is not a stormwater wetland, infiltration practice, etc.)

Water Quality Volume (WQV)


10.55 ac	A = Area draining to the practice
7.99 ac	A _I = Impervious area draining to the practice
0.76 decimal	I = Percent impervious area draining to the practice, in decimal form
0.73 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)
7.72 ac-in	WQV= 1" x Rv x A
28,031 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")

Water Quality Flow (WQF)

1	inches	P = Amount of rainfall. For WQF in NH, P = 1".
0.73	inches	Q = Water quality depth. Q = WQV/A
97	unitless	CN = Unit peak discharge curve number. CN = $1000/(10+5P+10Q-10*[Q^2+1.25*Q*P]^{0.5})$
0.3	inches	S = Potential maximum retention. S = (1000/CN) - 10
0.055	inches	Ia = Initial abstraction. Ia = 0.2S
5.0	minutes	T_c = Time of Concentration
600.0	cfs/mi²/in	q_{u} is the unit peak discharge. Obtain this value from TR-55 exhibits 4-II and 4-III.
7.239	cfs	WQF = $q_u \times WQV$. Conversion: to convert "cfs/mi ² /in * ac-in" to "cfs" multiply by 1mi ² /640ac.

Designer's Notes:
This calculation represents the treatment train directed to Contech Jellyfish Treatment Unit.
· · · · · · · · · · · · · · · · · · ·
Full Treatment in compliance with Env-Wq 1508.10 shall be achieved by use of a proprietary flow-through
device. The proposed Contech Jellyfish Treatment Unit - Model#: JFPD0816 will be used to treat the WQF
as calculated in the above spreadsheet. The specified device is designed to treat up to 7.84 cfs of flow.

APPENDIX F

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:24.000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D **Soil Rating Polygons** Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D contrasting soils that could have been shown at a more detailed Streams and Canals Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Rockingham County, New Hampshire Survey Area Data: Version 24, Aug 31, 2021 Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. Not rated or not available Date(s) aerial images were photographed: Jun 19, 2020—Sep 20. 2020 **Soil Rating Points** The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background A/D imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
314A	Pipestone sand, 0 to 5 percent slopes	A/D	4.7	10.0%
538A	Squamscott fine sandy loam, 0 to 5 percent slopes	C/D	3.4	7.4%
699	Urban land		36.8	79.3%
799	Urban land-Canton complex, 3 to 15 percent slopes		1.5	3.3%
Totals for Area of Inter	rest	1	46.5	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Aggregation is the process by which a set of component attribute values is reduced to a single value that represents the map unit as a whole.

A map unit is typically composed of one or more "components". A component is either some type of soil or some nonsoil entity, e.g., rock outcrop. For the attribute being aggregated, the first step of the aggregation process is to derive one attribute value for each of a map unit's components. From this set of component attributes, the next step of the aggregation process derives a single value that represents the map unit as a whole. Once a single value for each map unit is derived, a thematic map for soil map units can be rendered. Aggregation must be done because, on any soil map, map units are delineated but components are not.

For each of a map unit's components, a corresponding percent composition is recorded. A percent composition of 60 indicates that the corresponding component typically makes up approximately 60% of the map unit. Percent composition is a critical factor in some, but not all, aggregation methods.

The aggregation method "Dominant Condition" first groups like attribute values for the components in a map unit. For each group, percent composition is set to the sum of the percent composition of all components participating in that group. These groups now represent "conditions" rather than components. The attribute value associated with the group with the highest cumulative percent composition is returned. If more than one group shares the highest cumulative percent composition, the corresponding "tie-break" rule determines which value should be returned. The "tie-break" rule indicates whether the lower or higher group value should be returned in the case of a percent composition tie. The result returned by this aggregation method represents the dominant condition throughout the map unit only when no tie has occurred.

Component Percent Cutoff: None Specified

Components whose percent composition is below the cutoff value will not be considered. If no cutoff value is specified, all components in the database will be considered. The data for some contrasting soils of minor extent may not be in the database, and therefore are not considered.

Tie-break Rule: Higher

The tie-break rule indicates which value should be selected from a set of multiple candidate values, or which value should be selected in the event of a percent composition tie.

25 Vaughan Mall Portsmouth, NH, 03801-4012

Tel: 603-436-6192 Fax: 603-431-4733

Drainage Review Memorandum

To: Peter Stith, Principal Planner, City of Portsmouth

cc: Patrick Crimmins, P.E., Neil Hansen, P.E. Tighe & Bond

From: Allison Rees, P.E., Robert Saunders, P.E., Matthew Hall

Date: March 1, 2023 (Third Review)

Re: Aviation Manufacturing Facility / 100 New Hampshire Avenue

Portsmouth, NH

Background/Purpose:

Underwood Engineers performed a peer review of the previous submittals of the Drainage Study/Drainage Design for the referenced project. Underwood Engineers (UE) received the latest response letter from Tighe& Bond dated February 23, 2023, along with revised plans and a drainage report revised February 23, 2023, prepared by Tighe & Bond Engineers, Portsmouth, NH.

Findings and Recommendations:

All previous comments have been addressed satisfactorily. We have no further comments.

P0595-015 February 23, 2023

Allison Rees, PE **Underwood Engineers** 25 Vaughan Mall Portsmouth, NH, 03801

Proposed Advanced Manufacturing Facility Re: 80 Rochester Avenue (100 New Hampshire Avenue)

Dear Client:

On behalf of Aviation Avenue Group, LLC we are pleased to submit an electronic copy of the following revised information in support of a Pease Development Authority (PDA) Site Plan Review and Subdivision for the above referenced project in response to your Drainage Review Memorandum dated February 14, 2023:

- Site Plan Set, last revised February 23, 2023;
- Drainage Analysis, last revised February 23, 2023

The following provides responses (in **bold**) to the Drainage Review Memorandum:

Drainage Analysis

16. Please elaborate further on the concern about pressurizing the underground drainage

The need for new 48" pipes is unclear. Pre- vs Post- being satisfied, the existing drainage functions with 36" maximum pipes on site, why are 48" pipes proposed post-treatment? Does the existing system demonstrate difficulties with conveying Q's in excess of 65+ CFS during large storm events?

To prevent pressurizing the overflow outlet pipe from the 60" HDPE underground detention system in larger storm events the outlet pipe was designed to be 48-inches so that in the 100-year storm event the peak elevation is not above the top of the 48" outlet pipe.

Upon further review of the drainage design it was determined a 36" outlet pipe from the underground detention system is adequate. The plans and drainage analysis have been revised accordingly.

If you have any questions or need any additional information, please contact Patrick Crimmins or Neil Hansen by phone at (603) 433-8818 or by email at pmcrimmins@tighebond.com / nahansen@tighebond.com.

Sincerely,

TIGHE & BOND, INC.

Patrick M. Crimmins, PE

Vice President

Neil A. Hansen, PE Project Manager

Copy: Aviation Avenue Group, LLC (via email)

Pease Development Authority (via email)

City of Portsmouth Planning Department (via email)

P0595-015 February 7, 2023

Allison Rees, PE Underwood Engineers 25 Vaughan Mall Portsmouth, NH, 03801

Re: **Proposed Advanced Manufacturing Facility 80 Rochester Avenue (100 New Hampshire Avenue)**

Dear Client:

On behalf of Aviation Avenue Group, LLC we are pleased to submit the following revised information in support of a Pease Development Authority (PDA) Site Plan Review and Subdivision for the above referenced project in response to your Drainage Review Memorandum dated January 31, 2023:

- One (1) full size & one (1) half size copy of the Site Plan Set, dated February 2, 2023;
- One (1) copy of the Drainage Analysis, dated February 2, 2023;

The following provides responses (in **bold**) to the Drainage Review Memorandum:

Site Plans

1. Insulation (Rigid) should be considered for the design, and notes and details added accordingly, particularly at crossings with other utilities, e.g. water, sewer.

Note #16 was added to Sheet C-103 stating, "All drainpipe with less than 4' of cover shall be insulated with rigid insulation."

- 2. There appear to be conflicts between the utility information obtained via survey and Portsmouth GIS. Some of the conflicts have the potential to create conflicts in the design and should be resolved as part of the design.
 - a. GIS-based utilities and their linetypes should be added to the legend, e.g XD for drainage.

The legend on Sheet C-103 has been revised to include the 'XD' linetype as the approximate location of existing drain per city of Portsmouth GIS information.

b. For example, DMH 2145 does not display (XD) inverts of connecting pipes nor does CB 1895 depict the invert of the XD drain line.

Notes were added to Sheet C-103 stating, "Prior to construction contractor shall perform test pit(s) to confirm the exact location / connection points of the existing drain line and notify engineer of findings".

3. Show the proposed water lines and the approximate inverts where they will cross the drain line.

The proposed water service connections and the approximate pipe elevations have been added to Sheet C-103. The proposed design should provide approximately 2.3' of separation between the proposed drain line and the proposed water services.

4. The two trash compactors are in areas graded toward the drainage system. Will (dedicated) containment catchbasins be positioned to take run-off from the immediate vicinity of the compactor area?

Runoff from each of the loading dock / trash compactor areas is directed to one of three offline deep sump catch basins. There are no drainage structures dedicated specifically to the trash compactor areas.

5. POS-01 is 84" in diameter according to its detail, PDMH-13, PDMH-16 and PDMH-17 are all depicted as the same size in plan, however 2 out of the 3 are labelled as 8' diameter. Please confirm the proposed structure dimensions.

The Proposed Outlet Structure-01 detail has been revised to correctly indicate the structure to be a 96-inch (8' dia) structure.

6. Existing structures to be cored for new connections should be reviewed to ensure that new pipes can be added as shown without compromising the overall structural capacity of the unit. e.g. CB 1838.

All the existing drainage structures within the Rochester Avenue Right of Way that were to be cored into have been revised to propose new drainage structures.

7. Proposed 12" pipe connecting PCB 18 and PDMH18 is shown crossing the existing (XD) drain referenced in comment 2b above and appears likely to result in conflict.

As a result of comments from the Portsmouth Technical Advisory Committee the proposed drainage within Rochester Avenue has been revised, which has eliminated this potential conflict.

- 8. Regarding CB 1838:
 - a. The outlet pipe appears to go easterly from the structure without a known connection to the existing or proposed system.

It is assumed this pipe connects to the existing drain line that runs north to south along Rochester Avenue. As called out in 2b. above, notes were added to Sheet C-103 stating, "Prior to construction contractor shall perform test pit(s) to confirm the exact location / connection points of the existing drain line and notify engineer of findings".

b. A dark line is portrayed on the plan extending northwesterly from CB1838, it is unclear what the line is intended to portray.

As a result of comments from the Portsmouth Technical Advisory Committee the proposed drainage within Rochester Avenue has been revised.

- 9. Existing DMH 1925:
 - a. Confirm and label the structure diameter and confirm the diameter of the structure is sufficient to accommodate the existing and proposed (increase) in pipe size(s).

Tighe & Bond inspected the structure on January 6, 2023, and determined that it is not a typical round structure. DMH 1925 is a vault type structure, in seemingly good condition. Due to the location of the manhole cover the exact dimensions of the vault were not able to be determined. The location of the proposed pipe that is being increased from a 36" RCP to a 48" HDPE enters the vault along a flat wall that is large enough to accommodate the larger pipe. Based on this we believe the structure can accept the proposed increased pipe size.

b. Confirm the condition and integrity of the structure is acceptable.

Tighe & Bond inspected the structure on January 6, 2023, and it is not a typical round structure it is a vault type structure, in seemingly good conditions. Based on this we believe the structure can accept the proposed increased pipe size.

10. Proposed trees are shown directly over a drain line and a catch basin in the northerly parking lot. These trees should be moved.

The landscape plan has been revised to remove these trees.

11. There are trees shown over the underground detention basin in the southern parking lot. Confirm the roots of the trees will not interfere with the underground drainage system.

The proposed detention system has approximately 4' of cover in the area where trees are proposed above it, and based on coordination with our landscape design team the proposed trees only have a root bulb of 30"-36".

12. The Header Row in the Underground Detention System detail should clarify it is a section cut through the length of the pipe for clarity.

The detail has been revised to identify the header row section is through the length of the header pipe.

Drainage Analysis

13. The introduction should clarify that only 1-inch of runoff will be treated.

The following has been added to the drainage analysis introduction:

"In accordance with Env-Wq 1500 the proposed Jellyfish Filter Treatment Unit was sized to treat the Water Quality Flow (WQF). The WQF is the peak flow rate associated with the Water Quality Volume (WQV), which is based on equivalent to the volume of runoff attributable to the first one (1) inch of rainfall."

14. The mitigation description indicates the jellyfish unit is designed to capture the 1-inch storm event only, and anything greater is untreated and bypassed. Please clarify how the 1-inch storm equates to a design year storm.

As stated in #13 above the WQF and WQV are based on the theoretical 1-inch storm event.

15. The Pre- and Post- areas should be revised to include the area draining to PA-1. The area draining to the existing closed drainage system along Rochester Avenue should be excluded. The Post- area should include that associated with PCB-18.

The drainage analysis has been revised to account for this area.

16. The need for new 48" pipes is unclear. Pre- vs Post- being satisfied, the existing drainage functions with 36" maximum pipes on site, why are 48" pipes proposed post-treatment? Does the existing system demonstrate difficulties with conveying Q's in excess of 65+ CFS during large storm events?

To prevent pressurizing the overflow outlet pipe from the 60" HDPE underground detention system in larger storm events the outlet pipe was designed to be 48-inches so that in the 100-year storm event the peak elevation is not above the top of the 48" outlet pipe.

17. Modify Subcatchment Post 1.0 to include 42" pipe between PDMH-08 and PDMH-09.

The t_c value for Post 1.0 has been revised to include the 42" pipe.

18. While the City of Portsmouth regulations require the applicate to demonstrate there is sufficient off-site downstream system capacity, it is not required by the PDA so no pipe sizing calculations are required. Have there been any reports of issues with capacity or clogging? Is the condition of the outfall pipe acceptable?

Through the design review process with the PDA, there has been no indication of any capacity issues with the drainage around the site or any concerns with the condition of the outfall pipe.

19. Will footing drains be connected to the system? If so, please provide ESHWT information.

The proposed finished floor elevation of the building is 58'. With the existing ground elevation of the site at roughly 54'. It is assumed that the any building foundation drains that would be proposed will be out of the ESHWT.

20. The City of Portsmouth regulations require removal of 50% of the Total Nitrogen. Nitrogen loading will be evaluated as part of the PTAP submission.

This project is under PDA jurisdiction and the PDA Land Use Control Regulations. The PDA Land Use Control Regulations do not have any requirement on total nitrogen removal or a PTAP submission requirement.

21. The project should design the drainage system for the proposed future parking spaces. Please update the impervious areas for all future proposed impervious in the post-calculations.

The proposed drainage design has considered the additional impervious area for the future parking areas.

22. PTAP Database: This project requires registration with the PTAP Database, the Applicant is requested to enter project related stormwater tracking information contained in the site plan application documents using the Great Bay Pollution Tracking and Accounting Program (PTAP) database (www.unh.edu/unhsc/ptapp) and submit the information with the resubmitted response to comments.

This project is under PDA jurisdiction and the PDA Land Use Control Regulations. The PDA Land Use Control Regulations do not have a PTAP submission requirement.

If you have any questions or need any additional information, please contact Patrick Crimmins or Neil Hansen by phone at (603) 433-8818 or by email at pmcrimmins@tighebond.com / nahansen@tighebond.com.

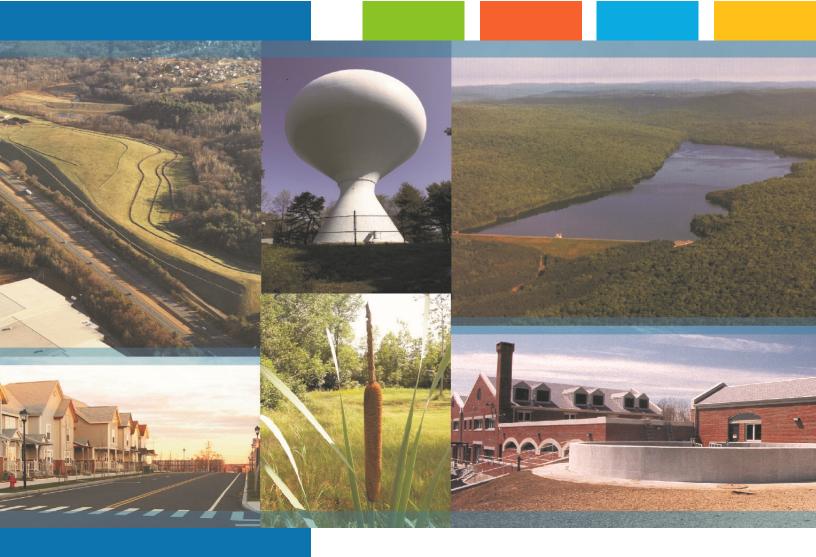
Sincerely,

TIGHE & BOND, INC.

Patrick M. Crimmins, PE

Vice President

Neil A. Hansen, PE


Project Manager

Copy: Aviation Avenue Group, LLC (via email)

Pease Development Authority (via email)

City of Portsmouth Planning Department (via email)

\\tighebond.com\\data\Data\Projects\P\P0595 Pro Con General Proposals\P0595-015 100 NH Avenue\Report_Evaluation\Drainage Report\Underwood - Comment Response.docx

Proposed Advanced Manufacturing Facility

Portsmouth, NH

Long Term Operation & Maintenance Plan

Prepared For:

Aviation Avenue Group, LLC 210 Commerce Way Suite 300 Portsmouth, NH 03801

December 19, 2022

Section 1	Long-Term Operation & Maintenance Plan	
1.1	Contact/Responsible Party	1-1
1.2	Maintenance Items	1-1
1.3	Overall Site Operation & Maintenance Schedule	1-2
	1.3.1 Disposal Requirements	1-2
1.4	Underground Detention System Maintenance Requirements	1-2
1.5	Jellyfish Filter Treatment Unit Maintenance Requirements	1-3
1.6	Snow & Ice Management for Standard Asphalt and Walkways	1-4
Section 2	Chloride Management Plan	
2.1	Background Information	2-1
2.2	Operational Guidelines – Chloride Management	2-1
	2.2.1 Winter Operator Certification Requirements	2-1
	2.2.2 Improved Weather Monitoring	2-1
	2.2.3 Equipment Calibration Requirements	2-2
	2.2.4 Increased Mechanical Removal Capabilities	2-2
2.3	Salt Usage Evaluation and Monitoring	2-3
2.4	Summary	2-3
Section 3	Invasive Species	

Section 4 Annual Updates and Log Requirements

Section 1 Long-Term Operation & Maintenance Plan

It is the intent of this Operation and Maintenance Plan to identify the areas of this site that need special attention and consideration, as well as implementing a plan to assure routine maintenance. By identifying the areas of concern as well as implementing a frequent and routine maintenance schedule the site will maintain a high-quality stormwater runoff.

1.1 Contact/Responsible Party

Joe Geoghegan Aviation Avenue Group, LLC 210 Commerce Way Suite 300 Portsmouth, NH 03801

Cell: 603 518.2113 Office: 207.650.0907

Email: Joe@tdmrk.com

(Note: The contact information for the Contact/Responsible Party shall be kept current. If ownership changes, the Operation and Maintenance Plan must be transferred to the new party.)

1.2 Maintenance Items

Maintenance of the following items shall be recorded:

- Litter/Debris Removal
- Landscaping
- Catch Basin / Sediment & Oil Separator Cleaning
- Pavement Sweeping
- Underground Detention Basin
- Jellyfish Filter Treatment Unit

The following maintenance items and schedule represent the minimum action required. Periodic site inspections shall be conducted, and all measures must be maintained in effective operating condition. The following items shall be observed during site inspection and maintenance:

- Inspect vegetated areas, particularly slopes and embankments for areas of erosion. Replant and restore as necessary
- · Inspect catch basins for sediment buildup
- Inspect site for trash and debris

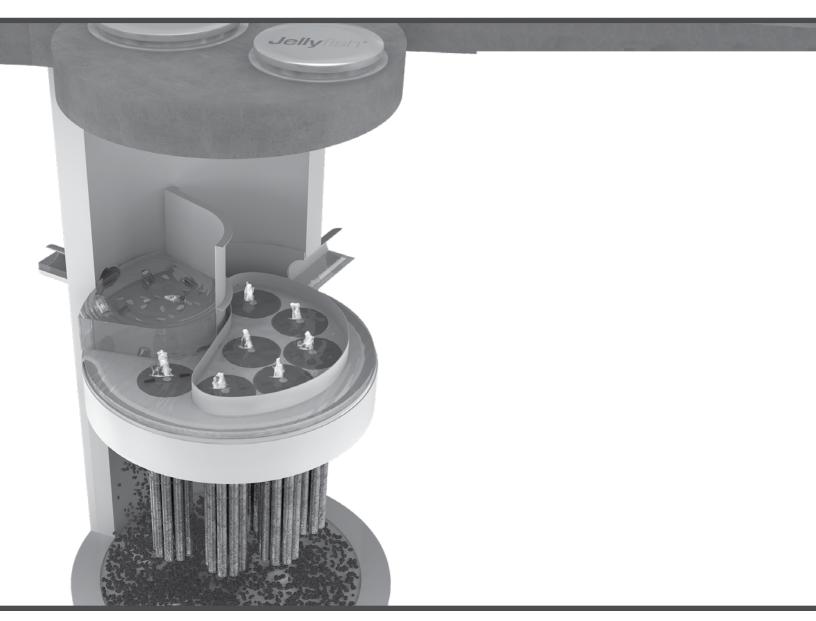
1.3 Overall Site Operation & Maintenance Schedule

Maintenance Item	Frequency of Maintenance		
Litter/Debris Removal	Weekly		
Pavement Sweeping			
- Sweep impervious areas to remove sand and litter.	Annually / as needed		
Landscaping	Maintained as required and mulched		
- Landscaped islands to be maintained and mulched.	each Spring		
Catch Basin (CB)	Bi-Annually / as needed when catch		
- CBs to be cleaned of solids and oils.	basin sumps		
Underground Detention Basin			
- Visual observation of sediment levels within system	Bi-Annually		
Jellyfish Filter Treatment Unit	- In accordance with Manufacturer's		
- Per manufacturer recommendations	Recommendations		

1.3.1 Disposal Requirements

Disposal of debris, trash, sediment and other waste material should be done at suitable disposal/recycling sites and in compliance with all applicable local, state and federal waste regulations.

1.4 Underground Detention System Maintenance Requirements


Underground Detention System Inspection/Maintenance Requirements				
Inspection/ Maintenance	Frequency	Action		
Monitor inlet and outlet structures for sediment accumulation	Two (2) times annually	- Trash, debris and sediment to be removed - Any required maintenance shall be addressed		
Deep Sump Catchbasins Two (2) times annually		Removal of sediment as warranted by inspection No less than once annually		

Monitor detention system	Two (2) times	- Trash, debris and sediment to be
for sediment	annually	removed
accumulation		- Any required maintenance shall
		be addressed

1.5 Jellyfish Filter Treatment Unit Maintenance Requirements

Jellyfish® Filter Maintenance Guide

JELLYFISH® FILTER INSPECTION & MAINTENANCE GUIDE

Jellyfish units are often just one of many structures in a more comprehensive stormwater drainage and treatment system.

In order for maintenance of the Jellyfish filter to be successful, it is imperative that all other components be properly maintained. The maintenance and repair of upstream facilities should be carried out prior to Jellyfish maintenance activities.

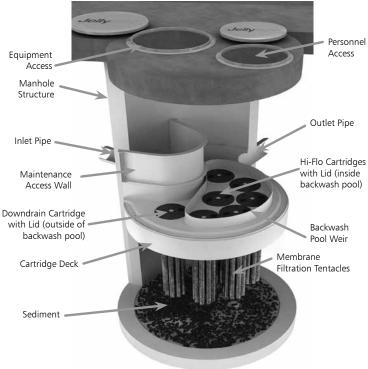
In addition to considering upstream facilities, it is also important to correct any problems identified in the drainage area. Drainage area concerns may include: erosion problems, heavy oil loading, and discharges of inappropriate materials.

TABLE OF CONTENTS

Inspection and Maintenance Overview	3
Inspection Procedure	3
Maintenance Procedure	4
Cartridge Assembly & Cleaning	5
Inspection Process	

1.0 Inspection and Maintenance Overview

The primary purpose of the Jellyfish® Filter is to capture and remove pollutants from stormwater runoff. As with any filtration system, these pollutants must be removed to maintain the filter's maximum treatment performance. Regular inspection and maintenance are required to insure proper functioning of the system.


Maintenance frequencies and requirements are site specific and vary depending on pollutant loading. Additional maintenance activities may be required in the event of non-storm event runoff, such as base-flow or seasonal flow, an upstream chemical spill or due to excessive sediment loading from site erosion or extreme runoff events. It is a good practice to inspect the system after major storm events.

Inspection activities are typically conducted from surface observations and include:

- Observe if standing water is present
- Observe if there is any physical damage to the deck or cartridge lids
- Observe the amount of debris in the Maintenance Access Wall (MAW) or inlet bay for vault systems

Maintenance activities include:

- Removal of oil, floatable trash and debris
- Removal of collected sediments
- Rinsing and re-installing the filter cartridges
- Replace filter cartridge tentacles, as needed

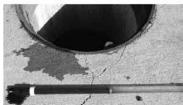
Note: Separator Skirt not shown

2.0 Inspection Timing

Inspection of the Jellyfish Filter is key in determining the maintenance requirements for, and to develop a history of, the site's pollutant loading characteristics. In general, inspections should be performed at the times indicated below; or per the approved project stormwater quality documents (if applicable), whichever is more frequent.

- 1. A minimum of quarterly inspections during the first year of operation to assess the sediment and floatable pollutant accumulation, and to ensure proper functioning of the system.
- 2. Inspection frequency in subsequent years is based on the inspection and maintenance plan developed in the first year of operation. Minimum frequency should be once per year.
- 3. Inspection is recommended after each major storm event.
- 4. Inspection is required immediately after an upstream oil, fuel or other chemical spill.

3.0 Inspection Procedure


The following procedure is recommended when performing inspections:

- 1. Provide traffic control measures as necessary.
- 2. Inspect the MAW or inlet bay for floatable pollutants such as trash, debris, and oil sheen.
- Measure oil and sediment depth in several locations, by lowering a sediment probe until contact is made with the floor of the structure. Record sediment depth, and presences of any oil layers.
- 4. Inspect cartridge lids. Missing or damaged cartridge lids to be replaced.
- 5. Inspect the MAW (where appropriate), cartridge deck and receptacles, and backwash pool weir, for damaged or broken components.

3.1 Dry weather inspections

- Inspect the cartridge deck for standing water, and/or sediment on the deck.
- No standing water under normal operating conditions.
- Standing water inside the backwash pool, but not outside the backwash pool indicates, that the filter cartridges need to be rinsed.

Inspection Utilizing Sediment Probe

- Standing water outside the backwash pool is not anticipated and may indicate a backwater condition caused by high water elevation in the receiving water body, or possibly a blockage in downstream infrastructure.
- Any appreciable sediment (≥1/16") accumulated on the deck surface should be removed.

3.2 Wet weather inspections

- Observe the rate and movement of water in the unit.
 Note the depth of water above deck elevation within the MAW or inlet bay.
- Less than 6 inches, flow should be exiting the cartridge lids of each of the draindown cartridges (i.e. cartridges located outside the backwash pool).
- Greater than 6 inches, flow should be exiting the cartridge lids of each of the draindown cartridges and each of the hi-flo cartridges (i.e. cartridges located inside the backwash pool), and water should be overflowing the backwash pool weir.
- 18 inches or greater and relatively little flow is exiting the cartridge lids and outlet pipe, this condition indicates that the filter cartridges need to be rinsed.

4.0 Maintenance Requirements

Required maintenance for the Jellyfish Filter is based upon results of the most recent inspection, historical maintenance records, or the site specific water quality management plan; whichever is more frequent. In general, maintenance requires some combination of the following:

- Sediment removal for depths reaching 12 inches or greater, or within 3 years of the most recent sediment cleaning, whichever occurs sooner.
- 2. Floatable trash, debris, and oil removal.
- 3. Deck cleaned and free from sediment.
- 4. Filter cartridges rinsed and re-installed as required by the most recent inspection results, or within 12 months of the most recent filter rinsing, whichever occurs sooner.
- 5. Replace tentacles if rinsing does not restore adequate hydraulic capacity, remove accumulated sediment, or if damaged or missing. It is recommended that tentacles should remain in service no longer than 5 years before replacement.
- 6. Damaged or missing cartridge deck components must be repaired or replaced as indicated by results of the most recent inspection.
- 7. The unit must be cleaned out and filter cartridges inspected immediately after an upstream oil, fuel, or chemical spill. Filter cartridge tentacles should be replaced if damaged or compromised by the spill.

5.0 Maintenance Procedure

The following procedures are recommended when maintaining the Jellyfish Filter:

- 1. Provide traffic control measures as necessary.
- Open all covers and hatches. Use ventilation equipment as required, according to confined space entry procedures. Caution: Dropping objects onto the cartridge deck may cause damage.

- 3. Perform Inspection Procedure prior to maintenance activity.
- 4. To access the cartridge deck for filter cartridge service, descend into the structure and step directly onto the deck. Caution: Do not step onto the maintenance access wall (MAW) or backwash pool weir, as damage may result. Note that the cartridge deck may be slippery.
- Maximum weight of maintenance crew and equipment on the cartridge deck not to exceed 450 lbs.

5.1 Filter Cartridge Removal

- 1. Remove a cartridge lid.
- Remove cartridges from the deck using the lifting loops in the cartridge head plate. Rope or a lifting device (available from Contech) should be used. Caution: Should a snag occur, do not force the cartridge upward as damage to the tentacles may result. Wet cartridges typically weigh between 100 and 125 lbs.
- 3. Replace and secure the cartridge lid on the exposed empty receptacle as a safety precaution. Contech does not recommend exposing more than one empty cartridge receptacle at a time.

5.2 Filter Cartridge Rinsing

1. Remove all 11 tentacles from the cartridge head plate. Take care not to lose or damage the O-ring seal as well as the plastic threaded nut and connector.

- Position tentacles in a container (or over the MAW), with the threaded connector (open end) facing down, so rinse water is flushed through the membrane and captured in the container.
- 3. Using the Jellyfish rinse tool (available from Contech) or a low-pressure garden hose sprayer, direct water spray onto the tentacle membrane, sweeping from top to bottom along the length of the tentacle. Rinse until all sediment is removed from the membrane. Caution: Do not use a high pressure sprayer or focused stream of water on the membrane. Excessive water pressure may damage the membrane.

- 4. Collected rinse water is typically removed by vacuum hose.
- 5. Reassemble cartridges as detailed later in this document. Reuse O-rings and nuts, ensuring proper placement on each tentacle.

5.3 Sediment and Flotables Extraction

- 1. Perform vacuum cleaning of the Jellyfish Filter only after filter cartridges have been removed from the system. Access the lower chamber for vacuum cleaning only through the maintenance access wall (MAW) opening. Be careful not to damage the flexible plastic separator skirt that is attached to the underside of the deck on manhole systems. Do not lower the vacuum wand through a cartridge receptacle, as damage to the receptacle will result.
- Vacuum floatable trash, debris, and oil, from the MAW opening or inlet bay. Alternatively, floatable solids may be removed by a net or skimmer.

Vacuuming Sump Through MAW

- 3. Pressure wash cartridge deck and receptacles to remove all sediment and debris. Sediment should be rinsed into the sump area. Take care not to flush rinse water into the outlet pipe.
- Remove water from the sump area. Vacuum or pump equipment should only be introduced through the MAW or inlet bay.
- 5. Remove the sediment from the bottom of the unit through the MAW or inlet bay opening.

Vacuuming Sump Through MAW

6. For larger diameter Jellyfish Filter manholes (≥8-ft) and some vaults complete sediment removal may be facilitated by removing a cartridge lid from an empty receptacle and inserting a jetting wand (not a vacuum wand) through the receptacle. Use the sprayer to rinse loosened sediment toward the vacuum hose in the MAW opening, being careful not to damage the receptacle.

5.4 Filter Cartridge Reinstallation and Replacement

- Cartridges should be installed after the deck has been cleaned.
 It is important that the receptacle surfaces be free from grit and debris.
- 2. Remove cartridge lid from deck and carefully lower the filter cartridge into the receptacle until head plate gasket is seated squarely in receptacle. Caution: Do not force the cartridge downward; damage may occur.
- Replace the cartridge lid and check to see that both male threads are properly seated before rotating approximately 1/3 of a full rotation until firmly seated. Use of an approved rim gasket lubricant may facilitate installation. See next page for additional details.
- 4. If rinsing is ineffective in removing sediment from the tentacles, or if tentacles are damaged, provisions must be made to replace the spent or damaged tentacles with new tentacles. Contact Contech to order replacement tentacles.

5.5 Chemical Spills

Caution: If a chemical spill has been captured, do not attempt maintenance. Immediately contact the local hazard response agency and contact Contech.

5.6 Material Disposal

The accumulated sediment found in stormwater treatment and conveyance systems must be handled and disposed of in accordance with regulatory protocols. It is possible for sediments to contain measurable concentrations of heavy metals and organic chemicals (such as pesticides and petroleum products). Areas with the greatest potential for high pollutant loading include industrial areas and heavily traveled roads. Sediments and water must be disposed of in accordance with all applicable waste disposal regulations. When scheduling maintenance, consideration must be made for the disposal of solid and liquid wastes. This typically requires coordination with a local landfill for solid waste disposal. For liquid waste disposal a number of options are available including a municipal vacuum truck decant facility, local waste water treatment plant or on-site treatment and discharge.

Jellyfish Filter Components & Filter Cartridge Assembly and Installation

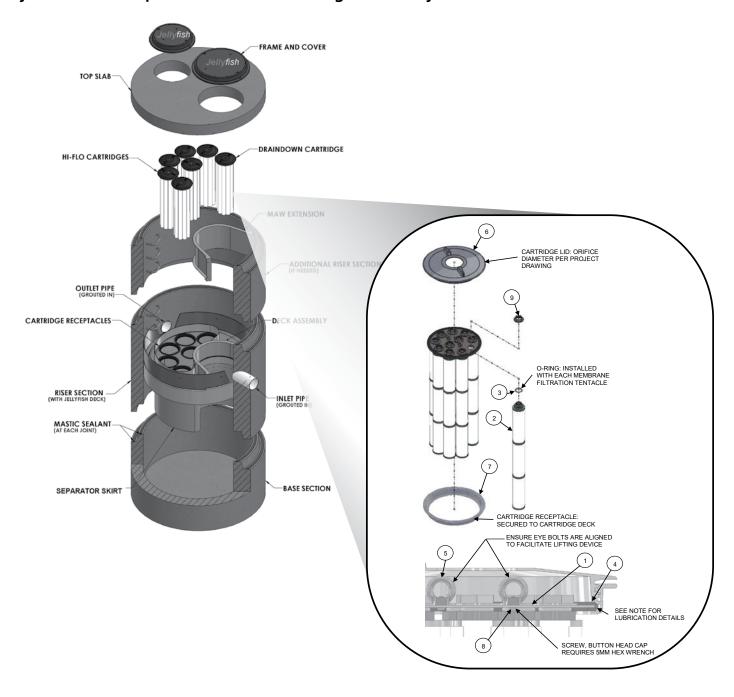


TABLE 1: BOM

ITEM NO.	DESCRIPTION		
1	JF HEAD PLATE		
2	JF TENTACLE		
3	JF O-RING		
	JF HEAD PLATE		
4	GASKET		
5	JF CARTRIDGE EYELET		
6	JF 14IN COVER		
7	JF RECEPTACLE		
	BUTTON HEAD CAP		
8	SCREW M6X14MM SS		
9	JF CARTRIDGE NUT		

TABLE 2: APPROVED GASKET LUBRICANTS

PART NO.	MFR	DESCRIPTION		
78713	LA-CO	LUBRI-JOINT		
40501	HERCULES	DUCK BUTTER		
30600	OATEY	PIPE LUBRICANT		
PSLUBXL1Q	PROSELECT	PIPE JOINT LUBRICANT		

NOTES:

Head Plate Gasket Installation:

Install Head Plate Gasket (Item 4) onto the Head Plate (Item 1) and liberally apply a lubricant from Table 2: Approved Gasket Lubricants onto the gasket where it contacts the Receptacle (Item 7) and Cartridge Lide (ITem 6). Follow Lubricant manufacturer's instructions.

Lid Assembly:

Rotate Cartridge Lid counter-clockwise until both male threads drop down and properly seat. Then rotate Cartridge Lid clock-wise approximately one-third of a full rotation until Cartridge Lid is firmly secured, creating a watertight seal.

	Jellyfish	Filter Inspe	ction and M	laintenance Lo	og	
Owner:				Jellyfish Model No:		
Location:				GPS Coordinates:		
Land Use:	Commercial:		Industrial:		Service Station:	
Ro	oadway/Highway:		Airport:		Residential:	
Date/Time:						
Inspector:						
Maintenance Contractor:						
Visible Oil Present: (Y/N)						
Oil Quantity Removed:						
Floatable Debris Present: (Y/N)						
Floatable Debris Removed: (Y/N)						
Water Depth in Backwash Pool						
Draindown Cartridges externally rinsed and recommissioned: (Y/N)						
New tentacles put on Draindown Cartridges: (Y/N)						
Hi-Flo Cartridges externally rinsed and recommissioned: (Y/N)						
New tentacles put on Hi-Flo Cartridges: (Y/N)						
Sediment Depth Measured: (Y/N)						
Sediment Depth (inches or mm):						
Sediment Removed: (Y/N)						
Cartridge Lids intact: (Y/N)						
Observed Damage:						
Comments:						

CNTECH

800.338.1122 www.ContechES.com

Support

- Drawings and specifications are available at www.conteches.com/jellyfish.
- Site-specific design support is available from Contech Engineered Solutions.
- Find a Certified Maintenance Provider at www.conteches.com/ccmp

© 2021 Contech Engineered Solutions LLC, a QUIKRETE Company

Contech Engineered Solutions LLC provides site solutions for the civil engineering industry. Contech's portfolio includes bridges, drainage, sanitary sewer, stormwater, wastewater treatment and earth stabilization products. For information on other Contech segment offerings, visit ContechES.com or call 800.338.1122

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION. CONTECH MAKES NO WARRANTY WHATSOEVER, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH-SE CONTECH-SE CONDITIONS OF SALE (AVAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.

1.6 Snow & Ice Management for Standard Asphalt and Walkways

Snow storage areas shall be located such that no direct untreated discharges are possible to receiving waters from the storage site (snow storage areas have been shown on the Site Plan). Salt and sand shall be used to the minimum extent practical (refer to the attached for de-icing application rate guideline from the New Hampshire Stormwater Management Manual, Volume 2,).

Deicing Application Rate Guidelines

24' of pavement (typcial two-lane road)

These rates are not fixed values, but rather the middle of a range to be selected and adjusted by an agency according to its local conditions and experience.

Pounds per two-lane mile						
Pavement Temp. (°F) and Trend (↑↓)	Weather Condition	Maintenance Actions	Salt Prewetted / Pretreated with Salt Brine	Salt Prewetted / Pretreated with Other Blends	Dry Salt*	Winter Sand (abrasives)
>30° ↑	Snow	Plow, treat intersections only	80	70	100*	Not recommended
230 1	Freezing Rain	Apply Chemical	80 - 160	70 - 140	100 - 200*	Not recommended
30° ↓	Snow	Plow and apply chemical	80 - 160	70 - 140	100 - 200*	Not recommended
30 V	Freezing Rain	Apply Chemical	150 - 200	130 - 180	180 - 240*	Not recommended
25°-30° ↑	Snow	Plow and apply chemical	120 - 160	100 - 140	150 - 200*	Not recommended
23 30 1	Freezing Rain	Apply Chemical	150 - 200	130 - 180	180 - 240*	Not recommended
25°-30° ↓	Snow	Plow and apply chemical	120 - 160	100 - 140	150 - 200*	Not recommended
25 - 50 🗘	Freezing Rain	Apply Chemical	160 - 240	140 - 210	200 - 300*	400
20° - 25° ↑	Snow or Freezing Rain	Plow and apply chemical	160 - 240	140 - 210	200 - 300*	400
20°-25° ↓	Snow	Plow and apply chemical	200 - 280	175 - 250	250 - 350*	Not recommended
20 - 25 ψ	Freezing Rain	Apply Chemical	240 - 320	210 - 280	300 - 400*	400
15° - 20° ↑	Snow	Plow and apply chemical	200 - 280	175 - 250	250 - 350*	Not recommended
25 - 20	Freezing Rain	Apply Chemical	240 - 320	210 - 280	300 - 400*	400
15°-20° ↓	Snow or Freezing Rain	Plow and apply chemical	240 - 320	210 - 280	300 - 400*	500 for freezing rain
0°-15° ↑↓	Snow	Plow, treat with blends, sand hazardous areas	Not recommended	300 - 400	Not recommended	500 - 750 spot treatment as needed
< 0°	Snow	Plow, treat with blends, sand hazardous areas	Not recommended	400 - 600**	Not recommended	500 - 750 spot treatment as needed

^{*} Dry salt is not recommended. It is likely to blow off the road before it melts ice.

^{**} A blend of 6 - 8 gal/ton MgCl₂ or CaCl₂ added to NaCl can melt ice as low as -10°.

Anti-icing Route Data Form							
Truck Station:							
Date:							
Air Temperature	Pavement Temperature	Relative Humidity	Dew Point	Sky			
Reason for applying:							
Route:							
Chemical:							
Application Time:							
Application Amount:							
Observation (first day)):						
Observation (after eve	ent):						
Observation (before n	ext application):						
Name:							

Section 2 Chloride Management Plan

Winter Operational Guidelines

The following Chloride Management Plan is for the Proposed Advanced Manufacturing Facility in Portsmouth, New Hampshire. The Plan includes operational guidelines for; winter operator certification requirements, weather monitoring, equipment calibration requirements, mechanical removal, and salt usage evaluation and monitoring. Due to the evolving nature of chloride management efforts, the Chlorides Management Plan will be reviewed annually, in advance of the winter season, to reflect the current management standards.

2.1 Background Information

The Proposed Advanced Manufacturing Facility is located within the Portsmouth Harbor Watershed in Portsmouth, New Hampshire. Portsmouth Harbor watershed is identified as a chloride-impaired waterbody.

2.2 Operational Guidelines - Chloride Management

All Aviation Avenue Group, LLC private contractors engaged at the advanced manufacturing facility premises for the purposes of winter operational snow removal and surface maintenance, are responsible for assisting in meeting compliance for the following protocols. Aviation Avenue Group, LLC private contractors are expected to minimize the effects of the use of de-icing, anti-icing and pretreatment materials by adhering to the strict guidelines outlined below.

The advanced manufacturing facility winter operational de-icing, anti-icing and pretreatment materials will adhere to the following protocols:

2.2.1 Winter Operator Certification Requirements

All private contractors engaged at the advanced manufacturing facility premises for the purpose of winter operational snow removal and surface maintenance must be current UNHT2 Green SnowPro Certified operators or equivalent and will use only pre-approved methods for spreading abrasives on private roadways and parking lots. All private contractors engaged at the advanced manufacturing facility premises for the purpose of winter operational snow removal and surface maintenance shall provide to Aviation Avenue Group, LLC management two copies of the annual UNHT2 Green SnowPro certificate or equivalent for each operator utilized on the advanced manufacturing facility premises. The annual UNHT2 Green SnowPro certificate or equivalent for each operator will be available on file in the advanced manufacturing facility office and be present in the vehicle/carrier at all times.

2.2.2 Improved Weather Monitoring

Aviation Avenue Group, LLC will coordinate weather information for use by winter

maintenance contractors. This information in conjunction with site specific air/ground surface temperature monitoring will ensure that private contractors engaged at the advanced manufacturing facility premises for the purpose of winter operational snow removal and surface maintenance will make more informed decisions as to when and to what extent de-icing, anti-icing and pretreatment materials are applied to private roadways, sidewalks, and parking lots.

2.2.3 Equipment Calibration Requirements

All equipment utilized on the advanced manufacturing facility premises for the purpose of winter operational snow removal and surface maintenance will conform to the following calibration requirements.

2.2.3.1 Annual Calibration Requirements

All private contractors engaged at the advanced manufacturing facility premises for the purpose of winter operational snow removal and surface maintenance shall provide two copies of the annual calibration report for each piece of equipment utilized on the advanced manufacturing facility premises. Each calibration report shall include the vehicle/carrier VIN number and the serial numbers for each component including, but not limited to, spreader control units, salt aggregate spreader equipment, brining/pre-wetting equipment, ground speed orientation unit, and air/ground surface temperature monitor. Annual calibration reports will be available on file in the advanced manufacturing facility office and be present in the vehicle/carrier at all times.

Prior to each use, each vehicle/carrier operator will perform a systems check to verify that unit settings remain within the guidelines established by the Aviation Avenue Group, LLC Team in order to accurately dispense material. All private contractors engaged at the advanced manufacturing facility premises for the purpose of winter operational snow removal and surface maintenance will be subject to spot inspections by members of the Aviation Avenue Group, LLC Team to ensure that each vehicle/carrier is operating in a manner consistent with the guidelines set herein or State and Municipal regulations. All units will be recalibrated, and the updated calibration reports will be provided each time repairs or maintenance procedures affect the hydraulic system of the vehicle/carrier.

2.2.4 Increased Mechanical Removal Capabilities

All private contractors engaged at the advanced manufacturing facility premises will endeavor to use mechanical removal means on a more frequent basis for roadways, parking lots and sidewalks. Dedicating more manpower and equipment to increase snow removal frequencies prevents the buildup of snow and the corresponding need for de-icing, anti-icing and pretreatment materials. Shortened maintenance routes, with shorter service intervals, will be used to stay ahead of snowfall. Minimized snow and ice packing will reduce the need for abrasives, salt aggregates, and/or brining solution to restore surfaces back to bare surface states after winter precipitation events.

After storm events the Aviation Avenue Group, LLC management team will be

responsible for having the streets swept to recapture un-melted de-icing materials, when practical.

2.3 Salt Usage Evaluation and Monitoring

All private contractors engaged at the advanced manufacturing facility premises for the purpose of winter operational snow removal and surface maintenance shall provide two copies of a storm report, which includes detailed information regarding treatment areas and the use of de-icing, anti- icing and pretreatment materials applied for the removal of snow and surface maintenance on the advanced manufacturing facility premises. Aviation Avenue Group, LLC will maintain copies of Summary Documents, including copies of the Storm Reports, operator certifications, equipment used for roadway and sidewalk winter maintenance, calibration reports and amount of de-icing materials used.

2.4 Summary

The above-described methodologies are incorporated into the advanced manufacturing facility Operational Manual and are to be used to qualify and retain all private contractors engaged at the advanced manufacturing facility premises for the purpose of winter operational snow removal and surface maintenance. This section of the Manual is intended to be an adaptive management document that is modified as required based on experience gained from past practices and technological advancements that reflect chloride BMP standards. All advanced manufacturing facility employees directly involved with winter operational activities are required to review this document and the current standard Best Management Practices published by the UNH Technology Transfer (T2) program annually. All advanced manufacturing facility employees directly involved with winter operational activities, and all private contractors engaged at the advanced manufacturing facility premises for the purposes of winter operational snow removal and surface maintenance, must be current UNHT2 Green SnowPro Certified operators or equivalent and undergo the necessary requirements to maintain this certification annually.

Section 3 Invasive Species

With respect to a particular ecosystem, any species, including its seeds, eggs, spores, or other biological material capable of propagating that species, that is not native to that ecosystem is classified as an invasive species. Refer to the following fact sheet prepared by the University of New Hampshire Cooperative Extension entitled Methods for Disposing Non-Native Invasive Plants for recommended methods to dispose of invasive plant species.

UNIVERSITY of NEW HAMPSHIRE Methods for Disposing OOPERATIVE EXTENSION

Non-Native Invasive Plants

Prepared by the Invasives Species Outreach Group, volunteers interested in helping people control invasive plants. Assistance provided by the Piscataquog Land Conservancy and the NH Invasives Species Committee. Edited by Karen Bennett, Extension Forestry Professor and Specialist.

Tatarian honeysuckle Lonicera tatarica

USDA-NRCS PLANTS Database / Britton, N.L., and A. Brown. 1913. An illustrated flora of the northern United States, Canada and the British Possessions. Vol. 3: 282.

Non-native invasive plants crowd out natives in natural and managed landscapes. They cost taxpayers billions of dollars each year from lost agricultural and forest crops, decreased biodiversity, impacts to natural resources and the environment, and the cost to control and eradicate them.

Invasive plants grow well even in less than desirable conditions such as sandy soils along roadsides, shaded wooded areas, and in wetlands. In ideal conditions, they grow and spread even faster. There are many ways to remove these nonnative invasives, but once removed, care is needed to dispose the removed plant material so the plants don't grow where disposed.

Knowing how a particular plant reproduces indicates its method of spread and helps determine

the appropriate disposal method. Most are spread by seed and are dispersed by wind, water, animals, or people. Some reproduce by vegetative means from pieces of stems or roots forming new plants. Others spread through both seed and vegetative means.

Because movement and disposal of viable plant parts is restricted (see NH Regulations), viable invasive parts can't be brought to most transfer stations in the state. Check with your transfer station to see if there is an approved, designated area for invasives disposal. This fact sheet gives recommendations for rendering plant parts nonviable.

Control of invasives is beyond the scope of this fact sheet. For information about control visit www.nhinvasives.org or contact your UNH Cooperative Extension office.

New Hampshire Regulations

Prohibited invasive species shall only be disposed of in a manner that renders them nonliving and nonviable. (Agr. 3802.04)

No person shall collect, transport, import, export, move, buy, sell, distribute, propagate or transplant any living and viable portion of any plant species, which includes all of their cultivars and varieties, listed in Table 3800.1 of the New Hampshire prohibited invasive species list. (Agr 3802.01)

How and When to Dispose of Invasives?

To prevent seed from spreading remove invasive plants before seeds are set (produced). Some plants continue to grow, flower and set seed even after pulling or cutting. Seeds can remain viable in the ground for many years. If the plant has flowers or seeds, place the flowers and seeds in a heavy plastic bag "head first" at the weeding site and transport to the disposal site. The following are general descriptions of disposal methods. See the chart for recommendations by species.

Burning: Large woody branches and trunks can be used as firewood or burned in piles. For outside burning, a written fire permit from the local forest fire warden is required unless the ground is covered in snow. Brush larger than 5 inches in diameter can't be burned. Invasive plants with easily airborne seeds like black swallow-wort with mature seed pods (indicated by their brown color) shouldn't be burned as the seeds may disperse by the hot air created by the fire.

Bagging (solarization): Use this technique with softertissue plants. Use heavy black or clear plastic bags (contractor grade), making sure that no parts of the plants poke through. Allow the bags to sit in the sun for several weeks and on dark pavement for the best effect.

Japanese knotweed
Polygonum cuspidatum
USDA-NRCS PLANTS Database /
Britton, N.L., and A. Brown. 1913. An
illustrated flora of the northern United
States, Canada and the British
Possessions Vol. 1: 676

Tarping and Drying: Pile material on a sheet of plastic and cover with a tarp, fastening the tarp to the ground and monitoring it for escapes. Let the material dry for several weeks, or until it is clearly nonviable.

Chipping: Use this method for woody plants that don't reproduce vegetatively.

Burying: This is risky, but can be done with watchful diligence. Lay thick plastic in a deep pit before placing the cut up plant material in the hole. Place the material away from the edge of the plastic before covering it with more heavy plastic. Eliminate as much air as possible and toss in soil to weight down the material in the pit. Note that the top of the buried material should be at least three feet underground. Japanese knotweed should be at least 5 feet underground!

Drowning: Fill a large barrel with water and place soft-tissue plants in the water. Check after a few weeks and look for rotted plant material (roots, stems, leaves, flowers). Well-rotted plant material may be composted. A word of caution- seeds may still be viable after using this method. Do this before seeds are set. This method isn't used often. Be prepared for an awful stink!

Composting: Invasive plants can take root in compost. Don't compost any invasives unless you know there is no viable (living) plant material left. Use one of the above techniques (bagging, tarping, drying, chipping, or drowning) to render the plants nonviable before composting. Closely examine the plant before composting and avoid composting seeds.

Suggested Disposal Methods for Non-Native Invasive Plants

This table provides information concerning the disposal of removed invasive plant material. If the infestation is treated with herbicide and left in place, these guidelines don't apply. Don't bring invasives to a local transfer station, unless there is a designated area for their disposal, or they have been rendered non-viable. This listing includes wetland and upland plants from the New Hampshire Prohibited Invasive Species List. The disposal of aquatic plants isn't addressed.

Woody Plants	Method of Reproducing	Methods of Disposal			
Norway maple (Acer platanoides) European barberry (Berberis vulgaris) Japanese barberry (Berberis thunbergii) autumn olive (Elaeagnus umbellata) burning bush (Euonymus alatus) Morrow's honeysuckle (Lonicera morrowii) Tatarian honeysuckle (Lonicera tatarica) showy bush honeysuckle (Lonicera x bella) common buckthorn (Rhamnus cathartica) glossy buckthorn (Frangula alnus)	Fruit and Seeds	Prior to fruit/seed ripening Seedlings and small plants Pull or cut and leave on site with roots exposed. No special care needed. Larger plants Use as firewood. Make a brush pile. Chip. Burn. After fruit/seed is ripe Don't remove from site. Burn. Make a covered brush pile. Chip once all fruit has dropped from branches. Leave resulting chips on site and monitor.			
oriental bittersweet (Celastrus orbiculatus) multiflora rose (Rosa multiflora)	Fruits, Seeds, Plant Fragments	Prior to fruit/seed ripening Seedlings and small plants Pull or cut and leave on site with roots exposed. No special care needed. Larger plants Make a brush pile. Burn. After fruit/seed is ripe Don't remove from site. Burn. Make a covered brush pile. Chip – only after material has fully dried (1 year) and all fruit has dropped from branches. Leave resulting chips on site and monitor.			

Non-Woody Plants	Method of Reproducing	Methods of Disposal
garlic mustard (Alliaria petiolata) spotted knapweed (Centaurea maculosa) Sap of related knapweed can cause skin irritation and tumors. Wear gloves when handling. black swallow-wort (Cynanchum nigrum) May cause skin rash. Wear gloves and long sleeves when handling. pale swallow-wort (Cynanchum rossicum) giant hogweed (Heracleum mantegazzianum) Can cause major skin rash. Wear gloves and long sleeves when handling. dame's rocket (Hesperis matronalis) perennial pepperweed (Lepidium latifolium) purple loosestrife (Lythrum salicaria) Japanese stilt grass (Microstegium vimineum) mile-a-minute weed (Polygonum perfoliatum)	Fruits and Seeds	Prior to flowering Depends on scale of infestation Small infestation Pull or cut plant and leave on site with roots exposed. Large infestation Pull or cut plant and pile. (You can pile onto or cover with plastic sheeting). Monitor. Remove any re-sprouting material. During and following flowering Do nothing until the following year or remove flowering heads and bag and let rot. Small infestation Pull or cut plant and leave on site with roots exposed. Large infestation Pull or cut plant and pile remaining material. (You can pile onto plastic or cover with plastic sheeting). Monitor. Remove any re-sprouting material.
common reed (Phragmites australis) Japanese knotweed (Polygonum cuspidatum) Bohemian knotweed (Polygonum x bohemicum)	Fruits, Seeds, Plant Fragments Primary means of spread in these species is by plant parts. Although all care should be given to preventing the dispersal of seed during control activities, the presence of seed doesn't materially influence disposal activities.	 Small infestation Bag all plant material and let rot. Never pile and use resulting material as compost. Burn. Large infestation Remove material to unsuitable habitat (dry, hot and sunny or dry and shaded location) and scatter or pile. Monitor and remove any sprouting material. Pile, let dry, and burn.

Managing Invasive Plants Methods of Control by Christopher Mattrick

They're out there. The problem of invasive plants is as close as your own backyard.

Maybe a favorite dogwood tree is struggling in the clutches of an Oriental bittersweet vine. Clawlike canes of multiflora rose are scratching at the side of your house. That handsome burning bush you planted few years ago has become a whole clump in practically no time ... but what happened to the azalea that used to grow right next to it?

If you think controlling or managing invasive plants on your property is a daunting task, you're not alone. Though this topic is getting lots of attention from federal, state, and local government agencies, as well as the media, the basic question for most homeowners is simply, "How do I get rid of the invasive plants in my own landscape?" Fortunately, the best place to begin to tackle this complex issue is in our own backyards and on local conservation lands. We hope the information provided here will help you take back your yard. We won't kid you—there's some work involved, but the payoff in beauty, wildlife habitat, and peace of mind makes it all worthwhile.

PLAN OF ATTACK

Three broad categories cover most invasive plant control: mechanical, chemical, and biological. Mechanical control means physically removing plants from the environment

Spraying chemicals to control invasive plants.

through cutting or pulling. Chemical control uses herbicides to kill plants and inhibit regrowth. Techniques and chemicals used will vary depending on the species. Biological controls use plant diseases or insect predators, typically from the targeted species' home range. Several techniques may be effective in controlling a single species, but there is usually one preferred method—the one that is most resource efficient with minimal impact on non-target species and the environment.

MECHANICAL CONTROL METHODS

Mechanical treatments are usually the first ones to look at when evaluating an invasive plant removal project. These procedures do not require special licensing or introduce chemicals into the environment. They do require permits in some situations, such as wetland zones. [See sidebar on page 23.] Mechanical removal is highly labor intensive and creates a significant amount of site disturbance, which can lead to rapid reinvasion if not handled properly.

Pulling and digging

Many herbaceous plants and some woody species (up to about one inch in diameter), if present in limited quantities, can be pulled out or dug up. It's important to remove as much of the root system as possible; even a small portion can restart the infestation. Pull plants by hand or use a digging fork, as shovels can shear off portions of the root

system, allowing for regrowth. To remove larger woody stems (up to about three inches in diameter), use a Weed WrenchTM, Root Jack, or Root Talon. These tools, available from several manufacturers, are designed to remove the aboveground portion of the plant as well as the entire root system. It's easiest to undertake this type of control in the spring or early summer when soils are moist and plants come out more easily.

Using tools to remove woody stems.

Volunteers hand pulling invasive plants.

Suffocation

Try suffocating small seedlings and herbaceous plants. Place double or triple layers of thick UV-stabilized plastic sheeting, either clear or black (personally I like clear), over the infestation and secure the plastic with stakes or weights. Make sure the plastic extends at least five feet past the edge of infestation on all sides. Leave the plastic in place for at least two years. This technique will kill everything beneath the plastic—invasive and non-invasive plants alike. Once the plastic is removed, sow a cover crop such as annual rye to prevent new invasions.

Cutting or mowing

This technique is best suited for locations you can visit and treat often. To be effective, you will need to mow or cut infested areas three or four times a year for up to five years. The goal is to interrupt the plant's ability to photosynthesize by removing as much leafy material as possible. Cut the plants at ground level and remove all resulting debris from the site. With this treatment, the infestation may actually appear to get worse at first, so you will need to be as persistent as the invasive plants themselves. Each time you cut the plants back, the root system gets slightly larger, but must also rely on its energy reserves to push up new growth. Eventually, you will exhaust these reserves and the plants will die. This may take many years, so you have to remain committed to this process once you start; otherwise the treatment can backfire, making the problem worse.

CHEMICAL CONTROL METHODS

Herbicides are among the most effective and resource-efficient tools to treat invasive species. Most of the commonly known invasive plants can be treated using only two herbicides—glyphosate (the active ingredient in Roundup™ and RodeoTM) and triclopyr (the active ingredient in Brush-B-GoneTM and GarlonTM). Glyphosate is non-selective, meaning it kills everything it contacts. Triclopyr is selective and does not injure monocots (grasses, orchids, lilies, etc.). Please read labels and follow directions precisely for both environmental and personal safety. These are relatively benign herbicides, but improperly used they can still cause both short- and long-term health and environmental problems. Special aquatic formulations are required when working in wetland zones. You are required to have a stateissued pesticide applicator license when applying these chemicals on land you do not own. To learn more about the pesticide regulations in your state, visit or call your state's pesticide control division, usually part of the state's Department of Agriculture. In wetland areas, additional permits are usually required by the Wetlands Protection Act. [See sidebar on page 23.]

Foliar applications

When problems are on a small scale, this type of treatment is usually applied with a backpack sprayer or even a small handheld spray bottle. It is an excellent way to treat large monocultures of herbaceous plants, or to spot-treat individual plants that are difficult to remove mechanically, such as goutweed, swallowwort, or purple loosestrife. It is also an effective treatment for some woody species, such as Japanese barberry, multiflora rose, Japanese honeysuckle, and Oriental bittersweet that grow in dense masses or large numbers over many acres. The herbicide mixture should contain no more than five percent of the active ingredient, but it is important to follow the instructions on the product label. This treatment is most effective when the plants are actively growing, ideally when they are flowering or beginning to form fruit. It has been shown that plants are often more susceptible to this type of treatment if the existing stems are cut off and the regrowth is treated. This is especially true for Japanese knotweed. The target plants should be thoroughly wetted with the herbicide on a day when there is no rain in the forecast for the next 24 to 48 hours.

Cut stem treatments

There are several different types of cut stem treatments, but here we will review only the one most commonly used. All treatments of this type require a higher concentration of the active ingredient than is used in foliar applications. A 25 to 35 percent solution of the active ingredient should be used for cut stem treatments, but read and follow all label instructions. In most cases, the appropriate herbicide is glyphosate, except for Oriental bittersweet, on which triclopyr should be used. This treatment can be used on all woody stems, as well as phragmites and Japanese knotweed.

For woody stems, treatments are most effective when applied in the late summer and autumn—between late August and November. Stems should be cut close to the ground, but not so close that you will lose track of them. Apply herbicide directly to the cut surface as soon as possible after cutting. Delaying the application will reduce the effectiveness of the treatment. The herbicide can be applied with a sponge, paintbrush, or spray bottle.

Cut stem treatment tools.

For phragmites and Japanese knotweed, treatment is the same, but the timing and equipment are different. Plants should be treated anytime from mid-July through September, but the hottest, most humid days of the summer are best

for this method. Cut the stems halfway between two leaf nodes at a comfortable height. Inject (or squirt) herbicide into the exposed hollow stem. All stems in an infestation should be treated. A wash bottle is the most effective application tool, but you can also use an eyedropper, spray bottle, or one of the recently developed high-tech injection systems.

It is helpful to mix a dye in with the herbicide solution. The dye will stain the treated surface and mark the areas that have been treated, preventing unnecessary reapplication. You can buy a specially formulated herbicide dye, or use food coloring or laundry dye.

There is not enough space in this article to describe all the possible ways to control invasive plants. You can find other treatments, along with more details on the above-described methods, and species-specific recommendations on The Nature Conservancy Web site (tncweeds.ucdavis.edu). An upcoming posting on the Invasive Plant Atlas of New England (www.ipane.org) and the New England Wild Flower Society (www.newfs.org) Web sites will also provide further details.

Hollow stem injection tools.

Biological controls—still on the horizon

Biological controls are moving into the forefront of control methodology, but currently the only widely available and applied biocontrol relates to purple loosestrife. More information on purple loosestrife and other biological control projects can be found at www.invasiveplants.net.

DISPOSAL OF INVASIVE PLANTS

Proper disposal of removed invasive plant material is critical to the control process. Leftover plant material can cause new infestations or reinfest the existing project area. There are many appropriate ways to dispose of invasive plant debris. I've listed them here in order of preference.

- **1. Burn it**—Make a brush pile and burn the material following local safety regulations and restrictions, or haul it to your town's landfill and place it in their burn pile.
- **2. Pile it**—Make a pile of the woody debris. This technique will provide shelter for wildlife as well.
- **3.** Compost it—Place all your herbaceous invasive plant debris in a pile and process as compost. Watch the pile closely for resprouts and remove as necessary. Do not use the resulting compost in your garden. The pile is for invasive plants only.

Injecting herbicide into the hollow stem of phragmites.

4. Dry it/cook it—Place woody debris out on your driveway or any asphalt surface and let it dry out for a month. Place herbaceous material in a doubled-up black trash bag and let it cook in the sun for one month. At the end of the month, the material should be non-viable and you can dump it or dispose of it with the trash. The method assumes there is no viable seed mixed in with the removed material.

Care should be taken in the disposal of all invasive plants, but several species need extra attention. These are the ones that have the ability to sprout vigorously from plant fragments and should ideally be burned or dried prior to disposal: Oriental bittersweet, multiflora rose, Japanese honeysuckle, phragmites, and Japanese knotweed.

Christopher Mattrick is the former Senior Conservation Programs Manager for New England Wild Flower Society, where he managed conservation volunteer and invasive and rare plant management programs. Today, Chris and his family work and play in the White Mountains of New Hampshire, where he is the Forest Botanist and Invasive Species Coordinator for the White Mountain National Forest.

Controlling Invasive Plants in Wetlands

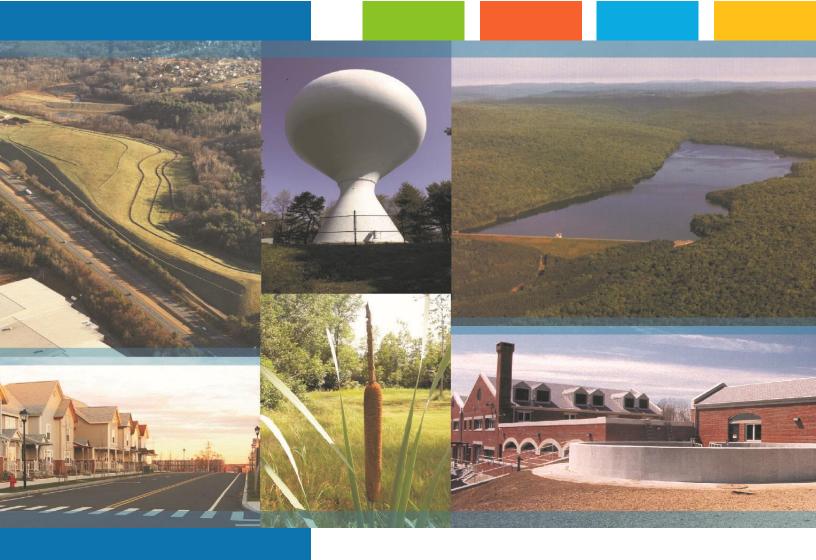
Special concerns; special precautions

Control of invasive plants in or around wetlands or bodies of water requires a unique set of considerations. Removal projects in wetland zones can be legal and effective if handled appropriately. In many cases, herbicides may be the least disruptive tools with which to remove invasive plants. You will need a state-issued pesticide license to apply herbicide on someone else's property, but all projects in wetland or aquatic systems fall under the jurisdiction of the Wetlands Protection Act and therefore require a permit. Yes, even hand-pulling that colony of glossy buckthorn plants from your own swampland requires a permit. Getting a permit for legal removal is fairly painless if you plan your project carefully.

- 1. Investigate and understand the required permits and learn how to obtain them. The entity charged with the enforcement of the Wetlands Protection Act varies from state to state. For more information in your state, contact:
 - ME: Department of Environmental Protection www.state.me.us/dep/blwq/docstand/nrpapage.htm
 - **NH:** Department of Environmental Services www.des.state.nh.us/wetlands/
 - VT: Department of Environmental Conservation www.anr.state.vt.us/dec/waterq/permits/htm/pm_cud.htm
 - MA: Consult your local town conservation commission
 - **RI:** Department of Environmental Management www.dem.ri.gov/programs/benviron/water/permits/fresh/index.htm
 - CT: Consult your local town Inland Wetland and Conservation Commission

- 2. Consult an individual or organization with experience in this area. Firsthand experience in conducting projects in wetland zones and navigating the permitting process is priceless. Most states have wetland scientist societies whose members are experienced in working in wetlands and navigating the regulations affecting them. A simple Web search will reveal the contact point for these societies. Additionally, most environmental consulting firms and some nonprofit organizations have skills in this area.
- 3. Develop a well-written and thorough project plan. You are more likely to be successful in obtaining a permit for your project if you submit a project plan along with your permit application. The plan should include the reasons for the project, your objectives in completing the project, how you plan to reach those objectives, and how you will monitor the outcome.
- 4. Ensure that the herbicides you plan to use are approved for aquatic use. Experts consider most herbicides harmful to water quality or aquatic organisms, but rate some formulations as safe for aquatic use. Do the research and select an approved herbicide, and then closely follow the instructions on the label.
- 5. If you are unsure—research, study, and most of all, ask for help. Follow the rules. The damage caused to aquatic systems by the use of an inappropriate herbicide or the misapplication of an appropriate herbicide not only damages the environment, but also may reduce public support for safe, well-planned projects.

Section 4 Annual Updates and Log Requirements


The Owner and/or Contact/Responsible Party shall review this Operation and Maintenance Plan once per year for its effectiveness and adjust the plan and deed as necessary.

A log of all preventative and corrective measures for the stormwater system shall be kept on-site and be made available upon request by any public entity with administrative, health environmental or safety authority over the site including NHDES.

Copies of the Stormwater Maintenance report shall be submitted to the Pease Development Authority on an annual basis.

	Stormwater Management Report							
Proposed Adva		100 New Hampshire Avenue – Portsmouth NH 03801						
BMP Description	Date of Inspection	Inspector	BMP Installed Cleaning / Corrective Clean Operating Action Needed / Rep					
Deep Sump CB's			□Yes □No					
Underground Detention			□Yes □No					
Jellyfish Filter Treatment Unit			□Yes □No					

J:\P\P0595 Pro Con General Proposals\P0595-015 100 NH Avenue\Report_Evaluation\Drainage Report\P0595-015_O&M_IN PROGRESS.docx

Advanced Manufacturing Facility 100 New Hampshire Avenue

TRAFFIC IMPACT ASSESSMENT

Procon, INC.

October 7, 2022

Revised February 17, 2023

Tighe&Bond

Section 1 Introduction

Section 2 Existing Co	onditions
------------------------------	-----------

	2.1	Roadways2	-1
		2.1.1 New Hampshire Avenue2	-1
		2.1.2 Pease Boulevard2	-1
		2.1.3 Grafton Road2	-2
		2.1.4 Route 33 (Greenland Road)2	-2
	2.2	Study Area Intersections2	-2
		2.2.1 Gosling Road at US Route 4 Northbound Ramps2	-2
		2.2.2 Pease Boulevard at US Route 4 Southbound Ramps2	-3
		2.2.3 Pease Boulevard at International Drive2	-3
		2.2.4 Pease Boulevard at Arboretum Drive and New Hampshire Avenue 2	-3
		2.2.5 New Hampshire Avenue at Exeter Street and Manchester Square.2	-3
		2.2.6 New Hampshire Avenue and Corporate Drive at Durham Street and International Drive2	
		2.2.7 Corporate Drive at Grafton Road2	-4
		2.2.8 Grafton Road at Aviation Avenue2	-4
		2.2.9 Grafton Road at Golf Course and Park & Ride Driveways2	-4
		2.2.10 Grafton Road at I-95 Southbound Off-Ramp2	-4
		2.2.11 Grafton Road at Route 33 (Greenland Road)2	-5
		2.2.12 Route 33 (Greenland Road) at I-95 Southbound Ramps2	-5
		2.2.13 Route 33 (Greenland Road) at I-95 Northbound Ramps2	-5
	2.3	Traffic Volumes2	-5
	2.4	Capacity and Queue Analyses - Existing Conditions2	
	2.5	Collision History2	
	2.6	Public Transportation2-	11
Sec	tion 3	No Build Conditions	
	3.1	Traffic Growth3	-1
	3.2	Planned Roadway Improvements3	-1
	3.3	Capacity and Queue Analyses - No-Build Conditions	-2
Sec	tion 4	Proposed Conditions	
	4.1	Site Access4	-1
	4.2	Multi-Modal Accommodations4	-1
	4.3	Trip Generation4	-2
	4.4	Arrival and Departure Distribution4	-3
Sec	tion 5	Build Conditions	
	5.1	Capacity and Queue Analyses – Build Conditions5	-1
100	Now Ha	mnchiro Avonuo Traffic Impact Accossment	- -

Table of Contents

Tighe&Bond

Section 6 Conclusions & Recommendations

Section 7 Additional Tables

Section 8 Figures

Table of Contents

Tighe&Bond

Appendix

- A. Traffic Count Data
- B. NHDOT Historical Traffic Volumes, Seasonal Adjustment Factors & Historical Growth Rates
- C. Traffic Volume Adjustment Calculation
- D. Background Development Traffic Volumes
- E. Collision History Summary
- F. Capacity Analysis Methodology
- G. Capacity Analysis Worksheets
- H. Site Development Plan
- I. Traffic Control Signal Plans
- J. COAST Bus Schedule & Map

J:\P\P0595 Pro Con General Proposals\P0595-015 100 NH Avenue\Report_Evaluation\Traffic Impact Study\Rev Subission-Peer Review (February 2023)\100 New Hampshire Ave Traffic Impact Study-Rev 1.docx

Section 1 Introduction

This Traffic Impact Assessment (TIA) evaluates the potential traffic impact of the proposed manufacturing facility, located at 100 New Hampshire Avenue within the Pease International Tradeport in Portsmouth, NH. The TIA was prepared in accordance with NHDOT and industry standards. The Project Site is bounded by Rochester Avenue to the west, New Hampshire Avenue to the east, Stratham Street to the north, and Newfields Street to the south. The site is bounded by industrial, manufacturing, and office land uses, consistent with the Tradeport as a whole. The Site location is shown in Figure 1.

The applicant plans to construct a 209,750± square foot advanced manufacturing facility on the presently vacant lot on site and within a portion of the roadway right-of-way of Rochester Avenue from Stratham Street to Newfields Street. Access to the Site will be provided via four driveways – two on New Hampshire Avenue providing access to employee and visitor parking, and two on Rochester Avenue providing access to loading areas at the north and south ends of the proposed facility. As part of the project, parking will be provided by two on-site surface parking lots accessible with a total of 147 parking spaces. The proposed Site Plan Layout is enclosed in Appendix H. The proposed facility is expected to be complete and occupied in 2025.

Based on the analyses conducted herein, it is the professional opinion of Tighe & Bond that while the adjustment of collected volumes to an assumed pre-pandemic condition and the addition of background growth on a 13-year horizon to the 2035 design year results in undesirable LOS at some area intersections, the traffic expected to be generated by the proposed manufacturing development is has a negligible effect on traffic operations within the study area.

Section 2 Existing Conditions

The Project Site is bounded by Rochester Avenue to the west, New Hampshire Avenue to the east, Stratham Street to the north, and Newfields Street to the south. The following sections describe the roadways and intersections included within the study area.

2.1 Roadways

2.1.1 New Hampshire Avenue

New Hampshire Avenue is classified as an urban major collector and maintained by the City of Portsmouth. The roadway runs primarily in the north to south direction connecting Pease Boulevard to the north and Durham Street, International Drive and Corporate Drive to the south. Near the project site, New Hampshire Avenue is generally a two-lane roadway with approximate 15-foot travel lanes separated by a double yellow center line. No marked shoulder or edge lines are provided. The roadway widens to provide marked left turn lanes northbound at Rochester Avenue, and both northbound and southbound at Exeter Street/Manchester Square.

A five-foot (min.) sidewalk is located on the east side of the roadway for the entirety of New Hampshire Avenue. The speed limit is posted at 35 mph in both directions.

2.1.2 Pease Boulevard

Pease Boulevard is classified as an urban major collector and is maintained by the City of Portsmouth and Town of Newington. The roadway is located north of the site location and runs primarily in the east-west direction connecting US Route 4 On/Off Ramps to the east and Pease Air National Guard Base to the west. Between Arboretum Drive/New Hampshire Avenue and International Drive, the Pease Boulevard cross section varies. Pease Boulevard at Arboretum/New Hampshire Avenue starts as a three-lane roadway (two westbound, one eastbound) with 11-foot travel lanes and narrow shoulders. The single eastbound travel lane widens to two lanes approaching International Drive, with two 11foot travel lanes in each direction and narrow shoulders, a dedicated eastbound left turn lane, and two westbound left turn lanes. Pease Boulevard widens to a five-lane section eastbound with four 11-foot wide through lanes and a right-turn lane to the US Route 4 southbound on-ramp, with the four travel lanes aligning with two left turn lanes and two through lanes at the US Route 4 northbound ramps. Four 11-foot travel lanes are also carried westbound under the US Route 4 overpass, with two left turn lanes to the southbound on-ramp and two through lanes. The roadway continues west of US Route 4 as Gosling Road.

A five-foot sidewalk is provided on both sides of Pease Boulevard between Arboretum Drive/New Hampshire Avenue and International Drive, with a 10-foot buffered multi-use path provided on the north side of the roadway between International Drive and the US Route 4 southbound off-ramp. A 6-foot sidewalk is provided on the north side of Pease Boulevard between the US Route 4 ramps. The speed limit is posted at 35 mph in both directions.

2.1.3 Grafton Road

Grafton Road is classified as an urban major collector and maintained by the City of Portsmouth. The roadway runs in a northeast to southwest alignment connecting Corporate Drive to the northeast and Route 33 (Greenland Road) to the southwest. Grafton Road is typically a two-lane roadway with 12-foot travel lanes, widening to provide a two-lane approach with separate left and right turn lanes at its northeastern termini at Corporate Drive and its southern termini at Route 33. Shoulder lane widths vary along the roadway. Narrow shoulder widths are found near the Aviation Avenue intersection which gradually increases to 3-foot shoulders on the west side of the roadway and 5-foot shoulder on the east side of the roadway. Near Pease Golf Course Driveway/Park & Ride Driveway, the shoulder lane width increases to 10 feet on the east side of the roadway. Between Pease Golf Course Driveway/Park & Ride Driveway and Route 33, the shoulder width on both sides of the roadway is 10 feet which reduces to 3 feet on the west side of the roadway with no marked shoulder on the east at Route 33 intersection. A 10-foot buffered multi-use path is provided on the northwest side of the roadway. The speed limit is posted at 35 mph in both directions.

2.1.4 Route 33 (Greenland Road)

Route 33 (Greenland Road) is classified as an urban minor arterial and maintained by the State of New Hampshire. The roadway runs primarily in the east to west direction connecting Route 151 (Portsmouth Avenue) to the west of the study area and US Route 1 (Lafayette Road) to the east of the study area. Between the I-95 Southbound ramps and Grafton Road, Route 33 is a four-lane divided roadway with 11-foot travel lanes and 8-foot-wide shoulders on both sides of the roadway. Route 33 continues as an undivided four-lane roadway east of Grafton Road, with 11-foot travel lanes and 8-foot shoulders. Shoulder widths are narrower were dedicated turn lanes are provided at Grafton Road and at the I-95 Northbound ramps. No pedestrian accommodations are provided east of Grafton Road, with a speed limit of 35 mph.

2.2 Study Area Intersections

2.2.1 Gosling Road at US Route 4 Northbound Ramps

Gosling Road intersects the US Route 4 Northbound Ramps to the east of the US Route 4 (Spaulding Turnpike) overpass at a signalized intersection, with the Northbound off-ramp approaching from the south and the Northbound on-ramp departing to the north. The Gosling Road eastbound approach provides four lanes, with two left-turn lanes and two through travel lanes. The Gosling Road westbound approach consists of three lanes, with two through lanes and one shared through/right-turn lane. The left-most westbound through lane aligns with a left-turn lane at the downstream southbound ramp intersection. The northbound off-ramp approach provides four lanes, with two left-turn lanes and two right-turn lanes. Left turn movements from Gosling Road eastbound and from the northbound off-ramp are controlled with exclusive signal phases. The northbound on-ramp provides two lanes departing the intersection. As previously described, a sidewalk is provided on the north side of Gosling Road through the intersection, with a crosswalk across the northbound on-ramp. A concurrent pedestrian traffic signal phase is provided for this crosswalk. Marked edge lines are provided on all approaches with a 1-to-2-foot offset from the curb or edge of roadway.

2.2.2 Pease Boulevard at US Route 4 Southbound Ramps

Pease Boulevard intersects the US Route 4 Southbound Ramps to the west of the US Route 4 (Spaulding Turnpike) overpass at a signalized intersection, with the Southbound off-ramp approaching from the north and the Southbound on-ramp departing to the south. The Pease Boulevard westbound approach provides four lanes, with two left-turn lanes and two through travel lanes. The Pease Boulevard eastbound approach consists of five lanes, with four through lanes and one exclusive right-turn lane. The two left-most eastbound through lanes align with the left-turn lanes at the downstream northbound ramp intersection. The southbound off-ramp approach provides four lanes, with two left-turn lanes and two right-turn lanes. Left turn movements from Pease Boulevard westbound and from the southbound off-ramp are controlled with exclusive signal phases. The southbound on-ramp provides two lanes departing the intersection. As previously described, a sidewalk is provided on the north side of Pease Boulevard through the intersection, with a crosswalk across the southbound off-ramp. A concurrent pedestrian traffic signal phase is provided for this crosswalk. Marked edge lines are provided on all approaches with a 1-to-2-foot offset from the curb or edge of roadway.

2.2.3 Pease Boulevard at International Drive

International Drive intersects Pease Boulevard from the north and south to form a 4-way, signalized intersection. Pease Boulevard is median divided, with the eastbound approach providing an exclusive left-turn lane and two through travel lanes, while the westbound approach provides two left-turn lanes and two through lanes. The north leg of International Drive is median divided and provides a wide, unmarked southbound approach, which is of adequate width to accommodate two vehicles side-by-side. International Drive northbound provides one shared left/through lane and two channelized right turn lanes under signal control. Sidewalks are provided on both sides of Pease Boulevard west of the intersection, on both sides of International Drive to the south, on the west side of International Drive to the north, and on the north side of Pease Boulevard to the east. Crosswalks are provided across all four approaches and across the channelized northbound right-turn lanes, and concurrent pedestrian traffic signal phases are provided. Marked edge lines are provided on Pease Boulevard, with a 1-to-2-foot offset from the curb or edge of roadway. Variable width shoulders are provided on International Drive south of the intersection, ranging from 2 to 8 feet.

2.2.4 Pease Boulevard at Arboretum Drive and New Hampshire Avenue

Arboretum Drive intersects Pease Boulevard from the north and New Hampshire Avenue intersects from the south to form a 4-way, stop controlled intersection. Pease Boulevard provides two lanes eastbound, with an exclusive left-turn lane and a shared through/right-turn lane. All other approaches provide one general purpose lane. Sidewalks are provided on the north side of Pease Boulevard on both sides of the intersection, and on the south side of Pease Boulevard east of the intersection. Crosswalks are provided across the east and north legs of the intersection. Marked edge lines with a 1-to-2-foot offset are provided on Pease Boulevard east of the intersection, with 6-foot shoulders on Arboretum Drive north of the intersection.

2.2.5 New Hampshire Avenue at Exeter Street and Manchester Square

Exeter Street intersects New Hampshire Avenue from the west and Manchester Square intersects from the east to form a 4-way, unsignalized intersection with stop control on Exeter Street and Manchester Square. Exclusive left turn lanes are provided on New Hampshire Avenue in both directions, and an exclusive right turn lane is provided on

Manchester Square westbound. All other movements are provided through single general purpose or shared lanes on each approach. Sidewalks are present on the east side of New Hampshire Avenue and on the south side of Exeter Street and Manchester Square, with crosswalks across the south and east legs of the intersection. No marked shoulders are present.

2.2.6 New Hampshire Avenue and Corporate Drive at Durham Street and International Drive

New Hampshire Avenue and Corporate Drive form the north and south legs, respectively, of a 4-way unsignalized intersection, with Durham Street approaching from the west and International Drive approaching from the east under stop control. All approaches provide single general-purpose lanes, with no marked shoulders. Sidewalks are provided on the north side of Durham Street and International Drive, on the east side of New Hampshire Avenue, and on both sides of Corporate Drive. Crosswalks are provided across the north and west legs of the intersection.

2.2.7 Corporate Drive at Grafton Road

Grafton Road intersects Corporate Drive from the southwest under stop control at a 3-way, T-intersection. Corporate Drive southbound provides a through travel lane and a right-turn lane, while Corporate Drive northbound provides a left-turn lane and a through lane. Grafton Road widens at its approach to Corporate Drive to provide separate left and right turn lanes. No shoulders or edge lines are present. Sidewalks are provided on the south side of Grafton Road and on the east side of Corporate Drive, with a crosswalk across the south leg of the intersection.

2.2.8 Grafton Road at Aviation Avenue

Aviation Avenue intersects Grafton Road from the north to form a 3-way, T-intersection, with Aviation Avenue under stop control. All approaches provide a single general-purpose lane, with a wide departure lane on Aviation Avenue to accommodate truck turns from Grafton Road. A multi-use path is provided along the northwest side of Grafton Road, with a wide crosswalk across Aviation Avenue. 1-to-2-foot shoulders are provided on Grafton Road, with 1-to-4-foot shoulders on Aviation Avenue.

2.2.9 Grafton Road at Golf Course and Park & Ride Driveways

The driveway for the Pease Golf Course approaches from the west and the combined driveway for the Portsmouth Transportation Center and Park & Ride lot approaches from the east to form a 4-way, unsignalized intersection with Grafton Road. The golf course and Park & Ride driveways are stop controlled. Grafton Road provides a single general-purpose lane in each direction at this intersection with typical 8-foot shoulders that taper and narrow to approximately 1-foot at the intersection. The driveway approaches also feature a single general-purpose lane, with no marked shoulders. A multi-use path is provided along the west side of Grafton Road, with a wide crosswalk across the golf course driveway.

2.2.10 Grafton Road at I-95 Southbound Off-Ramp

I-95 Southbound Exit 3A includes a direct off-ramp to Grafton Road. Grafton Road is median divided in the vicinity of the off-ramp, prohibiting left turns to Grafton Road southbound. The ramp provides a single-lane approach under stop control, while Grafton Road provides a single lane northbound through the intersection.

2.2.11 Grafton Road at Route 33 (Greenland Road)

Grafton Road intersects Route 33 (Greenland Road) from the north to form a 3-way, T-type, signalized intersection. Grafton Road southbound has a two-lane approach with exclusive left and right turn lanes. Route 33 eastbound provides an exclusive left-turn lane and two through lanes, while the westbound approach provides two through lanes and a right-turn lane. The north and west legs of the intersection are median divided. The multiuse path along the west side of Grafton Road continues adjacent to the intersection, turning towards the west and continuing on the north side of Route 33; however, no connection to the intersection is provided and no crosswalks or other pedestrian accommodations are provided. A narrow 2-foot shoulder is provided on the Grafton Road approach, with 7-to-10-foot shoulders provided on Route 33.

2.2.12 Route 33 (Greenland Road) at I-95 Southbound Ramps

I-95 Southbound Exit 3B provides an off-ramp to Route 33 (Greenland Road) to the west of Grafton Road, creating a 3-way, T-type signalized intersection. Route 33 westbound provides a four-lane approach with two left-turn lanes and two through lanes, while Route 33 eastbound provides three through lanes and a right-turn lane to the I-95 southbound on-ramp. The I-95 southbound off-ramp provides two left turn lanes and a right turn lane, while the on-ramp contains two lanes departing the intersection. The multi-use path continues along the north side of Route 33, but does not directly connect to the intersection, and no crosswalks or other pedestrian accommodations are provided.

2.2.13 Route 33 (Greenland Road) at I-95 Northbound Ramps

The I-95 Northbound ramps intersect Route 33 (Greenland Road) at a 3-way, T-type signalized intersection. Route 33 eastbound provides two through lanes at the intersection, with a channelized ramp departing Route 33 in advance of the intersection, yielding to, and merging with the on-ramp serving the left turn from Route 33 westbound, which provides an exclusive left-turn lane and two through lanes. The northbound off-ramp provides separate left and right turn lanes. 6-foot shoulders are provided on Route 33, with 1-to-2-foot left and right shoulders on the off-ramp. No pedestrian accommodations are provided in the vicinity of the intersection.

2.3 Traffic Volumes

Turning movement counts (TMC) were collected at the study area intersections on a typical weekday in February 2022 during the weekday morning (7:00 AM to 9:00 AM) and afternoon peak hour (4:00 PM to 6:00 PM). Automatic traffic recorder (ATR) data was collected on Pease Boulevard, just west of the US Route 4 southbound ramps during a 96-hour period from Wednesday thru Saturday. The ATR location was strategically chosen to align with the NHDOT Count Station (LOC ID 82379024) to serve as a basis for comparison of existing traffic volumes to recent NHDOT traffic volumes to determine if adjustments to traffic volumes should be made. The historical traffic volumes on Pease Boulevard at this location are presented below in Table 1 below.

TABLE 1Pease Boulevard Historical Traffic Volumes

Vanu	AADT	Peak Hour Traffic Volumes		Source		
Year	AADT	AM Peak	PM Peak			
2015	21,000	2,160	2,272	NHDOT (October) ¹		
2016	21,420	Not Ava	ailable	NHDOT Growth Estimate ²		
2017	21,848	Not Available		NHDOT Growth Estimate ²		
2018	20,100	1,835 2,052		NHDOT July ³		
2019	20,341	Not Available		NHDOT Growth Estimate ²		
2020	17,168	Not Available		NHDOT Growth Estimate ²		
2021	15,807	1,212	1,558	NHDOT (August)		
2022	17,175	1,211 1,428		Tighe & Bond February 2022 ATR ⁴		

¹Peak Hour Traffic Volumes Adjusted based on 2017 Seasonal Adjustment Factor to Peak

The variance in volumes over time, and specifically the decrease in volume between 2019 and 2022, represent the impact of the COVID-19 pandemic on work schedules and commuting patterns. Traffic volume trends nation- and region-wide confirm that traffic volumes have generally returned to pre-pandemic levels in 2022; however, current NHDOT guidance requests that 2022 traffic volumes should be adjusted upward to assume a return to 2019 pre-pandemic volumes. This likely represents a conversative analysis but cannot be adequately confirmed as such until multiple years of data can confirm current trends in post-pandemic traffic volumes.

Based on a review of the collected traffic volumes and comparison to the 2019 traffic volumes, it was determined the existing peak hour traffic volumes should be adjusted by a factor of 53% during the weekday morning peak period, and 45% during the weekday afternoon peak period. These adjustment factors were determined by reviewing the historical NHDOT traffic volume data during the peak hour time periods and comparing it to the 2022 peak hour volumes. Because the 2019 and 2022 peak hour time periods do not align due to changes in travel patterns, the higher peak hour traffic volume for each year was used as a basis for comparison. NHDOT seasonal adjustment factors were applied to both the historical volumes and existing traffic volumes per NHDOT guidelines.

While the application of these adjustment factors aligns with NHDOT guidance on review and adjustment of post-pandemic traffic volumes, it should be understood that application of adjustment factors based on ATR data from Pease Boulevard across all turning movements within the study area may artificially inflate turning movements and overstate calculated operational delay and resultant capacity analysis results.

The raw TMC and ATR data are provided in Appendix A. The NHDOT historical traffic volumes on Pease Boulevard, seasonal adjustment factors, and historical growth rates are enclosed in Appendix B. The Traffic Volume Adjustment Factor calculation are provided in Appendix C. Adjusted 2022 Existing Peak Hour Traffic Volumes are provided in Figure 2.

²Based on NHDOT Yearly Growth Rates

³Peak Hour Traffic Volumes Adjusted based on 2018 Seasonal Adjustment Factor to Peak

⁴Total Daily Traffic and Peak Hour Traffic Volumes Adjusted based on 2019 Seasonal Adjustment Factor to Peak

2.4 Capacity and Queue Analyses - Existing Conditions

Capacity and queue analyses were performed for the study intersections for the 2022 Existing Conditions during the weekday morning and weekday afternoon peak hours. Analyses were conducted using Trafficware Synchro Studio 11 software, which conducts the analysis based on Highway Capacity Manual (HCM) methodology. Consistent with NHDOT guidelines, analyses for signalized intersections were conducted using methods of the 2000 HCM, while analysis for unsignalized intersections utilized the HCM 6th Edition methodology. The analysis results are categorized in terms of Level of Service (LOS), which describes the qualitative intersection operational conditions based on the calculated average delay per vehicle. A summary of the HCM capacity analysis methodology and a detailed definition of LOS is provided in Appendix F. The queue analysis results are summarized based upon the length of vehicle queueing on an intersection approach. For unsignalized intersections, queues are quantified for 95th percentile (design queues). For signalized intersections, queues are quantified by 95th percentile (design) and 50th percentile (average) queues. Tables 4 and 5 in Section 7 summarize the capacity and queue analyses results, respectively. Capacity analysis worksheets with full inputs, settings, and results are provided in Appendix G.

As shown in Table 4, the conservative application of COVID adjustment factors to represent a pre-pandemic condition creates an assumed pre-pandemic Existing condition which predicts notable operational delay throughout the study area. While many intersections and individual intersection approaches operate at LOS D or better during the peak hours, the following predict unfavorable and failing operations:

Pease Boulevard at International Drive:

• The intersection operates at overall LOS E with failing operations of LOS F on the northbound right turn movement during the weekday afternoon peak hour.

Pease Boulevard at US Route 4 Southbound Ramps:

- The intersection operates at overall LOS F during the weekday morning peak hour with failing operations on the southbound right turn movement.
- The westbound left movement operates at LOS E during the weekday afternoon peak hour.

Pease Boulevard at US Route 4 Northbound Ramps:

• The intersection operates at overall LOS E during the weekday morning peak hour, with failing operations on the northbound left turn movement.

Route 33 (Greenland Road) at I-95 Southbound Ramps:

- Failing operations are experienced on the westbound left turn and northbound through movements during the weekday morning peak hour.
- Failing operations are experienced on the westbound left, northbound through, and southbound left movements during the weekday afternoon peak hour.
- The intersection operates at overall LOS F during the weekday morning peak and afternoon peak hours.

• Route 33 (Greenland Road) at Grafton Road:

 The eastbound left and through movements operate at LOS F during the weekday morning peak hour.

- The eastbound left, westbound through, and southbound right movements operate at LOS F during the weekday afternoon peak hour.
- The intersection operates at overall LOS F during the weekday morning peak and afternoon peak hours.
- Predicted 95th percentile queues exceed the available storage on the eastbound left movement during the weekday morning peak hour.

• Route 33 (Greenland Road) at I-95 Northbound Ramps:

- The intersection operates at overall LOS E during the weekday morning peak hour. The westbound left turn movement operates at LOS E, while the northbound left and right turn movements experience failing LOS F operations during this same time period.
- Failing overall intersection operations of LOS F are experienced during the weekday afternoon peak hour, with failing operations on the eastbound right movement. LOS E operations are experienced on the westbound left and northbound left movements during this time period.
- Predicted 50th and 95th percentile queues exceed available storage on the northbound right movement during the weekday morning peak hour and on the eastbound right and westbound left movements during the afternoon peak hour.

Pease Boulevard at Arboretum Drive/ New Hampshire Avenue:

- The westbound left turn and southbound movements operate at LOS E during the weekday morning peak hour.
- o Overall failing operations of LOS F are experienced at the intersection as well as on the northbound movement during the weekday afternoon peak hour.

• New Hampshire Avenue at Exeter Street/ Manchester Square:

• The westbound left turn movement operates at LOS E during both the weekday morning and weekday afternoon peak hours.

New Hampshire Avenue/Corporate Drive at International Drive/Durham Street:

 The stop-controlled International Drive approach operates at LOS F during the weekday afternoon peak hour.

• Grafton Road at Aviation Avenue:

 The eastbound movement operates at failing LOS F during the weekday afternoon peak hour.

Grafton Road at Pease Golf Course/Park & Ride Driveways:

- The westbound movement from the Park & Ride driveway operates at LOS F during both peak periods.
- The eastbound movement operates at LOS F during the weekday afternoon peak hour.

Grafton Road at I-95 Southbound Off-ramp:

 The westbound right turn movement from the off-ramp operates at LOS F during the weekday morning peak hour.

2.5 Collision History

Crash data was collected from police reports from the City of Portsmouth Police Department and Town of Newington Police Department for the most recent three-year period between January 2019 and December 2021 for the study area intersections. At the time of study completion, updated crash data was not available for the intersections of New Hampshire Avenue/Corporate Drive at Durham Street/International Drive and Corporate Drive at Grafton Road; in lieu of updated data, crash data from 2007 to 2009 has been provided from a historical report, and will be supplemented by more recent data once available. Table 2 on the following page provides a summary of the collisions within the study area. Appendix E includes detailed collision summaries for each of the study intersections.

As shown in Table 2, there were 66 motor vehicle collisions reported in the study area during the three-year period analyzed. Crashes occurred most frequently at the intersection of New Hampshire Avenue at Exeter Street and Manchester Square, with eleven collisions, accounting for about 17% of the reported total. The intersection of Grafton Road at the Pease Golf Course and Park & Ride Driveways experienced the second highest number of collisions with nine, accounting for about 14% of the reported total. The Route 33 (Greenland Road) at Grafton Road and Corporate Drive at Grafton Road each experienced eight collisions, each representing approximately 12 percent of the total. The intersections of Pease Boulevard at the Us Route 4 Southbound Ramps and New Hampshire Avenue/Corporate Drive at Durham Street/International Drive each experienced seven collisions, each representing approximately 11 percent of the total. The remaining intersections experienced five or fewer crashes within the study period. For the three-year period, the intersections of Grafton Road at the I-95 Southbound off-ramp and Route 33 (Greenland Road) at the I-95 Southbound ramps did not have any reported collisions based on data provided by the City of Portsmouth.

TABLE 2Study Area Collision History Summary

	2007	2008	2009	2019	2020	2021	Total	Percent
Gosling Road at US Route 4 NB Ramps				1	0	3	4	6.1%
Pease Boulevard at US Route 4 SB Ramps				1	3	3	7	10.6%
Pease Boulevard at International Drive				1	0	0	1	1.5%
Pease Blvd at NH Ave/ Arboretum Dr				1	1	3	5	7.6%
NH Ave at Exeter St/ Manchester Sq				4	4	3	11	16.7%
Grafton Road at Aviation Avenue				2	2	0	4	6.1%
Grafton Road at Golf Course/Park and Ride				4	1	4	9	13.6%
Route 33 at Graton Road				5	1	2	8	12.1%
Route 33 at I-95 NB Ramps				1	1	0	2	3.0%
NH Ave at International Dr/ Durham Street	1	2	4				7	10.6%
Corporate Drive at Graton Road	3	5	0				8	12.1%
TOTAL	4	7	4	20	13	18	66	100%

More detailed collision history summary data is provided in Appendix E. The most frequent types of collision were angle and rear-end, accounting for about 39% and 24% of the total collisions within the study area, respectively. The third most frequent collision type was single vehicle crashes with animal or fixed objects which made up about 8% of the total collisions. The remaining crashes were sideswipe – same direction, accounting for about 5% of the total collisions. The fifteen crashes summarized from historical data from 2007 to 2009 are unclassified, as detailed data was not available for these intersections.

About 86% of collisions occurred on weekdays, spread throughout the day. With the remaining 14% occurring on weekends. Weather and road surface conditions were only provided by the Newington Police Department and was available for the two intersections where historical data was utilized. 24 out of the 32 reported collisions in the study area for which weather data was available occurred when the weather was clear. The remaining eight collisions occurred when it was raining or snowing. 22 of the 32 reported collisions occurred when the road surface was dry.

The collision data indicates no reported fatalities. One reported serious injury was reported for an angle collision at the intersection of New Hampshire Avenue at Exeter Street/Manchester Square. An additional serious injury crash was reported in the historical data reviewed for the intersection of Corporate Drive at Grafton Road. The remaining 64 crashes resulted in minor injuries or property damage only. There were no pedestrian or cyclist crashes reported in the three-year period.

2.6 Public Transportation

The Cooperative Alliance for Seacoast Transportation (COAST) provides transit service within the study area. Bus Route 42 is the primary bus route in the study area with stops along New Hampshire Avenue including two bus stops at the site location (New Hampshire Ave at Stratham Street and New Hampshire Avenue at Newfields Street). Bus Route 42 also have bus stops along Grafton Road to the Portsmouth Transportation Center/Park & Ride and provides service to downtown Portsmouth. The route operates from 6:43AM to 6:34PM Monday through Friday. Bus Route 40 also operates in the study area with a bus stop at the Portsmouth Transportation Center and provides access to downtown Portsmouth. The route operates from 7:24 AM to 7:46 PM Monday through Friday. Bus Route 42 and 40 map and schedule are included in Appendix J.

Section 3 No Build Conditions

The No-Build Condition represents the projection of traffic volumes and operating conditions without the anticipated additional site generated traffic. Consistent with NHDOT guidelines, the study area is analyzed for an Opening Year (2025) and Design Year (2035). This section describes the growth and development considerations included in the 2025 and 2035 No-Build traffic volumes.

3.1 Traffic Growth

To develop the traffic volumes for the 2025 and 2035 No-Build Conditions, the 2022 Existing traffic volumes were grown by one percent per year to represent the general growth of traffic on the study area roadways. This growth rate is consistent with the average growth rate in NHDOT Region E - Southeast, the region in which Portsmouth is located. Background NHDOT growth data is included in Appendix B.

NHDOT and the Pease Development Authority (PDA) were contacted about other planned/approved developments in the area that may add new traffic to the study area prior to 2025. The following developments were identified:

- Lonza Biologics: This project proposes to construct 1,046,000± sf of new industrial space and 700 new parking spaces contained within two garages along Corporate Drive as an expansion of existing facilities located between Goose Bay Drive and International Drive.
- 73 Corporate Drive: This project proposes to construct additional medical office space adjacent to the existing Wentworth-Douglass facility on Corporate Drive.
- Pease Surface Transportation Master Plan: Traffic volumes for the full occupancy of existing buildings and projects that are planned or under construction are included in the No-Build Condition.

Traffic volumes for these projects were obtained from record studies and assigned to the study area intersections in the No-Build conditions. Data for background development projects are included in Appendix D. It is assumed that other smaller developments or small vacancies in existing developments are captured by the background traffic growth rate.

The 2025 and 2035 No-Build traffic volumes for the weekday morning and weekday evening peak hours are shown in Figures 3 and 4, respectively.

3.2 Planned Roadway Improvements

Information obtained by NHDOT was used to identify roadway improvement projects in the area that may affect future traffic operations. A geometric improvement project at the intersection of Pease Boulevard at New Hampshire Avenue/ Arboretum Drive was identified in the NHDOT Ten-Year Plan (NHDOT Project No. 42879) and was considered when developing the No-Build conditions analysis. The project proposes to construct a northbound right turn lane on the northbound leg of the intersection. The project is fully

funded with construction currently scheduled for 2025. The improvement was included in the 2035 No-Build and 2035 Build Conditions analyses.

3.3 Capacity and Queue Analyses - No-Build Conditions

Capacity and queue analyses were conducted for the 2025 and 2035 No-Build Conditions traffic volumes for both peak periods using the methodology described in Section 2.4. Tables 4 and 5 in Section 7 summarize the capacity and queue results, respectively. Capacity analysis worksheets with full inputs, settings, and results are provided in Appendix G.

The increase in expected future traffic based on the 1 percent per year compounded growth rate and the site-specific development added to the future No-Build Conditions result in some degradation of operations when compared to existing conditions. As described in Section 3.2, the construction of a northbound right-turn lane at the intersection of Pease Boulevard at New Hampshire Avenue/ Arboretum Drive is included in the 2035 No-Build Condition. In the 2025 No-Build Condition, most overall intersections and individual intersection approaches operate a similar LOS to the Existing Condition, which includes adjustment to an assumed pre-pandemic traffic level. The 2035 No-Build Condition includes some additional degradation of LOS based on the addition of ten years of compounded annual growth. The following identifies intersections and approaches which predict a degradation of LOS or increased delay exceeding available storage between the 2022 Existing and 2025 No-Build Condition, and/or between the 2025 and 2035 No-Build Condition:

• Pease Boulevard at International Drive:

- The intersection degrades to overall LOS F in the 2035 No-Build Condition with failing operations of LOS F on the westbound left and northbound right movements during the weekday morning peak hour. Westbound left movement queues exceed available storage in the 2035 No-Build Condition.
- The overall intersection degrades to LOS F operation in the 2025 No-Build Condition during the weekday afternoon peak hour.
- The northbound right movement queues exceed available storage in both No-Build Conditions during the weekday afternoon peak hour.

Pease Boulevard at US Route 4 Southbound Ramps:

- The intersection continues to operate at overall LOS F during the weekday morning peak hour with failing operations on the southbound right movement. The southbound left movement also degrades to LOS E in the 2035 weekday morning peak hour. Both 50th and 95th percentile queues also exceed available storage in 2035.
- The intersection continues to operate at overall LOS F with a degradation in LOS from E to F for the westbound left turn movement during the weekday afternoon peak hour in the 2035 No-Build condition.

Pease Boulevard at US Route 4 Northbound Ramps:

 The intersection continues to operate at overall LOS E in the 2025 No-Build Condition but degrades to LOS F in the 2035 No-Build Condition during the weekday morning peak hour.

- In the 2035 No-build Condition, the eastbound left turn and shared westbound through/ right movements degrade to LOS E during the weekday afternoon peak hour.
- The northbound left movement experiences design queues that exceed available storage in both No-Build years during the weekday morning peak hour.
- The eastbound through and westbound through/ right movement queues exceed available storage in 2035.

• Route 33 (Greenland Road) at I-95 Southbound Ramps:

- Overall failing operations continue to be experienced during both peak periods.
- The westbound right movement experiences degradation in LOS from D to E in the 2035 No-Build Condition during the weekday morning peak hour.

• Route 33 (Greenland Road) at Grafton Road:

- The intersection continues to operate at LOS F during the weekday morning and weekday afternoon peak hours.
- The eastbound through movement degrades to LOS E operation in the 2025
 No-Build Condition and to LOS F operation in the 2035 No-Build Condition.
- The southbound left turn movement degrades to LOS F in the 2035 No-Build Condition during the weekday afternoon peak hour. Design queues exceed available storage in 2035.

• Route 33 (Greenland Road) at I-95 Northbound Ramps:

- The westbound left turn from Route 33 continues to operate at LOS E during the weekday morning and weekday afternoon peak hour in both No-Build conditions. Predicted queue lengths continue to exceed available storage.
- The northbound left and right turns from the off-ramp continue to operate at LOS F during the weekday morning peak hour in both No-Build Conditions. The northbound left turn movement continues to operate at LOS E during the weekday afternoon peak hour.
- The eastbound right turn continues to operate at LOS F in both No-Build Conditions during the weekday afternoon peak hour.
- In 2035, the eastbound through movement degrades to LOS E during the weekday morning peak hour and degrades to LOS F during the weekday afternoon peak hour.
- The overall intersection degrades to LOS F in the 2035 No-Build condition during the weekday morning peak hour.

Pease Boulevard at Arboretum Drive/ New Hampshire Avenue:

- The southbound movement degrades to LOS F in the 2025 No-Build Condition and the westbound left turn movement degrades to LOS F in the 2035 No-Build Condition during the weekday morning peak hour.
- The northbound movements experience improved operations with the addition of the dedicated right-turn lane in the 2035 No-Build Condition, however the shared northbound left/ through movement does experience LOS F during the

weekday afternoon peak hour, but with a decrease in delay of over 70 seconds as compared to 2025 No-Build.

New Hampshire Avenue at Exeter Street/ Manchester Square:

- The shared westbound left/ through movement degrades to LOS F in the 2025 No-Build Condition during the weekday morning peak hour and in the 2035 No-Build Condition during both peak hours.
- The Exeter Street eastbound movement degrades to LOS E in the 2035 No-Build Condition during the weekday morning peak hour.

Corporate Drive at Grafton Road:

 The eastbound left movement degrades to LOS F in the 2035 No-Build Condition during both peak periods. 95th percentile queues are estimated to exceed available storage in 2035.

• Grafton Road at Pease Golf Course/Park & Ride Driveways:

- The westbound movement continues to operate at LOS F during the weekday morning peak period in both No-Build years.
- The eastbound and westbound movements continue to operate at LOS F during the weekday afternoon peak period.

Grafton Road at I-95 Southbound Off-Ramp:

 The westbound right turn movement continues to operate at LOS F in both No-Build years during the weekday morning peak hour.

Section 4 Proposed Conditions

The proposed 209,750± square foot manufacturing facility will include approximately 115 surface parking spaces. The proposed development is expected to be complete and occupied in 2025. The Site Layout Plan is presented in Appendix H.

4.1 Site Access

Access to the Site will be provided via four full access, unsignalized driveways, with two on New Hampshire Avenue for passenger cars, and two on Rochester Avenue for trucks. The proposed northern site driveway on New Hampshire Avenue is located approximately 280 feet south of Stratham Street and provides access to a 99-vehicle space surface parking lot, while the second driveway is located approximately 700 feet south on New Hampshire Avenue and provides access to a 48-space surface parking lot. The two proposed driveways on Rochester Avenue provide access to two truck loading dock areas at the northern and southern end of the proposed facility. It is anticipated that trucks will access the Site to/ from Rochester Avenue to the south.

Intersection sight distance was reviewed at the proposed Site driveways in accordance with criteria set forth in the AASHTO publication *A Policy on the Geometric Design of Highways and Streets*, 7th Edition, 2018. Available site distances were estimated based on the site layout plan and available aerial mapping. The posted speed of 35 miles per hour on New Hampshire Avenue was used as a basis for the analysis.

Based on AASHTO guidelines and the posted speed of the roadway, the intersection sight distance requirement is 386 feet for passenger cars and 592 feet for combination trucks turning left under Case B – Left Turn from Stop. Each site driveway provides intersection sight distance exceeding the AASHTO requirements for passenger vehicles and combination trucks except for the northern site driveway on Rochester Avenue. Intersection sight distance is limited looking to the north due to the sharp curvature at Rochester Avenue/ Stratham Street. While the available sight distance is approximately 250 feet, this is not expected to be a safety issue due to the perceived low traffic volumes in this industrial area and the expected reduced vehicle speeds due to the 90 degree turn between Rochester Avenue and Stratham Street.

4.2 Multi-Modal Accommodations

Multi-modal access is provided in the general vicinity of the proposed development. Site improvements include a sidewalk along the western side of the facility, with connections to the employee and visitor parking areas and the building itself, as well as a proposed crosswalk across New Hampshire Avenue at Newfields Street which connects to existing sidewalk on the east side of New Hampshire Avenue. Near the site location there is a sidewalk network that connects to Pease Boulevard and to Grafton Road. Just east of the proposed development on the eastern side of New Hampshire Avenue there is a 5-footwide sidewalk that connects to the multi-use path along Grafton Road and Route 33 (Greenland Road). These facilities may encourage cycling and walking to the development. In addition, the previously mentioned COAST bus stops are located at the intersection of Stratham Street at New Hampshire Avenue and Newfields Street at New Hampshire

Avenue directly in front of the proposed development with bus connection at the Portsmouth Transportation Center to downtown Portsmouth.

4.3 Trip Generation

Site generated traffic volumes were estimated using rates published in the Institute of Transportation Engineers (ITE) Trip Generation, 11th Edition, 2021. The proposed land use for the project site is advanced manufacturing, which uses innovative technologies in the manufacturing process, which in turn reduces the number of employees needed over a traditional manufacturing process; however, since ITE does not have a comparable Land Use Code (LUC) for advancing manufacturing, and in the absence of end user data for similar facilities, LUC 140 – Manufacturing was used to estimate traffic for the development. This likely represents a conservative estimate of expected trips for the proposed use. Table 3 summarizes the trip generation estimates, which have been separated into passenger car trips and truck trips.

TABLE 3Site-Generated Traffic Summary

Proposed - 209,750 SF Manufactur	ing Facility (Passenger	Cars)	
Peak Hour Period	Enter	Exit	Total
Weekday Morning	105	32	137
Weekday Afternoon	46	103	149
Weekday	451	451	902

Proposed - 209,750 SF Manufactur	ing Facility (Trucks)		
Peak Hour Period	Enter	Exit	Total
Weekday Morning	3	3	6
Weekday Afternoon	2	4	6
Weekday	47	47	94

Proposed - 209,750 SF Manufacturi	ing Facility (Total Vehic	cles)	
Peak Hour Period	Enter	Exit	Total
Weekday Morning	108	35	143
Weekday Afternoon	48	107	155
Weekday	498	498	996

Based on the ITE data, the proposed development is expected to generate 996 vehicles over a typical weekday, comprised of 902 passenger car vehicle trips and 94 truck trips. During the weekday morning peak hour, the project is expected to generate 143 vehicle trips, with 108 entering and 35 exiting, comprised of 137 passenger car trips and 6 truck trips. During the weekday afternoon peak hour, the project is expected to generate 155

vehicle trips, with 48 entering and 107 exiting, comprised of 149 passenger car trips and 6 truck trips.

While the nearby COAST bus stop and sidewalk facilities in the area may provide additional options for employees to travel to the proposed development, no credit was taken for these trips.

4.4 Arrival and Departure Distribution

The distribution of the proposed site generated traffic entering and exiting the Site was applied to the roadway network based on existing travel patterns within the study area. Separate distribution patterns were determined for passenger car and truck trips. Truck trip distribution is partially based on prior consultation with PDA and distributes trucks exclusively to and from I-95 to the south, prohibiting site-generated truck distribution on Pease Boulevard.

Arrive and distribution patterns are shown in Figures 5 and 6, and are as follows:

Passenger Cars:

- 25% East to/from Pease Boulevard/Gosling Road
- 25% South to/from I-95
- 20% Northeast to/from I-95
- 20% Northwest to/from US Route 4
- 10% East (Local) to/from Route 33

Trucks:

- 55% South to/from I-95
- 45% Northeast to/from I-95

Site generated employee and visitor passenger car trips are expected to balance between the two site driveways on New Hampshire Avenue based on parking availability and the proximity of parking to the employee's work area. Similarly, truck trips are expected to be split between the two driveways on Rochester Avenue based on availability and proximity of loading dock locations.

Figures 7 and 8 show the proposed site generated traffic distributed to the study area roadways for the weekday morning and afternoon peak hours.

Section 5 Build Conditions

The anticipated site generated traffic volumes associated with the proposed development were added to the 2025 and 2035 No-Build Conditions traffic volumes to develop the 2025 and 2035 Build Conditions traffic volumes, which are presented in Figure 9 and 10, respectively, for the weekday morning and afternoon peaks.

5.1 Capacity and Queue Analyses – Build Conditions

Capacity and queue analyses were conducted for the 2025 and 2035 Build Conditions for the peak hours using the methodology described in Section 2.4. Tables 4 and 5 in Section 7 summarize the capacity and queue results, respectively. Capacity analysis worksheets with full inputs, settings, and results are provided in Appendix D.

Many of the study area intersections and individual intersection approaches continue to operate at acceptable LOS D or better during the peak hours in the 2025 and 2035 Build Conditions. Study area intersections that were identified in Section 2.4 and 3.3 to operate at LOS E or LOS F in the No-Build Conditions continue to operate at the same LOS under Build Conditions, except for the following:

Pease Boulevard at US Route 4 Northbound Ramps:

 The overall intersection LOS degrades to E and the eastbound left movement degrades to LOS F in the 2035 Build Condition during the weekday afternoon peak hour.

• Route 33 (Greenland Road) at I-95 Northbound Ramps:

 The westbound left movement degrades to LOS E in the 2035 Build Condition during the weekday afternoon peak hour.

A review of calculated queue lengths in Table 5 reveals that the majority of queues are unchanged between the No-Build and Build Conditions for both 2025 and 2035 or increase by approximately 1-2 car lengths or fewer. An exception is the Route 33 (Greenland Road) at I-95 Northbound ramps intersection, which experiences increasing queues extending beyond available capacity in the weekday afternoon peak hour for both the eastbound right turn and westbound left turn to I-95 Northbound, and the westbound through lane. Storage is limited for the westbound left turn and through movements by the adjacent signalized intersection of Sherburne Road approximately 500 feet east of the I-95 Northbound ramp intersection, and the existing accommodation of back-to-back left turn lanes for Route 33 westbound at I-95 and eastbound at Sherburne Road.

Increasing queues are also predicted for the Grafton Road eastbound left turn at Corporate Drive in both peak periods, which operates at LOS F in both the 2035 No-Build and 2035 Build conditions.

Section 6 Conclusions & Recommendations

- A 209,750± square foot advanced manufacturing facility is proposed to be constructed on the presently vacant lot on New Hampshire Avenue in the Pease Tradeport area in Portsmouth, NH. The development will provide approximately 147 parking spaces to accommodate employee and visitor parking. The proposed development is expected to be complete and occupied by 2025.
- 2. Access to the Site will be provided via for full access, unsignalized driveways. Two driveways on New Hampshire Avenue will serve passenger cars, while two driveways on Rochester Avenue will serve truck traffic to and from the proposed loading docks. Trucks will access the site to and from Rochester Avenue to the south.
- 3. The proposed land use for the project site is advanced manufacturing, which uses innovative technologies in the manufacturing process, which in turn reduces the number of employees needed over a traditional manufacturing process. ITE Land Use Code 140 Manufacturing was used to estimate traffic for the development, which is based on more traditional manufacturing methods. This likely represents a conservative estimate of expected trips for the proposed use.
- 4. Based on the ITE data, the proposed manufacturing facility is expected to generate 996 vehicles over a typical weekday, comprised of 902 passenger car vehicle trips and 94 truck trips. During the weekday morning peak hour, the project is expected to generate 143 vehicle trips, with 108 entering and 35 exiting, comprised of 137 passenger car trips and 6 truck trips. During the weekday afternoon peak hour, the project is expected to generate 155 vehicle trips, with 48 entering and 107 exiting, comprised of 149 passenger car trips and 6 truck trips.
- 5. The project proposes internal and adjacent roadway sidewalk connections, creating and promoting connections to a robust existing sidewalk network along study area roadways.
- 6. Vehicle collision history, compiled from local police and historic reports, do not indicate a significant or notable pattern of collisions in the study area.
- 7. Consistent with NHDOT guidelines, existing traffic volumes have been adjusted based on a comparison between 2022 and 2019 data to represent a pre-pandemic condition. Application of adjustment factors based on ATR data from Pease Boulevard across all turning movements within the study area may artificially inflate turning movements and overstate calculated operational delay and resultant capacity analysis results. 2022 traffic volumes adjusted to an assumed pre-pandemic condition predict notable operational delay throughout the study area.
- 8. The capacity analyses show that the study area intersections will continue to operate at the same LOS under Build Conditions as in No-Build Conditions for both the 2025 opening year and 2035 design year, with the following exceptions:
 - a. The intersection of Pease Boulevard at the US Route 4 Northbound Ramps degrades from LOS D to LOS E, with the eastbound left turn movement

- degrading from LOS E to LOS F, in the weekday afternoon peak hour between the 2035 No-Build and Build Condition.
- b. The westbound left turn movement at the intersection of Route 33 (Greenland Road) at the I-95 Northbound Ramps degrades from LOS D to LOS E in the weekday afternoon peak hour between the 2035 No-Build and Build Condition.
- c. At the intersection of Pease Boulevard at Arboretum Drive and New Hampshire Avenue, planned improvements result in overall LOS D in the weekday afternoon peak hour for the 2035 No-Build Condition, which degrades to LOS E in the Build condition.
- 9. Based on the results of the foregoing analysis, it is the professional opinion of Tighe & Bond that while the adjustment of collected volumes to an assumed pre-pandemic condition and the addition of background growth on a 13-year horizon to the 2035 design year results in undesirable LOS at some area intersections, the addition of site-generated traffic is expected to have a negligible effect on traffic operations within the study area.

Section 7 Additional Tables

TABLE 4Intersection Operation Summary - Capacity

							v	/eekday	Morni	ng Peak H	our											We	ekday A	fternoo	n Peak I	lour					
	Lane		022			2025			202	5		203	5		2035	i		202	2		2025			2025			2035	5		2035	
	Use	Ex	isting			No-Bui	ld		Bui	d		No-Bu	ild		Build	l		Existi	ng		No-Bui	ld		Build			No-Bui	ild		Build	
		LOS D	elay	V/C	LOS	Delay	V/C	LOS	Dela	y V/C	LOS	Dela	V/C	LOS	Delay	V/C	LOS	Delay	/ V/C	LOS	Delay	V/C	LOS	Delay	V/C	LOS	Delay	V/C	LOS	Delay	V/C
Traffic Signal - Pease	Boulevard	at Inte	rnatio	nal Drive																											
Overall		C 2	0.4 (0.82	С	21.0	0.82	С	21.2	0.83	F	80.6	1.19	F	81.5	1.20	E	77.9	1.27	F	87.8	1.32	F	93.5	1.35	F	245.8	2.10	F	254.0	2.17
	EBL			0.00	Α	0.0	0.00	Α	0.0	0.00	Α	0.0	0.00	Α	0.0	0.00	С	29.0		С	29.0	0.13	С	29.6	0.12	D	35.1	0.12	D	36.1	0.12
Pease Boulevard	EBTR			0.47	D	40.7	0.50	D	41.0		D	42.9	0.54	D	43.2	0.56	C	20.7		C	20.8	0.65	C	20.8	0.67	C	23.4	0.63	C	23.4	0.65
	WBL			0.82	C	22.7	0.82	C	23.3		F	118.1		F	121.8	1.20	C	26.3		C	26.6	0.16	C	27.5	0.17	C	31.0	0.62	C	32.6	0.63
	WBTR			0.41	A	6.5	0.41	A	6.7	0.44	A	7.7	0.47	A	7.8	0.49	В	15.6		В	15.7	0.42	В	15.7	0.43	В	13.6		В	13.4	0.38
International Drive	NBTL NBR			0.05 0.70	C D	32.1 42.1	0.05 0.73	C D	32.4 42.4		C F	32.2 100.0	0.05	C F	32.4 102.3	0.05 1.08	B	13.4 148.3		B	13.5 169.5	0.03 1.32	B	14.4	0.03 1.35	C F	21.4	0.04 2.10	C	22.6 >300	0.04 2.17
Titlerilational Drive	SB			0.70	C	31.9	0.73	C	32.2		C	31.9	0.02	C	32.2	0.02	В	148.3		В	15.0	0.27	В	187.0 15.9	0.28		>300	0.39			0.40
							0.02		JLIL	0.02		51.5	0.02		JL.L	0.02		1110	0.20		15.0	0.27		10.0	0.20			0.55		2311	00
Traffic Signal - Pease	Boulevard				ff Ra						_			_																	
Overall	EDT			0.10	F	89.2	1.43	F	96.2 24.4		F C	157.1		F	162.8		<u>c</u>	34.1		D	35.3	0.93	<u>D</u>	35.3	0.93	D	41.0 32.5	1.04 0.77	D		1.04
	EBT EBR			0.18 0.11	C C	24.3 23.9	0.18	C C	24.4		C	24.8 24.2	0.26 0.17	C C	24.8 24.2	0.27 0.17	C	29.0 31.1		C	29.5 32.6	0.64 0.65	C C	30.0 32.6	0.67 0.65	C D	32.5 50.7	0.77	D	33.3 50.7	0.80
Pease Boulevard	WBL			0.11	C	27.2	0.12	C	27.9		C	28.9	0.17	C	29.4	0.17	E	61.1		E	64.1	0.65	E	63.8	0.65	D	80.5	1.04	F		1.04
	WBT			0.55	В	17.4	0.28	В	17.2		В	19.4	0.74	В	19.3	0.75	В	11.2		В	12.1	0.93	В	12.4	0.95	В	11.5	0.33	В	11.6	0.33
US Route 4 SB On/ Off	SBL			0.84	D	46.5	0.87	D	46.7		F	62.3	0.97	E	62.3	0.73	D	36.6		D	36.9	0.62	D	36.9	0.62	D	38.3	0.68	D	38.3	0.68
Ramps	SBR			1.37	F	241.9	1.43	F	265.		F	>300		F	>300	1.98	Č	30.3		Č	30.2	0.02	Č	30.2	0.07	Č	30.6		Č		0.13
Traffic Signal - Pease Overall	Boulevard			1 NB On/O 1.14	ff Ra	63.8	1.18	Е	63.3	1.18	F	106.4	1.47	F	105.4	1.47	С	34.0	0.86	D	35.5	0.87	D	36.4	0.89	D	54.6	1.05	Е	57.9	1.06
Overall	EBL			0.13	В	15.2	0.13	В	15.1		В	14.3	0.23	В	14.3	0.24	D	50.2		D	51.9	0.87	D	54.0	0.89		75.5	1.01	F	82.3	1.04
Pease Boulevard	EBT			0.73	D	40.9	0.75	D	40.6		D	41.2	0.85	D	41.2	0.85	C	21.8		Č	22.6	0.82	C	23.1	0.84	C	31.9		D	36.0	0.97
. case soulevara	WBTR			0.26	C	20.1	0.27	Č	20.2		Č	20.8	0.36	C	21.0	0.37	Č	34.6		D	37.3	0.87	D	38.4	0.89	F	72.0		E	75.0	1.06
US Route 4 NB On/ Off	NBL			1.14	F	129.6	1.18	F	130.		F	256.8		F	256.8		Č	32.3		Č	32.3	0.30	Č	32.3	0.30	c	33.7	0.43	C	33.7	0.43
Ramps	NBR			0.17	C	30.5	0.18	C	30.5		C	32.5	0.31	C		0.31	č	31.8		č	31.8	0.24	č	31.8	0.24	č	32.0	0.26	č		0.26
							_																								
Traffic Signal - Greenl Overall	and Road			33) at 1-9: 1.39		127.0		F	128.	3 1.43	F	181.3	1.58	F	182.0	1.58	F	81.1	1.27	F	90.5	1.31	F	93.0	1.31	F	133.8	1.44	F	137.1	1.44
	WBL			1.39	F	235.8	1.43	F	235.		F	>300	1.58	F	>300	1.58	F	163.1	1.27	F	179.8	1.31	F	179.8	1.31	F	239.7		F	239.7	1.44
I-95 SB On/ Off Ramps	WBR			0.72	D	39.6	0.76	D	39.6		E	57.8		E	57.8	0.92	C	26.0		Ċ	26.1	0.15	C	26.1	0.15	Ċ	26.6		C	26.6	0.20
	NBT			1.23	F	156.0	1.27	F	159.		F	249.1		F	251.5	1.48	F	97.3		F	111.4	1.16	F	111.4	1.16	F	163.9		F		1.28
Greenland Road (State	NBR			0.19	С	21.6	0.20	С	21.7		С	23.0	0.22	С	23.1	0.22	С	24.1	0.22	С	24.2	0.23	С	24.2	0.23	С	24.6		С	24.6	0.25
Route 33)	SBL	D 3	8.1	0.64	D	38.3	0.65	D	38.4	0.66	D	39.7	0.73	D	40.2	0.75	F	93.8	1.08	F	104.9	1.11	F	122.6	1.16	F	203.9	1.35	F	223.4	1.40
	SBT	Α :	9.9	0.36	В	10.0	0.38	В	10.0	0.38	В	10.4	0.41	В	10.4	0.41	В	16.8	0.78	В	17.6	0.80	В	17.6	0.80	С	21.7	0.89	С	21.7	0.89
Traffic Signal - Greenl	and Doad	(Ctata	lauta i	22) at Cra	fton I	Dood																									
Overall	aliu Koau			2.36	F	163.2	2.46	F	168.	8 2.54	F	279.4	3.59	F	293.4	3.80	F	155.4	1 2.33	F	171.1	2.40	F	176.4	2.40	F	247.9	2.66	F	256.2	2.66
	EBL			2.36	F	>300	2.46	F	>30		F	>300		F	>300	3.80	F	>300		F	>300	2.40	F	>300	2.40	F	>300		F	>300	2.66
Greenland Road (State	EBT			1.16	F	107.6	1.20	F	112.		F	208.8		F	217.3		D	54.0		E	65.9	1.09	Е	65.9	1.09	F	112.9		F		1.20
Route 33)	WBT			0.73	С	23.7	0.76	С	23.7		С	27.1	0.83	С	27.1	0.83	F	142.5		F	158.9	1.29	F	158.9	1.29	F	218.6		F		1.43
•	WBR			0.35	В	18.1	0.36	В	18.5		В	19.4	0.44	В	19.8	0.47	В	15.5		В	15.5	0.14	В	15.7	0.16	В	15.8		В	16.0	0.19
Cootton Dood	SBL	C 2	1.7	0.51	С	21.8	0.52	С	22.0	0.54	С	23.8	0.68	С	24.0	0.69	С	26.9	0.79	С	28.5	0.81	D	35.6	0.88	F	103.6	1.14	F	130.9	1.21
Grafton Road	SBR	B 1	8.7	0.15	В	18.7	0.15	В	18.5	0.16	В	18.1	0.32	В	18.0	0.35	F	282.6	1.56	F	>300	1.62	F	>300	1.69	F	>300	2.00	F	>300	2.07
Tueffic Ciencel Consul		/C+-+- !		33\ -+ T O		0 /066	D																								
Traffic Signal - Greenl Overall	aliu Koau			1.22	E	69.4	1.26	Е	74.1	1.33	F	107.	1.49	F	116.0	1.57	F	86.4	1.43	F	100.1	1.55	F	108.8	1.61	F	198.8	2.26	F	210.6	2.33
	EBT			0.88	D	43.1	0.91	D	43.4		E	69.3	1.03	E	70.0	1.04	D	40.7	0.75	D	44.6	0.80	D	46.5	0.83	F	109.2		F	117.9	1.13
Greenland Road (State	EBR			0.55	c	30.3	0.57	Č	30.5		D	38.7	0.75	D	39.5	0.77	F	247.2		F	298.9	1.55	F	>300	1.61	F	>300		F		2.33
Route 33)	WBL			0.60	E	63.8	0.61	E	63.8		E	64.0	0.63	E	64.0	0.63	E	58.9		E	57.5	0.86	E	58.0	0.87	D	53.4	0.86	E	55.3	0.87
,	WBT			0.40	В	13.8	0.42	В	13.9		В	14.6	0.47	В	14.7	0.47	A	9.5	0.57	В	10.2	0.60	В	10.8	0.61	В	13.7	0.69	В	14.4	0.70
				1.22	F	182.4	1.26	F	212.		F	281.9		F	>300	1.57	F	61.0		F	60.4	0.71	F	60.5	0.72	F	58.3	0.73	F		0.74
I-95 NB On/ Off Ramps	NBL	L 1																													

TABLE 4 (CONTINUED)Intersection Operation Summary - Capacity

							W	/eekday	Mornin	g Peak H	our											We	eekday /	Afterno	n Peak I	Hour					
	Lane		2022 Existin			2025 No-Bu			2025 Build			2035 No-Bui			2035 Build			2022 Existir			2025 No-Bui			2025 Build			2035 No-Bui			2035 Build	
	Use	LOS	Delay	_	LOS	Delay		LOS	Delay		LOS	Delay		LOS	Delay		LOS	Delay	-	LOS	Delay		LOS	Delay		LOS	Delay		LOS	Delay	V/C
Unsignalized AWSC - P	D-			h h	Dulina (N 11-																									
Overall	ease bo	uieva D	30.3	0.89	Drive/	34.2	0.93	Avenue	45.6	0.99	F	60.8	1.14	F	71.6	1.16	F	66.7	1.15	F	74.5	1.21	F	106.9	1.33	D	32.8	0.94	E	37.2	0.97
0.000	EB	В	12.4	0.16	В	12.8	0.17	В	13.2	0.17	В	14.6	0.21	В	14.9	0.22	C	17.4	0.50	C	18.3	0.52	C	19.3	0.55	C.	24.3	0.61	D		0.63
Pease Boulevard	WBL	E	35.2	0.80	E	39.9	0.83	F	71.0	0.99	F	58.4	0.98	F	99.9	1.14	č	21.2	0.58	č	22.4	0.61	Ď	25.6	0.69	Ď	28.5	0.68	D		0.75
	WBTR	С	19.2	0.60	С	20.7	0.63	С	21.5	0.64	D	26.0	0.74	D	26.4	0.74	В	11.1	0.09	В	11.3	0.10	В	11.7	0.10	В	11.6	0.11	В	11.7	0.11
	NB	C	15.9	0.47	С	16.8	0.49	С	18.4	0.54							F	116.0	1.15	F	130.9	1.21	F	>150	1.33						
New Hampshire Avenue											C	15.6	0.36	C	15.9	0.37										F	56.8	0.94	F	62.1	0.97
	NBR										В	13.2	0.27	В	13.9	0.31										С	21.2	0.64	D	30.2	0.78
Arboretum Drive	SB	Е	43.8	0.89	F	51.0	0.93	F	58.0	0.95	F	116.7	1.14	F	115.2	1.16	С	15.5	0.40	С	16.1	0.42	С	16.9	0.44	С	21.1	0.51	С	21.9	0.53
Unsignalized TWSC - N	lew Ham	pshir	e Avenu	e at Exe	ter Stre	et/Man	chester :	Square																							
Exeter Street	EB	D	28.0	0.22	D	29.7	0.23	D	34.3	0.26	Е	39.4	0.33	Е	46.9	0.38	С	22.4	0.14	С	23.4	0.15	D	26.2	0.17	D	28.5	0.20	D	32.7	0.23
Manchester Square	WBLT	Е	47.1	0.36	F	52.0	0.39	F	65.5	0.46	F	85.9	0.58	F	115.3		E	41.2	0.44	Е	46.0	0.48	F	58.5	0.56	F	74.1	0.66	F		0.77
Manchester Square	WBR	В	10.3	0.03	В	10.4	0.04	В	10.5	0.04	В	10.6	0.04	В	10.8	0.04	В	12.8	0.08	В	13.0	0.08	В	13.8	0.09	В	13.9	0.10	В	14.8	0.11
New Hampshire Avenue	NBL	Α	9.1	0.05	Α	9.2	0.05	Α	9.5	0.05	Α	9.6	0.06	Α	9.9	0.06	Α	8.2	0.01	Α	8.2	0.01	Α	8.3	0.02	Α	8.3	0.02	Α	8.4	0.02
New Hampshire Avenue	SBL	Α	8.2	0.06	Α	8.2	0.06	A	8.3	0.06	Α	8.3	0.07	Α	8.4	0.07	A	8.9	0.02	A	8.9	0.02	A	9.1	0.03	A	9.2	0.03	A	9.4	0.03
Unsignalized TWSC - N	low Ham	nehir	a Avanu	o/Corne	orato Dr	ivo at T	ntornatio	nal Driv	o/Durh	am Stra																					
Durham Street	EB	C	15.1	0.06	C	15.4	0.06		16.9	0.07	C	16.8	0.08		18.5	0.09	С	15.6	0.08	С	16.0	0.08	С	17.7	0.09	С	17.5	0.10	C	19.6	0.12
International Drive	WB	Č	16.6	0.18	č	17.2	0.19	Č	19.4	0.21	č	19.5	0.23	Č	22.5	0.27	F	53.3	0.84	F	63.5	0.89	F	106.7	1.04	F	133.6		F		1.32
Corporate Drive	NBL	Ā	7.5	0.00	Ā	7.6	0.00	Ā	7.6	0.00	Ā	7.6	0.01	Ā	7.7	0.01	A	0.0	0.00	A	0.0	0.00	A	0.0	0.00	A	0.0	0.00	A	0.0	0.00
New Hampshire Avenue	SBL	Α	8.8	0.02	Α	8.8	0.02	Α	9.1	0.02	Α	9.1	0.02	Α	9.3	0.02	Α	7.8	0.00	Α	7.9	0.00	Α	7.9	0.01	Α	7.9	0.01	Α	8.0	0.01
Unning lined TWCC				4 D																											
Unsignalized TWSC - C	EBL	C	18.1	0.70	- C	19.3	0.73	С	23.8	0.80	F	140.3	1.23	E	>150	1.35	С	24.7	0.59	D	27.3	0.63	D	33.2	0.72	E	>150	2.19	F	>150	2.59
Grafton Road	EBR	A	9.6	0.70	A	9.7	0.25	A	9.7	0.25	В	10.7	0.38	В	10.7	0.38	A	8.9	0.11	A	8.9	0.12	A	8.9	0.72	A	9.1	0.17	A	9.1	0.17
Corporate Drive	NBL	A	7.7	0.02	Ä	7.7	0.02	A	7.8	0.02	A	8.0	0.11	A	8.1	0.12	В	10.3	0.23	В	10.5	0.24	В	10.9	0.25	В	14.6	0.54	ĉ		0.58
																				_			_								
Unsignalized TWSC - G																															
Aviation Avenue	EB	В	10.7	0.05	В	10.8	0.06	В	11.0	0.06	В	12.5	0.08	В	12.8	0.08	F	56.6		F	66.9		F	89.0		F	>150				1.62
Grafton Road	NBL	Α	8.9	0.23	Α	9.0	0.24	A	9.2	0.25	В	10.2	0.31	В	10.3	0.32	В	10.7	0.04	В	10.9	0.04	В	11.3	0.05	В	13.0	0.06	В	13.6	0.07
Unsignalized TWSC - G	rafton R	oad a	t Pease	Golf Co	urse Dri	vewav/	Park & R	ide Driv	eway																						
Pease Golf Course	EB	В	11.3	0.02		11.4	0.02	В		0.02	В	13.5	0.04	В	13.9	0.04	F	78.1	0.56	F	90.9	0.62	F	120.1	0.72	_	>150	1.71	F	>150	2 71
Driveway	EB	ь	11.3	0.02	ь	11.4		ь	11./	0.02	ь	13.5	0.04	ь	13.9	0.04	F	/8.1		r	90.9	0.62	r	120.1	0.72	-		1./1	-		
Park and Ride Driveway	WB	F	>150	2.39	F	>150	2.82	F	>150	3.31	F	>150	7.92	F	>150		F	>150		F	>150		F	>150	2.73	F	>150	8.84	F		19.88
Grafton Road	NBL	Α	8.3	0.04	Α	8.3	0.04	Α	8.4	0.04	Α	9.0	0.05	Α	9.1	0.06	В	12.4	0.12	В	12.7	0.13	В	13.3	0.14	C	16.3	0.19	C		0.21
	SBL	С	17.9	0.05	С	18.6	0.06	С	19.9	0.06	С	24.4	0.09	D	26.2	0.10	A	8.9	0.02	A	9.0	0.02	A	9.1	0.02	A	9.4	0.02	Α	9.5	0.02
Unsignalized TWSC - G	rafton B	oad a	+ T_OE 6	B Off Da	mn																										
I-95 SB Off Ramp	WBR					>150	1.28	F	>150	1.49	F	>150	2.16	F	>150	2.46	В	12.6	0.11	В	12.8	0.11	В	13.2	0.13	В	14.2	0.17	В	14.7	0.19
1 33 05 0 Rump		_	, 150	1.10		, 150	1.20		, 150	1.77		, 150	2.10		, 150	2.70		12.0	0.11		12.0	0.11		13.2	0.13		47.4	0.17		2/	0.17

TABLE 5Intersection Operation Summary - Queues (In Feet)

						Weel	kday Mori	ning Peak	Hour							Week	day After	noon Pea	k Hour			
	Lane)22 stina)25 Build)25 iild		35 Build		35 iild		022 sting)25 Build)25 uild		35 Build)35 uild
	Use	Storage	50 th	95 th																		
Traffic Signal - Pease	Bouleva	rd at Intern	national Di	ive																		
orginal . case	EBL	290	0	0	0	0	0	0	0	0	0	0	3	9	3	9	3	9	4	11	4	11
Pease Boulevard	EBTR WBL	>1000 690	56 345	71	58 372	74 356	65 378	80	66	80 700	73 826	86 709	117 7	120 20	122 7	123 21	137 7	135 21	152 76	159 125	171 79	174
	WBTR	>1000	345 113	339 116	121	120	133	362 131	817 148	136	162	709 147	40	20 114	41	118	46	135	76 50	162	79 55	129 177
	NBLT	840	6	19	6	19	6	20	7	20	7	21	3	14	3	14	3	15	4	19	4	19
International Drive	NBR	530	118	150	123	155	124	156	239	297	242	301	388	556	410	581	425	611	637	919	667	945
	SB	>1000	4	13	4	13	4	14	4	15	4	14	43	82	45	84	47	89	60	117	63	120
Traffic Signal - Pease	Bouleva	rd at US Ro	ute 4 SB C	n/Off Ra	mps																	
	EBT	>1000	46	57	48	59	50	61	72	83	75	86	204	225	211	233	222	244	267	288	279	301
Pease Boulevard	EBR	530	0	30	0	30	0	30	0	33	0	33	63	173	81	199	81	199	214	433	214	433
	WBL	370	64	66	66	68	67	68	75	66	76	67	261	339	270	336	270	329	309	314	309	310
US Route 4 SB On/ Off	WBT SBL	370 520	332 235	306 241	342 243	308 249	344 243	310 249	432 277	338 279	434 277	341 279	57 153	90 166	63 158	90 172	66 158	91 172	120 178	121 190	121 178	122 190
Ramps	SBR	520	478	455	511	485	539	510	776	715	799	734	0	15	0	15	0	15	0	14	0	130
- 47 4 1 -																						
Traffic Signal - Pease	EBL EBL	375	28	33	28	34	29	35	40	49	41	50	243	293	252	302	261	320	310	398	328	416
Pease Boulevard	EBT	375	291	343	301	353	303	356	351	381	354	384	123	141	126	145	127	147	141	458	142	480
	WBTR	460	71	107	73	110	79	118	106	152	112	160	301	366	316	392	321	416	440	538	447	545
US Route 4 NB On/ Off	NBL	360	387	404	408	422	408	422	572	569	572	569	65	99	67	102	67	102	102	145	102	145
Ramps	NBR	360	0	18	1	18	1	18	30	48	30	48	0	47	0	48	0	48	0	49	0	49
Traffic Signal - Greenl	and Roa	ad (State Ro	ute 33) at	I-95 SB (On/Off Ra	amps																
I-95 SB On/ Off Ramps	WBL	675	503	601	527	624	527	624	612	708	612	708	442	559	464	581	464	581	544	662	544	662
1-95 SB Oil/ Oil Railips	WBR	675	105	280	121	307	121	307	183	395	183	395	1	51	4	54	4	54	13	68	13	68
0 10 10	NBT	800	593	731	627	762	631	762	765	869	769	869	466	561	491	587	491	587	582	678	582	678
Greenland Road (State	NBR	385	0	52	0	53	0	53	0	56	0	56	0	57	0	58	0	58	0	62	0	62
Route 33)	SBL SBT	785 >1000	103 106	125 123	106 111	129 127	109 111	133 127	132 126	161 143	135 126	165 143	273 354	346 390	288 376	361 412	309 376	382 412	401 460	472 499	422 460	492 499
	301	>1000	100	123	111	12/	111	12/	120	143	120	143	334	390	370	412	370	412	400	433	400	433
Traffic Signal - Greenl																						
Greenland Road (State	EBL	400	422	632	440	649	446	649	548	711	553	711	211	341	220	351	220	351	249	385	249	385
Route 33)	EBT WBT	>1000 >1000	526 123	671 179	556 127	699 186	562 127	699 186	707 145	796 238	712 145	796 238	391 327	497 443	413 343	520 461	413 343	520 461	493 403	600 523	493 403	600 523
Route 33)	WBR	275	0	62	0	62	0	64	0	69	0	73	0	443	0	41	0	42	0	45	0	46
	SBL	300	61	83	63	85	67	90	93	129	97	135	138	256	144	267	161	300	266	418	295	449
Grafton Road	SBR	1000	0	24	0	24	0	25	16	44	20	48	397	572	420	595	446	622	568	750	594	777
Traffic Signal - Greenl	and Do	nd (State Po	urte 33) at	T-05 NP	On /Off P	amne	-								-		-		-			
Traine Signal - Greeni	EBT	>1000	605	820	638	866	642	870	844	1060	847	1063	417	610	451	640	465	650	664	788	675	799
Greenland Road (State	EBR	700	0	98	0	102	0	103	65	404	79	469	1039	1306	1121	1380	1174	1429	1570	1806	1617	1853
Route 33)	WBL	200	104	165	107	167	107	167	119	182	119	182	392	493	401	515	401	547	435	680	441	691
	WBT	475	193	236	202	246	205	250	238	287	243	293	288	408	319	436	333	453	425	579	441	594
I-95 NB On/ Off Ramps	NBL	>1000	655	738	688	770	753	831	898	965	964	1025	178 0	240	183	246	194	259	215	279	226	292
	NBR	340	454	502	504	547	504	547	681	709	715	743	U	85	0	85	0	83	44	158	44	156

TABLE 5 (CONTINUED)Intersection Operation Summary - Queues (In Feet)

						Weel	kday Mor	ning Peak	Hour							Week	day After	noon Pea	k Hour			
		Available Storage		022 sting		025 Build)25 ıild)35 Build		035 uild		122 sting)25 Build)25 ıild)35 Build		035 uild
	Use	Storage	50 th	95 th																		
Unsignalized AWSC - F	Pease B	oulevard at	Arboretur	n Drive/N	lew Hami	shire Ave	enue															
•	EB	900		15		15		15		18		18		60		65		65		100		105
Pease Boulevard	WBL	>1000		188		208		328		273		403		80		85		102		123		150
	WBTR	>1000		98		108		113		138		140		8		8		8		8		10
New Hampshire Avenue	NB	>1000		63		68		78						593		638		848				
new nampshire Avenue	NBLT NBR	>1000 150								38		38 30								288 113		300 173
Arboretum Drive	SB	>1000		260		290		 313		25 483		30 472		43		 45		 48		73		75
Arboretum Drive	SB	>1000		260		290		313		483		4/2		43		45		48		/3		/5
Unsignalized TWSC - N			nue at Ex		et/Manch	ester Squ	are															
Exeter Street	EB	>1000		20		23		25		33		40		13		13		15		18		20
Manchester Square	WBLT	950		38		40		50		68		80		50		57		70		90		108
4	WBR	80		3		3		3		3		3		8		8		8		8		10
New Hampshire Avenue	NBL	85		3		5		5 5		5 5		5		0		3		0		3		3
	SBL	165		3		3		3		3		э		<u> </u>		3		3		3		
Unsignalized TWSC - N	New Hai	mpshire Ave	nue/Corp	orate Driv	ve at Inte	ernational	Drive/Du	ırham Str	eet													
Durham St	EB	860		5		5		5		5		8		5		8		8		8		10
International Drive	WB	>1000		15		18		20		23		28		185		210		278		335		418
Corporate Drive	NBL	920		0		0		0		0		0		0		0		0		0		0
New Hampshire Avenue	SBL	>1000		3		3		3		3		3		0		0		0		0		0
Unsignalized TWSC - 0		to Drive at C	voften De																			
	EBL	220		148		163		217		648		830		93		105		138		608		720
Grafton Road	EBR	220		23		25		25		45		45		10		10		10		15		15
Corporate Drive	NBL	>1000		3		3		3		10		10		23		23		25		83		93
Unsignalized TWSC - 0																						
Aviation Avenue	EB	>1000		5		5		5		5		8		153		173		203		380		415
Grafton Road	NBL	>1000		23		23		25		33		35		3		3		3		5		5
Jnsignalized TWSC - 0	Grafton	Road at Pea	se Golf Co	ourse Driv	eway/Pa	rk & Ride	Driveway	,														
Golf Course Driveway	EB	>1000		3		3		3		3		3		65		73		88		173		203
Park and Ride Driveway	WB	>1000		175		185		193		235		238		190		205		217		285		298
•	NBL	800		3		3		3		5		5		10		10		13		18		20
Grafton Road	SBL	>1000		5		5		5		8		8		3		3		3		3		3
Landania Para de Marco de Constantino		D	- cp or -																			
Unsignalized TWSC - 0 I-95 SB Off Ramp	Grafton WB	>1000	SB Off R	318		360		460		705		813		10		10		13		15		18
T-22 SE OII Kallip	WD	>1000		310		300		400		/03		013		10		10		13		13		10

Section 8 Figures

General Proposals/P0595-015 100 NH Avenue\Drawings 2023-9:09am Plotted By: RCase Bond, Inc. \\tidhebond.com\data\Data\Proiects\P\P0595

General Proposals/P0595-015 100 NH Avenue\Drawings 2023-9:09am Plotted By: RCase Bond, Inc. \\tidhebond.com\data\Data\Proiects\P\P0595

General Proposals/P0595-015 100 NH Avenue\Drawings 2023-9:09am Plotted By: RCase Bond, Inc. \\tidhebond.com\data\Data\Proiects\P\P0595

General Proposals/P0595-015 100 NH Avenue/Drawings 2023-9:09am Plotted By; RCase Bond, Inc. \\tipidhebond.com\\data\Data\Projects\P\P0595 Pro Feb 16, 2023-9:09am Plotted By: RCase Tighe Projects\P\P0595 Pro Con General Proposals\P0595-015 100 NH Avenue\Drawings_Figures\AutoCAD\Figures\Traffic Volume Figures.dwg

Feb 16, 2023-9:09am Plotted By: RCase Tighe & Bond, Inc. \\tighebond.com\\data\\Data\\Projects\\P\\P0595 Pro

Feb 16, 2023-9:10am Plotted By: RCase Tighe Projects Projects Pro Con General Proposals P0595-015 100 NH Avenue Drawings_Figures AutoCAD Figures Traffic Volume Figures. dwg

General Proposals/P0595-015 100 NH Avenue/Drawings 2023-9:10am Plotted By: RCase Bond, Inc. \\tidhebond.com\data\Data\Proiects\P\P0595

General Proposals/P0595-015 100 NH Avenue\Drawings 2023-9:10am Plotted By: RCase Bond, Inc. \\tidhebond.com\data\Data\Proiects\P\P0595

APPENDIX ATraffic Count Data

Project #: 856_010_TB BTD#: Location 5 Location: Portsmouth, NH Newington Street Street 1: Street 2: International Drive Count Date: 2/17/2022 Day of Week: Thursday Cloudy, 55°F Weather:

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

PASSENGER CARS & HEAVY VEHICLES COMBINED

			nal Drive				onal Drive			Newingto	on Street			Newingt	on Street	
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	1	0	41	0	7	0	1	0	0	15	0	0	118	51	11
7:15 AM	0	2	1	27	0	4	0	1	0	0	8	1	0	125	54	15
7:30 AM	0	0	2	23	0	3	0	0	0	0	9	3	0	145	65	7
7:45 AM	0	1	0	33	0	0	0	0	0	0	18	1	0	196	115	16
8:00 AM	0	1	1	49	0	1	0	0	0	0	12	2	0	131	68	22
8:15 AM	0	0	0	35	0	1	0	0	0	0	15	0	0	125	63	15
8:30 AM	0	2	0	38	0	1	0	0	0	0	25	1	0	117	70	19
8:45 AM	0	1	0	43	0	0	0	0	0	1	20	0	0	104	72	8

		Internation	onal Drive			Internation	onal Drive			Newingto	on Street			Newingto	on Street	
		North	bound			South	bound			Easth	oound			Westl	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	1	160	0	10	1	0	0	0	66	0	0	3	38	42
4:15 PM	0	1	0	155	0	11	4	0	0	1	59	0	0	3	30	44
4:30 PM	0	2	0	179	0	8	3	0	0	1	48	3	0	5	39	46
4:45 PM	0	1	0	164	0	18	1	2	0	0	51	0	0	6	37	53
5:00 PM	0	2	0	171	0	20	1	0	0	1	91	1	2	5	38	31
5:15 PM	0	1	0	115	0	9	1	0	0	0	53	0	1	1	34	43
5:30 PM	0	0	0	106	0	7	0	1	0	0	50	1	2	2	27	23
5:45 PM	0	0	0	83	0	7	0	0	0	0	44	1	0	1	32	40

AM PEAK HOUR		Internation	nal Drive			Internation	nal Drive			Newingto	on Street			Newingto	on Street	
7:45 AM		3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								Easth	oound			Westl	oound	
to	U-Turn	Left	Left Thru Right U-Turn Left Thru R						U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:45 AM	0	4	1	155	0	3	0	0	0	0	70	4	0	569	316	72
PHF		0.	78			0.	75			0.	71			0.	73	
HV %	0.0%	25.0%	0.0%	3.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	4.3%	50.0%	0.0%	0.9%	1.6%	0.0%

PM PEAK HOU	R	Internation	onal Drive			Internation	nal Drive			Newingto	on Street			Newingto	on Street	
4:15 PM		North	bound			South	bound			Easth	ound			Westl	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:15 PM	0	6	0	669	0	57	9	2	0	3	249	4	2	19	144	174
PHF		0.	93			0.	81			0.	69			0.	88	
HV~%	0.0%	16.7%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	33.3%	2.0%	0.0%	0.0%	10.5%	1.4%	0.0%

Project #: 856_010_TB BTD#: Location 5 Location: Portsmouth, NH Newington Street Street 1: Street 2: International Drive Count Date: 2/17/2022 Day of Week: Thursday Cloudy, 55°F Weather:

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

HEAVY VEHICLES

								,., .								
		Internation	nal Drive			Internation	onal Drive			Newingto	on Street			Newingto	on Street	
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	2	0	0	0	0	0	0	0	0	0	1	0	0
7:15 AM	0	0	0	1	0	0	0	0	0	0	0	1	0	2	0	0
7:30 AM	0	0	0	1	0	0	0	0	0	0	2	0	0	2	4	0
7:45 AM	0	0	0	3	0	0	0	0	0	0	1	1	0	1	2	0
8:00 AM	0	0	0	2	0	0	0	0	0	0	0	1	0	1	3	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
8:30 AM	0	1	0	0	0	0	0	0	0	0	1	0	0	3	0	0
8:45 AM	0	0	0	3	0	0	0	0	0	0	4	0	0	1	2	0

		Internation	onal Drive			Internation	onal Drive			Newingto	on Street			Newingto	on Street	
		North	bound			South	bound			Easth	oound			Westl	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0
4:15 PM	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	1	2	0	0	1	1	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOU	R	Internation	onal Drive			Internation	nal Drive			Newingto	on Street			Newingto	on Street	
7:15 AM		North	bound			South	bound			Easth	oound			Westh	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:15 AM	0	0	0	7	0	0	0	0	0	0	3	3	0	6	9	0
PHF		0.	.58			0.	00			0.	75			0.0	63	

ſ	PM PEAK HOUR		Internation	nal Drive			Internation	nal Drive			Newingto	on Street			Newingto	on Street	
	4:00 PM		North	bound			South	bound			Easth	ound			West	oound	
	to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
	5:00 PM	0	1	0	0	0	0	0	0	0	1	5	0	0	2	2	0
	PHF		0.	25			0.	00			0.	50			0.	50	

856_010_TB Project #: BTD#: Location 5 Portsmouth, NH Location: Street 1: Newington Street Street 2: International Drive 2/17/2022 Count Date: Day of Week: Thursday Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

PEDESTRIANS & BICYCLES

		Internation	onal Drive			Internation	onal Drive			Newingt	on Street			Newingto	on Street	
		North	bound			South	bound				oound				bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

		Internation	nal Drive			Internation	nal Drive			Newingto	on Street			Newingt	on Street	
		Northl	oound			South	bound			Easth	oound			West	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR ¹ 7:45 AM		Internation Northl	onal Drive bound				onal Drive bound			J	on Street bound			U	on Street bound	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PM PEAK HOUR ¹		Internation	nal Drive			Internation	onal Drive			Newingt	on Street			Newingto	on Street	
4:15 PM		North	oound			South	bound			Easth	oound			West	bound	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

¹ NOTE: Peak hour summaries here correspond to peak hours identified for passenger cars and heavy vehicles combined.

Project #: 856_010_TB
BTD #: Location 6
Location: Portsmouth, NH
Street 1: Newington Street

Street 2: Route 4 Southbound On/Off-Ramps

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

PASSENGER CARS & HEAVY VEHICLES COMBINED

	Rout		ound On-R	amp	Rou		ound Off-R bound	amp			on Street oound				on Street bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	38	0	91	0	0	41	21	0	15	81	0
7:15 AM	0	0	0	0	0	65	0	86	0	0	23	16	0	16	105	0
7:30 AM	0	0	0	0	0	73	0	104	0	0	17	16	1	22	113	0
7:45 AM	0	0	0	0	0	96	0	152	0	0	34	19	1	17	175	0
8:00 AM	0	0	0	0	0	61	0	94	0	0	47	15	1	21	121	0
8:15 AM	0	0	0	0	0	71	0	94	0	0	38	13	0	22	126	0
8:30 AM	0	0	0	0	0	59	0	77	0	0	43	21	0	18	121	0
8:45 AM	0	0	0	0	0	64	0	72	0	0	47	16	0	35	119	0

	Rou	te 4 Southb	ound On-R	amp	Rou	te 4 Southb	ound Off-R	amp		Newingto	on Street			Newingto	on Street	
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	66	0	14	0	0	129	89	2	81	63	0
4:15 PM	0	0	0	0	0	55	0	21	0	0	151	74	0	90	54	0
4:30 PM	0	0	0	0	0	57	0	27	0	0	162	73	0	99	68	0
4:45 PM	0	0	0	0	0	50	1	21	0	0	133	96	3	92	77	0
5:00 PM	0	0	0	0	0	59	0	11	0	0	187	99	0	103	62	0
5:15 PM	0	0	0	0	0	64	0	23	0	0	119	57	0	88	52	0
5:30 PM	0	0	0	0	0	55	0	16	0	0	96	67	1	94	39	0
5:45 PM	0	0	0	0	0	49	0	25	1	0	79	55	0	74	50	0

AM PEAK HOUR	Rou	te 4 Southb	ound On-R	amp	Rou	te 4 Southb	ound Off-R	amp		Newingto	on Street			Newingto	on Street	
7:30 AM		North	bound			South	bound			Easth	oound			Westl	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:30 AM	0	0	0	0	0	301	0	444	0	0	136	63	3	82	535	0
PHF		0.	00			0.	75			0.	80			0.	80	
HV%	0.0%	0.0%	0.0%	0.0%	0.0%	1.0%	0.0%	1.4%	0.0%	0.0%	2.2%	9.5%	0.0%	12.2%	1.3%	0.0%

PM PEAK HOUR	Rou	te 4 Southb	ound On-R	amp	Rou	te 4 Southb	ound Off-R	amp		Newingto	on Street			Newingto	on Street	
4:15 PM		North	bound			South	bound			Easth	ound			Westl	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:15 PM	0	0	0	0	0	221	1	80	0	0	633	342	3	384	261	0
PHF		0.	00			0.	90			0.	85			0.	94	
HV~%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.3%	0.0%	0.0%	0.5%	0.6%	0.0%	0.8%	1.1%	0.0%

Project #: 856_010_TB
BTD #: Location 6
Location: Portsmouth, NH
Street 1: Newington Street

Street 2: Route 4 Southbound On/Off-Ramps

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

HEAVY VEHICLES

	Rou	te 4 Southb	ound On-R	amp	Rou	te 4 Southb	ound Off-R	amp		Newingto	on Street			Newingt	on Street	
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	1	0	0	0	0	1	1	0	2	2	0
7:15 AM	0	0	0	0	0	1	0	0	0	0	1	0	0	1	1	0
7:30 AM	0	0	0	0	0	0	0	3	0	0	0	3	0	6	3	0
7:45 AM	0	0	0	0	0	2	0	3	0	0	2	2	0	1	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	1	1	0	2	4	0
8:15 AM	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0
8:30 AM	0	0	0	0	0	2	0	1	0	0	2	0	0	3	2	0
8:45 AM	0	0	0	0	0	0	0	1	0	0	5	2	0	2	3	0

	Rou	te 4 Southb	ound On-R	amp	Rou	te 4 Southb	ound Off-R	amp		Newingto	on Street			Newingto	on Street	
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	1	0	3	1	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0
4:30 PM	0	0	0	0	0	0	0	1	0	0	2	0	0	0	1	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0

AM PEAK HOUR	Rou	te 4 Southb	ound On-R	amp	Rou	te 4 Southb	ound Off-R	amp		Newingto	on Street			Newingto	on Street	
7:15 AM		North	bound			South	bound			Easth	oound			West	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:15 AM	0	0 0 0 0 0				3	0	6	0	0	4	6	0	10	8	0
PHF		0.00				0.	45			0.	63			0.9	50	

Γ	PM PEAK HOUR	Rou	te 4 Southb	ound On-R	amp	Rou	te 4 Southb	ound Off-R	amp		Newingto	on Street			Newingto	on Street	
	4:00 PM		North	bound			South	bound			Eastb	ound			Westl	oound	
	to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
	5:00 PM	0	0 0 0 0 0				0	0	1	0	0	2	3	0	5	3	0
	PHF		0 0 0 0				0.	25			0.	63			0.	50	

Project #: 856_010_TB
BTD #: Location 6
Location: Portsmouth, NH
Street 1: Newington Street

Street 2: Route 4 Southbound On/Off-Ramps

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

PEDESTRIANS & BICYCLES

	Rou	te 4 Southb	ound On-R	amp	Rou	te 4 Southb	ound Off-R	amp		Newingt	on Street			Newingt	on Street	
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
7:00 AM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
8:15 AM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Rou	te 4 Southb	ound On-R	amp	Rou	te 4 Southb	ound Off-R	amp		Newingt	on Street			Newingto	on Street	
		North	bound			South	bound			Easth	oound			Westl	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR ¹ 7:30 AM	Rou	te 4 Southb North	ound On-R	amp	Rou	te 4 Southb South	ound Off-R bound	amp		U	on Street			U	on Street bound	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
8:30 AM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	3

PM PEAK HOUR ¹	Rou	te 4 Southb	ound On-R	amp	Rou	te 4 Southb	ound Off-R	amp		Newingto	on Street			Newingto	on Street	
4:15 PM		Northl	bound			South	bound			Eastb	ound			Westl	bound	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

NOTE: Peak hour summaries here correspond to peak hours identified for passenger cars and heavy vehicles combined.

Project #: 856_010_TB
BTD #: Location 7
Location: Portsmouth, NH
Street 1: Newington Street

Street 2: Route 4 Northbound On/Off-Ramps

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

PASSENGER CARS & HEAVY VEHICLES COMBINED

	Rou		ound Off-Ra	amp	Rou	ite 4 Northb South	ound On-R bound	amp			on Street oound				on Street bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	68	0	38	0	0	0	0	0	24	56	0	0	0	27	10
7:15 AM	0	76	0	47	0	0	0	0	0	17	72	0	0	0	46	9
7:30 AM	0	71	0	47	0	0	0	0	0	4	85	0	0	0	70	12
7:45 AM	0	130	0	66	0	0	0	0	0	18	111	0	0	0	59	14
8:00 AM	0	94	0	53	0	0	0	0	0	16	91	0	0	0	48	9
8:15 AM	0	98	0	39	0	0	0	0	0	12	97	0	0	0	47	10
8:30 AM	0	94	0	41	0	0	0	0	0	15	87	0	0	0	52	9
8:45 AM	0	85	0	55	0	0	0	0	0	16	95	0	0	0	64	13

	Rou	te 4 Northb	ound Off-Ra	amp	Rou	ite 4 Northb	ound On-R	amp		Newingto	on Street			Newingt	on Street	
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	29	0	86	0	0	0	0	0	79	118	0	0	0	111	51
4:15 PM	0	28	1	94	0	0	0	0	0	89	117	0	0	0	122	51
4:30 PM	0	30	0	89	0	0	0	0	0	89	120	0	0	0	140	72
4:45 PM	0	36	0	94	0	0	0	0	0	91	108	0	0	0	130	44
5:00 PM	0	36	0	80	0	0	0	0	0	116	130	0	0	0	135	66
5:15 PM	0	24	0	94	0	0	0	0	0	72	108	0	0	0	117	63
5:30 PM	0	16	0	92	0	0	0	0	0	57	91	0	0	0	114	57
5:45 PM	0	24	0	73	0	0	0	0	0	45	80	0	0	0	100	52

AM PEAK HOUR	Rou	ite 4 Northb	ound Off-Ra	amp	Rou	te 4 Northb	ound On-Ra	amp		Newingto	on Street			Newingto	on Street	
7:45 AM		North	bound			South	bound			Easth	oound			Westl	oound	
to	U-Turn	U-Turn Left Thru Right				Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:45 AM	0					0	0	0	0	61	386	0	0	0	206	42
PHF		0.	78			0.	00			0.	87			0.	85	
HV%	0.0%	2.4%	0.0%	3.5%	0.0%	0.0%	0.0%	0.0%	0.0%	4.9%	1.6%	0.0%	0.0%	0.0%	2.4%	4.8%

PM PEAK HOUR	Rou	te 4 Northb	ound Off-Ra	amp	Rou	te 4 Northb	ound On-Ra	amp		Newingto	on Street			Newingto	on Street	
4:15 PM		North	bound	-		South	bound			Eastb	ound			Westl	bound	
to	U-Turn	J-Turn Left Thru Right				Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:15 PM	0	130	1	357	0	0	0	0	0	385	475	0	0	0	527	233
PHF		0.94				0.	00			0.	87			0.	90	
HV~%	0.0%	0.94				0.0%	0.0%	0.0%	0.0%	0.3%	0.4%	0.0%	0.0%	0.0%	0.8%	0.0%

Project #: 856_010_TB
BTD #: Location 7
Location: Portsmouth, NH
Street 1: Newington Street

Street 2: Route 4 Northbound On/Off-Ramps

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

HEAVY VEHICLES

								,								
	Rou	te 4 Northb	ound Off-Ra	amp	Rou	ite 4 Northb	ound On-R	amp		Newingt	on Street			Newingt	on Street	
		North	bound			South	bound	-		Eastl	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	2	0	5	0	0	0	0	0	0	1	0	0	0	2	0
7:15 AM	0	1	0	7	0	0	0	0	0	2	1	0	0	0	1	1
7:30 AM	0	3	0	1	0	0	0	0	0	0	0	0	0	0	8	0
7:45 AM	0	2	0	4	0	0	0	0	0	2	2	0	0	0	0	2
8:00 AM	0	5	0	1	0	0	0	0	0	0	1	0	0	0	2	0
8:15 AM	0	0	0	1	0	0	0	0	0	0	1	0	0	0	1	0
8:30 AM	0	3	0	1	0	0	0	0	0	1	2	0	0	0	2	0
8:45 AM	0	3	0	2	0	0	0	0	0	1	5	0	0	0	3	0

	Rou		ound Off-R	amp	Rou		oound On-R	amp			on Street bound			•	on Street	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	1	0	0	0	0	0	0	0	0	0	0	0	0	3	0
4:15 PM	0	0	0	3	0	0	0	0	0	0	0	0	0	0	1	0
4:30 PM	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	0
4:45 PM	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0
5:00 PM	0	1	0	1	0	0	0	0	0	0	1	0	0	0	1	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
5:30 PM	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	1	0	0	0	0	0	1	0	0	0	0	1	0

AM PEAK HOUR	Rou	te 4 Northb	ound Off-Ra	amp	Rou	te 4 Northb	ound On-R	amp		Newingto	on Street			Newingto	n Street	
7:00 AM		North	bound			South	bound			Easth	ound			Westh	ound	
to	Northbound U-Turn Left Thru Right					Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:00 AM	0	8	0	17	0	0	0	0	0	4	4	0	0	0	11	3
PHF		0 8 0 17				0.	00			0.	50			0.4	44	

Γ	PM PEAK HOUR	Rou	te 4 Northb	ound Off-Ra	amp	Rou	ite 4 Northb	ound On-Ra	amp		Newingto	on Street			Newingto	on Street	
	4:00 PM		North	bound			South	bound			Easth	ound			Westl	oound	
	to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
	5:00 PM	0	U-Turn Left Thru Right 0 2 0 3				0	0	0	0	1	1	0	0	0	6	0
	PHF		0 2 0 3 0.42				0.	00			0.	25			0.	50	

Project #: 856_010_TB
BTD #: Location 7
Location: Portsmouth, NH
Street 1: Newington Street

Street 2: Route 4 Northbound On/Off-Ramps

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

PEDESTRIANS & BICYCLES

	Rou	ite 4 Northb	ound Off-R	amp	Rou	ite 4 Northb	ound On-R	amp		Newingt	on Street			Newingt	on Street	
	00 AM 0 0 0 15 AM 0 0 0 30 AM 0 0 0 45 AM 0 0 0 00 AM 0 0 0 15 AM 0 0 0					South	bound				oound			West	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
7:00 AM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0

	Rou	te 4 Northb	ound Off-Ra	amp	Rou	ite 4 Northb	ound On-R	amp		Newingt	on Street			Newingto	on Street	
		North	bound			South	bound			Easth	oound			Westl	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR ¹ 7:45 AM	Rou			amp	Rou		ound On-R bound	amp		J	on Street			U	on Street bound	
to	Northbound Left Thru Right PED				Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
8:45 AM	Northbound				0	0	0	1	0	0	0	0	0	0	0	0

PM PEAK HOUR ¹	Rou	ite 4 Northb	ound Off-Ra	amp	Rou	ite 4 Northb	ound On-Ra	amp		Newingto	on Street			Newingto	on Street	
4:15 PM		Northl	oound			South	bound			Easth	ound			Westl	bound	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

NOTE: Peak hour summaries here correspond to peak hours identified for passenger cars and heavy vehicles combined.

Project #: 856_010_TB
BTD #: Location 13
Location: Portsmouth, NH
Street 1: Greenland Road (Route 33)
Street 2: I-95 Southbound On/Off-Ramps

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

PASSENGER CARS & HEAVY VEHICLES COMBINED

	I-9	5 Southboo	und Off-Rar	np					Gı	eenland Ro	ad (Route 3	33)	Gr	reenland Ro	oad (Route 3	33)
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	79	0	24	0	0	0	0	0	0	172	21	0	37	54	0
7:15 AM	0	112	0	35	0	0	0	0	0	0	236	34	0	27	57	0
7:30 AM	0	149	0	89	0	0	0	0	0	0	258	23	0	38	69	0
7:45 AM	0	151	0	101	0	0	0	0	0	0	293	30	0	33	67	0
8:00 AM	0	133	0	56	0	0	0	0	0	0	256	21	0	52	92	0
8:15 AM	0	162	0	40	0	0	0	0	0	0	270	47	0	31	86	0
8:30 AM	0	135	0	36	0	0	0	0	0	0	223	33	0	40	84	0
8:45 AM	0	123	0	36	0	0	0	0	0	0	220	29	0	35	73	0

	::00 PM 0 154 0 29 ::15 PM 0 170 0 25 ::30 PM 0 134 0 31 ::45 PM 0 147 0 23 ::00 PM 0 146 0 15 ::15 PM 0 139 0 17 ::30 PM 0 107 0 15		np		South	bound		Gı		oad (Route 3	33)	Gr		oad (Route 3	33)	
Start Time	U-Turn			Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	154	0	29	0	0	0	0	0	0	238	41	0	110	194	0
4:15 PM	0	170	0	25	0	0	0	0	0	0	254	39	0	85	180	0
4:30 PM	0	134	0	31	0	0	0	0	0	0	256	32	0	99	182	0
4:45 PM	0	147	0	23	0	0	0	0	0	0	212	37	0	81	182	0
5:00 PM	0	146	0	15	0	0	0	0	0	0	236	53	0	109	234	0
5:15 PM	0	139	0	17	0	0	0	0	0	0	223	30	0	105	146	0
5:30 PM	0	107	0	15	0	0	0	0	0	0	154	33	0	71	154	0
5:45 PM	0	107	0	12	0	0	0	0	0	0	155	34	0	43	128	0

ſ	AM PEAK HOUR	1-9	5 Southboo	und Off-Ran	np					Gr	eenland Ro	ad (Route 3	33)	Gr	eenland Ro	ad (Route 3	33)
	7:30 AM		North	oound			South	bound			Easth	oound			West	bound	
	to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
	8:30 AM	0	595	0	286	0	0	0	0	0	0	1077	121	0	154	314	0
	PHF		0.	87			0.	00			0.	93			0.	81	
	HV~%	0.0%	5.9%	0.0%	1.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	3.8%	27.3%	0.0%	8.4%	7.3%	0.0%

PM PEAK HOUR	I-9	5 Southboo	und Off-Ran	np					Gr	eenland Ro	ad (Route 3	33)	Gr	eenland Ro	ad (Route 3	33)
4:15 PM		North	bound			South	bound			Easth	ound			Westl	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:15 PM	0	597	0	94	0	0	0	0	0	0	958	161	0	374	778	0
PHF		0.	89			0.	00			0.	95			0.	84	
HV~%	0.0%	4.4%	0.0%	7.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.8%	18.0%	0.0%	1.9%	1.8%	0.0%

Project #: 856_010_TB
BTD #: Location 13
Location: Portsmouth, NH
Street 1: Greenland Road (Route 33)
Street 2: I-95 Southbound On/Off-Ramps

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

HEAVY VEHICLES

								,								
	I-9	95 Southboo	und Off-Rar	mp					Gı	eenland Ro	ad (Route 3	33)	Gr	eenland Ro	oad (Route 3	33)
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	7	0	0	0	0	0	0	0	0	7	10	0	4	4	0
7:15 AM	0	8	0	0	0	0	0	0	0	0	7	5	0	0	7	0
7:30 AM	0	6	0	1	0	0	0	0	0	0	11	5	0	2	2	0
7:45 AM	0	9	0	1	0	0	0	0	0	0	12	8	0	5	7	0
8:00 AM	0	12	0	0	0	0	0	0	0	0	9	6	0	5	4	0
8:15 AM	0	8	0	1	0	0	0	0	0	0	9	14	0	1	10	0
8:30 AM	0	12	0	1	0	0	0	0	0	0	15	6	0	2	4	0
8:45 AM	0	12	0	0	0	0	0	0	0	0	10	8	0	4	6	0

	1-9	5 Southboo	und Off-Rar	np				Gı	eenland Ro	ad (Route 3	33)	Gı		oad (Route 3	33)	
		North	bound			South	bound			Eastl	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	10	0	3	0	0	0	0	0	0	2	2	0	3	10	0
4:15 PM	0	6	0	2	0	0	0	0	0	0	5	7	0	0	2	0
4:30 PM	0	7	0	2	0	0	0	0	0	0	6	10	0	3	5	0
4:45 PM	0	6	0	1	0	0	0	0	0	0	2	5	0	1	4	0
5:00 PM	0	7	0	2	0	0	0	0	0	0	4	7	0	3	3	0
5:15 PM	0	11	0	2	0	0	0	0	0	0	4	4	0	2	4	0
5:30 PM	0	8	0	0	0	0	0	0	0	0	4	3	0	2	6	0
5:45 PM	0	7	0	0	0	0	0	0	0	0	5	8	0	2	3	0

A	M PEAK HOUR	1-9	5 Southbo	und Off-Rar	np					Gr	eenland Ro	ad (Route 3	33)	Gr	eenland Ro	ad (Route 3	33)
	7:45 AM		Northbound				South	bound			Easth	oound			Westl	oound	
	to	U-Turn					Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
	8:45 AM	0					0	0	0	0	0	45	34	0	13	25	0
	PHF		0.85				0.	00			0.	86			0.	79	

PM PEAK HOUR	I-9	5 Southboo	und Off-Ran	np					Gr	eenland Ro	ad (Route 3	33)	Gr	eenland Ro	ad (Route 3	33)
4:30 PM		Northbound				South	bound			Easth	ound			Westl	oound	
to	U-Turn	U-Turn Left Thru Right				Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:30 PM	0	31	0	7	0	0	0	0	0	0	16	26	0	9	16	0
PHF		0.73				0.	00			0.	66			0.	78	

Project #: 856_010_TB
BTD #: Location 13
Location: Portsmouth, NH
Street 1: Greenland Road (Route 33)
Street 2: I-95 Southbound On/Off-Ramps

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

PEDESTRIANS & BICYCLES

									5 G D.O.							
	I-9	95 Southboo	und Off-Rar	np					Gı	reenland Ro	ad (Route 3	33)	Gr	reenland Ro	ad (Route	33)
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	I-9	95 Southboo	und Off-Ran	np					Gr	eenland Ro	ad (Route 3	33)	Gr	eenland Ro	ad (Route 3	33)
		North	bound			South	bound			Eastl	oound			Westl	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR ¹	I-9	95 Southboo	und Off-Rar	np					Gr	eenland Ro	ad (Route 3	33)	Gr	eenland Ro	ad (Route 3	33)
7:30 AM		Northl	bound			South	bound			Easth	oound			Westl	bound	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PM I	PEAK HOUR ¹	1-9	5 Southboo	und Off-Rar	mp					Gr	eenland Ro	ad (Route 3	33)	Gr	eenland Ro	ad (Route 3	33)
	4:15 PM		North	oound			South	bound			Easth	oound			West	bound	
	to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
	5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

 $^{^{1}}$ NOTE: Peak hour summaries here correspond to peak hours identified for passenger cars and heavy vehicles combined.

Project #: 856_010_TB
BTD #: Location 12
Location: Portsmouth, NH
Street 1: Grafton Road
Street 2: Greenland Road (Route 33)

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

PASSENGER CARS & HEAVY VEHICLES COMBINED

							n Road		Gr		ad (Route 3	33)	Gr		oad (Route :	33)
		Northl	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	8	0	25	0	52	142	0	0	0	67	26
7:15 AM	0	0	0	0	0	19	0	12	0	53	222	0	0	0	82	39
7:30 AM	0	0	0	0	0	12	0	19	0	68	305	0	0	0	90	70
7:45 AM	0	0	0	0	0	18	0	19	0	128	292	0	0	0	82	99
8:00 AM	0	0	0	0	0	20	0	36	0	74	269	0	0	0	117	59
8:15 AM	0	0	0	0	0	28	0	19	0	67	236	0	0	0	108	69
8:30 AM	0	0	0	0	0	14	0	25	0	80	209	0	0	0	97	57
8:45 AM	0	0	0	0	0	15	0	29	0	73	204	0	0	0	84	64

						Grafto	n Road		Gr	eenland Ro	ad (Route 3	33)	Gr	eenland Ro	ad (Route:	33)
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	63	0	122	0	32	247	0	0	0	207	43
4:15 PM	0	0	0	0	0	36	0	102	0	37	225	0	0	0	154	37
4:30 PM	0	0	0	0	0	60	0	123	0	45	265	0	0	0	179	33
4:45 PM	0	0	0	0	0	50	0	104	0	46	207	0	0	0	178	22
5:00 PM	0	0	0	0	0	58	0	140	0	34	237	0	0	0	205	18
5:15 PM	0	0	0	0	0	51	0	104	0	23	238	0	0	0	173	26
5:30 PM	0	0	0	0	0	39	0	103	0	31	185	0	0	0	145	23
5:45 PM	0	0	0	0	0	25	0	63	0	29	216	0	0	0	117	27

AM PEAK HOUR						Grafto	n Road		Gr	eenland Ro	ad (Route 3	33)	Gr	eenland Ro	ad (Route 3	33)
7:30 AM		North	bound			South	bound			Easth	oound			Westl	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:30 AM	0	0 0 0 0				78	0	93	0	337	1102	0	0	0	397	297
 PHF		0.	00			0.	76			0.	86			0.	96	
HV~%	0.0%					5.1%	0.0%	5.4%	0.0%	0.3%	4.1%	0.0%	0.0%	0.0%	8.3%	1.7%

PM PEAK HOUR						Grafto	n Road		Gı	eenland Ro	ad (Route 3	33)	Gr	eenland Ro	ad (Route 3	33)
4:30 PM		North	bound			South	bound			Easth	ound			Westl	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:30 PM	0	0	0	0	0	219	0	471	0	148	947	0	0	0	735	99
PHF		0.	00			0.	87			0.	88			0.	93	
HV~%	0.0%	0.0%	0.0%	0.0%	0.0%	1.4%	0.0%	1.3%	0.0%	0.7%	2.1%	0.0%	0.0%	0.0%	2.4%	2.0%

Project #: 856_010_TB
BTD #: Location 12
Location: Portsmouth, NH
Street 1: Grafton Road

Street 2: Greenland Road (Route 33)

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

						Grafto	n Road		Gr	eenland Ro	ad (Route 3	33)	Gı	reenland Ro	ad (Route	33)
		Northl	oound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	0	0	4	0	0	7	0	0	0	6	1
7:15 AM	0	0	0	0	0	2	0	0	0	1	4	0	0	0	6	4
7:30 AM	0	0	0	0	0	1	0	2	0	0	13	0	0	0	4	1
7:45 AM	0	0	0	0	0	1	0	1	0	1	12	0	0	0	10	0
8:00 AM	0	0	0	0	0	0	0	2	0	0	8	0	0	0	8	1
8:15 AM	0	0	0	0	0	2	0	0	0	0	12	0	0	0	11	3
8:30 AM	0	0	0	0	0	0	0	1	0	2	14	0	0	0	5	3
8:45 AM	0	0	0	0	0	0	0	1	0	1	9	0	0	0	9	2

		North	bound				n Road bound		Gı		oad (Route 3	33)	Gr		oad (Route :	33)
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	0	0	1	0	0	6	0	0	0	12	0
4:15 PM	0	0	0	0	0	2	0	0	0	0	6	0	0	0	2	2
4:30 PM	0	0	0	0	0	1	0	3	0	1	5	0	0	0	5	0
4:45 PM	0	0	0	0	0	0	0	1	0	0	3	0	0	0	4	1
5:00 PM	0	0	0	0	0	0	0	2	0	0	7	0	0	0	4	0
5:15 PM	0	0	0	0	0	2	0	0	0	0	5	0	0	0	5	1
5:30 PM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	9	1
5:45 PM	0	0	0	0	0	0	0	2	0	0	5	0	0	0	2	2

AM PEAK HOUR						Grafto	n Road		Gr	eenland Ro	ad (Route 3	33)	Gr	eenland Ro	ad (Route 3	33)
7:45 AM		North	bound			South	bound			Easth	oound			Westh	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:45 AM	0	0	0	0	0	3	0	4	0	3	46	0	0	0	34	7
PHF		0.00				0.	88			0.	77			0.	73	

ſ	PM PEAK HOUR						Grafto	n Road		Gr	eenland Ro	ad (Route 3	33)	Gr	eenland Ro	ad (Route 3	33)
	4:00 PM		Northl	bound			South	bound			Easth	ound			Westh	oound	
	to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
	5:00 PM	0	0	0	0	0	3	0	5	0	1	20	0	0	0	23	3
	PHF		0 0 0 0				0.	50			0.	88			0.	54	

Project #: 856_010_TB
BTD #: Location 12
Location: Portsmouth, NH
Street 1: Grafton Road

Street 2: Greenland Road (Route 33)

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

		North	hound				n Road bound		Gı	eenland Ro	oad (Route 3	33)	Gr	reenland Ro	oad (Route 3	33)
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

						Grafto	n Road		Gr	eenland Ro	ad (Route 3	33)	Gr	eenland Ro	ad (Route 3	33)
		North	bound			South	bound			Eastb	oound			West	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR ¹						Grafto	n Road		Gr	eenland Ro	ad (Route 3	33)	Gr	eenland Ro	oad (Route 3	33)
7:30 AM		North	bound			South	bound			Eastb	ound			West	bound	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PM PEAK HOUR ¹						Grafto	n Road		Gr	eenland Ro	ad (Route 3	33)	Gr	eenland Ro	ad (Route 3	33)
4:30 PM		North	oound			South	bound			Easth	oound			West	bound	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

¹ NOTE: Peak hour summaries here correspond to peak hours identified for passenger cars and heavy vehicles combined.

Project #: 856_010_TB
BTD #: Location 14
Location: Portsmouth, NH
Street 1: Greenland Road (Route 33)
Street 2: I-95 Northbound On/Off-Ramps

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

PASSENGER CARS & HEAVY VEHICLES COMBINED

	 - 9		und Off-Ran	np					Gr		ad (Route 3	33)	Gr		ad (Route 3	33)
		North	bound			South	bound			Eastb	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	23	0	54	0	0	0	0	0	0	79	73	0	12	69	0
7:15 AM	0	39	0	89	0	0	0	0	0	0	119	111	0	11	79	0
7:30 AM	0	64	0	87	0	0	0	0	0	0	171	120	0	10	88	0
7:45 AM	0	80	0	119	0	0	0	0	0	0	212	90	0	19	103	0
8:00 AM	0	54	0	83	0	0	0	0	0	0	184	107	0	20	113	0
8:15 AM	0	58	0	92	0	0	0	0	0	0	173	95	0	11	114	0
8:30 AM	0	45	0	78	0	0	0	0	0	0	114	97	0	9	106	0
8:45 AM	0	54	0	62	0	0	0	0	0	0	132	92	0	23	92	0

	J-9	95 Northboo	und Off-Ran	np					Gı	eenland Ro	ad (Route 3	33)	Gı	reenland Ro	oad (Route 3	33)
		North	bound			South	bound			Eastl	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	24	0	58	0	0	0	0	0	0	120	185	0	47	222	0
4:15 PM	0	30	0	59	0	0	0	0	0	0	114	157	0	45	145	0
4:30 PM	0	29	0	64	0	0	0	0	0	0	147	175	0	58	181	0
4:45 PM	0	26	0	81	0	0	0	0	0	0	139	115	0	55	160	0
5:00 PM	0	25	0	55	0	0	0	0	0	0	115	166	0	75	201	0
5:15 PM	0	21	0	74	0	0	0	0	0	0	112	171	0	50	165	0
5:30 PM	0	30	0	45	0	0	0	0	0	0	81	100	0	39	145	0
5:45 PM	0	33	0	59	0	0	0	0	0	0	106	111	0	29	106	0

Γ	AM PEAK HOUR	I-9	95 Northbou	ınd Off-Ram	np					Gr	eenland Ro	ad (Route 3	33)	Gr	eenland Ro	ad (Route 3	33)
	7:30 AM		North	oound			South	bound			Easth	oound			West	bound	
	to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
	8:30 AM	0	256	0	381	0	0	0	0	0	0	740	412	0	60	418	0
_	PHF		0.80				0.	00			0.	95			0.	90	
	HV~%	0.0%	0.80				0.0%	0.0%	0.0%	0.0%	0.0%	1.8%	10.2%	0.0%	3.3%	4.5%	0.0%

Ī	PM PEAK HOUR	1-9	95 Northbou	ınd Off-Ran	np					Gr	eenland Ro	ad (Route 3	33)	Gr	eenland Ro	ad (Route 3	33)
	4:30 PM		North	bound			South	bound			Easth	ound			Westl	oound	
	to	U-Turn	Turn Left Thru Right				Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
	5:30 PM	0	0 101 0 274				0	0	0	0	0	513	627	0	238	707	0
	PHF		0.	88			0.	00			0.	89			0.	86	
	HV~%	0.0%	0.88				0.0%	0.0%	0.0%	0.0%	0.0%	1.9%	3.0%	0.0%	0.8%	2.1%	0.0%

Project #: 856_010_TB
BTD #: Location 14
Location: Portsmouth, NH
Street 1: Greenland Road (Route 33)
Street 2: I-95 Northbound On/Off-Ramps

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

	J-9	95 Northbou	und Off-Ran	np					Gr	eenland Ro	ad (Route 3	33)	Gı	reenland Ro	oad (Route 3	33)
		North	bound	•		South	bound			Easth	oound	,		West	bound	•
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	5	0	1	0	0	0	0	0	0	5	5	0	1	2	0
7:15 AM	0	8	0	3	0	0	0	0	0	0	2	5	0	2	2	0
7:30 AM	0	5	0	4	0	0	0	0	0	0	3	12	0	1	2	0
7:45 AM	0	7	0	6	0	0	0	0	0	0	5	9	0	0	7	0
8:00 AM	0	6	0	4	0	0	0	0	0	0	2	11	0	1	5	0
8:15 AM	0	10	0	4	0	0	0	0	0	0	3	10	0	0	5	0
8:30 AM	0	4	0	7	0	0	0	0	0	0	4	11	0	0	5	0
8:45 AM	0	8	0	4	0	0	0	0	0	0	4	7	0	1	5	0

	I-9	5 Northboo	und Off-Rar	mp					Gı	eenland Ro	oad (Route	33)	Gı	reenland Ro	oad (Route 3	33)
		North	bound			South	bound			Eastl	bound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	5	0	1	0	0	0	0	0	0	2	7	0	0	6	0
4:15 PM	0	2	0	3	0	0	0	0	0	0	5	5	0	1	4	0
4:30 PM	0	4	0	0	0	0	0	0	0	0	3	5	0	0	3	0
4:45 PM	0	4	0	3	0	0	0	0	0	0	1	3	0	1	3	0
5:00 PM	0	3	0	2	0	0	0	0	0	0	3	5	0	1	4	0
5:15 PM	0	3	0	1	0	0	0	0	0	0	3	6	0	0	5	0
5:30 PM	0	6	0	0	0	0	0	0	0	0	1	3	0	0	4	0
5:45 PM	0	4	0	1	0	0	0	0	0	0	1	5	0	0	1	0

AM PEAK HOUR	J-9	95 Northbou	und Off-Ran	пр					Gr	eenland Ro	ad (Route 3	33)	Gre	eenland Ro	ad (Route 3	33)
7:45 AM		North	bound			South	bound			Easth	oound			Westh	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:45 AM	0	27	0	21	0	0	0	0	0	0	14	41	0	1	22	0
PHF		0.86				0.	00			0.	92			0.8	82	

ſ	PM PEAK HOUR	1-9	5 Northbou	und Off-Ran	np					Gr	eenland Ro	ad (Route 3	33)	Gr	eenland Ro	ad (Route 3	33)
	4:00 PM		North	bound			South	bound			Easth	ound			Westl	oound	
	to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
	5:00 PM	0	15	0	7	0	0	0	0	0	0	11	20	0	2	16	0
_	PHF		0.	79			0.	00			0.	78			0.	75	

Project #: 856_010_TB
BTD #: Location 14
Location: Portsmouth, NH
Street 1: Greenland Road (Route 33)
Street 2: I-95 Northbound On/Off-Ramps

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

								_								
	I-9	95 Northboo	und Off-Ran	np					Gr	eenland Ro	ad (Route 3	33)	Gr	eenland Ro	ad (Route 3	33)
		North	bound			South	bound			Easth	oound			Westl	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	J-9	95 Northboo	und Off-Ran	np					Gr	eenland Ro	ad (Route 3	33)	Gr	eenland Ro	ad (Route 3	33)
		North	bound			South	bound			Eastl	oound			Westl	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR ¹	I-9	95 Northbou	ınd Off-Ran	пр					Gr	eenland Ro	ad (Route 3	33)	Gr	eenland Ro	ad (Route 3	33)
7:30 AM		Northl	bound			South	bound			Easth	oound			West	bound	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PM PEAK HOUR ¹	I-9	95 Northbou	ınd Off-Ran	пр					Gr	eenland Ro	ad (Route 3	33)	Gr	eenland Ro	ad (Route 3	33)
4:30 PM		North	bound			South	bound			Easth	oound			Westl	oound	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

¹ NOTE: Peak hour summaries here correspond to peak hours identified for passenger cars and heavy vehicles combined.

Project #: 856_010_TB
BTD #: Location 4
Location: Newington, NH
Street 1: Newington Street

Street 2: Arboretum Dr/New Hampshire Ave

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

PASSENGER CARS & HEAVY VEHICLES COMBINED

	Ν	New Hamps North	hire Avenu bound	е			ım Drive bound				on Street oound				on Street bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	4	12	10	0	0	17	8	0	2	7	1	0	18	24	9
7:15 AM	0	3	9	7	0	3	23	7	0	1	1	1	0	25	19	9
7:30 AM	0	6	8	6	0	6	35	5	0	0	3	1	0	32	14	9
7:45 AM	0	6	12	16	0	4	57	5	0	0	2	1	0	55	27	15
8:00 AM	0	3	15	13	0	3	33	7	0	0	0	0	0	35	14	13
8:15 AM	0	2	19	11	0	3	34	4	0	0	6	1	0	21	14	13
8:30 AM	0	0	8	13	0	4	30	2	0	0	7	3	0	36	9	19
8:45 AM	0	5	8	14	0	3	27	3	0	0	1	1	0	40	6	12

	1		shire Avenu bound	е			um Drive				on Street cound				on Street bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	49	27	0	5	22	1	0	7	24	4	0	29	2	4
4:15 PM	0	0	37	37	0	6	21	0	0	12	16	5	0	30	0	1
4:30 PM	0	1	43	28	0	7	11	1	0	12	10	4	0	31	4	2
4:45 PM	0	0	35	22	0	11	16	0	0	8	9	2	0	31	5	6
5:00 PM	0	0	58	43	0	13	8	1	0	4	11	1	0	37	3	1
5:15 PM	0	1	31	22	0	12	14	0	0	1	2	1	0	28	2	6
5:30 PM	0	1	25	21	0	6	17	1	0	5	9	4	0	21	3	1
5:45 PM	0	9	12	25	0	7	11	0	0	4	9	4	0	22	11	2

AM PEAK HOUR	1	New Hamps	hire Avenue	e		Arboretu	ım Drive			Newingto	on Street			Newingto	on Street	
7:45 AM		North	bound			South	bound			Easth	oound			West	oound	
to	U-Turn					Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:45 AM	0	11	54	53	0	14	154	18	0	0	15	5	0	147	64	60
PHF		0.	87			0.	70			0.	50			0.	70	
HV %	0.0%	0.87 0.0% 0.0% 5.6% 7.5%				14.3%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	2.0%	0.0%	5.0%

PM PEAK HOUR	1	New Hamps	shire Avenue	Э		Arboretu	ım Drive			Newingto	on Street			Newingto	on Street	
4:15 PM		North	bound			South	bound			Easth	oound			Westl	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:15 PM	0	1	173	130	0	37	56	2	0	36	46	12	0	129	12	10
PHF		0.	75			0.	88			0.	71			0.	90	
HV~%	0.0%	0.0%	1.2%	3.1%	0.0%	10.8%	3.6%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.6%	0.0%	10.0%

Project #: 856_010_TB
BTD #: Location 4
Location: Newington, NH
Street 1: Newington Street

Street 2: Arboretum Dr/New Hampshire Ave

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

								,., .								
	1	New Hamps	hire Avenu	е		Arboreti	um Drive			Newingto	on Street			Newingto	on Street	
		North	bound			South	bound				oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	2	1	0	0	0	0	0	0	1	0	3
7:45 AM	0	0	1	1	0	1	0	0	0	0	0	0	0	2	0	0
8:00 AM	0	0	1	0	0	1	0	0	0	0	0	0	0	1	0	2
8:15 AM	0	0	1	2	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1
8:45 AM	0	0	0	1	0	2	0	0	0	0	0	0	0	2	0	0

	1		hire Avenu	е			um Drive				on Street				on Street	
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
4:15 PM	0	0	1	2	0	2	1	0	0	0	0	0	0	0	0	1
4:30 PM	0	0	0	2	0	0	1	0	0	0	0	0	0	1	0	0
4:45 PM	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0
5:15 PM	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR	١	New Hamps	hire Avenue	е		Arboretu	ım Drive			Newingto	on Street			Newingto	on Street	
7:30 AM		North	bound			South	bound			Easth	oound			Westh	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:30 AM	0	0 0 3 3				4	1	0	0	0	0	0	0	4	0	5
PHF		0.50				0.	42			0.	00			0.:	56	

Ī	PM PEAK HOUR	١	New Hamps	hire Avenue	Э		Arboretu	ım Drive			Newingto	on Street			Newingto	on Street	
	4:00 PM		North	bound			South	bound			Easth	ound			Westl	oound	
	to	U-Turn					Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
	5:00 PM	0	0 0 2 4				4	2	0	0	0	0	0	0	1	0	2
	PHF		0.50				0.	50			0.	00			0.	75	

Project #: 856_010_TB
BTD #: Location 4
Location: Newington, NH
Street 1: Newington Street

Street 2: Arboretum Dr/New Hampshire Ave

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

	1	New Hamps	shire Avenu	е		Arboreti	um Drive			Newingt	on Street			Newingto	on Street	
		North	bound			South	bound				oound				bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	1	New Hamps	shire Avenu	e		Arboreti	um Drive			Newingt	on Street			Newingto	on Street	
		North	bound			South	bound			Easth	oound			Westl	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR ¹ 7:45 AM	1	New Hamps North	shire Avenu bound	е			um Drive bound			J	on Street			U	on Street bound	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PM P	PEAK HOUR ¹	١	New Hamps	hire Avenu	е		Arboretu	um Drive			Newingt	on Street			Newingto	on Street	
	4:15 PM		North	bound			South	bound			Easth	oound			Westl	oound	
	to	Left					Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
	5:15 PM	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0

NOTE: Peak hour summaries here correspond to peak hours identified for passenger cars and heavy vehicles combined.

Project #: 856_010_TB
BTD #: Location 8
Location: Portsmouth, NH
Street 1: New Hampshire Avenue
Street 2: Exeter Street & Manchester Square

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

PASSENGER CARS & HEAVY VEHICLES COMBINED

	Ņ	•	hire Avenu bound	е	١	New Hamps South	hire Avenu bound	е			Street oound				ter Square bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	24	3	0	1	30	8	0	2	0	1	0	0	0	0
7:15 AM	0	1	27	5	0	3	42	1	0	1	0	1	0	1	1	1
7:30 AM	0	4	17	4	0	4	54	6	0	1	1	2	0	3	1	1
7:45 AM	0	6	39	9	0	9	91	5	0	0	2	1	0	5	1	4
8:00 AM	0	4	34	6	0	5	51	4	0	1	1	3	0	7	0	1
8:15 AM	0	5	29	4	0	4	38	5	0	1	0	2	0	3	1	3
8:30 AM	0	4	26	5	0	7	50	10	0	2	3	1	0	4	1	3
8:45 AM	0	11	25	5	0	4	52	8	0	2	3	3	0	3	9	3

	N	New Hamps	shire Avenu	Э	1	New Hamps	shire Avenu	е		Exete	Street			Manchest	ter Square	
		North	bound			South	bound			Eastl	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	3	78	15	0	4	58	1	0	1	3	1	0	10	1	4
4:15 PM	0	1	54	5	0	3	53	4	0	1	0	2	0	9	2	6
4:30 PM	0	2	67	5	0	1	49	2	0	0	3	1	0	8	0	5
4:45 PM	0	1	45	3	0	3	47	3	0	1	0	0	0	8	1	5
5:00 PM	0	4	84	5	0	0	44	7	0	2	0	0	0	7	2	9
5:15 PM	0	6	43	3	0	1	43	2	0	1	1	3	0	5	5	2
5:30 PM	0	3	43	4	0	1	36	4	0	3	1	0	0	8	6	2
5:45 PM	0	3	36	1	0	0	32	9	0	1	1	1	0	4	1	0

AM PEAK HO	JR	New Hamps	shire Avenue	е	1	New Hamps	hire Avenue	е		Exeter	Street			Manchest	er Square	
7:45 AM		North	bound			South	bound			Easth	ound			West	bound	
to	U-Turn	Turn Left Thru Right				Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:45 AM	0	19	128	24	0	25	230	24	0	4	6	7	0	19	3	11
PHF		0.	.79			0.	66			0.	71			0.	83	
HV~%	0.0%	0.0%	3.9%	0.0%	0.0%	4.0%	0.9%	4.2%	0.0%	25.0%	0.0%	14.3%	0.0%	0.0%	33.3%	9.1%

PM PEAK HOUR	1	New Hamps	shire Avenue	е	1	New Hamps	hire Avenue	Э		Exeter	Street			Manchest	er Square	
4:00 PM		North	bound			South	bound			Easth	ound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	0 7 244 28				11	207	10	0	3	6	4	0	35	4	20
PHF		0.	73			0.	90			0.	65			0.	87	
HV~%	0.0%	0.73 0.0% 2.5% 0.0%				0.0%	1.4%	0.0%	0.0%	0.0%	0.0%	25.0%	0.0%	2.9%	25.0%	0.0%

Project #: 856_010_TB
BTD #: Location 8
Location: Portsmouth, NH
Street 1: New Hampshire Avenue
Street 2: Exeter Street & Manchester Square

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

	Ν	New Hamps North	hire Avenu bound	е	1	New Hamps South	hire Avenu bound	е			Street cound				ter Square bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	1	0	0	0	0	0	0	0	1	0	0	1	0
7:30 AM	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	2	0	0	1	1	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0
8:15 AM	0	0	1	0	0	0	0	0	0	0	0	1	0	0	1	1
8:30 AM	0	0	1	0	0	0	1	0	0	1	0	0	0	0	0	0
8:45 AM	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0

	١		shire Avenu bound	е	1	New Hamps	shire Avenu bound	е			Street				ter Square bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	Ö	0	1	0	0
4:15 PM	0	0	3	0	0	0	1	0	0	0	0	1	0	0	1	0
4:30 PM	0	0	2	0	0	0	2	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	1	0	0	0	0	1	0	0	1	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR	١	New Hamps	hire Avenue	e	١	New Hamps	hire Avenu	Э		Exeter	Street			Manchest	er Square	
7:45 AM		Northbound				South	bound			Eastb	oound			Westh	bound	
to	U-Turn					Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:45 AM	0	0 0 5 0				1	2	1	0	1	0	1	0	0	1	1
PHF		0.63				0.	50			0.	50			0	25	

PM PEAK HOUR	١	lew Hamps	hire Avenue	Э	١	New Hamps	hire Avenue	е		Exeter	Street			Manchest	er Square	
4:00 PM		Northbound				South	bound			Easth	ound			West	oound	
to	U-Turn					Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	0 0 6 0				0	3	0	0	0	0	1	0	1	1	0
PHF		0.50				0.	38			0.	25			0.	50	

Project #: 856_010_TB
BTD #: Location 8
Location: Portsmouth, NH
Street 1: New Hampshire Avenue
Street 2: Exeter Street & Manchester Square

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

	١	New Hamps North		е	1		shire Avenu bound	е			Street				er Square bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	1	New Hamps	shire Avenu	е	1	New Hamps	shire Avenu	е		Exeter	Street			Manchest	er Square	
		North	bound			South	bound			Easth	ound			Westl	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR ¹ 7:45 AM	1	New Hamps North	hire Avenue bound	е	1		shire Avenu bound	е			Street				er Square bound	
to	Left	Loft Thru Dight DED				Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PM PEAK HOUR ¹	1	New Hamps	hire Avenu	Э	1	New Hamps	shire Avenue	Э		Exeter	Street			Manchest	er Square	
4:00 PM		Northbound				South	bound			Easth	oound			West	oound	
to	Left					Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4

NOTE: Peak hour summaries here correspond to peak hours identified for passenger cars and heavy vehicles combined.

Project #: 856_010_TB BTD#: Location 9 Location: Portsmouth, NH Grafton Road Street 1: Street 2: Aviation Avenue Count Date: 2/17/2022 Day of Week: Thursday Cloudy, 55°F Weather:

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

PASSENGER CARS & HEAVY VEHICLES COMBINED

						Aviation	Avenue			Graftor	n Road			Grafto	n Road	
		Northl	oound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	0	0	3	0	7	81	0	0	0	23	0
7:15 AM	0	0	0	0	0	0	0	4	0	18	80	0	0	0	25	0
7:30 AM	0	0	0	0	0	0	0	2	0	16	108	0	0	0	24	0
7:45 AM	0	0	0	0	0	0	0	0	0	43	204	0	0	0	39	0
8:00 AM	0	0	0	0	0	0	0	4	0	21	127	0	0	0	52	0
8:15 AM	0	0	0	0	0	0	0	5	0	17	122	0	0	0	31	0
8:30 AM	0	0	0	0	0	0	0	1	0	20	108	0	0	0	35	0
8:45 AM	0	0	0	0	0	0	0	0	0	15	139	0	0	0	30	0

							Avenue				n Road				n Road	
		North	bound			South	bound			Easti	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	0	0	33	0	5	65	0	0	0	129	0
4:15 PM	0	0	0	0	0	0	0	9	0	2	63	0	0	0	123	0
4:30 PM	0	0	0	0	0	0	0	30	0	2	75	0	0	0	149	0
4:45 PM	0	0	0	0	0	1	0	13	0	4	67	0	0	0	131	0
5:00 PM	0	0	0	0	0	0	0	29	0	5	44	0	0	0	157	1
5:15 PM	0	0	0	0	0	0	0	20	0	4	42	0	0	0	116	0
5:30 PM	0	0	0	0	0	0	0	13	0	3	38	0	0	0	104	0
5:45 PM	0	0	0	0	0	0	0	5	0	1	43	0	0	0	64	0

AM PEAK HOUR						Aviation	Avenue			Graftor	n Road			Grafto	n Road	
7:45 AM		North	bound			South	bound			Easth	ound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:45 AM	0	0	0	0	0	0	0	10	0	101	561	0	0	0	157	0
PHF		0.	00			0.	50			0.	67			0.	75	
HV~%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.0%	1.8%	0.0%	0.0%	0.0%	1.9%	0.0%

PM PEAK	K HOUR						Aviation	Avenue			Graftor	n Road			Graftor	n Road	
4:15	PM		North	bound			South	bound			Easth	ound			Westl	oound	
to)	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:15	PM	0	0	0	0	0	1	0	81	0	13	249	0	0	0	560	1
PH	F		0.	00			0.	68			0.	85			0.	89	
HV	%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.2%	0.0%	0.0%	1.2%	0.0%	0.0%	0.0%	0.9%	0.0%

Project #: 856_010_TB BTD#: Location 9 Location: Portsmouth, NH Grafton Road Street 1: Street 2: Aviation Avenue Count Date: 2/17/2022 Day of Week: Thursday Cloudy, 55°F Weather:

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

		North	bound				Avenue bound				n Road oound				n Road bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	0	0	1	0	1	2	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	1	2	0	0	0	1	0
7:30 AM	0	0	0	0	0	0	0	2	0	1	0	0	0	0	2	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	1	3	0	0	0	1	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	5	0	0	0	1	0
8:45 AM	0	0	0	0	0	0	0	0	0	1	2	0	0	0	2	0

		North	bound				Avenue				n Road bound				n Road bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	0	0	0	0	0	2	0	0	0	1	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
4:30 PM	0	0	0	0	0	0	0	1	0	0	2	0	0	0	3	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0

AM PEAK HOUR						Aviation	Avenue			Grafto	n Road			Graftor	n Road	
8:00 AM		North	bound			South	bound			Eastl	oound			Westl	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	0	0	0	0	0	0	0	0	2	11	0	0	0	5	0
PHF		0.	00			0.	00			0.	65			0.	63	

PM PEAK HOUR						Aviation	Avenue			Graftor	n Road			Graftor	n Road	
4:00 PM		North	bound			South	bound			Easth	ound			West	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	0	0	0	0	0	0	1	0	0	4	0	0	0	6	0
PHF		0.	00			0.	25			0.	50			0.	50	

856_010_TB Project #: BTD#: Location 9 Portsmouth, NH Location: Street 1: Grafton Road Street 2: Aviation Avenue 2/17/2022 Count Date: Day of Week: Thursday Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

		North	bound				Avenue bound				n Road oound				n Road bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0

						Aviation	Avenue			Grafto	n Road			Grafto	n Road	
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR ¹						Aviation	Avenue			Grafto	n Road			Grafto	n Road	
7:45 AM		Northl	oound			South	bound			Eastb	ound			Westl	bound	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
8:45 AM	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0

PM PEA	K HOUR ¹						Aviation	Avenue			Grafto	n Road			Graftor	n Road	
4:15	5 PM		Northl	bound			South	bound			Easth	oound			Westl	bound	
t	to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
5:15	5 PM	0	0	0	0	0	0	1	2	0	1	0	0	0	0	0	0

¹ NOTE: Peak hour summaries here correspond to peak hours identified for passenger cars and heavy vehicles combined.

Project #: 856_010_TB
BTD #: Location 10
Location: Portsmouth, NH
Street 1: Grafton Road

Street 2: P. Golf Course Dr/Park & Ride Dr

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

PASSENGER CARS & HEAVY VEHICLES COMBINED

						I AGGEN	OLN OA	NO GILLA	~ <i>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ </i>	OLLO OL						
		Grafto	n Road			Grafto	n Road		Pea	ase Golf Co	ourse Drive	way		Park & Ric	le Driveway	
		North	bound			South	bound			Eastl	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	85	3	0	1	26	0	0	0	0	0	0	5	0	2
7:15 AM	0	3	96	13	0	2	24	2	0	1	0	0	0	6	0	2
7:30 AM	0	8	141	13	0	0	25	0	0	0	0	2	0	7	0	0
7:45 AM	0	5	241	9	0	1	31	0	0	0	0	0	0	3	0	1
8:00 AM	0	2	148	4	0	2	53	0	0	0	0	0	0	1	0	1
8:15 AM	0	2	140	15	0	3	38	0	0	0	0	1	0	7	0	0
8:30 AM	0	4	141	12	0	2	31	0	0	0	0	3	0	2	0	1
8:45 AM	0	5	148	8	0	0	35	0	0	0	0	2	0	4	0	0

		Grafto	n Road			Grafto	n Road		Pe	ase Golf Co	ourse Drivev	vay		Park & Rid	e Driveway	
		North	bound			South	bound			Easth	oound			Westl	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	15	66	8	0	1	163	5	0	2	0	6	0	7	0	3
4:15 PM	0	6	61	12	0	3	131	2	0	2	0	3	0	7	0	1
4:30 PM	0	11	63	12	0	1	174	5	0	1	0	1	0	5	0	2
4:45 PM	0	5	64	11	0	4	151	2	0	0	0	5	0	7	0	1
5:00 PM	0	2	46	11	0	0	183	2	0	1	0	2	0	14	0	5
5:15 PM	0	5	43	5	0	3	135	6	0	1	0	6	0	9	0	2
5:30 PM	0	4	42	15	0	0	127	0	0	1	0	5	0	2	0	1
5:45 PM	0	6	45	13	0	1	79	1	0	2	0	4	0	11	0	0

AM PEAK HOUR		Grafto	n Road			Graftor	n Road		Pea	ase Golf Co	ourse Drivev	vay		Park & Rid	e Driveway	
7:30 AM		North	oound			South	bound			Easth	oound			Westl	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:30 AM	0	17	670	41	0	6	147	0	0	0	0	3	0	18	0	2
PHF		0.	71			0.	70			0.	38			0.	71	
HV~%	0.0%	0.71 0.0% 5.9% 1.2% 7.3%				16.7%	3.4%	0.0%	0.0%	0.0%	0.0%	33.3%	0.0%	16.7%	0.0%	50.0%

PM PEAK HOUR			n Road				n Road		Pe	ase Golf Co	urse Drivev	vay			e Driveway	
4:00 PM		North	bound			South	bound			Eastb	ound			Westl	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	37	254	43	0	9	619	14	0	5	0	15	0	26	0	7
PHF		0.	94			0.	89			0.	63			0.	83	
HV~%	0.0%	0.0%	1.2%	11.6%	0.0%	22.2%	0.8%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	11.5%	0.0%	28.6%

Project #: 856_010_TB
BTD #: Location 10
Location: Portsmouth, NH
Street 1: Grafton Road

Street 2: P. Golf Course Dr/Park & Ride Dr

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

								,,,,		•						
		Grafto	n Road			Grafto	n Road		Pe	ase Golf Co	ourse Drivev	way		Park & Rid	le Driveway	
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	2	1	0	0	2	0	0	0	0	0	0	2	0	1
7:15 AM	0	0	3	2	0	2	0	0	0	0	0	0	0	2	0	0
7:30 AM	0	1	1	0	0	0	4	0	0	0	0	1	0	0	0	0
7:45 AM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	4	1	0	0	1	0	0	0	0	0	0	1	0	1
8:15 AM	0	0	2	2	0	1	0	0	0	0	0	0	0	2	0	0
8:30 AM	0	0	5	0	0	0	1	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	3	1	0	0	1	0	0	0	0	0	0	0	0	0

			n Road bound				n Road bound		Pe		ourse Drivevoound	way			le Driveway bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	1	1	0	0	0	0	0	0	0	0	0	1	0	1
4:15 PM	0	0	0	2	0	1	0	0	0	0	0	0	0	2	0	0
4:30 PM	0	0	2	1	0	0	4	0	0	0	0	0	0	0	0	1
4:45 PM	0	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	1	0	0	0	0	0	0	0	0	0	2	0	1
5:15 PM	0	0	0	1	0	1	0	0	0	0	0	0	0	2	0	0
5:30 PM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	3	0	1	2	0	0	0	0	0	0	0	0	0

AM PEAK HOUR		Grafto	n Road			Grafto	n Road		Pe	ase Golf Co	ourse Drivev	vay		Park & Rid	e Driveway	
8:00 AM		North	bound			South	bound			Easth	oound			Westl	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	0	14	4	0	1	3	0	0	0	0	0	0	3	0	1
PHF		0.90				1.	00			0.	00			0.	50	

Ī	PM PEAK HOUR		Grafto	n Road			Grafto	n Road		Pe	ase Golf Co	urse Drivev	vay		Park & Rid	e Driveway	
	4:00 PM		North	bound			South	bound			Easth	ound			Westl	oound	
	to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
	5:00 PM	0	0	3	5	0	2	5	0	0	0	0	0	0	3	0	2
	PHF		0.67				0.	44			0.	00			0.	63	

Project #: 856_010_TB
BTD #: Location 10
Location: Portsmouth, NH
Street 1: Grafton Road

Street 2: P. Golf Course Dr/Park & Ride Dr

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

		Grafto	n Road			Grafto	n Road		Pe	ase Golf Co	ourse Drive	way		Park & Rid	e Driveway	
		North	bound			South	bound			Easth	oound			Westl	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

		Graftor	n Road			Grafto	n Road		Pe	ase Golf Co	ourse Drivev	vay		Park & Rid	le Driveway	
		Northl	bound			South	bound			Easth	oound			West	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
4:00 PM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
4:15 PM	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR ¹ 7:30 AM			n Road bound				n Road bound		Pea		ourse Drivev	vay			e Driveway bound	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0

PM PEAK HOUR ¹		Grafto	n Road			Grafto	n Road		Pe	ase Golf Co	urse Drivev	vay		Park & Rid	e Driveway	
4:00 PM		North	bound			South	bound			Easth	ound			Westl	bound	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
5:00 PM	0	1	0	0	0	1	0	1	0	0	0	2	0	0	0	0

NOTE: Peak hour summaries here correspond to peak hours identified for passenger cars and heavy vehicles combined.

Project #: 856_010_TB
BTD #: Location 11
Location: Portsmouth, NH
Street 1: Grafton Road
Street 2: I-95 Southbound Off-Ramp

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

PASSENGER CARS & HEAVY VEHICLES COMBINED

			n Road				n Road			- "			1-9		und Off-Rar	np
		North	bound			South	bound			Eastr	ound			west	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	78	0	0	0	33	0	0	0	0	0	0	0	0	7
7:15 AM	0	0	92	0	0	0	31	0	0	0	0	0	0	0	0	26
7:30 AM	0	0	138	0	0	0	31	0	0	0	0	0	0	0	0	26
7:45 AM	0	0	227	0	0	0	37	0	0	0	0	0	0	0	0	36
8:00 AM	0	0	133	0	0	0	56	0	0	0	0	0	0	0	0	23
8:15 AM	0	0	136	0	0	0	47	0	0	0	0	0	0	0	0	23
8:30 AM	0	0	137	0	0	0	39	0	0	0	0	0	0	0	0	28
8:45 AM	0	0	137	0	0	0	44	0	0	0	0	0	0	0	0	24

		Grafto	n Road			Grafto	n Road						I-9	5 Southboo	und Off-Rar	np
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	75	0	0	0	185	0	0	0	0	0	0	0	0	11
4:15 PM	0	0	74	0	0	0	138	0	0	0	0	0	0	0	0	2
4:30 PM	0	0	78	0	0	0	183	0	0	0	0	0	0	0	0	11
4:45 PM	0	0	68	0	0	0	154	0	0	0	0	0	0	0	0	8
5:00 PM	0	0	52	0	0	0	198	0	0	0	0	0	0	0	0	6
5:15 PM	0	0	49	0	0	0	155	0	0	0	0	0	0	0	0	6
5:30 PM	0	0	54	0	0	0	142	0	0	0	0	0	0	0	0	12
5:45 PM	0	0	56	0	0	0	88	0	0	0	0	0	0	0	0	8

AM PEAK	HOUR		Grafto	n Road			Graftor	n Road						1-9	5 Southboo	und Off-Ran	пр
7:45 A	λM		North	bound			South	bound			Easth	oound			West	oound	
to		U-Turn	3 1				Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:45 A	ΛM	0	0	633	0	0	0	179	0	0	0	0	0	0	0	0	110
PHF	7		0.	70			0.	80			0.	00			0.	76	
HV %	%	0.0%	0.0%	1.6%	0.0%	0.0%	0.0%	3.9%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	2.7%

PM PEAK HOUR		Grafto	n Road			Grafto	n Road						1-9	95 Southboo	und Off-Ran	np
4:00 PM		North	bound			South	bound			Easth	ound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	0	295	0	0	0	660	0	0	0	0	0	0	0	0	32
PHF		0.	95			0.	89			0.	00			0.	73	
HV~%	0.0%	0.0%	1.4%	0.0%	0.0%	0.0%	1.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	12.5%

Project #: 856_010_TB
BTD #: Location 11
Location: Portsmouth, NH
Street 1: Grafton Road

Street 2: I-95 Southbound Off-Ramp

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

		Grafto	n Road			Grafto	n Road						J-9	95 Southboo	und Off-Ran	np
		North	bound			South	bound			Easth	ound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	1	0	0	0	4	0	0	0	0	0	0	0	0	2
7:15 AM	0	0	5	0	0	0	2	0	0	0	0	0	0	0	0	1
7:30 AM	0	0	1	0	0	0	3	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	1	0	0	0	2	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	1	0	0	0	2	0	0	0	0	0	0	0	0	3
8:15 AM	0	0	3	0	0	0	2	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	5	0	0	0	1	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	3	0	0	0	1	0	0	0	0	0	0	0	0	1

		Grafto	n Road			Grafto	n Road						I-9	95 Southboo	und Off-Ran	np
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	2
4:15 PM	0	0	2	0	0	0	2	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	1	0	0	0	4	0	0	0	0	0	0	0	0	2
4:45 PM	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	1
5:15 PM	0	0	1	0	0	0	2	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
5:45 PM	0	0	2	0	0	0	2	0	0	0	0	0	0	0	0	0

AM P	EAK HOUR		Grafto	n Road			Graftor	n Road						I-9	5 Southboo	und Off-Ran	np
7	:00 AM		North	bound			South	bound			Easth	oound			Westh	oound	
	to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8	:00 AM	0	0	8	0	0	0	11	0	0	0	0	0	0	0	0	3
	PHF		0.40				0.	69			0.	00			0.:	38	

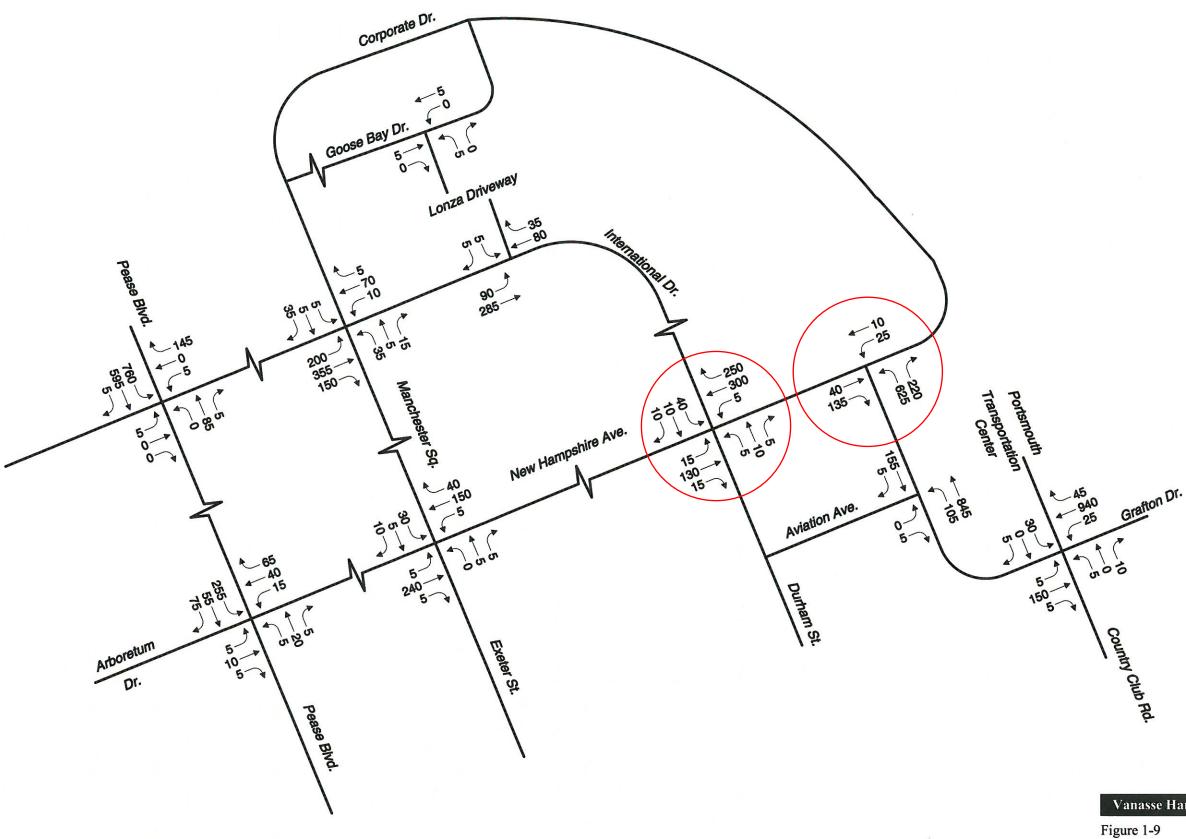
PM PEAK HOUR		Grafto	n Road			Grafto	n Road						I-9	5 Southboo	und Off-Ran	np
4:00 PM		North	oound			South	bound			Eastb	ound			Westl	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	0	4	0	0	0	8	0	0	0	0	0	0	0	0	4
PHF		0.	50			0.	50			0.	00			0.	50	

Project #: 856_010_TB
BTD #: Location 11
Location: Portsmouth, NH
Street 1: Grafton Road

Street 2: I-95 Southbound Off-Ramp

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

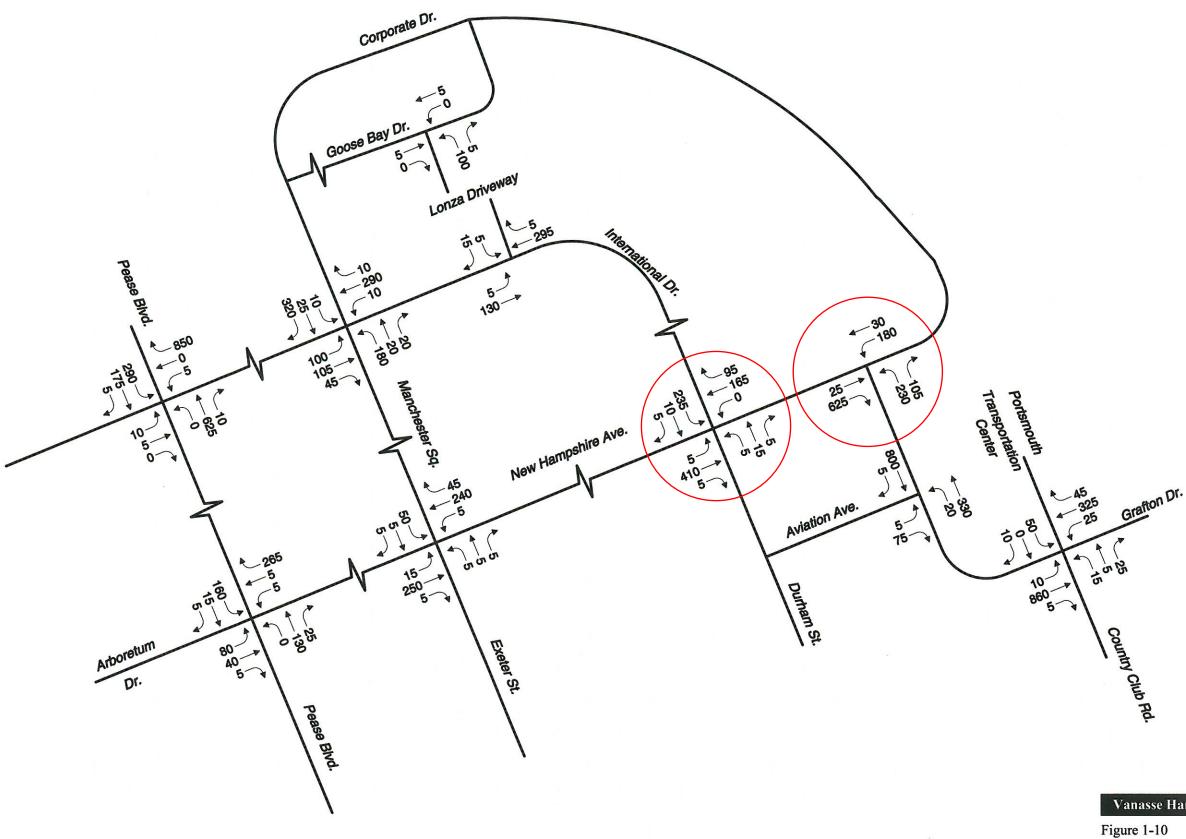
PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com


		Grafto	n Road			Grafto	n Road						J-9	95 Southbo	und Off-Rar	np
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

		Grafto	n Road			Grafto	n Road						I-9	95 Southboo	und Off-Ran	np
		North	bound			South	bound			Easth	oound			Westl	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR ¹ 7:45 AM			n Road bound				n Road bound			Fasth	oound		I-9		und Off-Ram	np
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PM PEAK HOUR ¹		Graftor	n Road			Grafto	n Road						I-9	5 Southboo	und Off-Ram	np
4:00 PM		Northl	bound			South	bound			Easth	oound			West	oound	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
5:00 PM	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0


NOTE: Peak hour summaries here correspond to peak hours identified for passenger cars and heavy vehicles combined.

Vanasse Hangen Brustlin, Inc.

2010 Existing
Weekday Morning (7:45 AM-8:45 AM)
Peak Hour Traffic Volume Network
Pease InternationalTradeport

Vanasse Hangen Brustlin, Inc.

2010 Existing
Weekday Evening (4:30 PM-5:30 PM)
Peak Hour Traffic Volume Network
Pease International Tradeport

Job 856_010_TB_ATR 6A
Area Portsmouth, NH

Location Newington Street EB, west of Route 4 Southbound On/Off-Ramps

BOSTON TRAFFIC DATA

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

Wednesday, February 16, 2022

											www.Bost	onTrafficData	com
Time		tal		В			Time		tal		В		
0000	73		73		0		1200	178		178		0	
0015	18		18		0		1215	138		138		0	
0030	47		47		0		1230	115		115		0	
0045	9	147	9	147	0	0	1245	118	549	118	549	0	0
0100	9		9		0		1300	123		123		0	
0115	2		2		0		1315	113		113		0	
0130	3		3		0		1330	131		131		0	
0145	1	15	1	15	0	0	1345	111	478	111	478	0	0
0200	8		8		0	-	1400	134		134		0	-
0215	4		4		0		1415	147		147		0	
0230	1		1		0		1430	184		184		0	
0245	6	19	6	19	0	0	1445	148	613	148	613	0	0
0300	5	13	5	13	0	U	1500	184	013	184	013	0	U
0300	6		6		0		1515	133		133		0	
0330	6	24	6	24	0	0	1530	231	744	231	74.4	0	0
0345	4	21	4	21	0	0	1545	166	714	166	714	0	0
0400	5		5		0		1600	230		230		0	
0415	9		9		0		1615	215		215		0	
0430	11		11		0	•	1630	251		251	070	0	•
0445	7	32	7	32	0	0	1645	176	872	176	872	0	0
0500	13		13		0		1700	278		278		0	
0515	14		14		0		1715	193		193		0	
0530	6		6		0		1730	177		177		0	
0545	16	49	16	49	0	0	1745	133	781	133	781	0	0
0600	22		22		0		1800	127		127		0	
0615	27		27		0		1815	82		82		0	
0630	53		53		0		1830	82		82		0	
0645	56	158	56	158	0	0	1845	75	366	75	366	0	0
0700	49		49		0		1900	85		85		0	
0715	29		29		0		1915	72		72		0	
0730	52		52		0		1930	56		56		0	
0745	52	182	52	182	0	0	1945	26	239	26	239	0	0
0800	57		57		0		2000	50		50		0	
0815	50		50		0		2015	34		34		0	
0830	49		49		0		2030	19		19		0	
0845	56	212	56	212	0	0	2045	19	122	19	122	0	0
0900	63		63		0	•	2100	29		29		0	•
0915	56		56		0		2115	17		17		0	
0930	69		69		0		2130	17		17		0	
0930	98	286	98	286	0	0	2145	25	88	25	88	0	0
1000	74	200	74	200	0	J	2200	23	00	23	50	0	J
1015							2215					0	
1015	88		88		0			18 56		18 56			
	98	250	98	250	0	0	2230	56	101	56	104	0	0
1045	99	359	99	359	0	0	2245	37	134	37	134	0	0
1100	130		130		0		2300	29		29		0	
1115	129		129		0		2315	15		15		0	
1130	134		134		0	_	2330	24		24		0	
1145	185	578	185	578	0	0	2345	13	81	13	81	0	0
							Total	7095		7095		0	

Job 856_010_TB_ATR 6A
Area Portsmouth, NH

Location Newington Street EB, west of Route 4 Southbound On/Off-Ramps

BOSTON TRAFFIC DATA

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

Thursday, February 17, 2022

Time	То	tal		В			Tim		To	tal		В		
0000	66		66		0		120		197		197		0	
0015	17		17		0		121	5	160		160		0	
0030	47		47		0		123	0	132		132		0	
0045	12	142	12	142	0	0	124	5	113	602	113	602	0	0
0100	9		9		0		130	0	143		143		0	
0115	4		4		0		131	5	94		94		0	
0130	8		8		0		133	0	125		125		0	
0145	4	25	4	25	0	0	134		114	476	114	476	0	0
0200	2		2		0		140	0 .	142		142		0	
0215	10		10		0		141		129		129		0	
0230	3		3		0		143		211		211		0	
0245	7	22	7	22	0	0	144		173	655	173	655	0	0
0300	4		4		0	Ū	150		192	000	192	000	0	Ů
0315	4		4		0		151		144		144		0	
0330	6		6		0		153		237		237		0	
0345	8	22	8	22	0	0	154		177	750	177	750	0	0
0400	2	22	2	22	0	U	160		217	730	217	730	0	U
0400	12		12		0		161		217		215		0	
0430							163		218					
	18 7	20	18 7	39	0	0				970	218 220	970	0 0	0
0445		39		39	0	U	164		220	870		870		0
0500	14		14		0		170		265		265		0	
0515	9		9		0		171		174		174		0	
0530	6		6		0		173		162		162		0	
0545	21	50	21	50	0	0	174		134	735	134	735	0	0
0600	17		17		0		180		127		127		0	
0615	21		21		0		181		107		107		0	
0630	45		45		0		183		84		84		0	
0645	62	145	62	145	0	0	184		80	398	80	398	0	0
0700	64		64		0		190		95		95		0	
0715	40		40		0		191	5	90		90		0	
0730	34		34		0		193	0	59		59		0	
0745	54	192	54	192	0	0	194	5	29	273	29	273	0	0
0800	60		60		0		200	0	53		53		0	
0815	49		49		0		201	5	40		40		0	
0830	65		65		0		203	0	27		27		0	
0845	60	234	60	234	0	0	204	5	23	143	23	143	0	0
0900	91		91		0		210		32		32		0	
0915	72		72		0		211		24		24		0	
0930	85		85		0		213		21		21		0	
0945	74	322	74	322	0	0	214		32	109	32	109	0	0
1000	85		85		0		220		28		28		0	
1015	76		76		0		221		16		16		0	
1030	115		115		0		223		64		64		0	
1045	116	392	116	392	0	0	224		17	125	17	125	0	0
1100	122	332	122	332	0	U	230		24	120	24	120	0	U
1115	125		125		0		231		7		7		0	
											, 21		0	
1130 1145	141 156	E / /	141 156	E / /	0	0	233 234		21 16	60	16	68		0
	156	544	156	544	0	0	∠34	J	10	68	ıσ	ÖÖ	0	0

Job 856_010_TB_ATR 6A
Area Portsmouth, NH

Location Newington Street EB, west of Route 4 Southbound On/Off-Ramps

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

Friday, February 18, 2022

Time													
0015 13 0030 53 0045 13 0100 13 0115 3 0130 4 0145 2 0200 6 0215 9 0230 4 0245 8 0300 3 0315 4 0330 7 0345 2 0400 8 0415 8 0430 11 0445 10 0500 14 0515 7 0530 12 0545 20 0600 15 0615 16 0630 45 0645 61 0700 65 0715 31 0730 31 0745 52 0800 45 0815 57 0830 51	Tota	al		В			Time		tal	Е	В		
0030 53 0045 13 0100 13 0115 3 0130 4 0145 2 0200 6 0215 9 0230 4 0245 8 0300 3 0315 4 0330 7 0345 2 0400 8 0415 8 0430 11 0445 10 0500 14 0515 7 0530 12 0545 20 0600 15 0615 16 0630 45 0645 61 0700 65 0715 31 0730 31 0745 52 0800 45 0815 57 0830 51 0845 70			75		0		1200	166		166		0	
0045 13 0100 13 0115 3 0130 4 0145 2 0200 6 0215 9 0230 4 0245 8 0300 3 0315 4 0330 7 0345 2 0400 8 0415 8 0430 11 0445 10 0500 14 0515 7 0530 12 0545 20 0600 15 0615 16 0630 45 0645 61 0700 65 0715 31 0730 31 0745 52 0800 45 0815 57 0830 51 0845 70 0990 80 0915 76 0930 70 </td <td></td> <td></td> <td>13</td> <td></td> <td>0</td> <td></td> <td>1215</td> <td>139</td> <td></td> <td>139</td> <td></td> <td>0</td> <td></td>			13		0		1215	139		139		0	
0100 13 0115 3 0130 4 0145 2 0200 6 0215 9 0230 4 0245 8 0300 3 0315 4 0330 7 0345 2 0400 8 0415 8 0430 11 0445 10 0500 14 0515 7 0530 12 0545 20 0600 15 0615 16 0630 45 0645 61 0700 65 0715 31 0730 31 0745 52 0800 45 0815 57 0830 51 0845 70 0990 80 0915 76 0930 70 0945 61 </td <td></td> <td></td> <td>53</td> <td></td> <td>0</td> <td></td> <td>1230</td> <td>150</td> <td></td> <td>150</td> <td></td> <td>0</td> <td></td>			53		0		1230	150		150		0	
0115 3 0130 4 0145 2 0200 6 0215 9 0230 4 0245 8 0300 3 0315 4 0330 7 0345 2 0400 8 0415 8 0430 11 0445 10 0500 14 0515 7 0530 12 0545 20 0600 15 0615 16 0630 45 0645 61 0700 65 0715 31 0730 31 0745 52 0800 45 0815 57 0830 51 0845 70 0990 80 0915 76 0930 70		154	13	154	0	0	1245	93	548	93	548	0	0
0130 4 0145 2 0200 6 0215 9 0230 4 0245 8 0300 3 0315 4 0330 7 0345 2 0400 8 0415 8 0430 11 0445 10 0500 14 0515 7 0530 12 0545 20 0600 15 0615 16 0630 45 0645 61 0700 65 0715 31 0730 31 0745 52 0800 45 0815 57 0830 51 0845 70 0990 80 0915 76 0930 70 0945 61	3		13		0		1300	130		130		0	
0145 2 0200 6 0215 9 0230 4 0245 8 0300 3 0315 4 0330 7 0345 2 0400 8 0415 8 0430 11 0445 10 0500 14 0515 7 0530 12 0545 20 0600 15 0615 16 0630 45 0645 61 0700 65 0715 31 0730 31 0745 52 0800 45 0815 57 0830 51 0845 70 0990 80 0915 76 0930 70 0945 61	3		3		0		1315	113		113		0	
0200 6 0215 9 0230 4 0245 8 0300 3 0315 4 0330 7 0345 2 0400 8 0415 8 0430 11 0445 10 0500 14 0515 7 0530 12 0545 20 0600 15 0615 16 0630 45 0645 61 0700 65 0715 31 0730 31 0745 52 0800 45 0815 57 0830 51 0845 70 0900 80 0915 76 0930 70 0945 61	4		4		0		1330	133		133		0	
0215 9 0230 4 0245 8 0300 3 0315 4 0330 7 0345 2 0400 8 0415 8 0430 11 0445 10 0500 14 0515 7 0530 12 0545 20 0600 15 0615 16 0630 45 0645 61 0700 65 0715 31 0730 31 0745 52 0800 45 0815 57 0830 51 0845 70 0990 80 0915 76 0930 70 0945 61	2	22	2	22	0	0	1345	121	497	121	497	0	0
0215 9 0230 4 0245 8 0300 3 0315 4 0330 7 0345 2 0400 8 0415 8 0430 11 0445 10 0500 14 0515 7 0530 12 0545 20 0600 15 0615 16 0630 45 0645 61 0700 65 0715 31 0730 31 0745 52 0800 45 0815 57 0830 51 0845 70 0990 80 0915 76 0930 70 0945 61	6		6		0		1400	150		150		0	
0230 4 0245 8 0300 3 0315 4 0330 7 0345 2 0400 8 0415 8 0430 11 0445 10 0500 14 0515 7 0530 12 0545 20 0600 15 0615 16 0630 45 0645 61 0700 65 0715 31 0730 31 0745 52 0800 45 0815 57 0830 51 0845 70 0990 80 0915 76 0930 70 0945 61	9		9		0		1415	133		133		0	
0245 8 0300 3 0315 4 0330 7 0345 2 0400 8 0415 8 0430 11 0445 10 0500 14 0515 7 0530 12 0545 20 0600 15 0615 16 0630 45 0645 61 0700 65 0715 31 0730 31 0745 52 0800 45 0815 57 0830 51 0845 70 0900 80 0915 76 0930 70 0945 61	4		4		0		1430	202		202		0	
0300 3 0315 4 0330 7 0345 2 0400 8 0415 8 0430 11 0445 10 0500 14 0515 7 0530 12 0545 20 0600 15 0615 16 0630 45 0645 61 0700 65 0715 31 0730 31 0745 52 0800 45 0815 57 0830 51 0845 70 0990 80 0915 76 0930 70 0945 61		27	8	27	0	0	1445	161	646	161	646	0	0
0315 4 0330 7 0345 2 0400 8 0415 8 0430 11 0445 10 0500 14 0515 7 0530 12 0545 20 0600 15 0615 16 0630 45 0645 61 0700 65 0715 31 0730 31 0745 52 0800 45 0815 57 0830 51 0845 70 0900 80 0915 76 0930 70 0945 61			3		0		1500	172		172		0	
0330 7 0345 2 0400 8 0415 8 0430 11 0445 10 0500 14 0515 7 0530 12 0545 20 0600 15 0615 16 0630 45 0645 61 0700 65 0715 31 0730 31 0745 52 0800 45 0815 57 0830 51 0845 70 0900 80 0915 76 0930 70 0945 61			4		0		1515	158		158		0	
0345 2 0400 8 0415 8 0430 11 0445 10 0500 14 0515 7 0530 12 0545 20 0600 15 0615 16 0630 45 0645 61 0700 65 0715 31 0730 31 0745 52 0800 45 0815 57 0830 51 0845 70 0900 80 0915 76 0930 70 0945 61			7		0		1530	211		211		0	
0400 8 0415 8 0430 11 0445 10 0500 14 0515 7 0530 12 0545 20 0600 15 0615 16 0630 45 0645 61 0700 65 0715 31 0730 31 0745 52 0800 45 0815 57 0830 51 0845 70 0900 80 0915 76 0930 70 0945 61		16	2	16	0	0	1545	154	695	154	695	0	0
0415 8 0430 11 0445 10 0500 14 0515 7 0530 12 0545 20 0600 15 0615 16 0630 45 0645 61 0700 65 0715 31 0730 31 0745 52 0800 45 0815 57 0830 51 0845 70 0900 80 0915 76 0930 70 0945 61			8		0	•	1600	192		192		0	-
0430 11 0445 10 0500 14 0515 7 0530 12 0545 20 0600 15 0615 16 0630 45 0645 61 0700 65 0715 31 0730 31 0745 52 0800 45 0815 57 0830 51 0845 70 0900 80 0915 76 0930 70 0945 61			8		0		1615	141		141		0	
0445 10 0500 14 0515 7 0530 12 0545 20 0600 15 0615 16 0630 45 0645 61 0700 65 0715 31 0730 31 0745 52 0800 45 0815 57 0830 51 0845 70 0900 80 0915 76 0930 70 0945 61			11		0		1630	182		182		0	
0500 14 0515 7 0530 12 0545 20 0600 15 0615 16 0630 45 0645 61 0700 65 0715 31 0730 31 0745 52 0800 45 0815 57 0830 51 0845 70 0900 80 0915 76 0930 70 0945 61		37	10	37	0	0	1645	169	684	169	684	0	0
0515 7 0530 12 0545 20 0600 15 0615 16 0630 45 0645 61 0700 65 0715 31 0730 31 0745 52 0800 45 0815 57 0830 51 0845 70 0900 80 0915 76 0930 70 0945 61		01	14	01	0	J	1700	191	004	191	004	0	Ü
0530 12 0545 20 0600 15 0615 16 0630 45 0645 61 0700 65 0715 31 0730 31 0745 52 0800 45 0815 57 0830 51 0845 70 0900 80 0915 76 0930 70 0945 61			7		0		1715	165		165		0	
0545 20 0600 15 0615 16 0630 45 0645 61 0700 65 0715 31 0730 31 0745 52 0800 45 0815 57 0830 51 0845 70 0900 80 0915 76 0930 70 0945 61			, 12		0		1713	116		116		0	
0600 15 0615 16 0630 45 0645 61 0700 65 0715 31 0730 31 0745 52 0800 45 0815 57 0830 51 0845 70 0900 80 0915 76 0930 70 0945 61		53		53		0	1745	91	563	91	563	0	0
0615 16 0630 45 0645 61 0700 65 0715 31 0730 31 0745 52 0800 45 0815 57 0830 51 0845 70 0900 80 0915 76 0930 70 0945 61		55	20 15	55	0	U			303	83	303		U
0630 45 0645 61 0700 65 0715 31 0730 31 0745 52 0800 45 0815 57 0830 51 0845 70 0900 80 0915 76 0930 70 0945 61					0		1800	83				0	
0645 61 0700 65 0715 31 0730 31 0745 52 0800 45 0815 57 0830 51 0845 70 0900 80 0915 76 0930 70 0945 61			16		0		1815	74		74		0	
0700 65 0715 31 0730 31 0745 52 0800 45 0815 57 0830 51 0845 70 0900 80 0915 76 0930 70 0945 61		407	45	407	0	•	1830	62	000	62	000	0	•
0715 31 0730 31 0745 52 0800 45 0815 57 0830 51 0845 70 0900 80 0915 76 0930 70 0945 61		137	61	137	0	0	1845	74	293	74	293	0	0
0730 31 0745 52 0800 45 0815 57 0830 51 0845 70 0900 80 0915 76 0930 70 0945 61			65		0		1900	84		84		0	
0745 52 0800 45 0815 57 0830 51 0845 70 0900 80 0915 76 0930 70 0945 61			31		0		1915	64		64		0	
0800 45 0815 57 0830 51 0845 70 0900 80 0915 76 0930 70 0945 61		470	31	470	0		1930	43		43		0	
0815 57 0830 51 0845 70 0900 80 0915 76 0930 70 0945 61		179	52	179	0	0	1945	31	222	31	222	0	0
0830 51 0845 70 0900 80 0915 76 0930 70 0945 61			45		0		2000	32		32		0	
0845 70 0900 80 0915 76 0930 70 0945 61			57		0		2015	30		30		0	
0900 80 0915 76 0930 70 0945 61			51		0		2030	33		33		0	
0915 76 0930 70 0945 61		223	70	223	0	0	2045	25	120	25	120	0	0
0930 70 0945 61			80		0		2100	22		22		0	
0945 61			76		0		2115	10		10		0	
			70		0		2130	22		22		0	
1000 100		287	61	287	0	0	2145	27	81	27	81	0	0
			100		0		2200	20		20		0	
1015 82			82		0		2215	19		19		0	
1030 88			88		0		2230	60		60		0	
1045 108	80	378	108	378	0	0	2245	23	122	23	122	0	0
1100 115	15		115		0		2300	16		16		0	
1115 117	17		117		0		2315	17		17		0	
1130 118	18		118		0		2330	18		18		0	
1145 134		484	134	484	0	0	2345	11	62	11	62	0	0
							Total	6530		6530		0	

Job 856_010_TB_ATR 6A
Area Portsmouth, NH

Location Newington Street EB, west of Route 4 Southbound On/Off-Ramps

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

Saturday, February 19, 2022

_		-									www.Bost	onTrafficData	.com
Time	To	tal	E	В			Time	To	tal	E	В		
0000	60		60		0		1200	86		86		0	
0015	16		16		0		1215	69		69		0	
0030	34		34		0		1230	60		60		0	
0045	7	117	7	117	0	0	1245	73	288	73	288	0	0
0100	7		7		0		1300	62		62		0	
0115	6		6		0		1315	57		57		0	
0130	4		4		0		1330	68		68		0	
0145	5	22	5	22	0	0	1345	50	237	50	237	0	0
0200	6		6		0		1400	54		54		0	
0215	5		5		0		1415	61		61		0	
0230	4		4		0		1430	59		59		0	
0245	3	18	3	18	0	0	1445	48	222	48	222	0	0
0300	2	10	2	10	0	O	1500	70		70		0	U
0300	1		1		0		1515	65		65		0	
0330	5		5		0		1530	52		52		0	
0345	3	11	3	11	0	0	1545	38	225	38	225	0	0
		- 11		11		U			223	36 45	223	0	U
0400	3		3		0		1600	45		45 44			
0415	6		6		0		1615	44				0	
0430	6	24	6	24	0	0	1630	52	405	52	405	0	0
0445	6	21	6	21	0	0	1645	44	185	44	185	0	0
0500	8		8		0		1700	66		66		0	
0515	6		6		0		1715	44		44		0	
0530	4		4		0		1730	55		55		0	
0545	12	30	12	30	0	0	1745	48	213	48	213	0	0
0600	11		11		0		1800	52		52		0	
0615	8		8		0		1815	44		44		0	
0630	19		19		0		1830	56		56		0	
0645	28	66	28	66	0	0	1845	57	209	57	209	0	0
0700	35		35		0		1900	54		54		0	
0715	14		14		0		1915	35		35		0	
0730	15		15		0		1930	18		18		0	
0745	18	82	18	82	0	0	1945	36	143	36	143	0	0
0800	15		15		0		2000	29		29		0	
0815	18		18		0		2015	21		21		0	
0830	29		29		0		2030	24		24		0	
0845	18	80	18	80	0	0	2045	19	93	19	93	0	0
0900	25		25		0		2100	14		14		0	
0915	49		49		0		2115	9		9		0	
0930	43		43		0		2130	17		17		0	
0945	33	150	33	150	0	0	2145	14	54	14	54	0	0
1000	38		38		0		2200	10		10		0	
1015	53		53		0		2215	18		18		0	
1030	48		48		0		2230	10		10		0	
1045	52	191	52	191	Ö	0	2245	8	46	8	46	0	0
1100	65	101	65	101	0	U	2300	8	70	8	70	0	J
1115	65		65		0		2315	11		11		0	
1113	69		69		0		2330	6		6		0	
1145	70	269	70	269		0	2345	4	29	4	29	0	0
1140	70	209	70	209	0	U			29		29	0	U
							Total	3001		3001		U	

Job 856_010_TB_ATR 6B Area Portsmouth, NH

Location Newington Street WB, west of Route 4 Southbound On/Off-Ramps

BOSTON TRAFFIC DATA

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

Wednesday, February 16, 2022

											www.bost	onTrafficData	.com
Time	То	tal	W	/B			Time	To	otal	W	/B		
0000	3		3		0		1200	130		130		0	
0015	3		3		0		1215	139		139		0	
0030	4		4		0		1230	146		146		0	
0045	0	10	0	10	0	0	1245	145	560	145	560	0	0
0100	3		3		0		1300	149		149		0	
0115	3		3		0		1315	126		126		0	
0130	5		5		0		1330	121		121		0	
0145	5	16	5	16	0	0	1345	140	536	140	536	0	0
0200	5	10	5	10	0	O	1400	116	000	116	000	0	J
0215	5		5		0		1415	99		99		0	
0213	3		3		0		1430	94		94		0	
0230		15		15		0	1445	9 4 95	404	94 95	404		0
	2	15	2	15	0	U			404		404	0	U
0300	1		1		0		1500	106		106		0	
0315	6		6		0		1515	108		108		0	
0330	5	4.0	5	4.0	0	•	1530	84		84		0	
0345	6	18	6	18	0	0	1545	97	395	97	395	0	0
0400	6		6		0		1600	58		58		0	
0415	4		4		0		1615	92		92		0	
0430	15		15		0		1630	85		85		0	
0445	35	60	35	60	0	0	1645	96	331	96	331	0	0
0500	43		43		0		1700	82		82		0	
0515	67		67		0		1715	56		56		0	
0530	102		102		0		1730	64		64		0	
0545	169	381	169	381	0	0	1745	64	266	64	266	0	0
0600	115		115		0		1800	70		70		0	
0615	164		164		0		1815	68		68		0	
0630	158		158		0		1830	48		48		0	
0645	257	694	257	694	0	0	1845	35	221	35	221	0	0
0700	137		137		0		1900	37		37		0	
0715	178		178		0		1915	23		23		0	
0730	214		214		0		1930	24		24		0	
0745	262	791	262	791	0	0	1945	35	119	35	119	0	0
0800	233	191	233	131	0	J	2000	24	113	24	110	0	U
0815	202		202		0		2015	21		21		0	
0830	176		176		0		2030	29		29		0	
	164	775		775		0	2045		02	29 18	വാ		0
0845		775	164	775	0	U		18	92		92	0	U
0900	102		102		0		2100	22		22		0	
0915	101		101		0		2115	13		13		0	
0930	91	000	91	000	0	0	2130	13	0.4	13	0.4	0	^
0945	102	396	102	396	0	0	2145	16	64	16	64	0	0
1000	107		107		0		2200	24		24		0	
1015	85		85		0		2215	31		31		0	
1030	84		84		0		2230	12		12		0	
1045	112	388	112	388	0	0	2245	5	72	5	72	0	0
1100	92		92		0		2300	7		7		0	
1115	110		110		0		2315	8		8		0	
1130	125		125		0		2330	3		3		0	
1145	128	455	128	455	0	0	2345	4	22	4	22	0	0
							Total	7081					

Job 856_010_TB_ATR 6B Area Portsmouth, NH

Location Newington Street WB, west of Route 4 Southbound On/Off-Ramps

BOSTON TRAFFIC DATA

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

Thursday, February 17, 2022

												onTrafficData	.com
Time		tal	W	/B			Time	То	tal		/B		
0000	7		7		0		1200	117		117		0	
0015	3		3		0		1215	155		155		0	
0030	1		1		0		1230	140		140		0	
0045	3	14	3	14	0	0	1245	172	584	172	584	0	0
0100	5		5		0		1300	142		142		0	
0115	5		5		0		1315	122		122		0	
0130	4		4		0		1330	120		120		0	
0145	4	18	4	18	0	0	1345	155	539	155	539	0	0
0200	3		3		0		1400	131		131		0	
0215	4		4		0		1415	120		120		0	
0230	7		7		0		1430	93		93		0	
0245	2	16	2	16	0	0	1445	107	451	107	451	0	0
0300	5	.0	5	10	0	O	1500	136	701	136	701	0	Ū
0300	3		3		0		1515	118		118		0	
0330	8		8		0		1530	96		96		0	
0330	10	26	10	26	0	0	1545	96	446	96	446	0	0
		20		20		U			440		440		U
0400	2		2		0		1600	77 75		77 75		0	
0415	6		6		0		1615	75 00		75 00		0	
0430	13	50	13	5 0	0	0	1630	96	0.40	96	0.40	0	•
0445	32	53	32	53	0	0	1645	92	340	92	340	0	0
0500	40		40		0		1700	75		75		0	
0515	69		69		0		1715	74		74		0	
0530	97		97		0		1730	53		53		0	
0545	170	376	170	376	0	0	1745	75	277	75	277	0	0
0600	110		110		0		1800	49		49		0	
0615	153		153		0		1815	67		67		0	
0630	157		157		0		1830	57		57		0	
0645	242	662	242	662	0	0	1845	35	208	35	208	0	0
0700	164		164		0		1900	29		29		0	
0715	178		178		0		1915	34		34		0	
0730	207		207		0		1930	28		28		0	
0745	286	835	286	835	0	0	1945	26	117	26	117	0	0
0800	194		194		0		2000	25		25		0	
0815	190		190		0		2015	23		23		0	
0830	185		185		0		2030	18		18		0	
0845	181	750	181	750	0	0	2045	26	92	26	92	0	0
0900	113		113		0		2100	20		20		0	
0915	124		124		0		2115	12		12		0	
0930	115		115		0		2130	15		15		0	
0945	112	464	112	464	0	0	2145	16	63	16	63	0	0
1000	93		93		0	J	2200	23		23		0	·
1015	71		71		0		2215	32		32		0	
1013	81		81		0		2230	14		14		0	
1045	99	344	99	344		0	2245	11	80	11	80	0	0
		344		344	0	U			6 U		00		U
1100	81		81		0		2300	4		4		0	
1115	99		99		0		2315	4		4		0	
1130	124	450	124	450	0	0	2330	4	47	4	47	0	^
1145	146	450	146	450	0	0	2345	5	17	5	17	0	0
							Total	7222		7222		0	

Job 856_010_TB_ATR 6B Area Portsmouth, NH

Location Newington Street WB, west of Route 4 Southbound On/Off-Ramps

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

Friday, February 18, 2022

													onTrafficData	
Time		tal		/B			Tim		То	tal		/B		
0000	3		3		0		120		95		95		0	
0015	0		0		0		121	5	107		107		0	
0030	5		5		0		123	0	139		139		0	
0045	3	11	3	11	0	0	124	5	145	486	145	486	0	0
0100	1		1		0		130	0	112		112		0	
0115	5		5		0		131	5	117		117		0	
0130	3		3		0		133	0	115		115		0	
0145	1	10	1	10	0	0	134		109	453	109	453	0	0
0200	4		4		0		140		109		109		0	
0215	2		2		0		141		105		105		0	
0230	4		4		0		143		88		88		0	
0245	1	11	1	11	0	0	144		102	404	102	404	0	0
0300	2	• •	2		0	· ·	150		84		84		0	· ·
0315	1		1		0		151		88		88		0	
0330	5		5		0		153		80		80		0	
0345	7	15	7	15	0	0	154		91	343	91	343	0	0
0400	3	10	3	10	0	U	160		66	040	66	040	0	O
0415	9		9		0		161		66		66		0	
0430	10		10		0		163		74		74		0	
0430	32	54	32	54	0	0	164		52	258	52	258	0	0
0500	29	34	29	34	0	U	170		61	230	61	230	0	U
0500	64		64		0		170		46		46		0	
							173							
0530	70	205	70 400	205	0	0			46	222	46	222	0	0
0545	102	265	102	265	0	0	174		69	222	69	222	0	0
0600	103		103		0		180		28		28		0	
0615	118		118		0		181		45		45		0	
0630	126	544	126	- 4 4	0	•	183		41	4.40	41	4.40	0	•
0645	197	544	197	544	0	0	184		34	148	34	148	0	0
0700	130		130		0		190		35		35		0	
0715	122		122		0		191		36		36		0	
0730	172		172		0		193		31		31		0	
0745	218	642	218	642	0	0	194		36	138	36	138	0	0
0800	171		171		0		200		25		25		0	
0815	179		179		0		201		41		41		0	
0830	139		139		0		203		25		25		0	
0845	155	644	155	644	0	0	204		17	108	17	108	0	0
0900	90		90		0		210		14		14		0	
0915	89		89		0		211		11		11		0	
0930	91		91		0		213		7		7		0	
0945	82	352	82	352	0	0	214		13	45	13	45	0	0
1000	79		79		0		220		5		5		0	
1015	66		66		0		221	5	8		8		0	
1030	90		90		0		223		13		13		0	
1045	86	321	86	321	0	0	224		7	33	7	33	0	0
1100	85		85		0		230		6		6		0	
1115	86		86		0		231		4		4		0	
1130	97		97		0		233		5		5		0	
1145	109	377	109	377	0	0	234		4	19	4	19	0	0
					-	-	Tot		5903	-	5903	-	0	-

Job 856_010_TB_ATR 6B Area Portsmouth, NH

Location Newington Street WB, west of Route 4 Southbound On/Off-Ramps

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

Saturday, February 19, 2022

											www.bos	tonTrafficData	.com
Time		tal		VB			Time		otal		VB		
0000	4		4		0		1200	48		48		0	
0015	5		5		0		1215	65		65		0	
0030	1		1		0		1230	59		59		0	
0045	5	15	5	15	0	0	1245	59	231	59	231	0	0
0100	3		3		0		1300	55		55		0	
0115	0		0		0		1315	54		54		0	
0130	3		3		0		1330	59		59		0	
0145	9	15	9	15	0	0	1345	47	215	47	215	0	0
0200	1		1		0	-	1400	55		55		0	_
0215	2		2		0		1415	66		66		0	
0230	6		6		0		1430	59		59		0	
0230	3	12	3	12	0	0	1445	55	235	55	235	0	0
0300	0	12	0	12	0	U	1500	56	233	56	233	0	U
0315	3		3		0		1515	44		44		0	
0330	4	40	4	40	0	0	1530	49	404	49	404	0	0
0345	3	10	3	10	0	0	1545	42	191	42	191	0	0
0400	2		2		0		1600	61		61		0	
0415	4		4		0		1615	41		41		0	
0430	8		8		0		1630	40		40		0	
0445	14	28	14	28	0	0	1645	39	181	39	181	0	0
0500	13		13		0		1700	51		51		0	
0515	20		20		0		1715	58		58		0	
0530	23		23		0		1730	64		64		0	
0545	31	87	31	87	0	0	1745	54	227	54	227	0	0
0600	32		32		0		1800	44		44		0	
0615	37		37		0		1815	57		57		0	
0630	50		50		0		1830	61		61		0	
0645	53	172	53	172	0	0	1845	46	208	46	208	0	0
0700	22		22		0		1900	34		34		0	
0715	15		15		0		1915	28		28		0	
0730	24		24		0		1930	22		22		0	
0745	31	92	31	92	0	0	1945	13	97	13	97	0	0
0800	28	32	28	52	0	U	2000	24	31	24	31	0	U
0815	29		29		0		2015	15		15		0	
0830	39		39		0		2030	20		20		0	
		122		132		0			72	20 14	72		Λ
0845	36 22	132	36	132	0	0	2045	14 15	73	14 15	73	0	0
0900			22		0		2100					0	
0915	23		23		0		2115	11		11		0	
0930	27	0-	27	6-	0	_	2130	10		10	, ,	0	_
0945	25	97	25	97	0	0	2145	8	44	8	44	0	0
1000	32		32		0		2200	4		4		0	
1015	29		29		0		2215	7		7		0	
1030	46		46		0		2230	6		6		0	
1045	45	152	45	152	0	0	2245	3	20	3	20	0	0
1100	46		46		0		2300	11		11		0	
1115	38		38		0		2315	6		6		0	
1130	60		60		0		2330	3		3		0	
1145	61	205	61	205	0	0	2345	4	24	4	24	0	0
							Total	2763		2763		0	-

APPENDIX B

NHDOT Historical Traffic Volumes, Seasonal Adjustment Factors & Historical Growth Rates

	Location Info
Location ID	82379024
Туре	I-SECTION
Functional Class	7
Located On	Pease Blvd
Direction	2-WAY
Community	PORTSMOUTH
MPO_ID	
HPMS ID	
Agency	New Hampshire DOT

Count	Data Info
Start Date	7/18/2018
End Date	7/19/2018
Start Time	12:00 AM
End Time	12:00 AM
Direction	2-WAY
Notes	nhdot
Count Source	8.2379E+11
File Name	823790243070.prn
Weather	
Study	
Owner	iwong
QC Status	Accepted

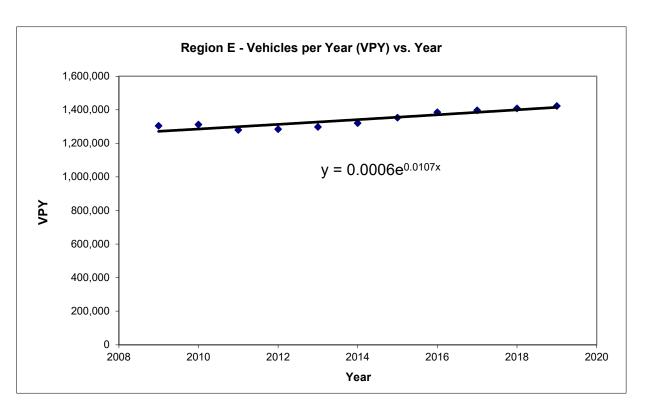
Interval: 60 mins							
Time	Hourly Count						
00:00 - 01:00	251						
01:00 - 02:00	46						
02:00 - 03:00	123						
03:00 - 04:00	92						
04:00 - 05:00	184						
05:00 - 06:00	416						
06:00 - 07:00	1130						
07:00 - 08:00	1664						
08:00 - 09:00	1817						
09:00 - 10:00	1277						
10:00 - 11:00	1079						
11:00 - 12:00	1570						
12:00 - 13:00	2098						
13:00 - 14:00	1616						
14:00 - 15:00	1424						
15:00 - 16:00	1936						
16:00 - 17:00	2032						
17:00 - 18:00	1831						
18:00 - 19:00	989						
19:00 - 20:00	603						
20:00 - 21:00	417						
21:00 - 22:00	343						
22:00 - 23:00	210						
23:00 - 24:00	166						
TOTAL	23314						

Year 2018 Monthly Data

Group 4 Averages: Urban Highways

		Adjustment	Adjustment				
<u>Month</u>	<u>ADT</u>	to Average	to Peak	<u>GROUP</u>	COUNTER	<u>TOWN</u>	LOCATION
January	11,282	1.13	1.24	04	02051003	BOW	NH 3A south of Robinson Rd
February	11,848	1.08	1.18	04	02089001	CHICHESTER	NH 28 (Suncook Valley Rd) north of Bear Hill Rd
March	11,828	1.08	1.18	04	02091001	CLAREMONT	NH 12/103 east of Vermont SL
April	12,491	1.02	1.12	04	62099056	CONCORD	NH 106 (Sheep Davis Rd) at Loudon TL (north of Ashby Rd)
May	13,587	0.94	1.03	04	72099278	CONCORD	US 3 (Fisherville Rd) north of Sewalls Falls Rd
June	13,911	0.92	1.00	04	02125001	DOVER	Dover Point Rd south of Thornwood Ln
July	13,765	0.93	1.01	04	02133021	DURHAM	US 4 east of NH 108
August	13,945	0.92	1.00	04	82197076	HAMPTON	US 1 (Lafayette Rd) south of Ramp to NH 101
September	13,168	0.97	1.06	04	02229022	HUDSON*	Circumferential Hwy east of Nashua TL
October	13,367	0.96	1.04	04	02253025	LEBANON	NH 120 1 mile south of Hanover TL (south of Lahaye Dr)
November	12,215	1.05	1.14	04	02255001	LEE	NH 125 (Calef Hwy) north of Pinkham Rd
December	11,963	1.07	1.17	04	02287001	MARLBOROUGH	NH 12 at Swanzey TL
				04	02297001	MERRIMACK	US 3 (Daniel Webster Hwy) north of Hilton Dr
Average ADT:	12,781			04	02303001	MILFORD*	NH 101A at Amherst TL (west of Overlook Dr)
Peak ADT:	13,945			04	02315051	NASHUA*	NH 111 (Bridge / Ferry St) at Hudson TL
				04	02339001	NEWPORT	NH 10 1 mile south of Croydon TL (north of Corbin Rd)
				04	02345001	NORTH HAMPTON	US 1 (Lafayette Rd) north of North Rd
				04	62387052	RINDGE*	US 202 at Jaffrey TL (north of County Rd)
				04	02445001	TEMPLE	NH 101 at Wilton TL (west of Old County Farm Rd)
				04	02489001	WINDHAM	NH 28 at Derry TL (north of Northland Rd)

^{*} denotes counter that is not included in calculation


Year 2019 Monthly Data

Group 4 Averages: Urban Highways

		Adjustment	Adjustment				
<u>Month</u>	<u>ADT</u>	to Average	to Peak	<u>GROUP</u>	COUNTER	<u>TOWN</u>	LOCATION
January	11,431	1.12	1.23	04	02051003	BOW	NH 3A south of Robinson Rd
February	11,848	1.08	1.18	04	02089001	CHICHESTER	NH 28 (Suncook Valley Rd) north of Bear Hill Rd
March	12,141	1.06	1.15	04	02091001	CLAREMONT	NH 12/103 east of Vermont SL
April	12,860	1.00	1.09	04	62099056	CONCORD	NH 106 (Sheep Davis Rd) at Loudon TL (north of Ashby Rd)
May	13,551	0.95	1.03	04	72099278	CONCORD	US 3 (Fisherville Rd) north of Sewalls Falls Rd
June	13,785	0.93	1.02	04	02125001	DOVER	Dover Point Rd south of Thornwood Ln
July	13,942	0.92	1.01	04	02133021	DURHAM	US 4 east of NH 108
August	14,016	0.92	1.00	04	82197076	HAMPTON	US 1 (Lafayette Rd) south of Ramp to NH 101
September	13,379	0.96	1.05	04	02229022	HUDSON*	Circumferential Hwy east of Nashua TL
October	13,339	0.96	1.05	04	02253025	LEBANON	NH 120 1 mile south of Hanover TL (south of Lahaye Dr)
November	12,265	1.05	1.14	04	02255001	LEE	NH 125 (Calef Hwy) north of Pinkham Rd
December	11,496	1.12	1.22	04	02287001	MARLBOROUGH	NH 12 at Swanzey TL
				04	02297001	MERRIMACK	US 3 (Daniel Webster Hwy) north of Hilton Dr
Average ADT:	12,838			04	02303001	MILFORD*	NH 101A at Amherst TL (west of Overlook Dr)
Peak ADT:	14,016			04	02315051	NASHUA*	NH 111 (Bridge / Ferry St) at Hudson TL
				04	02339001	NEWPORT	NH 10 1 mile south of Croydon TL (north of Corbin Rd)
				04	02345001	NORTH HAMPTON	US 1 (Lafayette Rd) north of North Rd
				04	62387052	RINDGE*	US 202 at Jaffrey TL (north of County Rd)
				04	02445001	TEMPLE	NH 101 at Wilton TL (west of Old County Farm Rd)
				04	02489001	WINDHAM	NH 28 at Derry TL (north of Northland Rd)

^{*} denotes counter that is not included in calculation

Year	Total					
2009	1303948					
2010	1312251					
2011	1279824					
2012	1284314					
2013	1298171					
2014	1320862					
2015	1353486					
2016	1385361					
2017	1396932					
2018	1408237					
2019	1422176					
CAGR	0.87%					
Exp	1.07%					
Avg	0.97%					

APPENDIX C
Traffic Volume Adjustment Calculation

Traffic Volume Adjustment Factor Calculation

	February 2022 ATR Date		We	est of Route 4 SB Ra	•		
Peak Hour	Feb 2022	2022 Seasonally Adjust to Peak ¹	July 2018	2018 Seasonally Adjusted ²	Grown to 2019 ³	Adjustment Factor (to 2019)	
AM Peak	1027	1212	1817	1835	1854	53%	< Apply to AM Voun
PM Peak	1210	1428	2032	2052	2073	45%	< Apply to PM Voum
¹ 2019 Seasonal Adjus ² 2018 Seasonal Adjus ³ 2019 Annual Growth		1.18 1.01 1.0%	2018 NHDOT Group	4 Adjustment to Pea 4 Adjustment to Pea 24 growth from 2018 t	k for July		

APPENDIX D

Background Development Traffic Volumes

Mar 09, 2018-3:34pm Plotted By: MSantos

Mar 09, 2018-3:34pm Plotted By: MSantos TTiohe & Bond. Inc. C:\Users\MSantos\appdata\loca\\temp\AcPublish 5532\Traffic Volumes.dwg

APPENDIX E

Collision History Summary

Study Area Collision History Summary

	2007	2008	2009	2019	2020	2021	Total	Percent
ngle	0	0	0	10	8	8	26	39.4%
ear-End	0	0	0	9	3	4	16	24.2%
ideswipe, Same Direction	Ö	Ö	Ö	Ō	1	2	3	4.5%
nimal	0	0	0	0	1	1	2	3.0%
xed Object	1	Ö	Ö	Ö	Ō	2	3	4.5%
Other/Unknown	3	7	4	Ö	Ö	1	15	22.7%
Overturn/Rollover	Ō	0	0	1	Ö	Ō	1	1.5%
TOTAL	4	7	4	20	13	18	66	100%
CONTRIBUTING FACTOR								
	2007	2008	2009	2019	2020	2021	Total	Percent
Other/Unknown TOTAL	4 4	7 7	4 4	20 20	13 13	18 18	66 66	100.0% 100%
•	-	,	-	20	13	10	, 00 ,	100 /0
COLLISION EVENT	2007	2008	2009	2019	2020	2021	Total	Percent
Notor Vehicle	4	7	4	20	13	18	66	100.0%
TOTAL	4	7	4	20	13	18	66	100%
TOTAL	•	,	•	20	15		, 00 ,	100 /0
EVERITY	2007	2008	2009	2019	2020	2021	Total	Percent
finor Injury / Property Damage Only (PDO)	3	7	<u>2009</u> 4	2019 19	13	18	64	97.0%
		,						97.0% 3.0%
erious Injury TOTAL	1 4	0 7	0 	1 20	0 13	0 18	66	100%
•	-	ž	•	==			1	
DAY & TIME	2007	2008	2009	2019	2020	2021	Total	Percent
Veekday 6-9 A.M.	1	0	1	1	4	1	8	12.1%
Veekday 3-6 P.M.	0	Ō	0	3	1	3	7	10.6%
Veekday Off-Peak	1	7	3	14	7	10	42	63.6%
·								
aturday 11 A.M 2 P.M.	0	0	0	1	0	1	2	3.0%
Veekend Off-Peak TOTAL	2 4	0 7	0 4	1 20	1 13	3 18	7 66	10.6% 100%
IOIAL	4	,	4	20	13	19	00	100%
WEATHER	2007	2000	2000	2010	2020	2024	T-4-1	D
Clear	2007 4	2008	2009	2019 3	2020	2021	Total	Percent 36.4%
	-		0		3 0	0	24	
Rain	0 0	1		1			2	3.0%
Snow Other/Unknown	0	4 0	1 0	0 16	1 9	0 9	6 34	9.1% 51.5%
Other/Unknown TOTAL	4	7	4	20	13	18	66	100%
TOTAL	-	•	-				1 00 1	100 /0
A A D CUIDEA CE COMPTETOM				2019	2020	2021	Total	Percent
ROAD SURFACE CONDITION	2007	2008	2009					33.3%
	2007	2008	2009		3	8	22	
Ory	4	2	2	3	3 0	8 1	22 4	
ROAD SURFACE CONDITION Ony Vet Sinow					3 0 1	8 1 0	4 6	6.1% 9.1%
Ory Vet snow	4 0	2 1	2 1	3 1	0	1	4	6.1% 9.1%
Ory Vet inow	4 0 0	2 1 4	2 1 1	3 1 0	0 1	1 0	4 6	6.1%
ory /et now tther/Unknown	4 0 0 0	2 1 4 0	2 1 1 0	3 1 0 16	0 1 9	1 0 9	4 6 34	6.1% 9.1% 51.5%
Ory Vet Show Other/Unknown TOTAL LIGHT CONDITIONS	4 0 0 0 4	2 1 4 0 7	2 1 1 0 4	3 1 0 16 20	0 1 9 13	1 0 9 18	4 6 34 66	6.1% 9.1% 51.5% 100%
Ory Vet Show Other/Unknown TOTAL Other/Unknown	4 0 0 0 4 4	2 1 4 0 7 2008 7	2 1 1 0 4	3 1 0 16 20	0 1 9 13 2020	1 0 9 18 2021	4 6 34 66 Total	6.1% 9.1% 51.5% 100% Percent 100.0%
Ory Vet Sinow Other/Unknown TOTAL .IGHT CONDITIONS	4 0 0 0 4	2 1 4 0 7	2 1 1 0 4	3 1 0 16 20	0 1 9 13	1 0 9 18	4 6 34 66	6.1% 9.1% 51.5% 100%
Ory Vet Show Other/Unknown TOTAL Other/Unknown	4 0 0 4 4 2007 4 4	2 1 4 0 7 2008 7	2 1 1 0 4 2009 4 4	3 1 0 16 20 2019 20 20	0 1 9 13 2020 13 13	1 0 9 18 2021 18 18	4 6 34 66 Total 66 66	6.1% 9.1% 51.5% 100% Percent 100.0%
Ory Vet Show Sther/Unknown TOTAL LIGHT CONDITIONS Sther/Unknown TOTAL COLLISIONS BY STUDY AREA INTERSECTION	4 0 0 0 4 4	2 1 4 0 7 2008 7	2 1 1 0 4	3 1 0 16 20 20 20 20 20	0 1 9 13 2020 13 13	1 0 9 18 2021 18 18	4 6 34 66 Total 66 66 Total	6.1% 9.1% 51.5% 100% Percent 100.0%
Orry Vet Innow Ither/Unknown TOTAL IGHT CONDITIONS Other/Unknown TOTAL COLLISIONS BY STUDY AREA INTERSECTION Gosling Road/Pease Boulevard at US Route 4 NB Ramps	4 0 0 4 4 2007 4 4	2 1 4 0 7 2008 7	2 1 1 0 4 2009 4 4	3 1 0 16 20 2019 20 20 20	0 1 9 13 2020 13 13 2020	1 0 9 18 2021 18 18 2021 3	4 6 34 66 Total 66 66 17 Total 4	6.1% 9.1% 51.5% 100% Percent 100.0% 100%
Inter/Unknown IDITAL IGHT CONDITIONS ICHER/Unknown TOTAL ICHER/Unknown ICHER/Unknown TOTAL ICHER/Unknown ICHER/Unknown TOTAL ICHER/Unknown ICHER/	4 0 0 4 4 2007 4 4	2 1 4 0 7 2008 7	2 1 1 0 4 2009 4 4	3 1 0 16 20 20 20 20 20 20 1 1	0 19 13 2020 13 13 2020 0 3	1 0 9 18 2021 18 18 3 3 3	4 6 34 66	6.1% 9.1% 51.5% 100% Percent 100.0% 100%
ry /et now ther/Unknown TOTAL IGHT CONDITIONS ther/Unknown TOTAL OLLISIONS BY STUDY AREA INTERSECTION osling Road/Pease Boulevard at US Route 4 NB Ramps ease Boulevard at US Route 4 SB Ramps ease Boulevard at International Drive	4 0 0 4 4 2007 4 4	2 1 4 0 7 2008 7	2 1 1 0 4 2009 4 4	3 1 0 16 20 20 20 20 20 20 1 1 1	0 1 9 13 13 13 13 2020 0 3 0	1 0 9 18 18 18 18 2021 3 3 0 0	4 6 34 66 66 66 Total 4 7 1	6.1% 9.1% 51.5% 100% Percent 100.0% Percent 6.1% 10.6% 1.5%
IGHT CONDITIONS ISOLLISIONS BY STUDY AREA INTERSECTION IOSIIng Road/Pease Boulevard at US Route 4 NB Ramps ease Boulevard at International Drive ease Boulevard at International Drive ease Boulevard at New Hampshire Avenue/Arboretum Drive	4 0 0 4 4 2007 4 4	2 1 4 0 7 2008 7	2 1 1 0 4 2009 4 4	3 1 0 16 20 20 20 20 20 1 1 1	0 19 13 2020 13 13 13 2020 0 3 0 1	1 0 9 18 2021 18 18 2021 3 3 0 0 3	4 6 34 66	6.1% 9.1% 51.5% 100% Percent 100.0% 100% Percent 6.1% 10.6% 1.5% 7.6%
Inter/Unknown TOTAL IGHT CONDITIONS Ither/Unknown TOTAL IOLLISIONS BY STUDY AREA INTERSECTION Iosling Road/Pease Boulevard at US Route 4 NB Ramps ease Boulevard at US Route 4 SB Ramps ease Boulevard at International Drive ease Boulevard at New Hampshire Avenue/Arboretum Drive lew Hampshire Avenue at Exeter Street/Manchester Square	4 0 0 4 4 2007 4 4	2 1 4 0 7 2008 7	2 1 1 0 4 2009 4 4	3 1 0 16 20 20 20 20 20 20 1 1 1 1 4	0 19 13 2020 13 13 2020 0 3 0 1 4	1 0 9 18 18 18 18 2021 3 3 0 3 3 3 3	4 6 34 66	6.1% 9.1% 51.5% 100% Percent 100.0% 100% Percent 6.1% 10.6% 1.5% 7.6% 16.7%
ry /et now ther/Unknown TOTAL IGHT CONDITIONS ther/Unknown TOTAL OLLISIONS BY STUDY AREA INTERSECTION osling Road/Pease Boulevard at US Route 4 NB Ramps ease Boulevard at US Route 4 SB Ramps ease Boulevard at International Drive ease Boulevard at New Hampshire Avenue/Arboretum Drive ew Hampshire Avenue at Exeter Street/Manchester Square rafton Road at Aviation Avenue	4 0 0 4 4 2007 4 4	2 1 4 0 7 2008 7	2 1 1 0 4 2009 4 4	3 1 0 16 20 20 20 20 20 1 1 1 1 4 2	0 19 13 13 13 13 2020 0 3 0 1 4 2	10 09 18 18 18 18 2021 3 3 0 3 0 3 0	4 6 34 66	6.1% 9.1% 51.5% 100% Percent 100.0% 100% Percent 6.1% 6.1% 6.6% 6.6.7% 6.1%
IGHT CONDITIONS ISOLLISIONS BY STUDY AREA INTERSECTION IOSIING Road/Pease Boulevard at US Route 4 NB Ramps ease Boulevard at US Route 4 SB Ramps ease Boulevard at International Drive ease Boulevard at New Hampshire Avenue Arboretum Drive lew Hampshire Avenue at Exeter Street/Manchester Square irrafton Road at Aviation Avenue rrafton Road at Pease Golf Course/Park and Ride Driveway	4 0 0 4 4 2007 4 4	2 1 4 0 7 2008 7	2 1 1 0 4 2009 4 4	3 1 0 16 20 20 20 20 20 1 1 1 4 2 4	0 19 13 13 13 2020 0 3 0 1 4 4 2 1	1 0 9 18 18 18 18 3 3 0 0 4	4 6 34 66	6.1% 9.1% 51.5% 100% Percent 100.0% Percent 6.1% 10.6% 1.5% 7.6% 6.1% 13.6%
IGHT CONDITIONS Sther/Unknown TOTAL IGHT CONDITIONS STOTAL STOTAL	4 0 0 4 4 2007 4 4	2 1 4 0 7 2008 7	2 1 1 0 4 2009 4 4	3 1 0 16 20 20 20 20 20 20 1 1 1 4 2 2 4 5	0 19 13 13 2020 13 13 3 0 0 1 4 2 1 1	1 0 9 18 18 18 18 3 3 0 0 3 3 3 0 0 4 2	Total 66 66 66 71 1 4 9 8 8	6.1% 9.1% 51.5% 100% Percent 100.0% 100% Percent 6.1% 10.6% 1.5% 6.1% 6.1% 13.6% 12.1%
Inter/Unknown TOTAL IGHT CONDITIONS Ither/Unknown TOTAL IOLLISIONS BY STUDY AREA INTERSECTION IOSIING Road/Pease Boulevard at US Route 4 NB Ramps ease Boulevard at US Route 4 SB Ramps ease Boulevard at International Drive ease Boulevard at New Hampshire Avenue/Arboretum Drive lew Hampshire Avenue at Exeter Street/Manchester Square irrafton Road at Aviation Avenue irrafton Road at Pease Golf Course/Park and Ride Driveway oute 33 (Greenland Road) at 1-95 NB Ramps	4 0 0 0 4 2007 4 4 2007	2 1 4 0 7 2008 7 7	2 1 1 0 4 2009 4 4 2009	3 1 0 16 20 20 20 20 20 1 1 1 4 2 4	0 19 13 13 13 2020 0 3 0 1 4 4 2 1	1 0 9 18 18 18 18 3 3 0 0 4	4 6 34 66	6.1% 9.1% 51.5% 100% Percent 100.0% 100% Percent 6.1% 10.6% 7.6% 7.6% 7.6% 13.6% 12.1% 3.0%
Ory Vet Sinow Other/Unknown TOTAL IGHT CONDITIONS Other/Unknown TOTAL COLLISIONS BY STUDY AREA INTERSECTION Sosling Road/Pease Boulevard at US Route 4 NB Ramps Pease Boulevard at New Hampshire Avenue at Exeter Street/Manchester Square Perafton Road at Aviation Avenue Perafton Road at Pease Golf Course/Park and Ride Driveway Pease Soulevard at US Route 4 NB Ramps Pease Boulevard at US Route 4 NB Ramp	4 0 0 0 4 2007 4 4 2007	2 1 4 0 7 2008 7 7	2 1 0 4 2009 4 4 2009	3 1 0 16 20 20 20 20 20 20 1 1 1 4 2 2 4 5	0 19 13 13 2020 13 13 3 0 0 1 4 2 1 1	1 0 9 18 18 18 18 3 3 0 0 3 3 3 0 0 4 2	Total 66 66	6.1% 9.1% 51.5% 100% Percent 100.0% 100% Percent 6.1% 10.6% 1.5% 7.6% 6.1% 13.6% 12.1% 3.0% 10.6%
Ory Vet Show Other/Unknown TOTAL LIGHT CONDITIONS Other/Unknown TOTAL	4 0 0 0 4 2007 4 4 2007	2 1 4 0 7 2008 7	2 1 1 0 4 2009 4 4 2009	3 1 0 16 20 20 20 20 20 20 1 1 1 4 2 2 4 5	0 19 13 13 2020 13 13 3 0 0 1 4 2 1 1	1 0 9 18 18 18 18 3 3 0 0 3 3 3 0 0 4 2	4 6 34 66	6.1% 9.1% 51.5% 100% Percent 100.0% 100% Percent 6.1% 10.6% 1.5% 7.6% 6.1% 13.6% 6.1% 13.6% 3.0%

Intersection	Collision	History	/ Summary
--------------	-----------	---------	-----------

Intersection: Gosling Road/Pease Boulevard US Route 4 NB Ramps

COLLISION TYPI	LUI	ᄔᆚ	LSI	UI	N	ΙY	ч	E
----------------	-----	----	-----	----	---	----	---	---

		2019	2020	2021	Total	Percent
Rear-End		1	0	1	2	50.0%
Angle		0	0	1	1	25.0%
Sideswipe, Same Direction		0	0	1	1	25.0%
	TOTAL	1	0	3	4	100%

SEVERITY

	2019	2020	2021	Total	Percent
Minor Injury / Property Damage Only (PDO)	1	0	3	4	100.0%
TO	TAI 1	<u> </u>	3	4	100%

DAY & TIME

	2019	2020	2021	Total	Percent
Weekday Off-Peak	1	0	3	4	100.0%
TOTA	L 1	0	3	4	100%

WEATHER

	2019	2020	2021	Total	Percent
Clear	1	0	3	4	100.0%
TOTAL	1	0	3	4	100%

ROAD SURFACE CONDITION

	2019	2020	2021	Total	Percent
Dry	1	0	3	4	100.0%
TOTAL	1	0	3	4	100%

at

Intersection Collision History Summary Interse	ection:	Pease	e Boulevard	at	US Route 4	SB Ramps
COLLISION TYPE						
		2019	2020	2021	Total	Percent
Angle		0	2	2	4	57.1%
Rear-End		1	0	1	2	28.6%
Sideswipe, Same Direction		0	1	0	1	14.3%
	TOTAL	1	3	3	7	100%
SEVERITY						
		2019	2020	2021	Total	Percent
Minor Injury / Property Damage Only (PDO)		1	3	3	7	100.0%
	TOTAL	1	3	3	7	100%
DAY & TIME						
		2019	2020	2021	Total	Percent
Weekday 6-9 A.M.		0	1	0	1	14.3%
Weekday Off-Peak		1	2	1	4	57.1%
Weekend Off-Peak		0	0	2	2	28.6%
	TOTAL	1	3	3	7	100%
WEATHER						
		2019	2020	2021	Total	Percent
Clear		1	2	3	6	85.7%
Snow		0	1	0	1	14.3%
	TOTAL	1	3	3	7	100%
ROAD SURFACE CONDITION						
		2019	2020	2021	Total	Percent
Dry		1	2	3	6	85.7%
Snow		0	1	0	1	14.3%
	TOTAL	1	3	3	7	100%

Intersection Collision History Summary	Intersection:	Pease	e Boulevard	at	Internation	nal Drive
COLLISION TYPE						
		2019	2020	2021	Total	Percent
Overturn/Rollover		1	0	0	1	100.0%
	TOTAL	1	0	0	1	100%
SEVERITY						
		2019	2020	2021	Total	Percent
Minor Injury / Property Damage Only (PDO)		1	0	0	1	100.0%
	TOTAL	1	0	0	1	100%
DAY & TIME						
		2019	2020	2021	Total	Percent
Weekday Off-Peak		1	0	0	1	100.0%
	TOTAL	1	0	0	1	100%
WEATHER						
		2019	2020	2021	Total	Percent
Clear		1	0	0	1	100.0%
	TOTAL	1	0	0	1	100%
ROAD SURFACE CONDITION						
		2019	2020	2021	Total	Percent
Dry		1	0	0	1	100.0%
	TOTAL	1	0	0	1	100%

Intersection	Collision	History	/ Summary
--------------	-----------	---------	-----------

Intersection: Pease Boulevard

at New Hampshire Avenue/Arboretum Drive

COLLISION TYPE	CO	LLI	ISI	ON	I T)	/PE
----------------	----	-----	-----	----	------	-----

	2019	2020	2021	Total	Percent
Angle	1	1	2	4	80.0%
Fixed Object	0	0	1	1	20.0%
TOTA	1	1	3	5	100%

SEVERITY

		2019	2020	2021	Total	Percent
Minor Injury / Property Damage Only (PDO)		1	1	3	5	100.0%
TO	OTAL	1	1	3	5	100%

DAY & TIME

		2019	2020	2021	Total	Percent
Weekday 6-9 A.M.		0	1	0	1	20.0%
Weekday 3-6 P.M.		1	0	2	3	60.0%
Weekday Off-Peak		0	0	1	1	20.0%
	TOTAL	1	1	3	5	100%

WEATHER

		2019	2020	2021	Total	Percent
Clear		0	1	3	4	80.0%
Rain		1	0	0	1	20.0%
	TOTAL	1	1	3	5	100%

ROAD SURFACE CONDITION

		2019	2020	2021	Total	Percent
Dry		0	1	2	3	60.0%
Wet		1	0	1	2	40.0%
	TOTAL	1	1	3	5	100%

Intersection	Collision	History	Summary	,
--------------	-----------	---------	---------	---

Intersection: New Hampshire Avenue Exeter Street/Manchester Square

COLLISION TYPE						
		2019	2020	2021	Total	Percent
Angle		4	4	3	11	100.0%
	TOTAL	4	4	3	11	100%

SEVERITY					
	2019	2020	2021	Total	Percent
Serious Injury	1	0	0	1	9.1%
Minor Injury / Property Damage Only (PDO)	3	4	3	10	90.9%
TOTAL	4	4	3	11	100%

DAY & TIME						
		2019	2020	2021	Total	Percent
Weekday 6-9 A.M.		0	2	1	3	27.3%
Weekday Off-Peak		4	2	2	8	72.7%
	TOTAL	4	4	3	11	100%

WEATHER						
		2019	2020	2021	Total	Percent
Other/Unknown		4	4	3	11	100.0%
	TOTAL	4	4	3	11	100%

ROAD SURFACE CONDITION					
	2019	2020	2021	Total	Percent
Other/Unknown	4	4	3	11	100.0%
TOTAL	4	4	3	11	100%

at

Intersection Collision History Summary	Intersection:		Grafton Road	at	Aviation Avenue	
COLLISION TYPE						
		2019	2020	2021	Total	Percent
Rear-End		1	1	0	2	50.0%
Angle		1	0	0	1	25.0%
Animal		0	1	0	1	25.0%
	TOTAL	2	2	0	4	100%
SEVERITY						
		2019	2020	2021	Total	Percent
Minor Injury / Property Damage Only (PDO)		2	2	0	4	100.0%
	TOTAL	2	2	0	4	100%
DAY & TIME						
		2019	2020	2021	Total	Percent
Weekday 6-9 A.M.		1	0	0	1	25.0%
Weekday Off-Peak		1	1	0	2	50.0%
Weekend Off-Peak		0	1	0	1	25.0%
	TOTAL	2	2	0	4	100%
WEATHER						
		2019	2020	2021	Total	Percent
Other/Unknown		2	2	0	4	100.0%
	TOTAL	2	2	0	4	100%
ROAD SURFACE CONDITION						
		2019	2020	2021	Total	Percent
Other/Unknown	_	2	2	0	4	100.0%
	TOTAL	2	2	0	4	100%

Intersection Collision History Summary

Intersection: Grafton Road

Pease Golf Course/Park and Ride Driveway

COL	LIS	SIO	N	TY	Ρ	Е
-----	-----	-----	---	----	---	---

	2019	2020	2021	Total	Percent
Angle	4	0	0	4	44.4%
Rear-End	0	1	0	1	11.1%
Animal	0	0	1	1	11.1%
Fixed Object	0	0	1	1	11.1%
Other/Unknown	0	0	1	1	11.1%
Sideswipe, Same Direction	0	0	1	1	11.1%
TOTAL	4	1	4	9	100%

SEVERITY

	2019	2020	2021	Total	Percent
Minor Injury / Property Damage Only (PDO)	4	1	4	9	100.0%
TOTAL	4	1	4	9	100%

DAY & TIME

	2019	2020	2021	Total	Percent
Weekday 3-6 P.M.	0	0	1	1	11.1%
Weekday Off-Peak	4	1	2	7	77.8%
Weekend Off-Peak	0	0	1	1	11.1%
TOTAL	4	1	4	9	100%

WEATHER

		2019	2020	2021	Total	Percent
Other/Unknown		4	1	4	9	100.0%
	TOTAL	4	1	4	٩	100%

ROAD SURFACE CONDITION

	2019	2020	2021	Total	Percent
Other/Unknown	4	1	4	9	100.0%
TOTAL	4	1	4	9	100%

Intersection Collision History Summary	Intersection:	Rout	te 33 (Greer	at	Grafton Road	
COLLISION TYPE						
		2019	2020	2021	Total	Percent
Rear-End		5	1	2	8	100.0%
	TOTAL	5	1	2	8	100%
SEVERITY						
		2019	2020	2021	Total	Percent
Minor Injury / Property Damage Only (PDO)		5	1	2	8	100.0%
	TOTAL	5	1	2	8	100%
DAY & TIME						
		2019	2020	2021	Total	Percent
Weekday 3-6 P.M.		2	1	0	3	37.5%
Weekday Off-Peak		2	0	1	3	37.5%
Saturday 11 A.M 2 P.M.		0	0	1	1	12.5%
Weekend Off-Peak		1	0	0	1	12.5%
	TOTAL	5	1	2	8	100%
WEATHER						
		2019	2020	2021	Total	Percent
Other/Unknown		5	1	2	8	100.0%
	TOTAL	5	1	2	8	100%

2019

TOTAL

2020

2021

Total

8

Percent 100.0%

100%

ROAD SURFACE CONDITION

Other/Unknown

Intersection Collision History Summary	Intersection:	Route 33 (Greenland Road)			at	I-95 NB Ramps
COLLISION TYPE						
		2019	2020	2021	Total	Percent
Angle		0	1	0	1	50.0%
Rear-End		1	0	0	1	50.0%
	TOTAL	1	1	0	2	100%
SEVERITY						
		2019	2020	2021	Total	Percent
Minor Injury / Property Damage Only (PDO)		1	1	0	2	100.0%
	TOTAL	1	1	0	2	100%
DAY & TIME						
		2019	2020	2021	Total	Percent
Weekday Off-Peak		0	1	0	1	50.0%
Saturday 11 A.M 2 P.M.		1	0	0	1	50.0%
·	TOTAL	1	1	0	2	100%
WEATHER						
		2019	2020	2021	Total	Percent
Other/Unknown		1	1	0	2	100.0%
	TOTAL	1	1	0	2	100%
ROAD SURFACE CONDITION						
		2019	2020	2021	Total	Percent
Other/Unknown		1	1	0	2	100.0%
	TOTAL	1	1	0	2	100%

Intersection	Collision	History	/ Summary
--------------	-----------	---------	-----------

_				-		
	nt	0 P	 _		\sim	n

New Hampshire Avenue at International Drive/Durham Street

COLLISION TYPE

		2007	2008	2009	Total	Percent
Other/Unknown		0	2	4	6	85.7%
Fixed Object		1	0	0	1	14.3%
	TOTAL	1	2	4	7	100%

SEVERITY

	2007	2008	2009	Total	Percent
Minor Injury / Property Damage Only (PDO)	1	2	4	7	100.0%
TOTA	Δ1 1	2	4	7	100%

WEATHER

		2007	2008	2009	Total	Percent
Clear		1	2	3	6	85.7%
Snow		0	0	1	1	14.3%
	TOTAL	1	2	4	7	100%

ROAD SURFACE CONDITION

		2007	2008	2009	Total	Percent
Dry		1	2	2	5	71.4%
Wet		0	0	1	1	14.3%
Snow		0	0	1	1	14.3%
	TOTAL	1	2	4	7	100%

Source: Pease Surface Transportation Master Plan 2010 Update, June 2011

Intersection Collision History Summary	Intersection:		Corp	orate Drive	at	Grafton Road
COLLISION TYPE						
		2007	2008	2009	Total	Percent
Other/Unknown		3	5	0	8	100.0%
	TOTAL	3	5	0	8	100%
SEVERITY						
		2007	2008	2009	Total	Percent
Minor Injury / Property Damage Only (PDO)		2	5	0	7	87.5%
Serious Injury		1	0	0	1	12.5%
	TOTAL	3	5	0	8	100%
WEATHER						
		2007	2008	2009	Total	Percent
Snow		0	4	0	4	50.0%
Clear		3	0	0	3	37.5%
	TOTAL	3	5	0	8	100%
ROAD SURFACE CONDITION						
		2007	2008	2009	Total	Percent

0 3 0

TOTAL

0

0

0

0

4

3

1

50.0%

37.5%

12.5% 100%

Source: Pease Surface Transportation Master Plan 2010 Update, June 2011

Snow

Dry

Wet

APPENDIX F

Capacity Analysis Methodology

TECHNICAL MEMORANDUM Tighe&Bond

CAPACITY ANALYSIS METHODOLOGY

A primary result of capacity analysis is the assignment of levels of service to traffic facilities under various traffic flow conditions. The capacity analysis methodology is based on the concepts and procedures in the *Highway Capacity Manual* (HCM).¹ The concept of level of service (LOS) is defined as a qualitative measure describing operational conditions within a traffic stream and their perception by motorists and/or passengers. A level-of-service definition provides an index to quality of traffic flow in terms of such factors as speed, travel time, freedom to maneuver, traffic interruptions, comfort, convenience, and safety.

Six levels of service are defined for each type of facility. They are given letter designations from A to F, with LOS A representing the best operating conditions and LOS F the worst. Since the level of service of a traffic facility is a function of the traffic flows placed upon it, such a facility may operate at a wide range of levels of service, depending on the time of day, day of week, or period of year. A description of the operating condition under each level of service is provided below:

- LOS A describes conditions with little to no delay to motorists.
- LOS B represents a desirable level with relatively low delay to motorists.
- LOS C describes conditions with average delays to motorists.
- LOS D describes operations where the influence of congestion becomes more noticeable. Delays are still within an acceptable range.
- LOS E represents operating conditions with high delay values. This level is considered by many agencies to be the limit of acceptable delay.
- LOS F is considered to be unacceptable to most drivers with high delay values that often occur, when arrival flow rates exceed the capacity of the intersection.

Signalized Intersections

Levels of service for signalized intersections are also calculated using the operational analysis methodology of the HCM. The methodology for signalized intersections assesses the effects of signal type, timing, phasing, and progression; vehicle mix; and geometrics on average *control* delay. Control delay is used to establish the operating characteristics for an intersection or an approach to an intersection. Volume-to-capacity (v/c) ratios are also used to help signify the utilization of a lane group's capacity at an intersection. A v/c ratio of ≥ 1.00 represents conditions when the traffic signal cycle capacity is fully utilized and indicates a capacity failure. The level-of-service criteria for signalized intersections are shown in Table A-1.

¹Highway Capacity Manual, 6^{TH} Edition: A Guide for Multimodal Mobility Analysis. Washington, D.C.: Transportation Research Board, 2016.

TECHNICAL MEMORANDUM Tighe&Bond

Unsignalized Intersections

Levels of service for unsignalized intersections are calculated using the operational analysis methodology of the HCM. The procedure accounts for lane configuration on both the minor and major street approaches, conflicting traffic stream volumes, and the type of intersection control (STOP, YIELD, or all-way STOP control). The definition of level of service for unsignalized intersections is a function of average *control* delay. Control delay at an unsignalized intersection is defined as the total elapsed time from when a vehicle stops at the end of the queue until the vehicle departs from the stop line. This time includes the time required for the vehicle to travel from the last-in-queue position to the first-in-queue position.

Volume-to-capacity (v/c) ratios are also used to help signify the utilization of a movement's capacity at an intersection. A v/c ratio of ≥ 1.00 represents conditions when the movement is fully utilized and indicates a capacity failure. The capacity of the movements is based on the distribution of gaps in the major street traffic stream, the selection of gaps to complete the desired movement, and the follow-up headways for each driver in the queue. When an unsignalized intersection is located within 0.25 miles of a signalized intersection, traffic flows may not be random and some platoon structure may exist, thereby affecting the minor street operations. The level-of-service criteria for unsignalized intersections are shown in Table A-1.

TABLE A-1Level-of-Service Criteria for Intersections

Level of	Signalized Intersection Criteria Average Control Delay	Unsignalized Intersection Criteria Average Control Delay	
Service	(Seconds per Vehicle)	(Seconds per Vehicle)	V/C Ratio >1.00 ^a
Α	≤10	≤10	F
В	>10 and ≤20	>10 and ≤15	F
С	>20 and ≤35	>15 and ≤25	F
D	>35 and ≤55	>25 and ≤35	F
Е	>55 and ≤80	>35 and ≤50	F
F	>80	>50	F

Note: ^aFor approach-based and intersection-wide assessments, LOS is defined solely by control delay.

Source: Highway Capacity Manual, 6th Edition: A Guide for Multimodal Mobility Analysis. Washington, D.C.: Transportation Research Board, 2016. Exhibit 19-8, Pg. 19-16.

For signalized intersections, this delay criterion may be applied in assigning level-of-service designations to individual lane groups, to individual intersection approaches, or to the entire intersection. For unsignalized intersections, this delay criterion may be applied in assigning level-of-service designations to individual lane groups on the minor street approaches or to the left turns from the major street approaches.

APPENDIX G
Capacity Analysis Worksheets

	۶	→	*	•	←	•	1	1	~	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	† 1>		44	† 1>			र्स	77		4	
Traffic Volume (vph)	0	126	7	1027	571	130	7	2	280	5	0	0
Future Volume (vph)	0	126	7	1027	571	130	7	2	280	5	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	12	11	12	12	16	12
Total Lost time (s)		6.0		6.0	6.0			6.0	6.0		6.0	
Lane Util. Factor		0.95		0.97	0.95			1.00	0.88		1.00	
Frt		0.99		1.00	0.97			1.00	0.85		1.00	
Flt Protected		1.00		0.95	1.00			0.96	1.00		0.95	
Satd. Flow (prot)		3364		3433	3441			1491	2760		2046	
Flt Permitted		1.00		0.95	1.00			0.86	1.00		0.75	
Satd. Flow (perm)		3364		3433	3441			1325	2760		1614	
Peak-hour factor, PHF	0.71	0.71	0.71	0.73	0.73	0.73	0.78	0.78	0.78	0.75	0.75	0.75
Adj. Flow (vph)	0	177	10	1407	782	178	9	3	359	7	0	0
RTOR Reduction (vph)	0	4	0	0	7	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	183	0	1407	953	0	0	12	359	0	7	0
Heavy Vehicles (%)	0%	4%	50%	2%	2%	2%	25%	0%	3%	0%	0%	0%
Turn Type	Prot	NA		Prot	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	6	2		1	5			8			4	
Permitted Phases							8		8	4		
Actuated Green, G (s)		10.6		46.2	62.8			17.2	17.2		17.2	
Effective Green, g (s)		10.6		46.2	62.8			17.2	17.2		17.2	
Actuated g/C Ratio		0.12		0.50	0.68			0.19	0.19		0.19	
Clearance Time (s)		6.0		6.0	6.0			6.0	6.0		6.0	
Vehicle Extension (s)		3.0		3.0	3.0			3.0	3.0		3.0	
Lane Grp Cap (vph)		387		1723	2348			247	516		301	
v/s Ratio Prot		0.05		c0.41	c0.28							
v/s Ratio Perm								0.01	c0.13		0.00	
v/c Ratio		0.47		0.82	0.41			0.05	0.70		0.02	
Uniform Delay, d1		38.1		19.3	6.4			30.7	35.0		30.5	
Progression Factor		1.00		1.00	1.00			1.00	1.00		1.00	
Incremental Delay, d2		0.9		3.1	0.1			0.1	4.1		0.0	
Delay (s)		39.0		22.4	6.5			30.8	39.0		30.6	
Level of Service		D		С	Α			С	D		С	
Approach Delay (s)		39.0			16.0			38.7			30.6	
Approach LOS		D			В			D			С	
Intersection Summary												
HCM 2000 Control Delay			20.4	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capacity	ratio		0.74									
Actuated Cycle Length (s)			92.0		um of lost				18.0			
Intersection Capacity Utilization	1		54.3%	IC	CU Level o	of Service			Α			
Analysis Period (min)			15									
0.10. 1.1. 0												

102: US Route 4 SB On-Ramp/US Route 4 SB Off-Ramp & Pease Blvd 2022 Existing Conditions Weekday AM Peak

	۶	→	•	•	•	•	1	†	-	-	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		1111	7	14.54	^					14.54		77
Traffic Volume (vph)	0	281	130	154	969	0	0	0	0	543	0	802
Future Volume (vph)	0	281	130	154	969	0	0	0	0	543	0	802
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	10	11	10	11	12	12	12	12	12	12	12
Total Lost time (s)		6.0	6.0	6.0	6.0					6.0		6.0
Lane Util. Factor		0.86	1.00	0.97	0.95					0.97		0.88
Frt		1.00	0.85	1.00	1.00					1.00		0.85
Flt Protected		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (prot)		5981	1419	2918	3455					3502		2814
Flt Permitted		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (perm)		5981	1419	2918	3455					3502		2814
Peak-hour factor, PHF	0.80	0.80	0.80	0.80	0.80	0.80	0.92	0.92	0.92	0.75	0.75	0.75
Adj. Flow (vph)	0	351	162	192	1211	0	0	0	0	724	0	1069
RTOR Reduction (vph)	0	0	109	0	0	0	0	0	0	0	0	118
Lane Group Flow (vph)	0	351	54	193	1211	0	0	0	0	724	0	951
Heavy Vehicles (%)	0%	2%	10%	12%	1%	0%	2%	2%	2%	0%	0%	1%
Turn Type		NA	Prot	Prot	NA					Prot		Prot
Protected Phases		6	6	5	2 5					3		3
Permitted Phases												
Actuated Green, G (s)		33.3	33.3	25.0	64.3					25.0		25.0
Effective Green, g (s)		33.3	33.3	25.0	64.3					25.0		25.0
Actuated g/C Ratio		0.33	0.33	0.25	0.63					0.25		0.25
Clearance Time (s)		6.0	6.0	6.0						6.0		6.0
Vehicle Extension (s)		5.0	5.0	4.0						5.0		5.0
Lane Grp Cap (vph)		1966	466	720	2193					864		694
v/s Ratio Prot		0.06	0.04	0.07	c0.35					0.21		c0.34
v/s Ratio Perm												
v/c Ratio		0.18	0.11	0.27	0.55					0.84		1.37
Uniform Delay, d1		24.2	23.7	30.8	10.4					36.2		38.1
Progression Factor		1.00	1.00	0.87	1.63					1.00		1.00
Incremental Delay, d2		0.1	0.2	0.1	0.2					7.9		176.1
Delay (s)		24.3	24.0	27.0	17.2					44.2		214.2
Level of Service		С	С	С	В					D		F
Approach Delay (s)		24.2			18.5			0.0			145.5	
Approach LOS		С			В			Α			F	
Intersection Summary												
HCM 2000 Control Delay			80.7	Н	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capac	ity ratio		0.84									
Actuated Cycle Length (s)			101.3		um of lost				18.0			
Intersection Capacity Utilizati	on		64.8%	IC	CU Level of	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

103: US Route 4 NB Off-ramp/US Route 4 NB On-Ramp & Pease Blvd 2022 Existing Conditions Weekday AM Peak

	۶	→	*	•	+	1	1	†	-	1	†	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	44	^			^		44		77			
Traffic Volume (vph)	112	712	0	0	372	76	751	0	359	0	0	0
Future Volume (vph)	112	712	0	0	372	76	751	0	359	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	11	12	12	12	12	12	12	12	12	12	12
Grade (%)		0%			11%			0%			0%	
Total Lost time (s)	6.0	6.0			6.0		6.0		6.0			
Lane Util. Factor	0.97	0.95			0.91		0.97		0.88			
Frt	1.00	1.00			0.97		1.00		0.85			
FIt Protected	0.95	1.00			1.00		0.95		1.00			
Satd. Flow (prot)	3113	3421			4661		3433		2733			
Flt Permitted	0.45	1.00			1.00		0.95		1.00			
Satd. Flow (perm)	1462	3421			4661		3433		2733			
Peak-hour factor, PHF	0.87	0.87	0.92	0.92	0.85	0.85	0.78	0.92	0.78	0.92	0.92	0.92
Adj. Flow (vph)	129	818	0	0	438	89	963	0	460	0	0	0
RTOR Reduction (vph)	0	0	0	0	27	0	0	0	346	0	0	0
Lane Group Flow (vph)	129	818	0	0	500	0	963	0	114	0	0	0
Heavy Vehicles (%)	5%	2%	2%	2%	2%	5%	2%	2%	4%	2%	2%	2%
Turn Type	pm+pt	NA			NA		Prot		Prot			
Protected Phases	1	6			2		3		3			
Permitted Phases	6											
Actuated Green, G (s)	50.3	33.3			41.3		25.0		25.0			
Effective Green, g (s)	50.3	33.3			41.3		25.0		25.0			
Actuated g/C Ratio	0.50	0.33			0.41		0.25		0.25			
Clearance Time (s)	6.0	6.0			6.0		6.0		6.0			
Vehicle Extension (s)	4.0	5.0			5.0		5.0		5.0			
Lane Grp Cap (vph)	1003	1124			1900		847		674			
v/s Ratio Prot	c0.02	c0.24			c0.11		c0.28		0.04			
v/s Ratio Perm	0.04											
v/c Ratio	0.13	0.73			0.26		1.14		0.17			
Uniform Delay, d1	13.4	30.0			19.9		38.1		30.0			
Progression Factor	1.15	1.28			1.00		1.00		1.00			
Incremental Delay, d2	0.1	2.3			0.2		75.9		0.2			
Delay (s)	15.4	40.6			20.1		114.1		30.2			
Level of Service	В	D			С		F		С			
Approach Delay (s)		37.1			20.1			87.0			0.0	
Approach LOS		D			С			F			Α	
Intersection Summary												
HCM 2000 Control Delay			58.5	Н	CM 2000	Level of S	Service		Е			
HCM 2000 Volume to Capa	city ratio		0.68									
Actuated Cycle Length (s)			101.3		um of lost				18.0			
Intersection Capacity Utiliza	tion		64.8%	IC	CU Level of	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

	•	*	†	-	/	↓			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	44	7	ተተተ	7	44	^			
Traffic Volume (vph)	1074	545	2053	218	294	598			
Future Volume (vph)	1074	545	2053	218	294	598			
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
ane Width	12	12	12	11	12	12			
Fotal Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0			
ane Util. Factor	0.97	1.00	0.91	1.00	0.97	0.95			
rt	1.00	0.85	1.00	0.85	1.00	1.00			
It Protected	0.95	1.00	1.00	1.00	0.95	1.00			
Satd. Flow (prot)	3303	1599	4988	1229	3242	3374			
It Permitted	0.95	1.00	1.00	1.00	0.95	1.00			
atd. Flow (perm)	3303	1599	4988	1229	3242	3374			
Peak-hour factor, PHF	0.87	0.87	0.93	0.93	0.81	0.81			
dj. Flow (vph)	1234	626	2208	234	363	738			
RTOR Reduction (vph)	0	319	0	149	0	0			
ane Group Flow (vph)	1234	307	2208	85	363	738			
leavy Vehicles (%)	6%	1%	4%	27%	8%	7%			
urn Type	Prot	Prot	NA	Prot	Prot	NA NA			
rotected Phases	7	7	6	6	5	2			
ermitted Phases	•								
ctuated Green, G (s)	25.0	25.0	33.6	33.6	16.4	56.0			
ffective Green, g (s)	25.0	25.0	33.6	33.6	16.4	56.0			
ctuated g/C Ratio	0.27	0.27	0.36	0.36	0.18	0.60			
learance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0			
ehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0			
ane Grp Cap (vph)	887	429	1802	444	571	2031			
s Ratio Prot	c0.37	0.19	c0.44	0.07	c0.11	0.22			
/s Ratio Perm	55.51	0.10	JJ. 77	0.01	00.11	V. <i>LL</i>			
/c Ratio	1.39	0.72	1.23	0.19	0.64	0.36			
Iniform Delay, d1	34.0	30.8	29.7	20.4	35.5	9.4			
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00			
ncremental Delay, d2	183.0	6.0	106.6	1.00	2.6	0.5			
Pelay (s)	217.0	36.8	136.3	21.3	38.1	9.9			
evel of Service	Z17.0	50.0 D	F	C C	D	A.			
pproach Delay (s)	156.3	U	125.2	0	U	19.2			
pproach LOS	F		F			В			
ntersection Summary									
CM 2000 Control Delay			114.3	Н	CM 2000	Level of Service	ce	F	
ICM 2000 Volume to Capaci	tv ratio		1.15					-	
ctuated Cycle Length (s)	.,		93.0	Sı	um of lost	time (s)		18.0	
ntersection Capacity Utilizati	on		93.7%		U Level c			F	
Analysis Period (min)			15	,,					
Critical Lane Group									

	۶	→	+	•	1	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	7	^	^	7	7	7	
Traffic Volume (vph)	608	1990	717	536	148	175	
Future Volume (vph)	608	1990	717	536	148	175	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0	
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00	
Frt	1.00	1.00	1.00	0.85	1.00	0.85	
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1787	3471	3343	1583	1719	1538	
Flt Permitted	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	1787	3471	3343	1583	1719	1538	
Peak-hour factor, PHF	0.86	0.86	0.96	0.96	0.76	0.76	
Adj. Flow (vph)	707	2314	747	558	195	230	
RTOR Reduction (vph)	0	0	0	388	0	179	
Lane Group Flow (vph)	707	2314	747	170	195	51	
Heavy Vehicles (%)	1%	4%	8%	2%	5%	5%	
Turn Type	Prot	NA	NA	Perm	Prot	Prot	
Protected Phases	1	6	2		3	3	
Permitted Phases				2			
Actuated Green, G (s)	9.9	33.9	18.0	18.0	13.1	13.1	
Effective Green, g (s)	9.9	33.9	18.0	18.0	13.1	13.1	
Actuated g/C Ratio	0.17	0.57	0.31	0.31	0.22	0.22	
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	
Vehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0	
Lane Grp Cap (vph)	299	1994	1019	482	381	341	
v/s Ratio Prot	c0.40	c0.67	0.22		c0.11	0.03	
v/s Ratio Perm				0.11			
v/c Ratio	2.36	1.16	0.73	0.35	0.51	0.15	
Uniform Delay, d1	24.6	12.6	18.3	16.0	20.1	18.5	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	624.3	78.2	4.7	2.0	1.5	0.3	
Delay (s)	648.9	90.8	23.0	18.0	21.7	18.7	
Level of Service	F	F	С	В	С	В	
Approach Delay (s)		221.4	20.9		20.1		
Approach LOS		F	С		С		
Intersection Summary							
HCM 2000 Control Delay			148.3	H	CM 2000	Level of Service	,
HCM 2000 Volume to Capac	city ratio		1.31				
Actuated Cycle Length (s)			59.0		um of lost	· ,	
Intersection Capacity Utilizat	tion		76.9%	IC	CU Level c	of Service	
Analysis Period (min)			15				
c Critical Lane Group							

	-	*	1	•	1	~		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	^	7	*	^	*	7		
Traffic Volume (vph)	1373	765	108	777	476	688		
Future Volume (vph)	1373	765	108	777	476	688		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Lane Width	12	12	12	12	13	12		
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Lane Util. Factor	0.95	1.00	1.00	0.95	1.00	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Flt Protected	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (prot)	3539	1468	1752	3438	1680	1538		
Flt Permitted	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (perm)	3539	1468	1752	3438	1680	1538		
Peak-hour factor, PHF	0.95	0.95	0.90	0.90	0.80	0.80		
Adj. Flow (vph)	1445	805	120	863	595	860		
RTOR Reduction (vph)	0	431	0	003	0	388		
Lane Group Flow (vph)	1445	375	120	863	595	472		
Heavy Vehicles (%)	2%	10%	3%	5%	11%	5%		
Turn Type	NA	Prot	Prot	NA	Prot	Prot		
Protected Phases	6	6	5	2	7	7		
Permitted Phases	U	U	J		'	<u> </u>		
Actuated Green, G (s)	64.2	64.2	15.8	86.0	40.0	40.0		
Effective Green, g (s)	64.2	64.2	15.8	86.0	40.0	40.0		
Actuated g/C Ratio	0.47	0.47	0.11	0.62	0.29	0.29		
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Vehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0		
Lane Grp Cap (vph)	1646	682	200	2142	486	445		
v/s Ratio Prot	c0.41	0.26	c0.07	0.25	c0.35	0.31		
v/s Ratio Prot v/s Ratio Perm	60.41	0.20	60.07	0.23	60.55	0.51		
v/c Ratio	0.88	0.55	0.60	0.40	1.22	1.06		
Uniform Delay, d1	33.4	26.5	58.1	13.1	49.0	49.0		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	7.0	3.2	5.6	0.6	118.2	59.8		
Delay (s)	40.3	29.7	63.7	13.6	167.2	108.8		
Level of Service	40.3 D	29.7 C	03.7 E	13.0 B	107.2 F	F		
Approach Delay (s)	36.5	C		19.8	132.7	Г		
Approach LOS	30.5 D			19.0 B	132. <i>1</i>			
Approach LOS	U			Б	Г			
Intersection Summary								
HCM 2000 Control Delay			62.9	Н	CM 2000	Level of Servic	Э	
HCM 2000 Volume to Capa	acity ratio		0.96					
Actuated Cycle Length (s)			138.0		um of lost			
Intersection Capacity Utilization	ation		90.6%	IC	CU Level of	of Service		
Analysis Period (min)			15					
c Critical Lane Group								

Intersection												
Intersection Delay, s/veh	30.3											
Intersection LOS	D											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		*	1>			4			4	
Traffic Vol, veh/h	0	27	9	265	116	108	20	97	96	25	278	32
Future Vol, veh/h	0	27	9	265	116	108	20	97	96	25	278	32
Peak Hour Factor	0.50	0.50	0.50	0.70	0.70	0.70	0.87	0.87	0.87	0.70	0.70	0.70
Heavy Vehicles, %	0	0	0	2	0	5	0	6	8	14	0	0
Mvmt Flow	0	54	18	379	166	154	23	111	110	36	397	46
Number of Lanes	0	1	0	1	1	0	0	1	0	0	1	0
Approach		EB		WB			NB			SB		
Opposing Approach		WB		EB			SB			NB		
Opposing Lanes		2		1			1			1		
Conflicting Approach Left		SB		NB			EB			WB		
Conflicting Lanes Left		1		1			1			2		
Conflicting Approach Right		NB		SB			WB			EB		
Conflicting Lanes Right		1		1			2			1		
HCM Control Delay		12.4		27.9			15.9			43.8		
HCM LOS		В		D			С			Е		
Lane		NBLn1	EBLn1	WBLn1	WBLn2	SBLn1						
Lane Vol Left, %		NBLn1 9%	EBLn1	WBLn1 100%	WBLn2	SBLn1						
Vol Left, %		9%	0%	100%	0%	7%						
Vol Left, % Vol Thru, %		9% 46%	0% 75%	100% 0%	0% 52%	7% 83%						
Vol Left, % Vol Thru, % Vol Right, %		9% 46% 45%	0% 75% 25%	100% 0% 0%	0% 52% 48%	7% 83% 10%						
Vol Left, % Vol Thru, % Vol Right, % Sign Control		9% 46% 45% Stop	0% 75% 25% Stop	100% 0% 0% Stop	0% 52% 48% Stop	7% 83% 10% Stop						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		9% 46% 45% Stop 213 20 97	0% 75% 25% Stop 36	100% 0% 0% Stop 265	0% 52% 48% Stop 224 0 116	7% 83% 10% Stop 335 25 278						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		9% 46% 45% Stop 213 20	0% 75% 25% Stop 36 0 27	100% 0% 0% Stop 265 265 0	0% 52% 48% Stop 224 0 116 108	7% 83% 10% Stop 335 25 278						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		9% 46% 45% Stop 213 20 97 96 245	0% 75% 25% Stop 36 0 27	100% 0% 0% Stop 265 265	0% 52% 48% Stop 224 0 116	7% 83% 10% Stop 335 25 278 32 479						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		9% 46% 45% Stop 213 20 97 96 245	0% 75% 25% Stop 36 0 27 9 72 5	100% 0% 0% Stop 265 265 0 0 379	0% 52% 48% Stop 224 0 116 108 320	7% 83% 10% Stop 335 25 278 32 479 2						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		9% 46% 45% Stop 213 20 97 96 245 2 0.469	0% 75% 25% Stop 36 0 27 9 72 5 0.157	100% 0% 0% Stop 265 265 0 0 379 7	0% 52% 48% Stop 224 0 116 108 320 7 0.601	7% 83% 10% Stop 335 25 278 32 479 2 0.897						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		9% 46% 45% Stop 213 20 97 96 245 2 0.469 6.898	0% 75% 25% Stop 36 0 27 9 72 5 0.157 7.872	100% 0% 0% Stop 265 265 0 0 379 7 0.805 7.654	0% 52% 48% Stop 224 0 116 108 320 7 0.601 6.761	7% 83% 10% Stop 335 25 278 32 479 2 0.897 6.744						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		9% 46% 45% Stop 213 20 97 96 245 2 0.469 6.898 Yes	0% 75% 25% Stop 36 0 27 9 72 5 0.157 7.872 Yes	100% 0% 0% Stop 265 265 0 0 379 7 0.805 7.654 Yes	0% 52% 48% Stop 224 0 116 108 320 7 0.601 6.761 Yes	7% 83% 10% Stop 335 25 278 32 479 2 0.897 6.744 Yes						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		9% 46% 45% Stop 213 20 97 96 245 2 0.469 6.898 Yes 521	0% 75% 25% Stop 36 0 27 9 72 5 0.157 7.872 Yes 454	100% 0% 0% Stop 265 265 0 0 379 7 0.805 7.654 Yes 473	0% 52% 48% Stop 224 0 116 108 320 7 0.601 6.761 Yes 534	7% 83% 10% Stop 335 25 278 32 479 2 0.897 6.744 Yes 536						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		9% 46% 45% Stop 213 20 97 96 245 2 0.469 6.898 Yes 521 4.947	0% 75% 25% Stop 36 0 27 9 72 5 0.157 7.872 Yes 454 5.946	100% 0% 0% Stop 265 265 0 0 379 7 0.805 7.654 Yes 473 5.401	0% 52% 48% Stop 224 0 116 108 320 7 0.601 6.761 Yes 534 4.507	7% 83% 10% Stop 335 25 278 32 479 2 0.897 6.744 Yes 536 4.781						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		9% 46% 45% Stop 213 20 97 96 245 2 0.469 6.898 Yes 521 4.947 0.47	0% 75% 25% Stop 36 0 27 9 72 5 0.157 7.872 Yes 454 5.946 0.159	100% 0% 0% Stop 265 265 0 0 379 7 0.805 7.654 Yes 473 5.401 0.801	0% 52% 48% Stop 224 0 116 108 320 7 0.601 6.761 Yes 534 4.507 0.599	7% 83% 10% Stop 335 25 278 32 479 2 0.897 6.744 Yes 536 4.781 0.894						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay		9% 46% 45% Stop 213 20 97 96 245 2 0.469 6.898 Yes 521 4.947 0.47 15.9	0% 75% 25% Stop 36 0 27 9 72 5 0.157 7.872 Yes 454 5.946 0.159 12.4	100% 0% 0% Stop 265 265 0 0 379 7 0.805 7.654 Yes 473 5.401 0.801 35.2	0% 52% 48% Stop 224 0 116 108 320 7 0.601 6.761 Yes 534 4.507 0.599 19.2	7% 83% 10% Stop 335 25 278 32 479 2 0.897 6.744 Yes 536 4.781 0.894 43.8						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		9% 46% 45% Stop 213 20 97 96 245 2 0.469 6.898 Yes 521 4.947 0.47	0% 75% 25% Stop 36 0 27 9 72 5 0.157 7.872 Yes 454 5.946 0.159	100% 0% 0% Stop 265 265 0 0 379 7 0.805 7.654 Yes 473 5.401 0.801	0% 52% 48% Stop 224 0 116 108 320 7 0.601 6.761 Yes 534 4.507 0.599	7% 83% 10% Stop 335 25 278 32 479 2 0.897 6.744 Yes 536 4.781 0.894						

Intersection												
Int Delay, s/veh	3.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	LDL	4	LDI	1102	4	7	ሻ	1≯	ADIT	ሻ	1≯	ODIT
Traffic Vol, veh/h	7	11	13	34	5	20	34	231	43	45	415	43
Future Vol, veh/h	7	11	13	34	5	20	34	231	43	45	415	43
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	Olop -	None	-	-	None	-	-	None	-	-	None
Storage Length	<u>-</u>	_	-	<u>-</u>	_	80	85	<u>-</u>	-	165	_	-
Veh in Median Storage		0	_	_	0	-	-	0	_	-	0	_
Grade, %	,	0	_	_	0	_	_	0	_	_	0	_
Peak Hour Factor	71	71	71	83	83	83	79	79	79	66	66	66
Heavy Vehicles, %	25	0	14	0	33	9	0	4	0	4	1	4
Mvmt Flow	10	15	18	41	6	24	43	292	54	68	629	65
WHILE IOW	- 10	10	- 10	71	- 0	27	70	LUL	U-T	- 00	023	- 00
Major/Mina-	Minaro			Ainc 1			Mais =1			Maisro		
	Minor2	4000		Minor1	4005		Major1			Major2		
Conflicting Flow All	1218	1230	662	1219	1235	319	694	0	0	346	0	0
Stage 1	798	798	-	405	405	-	-	-	-	-	-	-
Stage 2	420	432	-	814	830	-	-	-	-	-	-	-
Critical Hdwy	7.35	6.5	6.34	7.1	6.83	6.29	4.1	-	-	4.14	-	-
Critical Hdwy Stg 1	6.35	5.5	-	6.1	5.83	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.35	5.5	-	6.1	5.83	-	-	-	-	-	-	-
Follow-up Hdwy	3.725	4	3.426	3.5	4.297	3.381	2.2	-	-	2.236	-	-
Pot Cap-1 Maneuver	141	179	441	159	154	706	911	-	-	1202	-	-
Stage 1	347	401	-	626	548	-	-	-	_	-	-	-
Stage 2	568	586	-	375	344	-	-	-	-	-	-	-
Platoon blocked, %		,		100	400		• • •	-	-	1000	-	-
Mov Cap-1 Maneuver	122	161	441	130	138	706	911	-	-	1202	-	-
Mov Cap-2 Maneuver	122	161	-	130	138	-	-	-	_	-	-	-
Stage 1	331	378	-	597	522	-	-	-	-	-	-	-
Stage 2	517	558	-	325	324	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	28			34.6			1			0.7		
HCM LOS	D			D								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR I	EBLn1\	WBLn1V	VBLn2	SBL	SBT	SBR		
Capacity (veh/h)		911	-		200	131	706	1202				
HCM Lane V/C Ratio		0.047	_	_					_	_		
HCM Control Delay (s)		9.1	_	_	28	47.1	10.3	8.2	_	_		
HCM Lane LOS		Α	_	_	D	E	В	Α	_	<u>-</u>		
HCM 95th %tile Q(veh)	0.1	_	_	0.8	1.5	0.1	0.2		_		
TOW OUT TOUR ON VOI	1	0.1			0.0	1.0	0.1	J.Z				

Intersection												
Int Delay, s/veh	1.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	5	10	5	40	10	10	5	300	250	15	130	15
Future Vol, veh/h	5	10	5	40	10	10	5	300	250	15	130	15
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	6	11	6	44	11	11	6	333	278	17	144	17
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	682	810	153	679	679	472	161	0	0	611	0	0
Stage 1	187	187	100	484	484	412	101	-	-	011	-	-
Stage 2	495	623	_	195	195		_	_	_	_	_	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	_	_	4.12		
Critical Hdwy Stg 1	6.12	5.52	0.22	6.12	5.52	-	- 1.12	_	_	4 .12	_	_
Critical Hdwy Stg 2	6.12	5.52	_	6.12	5.52	_	_	_	_	_	_	_
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	<u>-</u>	-	2.218	_	<u>-</u>
Pot Cap-1 Maneuver	364	314	893	366	374	592	1418	-	-	968	_	_
Stage 1	815	745	-	564	552	-		_	-	-	_	_
Stage 2	556	478	-	807	739	-	-	_	-	-	-	-
Platoon blocked, %								_	_		-	_
Mov Cap-1 Maneuver	342	306	893	347	364	592	1418	_	_	968	-	-
Mov Cap-2 Maneuver	342	306	-	347	364	-	-	-	-	-	-	-
Stage 1	809	731	-	560	548	-	-	-	-	-	-	-
Stage 2	531	475	-	775	725	-	-	-	-	-	-	-
Annroach	ED			MD			NID			CD		
Approach	EB			WB			NB			SB		
HCM Control Delay, s	15.1			16.6			0.1			0.8		
HCM LOS	С			С								
Minor Lane/Major Mvn	nt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1418	-	-	378	376	968	-	-			
HCM Lane V/C Ratio		0.004	-	-		0.177	0.017	-	-			
HCM Control Delay (s))	7.5	0	-	15.1	16.6	8.8	0	-			
HCM Lane LOS		Α	Α	-	С	С	Α	Α	-			
HCM 95th %tile Q(veh	1)	0	-	-	0.2	0.6	0.1	-	-			

Intersection						
Int Delay, s/veh	12.4					
					0	055
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	7	7	7	•	•	7
Traffic Vol, veh/h	546	220	25	9	40	145
Future Vol, veh/h	546	220	25	9	40	145
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	290	100	-	-	175
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	607	244	28	10	44	161
WWW.CT IOW	001	211	20	10	•	101
	Minor2		Major1		Major2	
Conflicting Flow All	110	44	205	0	-	0
Stage 1	44	-	-	-	-	-
Stage 2	66	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	_	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	887	1026	1366	_	-	-
Stage 1	978	-	-	_	_	_
Stage 2	957	_	_	_	_	_
Platoon blocked, %	331					
Mov Cap-1 Maneuver	869	1026	1366	-		<u>-</u>
			1300		-	-
Mov Cap-2 Maneuver	869	-	-	-	-	-
Stage 1	958	-	-	-	-	-
Stage 2	957	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	15.7		5.7		0	
HCM LOS	C		5.1		- 0	
1 JOINI LOO	J					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1 I	EBLn2	SBT
Capacity (veh/h)		1366	-	869	1026	-
HCM Lane V/C Ratio		0.02	-	0.698		-
HCM Control Delay (s)		7.7	-	18.1	9.6	-
HCM Lane LOS		Α	_	С	Α	-
HCM 95th %tile Q(veh)	0.1	_	5.9	0.9	-
	,	5.1		5.0	3.0	

Intersection						
Int Delay, s/veh	1.2					
			NE	NET	057	055
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			4	1	
Traffic Vol, veh/h	0	18	182	1057	283	0
Future Vol, veh/h	0	18	182	1057	283	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	50	50	67	67	75	75
Heavy Vehicles, %	2	2	1	2	2	0
Mvmt Flow	0	36	272	1578	377	0
	•				• • •	
	Minor2		Major1		/lajor2	
Conflicting Flow All	2499	377	377	0	-	0
Stage 1	377	-	-	-	-	-
Stage 2	2122	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.11	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.209	-	-	-
Pot Cap-1 Maneuver	32	670	1187	-	-	-
Stage 1	694	-	-	-	-	-
Stage 2	99	_	-	_	_	-
Platoon blocked, %				_	_	_
Mov Cap-1 Maneuver	0	670	1187	_	_	_
Mov Cap-1 Maneuver	0	-	1101		_	
	0		-	_		-
Stage 1		-	-	-	-	-
Stage 2	99	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	10.7		1.3		0	
HCM LOS	В					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1187	-		-	-
HCM Lane V/C Ratio		0.229	-	0.054	-	-
HCM Control Delay (s))	8.9	0	10.7	-	-
HCM Lane LOS		Α	Α	В	-	-
HCM 95th %tile Q(veh)	0.9	-	0.2	-	-
	,					

Intersection													
Int Delay, s/veh	23.2												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4	LDIT	"""	4	TTDIX.	IIDL	4	HOIT	UDL	4	ODIT	
Traffic Vol, veh/h	0	0	5	35	0	4	32	1235	76	11	283	0	
Future Vol, veh/h	0	0	5	35	0	4	32	1235	76	11	283	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	38	38	38	71	71	71	71	71	71	70	70	70	
Heavy Vehicles, %	0	0	33	17	0	50	6	1	7	17	3	0	
Mvmt Flow	0	0	13	49	0	6	45	1739	107	16	404	0	
Major/Minor	Minor2			Minor1			Major1		1	Major2			
Conflicting Flow All	2322	2372	404	2326	2319	1793	404	0	0	1846	0	0	
Stage 1	436	436	-	1883	1883	-	-	-	-	-	-	-	
Stage 2	1886	1936	_	443	436	_	_	_	_	-	_	_	
Critical Hdwy	7.1	6.5	6.53	7.27	6.5	6.7	4.16	_	_	4.27	_	-	
Critical Hdwy Stg 1	6.1	5.5	-	6.27	5.5	-	-	-	-	-	_	_	
Critical Hdwy Stg 2	6.1	5.5	_	6.27	5.5	-	-	_	_	-	_	-	
Follow-up Hdwy	3.5	4	3.597	3.653	4	3.75	2.254	-	-	2.353	_	-	
Pot Cap-1 Maneuver	27	35	585	~ 23	38	75	1133	-	-	295	-	-	
Stage 1	603	583	-	83	121	-	-	-	-	-	-	-	
Stage 2	92	114	-	566	583	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	24	33	585	~ 21	35	75	1133	-	-	295	-	-	
Mov Cap-2 Maneuver	24	33	-	~ 21	35	-	-	-	-	-	-	-	
Stage 1	603	542	-	83	121	-	-	-	-	-	-	-	
Stage 2	85	114	-	515	542	-	-	-	-	-	-	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	11.3		\$	989.4			0.2			0.7			
HCM LOS	В		· ·	F									
Minor Lane/Major Mvm	nt	NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR				
Capacity (veh/h)		1133	-	-	585	23	295	_	_				
HCM Lane V/C Ratio		0.04	_		0.022			_	_				
HCM Control Delay (s)		8.3	0	_		989.4	17.9	0	-				
HCM Lane LOS		A	A	_	В	F	C	A	_				
HCM 95th %tile Q(veh)	0.1	-	-	0.1	7	0.2	-	-				
Notes													
~: Volume exceeds ca	nacity	¢. Da	elay exc	oods 2	າດເ	r. Com	putation	Not De	ofinad	*. AII	maior	olumo ir	n platoon
. Volume exceeds ca	pacity	φ. De	ay exc	ccus 30	105	r. Cuill	pulalion	NOL DE	Sillieu	. All	ınajoi V	olullie II	η ριαιυυπ

Intersection									
nt Delay, s/veh	22.8								
		14/55	NET	NDD	001	007			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
ane Configurations	•	7	†	•	•	^			
raffic Vol, veh/h	0	199	1144	0	0	323			
uture Vol, veh/h	0	199	1144	0	0	323			
onflicting Peds, #/hr		0	0	0	0	0			
ign Control	Stop	Stop	Free		Free	Free			
RT Channelized	-	None	-	None	-	None			
Storage Length	-	0	-	-	-	-			
eh in Median Storag		-	0	-	-	0			
Grade, %	0	-	0	-	-	0			
eak Hour Factor	92	76	95	92	92	80			
eavy Vehicles, %	2	3	2	2	2	4			
lvmt Flow	0	262	1204	0	0	404			
ajor/Minor	Minor1	N	Major1	M	ajor2				
onflicting Flow All	_		0	-	<u> </u>	-			
Stage 1	-	-	-	-	_	_			
Stage 2	_	_	_	_	-	_			
ritical Hdwy	-	6.245	-	_	-	-			
itical Hdwy Stg 1	_	-	-	_	-	-			
ritical Hdwy Stg 2	_	_	_	_	_	_			
ollow-up Hdwy	- ;	3.3285	_	_	_	_			
ot Cap-1 Maneuver		~ 222	_	0	0	_			
Stage 1	0		_	0	0	_			
Stage 2	0	-	-	0	0	-			
atoon blocked, %			_			_			
lov Cap-1 Maneuvei	r -	~ 222	_	_	_	_			
lov Cap-2 Maneuvei		-	_	_	_	_			
Stage 1	<u> </u>	_	_	_	_	-			
Stage 2	-	_	_	_	_	_			
2.390 2									
nnroach	WB		NB		SB				
pproach									
CM Control Delay, s			0		0				
CM LOS	F								
inor Lane/Major Mv	mt	NBTV	VBLn1	SBT					
apacity (veh/h)		-	222	-					
CM Lane V/C Ratio			1.179	-					
CM Control Delay (s	s)	-	162.8	-					
CM Lane LOS		-	F	-					
CM 95th %tile Q(vel	h)	-	12.7	-					
otes									
Volume exceeds ca	anacity	\$· Do	lav evo	eeds 300)s	+. Com	putation Not Defined	*: All major volume in pla	toon
. Volumo GAGGGGS G	apaoity	ψ. De	nay the	0000	,,	·. Oom	Patation Not Delined	. All major volume in pla	LOUIT

	٠	-	•	•	—	•	1	1	~	-	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	†		14.14	↑ ↑			र्स	77		4	
Traffic Volume (vph)	5	428	7	36	246	298	10	0	1149	99	15	3
Future Volume (vph)	5	428	7	36	246	298	10	0	1149	99	15	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	12	11	12	12	16	12
Total Lost time (s)	5.0	6.0		6.0	6.0			6.0	6.0		6.0	
Lane Util. Factor	1.00	0.95		0.97	0.95			1.00	0.88		1.00	
\' /												
												4
											-	0
,												0
			0%			0%						0%
							Perm		Perm	Perm		
	6	2		1	5			8			4	
							8			4		
,												
` ,												
								379	975		553	
	0.01	c0.18		0.01	c0.14				0.10			
	0.44	0.04		0.40	0.40							
				_	_			_	_		_	
	C			C					Г			
Approach LOS		C			В			Г			В	
Intersection Summary												
HCM 2000 Control Delay			77.9	Н	CM 2000	Level of	Service		Е			
HCM 2000 Volume to Capacit	y ratio		0.95									
Actuated Cycle Length (s)			61.2		um of lost				18.0			
	n		73.7%	IC	CU Level o	of Service			D			
			15									
HCM 2000 Control Delay HCM 2000 Volume to Capacit		1.00 1.00 3532 1.00 3532 0.69 620 1 629 2% NA 2 17.1 17.1 0.28 6.0 3.0 986 c0.18 0.64 19.3 1.00 1.4 20.7 C 20.8 C	0.95 61.2	S	um of lost	time (s)		1.00 0.95 1491 0.70 1107 0.93 0 0 11 0% NA 8 21.0 21.0 0.34 6.0 3.0 379 0.01 0.03 13.3 1.00 0.0 13.4 B 147.1 F	18.0	0.81 122 0 0 0% Perm 4	1.00 0.96 2059 0.75 1614 0.81 19 1 144 0% NA 4 21.0 21.0 0.34 6.0 3.0 553 0.09 0.26 14.5 1.00 0.3 14.8 B 14.8 B	C

102: US Route 4 SB On-Ramp/US Route 4 SB Off-Ramp & Pease Blvd 2022 Existing Conditions Weekday PM Peak

	۶	-	•	•	•	•	1	†	-	-	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		1111	7	44	^					44		77
Traffic Volume (vph)	0	1091	585	671	453	0	0	0	0	381	0	139
Future Volume (vph)	0	1091	585	671	453	0	0	0	0	381	0	139
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	10	11	10	11	12	12	12	12	12	12	12
Total Lost time (s)		6.0	6.0	6.0	6.0					6.0		6.0
Lane Util. Factor		0.86	1.00	0.97	0.95					0.97		0.88
Frt		1.00	0.85	1.00	1.00					1.00		0.85
Flt Protected		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (prot)		6040	1546	3236	3455					3502		2814
Flt Permitted		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (perm)		6040	1546	3236	3455					3502		2814
Peak-hour factor, PHF	0.92	0.85	0.85	0.94	0.94	0.92	0.92	0.92	0.92	0.75	0.25	0.75
Adj. Flow (vph)	0	1284	688	714	482	0	0	0	0	508	0	185
RTOR Reduction (vph)	0	0	365	0	0	0	0	0	0	0	0	141
Lane Group Flow (vph)	0	1284	323	714	482	0	0	0	0	508	0	44
Heavy Vehicles (%)	0%	1%	1%	1%	1%	0%	2%	2%	2%	0%	0%	1%
Turn Type		NA	Prot	Prot	NA					Prot		Prot
Protected Phases		6	6	5	2 5					3		3
Permitted Phases												
Actuated Green, G (s)		35.0	35.0	25.0	61.2					24.4		24.4
Effective Green, g (s)		35.0	35.0	25.0	61.2					24.4		24.4
Actuated g/C Ratio		0.34	0.34	0.24	0.60					0.24		0.24
Clearance Time (s)		6.0	6.0	6.0						6.0		6.0
Vehicle Extension (s)		5.0	5.0	4.0						5.0		5.0
Lane Grp Cap (vph)		2064	528	790	2064					834		670
v/s Ratio Prot		c0.21	0.21	c0.22	0.14					c0.15		0.02
v/s Ratio Perm												
v/c Ratio		0.62	0.61	0.90	0.23					0.61		0.07
Uniform Delay, d1		28.2	28.0	37.5	9.6					34.8		30.2
Progression Factor		1.00	1.00	1.36	1.16					1.00		1.00
Incremental Delay, d2		0.8	3.0	9.9	0.1					1.9		0.1
Delay (s)		29.0	31.1	61.1	11.2					36.6		30.3
Level of Service		С	С	Е	В					D		С
Approach Delay (s)		29.7			41.0			0.0			34.9	
Approach LOS		С			D			Α			С	
Intersection Summary												
HCM 2000 Control Delay			34.1	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capac	ity ratio		0.70									
Actuated Cycle Length (s)			102.4	Sı	um of lost	time (s)			18.0			
Intersection Capacity Utilizat	ion		81.2%			of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

103: US Route 4 NB Off-ramp/US Route 4 NB On-Ramp & Pease Blvd 2022 Existing Conditions Weekday PM Peak

	۶	→	•	•	+	•	1	†	-	1	†	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	44	^			ተተጉ		44		77			
Traffic Volume (vph)	659	813	0	0	902	399	222	0	613	0	0	0
Future Volume (vph)	659	813	0	0	902	399	222	0	613	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	11	12	12	12	12	12	12	12	12	12	12
Grade (%)		0%			11%			0%			0%	
Total Lost time (s)	6.0	6.0			6.0		6.0		6.0			
Lane Util. Factor	0.97	0.95			0.91		0.97		0.88			
Frt	1.00	1.00			0.95		1.00		0.85			
Flt Protected	0.95	1.00			1.00		0.95		1.00			
Satd. Flow (prot)	3236	3455			4644		3433		2814			
FIt Permitted	0.11	1.00			1.00		0.95		1.00			
Satd. Flow (perm)	389	3455			4644		3433		2814			
Peak-hour factor, PHF	0.87	0.87	0.92	0.92	0.90	0.90	0.94	0.92	0.94	0.92	0.92	0.92
Adj. Flow (vph)	757	934	0	0	1002	443	236	0	652	0	0	0
RTOR Reduction (vph)	0	0	0	0	76	0	0	0	497	0	0	0
Lane Group Flow (vph)	757	934	0	0	1369	0	236	0	155	0	0	0
Heavy Vehicles (%)	1%	1%	2%	2%	1%	0%	2%	2%	1%	2%	2%	2%
Turn Type	pm+pt	NA			NA		Prot		Prot			
Protected Phases	1	6			2		3		3			
Permitted Phases	6											
Actuated Green, G (s)	58.8	35.0			36.2		24.4		24.4			
Effective Green, g (s)	58.8	35.0			36.2		24.4		24.4			
Actuated g/C Ratio	0.57	0.34			0.35		0.24		0.24			
Clearance Time (s)	6.0	6.0			6.0		6.0		6.0			
Vehicle Extension (s)	4.0	5.0			5.0		5.0		5.0			
Lane Grp Cap (vph)	885	1180			1641		818		670			
v/s Ratio Prot	c0.20	0.27			c0.29		c0.07		0.06			
v/s Ratio Perm	0.29											
v/c Ratio	0.86	0.79			0.83		0.29		0.23			
Uniform Delay, d1	26.7	30.4			30.4		31.9		31.4			
Progression Factor	1.62	0.61			1.00		1.00		1.00			
Incremental Delay, d2	6.8	3.4			4.3		0.4		0.4			
Delay (s)	50.2	21.8			34.6		32.3		31.8			
Level of Service	D	С			С		С		С			
Approach Delay (s)		34.5			34.6			31.9			0.0	
Approach LOS		С			С			С			Α	
Intersection Summary												
HCM 2000 Control Delay			34.0	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	city ratio		0.68									
Actuated Cycle Length (s)			102.4		um of lost				18.0			
Intersection Capacity Utiliza	tion		81.2%	IC	CU Level o	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

	•	•	†	1	-	↓		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	44	7	^	7	44	^		
raffic Volume (vph)	1021	173	1757	275	670	1394		
uture Volume (vph)	1021	173	1757	275	670	1394		
leal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
ane Width	12	12	12	11	12	12		
otal Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
ane Util. Factor	0.97	1.00	0.91	1.00	0.97	0.95		
rt	1.00	0.85	1.00	0.85	1.00	1.00		
It Protected	0.95	1.00	1.00	1.00	0.95	1.00		
atd. Flow (prot)	3367	1509	5085	1323	3433	3539		
It Permitted	0.95	1.00	1.00	1.00	0.95	1.00		
atd. Flow (perm)	3367	1509	5085	1323	3433	3539		
eak-hour factor, PHF	0.89	0.89	0.95	0.95	0.84	0.84		
dj. Flow (vph)	1147	194	1849	289	798	1660		
TOR Reduction (vph)	0	140	0	196	0	0		
ane Group Flow (vph)	1147	54	1849	93	798	1660		
eavy Vehicles (%)	4%	7%	2%	18%	2%	2%		
ırn Type	Prot	Prot	NA	Prot	Prot	NA		
otected Phases	7	7	6	6	5	2		
ermitted Phases								
ctuated Green, G (s)	25.0	25.0	30.0	30.0	20.0	56.0		
fective Green, g (s)	25.0	25.0	30.0	30.0	20.0	56.0		
tuated g/C Ratio	0.27	0.27	0.32	0.32	0.22	0.60		
earance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
ehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0		
ane Grp Cap (vph)	905	405	1640	426	738	2131		
s Ratio Prot	c0.34	0.04	c0.36	0.07	c0.23	0.47		
s Ratio Perm								
c Ratio	1.27	0.13	1.13	0.22	1.08	0.78		
niform Delay, d1	34.0	25.8	31.5	23.0	36.5	13.9		
ogression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
cremental Delay, d2	129.1	0.2	65.8	1.2	57.3	2.9		
elay (s)	163.1	26.0	97.3	24.1	93.8	16.8		
evel of Service	F	С	F	С	F	В		
pproach Delay (s)	143.3		87.4			41.8		
proach LOS	F		F			D		
ersection Summary								
CM 2000 Control Delay			81.1	Н	CM 2000	Level of Service	9	F
CM 2000 Volume to Cap	acity ratio		1.16					
ctuated Cycle Length (s)			93.0	S	um of lost	time (s)	1	8.0
ntersection Capacity Utiliz	ation		97.2%		U Level o			F
nalysis Period (min)			15					
Critical Lana Croup								

	٠	→	-	•	/	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	*	^	^	7	*	7	
Traffic Volume (vph)	310	1620	1258	206	375	806	
Future Volume (vph)	310	1620	1258	206	375	806	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0	
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00	
Frt	1.00	1.00	1.00	0.85	1.00	0.85	
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1787	3539	3539	1583	1787	1599	
Flt Permitted	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	1787	3539	3539	1583	1787	1599	
Peak-hour factor, PHF	0.88	0.88	0.93	0.93	0.87	0.87	
Adj. Flow (vph)	352	1841	1353	222	431	926	
RTOR Reduction (vph)	0	0	0	154	0	166	
Lane Group Flow (vph)	352	1841	1353	68	431	760	
Heavy Vehicles (%)	1%	2%	2%	2%	1%	1%	
Turn Type	Prot	NA	NA	Perm	Prot	Prot	
Protected Phases	1	6	2		3	3	
Permitted Phases				2			
Actuated Green, G (s)	5.0	29.0	18.0	18.0	18.0	18.0	
Effective Green, g (s)	5.0	29.0	18.0	18.0	18.0	18.0	
Actuated g/C Ratio	0.08	0.49	0.31	0.31	0.31	0.31	
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	
Vehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0	
Lane Grp Cap (vph)	151	1739	1079	482	545	487	
v/s Ratio Prot	c0.20	0.52	c0.38		0.24	c0.48	
v/s Ratio Perm				0.04			
v/c Ratio	2.33	1.06	1.25	0.14	0.79	1.56	
Uniform Delay, d1	27.0	15.0	20.5	14.9	18.8	20.5	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	619.2	39.0	122.0	0.6	8.1	262.1	
Delay (s)	646.2	54.0	142.5	15.5	26.9	282.6	
Level of Service	F	D	F	В	С	F	
Approach Delay (s)		149.1	124.6		201.4		
Approach LOS		F	F		F		
Intersection Summary							
HCM 2000 Control Delay			155.4	Н	CM 2000	Level of Service	е
HCM 2000 Volume to Capac	city ratio		1.52				
Actuated Cycle Length (s)			59.0		um of los		
Intersection Capacity Utilizat	tion		94.7%	IC	CU Level	of Service	
Analysis Period (min)			15				
c Critical Lane Group							

	→	*	1	•	1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	^	7	*	^	*	7		
Traffic Volume (vph)	898	1097	407	1280	184	469		
Future Volume (vph)	898	1097	407	1280	184	469		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Lane Width	12	12	12	12	13	12		
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Lane Util. Factor	0.95	1.00	1.00	0.95	1.00	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Flt Protected	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (prot)	3539	1568	1787	3539	1636	1583		
Flt Permitted	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (perm)	3539	1568	1787	3539	1636	1583		
Peak-hour factor, PHF	0.89	0.89	0.86	0.86	0.88	0.88		
Adj. Flow (vph)	1009	1233	473	1488	209	533		
RTOR Reduction (vph)	0	376	0	0	0	436		
Lane Group Flow (vph)	1009	857	473	1488	209	97		
Heavy Vehicles (%)	2%	3%	1%	2%	14%	2%		
Turn Type	NA	Prot	Prot	NA	Prot	Prot		
Protected Phases	6	6	5	2	7	7		
Permitted Phases	J	U	3		ı	, , , , , , , , , , , , , , , , , , ,		
Actuated Green, G (s)	52.7	52.7	42.3	101.0	25.0	25.0		
Effective Green, g (s)	52.7	52.7	42.3	101.0	25.0	25.0		
Actuated g/C Ratio	0.38	0.38	0.31	0.73	0.18	0.18		
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Vehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0		
Lane Grp Cap (vph)	1351	598	547	2590	296	286		
v/s Ratio Prot	0.29	c0.55	c0.26	0.42	c0.13	0.06		
v/s Ratio Perm	0.23	00.00	00.20	0.72	60.10	0.00		
v/c Ratio	0.75	1.43	0.86	0.57	0.71	0.34		
Uniform Delay, d1	36.9	42.6	45.2	8.6	53.1	49.3		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	3.8	204.5	13.8	0.9	8.0	1.00		
Delay (s)	40.7	247.2	58.9	9.5	61.0	50.2		
Level of Service	D	F	50.5 E	Α.	E	D		
Approach Delay (s)	154.2			21.4	53.3			
Approach LOS	F			C C	D			
• •								
Intersection Summary			06.4	- 11	CM 2000	Loyal of Camiles		F
HCM 2000 Control Delay	anity ratio		86.4	П	CIVI ZUUU	Level of Service		Г
HCM 2000 Volume to Capa	acity ratio		1.08	0	um of loct	time (a)		0 0
Actuated Cycle Length (s)	rotion		138.0		um of lost		1	8.0
Intersection Capacity Utiliz	allOH		100.5% 15	IC	CU Level o	o service		G
Analysis Period (min)			15					

Intersection												
Intersection Delay, s/veh	66.7											
Intersection LOS	F											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		*	13			4			4	
Traffic Vol, veh/h	62	79	21	221	21	17	2	296	222	63	96	3
Future Vol, veh/h	62	79	21	221	21	17	2	296	222	63	96	3
Peak Hour Factor	0.71	0.71	0.71	0.90	0.90	0.90	0.75	0.75	0.75	0.88	0.88	0.88
Heavy Vehicles, %	0	0	0	2	0	10	0	1	3	11	4	0
Mvmt Flow	87	111	30	246	23	19	3	395	296	72	109	3
Number of Lanes	0	1	0	1	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			2			1		
HCM Control Delay	17.4			19.7			116			15.5		
HCM LOS	С			С			F			С		
Lane		NBLn1	EBLn1	WBLn1	WBLn2	SBLn1						
Lane Vol Left, %		NBLn1	EBLn1 38%	WBLn1 100%	WBLn2	SBLn1 39%						
Vol Left, %		0%	38%	100%	0%	39%						
Vol Left, % Vol Thru, %		0% 57%	38% 49%	100% 0%	0% 55%	39% 59% 2% Stop						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		0% 57% 43% Stop 520	38% 49% 13% Stop 162	100% 0% 0% Stop 221	0% 55% 45% Stop 38	39% 59% 2% Stop 162						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		0% 57% 43% Stop 520 2	38% 49% 13% Stop 162 62	100% 0% 0% Stop 221 221	0% 55% 45% Stop 38	39% 59% 2% Stop 162 63						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		0% 57% 43% Stop 520 2	38% 49% 13% Stop 162 62 79	100% 0% 0% Stop 221 221 0	0% 55% 45% Stop 38 0 21	39% 59% 2% Stop 162 63 96						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		0% 57% 43% Stop 520 2 296 222	38% 49% 13% Stop 162 62 79 21	100% 0% 0% Stop 221 221 0	0% 55% 45% Stop 38 0 21	39% 59% 2% Stop 162 63 96						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		0% 57% 43% Stop 520 2 296 222 693	38% 49% 13% Stop 162 62 79 21 228	100% 0% 0% Stop 221 221 0 0 246	0% 55% 45% Stop 38 0 21 17	39% 59% 2% Stop 162 63 96 3						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		0% 57% 43% Stop 520 2 296 222 693 2	38% 49% 13% Stop 162 62 79 21 228	100% 0% 0% Stop 221 221 0 0 246	0% 55% 45% Stop 38 0 21 17 42	39% 59% 2% Stop 162 63 96 3 184						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		0% 57% 43% Stop 520 2 296 222 693 2 1.171	38% 49% 13% Stop 162 62 79 21 228 5	100% 0% 0% Stop 221 221 0 0 246 7	0% 55% 45% Stop 38 0 21 17 42 7	39% 59% 2% Stop 162 63 96 3 184 2						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		0% 57% 43% Stop 520 2 296 222 693 2 1.171 6.079	38% 49% 13% Stop 162 62 79 21 228 5 0.461 7.884	100% 0% 0% Stop 221 221 0 0 246 7 0.548 8.602	0% 55% 45% Stop 38 0 21 17 42 7 0.084 7.727	39% 59% 2% Stop 162 63 96 3 184 2 0.376 7.846						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		0% 57% 43% Stop 520 2 296 222 693 2 1.171 6.079 Yes	38% 49% 13% Stop 162 62 79 21 228 5 0.461 7.884 Yes	100% 0% 0% Stop 221 221 0 0 246 7 0.548 8.602 Yes	0% 55% 45% Stop 38 0 21 17 42 7 0.084 7.727 Yes	39% 59% 2% Stop 162 63 96 3 184 2 0.376 7.846 Yes						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		0% 57% 43% Stop 520 2 296 222 693 2 1.171 6.079 Yes 603	38% 49% 13% Stop 162 62 79 21 228 5 0.461 7.884 Yes 461	100% 0% 0% Stop 221 221 0 0 246 7 0.548 8.602 Yes 422	0% 55% 45% Stop 38 0 21 17 42 7 0.084 7.727 Yes 467	39% 59% 2% Stop 162 63 96 3 184 2 0.376 7.846 Yes 462						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		0% 57% 43% Stop 520 2 296 222 693 2 1.171 6.079 Yes 603 4.079	38% 49% 13% Stop 162 62 79 21 228 5 0.461 7.884 Yes 461 5.884	100% 0% 0% Stop 221 221 0 0 246 7 0.548 8.602 Yes 422 6.302	0% 55% 45% Stop 38 0 21 17 42 7 0.084 7.727 Yes 467 5.427	39% 59% 2% Stop 162 63 96 3 184 2 0.376 7.846 Yes 462 5.846						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		0% 57% 43% Stop 520 2 296 222 693 2 1.171 6.079 Yes 603 4.079 1.149	38% 49% 13% Stop 162 62 79 21 228 5 0.461 7.884 Yes 461 5.884 0.495	100% 0% 0% Stop 221 221 0 0 246 7 0.548 8.602 Yes 422 6.302 0.583	0% 55% 45% Stop 38 0 21 17 42 7 0.084 7.727 Yes 467 5.427 0.09	39% 59% 2% Stop 162 63 96 3 184 2 0.376 7.846 Yes 462 5.846 0.398						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay		0% 57% 43% Stop 520 2 296 222 693 2 1.171 6.079 Yes 603 4.079 1.149 116	38% 49% 13% Stop 162 62 79 21 228 5 0.461 7.884 Yes 461 5.884 0.495 17.4	100% 0% 0% Stop 221 221 0 0 246 7 0.548 8.602 Yes 422 6.302 0.583 21.2	0% 55% 45% Stop 38 0 21 17 42 7 0.084 7.727 Yes 467 5.427 0.09 11.1	39% 59% 2% Stop 162 63 96 3 184 2 0.376 7.846 Yes 462 5.846 0.398 15.5						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		0% 57% 43% Stop 520 2 296 222 693 2 1.171 6.079 Yes 603 4.079 1.149	38% 49% 13% Stop 162 62 79 21 228 5 0.461 7.884 Yes 461 5.884 0.495	100% 0% 0% Stop 221 221 0 0 246 7 0.548 8.602 Yes 422 6.302 0.583	0% 55% 45% Stop 38 0 21 17 42 7 0.084 7.727 Yes 467 5.427 0.09	39% 59% 2% Stop 162 63 96 3 184 2 0.376 7.846 Yes 462 5.846 0.398						

Intersection												
Int Delay, s/veh	3.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			र्स	7	*	1→		*	1	
Traffic Vol, veh/h	5	10	7	60	7	34	12	417	48	19	354	17
Future Vol, veh/h	5	10	7	60	7	34	12	417	48	19	354	17
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-		None
Storage Length	_	_	-	_	_	80	85	_	-	165	_	-
Veh in Median Storage	.# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	_	-	0	_
Peak Hour Factor	65	65	65	87	87	87	73	73	73	90	90	90
Heavy Vehicles, %	0	0	25	3	25	0	0	3	0	0	1	0
Mymt Flow	8	15	11	69	8	39	16	571	66	21	393	19
Major/Minor N	Minor2			Minor1			Major1		N	//ajor2		
Conflicting Flow All	1105	1114	403	1094	1090	604	412	0	0	637	0	0
Stage 1	445	445	403	636	636	- 004	412	-	-	-	-	-
Stage 2	660	669	_	458	454	_	_	_	_		_	_
Critical Hdwy	7.1	6.5	6.45	7.13	6.75	6.2	4.1	_		4.1	_	
Critical Hdwy Stg 1	6.1	5.5	0.45	6.13	5.75	0.2	7.1		_	4.1	_	
Critical Hdwy Stg 2	6.1	5.5	_	6.13	5.75	_	-	-	_	_		_
Follow-up Hdwy	3.5	4	3.525	3.527	4.225	3.3	2.2	_	_	2.2	_	_
Pot Cap-1 Maneuver	190	210	600	191	196	502	1158	<u>-</u>	_	956	<u>-</u>	_
Stage 1	596	578	-	464	438	JUZ	1100		_	330		
Stage 2	455	459	_	581	532	-	-	-	_	_		-
Platoon blocked, %	700	700	_	JU 1	002			_	_		_	_
Mov Cap-1 Maneuver	165	202	600	172	189	502	1158	-	_	956	_	
Mov Cap-1 Maneuver	165	202	-	172	189	JUZ	- 1100	_	_	-	_	_
Stage 1	588	565	_	458	432	_	_	_	_	_	_	
Stage 2	406	453	_	543	520	_	_	_	_	<u>-</u>	_	_
Jugo 2	100	,00		3-10	520							
Approach	EB			WB			NB			SB		
HCM Control Delay, s	22.4			31.6			0.2			0.4		
HCM LOS	22.4 C			31.0 D			0.2			U. T		
TOW LOO	J											
Minor Lane/Major Mvm	t	NBL	NBT	NBR	EBLn1V	VBLn1V	VBLn2	SBL	SBT	SBR		
Capacity (veh/h)		1158			241	174	502	956				
HCM Lane V/C Ratio		0.014	_	_		0.443			_	_		
HCM Control Delay (s)		8.2			22.4	41.2	12.8	8.9	_	_		
HCM Lane LOS		Α	_	_	C	+1.Z	12.0 B	Α	_	_		
HCM 95th %tile Q(veh)		0			0.5	2	0.3	0.1		_		
		- 0			5.0		3.0	J. 1				

Intersection												
Int Delay, s/veh	14.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	5	15	5	235	10	5	0	165	95	5	410	5
Future Vol, veh/h	5	15	5	235	10	5	0	165	95	5	410	5
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	_	-	None	-	_	None	-	_	None	-	_	None
Storage Length	-	-	-	-	-	-	-	-	-	-	_	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	6	17	6	261	11	6	0	183	106	6	456	6
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	716	760	459	719	710	236	462	0		289	0	0
	471	471		236	236	230	402	0	0	209		0
Stage 1	245	289	-	483	474	-	-	-		-	-	
Stage 2 Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	0.22	6.12	5.52	0.22	4.12	-	-	4.12	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	<u>-</u>		-	<u>-</u>		<u>-</u>
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-		2.218	-	-
Pot Cap-1 Maneuver	345	336	602	344	359	803	1099		-	40-0	_	<u>-</u>
Stage 1	573	560	- 002	767	710	000	1033	_		1210	_	_
Stage 2	759	673	_	565	558	-	_		_	-	-	
Platoon blocked, %	100	010	_	303	550	_		_				_
Mov Cap-1 Maneuver	333	334	602	326	357	803	1099	_	_	1273	_	_
Mov Cap-1 Maneuver	333	334	-	326	357	-		<u>-</u>	_	1270	<u>-</u>	<u>-</u>
Stage 1	573	557	_	767	710	_	_	_		_	_	_
Stage 2	742	673	_	540	555	_	-	_	_	_	_	_
5 kg 5 L	, ,_	3,0		3.0	300							
Ammunah	ED			MD			NID			OB		
Approach	EB			WB			NB			SB		
HCM Control Delay, s	15.6			53.3			0			0.1		
HCM LOS	С			F								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1V		SBL	SBT	SBR			
Capacity (veh/h)		1099	-	-	366	331	1273	-	-			
HCM Lane V/C Ratio		-	-	-	0.076			-	-			
HCM Control Delay (s)		0	-	-	15.6	53.3	7.8	0	-			
HCM Lane LOS		Α	-	-	С	F	Α	Α	-			
HCM 95th %tile Q(veh)	0	-	-	0.2	7.4	0	-	-			

Intersection						
Int Delay, s/veh	7.1					
		EDD	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	7	105	100	†	↑	7
Traffic Vol, veh/h	230	105	180	30	25	625
Future Vol, veh/h	230	105	180	30	25	625
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	290	100	-	-	175
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	256	117	200	33	28	694
WWWIICTIOW	200	117	200	00	20	004
Major/Minor	Minor2		Major1	1	Major2	
Conflicting Flow All	461	28	722	0	-	0
Stage 1	28	-	-	-	-	-
Stage 2	433	-	_	_	_	_
Critical Hdwy	6.42	6.22	4.12	_	_	_
Critical Hdwy Stg 1	5.42	-	- 1	_	_	_
Critical Hdwy Stg 2	5.42	_	_	_	_	_
				-		
Follow-up Hdwy				-	-	-
Pot Cap-1 Maneuver	559	1047	880	-	-	-
Stage 1	995	-	-	-	-	-
Stage 2	654	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	432	1047	880	-	-	-
Mov Cap-2 Maneuver	432	-	-	-	-	-
Stage 1	769	_	_	-	-	-
Stage 2	654	_	_	_	_	_
Olago 2						
Approach	EB		NB		SB	
HCM Control Delay, s	19.7		8.8		0	
HCM LOS	С					
Minardan (NA : NA	-1	NDI	NDT		EDL C	ODT
Minor Lane/Major Mvn	nt	NBL	NRI	EBLn1 I		SBT
Capacity (veh/h)		880	-		1047	-
HCM Lane V/C Ratio		0.227	-	0.592	0.111	-
HCM Control Delay (s))	10.3	-	24.7	8.9	-
HCM Lane LOS		В	-	С	Α	-
HCM 95th %tile Q(veh)	0.9	-	3.7	0.4	-

Intersection						
Int Delay, s/veh	6.6					
	EDI	EDD	NDI	NDT	CDT	ODD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y	400	20	4	\$	•
Traffic Vol, veh/h	2	139	22	426	958	2
Future Vol, veh/h	2	139	22	426	958	2
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	68	68	85	85	89	89
Heavy Vehicles, %	0	1	0	1	1	0
Mvmt Flow	3	204	26	501	1076	2
WWW.CT TOW	Ū	201	20	001	1010	_
	Minor2		Major1	N	//ajor2	
Conflicting Flow All	1630	1077	1078	0	-	0
Stage 1	1077	-	-	-	-	-
Stage 2	553	-	-	-	-	-
Critical Hdwy	6.4	6.21	4.1	-	-	-
Critical Hdwy Stg 1	5.4	-		_	-	_
Critical Hdwy Stg 2	5.4	_	_	_	_	_
Follow-up Hdwy	3.5	3.309	2.2	_	_	_
Pot Cap-1 Maneuver	113	267	655	_	_	_
Stage 1	330	201	000			
Stage 2	580		-	<u>-</u>		
	200	-	-	-	-	-
Platoon blocked, %	407	007	055	-	-	_
Mov Cap-1 Maneuver	107	267	655	-	-	-
Mov Cap-2 Maneuver	107	-	-	-	-	-
Stage 1	312	-	-	-	-	-
Stage 2	580	-	-	-	-	-
Approach	EB		NB		SB	
			0.5		0	
HCM Control Delay, s	56.6		0.5		U	
HCM LOS	F					
Minor Lane/Major Mvm	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		655	-		-	
HCM Lane V/C Ratio		0.04		0.794	_	<u>-</u>
HCM Control Delay (s)		10.7	0	56.6	_	_
HCM Lane LOS		10.7 B		50.0 F		-
	١		Α		-	
HCM 95th %tile Q(veh)	0.1	-	6.1	-	-

Intersection													
Int Delay, s/veh	25.2												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			4			4		
Traffic Vol, veh/h	9	0	27	46	0	12	63	435	74	15	1108	24	
Future Vol, veh/h	9	0	27	46	0	12	63	435	74	15	1108	24	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	_	_	-	_	_	-	_	_	-	_	_	-	
Veh in Median Storage,	# -	0	_	_	0	_	_	0	_	_	0	_	
Grade, %	" -	0	_	_	0	_	_	0	_	_	0	_	
Peak Hour Factor	63	63	63	83	83	83	94	94	94	89	89	89	
Heavy Vehicles, %	0	0	0	12	0	29	0	1	12	22	1	0	
Nymt Flow	14	0	43	55	0	14	67	463	79	17	1245	27	
	17			- 00		1-7	- 01	.00	13		1270	LI	
	/linor2			Minor1			Major1			Major2			
Conflicting Flow All	1937	1969	1259	1951	1943	503	1272	0	0	542	0	0	
Stage 1	1293	1293	-	637	637	-	-	-	-	-	-	-	
Stage 2	644	676	-	1314	1306	-	-	-	-	-	-	-	
Critical Hdwy	7.1	6.5	6.2	7.22	6.5	6.49	4.1	-	-	4.32	-	-	
Critical Hdwy Stg 1	6.1	5.5	-	6.22	5.5	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.1	5.5	-	6.22	5.5	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	4	3.3	3.608	4	3.561	2.2	-	-	2.398	-	-	
Pot Cap-1 Maneuver	50	63	210	~ 45	66	518	553	-	-	933	-	-	
Stage 1	202	235	-	449	475	-	-	-	-	-	-	-	
Stage 2	465	456	-	185	232	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	40	49	210	~ 30	51	518	553	-	-	933	-	-	
Mov Cap-2 Maneuver	40	49	-	~ 30	51	-	-	-	-	-	-	-	
Stage 1	167	220	-	370	392	-	-	-	-	-	-	-	
Stage 2	373	376	-	138	217	-	-	-	-	-	-	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	78.1		\$	652.5			1.4			0.1			
HCM LOS	F		Ψ	F						J .,			
NA: 1 / / NA : NA		ND	NOT	NDD 1	-DL 41	A/DL /	051	ODT	000				
Minor Lane/Major Mvmt		NBL	NBT	NRK F	EBLn1V		SBL	SBT	SBR				
Capacity (veh/h)		553	-	-	102	37	933	-	-				
HCM Lane V/C Ratio		0.121	-	-		1.889		-	-				
HCM Control Delay (s)		12.4	0	-		652.5	8.9	0	-				
HCM Lane LOS		В	Α	-	F	F	A	Α	-				
HCM 95th %tile Q(veh)		0.4	-	-	2.6	7.6	0.1	-	-				
Votes													
~: Volume exceeds cap	acitv	\$: De	elay exc	eeds 30	00s	+: Com	putation	Not De	efined	*: All	major v	olume ir	n platoon
		ψ. υ	J	3545 00		. 03111				. ,		2.0111 0 II	. p.atoon

Intersection Int Delay, s/veh							
Note Note							
Movement WBL WBR NBT NBR SBL SBT	•	0.4					
Traffic Vol, veh/h	Mayamant	\\/DI	WDD	NDT	NDD	CDI	CDT
Traffic Vol, veh/h 0 56 516 0 0 1181 Future Vol, veh/h 0 56 516 0 0 1181 Conflicting Peds, #/hr 0 0 0 0 0 0 0 Sign Control Stop Stop Free		WBL			NRK	SBL	
Future Vol, veh/h							
Conflicting Peds, #/hr O O O O O O Sign Control Stop Stop Free Free							
Sign Control Stop Stop Free Reak Reak None Pol None None None Pol None None None None Pol None							
RT Channelized							
Storage Length		Stop	Stop	Free	Free	Free	Free
Veh in Median Storage, # 0 - 0 - - 0 Grade, % 0 - 0 - - 0 Peak Hour Factor 92 100 100 92 92 100 Heavy Vehicles, % 2 13 1 2 2 1 Mvmt Flow 0 56 516 0 0 1181 Major/Minor Minor I Major1 Major2 Conflicting Flow All - 516 0 - - - Stage 1 - 516 0 - <td></td> <td>-</td> <td>None</td> <td>-</td> <td>None</td> <td>-</td> <td>None</td>		-	None	-	None	-	None
Grade, % 0 - 0 - - 0 Peak Hour Factor 92 100 100 92 92 100 Heavy Vehicles, % 2 13 1 2 2 1 Mvmt Flow 0 56 516 0 0 1181 Major/Minor Minor Major1 Major2 Conflicting Flow All - 516 0 - - Stage 1 -	Storage Length	-	0	-	-	-	-
Peak Hour Factor 92 100 100 92 92 100 Heavy Vehicles, % 2 13 1 2 2 1 Mvmt Flow 0 56 516 0 0 1181 Major/Minor Minor Major1 Major2 Conflicting Flow All - 516 0 - - - Stage 1 -	Veh in Median Storage	, # 0	-	0	-	-	0
Peak Hour Factor 92 100 100 92 92 100 Heavy Vehicles, % 2 13 1 2 2 1 Mvmt Flow 0 56 516 0 0 1181 Major/Minor Minor Major1 Major2 Conflicting Flow All - 516 0 - - - Stage 1 -			-	0	-	-	0
Major/Winor		92	100	100	92	92	100
Mynt Flow 0 56 516 0 0 1181 Major/Minor Minor1 Major1 Major2 Conflicting Flow All - 516 0 - - - Stage 1 -							
Major/Minor Minor1 Major1 Major2 Conflicting Flow All - 516 0							-
Conflicting Flow All			00	010	•	•	1101
Conflicting Flow All - 516 0 - - - Stage 1 - <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>							
Stage 1 - - - - - - - - - - - - - - - - -	Major/Minor N	Minor1	N	Major1	٨	/lajor2	
Stage 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <th< td=""><td>Conflicting Flow All</td><td>-</td><td>516</td><td>0</td><td>-</td><td>-</td><td>-</td></th<>	Conflicting Flow All	-	516	0	-	-	-
Critical Hdwy - 6.395	Stage 1	-	-	-	-	-	-
Critical Hdwy - 6.395	Stage 2	-	-	-	-	-	-
Critical Hdwy Stg 1		_	6.395	_	-	_	-
Critical Hdwy Stg 2		_		_	_	_	_
Follow-up Hdwy		_		_	_	_	-
Pot Cap-1 Maneuver 0 532 - 0 0 - Stage 1 0 - - 0 0 - Stage 2 0 - - 0 0 - Platoon blocked, % - - 0 0 - Mov Cap-1 Maneuver - 532 - - - - Mov Cap-2 Maneuver -							
Stage 1 0 - - 0 0 - Stage 2 0 - - 0 0 - Platoon blocked, % - - 0 0 - Mov Cap-1 Maneuver - 532 - - - Mov Cap-2 Maneuver - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Stage 2 0 - - 0 0 - Platoon blocked, % - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Platoon blocked, %							
Mov Cap-1 Maneuver - 532 - - - Mov Cap-2 Maneuver -		U	-	-	U	U	
Mov Cap-2 Maneuver -			500	-			-
Stage 1 - </td <td></td> <td></td> <td>532</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>			532	-	-	-	-
Stage 2 - </td <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>		-	-	-	-	-	-
Approach WB NB SB HCM Control Delay, s 12.6 0 0 HCM LOS B Minor Lane/Major Mvmt NBTWBLn1 SBT Capacity (veh/h) - 532 - HCM Lane V/C Ratio - 0.105 - HCM Control Delay (s) - 12.6 -		-	-	-	-	-	-
HCM Control Delay, s 12.6 0 0 HCM LOS B Minor Lane/Major Mvmt NBTWBLn1 SBT Capacity (veh/h) - 532 - HCM Lane V/C Ratio - 0.105 - HCM Control Delay (s) - 12.6 -	Stage 2	-	-	-	-	-	-
HCM Control Delay, s 12.6 0 0 HCM LOS B							
HCM Control Delay, s 12.6 0 0 HCM LOS B Minor Lane/Major Mvmt NBTWBLn1 SBT Capacity (veh/h) - 532 - HCM Lane V/C Ratio - 0.105 - HCM Control Delay (s) - 12.6 -	Annroach	\A/D		ND		CD	
Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s) BTWBLn1 SBT - 532 - 0.105 - 12.6							
Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s) NBTWBLn1 SBT - 532 - 0.105 - 12.6 - 12.6				0		0	
Capacity (veh/h) - 532 - HCM Lane V/C Ratio - 0.105 - HCM Control Delay (s) - 12.6 -		В					
Capacity (veh/h) - 532 - HCM Lane V/C Ratio - 0.105 - HCM Control Delay (s) - 12.6 -							
Capacity (veh/h) - 532 - HCM Lane V/C Ratio - 0.105 - HCM Control Delay (s) - 12.6 -							
HCM Lane V/C Ratio - 0.105 - HCM Control Delay (s) - 12.6 -	HCM LOS	+	NRTW	/RI n1	SRT		
HCM Control Delay (s) - 12.6 -	HCM LOS Minor Lane/Major Mvm	t	NBTV				
	Minor Lane/Major Mvm Capacity (veh/h)	t	-	532	-		
110141 100	Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	t	-	532 0.105	-		
	Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	t	-	532 0.105 12.6	- - -		
HCM 95th %tile Q(veh) - 0.4 -	Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s) HCM Lane LOS		-	532 0.105 12.6 B	- - -		

	٠	-	*	•	←	•	1	1	~	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†		44	↑ ↑			र्स	77		4	
Traffic Volume (vph)	0	130	7	1058	588	134	7	2	289	5	0	0
Future Volume (vph)	0	130	7	1058	588	134	7	2	289	5	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	12	11	12	12	16	12
Total Lost time (s)		6.0		6.0	6.0			6.0	6.0		6.0	
Lane Util. Factor		0.95		0.97	0.95			1.00	0.88		1.00	
Frt		0.99		1.00	0.97			1.00	0.85		1.00	
Flt Protected		1.00		0.95	1.00			0.96	1.00		0.95	
Satd. Flow (prot)		3367		3433	3440			1491	2760		2046	
Flt Permitted		1.00		0.95	1.00			0.86	1.00		0.75	
Satd. Flow (perm)		3367		3433	3440			1326	2760		1614	
Peak-hour factor, PHF	0.71	0.71	0.71	0.73	0.73	0.73	0.78	0.78	0.78	0.75	0.75	0.75
Adj. Flow (vph)	0	183	10	1449	805	184	9	3	371	7	0	0
RTOR Reduction (vph)	0	4	0	0	7	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	189	0	1449	982	0	0	12	371	0	7	0
Heavy Vehicles (%)	0%	4%	50%	2%	2%	2%	25%	0%	3%	0%	0%	0%
Turn Type	Prot	NA		Prot	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	6	2		1	5			8			4	
Permitted Phases							8		8	4		
Actuated Green, G (s)		10.8		49.0	65.8			17.5	17.5		17.5	
Effective Green, g (s)		10.8		49.0	65.8			17.5	17.5		17.5	
Actuated g/C Ratio		0.11		0.51	0.69			0.18	0.18		0.18	
Clearance Time (s)		6.0		6.0	6.0			6.0	6.0		6.0	
Vehicle Extension (s)		3.0		3.0	3.0			3.0	3.0		3.0	
Lane Grp Cap (vph)		381		1765	2375			243	506		296	
v/s Ratio Prot		0.06		c0.42	c0.29							
v/s Ratio Perm								0.01	c0.13		0.00	
v/c Ratio		0.50		0.82	0.41			0.05	0.73		0.02	
Uniform Delay, d1		39.7		19.5	6.4			32.0	36.7		31.9	
Progression Factor		1.00		1.00	1.00			1.00	1.00		1.00	
Incremental Delay, d2		1.0		3.2	0.1			0.1	5.4		0.0	
Delay (s)		40.7		22.7	6.5			32.1	42.1		31.9	
Level of Service		10.7		С	A 10.4			C	D		C 24.0	
Approach LOC		40.7			16.1			41.8			31.9	
Approach LOS		D			В			D			С	
Intersection Summary												
HCM 2000 Control Delay			21.0	Н	CM 2000	Level of	Service		С			
	y ratio		0.76									
Actuated Cycle Length (s)			95.3		um of lost				18.0			
	n		55.2%	IC	CU Level o	of Service			В			
, ,			15									
HCM 2000 Volume to Capacit			0.76 95.3	S	um of lost	time (s)						

102: US Route 4 SB On-Ramp/US Route 4 SB Off-Ramp & Pease Blvd 2025 No-Build Conditions Weekday AM Peak

	۶	→	•	•	•	•	1	†	-	-	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		1111	7	44	^					44		77
Traffic Volume (vph)	0	290	134	159	998	0	0	0	0	559	0	826
Future Volume (vph)	0	290	134	159	998	0	0	0	0	559	0	826
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	10	11	10	11	12	12	12	12	12	12	12
Total Lost time (s)		6.0	6.0	6.0	6.0					6.0		6.0
Lane Util. Factor		0.86	1.00	0.97	0.95					0.97		0.88
Frt		1.00	0.85	1.00	1.00					1.00		0.85
Flt Protected		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (prot)		5981	1419	2918	3455					3502		2814
Flt Permitted		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (perm)		5981	1419	2918	3455					3502		2814
Peak-hour factor, PHF	0.80	0.80	0.80	0.80	0.80	0.80	0.92	0.92	0.92	0.75	0.75	0.75
Adj. Flow (vph)	0	362	168	199	1248	0	0	0	0	745	0	1101
RTOR Reduction (vph)	0	0	112	0	0	0	0	0	0	0	0	109
Lane Group Flow (vph)	0	363	56	199	1248	0	0	0	0	745	0	992
Heavy Vehicles (%)	0%	2%	10%	12%	1%	0%	2%	2%	2%	0%	0%	1%
Turn Type		NA	Prot	Prot	NA					Prot		Prot
Protected Phases		6	6	5	2 5					3		3
Permitted Phases												
Actuated Green, G (s)		33.6	33.6	25.0	64.6					25.0		25.0
Effective Green, g (s)		33.6	33.6	25.0	64.6					25.0		25.0
Actuated g/C Ratio		0.33	0.33	0.25	0.64					0.25		0.25
Clearance Time (s)		6.0	6.0	6.0						6.0		6.0
Vehicle Extension (s)		5.0	5.0	4.0						5.0		5.0
Lane Grp Cap (vph)		1977	469	718	2196					861		692
v/s Ratio Prot		0.06	0.04	0.07	c0.36					0.21		c0.35
v/s Ratio Perm												
v/c Ratio		0.18	0.12	0.28	0.57					0.87		1.43
Uniform Delay, d1		24.2	23.7	31.0	10.5					36.7		38.3
Progression Factor		1.00	1.00	0.87	1.63					1.00		1.00
Incremental Delay, d2		0.1	0.2	0.1	0.2					9.8		203.6
Delay (s)		24.3	23.9	27.2	17.4					46.5		241.9
Level of Service		С	С	С	В					D		F
Approach Delay (s)		24.2			18.8			0.0			163.1	
Approach LOS		С			В			А			F	
Intersection Summary												
HCM 2000 Control Delay			89.2	Н	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capaci	ity ratio		0.87									
Actuated Cycle Length (s)			101.6	S	um of lost	time (s)			18.0			
Intersection Capacity Utilizati	on		66.5%	IC	CU Level o	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

103: US Route 4 NB Off-ramp/US Route 4 NB On-Ramp & Pease Blvd 2025 No-Build Conditions Weekday AM Peak

	۶	→	*	•	+	4	1	†	~	1	†	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	44	^			††		44		77			
Traffic Volume (vph)	115	734	0	0	383	78	774	0	370	0	0	0
Future Volume (vph)	115	734	0	0	383	78	774	0	370	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	11	12	12	12	12	12	12	12	12	12	12
Grade (%)		0%			11%			0%			0%	
Total Lost time (s)	6.0	6.0			6.0		6.0		6.0			
Lane Util. Factor	0.97	0.95			0.91		0.97		0.88			
Frt	1.00	1.00			0.97		1.00		0.85			
Flt Protected	0.95	1.00			1.00		0.95		1.00			
Satd. Flow (prot)	3113	3421			4660		3433		2733			
FIt Permitted	0.44	1.00			1.00		0.95		1.00			
Satd. Flow (perm)	1439	3421			4660		3433		2733			
Peak-hour factor, PHF	0.87	0.87	0.92	0.92	0.85	0.85	0.78	0.92	0.78	0.92	0.92	0.92
Adj. Flow (vph)	132	844	0	0	451	92	992	0	474	0	0	0
RTOR Reduction (vph)	0	0	0	0	27	0	0	0	355	0	0	0
Lane Group Flow (vph)	132	844	0	0	516	0	992	0	119	0	0	0
Heavy Vehicles (%)	5%	2%	2%	2%	2%	5%	2%	2%	4%	2%	2%	2%
Turn Type	pm+pt	NA			NA		Prot		Prot			
Protected Phases	1	6			2		3		3			
Permitted Phases	6											
Actuated Green, G (s)	50.6	33.6			41.6		25.0		25.0			
Effective Green, g (s)	50.6	33.6			41.6		25.0		25.0			
Actuated g/C Ratio	0.50	0.33			0.41		0.25		0.25			
Clearance Time (s)	6.0	6.0			6.0		6.0		6.0			
Vehicle Extension (s)	4.0	5.0			5.0		5.0		5.0			
Lane Grp Cap (vph)	996	1131			1908		844		672			
v/s Ratio Prot	c0.02	c0.25			c0.11		c0.29		0.04			
v/s Ratio Perm	0.04											
v/c Ratio	0.13	0.75			0.27		1.18		0.18			
Uniform Delay, d1	13.4	30.2			19.9		38.3		30.2			
Progression Factor	1.13	1.27			1.00		1.00		1.00			
Incremental Delay, d2	0.1	2.5			0.2		91.3		0.3			
Delay (s)	15.2	40.9			20.1		129.6		30.5			
Level of Service	В	D			С		F		С			
Approach Delay (s)		37.4			20.1			97.5			0.0	
Approach LOS		D			С			F			Α	
Intersection Summary												
HCM 2000 Control Delay			63.8	Н	CM 2000	Level of S	Service		Е			
HCM 2000 Volume to Capa	city ratio		0.70									
Actuated Cycle Length (s)			101.6		um of lost				18.0			
Intersection Capacity Utiliza	tion		66.5%	IC	CU Level o	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

	1	•	†	-	-	↓			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	1/2	7	ተተተ	7	1/1/	^			
Traffic Volume (vph)	1107	562	2116	225	303	617			
Future Volume (vph)	1107	562	2116	225	303	617			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Lane Width	12	12	12	11	12	12			
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0			
Lane Util. Factor	0.97	1.00	0.91	1.00	0.97	0.95			
Frt	1.00	0.85	1.00	0.85	1.00	1.00			
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00			
Satd. Flow (prot)	3303	1599	4988	1229	3242	3374			
FIt Permitted	0.95	1.00	1.00	1.00	0.95	1.00			
Satd. Flow (perm)	3303	1599	4988	1229	3242	3374			
Peak-hour factor, PHF	0.87	0.87	0.93	0.93	0.81	0.81			
Adj. Flow (vph)	1272	646	2275	242	374	762			
RTOR Reduction (vph)	0	319	0	155	0	0			
Lane Group Flow (vph)	1272	327	2275	87	374	762			
Heavy Vehicles (%)	6%	1%	4%	27%	8%	7%			
Turn Type	Prot	Prot	NA	Prot	Prot	NA NA			
Protected Phases	7	7	6	6	5	2			
Permitted Phases	'	'		<u> </u>	<u> </u>				
Actuated Green, G (s)	25.0	25.0	33.4	33.4	16.6	56.0			
Effective Green, g (s)	25.0	25.0	33.4	33.4	16.6	56.0			
Actuated g/C Ratio	0.27	0.27	0.36	0.36	0.18	0.60			
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0			
Vehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0			
Lane Grp Cap (vph)	887	429	1791	441	578	2031			
v/s Ratio Prot	c0.39	0.20	c0.46	0.07	c0.12	0.23			
v/s Ratio Perm	60.59	0.20	CU.40	0.07	CO. 12	0.23			
v/c Ratio	1.43	0.76	1.27	0.20	0.65	0.38			
Uniform Delay, d1	34.0	31.3	29.8	20.6	35.5	9.5			
	1.00	1.00	1.00	1.00	1.00	1.00			
Progression Factor	201.8	8.3	126.2	1.00	2.8	0.5			
Incremental Delay, d2	235.8	39.6	156.0	21.6	38.3	10.0			
Delay (s) Level of Service		39.0 D	150.0 F	21.0 C	აი.ა D				
	F 160.7	U		U	U	B 10.3			
Approach Delay (s)	169.7		143.0			19.3			
Approach LOS	F		F			В			
ntersection Summary									
HCM 2000 Control Delay			127.0	Н	CM 2000	Level of Service	;	F	
HCM 2000 Volume to Capa	acity ratio		1.19						
Actuated Cycle Length (s)			93.0		um of lost	` '		18.0	
ntersection Capacity Utiliza	ation		96.1%	IC	CU Level o	of Service		F	
Analysis Period (min)			15						
Critical Lane Group									

	۶	→	+	•	/	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	<u> </u>	^	^	7	<u> </u>	7	
Traffic Volume (vph)	627	2051	739	552	152	181	
Future Volume (vph)	627	2051	739	552	152	181	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0	
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00	
Frt	1.00	1.00	1.00	0.85	1.00	0.85	
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1787	3471	3343	1583	1719	1538	
FIt Permitted	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	1787	3471	3343	1583	1719	1538	
Peak-hour factor, PHF	0.86	0.86	0.96	0.96	0.76	0.76	ı
Adj. Flow (vph)	729	2385	770	575	200	238	
RTOR Reduction (vph)	0	0	0	400	0	185	
Lane Group Flow (vph)	729	2385	770	175	200	53	
Heavy Vehicles (%)	1%	4%	8%	2%	5%	5%	Į
Turn Type	Prot	NA	NA	Perm	Prot	Prot	
Protected Phases	1	6	2		3	3	
Permitted Phases				2			
Actuated Green, G (s)	9.8	33.8	18.0	18.0	13.2	13.2	
Effective Green, g (s)	9.8	33.8	18.0	18.0	13.2	13.2	
Actuated g/C Ratio	0.17	0.57	0.31	0.31	0.22	0.22	
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	
Vehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0	
Lane Grp Cap (vph)	296	1988	1019	482	384	344	
v/s Ratio Prot	c0.41	c0.69	0.23		c0.12	0.03	
v/s Ratio Perm				0.11			
v/c Ratio	2.46	1.20	0.76	0.36	0.52	0.15	
Uniform Delay, d1	24.6	12.6	18.5	16.0	20.1	18.4	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	668.4	95.0	5.2	2.1	1.7	0.3	
Delay (s)	693.0	107.6	23.7	18.1	21.8	18.7	
Level of Service	F	F	С	В	С	В	
Approach Delay (s)		244.6	21.3		20.1		
Approach LOS		F	С		С		
Intersection Summary							
HCM 2000 Control Delay			163.2	H	CM 2000	Level of Service	9
HCM 2000 Volume to Capaci	ty ratio		1.35				
Actuated Cycle Length (s)			59.0		um of lost		
Intersection Capacity Utilization	on		78.9%	IC	U Level o	of Service	
Analysis Period (min)			15				
c Critical Lane Group							

	-	*	1	←	1	/		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	^	7	*	^	*	7		
Traffic Volume (vph)	1415	788	111	801	490	709		
Future Volume (vph)	1415	788	111	801	490	709		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Lane Width	12	12	12	12	13	12		
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Lane Util. Factor	0.95	1.00	1.00	0.95	1.00	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Flt Protected	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (prot)	3539	1468	1752	3438	1680	1538		
Flt Permitted	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (perm)	3539	1468	1752	3438	1680	1538		
Peak-hour factor, PHF	0.95	0.95	0.90	0.90	0.80	0.80		
Adj. Flow (vph)	1489	829	123	890	612	886		
RTOR Reduction (vph)	0	445	0	090	0	388		
Lane Group Flow (vph)	1489	384	123	890	613	498		
Heavy Vehicles (%)	2%	10%	3%	5%	11%	5%		
Turn Type	NA	Prot	Prot	NA	Prot	Prot		
Protected Phases	6	6	5	2	7	7		
Permitted Phases	U	U	J		1	, 		
Actuated Green, G (s)	64.0	64.0	16.0	86.0	40.0	40.0		
Effective Green, g (s)	64.0	64.0	16.0	86.0	40.0	40.0		
Actuated g/C Ratio	0.46	0.46	0.12	0.62	0.29	0.29		
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Vehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0		
Lane Grp Cap (vph)	1641	680	203	2142	486	445		
v/s Ratio Prot	c0.42	0.26	c0.07	0.26	c0.36	0.32		
v/s Ratio Perm	U.4Z	0.20	60.07	0.20	60.00	0.02		
v/c Ratio	0.91	0.57	0.61	0.42	1.26	1.12		
Uniform Delay, d1	34.3	26.9	58.0	13.2	49.0	49.0		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	8.9	3.4	5.8	0.6	133.4	79.5		
Delay (s)	43.1	30.3	63.8	13.8	182.4	128.5		
Level of Service	43.1 D	00.5 C	03.0 E	13.0 B	F	F		
Approach Delay (s)	38.5		_	19.9	150.5			
Approach LOS	30.3 D			19.9	130.5			
	U			U				
Intersection Summary			00.4	, .	014 0000			_
HCM 2000 Control Delay			69.4	Н	CM 2000	Level of Service		Ε
HCM 2000 Volume to Capa	acity ratio		0.98		<u> </u>	()		0.0
Actuated Cycle Length (s)			138.0		um of lost		1	8.0
Intersection Capacity Utiliza	ation		93.0%	IC	CU Level o	of Service		F
Analysis Period (min)			15					

Intersection												
Intersection Delay, s/veh	34.2											
Intersection LOS	D											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		*	13			4			4	
Traffic Vol, veh/h	0	28	9	273	120	111	21	100	99	26	286	33
Future Vol, veh/h	0	28	9	273	120	111	21	100	99	26	286	33
Peak Hour Factor	0.50	0.50	0.50	0.70	0.70	0.70	0.87	0.87	0.87	0.70	0.70	0.70
Heavy Vehicles, %	0	0	0	2	0	5	0	6	8	14	0	0
Mvmt Flow	0	56	18	390	171	159	24	115	114	37	409	47
Number of Lanes	0	1	0	1	1	0	0	1	0	0	1	0
Approach		EB		WB			NB			SB		
Opposing Approach		WB		EB			SB			NB		
Opposing Lanes		2		1			1			1		
Conflicting Approach Left		SB		NB			EB			WB		
Conflicting Lanes Left		1		1			1			2		
Conflicting Approach Right		NB		SB			WB			EB		
Conflicting Lanes Right		1		1			2			1		
HCM Control Delay		12.8		31.1			16.8			51		
HCM LOS		В		D			С			F		
Lane		NBLn1	EBLn1	WBLn1	WBLn2	SBLn1						
		NDLIII	LDLIII			ODLIII						
Vol Left, %		10%	0%	100%	0%	8%						
Vol Left, % Vol Thru, %			0% 76%	0%	0% 52%	8% 83%						
Vol Thru, % Vol Right, %		10%	0% 76% 24%			8%						
Vol Thru, % Vol Right, % Sign Control		10% 45% 45% Stop	0% 76% 24% Stop	0% 0% Stop	52% 48% Stop	8% 83% 10% Stop						
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		10% 45% 45% Stop 220	0% 76% 24% Stop 37	0% 0% Stop 273	52% 48% Stop 231	8% 83% 10% Stop 345						
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		10% 45% 45% Stop 220 21	0% 76% 24% Stop 37	0% 0% Stop 273 273	52% 48% Stop 231	8% 83% 10% Stop 345 26						
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		10% 45% 45% Stop 220 21 100	0% 76% 24% Stop 37 0 28	0% 0% Stop 273 273	52% 48% Stop 231 0 120	8% 83% 10% Stop 345 26 286						
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		10% 45% 45% Stop 220 21 100 99	0% 76% 24% Stop 37 0 28	0% 0% Stop 273 273 0	52% 48% Stop 231 0 120 111	8% 83% 10% Stop 345 26 286 33						
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		10% 45% 45% Stop 220 21 100 99 253	0% 76% 24% Stop 37 0 28 9	0% 0% Stop 273 273 0 0 390	52% 48% Stop 231 0 120 111 330	8% 83% 10% Stop 345 26 286 33 493						
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		10% 45% 45% Stop 220 21 100 99 253	0% 76% 24% Stop 37 0 28 9 74	0% 0% Stop 273 273 0 0 390	52% 48% Stop 231 0 120 111 330 7	8% 83% 10% Stop 345 26 286 33 493						
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		10% 45% 45% Stop 220 21 100 99 253 2 0.493	0% 76% 24% Stop 37 0 28 9 74 5	0% 0% Stop 273 273 0 0 390 7 0.841	52% 48% Stop 231 0 120 111 330 7 0.63	8% 83% 10% Stop 345 26 286 33 493 2						
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		10% 45% 45% Stop 220 21 100 99 253 2 0.493 7.017	0% 76% 24% Stop 37 0 28 9 74 5 0.166 8.059	0% 0% Stop 273 273 0 0 390 7 0.841 7.766	52% 48% Stop 231 0 120 111 330 7 0.63 6.873	8% 83% 10% Stop 345 26 286 33 493 2 0.935 6.832						
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		10% 45% 45% Stop 220 21 100 99 253 2 0.493 7.017 Yes	0% 76% 24% Stop 37 0 28 9 74 5 0.166 8.059 Yes	0% 0% Stop 273 273 0 0 390 7 0.841 7.766 Yes	52% 48% Stop 231 0 120 111 330 7 0.63 6.873 Yes	8% 83% 10% Stop 345 26 286 33 493 2 0.935 6.832 Yes						
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		10% 45% 45% Stop 220 21 100 99 253 2 0.493 7.017 Yes 513	0% 76% 24% Stop 37 0 28 9 74 5 0.166 8.059 Yes 443	0% 0% Stop 273 273 0 0 390 7 0.841 7.766 Yes 468	52% 48% Stop 231 0 120 111 330 7 0.63 6.873 Yes 525	8% 83% 10% Stop 345 26 286 33 493 2 0.935 6.832 Yes 532						
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		10% 45% 45% Stop 220 21 100 99 253 2 0.493 7.017 Yes 513 5.072	0% 76% 24% Stop 37 0 28 9 74 5 0.166 8.059 Yes 443 6.142	0% 0% Stop 273 273 0 0 390 7 0.841 7.766 Yes 468 5.519	52% 48% Stop 231 0 120 111 330 7 0.63 6.873 Yes 525 4.626	8% 83% 10% Stop 345 26 286 33 493 2 0.935 6.832 Yes 532 4.875						
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		10% 45% 45% Stop 220 21 100 99 253 2 0.493 7.017 Yes 513 5.072 0.493	0% 76% 24% Stop 37 0 28 9 74 5 0.166 8.059 Yes 443 6.142 0.167	0% 0% Stop 273 273 0 0 390 7 0.841 7.766 Yes 468 5.519 0.833	52% 48% Stop 231 0 120 111 330 7 0.63 6.873 Yes 525 4.626 0.629	8% 83% 10% Stop 345 26 286 33 493 2 0.935 6.832 Yes 532 4.875 0.927						
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay		10% 45% 45% Stop 220 21 100 99 253 2 0.493 7.017 Yes 513 5.072 0.493 16.8	0% 76% 24% Stop 37 0 28 9 74 5 0.166 8.059 Yes 443 6.142 0.167 12.8	0% 0% Stop 273 273 0 0 390 7 0.841 7.766 Yes 468 5.519 0.833 39.9	52% 48% Stop 231 0 120 111 330 7 0.63 6.873 Yes 525 4.626 0.629 20.7	8% 83% 10% Stop 345 26 286 33 493 2 0.935 6.832 Yes 532 4.875 0.927 51						
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		10% 45% 45% Stop 220 21 100 99 253 2 0.493 7.017 Yes 513 5.072 0.493	0% 76% 24% Stop 37 0 28 9 74 5 0.166 8.059 Yes 443 6.142 0.167	0% 0% Stop 273 273 0 0 390 7 0.841 7.766 Yes 468 5.519 0.833	52% 48% Stop 231 0 120 111 330 7 0.63 6.873 Yes 525 4.626 0.629	8% 83% 10% Stop 345 26 286 33 493 2 0.935 6.832 Yes 532 4.875 0.927						

Intersection	
Int Delay, s/veh 3.9	
Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SE	SBR
Lane Configurations 4 7 7 5	
	44
Future Vol, veh/h 7 11 13 35 5 21 35 238 44 46 428	44
Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0	0
Sign Control Stop Stop Stop Stop Stop Stop Free Free Free Free Free Free	Free
RT Channelized None None None	None
Storage Length 80 85 165 -	-
Veh in Median Storage, # - 0 0 0	-
Grade, % - 0 0 0	-
Peak Hour Factor 71 71 71 83 83 83 79 79 79 66 66 6	66
Heavy Vehicles, % 25 0 14 0 33 9 0 4 0 4 1	4
Mvmt Flow 10 15 18 42 6 25 44 301 56 70 648 6	67
Major/Minor Minor2 Minor1 Major1 Major2	
Conflicting Flow All 1255 1267 682 1255 1272 329 715 0 0 357 0	0
Stage 1 822 822 - 417 417	-
Stage 2 433 445 - 838 855	
Critical Hdwy 7.35 6.5 6.34 7.1 6.83 6.29 4.1 4.14 -	_
Critical Hdwy Stg 1 6.35 5.5 - 6.1 5.83	_
Critical Hdwy Stg 2 6.35 5.5 - 6.1 5.83	_
Follow-up Hdwy 3.725 4 3.426 3.5 4.297 3.381 2.2 2.236 -	_
Pot Cap-1 Maneuver 133 170 430 150 146 697 895 1191 -	_
Stage 1 337 391 - 617 541	_
Stage 2 559 578 - 364 335	-
Platoon blocked, %	-
Mov Cap-1 Maneuver 114 152 430 122 131 697 895 1191 -	-
Mov Cap-2 Maneuver 114 152 - 122 131	-
Stage 1 320 368 - 587 514	-
Stage 2 506 550 - 314 315	-
Approach EB WB NB SB	
HCM Control Delay, s 29.7 37.7 1 0.7	
HCM LOS D E	
TIOM LOG D L	
Miner Lene/Major Mumt NDL NDT NDD EDL-400DL-400DL-20 ODL ODT ODD	
Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1WBLn2 SBL SBT SBR	
Capacity (veh/h) 895 189 123 697 1191	
HCM Lane V/C Ratio 0.05 0.231 0.392 0.036 0.059	
HCM Control Delay (s) 9.2 29.7 52 10.4 8.2	
HCM Lane LOS A D F B A	
HCM 95th %tile Q(veh) 0.2 0.9 1.6 0.1 0.2	

Intersection												
Int Delay, s/veh	1.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	5	10	5	41	10	10	5	309	258	15	134	15
Future Vol, veh/h	5	10	5	41	10	10	5	309	258	15	134	15
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	_	-	None	_	-	None	_	_	None	_	_	None
Storage Length	_	_	_	_	_	-	_	-	_	_	-	_
Veh in Median Storage	e.# -	0	_	_	0	_	_	0	-	_	0	_
Grade, %	-, -	0	_	-	0	_	_	0	-	-	0	_
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	6	11	6	46	11	11	6	343	287	17	149	17
Major/Minor	Minor2			Minor1			Major1		ı	Major2		
Conflicting Flow All	702	834	158	699	699	487	166	0	0	630	0	0
	192	192		499								
Stage 1		642	-		499	-	-	-	-	-	-	-
Stage 2	510		6.00	200	200	6.00	4.40	-	-	1.10	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12 6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	2 240		5.52	2 240	2 240	-	-	2 240	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	353	304	887	354	364	581	1412	-	-	952	-	-
Stage 1	810	742	-	554	544	-	-	-	-	-	-	-
Stage 2	546	469	-	802	736	-	-	-	-	-	-	-
Platoon blocked, %	004	000	00-	005	054	F0.4	4440	-	-	050	-	-
Mov Cap-1 Maneuver	331	296	887	335	354	581	1412	-	-	952	-	-
Mov Cap-2 Maneuver	331	296	-	335	354	-	-	-	-	-	-	-
Stage 1	804	727	-	550	540	-	-	-	-	-	-	-
Stage 2	521	466	-	769	721	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	15.4			17.2			0.1			0.8		
HCM LOS	С			С								
Minor Lane/Major Mvn	nt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1412	_		367	363	952	_	_			
HCM Lane V/C Ratio		0.004	_	_				_	_			
HCM Control Delay (s)		7.6	0	_	15.4	17.2	8.8	0	_			
HCM Lane LOS		Α.	A	_	C	C	Α	A	_			
HCM 95th %tile Q(veh	\	0			0.2	0.7	0.1		_			
HOW JOHN JOHNE W(VEH	1	U			0.2	0.7	0.1					

•							
Intersection							
Int Delay, s/veh	13						
<u> </u>		EDD	NDI	NDT	CDT	CDD	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations Traffic Vol, veh/h	ኝ 563	7 227	ሻ 26	†	↑ 41	14 9	
Future Vol, veh/h	563	227	26	9	41	149	
	0	0	20	0	0	0	
Conflicting Peds, #/hr			Free	Free	Free	Free	
Sign Control RT Channelized	Stop -	Stop				None	
		None 290	100		-	175	
Storage Length	0			-	-		
Veh in Median Storage		-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	626	252	29	10	46	166	
Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	114	46	212	0	-	0	
Stage 1	46	-	-	-	_	-	
Stage 2	68	<u>-</u>	_	_	_	_	
Critical Hdwy	6.42	6.22	4.12	_	_	_	
Critical Hdwy Stg 1	5.42	0.22	7.12	_	_	_	
Critical Hdwy Stg 2	5.42				_	_	
Follow-up Hdwy	3.518	3.318			_		
Pot Cap-1 Maneuver	882	1023	1358	-	-	-	
	976	1023	1330	-	-	-	
Stage 1	955		-	-		-	
Stage 2	900	-	-		-	-	
Platoon blocked, %	000	1000	4250	-	-	-	
Mov Cap-1 Maneuver	863	1023	1358	-	-	-	
Mov Cap-2 Maneuver	863	-	-	-	-	-	
Stage 1	956	-	-	-	-	-	
Stage 2	955	-	-	-	-	-	
Approach	EB		NB		SB		
HCM Control Delay, s	16.5		5.7		0		
HCM LOS	C		0.1		U		
TIOWI LOO	J						
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1 l	EBLn2	SBT	SBR
Capacity (veh/h)		1358	-	863	1023	-	-
HCM Lane V/C Ratio		0.021	-	0.725	0.247	-	-
HCM Control Delay (s)		7.7	-	19.3	9.7	-	-
HCM Lane LOS		Α	-	С	Α	-	-
HCM 95th %tile Q(veh)	0.1	-	6.5	1	-	-
	,						

Intersection						
Int Delay, s/veh	1.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
		EDK	INDL			אמט
Lane Configurations	7	10	100	1090	202	0
Traffic Vol, veh/h	0	19	188	1089	292	0
Future Vol, veh/h	0	19	188	1089	292	0
Conflicting Peds, #/hr	0	0	_ 0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	50	50	67	67	75	75
Heavy Vehicles, %	2	2	1	2	2	0
Mvmt Flow	0	38	281	1625	389	0
	Minor2		Major1		//ajor2	
Conflicting Flow All	2576	389	389	0	-	0
Stage 1	389	-	-	-	-	-
Stage 2	2187	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.11	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.209	-	-	-
Pot Cap-1 Maneuver	28	659	1175	-	_	-
Stage 1	685	-	-	_	_	_
Stage 2	92	_	_	_	_	_
Platoon blocked, %	52			<u>_</u>	_	_
Mov Cap-1 Maneuver	0	659	1175	_	_	_
			1173			
Mov Cap-2 Maneuver	0	-	-	-	-	-
Stage 1	0	-	-	-	-	-
Stage 2	92	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	10.8		1.3		0	
HCM LOS	10.6		1.0		U	
I IOWI LOS	В					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1175	_	659	-	-
HCM Lane V/C Ratio		0.239		0.058	_	_
HCM Control Delay (s)		9	0	10.8	_	_
HCM Lane LOS		A	A	В	_	_
HCM 95th %tile Q(veh)	0.9	-	0.2	_	_
HOW JOHN JOHN W(VEN	1	0.9		0.2	_	_

Intersection													
Int Delay, s/veh	28.4												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			4			4	02.1	
Traffic Vol, veh/h	0	0	5	36	0	4	33	1273	78	11	292	0	
Future Vol, veh/h	0	0	5	36	0	4	33	1273	78	11	292	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	_	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	-	-	-	-	_	-	
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	38	38	38	71	71	71	71	71	71	70	70	70	
Heavy Vehicles, %	0	0	33	17	0	50	6	1	7	17	3	0	
Mvmt Flow	0	0	13	51	0	6	46	1793	110	16	417	0	
Major/Minor I	Minor2			Minor1			Major1		ı	Major2			
Conflicting Flow All	2392	2444	417	2396	2389	1848	417	0	0	1903	0	0	
Stage 1	449	449	417		1940	1040	417	-	-	1903	-	-	
Stage 2	1943	1995	_	456	449	_	_	<u>-</u>	_	_	_	_	
Critical Hdwy	7.1	6.5	6.53	7.27	6.5	6.7	4.16	_		4.27	_	_	
Critical Hdwy Stg 1	6.1	5.5	0.55	6.27	5.5	0.7	7.10	<u>-</u>	_	7.21	_	_	
Critical Hdwy Stg 2	6.1	5.5	_	6.27	5.5	_	_	_	_	_	_	_	
Follow-up Hdwy	3.5	4	3.597	3.653	4	3.75	2.254	<u>-</u>	_	2.353	_	_	
Pot Cap-1 Maneuver	24	32	574	~ 21	34	69	1121	_	_	280	_	_	
Stage 1	593	576	-	77	113	-	-	_	_	-	_	_	
Stage 2	85	106	_	556	576	_	_	_	_	_	_	_	
Platoon blocked, %	00	100		000	0.0			_	_		_	_	
Mov Cap-1 Maneuver	21	30	574	~ 19	31	69	1121	_	_	280	_	_	
Mov Cap-2 Maneuver	21	30	-	~ 19	31	-	-	_	_		_	_	
Stage 1	593	533	-	77	113	-	-	-	-	-	-	-	
Stage 2	78	106	-	503	533	-	-	-	-	-	-	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	11.4		\$	1222.5			0.2			0.7			
HCM LOS	В		Ψ	1222.5 F			0.2			0.1			
	U			'									
Minardana / Maria	.1	NDI	NDT	NDD		MDL 4	ODI	ODT	000				
Minor Lane/Major Mvm	π	NBL	NBT		EBLn1\		SBL	SBT	SBR				
Capacity (veh/h)		1121	-	-	574	20	280	-	-				
HCM Lane V/C Ratio		0.041	-	-		2.817		-	-				
HCM Control Delay (s)		8.3	0	-		1222.5	18.6	0	-				
HCM Lane LOS	\	Α	Α	-	В	F 7.4	C	Α	-				
HCM 95th %tile Q(veh))	0.1	-	-	0.1	7.4	0.2	-	-				
Notes													
~: Volume exceeds cap	pacity	\$: De	elay exc	eeds 3	00s	+: Com	putation	Not De	efined	*: All ı	major v	olume ir	n platoon

Intersection									
Int Delay, s/veh	28.3								
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	VVDL	7	<u> </u>	NDIX	ODL	**			
Fraffic Vol, veh/h	0	205	1179	0	0	333			
future Vol, veh/h	0	205	1179	0	0	333			
conflicting Peds, #/hr		0	0	0	0	0			
ign Control	Stop	Stop	Free		Free	Free			
RT Channelized	Stop -	None	-	None	-	None			
Storage Length	-	0	-	-	_	INOHE -			
/eh in Median Storag		-	0	-	-	0			
Grade, %	je, # 0 0	_	0	-		0			
eak Hour Factor	92	76	95	92	92	80			
	2	3	2	2	2	4			
leavy Vehicles, % //vmt Flow	0	270	1241	0	0	416			
WIIIL FIOW	U	210	1241	U	U	410			
laiar/Minar	Minant		Majer1		oio-O				
ajor/Minor	Minor1		Major1		ajor2				
Conflicting Flow All	-		0	-	-	-			
Stage 1	-	-	-	-	-	-			
Stage 2	-	-	-	-	-	-			
ritical Hdwy		6.245	-	-	-	-			
ritical Hdwy Stg 1	-	-	-	-	-	-			
ritical Hdwy Stg 2	-	-	-	-	-	-			
ollow-up Hdwy		3.3285	-	-	-	-			
ot Cap-1 Maneuver		~ 211	-	0	0	-			
Stage 1	0	-	-	0	0	-			
Stage 2	0	-	-	0	0	-			
Platoon blocked, %		044	-			-			
lov Cap-1 Maneuve		~ 211	-	-	-	-			
lov Cap-2 Maneuve		-	-	-	-	-			
Stage 1	-	-	-	-	-	-			
Stage 2	-	-	-	-	-	-			
pproach	WB		NB		SB				
ICM Control Delay, s			0		0				
CM LOS	F								
inor Lane/Major Mv	mt	NBTV	VBLn1	SBT					
apacity (veh/h)		-	211	-					
CM Lane V/C Ratio			1.278	-					
CM Control Delay (s	s)	-	201.9	-					
CM Lane LOS		-	F	-					
CM 95th %tile Q(ve	h)	-	14.4	-					
otes									
: Volume exceeds ca	apacity	\$: De	elay exc	eeds 300)s	+: Comi	putation Not Defined	*: All major volume in	olatoon
	1		,					,	

	۶	-	•	•	—	•	4	1	~	-	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	†		44	↑ ↑			र्स	77		4	
Traffic Volume (vph)	5	441	7	37	253	307	10	0	1184	102	15	3
Future Volume (vph)	5	441	7	37	253	307	10	0	1184	102	15	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	12	11	12	12	16	12
Total Lost time (s)	5.0	6.0		6.0	6.0			6.0	6.0		6.0	
Lane Util. Factor	1.00	0.95		0.97	0.95			1.00	0.88		1.00	
Frt	1.00	1.00		1.00	0.92			1.00	0.85		1.00	
Flt Protected	0.95	1.00		0.95	1.00			0.95	1.00		0.96	
Satd. Flow (prot)	1357	3532		3155	3298			1491	2842		2058	
FIt Permitted	0.95	1.00		0.95	1.00			0.70	1.00		0.75	
Satd. Flow (perm)	1357	3532		3155	3298			1100	2842		1612	
Peak-hour factor, PHF	0.69	0.69	0.69	0.88	0.88	0.88	0.93	0.93	0.93	0.81	0.81	0.81
Adj. Flow (vph)	7	639	10	42	288	349	11	0	1273	126	19	4
,												
			0%			0%						0%
							Perm		Perm	Perm		
	6	2		1	5			8			4	
							8			4		
,												
` ,												
,								375	968		549	
	0.01	c0.18		0.01	c0.14			2.24	2.1-			
•												
•												
	_			_	_			_	_		_	
	C			C					F			
Approach LOS		C			В			Г			В	
Intersection Summary												
HCM 2000 Control Delay			87.8	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capacity	y ratio		0.97									
Actuated Cycle Length (s)			61.6		um of lost				18.0			
	n		75.5%	IC	CU Level o	of Service			D			
Analysis Period (min)			15									
HCM 2000 Control Delay HCM 2000 Volume to Capacity Actuated Cycle Length (s) Intersection Capacity Utilizatio Analysis Period (min)		1 648 2% NA 2 17.5 17.5 0.28 6.0 3.0 1003 c0.18 0.65 19.3 1.00 1.4 20.8 C 20.9 C	0.97 61.6	S	um of lost	time (s)		0 11 0% NA 8 21.0 21.0 0.34 6.0 3.0 375 0.01 0.03 13.5 1.00 0.0 13.5 B 168.1 F	18.0	0 0 0% Perm 4	1 148 0% NA 4 21.0 21.0 0.34 6.0 3.0 549 0.27 14.7 1.00 0.3 15.0 B	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

102: US Route 4 SB On-Ramp/US Route 4 SB Off-Ramp & Pease Blvd 2025 No-Build Conditions Weekday PM Peak

	۶	-	•	•	←	•	1	†	-	-	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		1111	7	14.54	^					44		77
Traffic Volume (vph)	0	1124	603	691	467	0	0	0	0	393	0	143
Future Volume (vph)	0	1124	603	691	467	0	0	0	0	393	0	143
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	10	11	10	11	12	12	12	12	12	12	12
Total Lost time (s)		6.0	6.0	6.0	6.0					6.0		6.0
Lane Util. Factor		0.86	1.00	0.97	0.95					0.97		0.88
Frt		1.00	0.85	1.00	1.00					1.00		0.85
Flt Protected		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (prot)		6040	1546	3236	3455					3502		2814
Flt Permitted		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (perm)		6040	1546	3236	3455					3502		2814
Peak-hour factor, PHF	0.92	0.85	0.85	0.94	0.94	0.92	0.92	0.92	0.92	0.75	0.25	0.75
Adj. Flow (vph)	0	1322	709	735	497	0	0	0	0	524	0	191
RTOR Reduction (vph)	0	0	365	0	0	0	0	0	0	0	0	145
Lane Group Flow (vph)	0	1322	344	735	497	0	0	0	0	524	0	46
Heavy Vehicles (%)	0%	1%	1%	1%	1%	0%	2%	2%	2%	0%	0%	1%
Turn Type		NA	Prot	Prot	NA					Prot		Prot
Protected Phases		6	6	5	2 5					3		3
Permitted Phases												
Actuated Green, G (s)		35.0	35.0	25.0	60.8					24.7		24.7
Effective Green, g (s)		35.0	35.0	25.0	60.8					24.7		24.7
Actuated g/C Ratio		0.34	0.34	0.24	0.59					0.24		0.24
Clearance Time (s)		6.0	6.0	6.0						6.0		6.0
Vehicle Extension (s)		5.0	5.0	4.0						5.0		5.0
Lane Grp Cap (vph)		2058	526	787	2045					842		676
v/s Ratio Prot		0.22	c0.22	c0.23	0.14					c0.15		0.02
v/s Ratio Perm												
v/c Ratio		0.64	0.65	0.93	0.24					0.62		0.07
Uniform Delay, d1		28.6	28.7	38.0	10.0					34.8		30.1
Progression Factor		1.00	1.00	1.35	1.20					1.00		1.00
Incremental Delay, d2		0.9	3.9	12.7	0.1					2.0		0.1
Delay (s)		29.5	32.6	64.1	12.1					36.9		30.2
Level of Service		С	С	Е	В					D		С
Approach Delay (s)		30.6			43.1			0.0			35.1	
Approach LOS		С			D			Α			D	
Intersection Summary												
HCM 2000 Control Delay			35.3	H	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capaci	ty ratio		0.73									
Actuated Cycle Length (s)			102.7	Sı	um of lost	time (s)			18.0			
Intersection Capacity Utilization	on		83.3%			of Service			Е			
Analysis Period (min)			15									
c. Critical Lane Group												

103: US Route 4 NB Off-ramp/US Route 4 NB On-Ramp & Pease Blvd 2025 No-Build Conditions Weekday PM Peak

	۶	→	*	•	+	4	1	†	~	1	†	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	44	^			††		44		77			
Traffic Volume (vph)	679	838	0	0	929	411	229	0	632	0	0	0
Future Volume (vph)	679	838	0	0	929	411	229	0	632	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	11	12	12	12	12	12	12	12	12	12	12
Grade (%)		0%			11%			0%			0%	
Total Lost time (s)	6.0	6.0			6.0		6.0		6.0			
Lane Util. Factor	0.97	0.95			0.91		0.97		0.88			
Frt	1.00	1.00			0.95		1.00		0.85			
FIt Protected	0.95	1.00			1.00		0.95		1.00			
Satd. Flow (prot)	3236	3455			4644		3433		2814			
FIt Permitted	0.11	1.00			1.00		0.95		1.00			
Satd. Flow (perm)	389	3455			4644		3433		2814			
Peak-hour factor, PHF	0.87	0.87	0.92	0.92	0.90	0.90	0.94	0.92	0.94	0.92	0.92	0.92
Adj. Flow (vph)	780	963	0	0	1032	457	244	0	672	0	0	0
RTOR Reduction (vph)	0	0	0	0	76	0	0	0	510	0	0	0
Lane Group Flow (vph)	780	963	0	0	1413	0	244	0	162	0	0	0
Heavy Vehicles (%)	1%	1%	2%	2%	1%	0%	2%	2%	1%	2%	2%	2%
Turn Type	pm+pt	NA			NA		Prot		Prot			
Protected Phases	1	6			2		3		3			
Permitted Phases	6											
Actuated Green, G (s)	59.2	35.0			35.8		24.7		24.7			
Effective Green, g (s)	59.2	35.0			35.8		24.7		24.7			
Actuated g/C Ratio	0.58	0.34			0.35		0.24		0.24			
Clearance Time (s)	6.0	6.0			6.0		6.0		6.0			
Vehicle Extension (s)	4.0	5.0			5.0		5.0		5.0			
Lane Grp Cap (vph)	895	1177			1618		825		676			
v/s Ratio Prot	c0.21	0.28			c0.30		c0.07		0.06			
v/s Ratio Perm	0.30											
v/c Ratio	0.87	0.82			0.87		0.30		0.24			
Uniform Delay, d1	27.3	30.9			31.3		31.9		31.4			
Progression Factor	1.62	0.60			1.00		1.00		1.00			
Incremental Delay, d2	7.6	4.0			6.0		0.4		0.4			
Delay (s)	51.9	22.6			37.3		32.3		31.8			
Level of Service	D	С			D		С		С			
Approach Delay (s)		35.7			37.3			31.9			0.0	
Approach LOS		D			D			С			Α	
Intersection Summary												
HCM 2000 Control Delay			35.5	Н	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capa	city ratio		0.70									
Actuated Cycle Length (s)			102.7		um of lost				18.0			
Intersection Capacity Utiliza	tion		83.3%	IC	CU Level of	of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

	•	•	1	/	-	↓			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	1/2	7	ተተተ	7	1/1/	^			
Traffic Volume (vph)	1052	178	1810	283	690	1437			
Future Volume (vph)	1052	178	1810	283	690	1437			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Lane Width	12	12	12	11	12	12			
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0			
Lane Util. Factor	0.97	1.00	0.91	1.00	0.97	0.95			
Frt	1.00	0.85	1.00	0.85	1.00	1.00			
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00			
Satd. Flow (prot)	3367	1509	5085	1323	3433	3539			
Flt Permitted	0.95	1.00	1.00	1.00	0.95	1.00			
Satd. Flow (perm)	3367	1509	5085	1323	3433	3539			
Peak-hour factor, PHF	0.89	0.89	0.95	0.95	0.84	0.84			
Adj. Flow (vph)	1182	200	1905	298	821	1711			
RTOR Reduction (vph)	0	140	0	202	0	0			
Lane Group Flow (vph)	1182	60	1905	96	821	1711			
Heavy Vehicles (%)	4%	7%	2%	18%	2%	2%			
Turn Type	Prot	Prot	NA	Prot	Prot	NA			
Protected Phases	7	7	6	6	5	2			
Permitted Phases									
Actuated Green, G (s)	25.0	25.0	30.0	30.0	20.0	56.0			
Effective Green, g (s)	25.0	25.0	30.0	30.0	20.0	56.0			
Actuated g/C Ratio	0.27	0.27	0.32	0.32	0.22	0.60			
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0			
Vehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0			
Lane Grp Cap (vph)	905	405	1640	426	738	2131			
v/s Ratio Prot	c0.35	0.04	c0.37	0.07	c0.24	0.48			
v/s Ratio Perm									
v/c Ratio	1.31	0.15	1.16	0.23	1.11	0.80			
Uniform Delay, d1	34.0	25.9	31.5	23.0	36.5	14.2			
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Incremental Delay, d2	145.8	0.2	79.9	1.2	68.4	3.3			
Delay (s)	179.8	26.1	111.4	24.2	104.9	17.6			
Level of Service	F	С	F	С	F	В			
Approach Delay (s)	157.5		99.6			45.9			
Approach LOS	F		F			D			
Intersection Summary									
HCM 2000 Control Delay			90.5	Н	CM 2000	Level of Servic	9	F	
HCM 2000 Volume to Capa	acity ratio		1.20						
Actuated Cycle Length (s)			93.0	S	um of lost	t time (s)		18.0	
Intersection Capacity Utiliza	ation		99.7%	IC	CU Level of	of Service		F	
Analysis Period (min)			15						
c Critical Lane Group									

	۶	→	+	•	\	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	7	^	**	7	ሻ	7	
Traffic Volume (vph)	319	1669	1296	213	386	831	
Future Volume (vph)	319	1669	1296	213	386	831	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0	
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00	
Frt	1.00	1.00	1.00	0.85	1.00	0.85	
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1787	3539	3539	1583	1787	1599	
Flt Permitted	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	1787	3539	3539	1583	1787	1599	
Peak-hour factor, PHF	0.88	0.88	0.93	0.93	0.87	0.87	
Adj. Flow (vph)	362	1897	1394	229	444	955	
RTOR Reduction (vph)	0	0	0	159	0	166	
Lane Group Flow (vph)	363	1897	1394	70	444	789	
Heavy Vehicles (%)	1%	2%	2%	2%	1%	1%	
Turn Type	Prot	NA	NA	Perm	Prot	Prot	
Protected Phases	1	6	2		3	3	
Permitted Phases				2			
Actuated Green, G (s)	5.0	29.0	18.0	18.0	18.0	18.0	
Effective Green, g (s)	5.0	29.0	18.0	18.0	18.0	18.0	
Actuated g/C Ratio	0.08	0.49	0.31	0.31	0.31	0.31	
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	
Vehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0	
Lane Grp Cap (vph)	151	1739	1079	482	545	487	
v/s Ratio Prot	c0.20	0.54	c0.39		0.25	c0.49	
v/s Ratio Perm				0.04			
v/c Ratio	2.40	1.09	1.29	0.14	0.81	1.62	
Uniform Delay, d1	27.0	15.0	20.5	14.9	19.0	20.5	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	651.6	50.9	138.4	0.6	9.6	288.3	
Delay (s)	678.6	65.9	158.9	15.5	28.5	308.8	
Level of Service	F	E	F	В	C	F	
Approach Delay (s)		164.3	138.7		219.9		
Approach LOS		F	F		F		
Intersection Summary							
HCM 2000 Control Delay			171.1	H	CM 2000	Level of Service	е
HCM 2000 Volume to Capac	city ratio		1.57				
Actuated Cycle Length (s)			59.0		um of los		
Intersection Capacity Utilizat	tion		97.3%	IC	U Level	of Service	
Analysis Period (min)			15				
c Critical Lane Group							

	-	*	1	•	1	-		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	^	7	*	^	*	7		
Traffic Volume (vph)	925	1130	419	1319	190	483		
Future Volume (vph)	925	1130	419	1319	190	483		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Lane Width	12	12	12	12	13	12		
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Lane Util. Factor	0.95	1.00	1.00	0.95	1.00	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Flt Protected	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (prot)	3539	1568	1787	3539	1636	1583		
Flt Permitted	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (perm)	3539	1568	1787	3539	1636	1583		
Peak-hour factor, PHF	0.89	0.89	0.86	0.86	0.88	0.88		
Adj. Flow (vph)	1039	1270	487	1534	216	549		
RTOR Reduction (vph)	0	383	0	0	0	446		
Lane Group Flow (vph)	1039	887	487	1534	216	103		
Heavy Vehicles (%)	2%	3%	1%	2%	14%	2%		
Turn Type	NA	Prot	Prot	NA	Prot	Prot		
Protected Phases	6	6	5	2	7	7		
Permitted Phases								
Actuated Green, G (s)	50.5	50.5	43.7	100.2	25.8	25.8		
Effective Green, g (s)	50.5	50.5	43.7	100.2	25.8	25.8		
Actuated g/C Ratio	0.37	0.37	0.32	0.73	0.19	0.19		
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Vehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0		
Lane Grp Cap (vph)	1295	573	565	2569	305	295		
v/s Ratio Prot	0.29	c0.57	c0.27	0.43	c0.13	0.06		
v/s Ratio Perm								
v/c Ratio	0.80	1.55	0.86	0.60	0.71	0.35		
Uniform Delay, d1	39.3	43.8	44.3	9.1	52.6	48.8		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	5.3	255.2	13.2	1.0	7.8	1.0		
Delay (s)	44.6	298.9	57.5	10.2	60.4	49.8		
Level of Service	D	F	Е	В	Е	D		
Approach Delay (s)	184.5			21.6	52.8			
Approach LOS	F			С	D			
Intersection Summary								
HCM 2000 Control Delay			100.1	Н	CM 2000	Level of Servic	Э	
HCM 2000 Volume to Capa	acity ratio		1.12					
Actuated Cycle Length (s)			138.0	S	um of lost	time (s)		
Intersection Capacity Utiliza	ation		103.2%		CU Level c			
Analysis Period (min)			15					
0.10.110								

c Critical Lane Group

Intersection												
Intersection Delay, s/veh	74.5											
Intersection LOS	F											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		Ť	7>			4			4	
Traffic Vol, veh/h	64	81	22	228	22	18	2	305	229	65	99	3
Future Vol, veh/h	64	81	22	228	22	18	2	305	229	65	99	3
Peak Hour Factor	0.71	0.71	0.71	0.90	0.90	0.90	0.75	0.75	0.75	0.88	0.88	0.88
Heavy Vehicles, %	0	0	0	2	0	10	0	1	3	11	4	0
Mvmt Flow	90	114	31	253	24	20	3	407	305	74	113	3
Number of Lanes	0	1	0	1	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			2			1		
HCM Control Delay	18.3			20.7			130.9			16.1		
HCM LOS	С			С			F			С		
Lane		NBLn1	EBLn1	WBLn1	WBLn2	SBLn1						
Vol Left, %		0%	38%	100%	0%	200/						
Vol Thru, %					0 / 0	39%						
Vol Right, %		57%	49%	0%	55%	59%						
		57% 43%	49% 13%	0% 0%								
Sign Control					55% 45% Stop	59%						
Traffic Vol by Lane		43% Stop 536	13% Stop 167	0% Stop 228	55% 45% Stop 40	59% 2% Stop 167						
Traffic Vol by Lane LT Vol		43% Stop 536 2	13% Stop 167 64	0% Stop 228 228	55% 45% Stop 40 0	59% 2% Stop 167 65						
Traffic Vol by Lane LT Vol Through Vol		43% Stop 536 2 305	13% Stop 167 64 81	0% Stop 228 228 0	55% 45% Stop 40 0 22	59% 2% Stop 167 65 99						
Traffic Vol by Lane LT Vol Through Vol RT Vol		43% Stop 536 2 305 229	13% Stop 167 64 81 22	0% Stop 228 228 0	55% 45% Stop 40 0 22 18	59% 2% Stop 167 65 99						
Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		43% Stop 536 2 305 229 715	13% Stop 167 64 81 22 235	0% Stop 228 228 0 0 253	55% 45% Stop 40 0 22 18 44	59% 2% Stop 167 65 99 3						
Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		43% Stop 536 2 305 229 715 2	13% Stop 167 64 81 22 235 5	0% Stop 228 228 0 0 253 7	55% 45% Stop 40 0 22 18 44 7	59% 2% Stop 167 65 99 3 190						
Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		43% Stop 536 2 305 229 715 2 1.209	13% Stop 167 64 81 22 235 5 0.481	0% Stop 228 228 0 0 253 7 0.569	55% 45% Stop 40 0 22 18 44 7 0.089	59% 2% Stop 167 65 99 3 190 2						
Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		43% Stop 536 2 305 229 715 2 1.209 6.09	13% Stop 167 64 81 22 235 5 0.481 8.047	0% Stop 228 228 0 0 253 7 0.569 8.746	55% 45% Stop 40 0 22 18 44 7 0.089 7.867	59% 2% Stop 167 65 99 3 190 2 0.394 8.019						
Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		43% Stop 536 2 305 229 715 2 1.209 6.09 Yes	13% Stop 167 64 81 22 235 5 0.481 8.047 Yes	0% Stop 228 228 0 0 253 7 0.569 8.746 Yes	55% 45% Stop 40 0 22 18 44 7 0.089 7.867 Yes	59% 2% Stop 167 65 99 3 190 2 0.394 8.019 Yes						
Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		43% Stop 536 2 305 229 715 2 1.209 6.09 Yes 593	13% Stop 167 64 81 22 235 5 0.481 8.047 Yes 452	0% Stop 228 228 0 0 253 7 0.569 8.746 Yes 415	55% 45% Stop 40 0 22 18 44 7 0.089 7.867 Yes 458	59% 2% Stop 167 65 99 3 190 2 0.394 8.019 Yes 452						
Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		43% Stop 536 2 305 229 715 2 1.209 6.09 Yes 593 4.188	13% Stop 167 64 81 22 235 5 0.481 8.047 Yes 452 6.047	0% Stop 228 228 0 0 253 7 0.569 8.746 Yes 415 6.446	55% 45% Stop 40 0 22 18 44 7 0.089 7.867 Yes 458 5.567	59% 2% Stop 167 65 99 3 190 2 0.394 8.019 Yes 452 6.019						
Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		43% Stop 536 2 305 229 715 2 1.209 6.09 Yes 593 4.188 1.206	13% Stop 167 64 81 22 235 5 0.481 8.047 Yes 452 6.047 0.52	0% Stop 228 228 0 0 253 7 0.569 8.746 Yes 415 6.446 0.61	55% 45% Stop 40 0 22 18 44 7 0.089 7.867 Yes 458 5.567 0.096	59% 2% Stop 167 65 99 3 190 2 0.394 8.019 Yes 452 6.019 0.42						
Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay		43% Stop 536 2 305 229 715 2 1.209 6.09 Yes 593 4.188 1.206 130.9	13% Stop 167 64 81 22 235 5 0.481 8.047 Yes 452 6.047 0.52 18.3	0% Stop 228 228 0 0 253 7 0.569 8.746 Yes 415 6.446 0.61 22.4	55% 45% Stop 40 0 22 18 44 7 0.089 7.867 Yes 458 5.567 0.096 11.3	59% 2% Stop 167 65 99 3 190 2 0.394 8.019 Yes 452 6.019 0.42 16.1						
Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		43% Stop 536 2 305 229 715 2 1.209 6.09 Yes 593 4.188 1.206	13% Stop 167 64 81 22 235 5 0.481 8.047 Yes 452 6.047 0.52	0% Stop 228 228 0 0 253 7 0.569 8.746 Yes 415 6.446 0.61	55% 45% Stop 40 0 22 18 44 7 0.089 7.867 Yes 458 5.567 0.096	59% 2% Stop 167 65 99 3 190 2 0.394 8.019 Yes 452 6.019 0.42						

Intersection												
Int Delay, s/veh	4.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			र्स	7	7	f.		ň	f)	
Traffic Vol, veh/h	5	10	7	62	7	35	12	430	49	20	365	18
Future Vol, veh/h	5	10	7	62	7	35	12	430	49	20	365	18
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	80	85	-	-	165	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	65	65	65	87	87	87	73	73	73	90	90	90
Heavy Vehicles, %	0	0	25	3	25	0	0	3	0	0	1	0
Mvmt Flow	8	15	11	71	8	40	16	589	67	22	406	20
Major/Minor N	Minor2			Minor1			Major1		N	Major2		
Conflicting Flow All	1139	1148	416	1128	1125	623	426	0	0	656	0	0
Stage 1	460	460	410	655	655	023	420	-	-	-	-	-
Stage 2	679	688	_	473	470	_	_	_	_		_	
Critical Hdwy	7.1	6.5	6.45	7.13	6.75	6.2	4.1		_	4.1	_	
Critical Hdwy Stg 1	6.1	5.5	0.45	6.13	5.75	0.2	7.1		_	-7 . I		_
Critical Hdwy Stg 2	6.1	5.5	_	6.13	5.75	_	_		_			
Follow-up Hdwy	3.5	4	3.525	3.527	4.225	3.3	2.2	_	_	2.2	_	_
Pot Cap-1 Maneuver	180	200	590	181	186	490	1144	_	_	941	_	_
Stage 1	585	569	-	453	429	-	- 1 1 7 7	_	_	-	_	_
Stage 2	445	450	_	570	523	_	_	_	_	_	_	_
Platoon blocked, %	. 10	100		313	323			_	_		_	_
Mov Cap-1 Maneuver	155	193	590	162	179	490	1144	-	_	941	-	-
Mov Cap-2 Maneuver	155	193	-	162	179	-	-	_	_	-	_	_
Stage 1	577	556	-	447	423	-	_	-	-	-	-	-
Stage 2	395	444	_	531	511	_	_	_	_	_	_	_
	300			30 /	J.,							
Annanah	ED			MD			NID			CD.		
Approach	EB			WB			NB			SB		
HCM Control Delay, s	23.4			34.9			0.2			0.4		
HCM LOS	С			D								
Minor Lane/Major Mvm	t	NBL	NBT	NBR	EBLn1V	WBLn1V	VBLn2	SBL	SBT	SBR		
Capacity (veh/h)		1144	-		229	164	490	941		_		
HCM Lane V/C Ratio		0.014	-	-		0.484			-	-		
HCM Control Delay (s)		8.2	-	-	23.4	46	13	8.9	-	-		
HCM Lane LOS		Α	-	-	С	Е	В	Α	-	-		
HCM 95th %tile Q(veh)		0	-	-	0.5	2.3	0.3	0.1	-	-		

Intersection												
Int Delay, s/veh	17.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	5	15	5	242	10	5	0	170	98	5	422	5
Future Vol, veh/h	5	15	5	242	10	5	0	170	98	5	422	5
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	6	17	6	269	11	6	0	189	109	6	469	6
Major/Minor	Minor2			Minor1			Major1		1	Major2		
Conflicting Flow All	736	782	472	740	731	244	475	0	0	298	0	0
Stage 1	484	484		244	244		-	-	-	-	-	-
Stage 2	252	298	_	496	487	_	_	_	_	_	_	_
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	_	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	_	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	_	_	_	-	-	_	-
Follow-up Hdwy	3.518	4.018	3.318		4.018	3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	335	326	592	333	349	795	1087	-	-	1263	-	-
Stage 1	564	552	-	760	704	-	-	-	-	-	-	-
Stage 2	752	667	-	556	550	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	323	324	592	315	347	795	1087	-	-	1263	-	-
Mov Cap-2 Maneuver	323	324	-	315	347	-	-	-	-	-	-	-
Stage 1	564	549	-	760	704	-	-	-	-	-	-	-
Stage 2	735	667	-	531	547	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	16			63.5			0			0.1		
HCM LOS	С			F								
Minor Lane/Major Mvm	nt _	NBL	NBT	NBR I	EBLn1V	WBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1087	-	-	356	320	1263	-	-			
HCM Lane V/C Ratio		-	-	-		0.892		-	-			
HCM Control Delay (s)		0	-	-	16	63.5	7.9	0	-			
HCM Lane LOS		Α	-	-	С	F	Α	Α	-			
HCM 95th %tile Q(veh)	0	-	_	0.3	8.4	0	-	-			

Intersection							
Int Delay, s/veh	7.6						
	EDI	EDD	NDI	NDT	CDT	CDD	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	ሻ	7	105	†	↑	7	
Traffic Vol, veh/h	237	108	185	31	26	644	
Future Vol, veh/h	237	108	185	31	26	644	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	290	100	-	-	175	
Veh in Median Storage	e, # 0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	263	120	206	34	29	716	
		0		•			
Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	475	29	745	0	-	0	
Stage 1	29	-	-	-	-	-	
Stage 2	446	-	-	-	-	-	
Critical Hdwy	6.42	6.22	4.12	-	-	-	
Critical Hdwy Stg 1	5.42	-	-	-	-	-	
Critical Hdwy Stg 2	5.42	_	-	-	-	-	
Follow-up Hdwy		3.318	2.218	_	_	-	
Pot Cap-1 Maneuver	548	1046	863	_	_	_	
Stage 1	994	-	-	_	_	_	
Stage 2	645	_	_	_	_	_	
Platoon blocked, %	043	_	_	_	_	_	
	117	1046	000	_			
Mov Cap-1 Maneuver	417	1046	863	-	-	-	
Mov Cap-2 Maneuver	417	-	-	-	-	-	
Stage 1	756	-	-	-	-	-	
Stage 2	645	-	-	-	-	-	
Approach	EB		NB		SB		
HCM Control Delay, s	21.5		9		0		
HCM LOS	21.3 C		9		U		
HOIVI LOS	U						
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1 I	EBLn2	SBT	
Capacity (veh/h)		863	_		1046	-	
HCM Lane V/C Ratio		0.238	_	0.631		_	
HCM Control Delay (s	1	10.5	_	27.3	8.9	-	
HCM Lane LOS		В	_	27.3 D	Α		
HCM 95th %tile Q(veh	1	0.9	_	4.2	0.4	-	
HOW SOUT WHIE Q(VEH)	0.9	-	4.2	0.4	-	

-						
Intersection						
Int Delay, s/veh	7.8					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	N.			4	1	
Traffic Vol, veh/h	2	143	23	439	987	2
Future Vol, veh/h	2	143	23	439	987	2
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	, # 0	-	_	0	0	-
Grade, %	0	-	_	0	0	-
Peak Hour Factor	68	68	85	85	89	89
Heavy Vehicles, %	0	1	0	1	1	0
Mvmt Flow	3	210	27	516	1109	2
IVIVIIIL I IOW	J	210	21	310	1103	
Major/Minor I	Minor2	ľ	Major1	N	//ajor2	
Conflicting Flow All	1680	1110	1111	0	_	0
Stage 1	1110	_	-	_	-	_
Stage 2	570	_	_	_	_	_
Critical Hdwy	6.4	6.21	4.1	_	_	_
Critical Hdwy Stg 1	5.4	- 0.21	7.1		_	
Critical Hdwy Stg 1	5.4	-	-	-	-	-
			-	-		-
Follow-up Hdwy	3.5	3.309	2.2	-	-	-
Pot Cap-1 Maneuver	105	256	636	-	-	-
Stage 1	318	-	-	-	-	-
Stage 2	570	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	99	256	636	-	-	-
Mov Cap-2 Maneuver	99	-	-	-	-	-
Stage 1	299	-	-	_	-	-
Stage 2	570	_	_	_	_	_
010.90 =	0.0					
Approach	EB		NB		SB	
HCM Control Delay, s	66.9		0.5		0	
HCM LOS	F					
Miner Lene/Meier M. m	.1	NDI	NDT	CDL1	CDT	CDD
Minor Lane/Major Mvm	IL	NBL		EBLn1	SBT	SBR
Capacity (veh/h)		636	-		-	-
HCM Lane V/C Ratio		0.043	-	0.85	-	-
HCM Control Delay (s)		10.9	0	66.9	-	-
HCM Lane LOS		В	Α	F	-	-
HCM 95th %tile Q(veh)		0.1	-	6.9	-	-

Intersection													
Int Delay, s/veh	31.2												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4	LDIX	*****	4	TIDIT	HDL	4	HUIT	ODL	4	OBIT	
Traffic Vol, veh/h	9	0	28	47	0	12	65	449	76	15	1142	25	
Future Vol, veh/h	9	0	28	47	0	12	65	449	76	15	1142	25	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	_	_	-	-	-	-	
Veh in Median Storage	.# -	0	_	_	0	_	-	0	_	_	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	63	63	63	83	83	83	94	94	94	89	89	89	
Heavy Vehicles, %	0	0	0	12	0	29	0	1	12	22	1	0	
Mvmt Flow	14	0	44	57	0	14	69	478	81	17	1283	28	
Major/Minor N	Minor2			Minor1			Major1		ı	Major2			
		2020			2002			^			0	^	
Conflicting Flow All	1995	2028	1297	2010	2002	519	1311	0	0	559	0	0	
Stage 1	1331	1331	-	657 1353	657	-	-	-	-	-	-	-	
Stage 2	664 7.1	697 6.5	6.2	7.22	1345 6.5	6.49	4.1	-	-	4.32	-	-	
Critical Hdwy	6.1	5.5		6.22	5.5	0.49	4.1		-	4.32	-		
Critical Hdwy Stg 1	6.1	5.5	-	6.22	5.5	_		-	-	-	-	-	
Critical Hdwy Stg 2 Follow-up Hdwy	3.5	3.3 4	3.3	3.608	3.5	3.561	2.2	-	-	2.398	-	-	
Pot Cap-1 Maneuver	46	58	200	~ 41	60	507	534			919	_	-	
Stage 1	192	226	200	438	465	501	JJ 4	_	_	313	_		
Stage 2	453	446	_	176	222	_					_		
Platoon blocked, %	700	770	_	170	LLL		_	-	_	_	_	_	
Mov Cap-1 Maneuver	36	44	200	~ 26	45	507	534	_		919	_		
Mov Cap-1 Maneuver	36	44	200	~ 26	45	-	-	<u>-</u>	_	-	_	_	
Stage 1	156	210	_	355	377	_	_	_	_	_	_	_	
Stage 2	356	361	-	127	207	-	_	_	_	-	-	-	
Jugo L	300	501			_0,								
Annroach	ΓD			WD			ND			CD			
Approach	EB		Φ.	WB			NB 1.4			SB			
HCM Control Delay, s	90.9		\$	825.9			1.4			0.1			
HCM LOS	F			F									
Minor Lane/Major Mvm	ıt	NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR				
Capacity (veh/h)		534	-	-	95	32	919	-	-				
HCM Lane V/C Ratio		0.129	-	-		2.221	0.018	-	-				
HCM Control Delay (s)		12.7	0	-	90.9\$	825.9	9	0	-				
HCM Lane LOS		В	Α	-	F	F	Α	Α	-				
HCM 95th %tile Q(veh)		0.4	-	-	2.9	8.2	0.1	-	-				
Notes													
~: Volume exceeds cap	nacity	\$· De	lav exc	eeds 30)0s	+· Com	putation	Not De	efined	*· All	maior v	olume ir	n platoon
. Volumo oxoccus cap	Jaonty	ψ. DC	ay one		, , ,	. Oom	patation	1100 00	Jilliou	. / ul	ujoi v		ii piatooii

Intersection						
Int Delay, s/veh	0.4					
Movement	WBL	\M/DD	NDT	NIPD	SBL	SBT
	WBL	WBR	NBT	NBR	OBL	
Lane Configurations	۸		f 22	0	٥	^
Traffic Vol, veh/h	0	58	532	0	0	1217
Future Vol, veh/h	0	58	532	0	0	1217
Conflicting Peds, #/hr	0	0	_ 0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage,		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	100	100	92	92	100
Heavy Vehicles, %	2	13	1	2	2	1
Mvmt Flow	0	58	532	0	0	1217
Major/Minor	line -1		Anic 1		Ania-O	
	/linor1		Major1		/lajor2	
Conflicting Flow All	-	532	0	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.395	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	- 3	3.4235	-	-	-	-
Pot Cap-1 Maneuver	0	521	-	0	0	-
Stage 1	0	-	-	0	0	-
Stage 2	0	-	-	0	0	-
Platoon blocked, %			-			-
Mov Cap-1 Maneuver	_	521	_	_	_	_
Mov Cap-2 Maneuver	_	-	_	<u>-</u>	_	_
Stage 1	_		_	<u> </u>	_	_
Stage 1 Stage 2	-	-	-	-	-	-
Slaye Z	-	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	12.8		0		0	
HCM LOS	В					
Minor Lane/Major Mvm	i .	NBTV	VBLn1	SBT		
Capacity (veh/h)		-	521	-		
HCM Lane V/C Ratio		-	0.111	-		
HCM Control Delay (s)		-	12.8	-		
HCM Lane LOS		-	В	-		
HCM 95th %tile Q(veh)		-	0.4	-		

	٠	→	*	•	←	•	1	1	~	/	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†		ሻሻ	↑ ↑			र्स	77		4	
Traffic Volume (vph)	0	143	8	1504	650	148	8	2	465	6	0	0
Future Volume (vph)	0	143	8	1504	650	148	8	2	465	6	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	12	11	12	12	16	12
Total Lost time (s)		6.0		6.0	6.0			6.0	6.0		6.0	
Lane Util. Factor		0.95		0.97	0.95			1.00	0.88		1.00	
Frt		0.99		1.00	0.97			1.00	0.85		1.00	
Flt Protected		1.00		0.95	1.00			0.96	1.00		0.95	
Satd. Flow (prot)		3367		3433	3441			1483	2760		2046	
Flt Permitted		1.00		0.95	1.00			0.86	1.00		0.75	
Satd. Flow (perm)		3367		3433	3441			1322	2760		1613	
Peak-hour factor, PHF	0.71	0.71	0.71	0.73	0.73	0.73	0.78	0.78	0.78	0.75	0.75	0.75
Adj. Flow (vph)	0	201	11	2060	890	203	10	3	596	8	0	0
RTOR Reduction (vph)	0	4	0	0	7	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	208	0	2060	1086	0	0	13	596	0	8	0
Heavy Vehicles (%)	0%	4%	50%	2%	2%	2%	25%	0%	3%	0%	0%	0%
Turn Type	Prot	NA		Prot	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	6	2		1	5			8			4	
Permitted Phases							8		8	4		
Actuated Green, G (s)		11.5		50.0	67.5			20.0	20.0		20.0	
Effective Green, g (s)		11.5		50.0	67.5			20.0	20.0		20.0	
Actuated g/C Ratio		0.12		0.50	0.68			0.20	0.20		0.20	
Clearance Time (s)		6.0		6.0	6.0			6.0	6.0		6.0	
Vehicle Extension (s)		3.0		3.0	3.0			3.0	3.0		3.0	
Lane Grp Cap (vph)		389		1725	2334			265	554		324	
v/s Ratio Prot		0.06		c0.60	c0.32							
v/s Ratio Perm								0.01	c0.22		0.00	
v/c Ratio		0.54		1.19	0.47			0.05	1.08		0.02	
Uniform Delay, d1		41.5		24.8	7.5			32.1	39.8		31.9	
Progression Factor		1.00		1.00	1.00			1.00	1.00		1.00	
Incremental Delay, d2		1.4		93.4	0.1			0.1	60.2		0.0	
Delay (s)		42.9		118.1	7.7			32.2	100.0		31.9	
Level of Service		D		F	A 70.0			C	F		C	
Approach Delay (s)		42.9			79.8			98.5			31.9	
Approach LOS		D			Е			F			С	
Intersection Summary												
HCM 2000 Control Delay			80.6	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capacit	y ratio		1.08									
Actuated Cycle Length (s)			99.5	S	um of lost	time (s)			18.0			
Intersection Capacity Utilization	n		67.9%	IC	CU Level o	of Service			С			
Analysis Period (min)			15									
o Critical Lana Croup												

102: US Route 4 SB On-Ramp/US Route 4 SB Off-Ramp & Pease Blvd 2035 No-Build Conditions Weekday AM Peak

	۶	→	•	•	•	•	1	†	-	-	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		1111	7	14	^					44		77
Traffic Volume (vph)	0	422	192	175	1304	0	0	0	0	618	0	1047
Future Volume (vph)	0	422	192	175	1304	0	0	0	0	618	0	1047
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	10	11	10	11	12	12	12	12	12	12	12
Total Lost time (s)		6.0	6.0	6.0	6.0					6.0		6.0
Lane Util. Factor		0.86	1.00	0.97	0.95					0.97		0.88
Frt		1.00	0.85	1.00	1.00					1.00		0.85
Flt Protected		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (prot)		5981	1419	2918	3455					3502		2814
Flt Permitted		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (perm)		5981	1419	2918	3455					3502		2814
Peak-hour factor, PHF	0.80	0.80	0.80	0.80	0.80	0.80	0.92	0.92	0.92	0.75	0.75	0.75
Adj. Flow (vph)	0	528	240	219	1630	0	0	0	0	824	0	1396
RTOR Reduction (vph)	0	0	158	0	0	0	0	0	0	0	0	72
Lane Group Flow (vph)	0	528	82	219	1630	0	0	0	0	824	0	1324
Heavy Vehicles (%)	0%	2%	10%	12%	1%	0%	2%	2%	2%	0%	0%	1%
Turn Type		NA	Prot	Prot	NA					Prot		Prot
Protected Phases		6	6	5	2 5					3		3
Permitted Phases												
Actuated Green, G (s)		35.0	35.0	25.0	66.0					25.0		25.0
Effective Green, g (s)		35.0	35.0	25.0	66.0					25.0		25.0
Actuated g/C Ratio		0.34	0.34	0.24	0.64					0.24		0.24
Clearance Time (s)		6.0	6.0	6.0						6.0		6.0
Vehicle Extension (s)		5.0	5.0	4.0						5.0		5.0
Lane Grp Cap (vph)		2032	482	708	2213					850		683
v/s Ratio Prot		0.09	0.06	0.08	c0.47					0.24		c0.47
v/s Ratio Perm												
v/c Ratio		0.26	0.17	0.31	0.74					0.97		1.94
Uniform Delay, d1		24.6	23.8	31.9	12.6					38.6		39.0
Progression Factor		1.00	1.00	0.90	1.53					1.00		1.00
Incremental Delay, d2		0.1	0.3	0.0	0.1					23.7		427.7
Delay (s)		24.8	24.2	28.9	19.4					62.3		466.7
Level of Service		С	С	С	В					E		F
Approach Delay (s)		24.6			20.6			0.0			316.6	
Approach LOS		С			С			Α			F	
Intersection Summary												
HCM 2000 Control Delay			157.1	Н	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capaci	ty ratio		1.14									
Actuated Cycle Length (s)			103.0	S	um of lost	time (s)			18.0			
Intersection Capacity Utilization	on		92.0%	IC	CU Level o	of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

103: US Route 4 NB Off-ramp/US Route 4 NB On-Ramp & Pease Blvd 2035 No-Build Conditions Weekday AM Peak

	۶	→	*	•	+	•	1	†	~	/	Ţ	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	44	^			^		44		77			
Traffic Volume (vph)	186	854	0	0	524	86	955	0	409	0	0	0
Future Volume (vph)	186	854	0	0	524	86	955	0	409	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	11	12	12	12	12	12	12	12	12	12	12
Grade (%)		0%			11%			0%			0%	
Total Lost time (s)	6.0	6.0			6.0		6.0		6.0			
Lane Util. Factor	0.97	0.95			0.91		0.97		0.88			
Frt	1.00	1.00			0.98		1.00		0.85			
Flt Protected	0.95	1.00			1.00		0.95		1.00			
Satd. Flow (prot)	3113	3421			4685		3433		2733			
FIt Permitted	0.37	1.00			1.00		0.95		1.00			
Satd. Flow (perm)	1204	3421			4685		3433		2733			
Peak-hour factor, PHF	0.87	0.87	0.92	0.92	0.85	0.85	0.78	0.92	0.78	0.92	0.92	0.92
Adj. Flow (vph)	214	982	0	0	616	101	1224	0	524	0	0	0
RTOR Reduction (vph)	0	0	0	0	19	0	0	0	320	0	0	0
Lane Group Flow (vph)	214	982	0	0	698	0	1224	0	204	0	0	0
Heavy Vehicles (%)	5%	2%	2%	2%	2%	5%	2%	2%	4%	2%	2%	2%
Turn Type	pm+pt	NA			NA		Prot		Prot			
Protected Phases	1	6			2		3		3			
Permitted Phases	6											
Actuated Green, G (s)	52.0	35.0			43.0		25.0		25.0			
Effective Green, g (s)	52.0	35.0			43.0		25.0		25.0			
Actuated g/C Ratio	0.50	0.34			0.42		0.24		0.24			
Clearance Time (s)	6.0	6.0			6.0		6.0		6.0			
Vehicle Extension (s)	4.0	5.0			5.0		5.0		5.0			
Lane Grp Cap (vph)	922	1162			1955		833		663			
v/s Ratio Prot	c0.04	c0.29			c0.15		c0.36		0.07			
v/s Ratio Perm	0.08											
v/c Ratio	0.23	0.85			0.36		1.47		0.31			
Uniform Delay, d1	13.6	31.5			20.5		39.0		31.9			
Progression Factor	1.05	1.16			1.00		1.00		1.00			
Incremental Delay, d2	0.1	4.7			0.2		217.8		0.6			
Delay (s)	14.3	41.2			20.8		256.8		32.5			
Level of Service	В	D			С		F		С			
Approach Delay (s)		36.4			20.8			189.5			0.0	
Approach LOS		D			С			F			Α	
Intersection Summary												
HCM 2000 Control Delay			106.4	Н	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capac	city ratio		0.85									
Actuated Cycle Length (s)			103.0		um of lost				18.0			
Intersection Capacity Utiliza	tion		92.0%	IC	CU Level o	of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

	-	•	†	1	-	↓		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	77	7	ተተተ	7	14.14	^		
Traffic Volume (vph)	1222	620	2337	248	378	681		
Future Volume (vph)	1222	620	2337	248	378	681		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Lane Width	12	12	12	11	12	12		
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Lane Util. Factor	0.97	1.00	0.91	1.00	0.97	0.95		
Frt	1.00	0.85	1.00	0.85	1.00	1.00		
FIt Protected	0.95	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (prot)	3303	1599	4988	1229	3242	3374		
FIt Permitted	0.95	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (perm)	3303	1599	4988	1229	3242	3374		
Peak-hour factor, PHF	0.87	0.87	0.93	0.93	0.81	0.81		
Adj. Flow (vph)	1405	713	2513	267	467	841		
RTOR Reduction (vph)	0	319	0	176	0	0		
Lane Group Flow (vph)	1405	394	2513	91	467	841		
Heavy Vehicles (%)	6%	1%	4%	27%	8%	7%		
Turn Type	Prot	Prot	NA	Prot	Prot	NA		
Protected Phases	7	7	6	6	5	2		
Permitted Phases								
Actuated Green, G (s)	25.0	25.0	31.7	31.7	18.3	56.0		
Effective Green, g (s)	25.0	25.0	31.7	31.7	18.3	56.0		
Actuated g/C Ratio	0.27	0.27	0.34	0.34	0.20	0.60		
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Vehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0		
Lane Grp Cap (vph)	887	429	1700	418	637	2031		
v/s Ratio Prot	c0.43	0.25	c0.50	0.07	c0.14	0.25		
v/s Ratio Perm								
v/c Ratio	1.58	0.92	1.48	0.22	0.73	0.41		
Uniform Delay, d1	34.0	33.0	30.7	21.8	35.1	9.8		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	268.2	24.8	218.4	1.2	4.6	0.6		
Delay (s)	302.2	57.8	249.1	23.0	39.7	10.4		
Level of Service	F	Е	F	С	D	В		
Approach Delay (s)	219.9		227.4			20.9		
Approach LOS	F		F			С		
ntersection Summary								
HCM 2000 Control Delay			181.3	Н	CM 2000	Level of Service	9	F
HCM 2000 Volume to Cap	acity ratio		1.33					
Actuated Cycle Length (s)			93.0	S	um of lost	time (s)	18	3.0
Intersection Capacity Utiliz	ation		105.8%	IC	CU Level o	of Service		G
Analysis Period (min)			15					
Critical Lana Croup								

	٠	→	+	•	\	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	7	^	^	7	7	7	
Traffic Volume (vph)	692	2265	816	669	234	243	
Future Volume (vph)	692	2265	816	669	234	243	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0	
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00	
Frt	1.00	1.00	1.00	0.85	1.00	0.85	
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1787	3471	3343	1583	1719	1538	
Flt Permitted	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	1787	3471	3343	1583	1719	1538	
Peak-hour factor, PHF	0.86	0.86	0.96	0.96	0.76	0.76	ı
Adj. Flow (vph)	805	2634	850	697	308	320	
RTOR Reduction (vph)	0	0	0	484	0	189	
Lane Group Flow (vph)	805	2634	850	213	308	131	
Heavy Vehicles (%)	1%	4%	8%	2%	5%	5%	
Turn Type	Prot	NA	NA	Perm	Prot	Prot	
Protected Phases	1	6	2		3	3	
Permitted Phases				2			
Actuated Green, G (s)	7.4	31.4	18.0	18.0	15.6	15.6	
Effective Green, g (s)	7.4	31.4	18.0	18.0	15.6	15.6	
Actuated g/C Ratio	0.13	0.53	0.31	0.31	0.26	0.26	
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	
Vehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0	
Lane Grp Cap (vph)	224	1847	1019	482	454	406	
v/s Ratio Prot	c0.45	c0.76	0.25		c0.18	0.09	
v/s Ratio Perm				0.13			
v/c Ratio	3.59	1.43	0.83	0.44	0.68	0.32	
Uniform Delay, d1	25.8	13.8	19.1	16.5	19.5	17.5	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	1178.2	195.0	8.0	2.9	4.4	0.6	
Delay (s)	1204.0	208.8	27.1	19.4	23.8	18.1	
Level of Service	F	F	С	В	С	В	
Approach Delay (s)		441.7	23.6		20.9		
Approach LOS		F	С		С		
Intersection Summary							
HCM 2000 Control Delay			279.4	H	CM 2000	Level of Service	9
HCM 2000 Volume to Capa	city ratio		1.62				
Actuated Cycle Length (s)			59.0		um of lost		
Intersection Capacity Utiliza	tion		89.8%	IC	U Level o	of Service	
Analysis Period (min)			15				
c Critical Lane Group							

	-	*	1	•	1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	^	1	7	^	7	7		
Traffic Volume (vph)	1585	914	123	904	581	783		
Future Volume (vph)	1585	914	123	904	581	783		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Lane Width	12	12	12	12	13	12		
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Lane Util. Factor	0.95	1.00	1.00	0.95	1.00	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Flt Protected	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (prot)	3539	1468	1752	3438	1680	1538		
Flt Permitted	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (perm)	3539	1468	1752	3438	1680	1538		
Peak-hour factor, PHF	0.95	0.95	0.90	0.90	0.80	0.80		
Adj. Flow (vph)	1668	962	137	1004	726	979		
RTOR Reduction (vph)	0	459	0	0	0	387		
Lane Group Flow (vph)	1668	503	137	1004	726	592		
Heavy Vehicles (%)	2%	10%	3%	5%	11%	5%		
	NA			NA	Prot	Prot		
Turn Type Protected Phases	6	Prot 6	Prot 5	2	7	7		
Permitted Phases	U	U	3	2	- /	<i>'</i>		
	62.9	62.9	17.1	86.0	40.0	40.0		
Actuated Green, G (s)	62.9		17.1	86.0	40.0	40.0		
Effective Green, g (s)		62.9	0.12					
Actuated g/C Ratio	0.46	0.46		0.62	0.29	0.29		
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Vehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0		
Lane Grp Cap (vph)	1613	669	217	2142	486	445		
v/s Ratio Prot	c0.47	0.34	c0.08	0.29	c0.43	0.38		
v/s Ratio Perm	4.00	0.75	0.00	0.45	4 40	4.00		
v/c Ratio	1.03	0.75	0.63	0.47	1.49	1.33		
Uniform Delay, d1	37.5	31.1	57.5	13.8	49.0	49.0		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	31.7	7.6	6.6	0.7	232.9	163.4		
Delay (s)	69.3	38.7	64.0	14.6	281.9	212.4		
Level of Service	Е	D	Е	В	F	F		
Approach Delay (s)	58.1			20.5	242.0			
Approach LOS	Е			С	F			
Intersection Summary								
HCM 2000 Control Delay			107.5	Н	CM 2000	Level of Servic	Э	
HCM 2000 Volume to Capa	acity ratio		1.13					
Actuated Cycle Length (s)			138.0	S	um of lost	t time (s)		
Intersection Capacity Utiliza	ation		102.3%			of Service		
Analysis Period (min)			15					
o Critical Lana Group								

Intersection												
Intersection Delay, s/veh	60.8											
Intersection LOS	F											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		7	1			सी	7		4	
Traffic Vol, veh/h	0	31	10	302	132	123	23	110	109	28	316	36
Future Vol, veh/h	0	31	10	302	132	123	23	110	109	28	316	36
Peak Hour Factor	0.50	0.50	0.50	0.70	0.70	0.70	0.87	0.87	0.87	0.70	0.70	0.70
Heavy Vehicles, %	0	0	0	2	0	5	0	6	8	14	0	0
Mvmt Flow	0	62	20	431	189	176	26	126	125	40	451	51
Number of Lanes	0	1	0	1	1	0	0	1	1	0	1	0
Approach		EB		WB			NB			SB		
Opposing Approach		WB		EB			SB			NB		
Opposing Lanes		2		1			1			2		
Conflicting Approach Left		SB		NB			EB			WB		
Conflicting Lanes Left		1		2			1			2		
Conflicting Approach Right		NB		SB			WB			EB		
Conflicting Lanes Right		2		1			2			1		
HCM Control Delay		14.6		43.6			14.5			116.7		
HCM LOS		В		Е			В			F		
Laws												
Lane		NBLn1	NBLn2	EBLn1	WBLn1	WBLn2	SBLn1					
Vol Left, %		NBLn1 17%	NBLn2 0%	EBLn1 0%	WBLn1 100%	WBLn2 0%	SBLn1 7%					
Vol Left, % Vol Thru, % Vol Right, %		17%	0% 0% 100%	0% 76% 24%	100%	0%	7%					
Vol Left, % Vol Thru, %		17% 83% 0% Stop	0% 0% 100% Stop	0% 76%	100% 0% 0% Stop	0% 52% 48% Stop	7% 83% 9% Stop					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		17% 83% 0% Stop 133	0% 0% 100%	0% 76% 24% Stop 41	100% 0% 0% Stop 302	0% 52% 48% Stop 255	7% 83% 9% Stop 380					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		17% 83% 0% Stop 133 23	0% 0% 100% Stop 109	0% 76% 24% Stop 41	100% 0% 0% Stop 302 302	0% 52% 48% Stop 255	7% 83% 9% Stop 380 28					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		17% 83% 0% Stop 133 23 110	0% 0% 100% Stop 109 0	0% 76% 24% Stop 41 0 31	100% 0% 0% Stop 302 302	0% 52% 48% Stop 255 0 132	7% 83% 9% Stop 380 28 316					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		17% 83% 0% Stop 133 23 110	0% 0% 100% Stop 109 0 0	0% 76% 24% Stop 41 0 31	100% 0% 0% Stop 302 302 0	0% 52% 48% Stop 255 0 132 123	7% 83% 9% Stop 380 28 316 36					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		17% 83% 0% Stop 133 23 110 0	0% 0% 100% Stop 109 0 0 109 125	0% 76% 24% Stop 41 0 31 10	100% 0% 0% Stop 302 302 0 0	0% 52% 48% Stop 255 0 132 123 364	7% 83% 9% Stop 380 28 316 36 543					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		17% 83% 0% Stop 133 23 110 0 153	0% 0% 100% Stop 109 0 0 109 125	0% 76% 24% Stop 41 0 31 10 82 6	100% 0% 0% Stop 302 302 0 0 431	0% 52% 48% Stop 255 0 132 123 364	7% 83% 9% Stop 380 28 316 36 543					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		17% 83% 0% Stop 133 23 110 0 153 7 0.345	0% 0% 100% Stop 109 0 0 109 125 7 0.259	0% 76% 24% Stop 41 0 31 10 82 6	100% 0% 0% Stop 302 302 0 0 431 7	0% 52% 48% Stop 255 0 132 123 364 7 0.707	7% 83% 9% Stop 380 28 316 36 543 6					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		17% 83% 0% Stop 133 23 110 0 153 7 0.345 8.501	0% 0% 100% Stop 109 0 0 109 125 7 0.259 7.79	0% 76% 24% Stop 41 0 31 10 82 6 0.198 9.349	100% 0% 0% Stop 302 302 0 431 7 0.941 8.288	0% 52% 48% Stop 255 0 132 123 364 7 0.707 7.391	7% 83% 9% Stop 380 28 316 36 543 6 1.152 7.637					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		17% 83% 0% Stop 133 23 110 0 153 7 0.345 8.501 Yes	0% 0% 100% Stop 109 0 0 109 125 7 0.259 7.79 Yes	0% 76% 24% Stop 41 0 31 10 82 6 0.198 9.349 Yes	100% 0% 0% Stop 302 302 0 0 431 7 0.941 8.288 Yes	0% 52% 48% Stop 255 0 132 123 364 7 0.707 7.391 Yes	7% 83% 9% Stop 380 28 316 36 543 6 1.152 7.637 Yes					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		17% 83% 0% Stop 133 23 110 0 153 7 0.345 8.501 Yes 427	0% 0% 100% Stop 109 0 0 109 125 7 0.259 7.79 Yes 464	0% 76% 24% Stop 41 0 31 10 82 6 0.198 9.349 Yes 386	100% 0% 0% Stop 302 302 0 0 431 7 0.941 8.288 Yes 440	0% 52% 48% Stop 255 0 132 123 364 7 0.707 7.391 Yes 492	7% 83% 9% Stop 380 28 316 36 543 6 1.152 7.637 Yes 478					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		17% 83% 0% Stop 133 23 110 0 153 7 0.345 8.501 Yes 427 6.201	0% 0% 100% Stop 109 0 0 109 125 7 0.259 7.79 Yes 464 5.49	0% 76% 24% Stop 41 0 31 10 82 6 0.198 9.349 Yes 386 7.349	100% 0% 0% Stop 302 302 0 0 431 7 0.941 8.288 Yes 440 5.988	0% 52% 48% Stop 255 0 132 123 364 7 0.707 7.391 Yes 492 5.091	7% 83% 9% Stop 380 28 316 36 543 6 1.152 7.637 Yes 478 5.689					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		17% 83% 0% Stop 133 23 110 0 153 7 0.345 8.501 Yes 427 6.201 0.358	0% 0% 100% Stop 109 0 0 109 125 7 0.259 7.79 Yes 464 5.49 0.269	0% 76% 24% Stop 41 0 31 10 82 6 0.198 9.349 Yes 386 7.349 0.212	100% 0% 0% Stop 302 302 0 0 431 7 0.941 8.288 Yes 440 5.988 0.98	0% 52% 48% Stop 255 0 132 123 364 7 0.707 7.391 Yes 492 5.091 0.74	7% 83% 9% Stop 380 28 316 36 543 6 1.152 7.637 Yes 478 5.689 1.136					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay		17% 83% 0% Stop 133 23 110 0 153 7 0.345 8.501 Yes 427 6.201 0.358 15.6	0% 0% 100% Stop 109 0 0 109 125 7 0.259 7.79 Yes 464 5.49 0.269 13.2	0% 76% 24% Stop 41 0 31 10 82 6 0.198 9.349 Yes 386 7.349 0.212 14.6	100% 0% 0% Stop 302 302 0 0 431 7 0.941 8.288 Yes 440 5.988 0.98 58.4	0% 52% 48% Stop 255 0 132 123 364 7 0.707 7.391 Yes 492 5.091 0.74 26	7% 83% 9% Stop 380 28 316 36 543 6 1.152 7.637 Yes 478 5.689 1.136 116.7					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		17% 83% 0% Stop 133 23 110 0 153 7 0.345 8.501 Yes 427 6.201 0.358	0% 0% 100% Stop 109 0 0 109 125 7 0.259 7.79 Yes 464 5.49 0.269	0% 76% 24% Stop 41 0 31 10 82 6 0.198 9.349 Yes 386 7.349 0.212	100% 0% 0% Stop 302 302 0 0 431 7 0.941 8.288 Yes 440 5.988 0.98	0% 52% 48% Stop 255 0 132 123 364 7 0.707 7.391 Yes 492 5.091 0.74	7% 83% 9% Stop 380 28 316 36 543 6 1.152 7.637 Yes 478 5.689 1.136					

Intersection												
Int Delay, s/veh	5.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			र्भ	7	*	13		*	1	
Traffic Vol, veh/h	8	13	15	39	6	23	39	263	49	51	472	49
Future Vol, veh/h	8	13	15	39	6	23	39	263	49	51	472	49
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	80	85	-	-	165	-	-
Veh in Median Storage	e, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	71	71	71	83	83	83	79	79	79	66	66	66
Heavy Vehicles, %	25	0	14	0	33	9	0	4	0	4	1	4
Mvmt Flow	11	18	21	47	7	28	49	333	62	77	715	74
Major/Minor	Minor2		N	Minor1			Major1			Major2		
Conflicting Flow All	1386	1399	752	1388	1405	364	789	0	0	395	0	0
Stage 1	906	906	-	462	462	-	-	-	-	-	-	-
Stage 2	480	493	_	926	943	_	_	_	_	_	_	-
Critical Hdwy	7.35	6.5	6.34	7.1	6.83	6.29	4.1	-	-	4.14	-	_
Critical Hdwy Stg 1	6.35	5.5	-	6.1	5.83	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.35	5.5	-	6.1	5.83	-	-	-	-	-	-	-
Follow-up Hdwy	3.725	4	3.426			3.381	2.2	-	-	2.236	-	-
Pot Cap-1 Maneuver	107	142	391	121	120	666	840	-	-	1153	-	-
Stage 1	301	358	-	584	516	-	-	-	-	-	-	-
Stage 2	526	550	-	325	303	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	88	125	391	92	105	666	840	-	-	1153	-	-
Mov Cap-2 Maneuver	88	125	-	92	105	-	-	-	-	-	-	-
Stage 1	284	334	-	550	486	-	-	-	-	-	-	-
Stage 2	468	518	-	271	283	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	39.4			60.4			1.1			0.7		
HCM LOS	Е			F								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR I	EBLn1V	VBLn1V	VBLn2	SBL	SBT	SBR		
Capacity (veh/h)		840	-	-	154	94	666	1153	-	-		
HCM Lane V/C Ratio		0.059	-	-		0.577			-	-		
HCM Control Delay (s)		9.6	-	-	39.4	85.9	10.6	8.3	-	-		
HCM Lane LOS		Α	-	-	Е	F	В	Α	-	-		
HCM 95th %tile Q(veh))	0.2	-	-	1.3	2.7	0.1	0.2	-	-		

Intersection												
Int Delay, s/veh	2.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	6	11	6	46	11	11	6	341	285	17	148	17
Future Vol, veh/h	6	11	6	46	11	11	6	341	285	17	148	17
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	<u> </u>	-	None	-	-	None	-	_	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	7	12	7	51	12	12	7	379	317	19	164	19
Major/Minor	Minor2			Minor1			Major1		ı	Major2		
Conflicting Flow All	776	922	174	773	773	538	183	0	0	696	0	0
Stage 1	212	212	- 17-	552	552	-	-	-	-	-	-	-
Stage 2	564	710	_	221	221		_	_	_	_	_	_
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12			4.12		
Critical Hdwy Stg 1	6.12	5.52	0.22	6.12	5.52	0.22	7.12	_	_	4.12	_	_
Critical Hdwy Stg 1	6.12	5.52		6.12	5.52		_					
Follow-up Hdwy	3.518	4.018	3.318		4.018	3.318	2.218	_	_	2.218	_	_
Pot Cap-1 Maneuver	315	270	869	316	330	543	1392	_		900	_	_
Stage 1	790	727	- 003	518	515	J -1 J	1002	_	_	-	_	
Stage 2	510	437		781	720		_		_	_		
Platoon blocked, %	010	701		101	120			_	_		_	_
Mov Cap-1 Maneuver	291	261	869	295	319	543	1392	_		900	_	_
Mov Cap-1 Maneuver	291	261	-	295	319	-	1002	_	_	-	_	_
Stage 1	783	710	_	513	510	_	_	_		_	_	_
Stage 2	482	433	_	743	703	_	_	_	_	_	_	_
Olugo Z	702	700		170	, 00	_						
Approach	EB			WB			NB			SB		
HCM Control Delay, s	16.8			19.5			0.1			0.8		
HCM LOS	10.0			19.5 C			0.1			0.0		
TOW LOG	U			U								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1V	VBL n1	SBL	SBT	SBR			
Capacity (veh/h)		1392	_		330	323	900	_	_			
HCM Lane V/C Ratio		0.005	_	_		0.234		_	_			
HCM Control Delay (s)		7.6	0	_	16.8	19.5	9.1	0	_			
HCM Lane LOS		Α	A	_	C	C	Α	A	_			
HCM 95th %tile Q(veh)	0	-	_	0.2	0.9	0.1	-	_			
Jivi ootii 70tiio Q[Voii	1	- 3			0.2	0.5	J. 1					

Intersection									
Int Delay, s/veh	69.4								
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	*	7	*	†	↑	7			
Traffic Vol, veh/h	621	348	136	10	46	165			
Future Vol, veh/h	621	348	136	10	46	165			
Conflicting Peds, #/hr	0	0	0	0	0	0			
Sign Control	Stop	Stop	Free	Free	Free	Free			
RT Channelized	- -	None	-	None	-	None			
Storage Length	0	290	100	-	_	175			
Veh in Median Storage		-	-	0	0	-			
Grade, %	0	_	_	0	0	<u>-</u>			
Peak Hour Factor	90	90	90	90	90	90			
Heavy Vehicles, %	2	2	2	2	2	2			
Mvmt Flow	690	387	151	11	51	183			
IVIVIIII I IUW	030	301	101	11	31	100			
	Minor2		Major1		//ajor2				
Conflicting Flow All	364	51	234	0	-	0			
Stage 1	51	-	-	-	-	-			
Stage 2	313	-	-	-	-	-			
Critical Hdwy	6.42	6.22	4.12	-	-	-			
Critical Hdwy Stg 1	5.42	-	-	-	-	-			
Critical Hdwy Stg 2	5.42	-	-	-	-	-			
Follow-up Hdwy	3.518	3.318	2.218	-	-	-			
Pot Cap-1 Maneuver	~ 635	1017	1333	-	-	-			
Stage 1	971	-	-	-	-	-			
Stage 2	741	-	-	-	-	-			
Platoon blocked, %				-	-	-			
Mov Cap-1 Maneuver	~ 563	1017	1333	-	-	-			
Mov Cap-2 Maneuver		-	-	-	-	-			
Stage 1	861	-	-	-	-	-			
Stage 2	741	-	-	-	-	-			
y									
Approach	EB		NB		SB				
HCM Control Delay, s			7.5		0				
HCM LOS	55.0 F		1.0		J				
TIOWI LOO	ı								
Minor Long /Mair v NA		NDI	NDT	TDL 4 F	- DI C	CDT	CDD		
Minor Lane/Major Mvr	IIL	NBL		EBLn1 E		SBT	SBR		
Capacity (veh/h)		1333	-	563	1017	-	-		
HCM Lane V/C Ratio	,	0.113		1.226	0.38	-	-		
HCM Control Delay (s)	8	-	140.3	10.7	-	-		
HCM Lane LOS	,	A	-	F	В	-	-		
HCM 95th %tile Q(veh	1)	0.4	-	25.9	1.8	-	-		
Notes									
~: Volume exceeds ca	pacity	\$: De	elay exc	eeds 30)0s	+: Com	outation Not Defined	*: All major volume in platoon	
	1		,					.,	

Intersection						
Int Delay, s/veh	1.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	KA			र्स	1	
Traffic Vol, veh/h	0	20	207	1301	430	0
Future Vol, veh/h	0	20	207	1301	430	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storag	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	50	50	67	67	75	75
Heavy Vehicles, %	2	2	1	2	2	0
Mymt Flow	0	40	309	1942	573	0
WWW.CT IOW	J	10	000	1012	010	J
Major/Minor	Minor2	l	Major1	N	/lajor2	
Conflicting Flow All	3133	573	573	0	-	0
Stage 1	573	-	-	-	-	-
Stage 2	2560	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.11	-	_	-
Critical Hdwy Stg 1	5.42	-	_	_	_	_
Critical Hdwy Stg 2	5.42	_	_	_	_	_
Follow-up Hdwy	3.518	3.318	2.209	_	_	_
Pot Cap-1 Maneuver	12	519	1005	_	_	_
Stage 1	564	-	1005		_	_
Stage 2	59		_	-		
	59	-	-	-	-	-
Platoon blocked, %	40	540	4005	-	-	-
Mov Cap-1 Maneuver		519	1005	-	-	-
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	564	-	-	-	-	-
Stage 2	59	-	-	-	-	-
Approach	EB		NB		SB	
					0	
HCM Control Delay, s	12.5		1.4		U	
HCM LOS	В					
Minor Lane/Major Mvr	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1005	-		-	
HCM Lane V/C Ratio		0.307			_	_
HCM Control Delay (s)	10.2	0	12.5	_	_
HCM Lane LOS)	10.2 B	-	12.5 B		-
		1.3	Α	0.2	-	
HCM 95th %tile Q(veh	1)	1.3	-	0.2	-	-

Intersection													
Int Delay, s/veh	85.2												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			4			4		
Traffic Vol, veh/h	0	0	6	40	0	5	36	1505	86	13	431	0	
Future Vol, veh/h	0	0	6	40	0	5	36	1505	86	13	431	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	·-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	38	38	38	71	71	71	71	71	71	70	70	70	
Heavy Vehicles, %	0	0	33	17	0	50	6	1	7	17	3	0	
Mvmt Flow	0	0	16	56	0	7	51	2120	121	19	616	0	
Major/Minor I	Minor2			Minor1			Major1			Major2			
Conflicting Flow All	2940	2997	616	2945	2937	2181	616	0	0	2241	0	0	
Stage 1	654	654	-	2283	2283	-	-	-	-	-	-	-	
Stage 2	2286	2343	-	662	654	-	-	-	-	-	-	-	
Critical Hdwy	7.1	6.5	6.53	7.27	6.5	6.7	4.16	-	-	4.27	-	-	
Critical Hdwy Stg 1	6.1	5.5	-	6.27	5.5	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.1	5.5	-	6.27	5.5	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	4	3.597	3.653	4	3.75	2.254	-	-	2.353	-	-	
Pot Cap-1 Maneuver	9	14	438	~ 8	15	42	945	-	-	204	-	-	
Stage 1	459	466	-	~ 48	76	-	-	-	-	-	-	-	
Stage 2	53	71	-	427	466	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	7	12	438	~ 7	13	42	945	-	-	204	-	-	
Mov Cap-2 Maneuver	7	12	-	~ 7	13	-	-	-	-	-	-	-	
Stage 1	459	400	-	~ 48	76	-	-	-	-	-	-	-	
Stage 2	44	71	-	353	400	-	-	-	-	-	-	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	13.5		\$ 4	4020.1			0.2			0.7			
HCM LOS	В			F									
Minor Lane/Major Mvm	nt	NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR				
Capacity (veh/h)		945	-	-	438	8	204		-				
HCM Lane V/C Ratio		0.054	-	-		7.923		-	-				
HCM Control Delay (s)		9	0	-		4020.1	24.4	0	-				
HCM Lane LOS		Α	Α	-	В	F	С	Α	-				
HCM 95th %tile Q(veh))	0.2	-	-	0.1	9.4	0.3	-	-				
Notes													
~: Volume exceeds cap	nacity	\$ De	elay exc	eeds 30	00s	+. Com	putation	Not De	efined	*· All	maior v	olume ir	n platoon
. Volumo oxocodo od	Jaoity	ψ. DC	.ay onc	.5545 0		. 50111	Patation	, AUC DO	J.11100	. 7 11	ajoi v	Cidino II	piatoon

Intersection									
nt Delay, s/veh	86.5								
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations		7	†			^			
raffic Vol, veh/h	0	266	1361	0	0	477			
uture Vol, veh/h	0	266	1361	0	0	477			
onflicting Peds, #/hr		0	0	0	0	0			
ign Control	Stop	Stop	Free		Free	Free			
T Channelized	-	None	-	None	-	None			
Storage Length	_	0	_	-	_	-			
eh in Median Storag		-	0	_	_	0			
Grade, %	0	_	0	_	_	0			
eak Hour Factor	92	76	95	92	92	80			
eavy Vehicles, %	2	3	2	2	2	4			
lvmt Flow	0	350	1433	0	0	596			
		- 500	1 100		- 0	- 550			
ajor/Minor	Minor1	ı	Major1	M	ajor2				
onflicting Flow All	-		0	-	<u>ajuiz</u> -				
Stage 1	-	1433	-	-	-	-			
Stage 1	-	-	-	-	-	-			
ritical Hdwy		6.245	_	-		-			
itical Hdwy Stg 1	-	0.243	_	-	_	_			
itical Hdwy Stg 2			_	-	_	-			
ollow-up Hdwy		3.3285				_			
		~ 162	-	-	-				
ot Cap-1 Maneuver				0	0	-			
Stage 1	0	-	-	0	0	-			
Stage 2	U	-		U	U				
latoon blocked, %	r	~ 162	-			-			
lov Cap-1 Maneuve		~ 102	-	-	-				
lov Cap-2 Maneuve			-	-	-	-			
Stage 1	-	-	-	-	-	-			
Stage 2	-	-	-	-	-	-			
nnraach	WB		NB		SB				
pproach									
ICM Control Delay,			0		0				
CM LOS	F								
		NET	VDL (057					
inor Lane/Major Mv	mt	NBIV	VBLn1	SBT					
apacity (veh/h)		-	162	-					
CM Lane V/C Ratio		-	2.16	-					
CM Control Delay (S)	-	\$ 588	-					
CM Lane LOS		-	F	-					
CM 95th %tile Q(ve	h)	-	28.2	-					
otes									
Volume exceeds c	apacity	\$: De	lay exc	eeds 300)s	+: Com	outation Not Defined	*: All major volume in	platoon

	۶	→	*	•	•	•	4	1	~	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	† 1>		44	↑ ↑			र्स	77		4	
Traffic Volume (vph)	6	487	8	315	280	339	11	0	1450	113	17	3
Future Volume (vph)	6	487	8	315	280	339	11	0	1450	113	17	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	12	11	12	12	16	12
Total Lost time (s)	5.0	6.0		6.0	6.0			6.0	6.0		6.0	
Lane Util. Factor	1.00	0.95		0.97	0.95			1.00	0.88		1.00	
Frt	1.00	1.00		1.00	0.92			1.00	0.85		1.00	
Flt Protected	0.95	1.00		0.95	1.00			0.95	1.00		0.96	
Satd. Flow (prot)	1357	3532		3155	3299			1491	2842		2059	
Flt Permitted	0.95	1.00		0.95	1.00			0.69	1.00		0.75	
Satd. Flow (perm)	1357	3532		3155	3299			1086	2842		1610	
Peak-hour factor, PHF	0.69	0.69	0.69	0.88	0.88	0.88	0.93	0.93	0.93	0.81	0.81	0.81
Adj. Flow (vph)	9	706	12	358	318	385	12	0	1559	140	21	4
RTOR Reduction (vph)	0	1	0	0	134	0	0	0	0	0	1	0
Lane Group Flow (vph)	9	717	0	358	569	0	0	12	1559	0	164	0
Heavy Vehicles (%)	33%	2%	0%	11%	1%	0%	17%	0%	0%	0%	0%	0%
Turn Type	Prot	NA		Prot	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	6	2		1	5			8			4	
Permitted Phases							8		8	4		
Actuated Green, G (s)	4.2	24.9		14.2	35.9			20.2	20.2		20.2	
Effective Green, g (s)	4.2	24.9		14.2	35.9			20.2	20.2		20.2	
Actuated g/C Ratio	0.05	0.32		0.18	0.46			0.26	0.26		0.26	
Clearance Time (s)	5.0	6.0		6.0	6.0			6.0	6.0		6.0	
Vehicle Extension (s)	2.0	3.0		3.0	3.0			3.0	3.0		3.0	
Lane Grp Cap (vph)	73	1137		579	1532			283	742		420	
v/s Ratio Prot	0.01	c0.20		c0.11	0.17							
v/s Ratio Perm								0.01	c0.55		0.10	
v/c Ratio	0.12	0.63		0.62	0.37			0.04	2.10		0.39	
Uniform Delay, d1	34.8	22.3		29.1	13.4			21.3	28.5		23.5	
Progression Factor	1.00	1.00		1.00	1.00			1.00	1.00		1.00	
Incremental Delay, d2	0.3	1.2		2.0	0.2			0.1	500.1		0.6	
Delay (s)	35.1	23.4		31.0	13.6			21.4	528.6		24.1	
Level of Service	D	C		С	B			C	F		C	
Approach Delay (s)		23.6			19.4			524.7			24.1	
Approach LOS		С			В			F			С	
Intersection Summary												
HCM 2000 Control Delay			245.8	H	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capac	city ratio		1.13									
Actuated Cycle Length (s)			77.3		um of lost				18.0			
Intersection Capacity Utilizat	tion		86.8%	IC	CU Level of	of Service			Е			
Analysis Period (min)			15									
o Critical Lano Group												

102: US Route 4 SB On-Ramp/US Route 4 SB Off-Ramp & Pease Blvd 2035 No-Build Conditions Weekday PM Peak

	۶	-	•	•	•	•	1	†	-	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		1111	7	14.54	^					44		77
Traffic Volume (vph)	0	1342	708	764	680	0	0	0	0	434	0	268
Future Volume (vph)	0	1342	708	764	680	0	0	0	0	434	0	268
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	10	11	10	11	12	12	12	12	12	12	12
Total Lost time (s)		6.0	6.0	6.0	6.0					6.0		6.0
Lane Util. Factor		0.86	1.00	0.97	0.95					0.97		0.88
Frt		1.00	0.85	1.00	1.00					1.00		0.85
Flt Protected		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (prot)		6040	1546	3236	3455					3502		2814
Flt Permitted		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (perm)		6040	1546	3236	3455					3502		2814
Peak-hour factor, PHF	0.92	0.85	0.85	0.94	0.94	0.92	0.92	0.92	0.92	0.75	0.25	0.75
Adj. Flow (vph)	0	1579	833	813	723	0	0	0	0	579	0	357
RTOR Reduction (vph)	0	0	364	0	0	0	0	0	0	0	0	270
Lane Group Flow (vph)	0	1579	469	813	723	0	0	0	0	579	0	87
Heavy Vehicles (%)	0%	1%	1%	1%	1%	0%	2%	2%	2%	0%	0%	1%
Turn Type		NA	Prot	Prot	NA					Prot		Prot
Protected Phases		6	6	5	2 5					3		3
Permitted Phases												
Actuated Green, G (s)		35.0	35.0	25.0	66.0					25.0		25.0
Effective Green, g (s)		35.0	35.0	25.0	66.0					25.0		25.0
Actuated g/C Ratio		0.34	0.34	0.24	0.64					0.24		0.24
Clearance Time (s)		6.0	6.0	6.0						6.0		6.0
Vehicle Extension (s)		5.0	5.0	4.0						5.0		5.0
Lane Grp Cap (vph)		2052	525	785	2213					850		683
v/s Ratio Prot		0.26	c0.30	c0.25	0.21					c0.17		0.03
v/s Ratio Perm												
v/c Ratio		0.77	0.89	1.04	0.33					0.68		0.13
Uniform Delay, d1		30.4	32.2	39.0	8.4					35.4		30.5
Progression Factor		1.00	1.00	1.29	1.36					1.00		1.00
Incremental Delay, d2		2.1	18.5	30.1	0.1					2.9		0.2
Delay (s)		32.5	50.7	80.5	11.5					38.3		30.6
Level of Service		С	D	F	В					D		С
Approach Delay (s)		38.8			48.0			0.0			35.4	
Approach LOS		D			D			Α			D	
Intersection Summary												
HCM 2000 Control Delay			41.0	H	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capaci	ty ratio		0.87									
Actuated Cycle Length (s)			103.0		um of lost				18.0			
Intersection Capacity Utilizati	on		93.0%	IC	U Level o	of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

103: US Route 4 NB Off-ramp/US Route 4 NB On-Ramp & Pease Blvd 2035 No-Build Conditions Weekday PM Peak

	۶	→	*	•	+	•	1	†	~	/	Ţ	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	14	^			^		44		77			
Traffic Volume (vph)	807	969	0	0	1109	454	335	0	698	0	0	0
Future Volume (vph)	807	969	0	0	1109	454	335	0	698	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	11	12	12	12	12	12	12	12	12	12	12
Grade (%)		0%			11%			0%			0%	
Total Lost time (s)	6.0	6.0			6.0		6.0		6.0			
Lane Util. Factor	0.97	0.95			0.91		0.97		0.88			
Frt	1.00	1.00			0.96		1.00		0.85			
Flt Protected	0.95	1.00			1.00		0.95		1.00			
Satd. Flow (prot)	3236	3455			4655		3433		2814			
FIt Permitted	0.11	1.00			1.00		0.95		1.00			
Satd. Flow (perm)	389	3455			4655		3433		2814			
Peak-hour factor, PHF	0.87	0.87	0.92	0.92	0.90	0.90	0.94	0.92	0.94	0.92	0.92	0.92
Adj. Flow (vph)	928	1114	0	0	1232	504	356	0	743	0	0	0
RTOR Reduction (vph)	0	0	0	0	71	0	0	0	563	0	0	0
Lane Group Flow (vph)	928	1114	0	0	1665	0	356	0	180	0	0	0
Heavy Vehicles (%)	1%	1%	2%	2%	1%	0%	2%	2%	1%	2%	2%	2%
Turn Type	pm+pt	NA			NA		Prot		Prot			
Protected Phases	1	6			2		3		3			
Permitted Phases	6											
Actuated Green, G (s)	60.0	35.0			35.0		25.0		25.0			
Effective Green, g (s)	60.0	35.0			35.0		25.0		25.0			
Actuated g/C Ratio	0.58	0.34			0.34		0.24		0.24			
Clearance Time (s)	6.0	6.0			6.0		6.0		6.0			
Vehicle Extension (s)	4.0	5.0			5.0		5.0		5.0			
Lane Grp Cap (vph)	917	1174			1581		833		683			
v/s Ratio Prot	c0.25	0.32			c0.36		c0.10		0.06			
v/s Ratio Perm	0.34											
v/c Ratio	1.01	0.95			1.05		0.43		0.26			
Uniform Delay, d1	30.7	33.1			34.0		33.0		31.6			
Progression Factor	1.58	0.62			1.00		1.00		1.00			
Incremental Delay, d2	26.9	11.5			38.0		0.7		0.4			
Delay (s)	75.5	31.9			72.0		33.7		32.0			
Level of Service	E	С			E		С		С			
Approach Delay (s)		51.7			72.0			32.5			0.0	
Approach LOS		D			E			С			Α	
Intersection Summary												
HCM 2000 Control Delay			54.6	Н	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capa	city ratio		0.86									
Actuated Cycle Length (s)			103.0		um of lost				18.0			
Intersection Capacity Utiliza	tion		93.0%	IC	CU Level of	of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

	•	•	†	-	-	↓			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	14.54	7	ተተተ	7	1/1/	^			
Traffic Volume (vph)	1162	197	2000	313	838	1588			
Future Volume (vph)	1162	197	2000	313	838	1588			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Lane Width	12	12	12	11	12	12			
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0			
Lane Util. Factor	0.97	1.00	0.91	1.00	0.97	0.95			
Frt	1.00	0.85	1.00	0.85	1.00	1.00			
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00			
Satd. Flow (prot)	3367	1509	5085	1323	3433	3539			
FIt Permitted	0.95	1.00	1.00	1.00	0.95	1.00			
Satd. Flow (perm)	3367	1509	5085	1323	3433	3539			
Peak-hour factor, PHF	0.89	0.89	0.95	0.95	0.84	0.84			
Adj. Flow (vph)	1306	221	2105	329	998	1890			
RTOR Reduction (vph)	0	140	0	223	0	0			
Lane Group Flow (vph)	1306	81	2105	106	998	1890			
Heavy Vehicles (%)	4%	7%	2%	18%	2%	2%			
Turn Type	Prot	Prot	NA	Prot	Prot	NA NA			
Protected Phases	7	7	6	6	5	2			
Permitted Phases	'	'	- U	0	<u> </u>				
Actuated Green, G (s)	25.0	25.0	30.0	30.0	20.0	56.0			
Effective Green, g (s)	25.0	25.0	30.0	30.0	20.0	56.0			
Actuated g/C Ratio	0.27	0.27	0.32	0.32	0.22	0.60			
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0			
Vehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0			
Lane Grp Cap (vph)	905	405	1640	426	738	2131			
v/s Ratio Prot	c0.39	0.05	c0.41	0.08	c0.29	0.53			
v/s Ratio Perm	00.59	0.05	00.41	0.06	00.29	0.55			
v/c Ratio Perm	1.44	0.20	1.28	0.25	1.35	0.89			
	34.0	26.3	31.5	23.2	36.5	15.8			
Uniform Delay, d1	1.00		1.00		1.00	1.00			
Progression Factor		1.00		1.00					
Incremental Delay, d2	205.7	0.3	132.4	1.4	167.4	5.9			
Delay (s)	239.7	26.6	163.9	24.6 C	203.9	21.7			
Level of Service	700 P	С	F	C	F	C 04.7			
Approach Delay (s)	208.8		145.1			84.7			
Approach LOS	F		F			F			
Intersection Summary									
HCM 2000 Control Delay			133.8	Н	CM 2000	Level of Service	9	F	
HCM 2000 Volume to Capa	city ratio		1.35						
Actuated Cycle Length (s)			93.0		um of lost			18.0	
Intersection Capacity Utiliza	ation		110.7%	IC	CU Level o	of Service		Н	
Analysis Period (min)			15						
c Critical Lane Group									

	۶	→	+	•	\	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	*	^	**	7	ሻ	7	
Traffic Volume (vph)	353	1844	1433	256	540	993	
Future Volume (vph)	353	1844	1433	256	540	993	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0	
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00	
Frt	1.00	1.00	1.00	0.85	1.00	0.85	
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1787	3539	3539	1583	1787	1599	
Flt Permitted	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	1787	3539	3539	1583	1787	1599	
Peak-hour factor, PHF	0.88	0.88	0.93	0.93	0.87	0.87	
Adj. Flow (vph)	401	2095	1541	275	621	1141	
RTOR Reduction (vph)	0	0	0	191	0	165	
Lane Group Flow (vph)	401	2095	1541	84	621	976	
Heavy Vehicles (%)	1%	2%	2%	2%	1%	1%	
Turn Type	Prot	NA	NA	Perm	Prot	Prot	
Protected Phases	1	6	2		3	3	
Permitted Phases				2			
Actuated Green, G (s)	5.0	29.0	18.0	18.0	18.0	18.0	
Effective Green, g (s)	5.0	29.0	18.0	18.0	18.0	18.0	
Actuated g/C Ratio	0.08	0.49	0.31	0.31	0.31	0.31	
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	
Vehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0	
Lane Grp Cap (vph)	151	1739	1079	482	545	487	
v/s Ratio Prot	c0.22	0.59	c0.44		0.35	c0.61	
v/s Ratio Perm				0.05			
v/c Ratio	2.66	1.20	1.43	0.17	1.14	2.00	
Uniform Delay, d1	27.0	15.0	20.5	15.0	20.5	20.5	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	763.7	97.9	198.1	0.8	83.1	458.8	
Delay (s)	790.7	112.9	218.6	15.8	103.6	479.3	
Level of Service	F	F	F	В	F	F	
Approach Delay (s)		221.8	187.9		346.9		
Approach LOS		F	F		F		
Intersection Summary							
HCM 2000 Control Delay			247.9	H	CM 2000	Level of Service	е
HCM 2000 Volume to Capac	city ratio		1.83				
Actuated Cycle Length (s)			59.0		um of los		
Intersection Capacity Utilizat	ion		111.1%	IC	U Level	of Service	
Analysis Period (min)			15				
c Critical Lane Group							

	-	*	1	•	1	-		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	^	7	7	^	*	1		
Traffic Volume (vph)	1060	1324	463	1465	224	534		
Future Volume (vph)	1060	1324	463	1465	224	534		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Lane Width	12	12	12	12	13	12		
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Lane Util. Factor	0.95	1.00	1.00	0.95	1.00	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Flt Protected	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (prot)	3539	1568	1787	3539	1636	1583		
Flt Permitted	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (perm)	3539	1568	1787	3539	1636	1583		
Peak-hour factor, PHF	0.89	0.89	0.86	0.86	0.88	0.88		
Adj. Flow (vph)	1191	1488	538	1703	255	607		
RTOR Reduction (vph)	0	412	0	0	0	430		
Lane Group Flow (vph)	1191	1076	538	1703	255	177		
Heavy Vehicles (%)	2%	3%	1%	2%	14%	2%		
Turn Type	NA	Prot	Prot	NA	Prot	Prot		
Protected Phases	6	6	5	2	7	7		
Permitted Phases	U	U	J		/	, , , , , , , , , , , , , , , , , , ,		
Actuated Green, G (s)	42.0	42.0	48.4	96.4	29.6	29.6		
Effective Green, g (s)	42.0	42.0	48.4	96.4	29.6	29.6		
Actuated g/C Ratio	0.30	0.30	0.35	0.70	0.21	0.21		
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Vehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0		
Lane Grp Cap (vph)	1077	477	626	2472	350	339		
v/s Ratio Prot	0.34	c0.69	c0.30	0.48	c0.16	0.11		
v/s Ratio Perm	0.54	60.03	60.50	0.40	CO. 10	0.11		
v/c Ratio	1.11	2.26	0.86	0.69	0.73	0.52		
Uniform Delay, d1	48.0	48.0	41.6	12.1	50.5	48.0		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	61.2	572.0	11.7	1.6	7.9	1.9		
Delay (s)	109.2	620.0	53.4	13.7	58.3	49.8		
Level of Service	F	620.0 F	D	В	50.5 E	D D		
Approach Delay (s)	392.9		U	23.2	52.4	D		
Approach LOS	592.9 F			23.2 C	J2.4 D			
				U	D			
Intersection Summary								
HCM 2000 Control Delay			198.8	Н	CM 2000	Level of Service)	
HCM 2000 Volume to Capa	acity ratio		1.31					
Actuated Cycle Length (s)			138.0		um of lost			
Intersection Capacity Utiliz	ation		117.6%	IC	CU Level c	of Service		
Analysis Period (min)			15					
Critical Lana Croup								

Intersection												
	32.8											
Intersection Delay, s/veh	32.0 D											
Intersection LOS	U											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		7	f)			र्स	7		4	
Traffic Vol, veh/h	71	90	24	252	24	19	2	337	253	72	109	3
Future Vol, veh/h	71	90	24	252	24	19	2	337	253	72	109	3
Peak Hour Factor	0.71	0.71	0.71	0.90	0.90	0.90	0.75	0.75	0.75	0.88	0.88	0.88
Heavy Vehicles, %	0	0	0	2	0	10	0	1	3	11	4	0
Mvmt Flow	100	127	34	280	27	21	3	449	337	82	124	3
Number of Lanes	0	1	0	1	1	0	0	1	1	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			1			1			2		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			2			1			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	2			1			2			1		
HCM Control Delay	24.3			26			41.6			21.1		
HCM LOS	С			D			Е			С		
Lane		NBLn1	NBLn2	EBLn1	WBLn1	WBLn2	SBLn1					
Lane Vol Left, %		NBLn1 1%	NBLn2	EBLn1 38%	WBLn1 100%	WBLn2	SBLn1 39%					
Vol Left, %		1%	0%	38%	100%	0%	39%					
Vol Left, % Vol Thru, %		1% 99%	0% 0%	38% 49%	100% 0%	0% 56%	39% 59%					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		1% 99% 0%	0% 0% 100%	38% 49% 13%	100% 0% 0% Stop 252	0% 56% 44%	39% 59% 2% Stop 184					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		1% 99% 0% Stop 339	0% 0% 100% Stop 253 0	38% 49% 13% Stop 185 71	100% 0% 0% Stop 252 252	0% 56% 44% Stop 43	39% 59% 2% Stop 184 72					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		1% 99% 0% Stop 339	0% 0% 100% Stop 253 0	38% 49% 13% Stop 185 71 90	100% 0% 0% Stop 252 252	0% 56% 44% Stop 43 0 24	39% 59% 2% Stop 184 72 109					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		1% 99% 0% Stop 339 2 337 0	0% 0% 100% Stop 253 0 0	38% 49% 13% Stop 185 71 90 24	100% 0% 0% Stop 252 252 0	0% 56% 44% Stop 43 0 24	39% 59% 2% Stop 184 72 109					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		1% 99% 0% Stop 339 2 337 0 452	0% 0% 100% Stop 253 0	38% 49% 13% Stop 185 71 90 24 261	100% 0% 0% Stop 252 252	0% 56% 44% Stop 43 0 24 19	39% 59% 2% Stop 184 72 109 3					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		1% 99% 0% Stop 339 2 337 0 452	0% 0% 100% Stop 253 0 0 253 337	38% 49% 13% Stop 185 71 90 24 261	100% 0% 0% Stop 252 252 0 0 280	0% 56% 44% Stop 43 0 24 19 48	39% 59% 2% Stop 184 72 109 3 209 6					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		1% 99% 0% Stop 339 2 337 0 452 7 0.947	0% 0% 100% Stop 253 0 0 253 337 7 0.641	38% 49% 13% Stop 185 71 90 24 261 6	100% 0% 0% Stop 252 252 0 0 280 7	0% 56% 44% Stop 43 0 24 19 48 7 0.105	39% 59% 2% Stop 184 72 109 3 209 6					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		1% 99% 0% Stop 339 2 337 0 452	0% 0% 100% Stop 253 0 0 253 337	38% 49% 13% Stop 185 71 90 24 261	100% 0% 0% Stop 252 252 0 0 280	0% 56% 44% Stop 43 0 24 19 48	39% 59% 2% Stop 184 72 109 3 209 6					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		1% 99% 0% Stop 339 2 337 0 452 7 0.947 7.657 Yes	0% 0% 100% Stop 253 0 0 253 337 7 0.641 6.951 Yes	38% 49% 13% Stop 185 71 90 24 261 6 0.617 8.531 Yes	100% 0% 0% Stop 252 252 0 0 280 7 0.681 8.865 Yes	0% 56% 44% Stop 43 0 24 19 48 7 0.105 7.992 Yes	39% 59% 2% Stop 184 72 109 3 209 6 0.517 8.895 Yes					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		1% 99% 0% Stop 339 2 337 0 452 7 0.947 7.657 Yes 479	0% 0% 100% Stop 253 0 0 253 337 7 0.641 6.951 Yes 523	38% 49% 13% Stop 185 71 90 24 261 6 0.617 8.531 Yes 425	100% 0% 0% Stop 252 252 0 0 280 7 0.681 8.865 Yes 412	0% 56% 44% Stop 43 0 24 19 48 7 0.105 7.992 Yes 451	39% 59% 2% Stop 184 72 109 3 209 6 0.517 8.895 Yes 408					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		1% 99% 0% Stop 339 2 337 0 452 7 0.947 7.657 Yes 479 5.357	0% 0% 100% Stop 253 0 0 253 337 7 0.641 6.951 Yes 523 4.651	38% 49% 13% Stop 185 71 90 24 261 6 0.617 8.531 Yes 425 6.531	100% 0% 0% Stop 252 252 0 0 280 7 0.681 8.865 Yes 412 6.565	0% 56% 44% Stop 43 0 24 19 48 7 0.105 7.992 Yes 451 5.692	39% 59% 2% Stop 184 72 109 3 209 6 0.517 8.895 Yes 408 6.913					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		1% 99% 0% Stop 339 2 337 0 452 7 0.947 7.657 Yes 479 5.357 0.944	0% 0% 100% Stop 253 0 0 253 337 7 0.641 6.951 Yes 523 4.651 0.644	38% 49% 13% Stop 185 71 90 24 261 6 0.617 8.531 Yes 425 6.531 0.614	100% 0% 0% Stop 252 252 0 0 280 7 0.681 8.865 Yes 412 6.565 0.68	0% 56% 44% Stop 43 0 24 19 48 7 0.105 7.992 Yes 451 5.692 0.106	39% 59% 2% Stop 184 72 109 3 209 6 0.517 8.895 Yes 408 6.913 0.512					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay		1% 99% 0% Stop 339 2 337 0 452 7 0.947 7.657 Yes 479 5.357 0.944 56.8	0% 0% 100% Stop 253 0 0 253 337 7 0.641 6.951 Yes 523 4.651 0.644 21.2	38% 49% 13% Stop 185 71 90 24 261 6 0.617 8.531 Yes 425 6.531 0.614 24.3	100% 0% 0% Stop 252 252 0 0 280 7 0.681 8.865 Yes 412 6.565 0.68 28.5	0% 56% 44% Stop 43 0 24 19 48 7 0.105 7.992 Yes 451 5.692 0.106 11.6	39% 59% 2% Stop 184 72 109 3 209 6 0.517 8.895 Yes 408 6.913 0.512 21.1					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		1% 99% 0% Stop 339 2 337 0 452 7 0.947 7.657 Yes 479 5.357 0.944	0% 0% 100% Stop 253 0 0 253 337 7 0.641 6.951 Yes 523 4.651 0.644	38% 49% 13% Stop 185 71 90 24 261 6 0.617 8.531 Yes 425 6.531 0.614	100% 0% 0% Stop 252 252 0 0 280 7 0.681 8.865 Yes 412 6.565 0.68	0% 56% 44% Stop 43 0 24 19 48 7 0.105 7.992 Yes 451 5.692 0.106	39% 59% 2% Stop 184 72 109 3 209 6 0.517 8.895 Yes 408 6.913 0.512					

Intersection												
Int Delay, s/veh	6.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			र्स	7	*	1		*	₽	
Traffic Vol, veh/h	6	11	8	68	8	39	14	475	55	22	403	19
Future Vol, veh/h	6	11	8	68	8	39	14	475	55	22	403	19
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	80	85	-	-	165	-	-
Veh in Median Storage,	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	65	65	65	87	87	87	73	73	73	90	90	90
Heavy Vehicles, %	0	0	25	3	25	0	0	3	0	0	1	0
Mvmt Flow	9	17	12	78	9	45	19	651	75	24	448	21
Major/Minor N	/linor2			Minor1		ı	Major1		N	//ajor2		
Conflicting Flow All	1261	1271	459	1248	1244	689	469	0	0	726	0	0
Stage 1	507	507	-	727	727	-	-	-	-	-	-	-
Stage 2	754	764	_	521	517	_	_	_	_	_	_	_
Critical Hdwy	7.1	6.5	6.45	7.13	6.75	6.2	4.1	_	_	4.1	_	_
Critical Hdwy Stg 1	6.1	5.5	-	6.13	5.75	-	-	_	_	-	_	_
Critical Hdwy Stg 2	6.1	5.5	-	6.13	5.75	-	-	-	-	-	-	-
Follow-up Hdwy	3.5	4	3.525	3.527	4.225	3.3	2.2	-	-	2.2	_	_
Pot Cap-1 Maneuver	148	169	557	149	157	449	1103	-	-	886	_	-
Stage 1	552	543	-	414	397	-	-	-	-	-	-	-
Stage 2	404	416	-	537	498	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	123	162	557	130	150	449	1103	-	-	886	-	-
Mov Cap-2 Maneuver	123	162	-	130	150	-	-	-	-	-	-	-
Stage 1	543	528	-	407	390	-	-	-	-	-	-	-
Stage 2	349	409	-	495	485	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	28.5			53.7			0.2			0.5		
HCM LOS	20.5 D			55.7 F			0.2			3.0		
Minor Long/Maior M		NDI	NDT	NDD	FDL 41	MDI 41/	VDL ~2	CDI	CDT	CDD		
Minor Lane/Major Mym		NBL	NBT	NRK		VBLn1V		SBL	SBT	SBR		
Capacity (veh/h)		1103	-	-	191	132	449	886	-	-		
HCM Cantrol Dalay (2)		0.017	-	-	0.201			0.028	-	-		
HCM Control Delay (s)		8.3	-	-	28.5	74.1	13.9	9.2	-	-		
HCM CEth (/tile O(veh)		A	-	-	D	F	В	Α	-	-		
HCM 95th %tile Q(veh)		0.1	-	-	0.7	3.6	0.3	0.1	-	-		

Intersection													
Int Delay, s/veh	35.4												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4	LDIT	1102	4	W.D.	NDL	4	HOIL	ODL	4	OBIT	
Traffic Vol, veh/h	6	17	6	267	11	6	0	188	108	6	467	6	
Future Vol, veh/h	6	17	6	267	11	6	0	188	108	6	467	6	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	_	-	None	_	-	None	_	_	None	-	_	None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	_	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	7	19	7	297	12	7	0	209	120	7	519	7	
Major/Minor	Minor2			Minor1			Major1		ı	Major2			
Conflicting Flow All	816	866	523	819	809	269	526	0	0	329	0	0	
Stage 1	537	537	-	269	269	-	-	-	-	-	-	-	
Stage 2	279	329	_	550	540	-	_	<u>-</u>	_	_	_	-	
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	_	_	4.12	_	_	
Critical Hdwy Stg 1	6.12	5.52	_	6.12	5.52	_	_	-	-	-	_	_	
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-	
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218	_	-	
Pot Cap-1 Maneuver	296	291	554	~ 294	314	770	1041	-	-	1231	-	-	
Stage 1	528	523	-	737	687	-	-	-	-	-	-	-	
Stage 2	728	646	-	519	521	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	283	289	554	~ 274	311	770	1041	-	-	1231	-	-	
Mov Cap-2 Maneuver	283	289	-	~ 274	311	-	-	-	-	-	-	-	
Stage 1	528	519	-	737	687	-	-	-	-	-	-	-	
Stage 2	709	646	-	490	517	-	-	-	-	-	-	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	17.5			133.6			0			0.1			
HCM LOS	С			F						• • • • • • • • • • • • • • • • • • • •			
Minor Lane/Major Mvn	nt	NBL	NBT	NRD	EBLn1V	WRI n1	SBL	SBT	SBR				
	π	1041	IND I	NDR		279	1231	<u> </u>	אטט				
Capacity (veh/h) HCM Lane V/C Ratio		1041		_	319	1.131		_	-				
HCM Control Delay (s)		0	-	-		133.6	7.9	0	-				
HCM Lane LOS				_	17.5 C	133.6 F	7.9 A	A	-				
HCM 95th %tile Q(veh)	A 0	-	-	0.3	13.4	0	- -					
`	,	U			0.0	13.4	U						
Notes													
~: Volume exceeds ca	pacity	\$: De	elay exc	eeds 3	J0s	+: Com	putation	Not De	efined	*: All	major v	olume ii	n platoon

Intersection								
nt Delay, s/veh	105.9							
		EDD	MDI	NDT	ODT	000		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
ane Configurations	ሻ	7	Ť	↑	^	7		
Fraffic Vol, veh/h	262	155	394	34	28	711		
uture Vol, veh/h	262	155	394	34	28	711		
Conflicting Peds, #/hr	0	0	0	0	0	0		
Sign Control	Stop	Stop	Free	Free	Free	Free		
RT Channelized	-	None	-	None	-	None		
Storage Length	0	290	100	-	-	175		
eh in Median Storage	e, # 0	-	-	0	0	-		
Grade, %	0	-	-	0	0	-		
eak Hour Factor	90	90	90	90	90	90		
leavy Vehicles, %	2	2	2	2	2	2		
1vmt Flow	291	172	438	38	31	790		
laior/Minor	Minaro		Majort		Majora			
	Minor2		Major1		Major2	^		
Conflicting Flow All	945	31	821	0	-	0		
Stage 1	31	-	-	-	-	-		
Stage 2	914	-	-	-	-	-		
ritical Hdwy	6.42	6.22	4.12	-	-	-		
ritical Hdwy Stg 1	5.42	-	-	-	-	-		
ritical Hdwy Stg 2	5.42	-	-	-	-	-		
ollow-up Hdwy	3.518	3.318		-	-	-		
ot Cap-1 Maneuver	~ 291	1043	808	-	-	-		
Stage 1	992	-	-	-	-	-		
Stage 2	391	-	-	-	-	-		
Platoon blocked, %				-	-	-		
Nov Cap-1 Maneuver		1043	808	-	-	-		
lov Cap-2 Maneuver		-	-	-	-	-		
Stage 1	454	-	-	-	-	-		
Stage 2	391	-	-	-	-	-		
pproach	EB		NB		SB			
ICM Control Delay, s			13.4		0			
	و.000 ¢ F		13.4		U			
ICM LOS	F							
linor Lane/Major Mvr	nt	NBL	NBT	EBLn1 I	EBLn2	SBT	SBR	
apacity (veh/h)		808	-		1043	-	-	
CM Lane V/C Ratio		0.542	_	2.189		_	-	
ICM Control Delay (s)	14.6		612.9	9.1	-	-	
CM Lane LOS	1	В	_	F	A	_	<u>-</u>	
ICM 95th %tile Q(veh	1)	3.3	_	24.3	0.6	_	-	
('1	0.0		2 7.0	3.0			
otes								
Volume exceeds ca	pacity	\$: De	elay exc	eeds 30	00s	+: Comp	outation Not Defined	*: All major volume in platoon

Intersection								
Int Delay, s/veh	30.1							
Novement	EBL	EBR	NBL	NBT	SBT	SBR		
ane Configurations	¥			4	1			
raffic Vol, veh/h	2	158	25	521	1279	2		
uture Vol, veh/h	2	158	25	521	1279	2		
onflicting Peds, #/hr		0	0	0	0	0		
ign Control	Stop	Stop	Free	Free	Free	Free		
T Channelized	Stop -	None	-	None	-	None		
torage Length	0	-	_	140116	_	-		
eh in Median Storag			_	0	0			
Grade, %	0	_		0	0	-		
eak Hour Factor	68	68	85	85	89	89		
eavy Vehicles, %	0	1	00	00	1	09		
leavy venicies, %	3	232	29	613	1437	2		
VIIIL FIOW	3	232	29	013	143/			
ajor/Minor	Minor2	ı	Major1		//ajor2			
	2109	1438	1439	0	- najoiz	0		
Conflicting Flow All	1438	1436	1439	-	-	-		
Stage 1	671							
Stage 2	6.4	6.21	4.1	-	-	-		
ritical Hdwy				-	-	-		
ritical Hdwy Stg 1	5.4	-	-	-	-	-		
ritical Hdwy Stg 2	5.4	2 200	-	-	-	-		
ollow-up Hdwy		3.309	2.2	-	-	-		
ot Cap-1 Maneuver		~ 164	478	-	-	-		
Stage 1	221	-	-	-	-	-		
Stage 2	512	-	-	-	-	-		
Platoon blocked, %		464	4=0	-	-	-		
Nov Cap-1 Maneuver		~ 164	478	-	-	-		
lov Cap-2 Maneuver		-	-	-	-	-		
Stage 1	201	-	-	-	-	-		
Stage 2	512	-	-	-	-	-		
pproach	EB		NB		SB			
HCM Control Delay, s	294.9		0.6		0			
ICM LOS	F							
linor Lane/Major Mvr	nt	NBL	NBT	EBLn1	SBT	SBR		
apacity (veh/h)		478	-	160	-	-		
CM Lane V/C Ratio		0.062	-	1.471	-	-		
CM Control Delay (s	s)	13	0	294.9	-	-		
CM Lane LOS		В	Α	F	-	-		
CM 95th %tile Q(veh	۱)	0.2	-		-	-		
otes								
Volume exceeds ca	apacity	\$: De	lav exc	eeds 30)0s	+: Comr	outation Not Defined	*: All major volume in platoon
Jiamo okooodo ot	Loudity	ψ. D	ONO	.5040 00		. 50111	January 110t Dominou	

Intersection													
Int Delay, s/veh	150.1												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			4			4		
Traffic Vol, veh/h	10	0	31	52	0	14	72	532	84	17	1450	27	
Future Vol, veh/h	10	0	31	52	0	14	72	532	84	17	1450	27	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	_	_	-	_	_	-	_	_	-	_	_	-	
Veh in Median Storage	.# -	0	_	_	0	_	-	0	-	_	0	-	
Grade, %	-	0	-	_	0	-	-	0	_	-	0	_	
Peak Hour Factor	63	63	63	83	83	83	94	94	94	89	89	89	
Heavy Vehicles, %	0	0	0	12	0	29	0	1	12	22	1	0	
Mvmt Flow	16	0	49	63	0	17	77	566	89	19	1629	30	
Major/Minor	Minor			Minor1			Major1			Maiara			
	Minor2	0404		Minor1	0.400		Major1			Major2			
Conflicting Flow All	2455	2491	1644	2472	2462	611	1659	0	0	655	0	0	
Stage 1	1682	1682	-	765	765	-	-	-	-	-	-	-	
Stage 2	773	809	-	1707	1697	- 0.40	-	-	-	4.00	-	-	
Critical Hdwy	7.1	6.5	6.2	7.22	6.5	6.49	4.1	-	-	4.32	-	-	
Critical Hdwy Stg 1	6.1 6.1	5.5 5.5	-	6.22	5.5 5.5	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	3.5		3.3	3.608		3.561	2.2	-	-	2.398	-	-	
Follow-up Hdwy Pot Cap-1 Maneuver	21	30	124	~ 19	31	448	394	-	-	844	-	-	
Stage 1	121	152	124	381	415	440	394	_	-	044	-	-	
Stage 2	395	396	_	109	150	-	-	-	-	-	-	-	
Platoon blocked, %	333	330	_	109	150	_	_	_	_	_	_		
Mov Cap-1 Maneuver	~ 12	14	124	~ 7	15	448	394			844			
Mov Cap-1 Maneuver	~ 12	14	124	~ 7	15	-	- 55	<u>-</u>	_	-	_	_	
Stage 1	83	106	_	262	286		_	_	_		_	_	
Stage 2	262	272	_	~ 46	105	_	_	_	_	_	-	-	
J. 10 2 2	_0_	-1-		10	.00								
A	ED			\A/D			ND			CD			
Approach	EB		Φ.	WB			NB 1.7			SB			
HCM Control Delay, s\$			\$ 4	4335.5			1.7			0.1			
HCM LOS	F			F									
Minor Lane/Major Mvm	nt	NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR				
Capacity (veh/h)		394	-	-	38	9	844	-	-				
HCM Lane V/C Ratio		0.194	-			8.835		-	-				
HCM Control Delay (s)		16.3	0	-\$	574.\$	4335.5	9.4	0	-				
HCM Lane LOS		С	Α	-	F	F	Α	Α	-				
HCM 95th %tile Q(veh)		0.7	-	-	6.9	11.4	0.1	-	-				
Notes													
~: Volume exceeds car	nacity	\$ De	lav exc	eeds 30)Os	+· Com	putation	Not De	efined	*· ΔII ι	maior v	olume ir	n platoon
. Volumo oxocous ca	Judity	ψ. υ	nay onc		,00		patation	HOLD!	milou	. / vil l	iliajoi v	Ciui ii	Piatoon

Intersection						
Int Delay, s/veh	0.5					
		WED	NET	NDD	ODL	ODT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	^			^
Traffic Vol, veh/h	0	79	609	0	0	1533
Future Vol, veh/h	0	79	609	0	0	1533
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage,	# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	100	100	92	92	100
Heavy Vehicles, %	2	13	1	2	2	1
Mvmt Flow	0	79	609	0	0	1533
WWW.CT IOW	U	7.5	000	U	U	1000
Major/Minor N	1inor1	N	Major1	١	/lajor2	
Conflicting Flow All	-	609	0	_	-	_
Stage 1	_	-	_	-	_	_
Stage 2	_	_	-	_	_	_
Critical Hdwy	_	6.395	_	_	_	_
Critical Hdwy Stg 1		-	_		_	<u>-</u>
	-			-		
Critical Hdwy Stg 2	- ,	-	-	-	-	-
Follow-up Hdwy		3.4235	-	-	-	-
Pot Cap-1 Maneuver	0	470	-	0	0	-
Stage 1	0	-	-	0	0	-
Stage 2	0	-	-	0	0	-
Platoon blocked, %			-			-
Mov Cap-1 Maneuver	-	470	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	_	_	-	-	_	_
Stage 2	_	_	_	_	_	_
Clago L						
Approach	WB		NB		SB	
HCM Control Delay, s	14.2		0		0	
HCM LOS	В					
			(D)	0==		
Minor Lane/Major Mvmt		NBTV	VBLn1	SBT		
Capacity (veh/h)		-	470	-		
HCM Lane V/C Ratio		-	0.168	-		
HCM Control Delay (s)		-	14.2	-		
HCM Lane LOS		-	В	-		
HCM 95th %tile Q(veh)		_	0.6	-		

	۶	→	•	•	←	•	4	†	-	-	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†		44	†			र्स	77		4	
Traffic Volume (vph)	0	144	7	1058	635	134	7	2	289	5	0	0
Future Volume (vph)	0	144	7	1058	635	134	7	2	289	5	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	12	11	12	12	16	12
Total Lost time (s)		6.0		6.0	6.0			6.0	6.0		6.0	
Lane Util. Factor		0.95		0.97	0.95			1.00	0.88		1.00	
Frt		0.99		1.00	0.97			1.00	0.85		1.00	
Flt Protected		1.00		0.95	1.00			0.96	1.00		0.95	
Satd. Flow (prot)		3377		3433	3447			1491	2760		2046	
Flt Permitted		1.00		0.95	1.00			0.86	1.00		0.75	
Satd. Flow (perm)		3377		3433	3447			1326	2760		1614	
Peak-hour factor, PHF	0.71	0.71	0.71	0.73	0.73	0.73	0.78	0.78	0.78	0.75	0.75	0.75
Adj. Flow (vph)	0	203	10	1449	870	184	9	3	371	7	0	0
RTOR Reduction (vph)	0	4	0	0	6	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	209	0	1449	1048	0	0	12	371	0	7	0
Heavy Vehicles (%)	0%	4%	50%	2%	2%	2%	25%	0%	3%	0%	0%	0%
Turn Type	Prot	NA		Prot	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	6	2		1	5			8			4	
Permitted Phases							8		8	4		
Actuated Green, G (s)		11.4		49.0	66.4			17.6	17.6		17.6	
Effective Green, g (s)		11.4		49.0	66.4			17.6	17.6		17.6	
Actuated g/C Ratio		0.12		0.51	0.69			0.18	0.18		0.18	
Clearance Time (s)		6.0		6.0	6.0			6.0	6.0		6.0	
Vehicle Extension (s)		3.0		3.0	3.0			3.0	3.0		3.0	
Lane Grp Cap (vph)		401		1752	2384			243	506		295	
v/s Ratio Prot		0.06		c0.42	c0.30							
v/s Ratio Perm								0.01	c0.13		0.00	
v/c Ratio		0.52		0.83	0.44			0.05	0.73		0.02	
Uniform Delay, d1		39.7		19.9	6.6			32.3	37.0		32.2	
Progression Factor		1.00		1.00	1.00			1.00	1.00		1.00	
Incremental Delay, d2		1.2		3.4	0.1			0.1	5.4		0.0	
Delay (s)		41.0		23.3	6.7			32.4	42.4		32.2	
Level of Service		D		С	Α			С	D		С	
Approach Delay (s)		41.0			16.3			42.1			32.2	
Approach LOS		D			В			D			С	
Intersection Summary												
HCM 2000 Control Delay			21.2	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capac	ity ratio		0.76									
Actuated Cycle Length (s)			96.0	S	um of lost	time (s)			18.0			
Intersection Capacity Utilizati	on		55.2%		U Level o				В			
Analysis Period (min)			15									
c Critical Lane Group												

102: US Route 4 SB On-Ramp/US Route 4 SB Off-Ramp & Pease Blvd 2025 Build Conditions Weekday AM Peak

	۶	→	•	•	•	•	1	†	-	-	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		1111	7	14.54	^					44		77
Traffic Volume (vph)	0	304	134	159	1024	0	0	0	0	559	0	847
Future Volume (vph)	0	304	134	159	1024	0	0	0	0	559	0	847
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	10	11	10	11	12	12	12	12	12	12	12
Total Lost time (s)		6.0	6.0	6.0	6.0					6.0		6.0
Lane Util. Factor		0.86	1.00	0.97	0.95					0.97		0.88
Frt		1.00	0.85	1.00	1.00					1.00		0.85
Flt Protected		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (prot)		5981	1419	2918	3455					3502		2814
Flt Permitted		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (perm)		5981	1419	2918	3455					3502		2814
Peak-hour factor, PHF	0.80	0.80	0.80	0.80	0.80	0.80	0.92	0.92	0.92	0.75	0.75	0.75
Adj. Flow (vph)	0	380	168	199	1280	0	0	0	0	745	0	1129
RTOR Reduction (vph)	0	0	112	0	0	0	0	0	0	0	0	101
Lane Group Flow (vph)	0	380	56	199	1280	0	0	0	0	745	0	1028
Heavy Vehicles (%)	0%	2%	10%	12%	1%	0%	2%	2%	2%	0%	0%	1%
Turn Type		NA	Prot	Prot	NA					Prot		Prot
Protected Phases		6	6	5	2 5					3		3
Permitted Phases												
Actuated Green, G (s)		33.7	33.7	25.0	64.7					25.0		25.0
Effective Green, g (s)		33.7	33.7	25.0	64.7					25.0		25.0
Actuated g/C Ratio		0.33	0.33	0.25	0.64					0.25		0.25
Clearance Time (s)		6.0	6.0	6.0						6.0		6.0
Vehicle Extension (s)		5.0	5.0	4.0						5.0		5.0
Lane Grp Cap (vph)		1981	470	717	2198					860		691
v/s Ratio Prot		0.06	0.04	0.07	c0.37					0.21		c0.37
v/s Ratio Perm												
v/c Ratio		0.19	0.12	0.28	0.58					0.87		1.49
Uniform Delay, d1		24.3	23.7	31.0	10.7					36.7		38.4
Progression Factor		1.00	1.00	0.90	1.58					1.00		1.00
Incremental Delay, d2		0.1	0.2	0.1	0.3					9.9		227.1
Delay (s)		24.4	23.9	27.9	17.2					46.7		265.5
Level of Service		С	С	С	В					D		F
Approach Delay (s)		24.2			18.6			0.0			178.5	
Approach LOS		С			В			А			F	
Intersection Summary												
HCM 2000 Control Delay			96.2	Н	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capaci	ity ratio		0.89									
Actuated Cycle Length (s)			101.7	S	um of lost	t time (s)			18.0			
Intersection Capacity Utilizati	on		67.9%	IC	CU Level o	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

103: US Route 4 NB Off-ramp/US Route 4 NB On-Ramp & Pease Blvd 2025 Build Conditions Weekday AM Peak

	۶	→	*	•	+	1	1	†	~	1	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	44	^			^		44		77			
Traffic Volume (vph)	121	742	0	0	409	78	774	0	370	0	0	0
Future Volume (vph)	121	742	0	0	409	78	774	0	370	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	11	12	12	12	12	12	12	12	12	12	12
Grade (%)		0%			11%			0%			0%	
Total Lost time (s)	6.0	6.0			6.0		6.0		6.0			
Lane Util. Factor	0.97	0.95			0.91		0.97		0.88			
Frt	1.00	1.00			0.98		1.00		0.85			
FIt Protected	0.95	1.00			1.00		0.95		1.00			
Satd. Flow (prot)	3113	3421			4668		3433		2733			
FIt Permitted	0.43	1.00			1.00		0.95		1.00			
Satd. Flow (perm)	1395	3421			4668		3433		2733			
Peak-hour factor, PHF	0.87	0.87	0.92	0.92	0.85	0.85	0.78	0.92	0.78	0.92	0.92	0.92
Adj. Flow (vph)	139	853	0	0	481	92	992	0	474	0	0	0
RTOR Reduction (vph)	0	0	0	0	24	0	0	0	355	0	0	0
Lane Group Flow (vph)	139	853	0	0	549	0	992	0	119	0	0	0
Heavy Vehicles (%)	5%	2%	2%	2%	2%	5%	2%	2%	4%	2%	2%	2%
Turn Type	pm+pt	NA			NA		Prot		Prot			
Protected Phases	1	6			2		3		3			
Permitted Phases	6											
Actuated Green, G (s)	50.7	33.7			41.7		25.0		25.0			
Effective Green, g (s)	50.7	33.7			41.7		25.0		25.0			
Actuated g/C Ratio	0.50	0.33			0.41		0.25		0.25			
Clearance Time (s)	6.0	6.0			6.0		6.0		6.0			
Vehicle Extension (s)	4.0	5.0			5.0		5.0		5.0			
Lane Grp Cap (vph)	982	1133			1914		843		671			
v/s Ratio Prot	c0.02	c0.25			c0.12		c0.29		0.04			
v/s Ratio Perm	0.05											
v/c Ratio	0.14	0.75			0.29		1.18		0.18			
Uniform Delay, d1	13.4	30.3			20.1		38.4		30.2			
Progression Factor	1.12	1.25			1.00		1.00		1.00			
Incremental Delay, d2	0.1	2.7			0.2		91.8		0.3			
Delay (s)	15.1	40.6			20.2		130.2		30.5			
Level of Service	В	D			С		F		С			
Approach Delay (s)		37.0			20.2			98.0			0.0	
Approach LOS		D			С			F			Α	
Intersection Summary												
HCM 2000 Control Delay			63.3	Н	CM 2000	Level of S	Service		Е			
HCM 2000 Volume to Capa	city ratio		0.70									
Actuated Cycle Length (s)			101.7		um of lost				18.0			
Intersection Capacity Utiliza	tion		67.9%	IC	CU Level of	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

	1	•	†	1	-	↓			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	77	7	ተተተ	7	1/1/	^			
Traffic Volume (vph)	1107	562	2116	225	313	617			
Future Volume (vph)	1107	562	2116	225	313	617			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Lane Width	12	12	12	11	12	12			
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0			
Lane Util. Factor	0.97	1.00	0.91	1.00	0.97	0.95			
Frt	1.00	0.85	1.00	0.85	1.00	1.00			
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00			
Satd. Flow (prot)	3303	1599	4988	1229	3242	3374			
FIt Permitted	0.95	1.00	1.00	1.00	0.95	1.00			
Satd. Flow (perm)	3303	1599	4988	1229	3242	3374			
Peak-hour factor, PHF	0.87	0.87	0.93	0.93	0.81	0.81			
Adj. Flow (vph)	1272	646	2275	242	386	762			
RTOR Reduction (vph)	0	319	0	156	0	0			
Lane Group Flow (vph)	1272	327	2275	86	386	762			
Heavy Vehicles (%)	6%	1%	4%	27%	8%	7%			
Turn Type	Prot	Prot	NA	Prot	Prot	NA			
Protected Phases	7	7	6	6	5	2			
Permitted Phases	ı	1	U	U	J				
Actuated Green, G (s)	25.0	25.0	33.2	33.2	16.8	56.0			
Effective Green, g (s)	25.0	25.0	33.2	33.2	16.8	56.0			
Actuated g/C Ratio	0.27	0.27	0.36	0.36	0.18	0.60			
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0			
Vehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0			
Lane Grp Cap (vph)	887	429	1780	438	585	2031			
v/s Ratio Prot		0.20	c0.46	0.07	c0.12	0.23			
v/s Ratio Prot	c0.39	0.20	CU.40	0.07	CU. 12	0.23			
	1 12	0.76	1 20	0.20	0.66	0.30			
v/c Ratio	1.43	0.76	1.28	0.20	0.66	0.38			
Uniform Delay, d1	34.0	31.3	29.9	20.7	35.4	9.5			
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Incremental Delay, d2	201.8	8.3	129.6	1.0	3.0	0.5			
Delay (s)	235.8	39.6	159.5	21.7	38.4	10.0			
Level of Service	F	D	F	С	D	B			
Approach Delay (s)	169.7		146.3			19.6			
Approach LOS	F		F			В			
Intersection Summary									
HCM 2000 Control Delay			128.3	Н	CM 2000	Level of Service	9	F	
HCM 2000 Volume to Capa	acity ratio		1.19						
Actuated Cycle Length (s)			93.0		um of lost	. ,		18.0	
Intersection Capacity Utiliza	ation		96.4%	IC	U Level o	of Service		F	
Analysis Period (min)			15						
c Critical Lane Group									

	٠	→	←	1	-	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	*	^	^	7	7	7	
Traffic Volume (vph)	627	2051	739	591	163	191	
Future Volume (vph)	627	2051	739	591	163	191	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0	
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00	
Frt	1.00	1.00	1.00	0.85	1.00	0.85	
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1787	3471	3343	1583	1719	1538	
Flt Permitted	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	1787	3471	3343	1583	1719	1538	
Peak-hour factor, PHF	0.86	0.86	0.96	0.96	0.76	0.76	
Adj. Flow (vph)	729	2385	770	616	214	251	
RTOR Reduction (vph)	0	0	0	428	0	194	
Lane Group Flow (vph)	729	2385	770	188	214	57	
Heavy Vehicles (%)	1%	4%	8%	2%	5%	5%	
Turn Type	Prot	NA	NA	Perm	Prot	Prot	
Protected Phases	1	6	2		3	3	
Permitted Phases				2			
Actuated Green, G (s)	9.5	33.5	18.0	18.0	13.5	13.5	
Effective Green, g (s)	9.5	33.5	18.0	18.0	13.5	13.5	
Actuated g/C Ratio	0.16	0.57	0.31	0.31	0.23	0.23	
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	
Vehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0	
Lane Grp Cap (vph)	287	1970	1019	482	393	351	
v/s Ratio Prot	c0.41	c0.69	0.23		c0.12	0.04	
v/s Ratio Perm				0.12			
v/c Ratio	2.54	1.21	0.76	0.39	0.54	0.16	
Uniform Delay, d1	24.8	12.8	18.5	16.2	20.0	18.2	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	703.2	99.8	5.2	2.4	1.9	0.3	
Delay (s)	728.0	112.5	23.7	18.5	22.0	18.5	
Level of Service	F	F	С	В	С	В	
Approach Delay (s)		256.6	21.4		20.1		
Approach LOS		F	С		С		
Intersection Summary							
HCM 2000 Control Delay			168.8	H	CM 2000	Level of Service)
HCM 2000 Volume to Capac	city ratio		1.37				
Actuated Cycle Length (s)			59.0		um of lost		
Intersection Capacity Utilizat	ion		81.3%	IC	CU Level c	of Service	
Analysis Period (min)			15				
c Critical Lane Group							

	-	*	1	←	1	-		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	^	7	*	^	*	7		
Traffic Volume (vph)	1418	796	111	812	518	709		
Future Volume (vph)	1418	796	111	812	518	709		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Lane Width	12	12	12	12	13	12		
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Lane Util. Factor	0.95	1.00	1.00	0.95	1.00	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Flt Protected	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (prot)	3539	1468	1752	3438	1680	1538		
Flt Permitted	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (perm)	3539	1468	1752	3438	1680	1538		
Peak-hour factor, PHF	0.95	0.95	0.90	0.90	0.80	0.80		
Adj. Flow (vph)	1493	838	123	902	648	886		
RTOR Reduction (vph)	0	449	0	0	0	388		
Lane Group Flow (vph)	1493	389	123	902	648	498		
Heavy Vehicles (%)	2%	10%	3%	5%	11%	5%		
Turn Type	NA	Prot	Prot	NA	Prot	Prot		
Protected Phases	6	6	5	2	7	7		
Permitted Phases	0		<u> </u>		'	'		
Actuated Green, G (s)	64.0	64.0	16.0	86.0	40.0	40.0		
Effective Green, g (s)	64.0	64.0	16.0	86.0	40.0	40.0		
Actuated g/C Ratio	0.46	0.46	0.12	0.62	0.29	0.29		
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Vehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0		
Lane Grp Cap (vph)	1641	680	203	2142	486	445		
v/s Ratio Prot	c0.42	0.26	c0.07	0.26	c0.39	0.32		
v/s Ratio Perm	30.12	3.20	55.01	3.20	33.00	0.02		
v/c Ratio	0.91	0.57	0.61	0.42	1.33	1.12		
Uniform Delay, d1	34.3	27.0	58.0	13.3	49.0	49.0		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	9.0	3.5	5.8	0.6	163.6	79.5		
Delay (s)	43.4	30.5	63.8	13.9	212.6	128.5		
Level of Service	D	С	Е	В	F	F		
Approach Delay (s)	38.7			19.9	164.0			
Approach LOS	D			В	F			
Intersection Summary								
HCM 2000 Control Delay			74.1	Н	CM 2000	Level of Service	9	
HCM 2000 Volume to Capa	acity ratio		1.01					
Actuated Cycle Length (s)			138.0	S	um of lost	time (s)		
Intersection Capacity Utiliza	ation		93.1%			of Service		
Analysis Period (min)			15					
o Critical Lang Group								

Intersection												
Intersection Delay, s/veh	45.6											
Intersection LOS	Е											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		7	1>			4			4	
Traffic Vol, veh/h	0	28	9	320	120	111	21	100	113	26	286	33
Future Vol, veh/h	0	28	9	320	120	111	21	100	113	26	286	33
Peak Hour Factor	0.50	0.50	0.50	0.70	0.70	0.70	0.87	0.87	0.87	0.70	0.70	0.70
Heavy Vehicles, %	0	0	0	2	0	5	0	6	8	14	0	0
Mvmt Flow	0	56	18	457	171	159	24	115	130	37	409	47
Number of Lanes	0	1	0	1	1	0	0	1	0	0	1	0
Approach		EB		WB			NB			SB		
Opposing Approach		WB		EB			SB			NB		
Opposing Lanes		2		1			1			1		
Conflicting Approach Left		SB		NB			EB			WB		
Conflicting Lanes Left		1		1			1			2		
Conflicting Approach Right		NB		SB			WB			EB		
Conflicting Lanes Right		1		1			2			1		
HCM Control Delay		13.2		50.2			18.4			58		
HCM LOS		В		F			С			F		
Lane		NBLn1	EBLn1	WBLn1	WBLn2	SBLn1						
						<u> </u>						
Vol Left, %		9%	0%	100%	0%	8%						
Vol Left, % Vol Thru, %			0% 76%	100% 0%	0% 52%							
		9%				8%						
Vol Thru, %		9% 43% 48% Stop	76% 24% Stop	0% 0% Stop	52% 48% Stop	8% 83% 10% Stop						
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		9% 43% 48% Stop 234	76% 24% Stop 37	0% 0% Stop 320	52% 48%	8% 83% 10% Stop 345						
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		9% 43% 48% Stop 234 21	76% 24% Stop 37	0% 0% Stop 320 320	52% 48% Stop 231	8% 83% 10% Stop 345 26						
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		9% 43% 48% Stop 234 21 100	76% 24% Stop 37 0 28	0% 0% Stop 320 320 0	52% 48% Stop 231 0 120	8% 83% 10% Stop 345 26 286						
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		9% 43% 48% Stop 234 21 100 113	76% 24% Stop 37 0 28	0% 0% Stop 320 320 0	52% 48% Stop 231 0 120 111	8% 83% 10% Stop 345 26 286 33						
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		9% 43% 48% Stop 234 21 100 113 269	76% 24% Stop 37 0 28 9 74	0% 0% Stop 320 320 0 0 457	52% 48% Stop 231 0 120 111 330	8% 83% 10% Stop 345 26 286 33 493						
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		9% 43% 48% Stop 234 21 100 113 269	76% 24% Stop 37 0 28 9 74 5	0% 0% Stop 320 320 0 0 457	52% 48% Stop 231 0 120 111 330 7	8% 83% 10% Stop 345 26 286 33 493						
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		9% 43% 48% Stop 234 21 100 113 269 2 0.538	76% 24% Stop 37 0 28 9 74 5 0.172	0% 0% Stop 320 320 0 0 457 7	52% 48% Stop 231 0 120 111 330 7 0.641	8% 83% 10% Stop 345 26 286 33 493 2						
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		9% 43% 48% Stop 234 21 100 113 269 2 0.538 7.195	76% 24% Stop 37 0 28 9 74 5 0.172 8.357	0% 0% Stop 320 320 0 0 457 7 1.002 7.889	52% 48% Stop 231 0 120 111 330 7 0.641 6.995	8% 83% 10% Stop 345 26 286 33 493 2 0.964 7.038						
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		9% 43% 48% Stop 234 21 100 113 269 2 0.538 7.195 Yes	76% 24% Stop 37 0 28 9 74 5 0.172 8.357 Yes	0% 0% Stop 320 320 0 457 7 1.002 7.889	52% 48% Stop 231 0 120 111 330 7 0.641 6.995 Yes	8% 83% 10% Stop 345 26 286 33 493 2 0.964 7.038 Yes						
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		9% 43% 48% Stop 234 21 100 113 269 2 0.538 7.195 Yes 500	76% 24% Stop 37 0 28 9 74 5 0.172 8.357 Yes 427	0% 0% Stop 320 320 0 0 457 7 1.002 7.889 Yes 462	52% 48% Stop 231 0 120 111 330 7 0.641 6.995 Yes 515	8% 83% 10% Stop 345 26 286 33 493 2 0.964 7.038 Yes 518						
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		9% 43% 48% Stop 234 21 100 113 269 2 0.538 7.195 Yes 500 5.253	76% 24% Stop 37 0 28 9 74 5 0.172 8.357 Yes 427 6.45	0% 0% Stop 320 320 0 457 7 1.002 7.889 Yes 462 5.647	52% 48% Stop 231 0 120 111 330 7 0.641 6.995 Yes 515 4.752	8% 83% 10% Stop 345 26 286 33 493 2 0.964 7.038 Yes 518 5.083						
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		9% 43% 48% Stop 234 21 100 113 269 2 0.538 7.195 Yes 500 5.253 0.538	76% 24% Stop 37 0 28 9 74 5 0.172 8.357 Yes 427 6.45 0.173	0% 0% Stop 320 320 0 457 7 1.002 7.889 Yes 462 5.647 0.989	52% 48% Stop 231 0 120 111 330 7 0.641 6.995 Yes 515 4.752 0.641	8% 83% 10% Stop 345 26 286 33 493 2 0.964 7.038 Yes 518 5.083 0.952						
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay		9% 43% 48% Stop 234 21 100 113 269 2 0.538 7.195 Yes 500 5.253 0.538 18.4	76% 24% Stop 37 0 28 9 74 5 0.172 8.357 Yes 427 6.45 0.173 13.2	0% 0% Stop 320 320 0 457 7 1.002 7.889 Yes 462 5.647 0.989	52% 48% Stop 231 0 120 111 330 7 0.641 6.995 Yes 515 4.752 0.641 21.5	8% 83% 10% Stop 345 26 286 33 493 2 0.964 7.038 Yes 518 5.083 0.952 58						
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		9% 43% 48% Stop 234 21 100 113 269 2 0.538 7.195 Yes 500 5.253 0.538	76% 24% Stop 37 0 28 9 74 5 0.172 8.357 Yes 427 6.45 0.173	0% 0% Stop 320 320 0 457 7 1.002 7.889 Yes 462 5.647 0.989	52% 48% Stop 231 0 120 111 330 7 0.641 6.995 Yes 515 4.752 0.641	8% 83% 10% Stop 345 26 286 33 493 2 0.964 7.038 Yes 518 5.083 0.952						

Intersection												
Int Delay, s/veh	4.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			र्स	7	*	1		*	ĵ.	
Traffic Vol, veh/h	7	11	13	35	5	21	35	252	44	46	475	44
Future Vol, veh/h	7	11	13	35	5	21	35	252	44	46	475	44
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	_	_	None	-	-	None	-	-	None
Storage Length	_	-	-	-	-	80	85	_	-	165	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	71	71	71	83	83	83	79	79	79	66	66	66
Heavy Vehicles, %	25	0	14	0	33	9	0	4	0	4	1	4
Mvmt Flow	10	15	18	42	6	25	44	319	56	70	720	67
Major/Minor	Minor2		ı	Minor1			Major1			Major2		
Conflicting Flow All	1345	1357	754	1345	1362	347	787	0	0	375	0	0
Stage 1	894	894	-	435	435	-	-	-	-	-	-	-
Stage 2	451	463	-	910	927	-	-	-	-	-	-	-
Critical Hdwy	7.35	6.5	6.34	7.1	6.83	6.29	4.1	-	-	4.14	-	-
Critical Hdwy Stg 1	6.35	5.5	-	6.1	5.83	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.35	5.5	-	6.1	5.83	-	-	-	-	-	-	-
Follow-up Hdwy	3.725	4	3.426		4.297	3.381	2.2	-	-	2.236	-	-
Pot Cap-1 Maneuver	115	150	390	130	128	680	841	-	-	1173	-	-
Stage 1	306	362	-	604	531	-	-	-	-	-	-	-
Stage 2	546	568	-	332	309	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	98	134	390	104	114	680	841	-	-	1173	-	-
Mov Cap-2 Maneuver	98	134	-	104	114	-	-	-	-	-	-	-
Stage 1	290	340	-	573	503	-	-	-	-	-	-	-
Stage 2	492	538	-	284	290	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	34.3			46.6			1			0.7		
HCM LOS	D			Е								
Minor Lane/Major Mvn	nt	NBL	NBT	NBR	EBLn1V	VBLn1V	VBLn2	SBL	SBT	SBR		
Capacity (veh/h)		841	-	-	166	105	680	1173	-	-		
HCM Lane V/C Ratio		0.053	-	-		0.459			-	-		
HCM Control Delay (s)		9.5	-	-	34.3	65.5	10.5	8.3	-	-		
HCM Lane LOS		Α	-	-	D	F	В	Α	-	-		
HCM 95th %tile Q(veh)	0.2	-	-	1	2	0.1	0.2	-	-		

Intersection												
Int Delay, s/veh	1.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	5	10	5	41	10	10	5	370	258	15	155	15
Future Vol, veh/h	5	10	5	41	10	10	5	370	258	15	155	15
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	_	-	None	-	-	None
Storage Length	_	-	_	_	-	_	_	-	_	-	_	_
Veh in Median Storage	e.# -	0	_	-	0	_	_	0	-	-	0	-
Grade, %	_	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	6	11	6	46	11	11	6	411	287	17	172	17
Major/Minor	Minor2			Minor1			Major1		N	/lajor2		
Conflicting Flow All	793	925	181	790	790	555	189	0	0	698	0	0
Stage 1	215	215	-	567	567	-	103	-	-	-	-	-
Stage 2	578	710	_	223	223	_					_	
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12		_	4.12	_	
Critical Hdwy Stg 1	6.12	5.52	0.22	6.12	5.52	0.22	7.12	_	_	7.12	_	_
Critical Hdwy Stg 2	6.12	5.52	_	6.12	5.52	_	_	_	_	_	_	_
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	_	_	2.218	_	_
Pot Cap-1 Maneuver	306	269	862	308	322	531	1385	_	-	898	_	_
Stage 1	787	725	-	508	507	-	-	_	_	-	_	_
Stage 2	501	437	-	780	719	-	-	-	-	-	-	-
Platoon blocked, %								_	-		-	_
Mov Cap-1 Maneuver	285	261	862	290	313	531	1385	-	-	898	_	-
Mov Cap-2 Maneuver	285	261	-	290	313	-	-	-	-	-	-	_
Stage 1	781	710	-	504	503	-	-	_	-	-	-	-
Stage 2	476	434	-	747	704	-	-	-	-	-	-	-
<u> </u>												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	16.9			19.4			0.1			0.7		
HCM LOS	C			C			J .,			J.1		
Minor Lane/Major Mvn	nt	NBL	NBT	NRR	EBLn1V	VRI n1	SBL	SBT	SBR			
Capacity (veh/h)		1385	-	TUDIT	324	317	898	051	ODIC			
HCM Lane V/C Ratio		0.004				0.214						
HCM Control Delay (s)		7.6	0	-	16.9	19.4	9.1	0	_			
HCM Lane LOS		7.0 A	A		10.9 C	19.4 C	9.1 A	A	_			
HCM 95th %tile Q(veh)	0	A	-	0.2	0.8	0.1	- -	-			
TIOW JOHN JOHN WINE WINE	1	U	_		0.2	0.0	0.1					

Intersection							
Int Delay, s/veh	15.7						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	624	227	76	†	↑	170	
Traffic Vol, veh/h	624	227	26	9	41	170	
Future Vol, veh/h	624	227	26	9	41	170	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-			None	-		
Storage Length	0	290	100	-	-	175	
Veh in Median Storage,		-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	693	252	29	10	46	189	
NA - ' - /NA' NA			VI. '. A		M.'. O		
	linor2		Major1		Major2		
Conflicting Flow All	114	46	235	0	-	0	
Stage 1	46	-	-	-	-	-	
Stage 2	68	-	-	-	-	-	
Critical Hdwy	6.42	6.22	4.12	-	-	-	
Critical Hdwy Stg 1	5.42	-	-	-	-	-	
Critical Hdwy Stg 2	5.42	-	-	-	-	-	
Follow-up Hdwy	3.518	3.318	2.218	-	-	-	
Pot Cap-1 Maneuver	882	1023	1332	-	-	-	
Stage 1	976	_	-	_	-	-	
Stage 2	955	_	-	-	-	-	
Platoon blocked, %	000			_	_	_	
Mov Cap-1 Maneuver	863	1023	1332		_	_	
Mov Cap-1 Maneuver	863		1002			_	
		-	-	-	-		
Stage 1	955	-	-	-	-	-	
Stage 2	955	-	-	-	-	-	
Approach	EB		NB		SB		
HCM Control Delay, s	20		5.8		0		
HCM LOS	C		0.0		U		
TIOWI LOO	U						
Minor Lane/Major Mvmt		NBL	NBT	EBLn1 I	EBLn2	SBT	
Capacity (veh/h)		1332	-	863	1023	-	
HCM Lane V/C Ratio		0.022	_	0.803		-	
HCM Control Delay (s)		7.8	-		9.7	-	
HCM Lane LOS		Α	_	С	A	_	
HCM 95th %tile Q(veh)		0.1	_	8.7	1	_	
How our found w(veri)		0.1		0.1			

Intersection						
Int Delay, s/veh	1.2					
Movement	□ DI	EBR	NBL	NBT	SBT	SBR
	EBL	EDK	INDL			אמט
Lane Configurations	Y	40	100	4	212	0
Traffic Vol, veh/h	0	19	188	1150	313	0
Future Vol, veh/h	0	19	188	1150	313	0
Conflicting Peds, #/hr	0	0	_ 0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	50	50	67	67	75	75
Heavy Vehicles, %	2	2	1	2	2	0
Mvmt Flow	0	38	281	1716	417	0
	Minor2		Major1		/lajor2	
Conflicting Flow All	2695	417	417	0	-	0
Stage 1	417	-	-	-	-	-
Stage 2	2278	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.11	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	_	-	-	_	-
Follow-up Hdwy	3.518	3.318	2.209	-	-	_
Pot Cap-1 Maneuver	24	636	1147	_	_	_
Stage 1	665	-	-	_	_	_
Stage 2	83	_	_	_	_	_
Platoon blocked, %	03	_	_	_	_	_
	^	626	1117	-		
Mov Cap-1 Maneuver	0	636	1147	-	-	-
Mov Cap-2 Maneuver	0	-	-	-	-	-
Stage 1	0	-	-	-	-	-
Stage 2	83	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	11		1.3		0	
			1.3		U	
HCM LOS	В					
Minor Lane/Major Mvm	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1147	_	636	-	
HCM Lane V/C Ratio		0.245	_	0.06	_	_
HCM Control Delay (s)		9.2	0	11	_	_
HCM Lane LOS		Α.2	A	В	_	_
HCM 95th %tile Q(veh	١	1		0.2	_	_
HOW BOTH WITE CLASS)		_	U.Z	_	_

Intersection													
Int Delay, s/veh	33.3												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4	LDIT	","	4	· · · ·	INDL	4	- NOIN	ODL	4	ODIT	
Traffic Vol, veh/h	0	0	5	36	0	4	33	1334	78	11	313	0	
Future Vol, veh/h	0	0	5	36	0	4	33	1334	78	11	313	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	_	_	-	_	_	-	_	_	-	_	_	-	
Veh in Median Storage	.# -	0	_	_	0	_	_	0	_	_	0	_	
Grade, %	, <i>''</i>	0	_	_	0	_	_	0	_	_	0	_	
Peak Hour Factor	38	38	38	71	71	71	71	71	71	70	70	70	
Heavy Vehicles, %	0	0	33	17	0	50	6	1	7	17	3	0	
Mvmt Flow	0	0	13	51	0	6	46	1879	110	16	447	0	
			- 13	- U	J		- 10	1010	. 10	10			
N	Alia - C			\ d:			NA = !. A		_	4-:- 0			
	Minor2	0500		Minor1	0505		Major1			Major2			
Conflicting Flow All	2508	2560	447	2512	2505	1934	447	0	0	1989	0	0	
Stage 1	479	479	-	2026	2026	-	-	-	-	-	-	-	
Stage 2	2029	2081	-	486	479	-	-	-	-	-	-	-	
Critical Hdwy	7.1	6.5	6.53	7.27	6.5	6.7	4.16	-	-	4.27	-	-	
Critical Hdwy Stg 1	6.1	5.5	-	6.27	5.5	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.1	5.5	-	6.27	5.5	-	-	-	-		-	-	
Follow-up Hdwy	3.5	4	3.597	3.653	4	3.75	2.254	-	-	2.353	-	-	
Pot Cap-1 Maneuver	20	27	552	~ 17	29	61	1092	-	-	258	-	-	
Stage 1	571	558	-	68	102	-	-	-	-	-	-	-	
Stage 2	76	96	-	535	558	-	-	-	-	-	-	-	
Platoon blocked, %							1000	-	-		-	-	
Mov Cap-1 Maneuver	17	25	552	~ 16	27	61	1092	-	-	258	-	-	
Mov Cap-2 Maneuver	17	25	-	~ 16	27	-	-	-	-	-	-	-	
Stage 1	571	512	-	68	102	-	-	-	-	-	-	-	
Stage 2	69	96	-	479	512	-	-	-	-	-	-	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	11.7		\$	1503.5			0.2			0.7			
HCM LOS	В			F									
Minor Lane/Major Mvm	t	NBL	NBT	NRR	EBLn1V	WRI n1	SBL	SBT	SBR				
Capacity (veh/h)		1092	NDI -	NON	552	17	258	ומט	אומט				
HCM Lane V/C Ratio		0.043	-	-		3.314		-	-				
HCM Control Delay (s)		8.4	0	-		1503.5	19.9	0	-				
HCM Lane LOS					11. 3	1503.5 F	19.9 C		-				
HCM 95th %tile Q(veh)		0.1	A	-	0.1	7.7	0.2	A -	-				
,		U. I	_	-	U. I	1.1	0.2	_	-				
Notes													
~: Volume exceeds cap	acity	\$: De	elay exc	eeds 30	00s	+: Com	putation	Not De	efined	*: All ı	major v	olume ir	n platoon

Intersection						
Int Delay, s/veh	42.9					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	WDL	VVDK		NDI	SDL	
	٥		1210	٥	٥	^
Traffic Vol, veh/h	0	227	1218	0	0	354
Future Vol, veh/h	0	227	1218	0	0	354
Conflicting Peds, #/hr	0	0	_ 0	_ 0	0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	76	95	92	92	80
Heavy Vehicles, %	2	3	2	2	2	4
Mvmt Flow	0	299	1282	0	0	443
				•	•	
Major/Minor	Minor1	N	Major1	N	1ajor2	
Conflicting Flow All	-	1282	0	-	-	-
Stage 1	_	_	-	-	-	_
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.245	_	-	_	-
Critical Hdwy Stg 1	_	-	_	_	_	_
Critical Hdwy Stg 2	_	_	_	_	_	_
Follow-up Hdwy		3.3285	<u>-</u>	_	_	_
Pot Cap-1 Maneuver		~ 200	_	0	0	_
•			_			
Stage 1	0	-	-	0	0	-
Stage 2	0	-	-	0	0	-
Platoon blocked, %			-			-
Mov Cap-1 Maneuver	-	~ 200	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	_	-	-	-	-	-
, and the second						
Approach	WB		NB		SB	
HCM Control Delay, s	290.3		0		0	
HCM LOS	F					
			.	05=		
Minor Lane/Major Mvn	nt	NBTV	VBLn1	SBT		
Capacity (veh/h)		-	200	-		
HCM Lane V/C Ratio		-	1.493	-		
HCM Control Delay (s))	-	290.3	-		
HCM Lane LOS		-	F	-		
HCM 95th %tile Q(veh)	-	18.4	-		
,	,					
Notes						
~: Volume exceeds ca	pacity	\$: De	lay exc	eeds 30	0s -	+: Comp

	۶	→	*	•	+	•	1	†	~	-	↓	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑ ↑		14.4	†			ન	77		4	
Traffic Volume (vph)	5	487	7	37	274	307	10	0	1184	102	15	3
Future Volume (vph)	5	487	7	37	274	307	10	0	1184	102	15	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	12	11	12	12	16	12
Total Lost time (s)	5.0	6.0		6.0	6.0			6.0	6.0		6.0	
Lane Util. Factor	1.00	0.95		0.97	0.95			1.00	0.88		1.00	
Frt	1.00	1.00		1.00	0.92			1.00	0.85		1.00	
Flt Protected	0.95	1.00		0.95	1.00			0.95	1.00		0.96	
Satd. Flow (prot)	1357	3533		3155	3308			1491	2842		2058	
FIt Permitted	0.95	1.00		0.95	1.00			0.70	1.00		0.75	
Satd. Flow (perm)	1357	3533		3155	3308			1097	2842		1612	
Peak-hour factor, PHF	0.69	0.69	0.69	0.88	0.88	0.88	0.93	0.93	0.93	0.81	0.81	0.81
Adj. Flow (vph)	7	706	10	42	311	349	11	0	1273	126	19	4
RTOR Reduction (vph)	0	1	0	0	148	0	0	0	0	0	1	0
Lane Group Flow (vph)	7	715	0	42	512	0	0	11	1273	0	148	0
Heavy Vehicles (%)	33%	2%	0%	11%	1%	0%	17%	0%	0%	0%	0%	0%
Turn Type	Prot	NA		Prot	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	6	2		1	5			8			4	
Permitted Phases							8		8	4		
Actuated Green, G (s)	2.7	19.3		5.1	22.7			21.0	21.0		21.0	
Effective Green, g (s)	2.7	19.3		5.1	22.7			21.0	21.0		21.0	
Actuated g/C Ratio	0.04	0.30		0.08	0.36			0.33	0.33		0.33	
Clearance Time (s)	5.0	6.0		6.0	6.0			6.0	6.0		6.0	
Vehicle Extension (s)	2.0	3.0		3.0	3.0			3.0	3.0		3.0	
Lane Grp Cap (vph)	57	1075		253	1184			363	941		533	
v/s Ratio Prot	0.01	c0.20		0.01	c0.15							
v/s Ratio Perm								0.01	c0.45		0.09	
v/c Ratio	0.12	0.67		0.17	0.43			0.03	1.35		0.28	
Uniform Delay, d1	29.2	19.2		27.2	15.5			14.3	21.2		15.6	
Progression Factor	1.00	1.00		1.00	1.00			1.00	1.00		1.00	
Incremental Delay, d2	0.4	1.6		0.3	0.3			0.0	165.8		0.3	
Delay (s)	29.6	20.8		27.5	15.7			14.4	187.0		15.9	
Level of Service	С	С		С	В			В	F		В	
Approach Delay (s)		20.9			16.4			185.5			15.9	
Approach LOS		С			В			F			В	
Intersection Summary												
HCM 2000 Control Delay			93.5	Н	ICM 2000	Level of S	Service		F			
HCM 2000 Volume to Capa	city ratio		0.99									
Actuated Cycle Length (s)			63.4		um of lost				18.0			
Intersection Capacity Utiliza	tion		76.7%	IC	CU Level o	of Service			D			
Analysis Period (min)			15									
0 10 11 0												

102: US Route 4 SB On-Ramp/US Route 4 SB Off-Ramp & Pease Blvd 2025 Build Conditions Weekday PM Peak

	۶	-	•	•	←	•	1	†	-	-	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		1111	7	14.54	^					44		77
Traffic Volume (vph)	0	1170	603	691	479	0	0	0	0	393	0	152
Future Volume (vph)	0	1170	603	691	479	0	0	0	0	393	0	152
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	10	11	10	11	12	12	12	12	12	12	12
Total Lost time (s)		6.0	6.0	6.0	6.0					6.0		6.0
Lane Util. Factor		0.86	1.00	0.97	0.95					0.97		0.88
Frt		1.00	0.85	1.00	1.00					1.00		0.85
Flt Protected		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (prot)		6040	1546	3236	3455					3502		2814
Flt Permitted		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (perm)		6040	1546	3236	3455					3502		2814
Peak-hour factor, PHF	0.92	0.85	0.85	0.94	0.94	0.92	0.92	0.92	0.92	0.75	0.25	0.75
Adj. Flow (vph)	0	1376	709	735	510	0	0	0	0	524	0	203
RTOR Reduction (vph)	0	0	365	0	0	0	0	0	0	0	0	154
Lane Group Flow (vph)	0	1376	344	735	510	0	0	0	0	524	0	49
Heavy Vehicles (%)	0%	1%	1%	1%	1%	0%	2%	2%	2%	0%	0%	1%
Turn Type		NA	Prot	Prot	NA					Prot		Prot
Protected Phases		6	6	5	2 5					3		3
Permitted Phases												
Actuated Green, G (s)		35.0	35.0	25.0	60.6					24.7		24.7
Effective Green, g (s)		35.0	35.0	25.0	60.6					24.7		24.7
Actuated g/C Ratio		0.34	0.34	0.24	0.59					0.24		0.24
Clearance Time (s)		6.0	6.0	6.0						6.0		6.0
Vehicle Extension (s)		5.0	5.0	4.0						5.0		5.0
Lane Grp Cap (vph)		2058	526	787	2038					842		676
v/s Ratio Prot		c0.23	0.22	c0.23	0.15					c0.15		0.02
v/s Ratio Perm												
v/c Ratio		0.67	0.65	0.93	0.25					0.62		0.07
Uniform Delay, d1		28.9	28.7	38.0	10.1					34.8		30.1
Progression Factor		1.00	1.00	1.35	1.21					1.00		1.00
Incremental Delay, d2		1.1	3.9	12.4	0.1					2.0		0.1
Delay (s)		30.0	32.6	63.8	12.4					36.9		30.2
Level of Service		С	С	Е	В					D		С
Approach Delay (s)		30.9			42.7			0.0			35.0	
Approach LOS		С			D			А			D	
Intersection Summary												
HCM 2000 Control Delay			35.3	H	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capaci	ty ratio		0.73									
Actuated Cycle Length (s)			102.7	Sı	um of lost	time (s)			18.0			
Intersection Capacity Utilization	on		83.3%	IC	U Level o	of Service			Е			
Analysis Period (min)			15									
c. Critical Lane Group												

103: US Route 4 NB Off-ramp/US Route 4 NB On-Ramp & Pease Blvd 2025 Build Conditions Weekday PM Peak

	۶	→	•	•	+	•	1	†	-	1	†	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	44	^			ተተጉ		44		77			
Traffic Volume (vph)	700	863	0	0	941	411	229	0	632	0	0	0
Future Volume (vph)	700	863	0	0	941	411	229	0	632	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	11	12	12	12	12	12	12	12	12	12	12
Grade (%)		0%			11%			0%			0%	
Total Lost time (s)	6.0	6.0			6.0		6.0		6.0			
Lane Util. Factor	0.97	0.95			0.91		0.97		0.88			
Frt	1.00	1.00			0.95		1.00		0.85			
Flt Protected	0.95	1.00			1.00		0.95		1.00			
Satd. Flow (prot)	3236	3455			4646		3433		2814			
FIt Permitted	0.11	1.00			1.00		0.95		1.00			
Satd. Flow (perm)	389	3455			4646		3433		2814			
Peak-hour factor, PHF	0.87	0.87	0.92	0.92	0.90	0.90	0.94	0.92	0.94	0.92	0.92	0.92
Adj. Flow (vph)	805	992	0	0	1046	457	244	0	672	0	0	0
RTOR Reduction (vph)	0	0	0	0	76	0	0	0	510	0	0	0
Lane Group Flow (vph)	805	992	0	0	1427	0	244	0	162	0	0	0
Heavy Vehicles (%)	1%	1%	2%	2%	1%	0%	2%	2%	1%	2%	2%	2%
Turn Type	pm+pt	NA			NA		Prot		Prot			
Protected Phases	1	6			2		3		3			
Permitted Phases	6											
Actuated Green, G (s)	59.4	35.0			35.6		24.7		24.7			
Effective Green, g (s)	59.4	35.0			35.6		24.7		24.7			
Actuated g/C Ratio	0.58	0.34			0.35		0.24		0.24			
Clearance Time (s)	6.0	6.0			6.0		6.0		6.0			
Vehicle Extension (s)	4.0	5.0			5.0		5.0		5.0			
Lane Grp Cap (vph)	901	1177			1610		825		676			
v/s Ratio Prot	c0.21	0.29			c0.31		c0.07		0.06			
v/s Ratio Perm	0.30											
v/c Ratio	0.89	0.84			0.89		0.30		0.24			
Uniform Delay, d1	27.8	31.3			31.6		31.9		31.4			
Progression Factor	1.62	0.59			1.00		1.00		1.00			
Incremental Delay, d2	9.0	4.8			6.8		0.4		0.4			
Delay (s)	54.0	23.1			38.4		32.3		31.8			
Level of Service	D	С			D		С		С			
Approach Delay (s)		37.0			38.4			31.9			0.0	
Approach LOS		D			D			С			Α	
Intersection Summary												
HCM 2000 Control Delay			36.4	Н	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capa	city ratio		0.72									
Actuated Cycle Length (s)			102.7		um of lost				18.0			
Intersection Capacity Utiliza	tion		83.3%	IC	CU Level o	of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

	•	•	†	1	-	↓			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	14.14	7	ተተተ	7	1/1/	^			
Traffic Volume (vph)	1052	178	1810	283	718	1437			
Future Volume (vph)	1052	178	1810	283	718	1437			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Lane Width	12	12	12	11	12	12			
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0			
Lane Util. Factor	0.97	1.00	0.91	1.00	0.97	0.95			
Frt	1.00	0.85	1.00	0.85	1.00	1.00			
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00			
Satd. Flow (prot)	3367	1509	5085	1323	3433	3539			
Flt Permitted	0.95	1.00	1.00	1.00	0.95	1.00			
Satd. Flow (perm)	3367	1509	5085	1323	3433	3539			
Peak-hour factor, PHF	0.89	0.89	0.95	0.95	0.84	0.84			
Adj. Flow (vph)	1182	200	1905	298	855	1711			
RTOR Reduction (vph)	0	140	0	202	0	0			
Lane Group Flow (vph)	1182	60	1905	96	855	1711			
Heavy Vehicles (%)	4%	7%	2%	18%	2%	2%			
Turn Type	Prot	Prot	NA	Prot	Prot	NA			
Protected Phases	7	7	6	6	5	2			
Permitted Phases	'	1	U	U	J				
Actuated Green, G (s)	25.0	25.0	30.0	30.0	20.0	56.0			
Effective Green, g (s)	25.0	25.0	30.0	30.0	20.0	56.0			
Actuated g/C Ratio	0.27	0.27	0.32	0.32	0.22	0.60			
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0			
Vehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0			
	905	405	1640	426	738	2131			
Lane Grp Cap (vph)			c0.37		c0.25	0.48			
v/s Ratio Prot	c0.35	0.04	00.57	0.07	00.25	0.40			
v/s Ratio Perm	4 24	0.45	1.10	0.00	1.10	0.00			
v/c Ratio	1.31	0.15	1.16	0.23	1.16	0.80			
Uniform Delay, d1	34.0	25.9	31.5	23.0	36.5	14.2			
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Incremental Delay, d2	145.8	0.2	79.9	1.2	86.1	3.3			
Delay (s)	179.8	26.1	111.4	24.2	122.6	17.6			
Level of Service	F	С	F	С	F	B			
Approach Delay (s)	157.5		99.6			52.6			
Approach LOS	F		F			D			
Intersection Summary									
HCM 2000 Control Delay			93.0	Н	CM 2000	Level of Service)	F	
HCM 2000 Volume to Capa	city ratio		1.21						
Actuated Cycle Length (s)			93.0	S	um of lost	time (s)		18.0	
Intersection Capacity Utiliza	ation		100.5%	IC	CU Level o	of Service		G	
Analysis Period (min)			15						
c Critical Lane Group									

	•	200	+	•	-	1		
	- FDI		MOT		200	000		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	7	^	^	7	\	7		
Traffic Volume (vph)	319	1669	1296	230	419	859		
Future Volume (vph)	319	1669	1296	230	419	859		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00		
Frt	1.00	1.00	1.00	0.85	1.00	0.85		
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (prot)	1787	3539	3539	1583	1787	1599		
Flt Permitted	0.95	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (perm)	1787	3539	3539	1583	1787	1599		
Peak-hour factor, PHF	0.88	0.88	0.93	0.93	0.87	0.87		
Adj. Flow (vph)	362	1897	1394	247	482	987		
RTOR Reduction (vph)	0	0	0	172	0	166		
Lane Group Flow (vph)	363	1897	1394	75	482	821		
Heavy Vehicles (%)	1%	2%	2%	2%	1%	1%		
Turn Type	Prot	NA	NA	Perm	Prot	Prot		
Protected Phases	1	6	2		3	3		
Permitted Phases				2				
Actuated Green, G (s)	5.0	29.0	18.0	18.0	18.0	18.0		
Effective Green, g (s)	5.0	29.0	18.0	18.0	18.0	18.0		
Actuated g/C Ratio	0.08	0.49	0.31	0.31	0.31	0.31		
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Vehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0		
Lane Grp Cap (vph)	151	1739	1079	482	545	487		
v/s Ratio Prot	c0.20	0.54	c0.39		0.27	c0.51		
v/s Ratio Perm	0010			0.05	•1-1			
v/c Ratio	2.40	1.09	1.29	0.16	0.88	1.69		
Uniform Delay, d1	27.0	15.0	20.5	15.0	19.5	20.5		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	651.6	50.9	138.4	0.7	16.1	317.4		
Delay (s)	678.6	65.9	158.9	15.7	35.6	337.9		
Level of Service	F	E	F	В	D	F		
Approach Delay (s)	·	164.3	137.3		238.7			
Approach LOS		F	F		F			
Intersection Summary								
HCM 2000 Control Delay	·		176.4	Н	CM 2000	Level of Service	F	<u></u>
HCM 2000 Volume to Capac	city ratio		1.60					
Actuated Cycle Length (s)			59.0	S	um of los	t time (s)	18.0	
Intersection Capacity Utilizat	tion		99.0%	IC	U Level	of Service	F	
Analysis Period (min)			15					
c Critical Lane Group								

	-	*	1	•	1	-		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	^	7	7	^	*	7		
Traffic Volume (vph)	935	1153	419	1324	202	483		
Future Volume (vph)	935	1153	419	1324	202	483		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Lane Width	12	12	12	12	13	12		
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Lane Util. Factor	0.95	1.00	1.00	0.95	1.00	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
FIt Protected	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (prot)	3539	1568	1787	3539	1636	1583		
Flt Permitted	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (perm)	3539	1568	1787	3539	1636	1583		
Peak-hour factor, PHF	0.89	0.89	0.86	0.86	0.88	0.88		
Adj. Flow (vph)	1051	1296	487	1540	230	549		
RTOR Reduction (vph)		387				442		
	1051	909	0 487	1540	0 230	107		
Lane Group Flow (vph)	1051		1%	1540		2%		
Heavy Vehicles (%)	2%	3%		2%	14%			
Turn Type	NA	Prot	Prot	NA	Prot	Prot		
Protected Phases	6	6	5	2	7	7		
Permitted Phases	40.0	40.0	40.5	00.4	00.0	00.0		
Actuated Green, G (s)	49.6	49.6	43.5	99.1	26.9	26.9		
Effective Green, g (s)	49.6	49.6	43.5	99.1	26.9	26.9		
Actuated g/C Ratio	0.36	0.36	0.32	0.72	0.19	0.19		
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Vehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0		
Lane Grp Cap (vph)	1271	563	563	2541	318	308		
v/s Ratio Prot	0.30	c0.58	c0.27	0.44	c0.14	0.07		
v/s Ratio Perm								
v/c Ratio	0.83	1.61	0.87	0.61	0.72	0.35		
Uniform Delay, d1	40.3	44.2	44.5	9.7	52.1	48.0		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	6.3	284.8	13.5	1.1	8.4	0.9		
Delay (s)	46.5	329.0	58.0	10.8	60.5	48.9		
Level of Service	D	F	Е	В	Е	D		
Approach Delay (s)	202.5			22.1	52.3			
Approach LOS	F			С	D			
Intersection Summary								
HCM 2000 Control Delay			108.8	Н	CM 2000	Level of Service)	
HCM 2000 Volume to Cap	acity ratio		1.14		2 2000			
Actuated Cycle Length (s)			138.0	S	um of lost	time (s)		
Intersection Capacity Utiliz	ation		104.6%		CU Level c			
Analysis Period (min)			15	10	.5 257010	5011100		
c Critical Lane Group			10					

Intersection												
Intersection Delay, s/veh	106.9											
Intersection LOS	F											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		*	₽			4			4	
Traffic Vol, veh/h	64	81	22	249	22	18	2	305	275	65	99	3
Future Vol, veh/h	64	81	22	249	22	18	2	305	275	65	99	3
Peak Hour Factor	0.71	0.71	0.71	0.90	0.90	0.90	0.75	0.75	0.75	0.88	0.88	0.88
Heavy Vehicles, %	0	0	0	2	0	10	0	1	3	11	4	0
Mvmt Flow	90	114	31	277	24	20	3	407	367	74	113	3
Number of Lanes	0	1	0	1	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			2			1		
HCM Control Delay	19.3			23.7			189.8			16.9		
HCM LOS	С			С			F			С		
Lane		NBLn1	EBLn1	WBLn1	WBLn2	SBLn1						
Vol Left, %		0%	000/	4000/								
-		U /0	38%	100%	0%	39%						
Vol Thru, %		52%	49%	100%	0% 55%	39% 59%						
Vol Thru, % Vol Right, %												
		52%	49%	0%	55%	59%						
Vol Right, %		52% 47%	49% 13%	0% 0%	55% 45%	59% 2%						
Vol Right, % Sign Control		52% 47% Stop	49% 13% Stop	0% 0% Stop	55% 45% Stop	59% 2% Stop						
Vol Right, % Sign Control Traffic Vol by Lane		52% 47% Stop 582	49% 13% Stop 167	0% 0% Stop 249	55% 45% Stop 40 0 22	59% 2% Stop 167						
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		52% 47% Stop 582 2	49% 13% Stop 167 64	0% 0% Stop 249 249	55% 45% Stop 40 0	59% 2% Stop 167 65						
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		52% 47% Stop 582 2 305 275 776	49% 13% Stop 167 64 81 22 235	0% 0% Stop 249 249	55% 45% Stop 40 0 22	59% 2% Stop 167 65 99 3						
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		52% 47% Stop 582 2 305 275 776	49% 13% Stop 167 64 81 22 235 5	0% 0% Stop 249 249 0 0 277	55% 45% Stop 40 0 22 18 44	59% 2% Stop 167 65 99 3 190 2						
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		52% 47% Stop 582 2 305 275 776 2 1.354	49% 13% Stop 167 64 81 22 235 5	0% 0% Stop 249 249 0 0 277 7	55% 45% Stop 40 0 22 18 44 7 0.09	59% 2% Stop 167 65 99 3 190 2						
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		52% 47% Stop 582 2 305 275 776 2 1.354 6.28	49% 13% Stop 167 64 81 22 235 5 0.487 8.484	0% 0% Stop 249 0 0 277 7 0.623 9.069	55% 45% Stop 40 0 22 18 44 7 0.09 8.189	59% 2% Stop 167 65 99 3 190 2 0.4 8.412						
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		52% 47% Stop 582 2 305 275 776 2 1.354 6.28 Yes	49% 13% Stop 167 64 81 22 235 5 0.487 8.484 Yes	0% 0% Stop 249 0 0 277 7 0.623 9.069 Yes	55% 45% Stop 40 0 22 18 44 7 0.09 8.189 Yes	59% 2% Stop 167 65 99 3 190 2 0.4 8.412 Yes						
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		52% 47% Stop 582 2 305 275 776 2 1.354 6.28 Yes 582	49% 13% Stop 167 64 81 22 235 5 0.487 8.484 Yes 428	0% 0% Stop 249 0 0 277 7 0.623 9.069 Yes 401	55% 45% Stop 40 0 22 18 44 7 0.09 8.189 Yes 440	59% 2% Stop 167 65 99 3 190 2 0.4 8.412 Yes 431						
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		52% 47% Stop 582 2 305 275 776 2 1.354 6.28 Yes 582 4.28	49% 13% Stop 167 64 81 22 235 5 0.487 8.484 Yes 428 6.484	0% 0% Stop 249 0 0 277 7 0.623 9.069 Yes 401 6.769	55% 45% Stop 40 0 22 18 44 7 0.09 8.189 Yes 440 5.889	59% 2% Stop 167 65 99 3 190 2 0.4 8.412 Yes 431 6.412						
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		52% 47% Stop 582 2 305 275 776 2 1.354 6.28 Yes 582 4.28 1.333	49% 13% Stop 167 64 81 22 235 5 0.487 8.484 Yes 428 6.484 0.549	0% 0% Stop 249 0 0 277 7 0.623 9.069 Yes 401 6.769 0.691	55% 45% Stop 40 0 22 18 44 7 0.09 8.189 Yes 440 5.889 0.1	59% 2% Stop 167 65 99 3 190 2 0.4 8.412 Yes 431 6.412 0.441						
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay		52% 47% Stop 582 2 305 275 776 2 1.354 6.28 Yes 582 4.28 1.333 189.8	49% 13% Stop 167 64 81 22 235 5 0.487 8.484 Yes 428 6.484 0.549 19.3	0% 0% Stop 249 0 0 277 7 0.623 9.069 Yes 401 6.769 0.691 25.6	55% 45% Stop 40 0 22 18 44 7 0.09 8.189 Yes 440 5.889 0.1 11.7	59% 2% Stop 167 65 99 3 190 2 0.4 8.412 Yes 431 6.412 0.441 16.9						
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		52% 47% Stop 582 2 305 275 776 2 1.354 6.28 Yes 582 4.28 1.333	49% 13% Stop 167 64 81 22 235 5 0.487 8.484 Yes 428 6.484 0.549	0% 0% Stop 249 0 0 277 7 0.623 9.069 Yes 401 6.769 0.691	55% 45% Stop 40 0 22 18 44 7 0.09 8.189 Yes 440 5.889 0.1	59% 2% Stop 167 65 99 3 190 2 0.4 8.412 Yes 431 6.412 0.441						

Intersection												
Int Delay, s/veh	4.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			र्स	7	*	f.		*	f.	
Traffic Vol, veh/h	5	10	7	62	7	35	12	476	49	20	386	18
Future Vol, veh/h	5	10	7	62	7	35	12	476	49	20	386	18
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	80	85	-	-	165	-	-
Veh in Median Storage,	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	65	65	65	87	87	87	73	73	73	90	90	90
Heavy Vehicles, %	0	0	25	3	25	0	0	3	0	0	1	0
Mvmt Flow	8	15	11	71	8	40	16	652	67	22	429	20
Major/Minor N	/linor2			Minor1			Major1		N	Major2		
Conflicting Flow All	1225	1234	439	1214	1211	686	449	0	0	719	0	0
Stage 1	483	483	433	718	718	-	443	-	-	7 19	-	-
Stage 2	742	751	_	496	493	_	_		_		_	
Critical Hdwy	7.1	6.5	6.45	7.13	6.75	6.2	4.1	_		4.1	_	
Critical Hdwy Stg 1	6.1	5.5	0.45	6.13	5.75	0.2	7.1	_	_	-7 . I		_
Critical Hdwy Stg 2	6.1	5.5		6.13	5.75	_	_	_				
Follow-up Hdwy	3.5	4	3.525	3.527	4.225	3.3	2.2	_	<u>-</u>	2.2	_	_
Pot Cap-1 Maneuver	157	178	572	158	165	451	1122	_	_	892	_	_
Stage 1	569	556	-	419	401		- 1122	-	<u>-</u>	-	_	_
Stage 2	411	421	_	554	511	_	_	_	_	_	_	_
Platoon blocked, %		121		- JO 1	J11			-	_		_	_
Mov Cap-1 Maneuver	133	171	572	140	159	451	1122	_	-	892	_	-
Mov Cap-2 Maneuver	133	171	-	140	159	-		_	_	-	_	_
Stage 1	561	542	-	413	395	_	_	_	-	_	_	-
Stage 2	361	415	_	515	498	_	_	_	_	_	_	_
				3.3	.00							
A	ED			\A/D			NID.			C.D.		
Approach	EB			WB			NB			SB		
HCM Control Delay, s	26.2			43.5			0.2			0.4		
HCM LOS	D			E								
Minor Lane/Major Mvm	t	NBL	NBT	NBR	EBLn1V	VBLn1V	VBLn2	SBL	SBT	SBR		
Capacity (veh/h)		1122	-	-	203	142	451	892	-	-		
HCM Lane V/C Ratio		0.015	-	-	0.167	0.559	0.089	0.025	-	-		
HCM Control Delay (s)		8.3	-	-	26.2	58.5	13.8	9.1	-	-		
HCM Lane LOS		Α	-	-	D	F	В	Α	-	-		
HCM 95th %tile Q(veh)		0	-	-	0.6	2.8	0.3	0.1	-	-		
,												

Intersection												
Int Delay, s/veh	26.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	5	15	5	242	10	5	0	197	98	5	483	5
Future Vol, veh/h	5	15	5	242	10	5	0	197	98	5	483	5
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	6	17	6	269	11	6	0	219	109	6	537	6
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	834	880	540	838	829	274	543	0	0	328	0	0
Stage 1	552	552	-	274	274		-	-	-	-	-	-
Stage 2	282	328	_	564	555	_	_	_	_	_	_	_
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	_	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-		_	_	-	_	_
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	_	_	_	-	-	-	_
Follow-up Hdwy	3.518	4.018	3.318		4.018	3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	288	286	542	286	306	765	1026	-	-	1232	-	-
Stage 1	518	515	-	732	683	-	-	-	-	-	-	-
Stage 2	725	647	-	510	513	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	276	284	542	269	304	765	1026	-	-	1232	-	-
Mov Cap-2 Maneuver	276	284	-	269	304	-	-	-	-	-	-	-
Stage 1	518	511	-	732	683	-	-	-	-	-	-	-
Stage 2	708	647	-	485	509	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	17.7			106.7			0			0.1		
HCM LOS	С			F								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1026	-	-	312	274	1232	-	-			
HCM Lane V/C Ratio		-	-	-	0.089	1.042	0.005	-	-			
HCM Control Delay (s)		0	-	-	17.7	106.7	7.9	0	-			
HCM Lane LOS		Α	-	-	С	F	Α	Α	-			
HCM 95th %tile Q(veh)	0	-	-	0.3	11.1	0	-	-			

Intersection Int Delay, s/veh 9.8 9.8
Int Delay, s/veh 9.8 Movement EBL EBR NBL NBT SBT SBR Lane Configurations ✓
Lane Configurations Y ↓ ↓ ↓ Traffic Vol, veh/h 2 143 23 466 1048 2 Future Vol, veh/h 2 143 23 466 1048 2 Conflicting Peds, #/hr 0 0 0 0 0 0 0 Sign Control Stop Stop Free
Lane Configurations Y ↓ ↓ Traffic Vol, veh/h 2 143 23 466 1048 2 Future Vol, veh/h 2 143 23 466 1048 2 Conflicting Peds, #/hr 0 0 0 0 0 0 0 Sign Control Stop Stop Free
Traffic Vol, veh/h 2 143 23 466 1048 2 Future Vol, veh/h 2 143 23 466 1048 2 Conflicting Peds, #/hr 0 0 0 0 0 0 0 Sign Control Stop Stop Free
Future Vol, veh/h 2 143 23 466 1048 2 Conflicting Peds, #/hr 0<
Conflicting Peds, #/hr 0
Sign Control Stop Stop Free None - None - - 0 0 - 0 0 - 0 0 - 0 0 0
RT Channelized - None - None - None Storage Length 0
Storage Length 0 - - - - - - - - - - - - - - - - 0 0 - - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 0 - 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Veh in Median Storage, # 0 - - 0 0 - Grade, % 0 - - 0 0 - Peak Hour Factor 68 68 85 85 89 89 Heavy Vehicles, % 0 1 0 1 1 0 Mvmt Flow 3 210 27 548 1178 2
Grade, % 0 - - 0 0 - Peak Hour Factor 68 68 85 85 89 89 Heavy Vehicles, % 0 1 0 1 1 0 Mvmt Flow 3 210 27 548 1178 2
Peak Hour Factor 68 68 85 85 89 89 Heavy Vehicles, % 0 1 0 1 1 0 Mvmt Flow 3 210 27 548 1178 2
Heavy Vehicles, % 0 1 0 1 1 0 Mvmt Flow 3 210 27 548 1178 2
Heavy Vehicles, % 0 1 0 1 1 0 Mvmt Flow 3 210 27 548 1178 2
Mvmt Flow 3 210 27 548 1178 2
Major/Minor Minor2 Major1 Major2
Major/Minor Minor2 Major1 Major2

Conflicting Flow All 1781 1179 1180 0 - 0
Stage 1 1179
Stage 2 602
Critical Hdwy 6.4 6.21 4.1
Critical Hdwy Stg 1 5.4
Critical Hdwy Stg 2 5.4
Follow-up Hdwy 3.5 3.309 2.2
Pot Cap-1 Maneuver 91 233 599
Stage 1 295
•
Platoon blocked, %
Mov Cap-1 Maneuver 85 233 599
Mov Cap-2 Maneuver 85
Stage 1 276
Stage 2 551
Approach EB NB SB
HCM Control Delay, s 89 0.5 0
HCM LOS F
HCM LOS F
Minor Lane/Major Mvmt NBL NBT EBLn1 SBT SBR
Minor Lane/Major Mvmt NBL NBT EBLn1 SBT SBR Capacity (veh/h) 599 - 228
Minor Lane/Major Mvmt NBL NBT EBLn1 SBT SBR Capacity (veh/h) 599 - 228 HCM Lane V/C Ratio 0.045 - 0.935
Minor Lane/Major Mvmt NBL NBT EBLn1 SBT SBR Capacity (veh/h) 599 - 228 - - HCM Lane V/C Ratio 0.045 - 0.935 - - HCM Control Delay (s) 11.3 0 89 - -
Minor Lane/Major Mvmt NBL NBT EBLn1 SBT SBR Capacity (veh/h) 599 - 228 HCM Lane V/C Ratio 0.045 - 0.935

ntersection													
nt Delay, s/veh	39.6												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	LDL	4	LDIN	VVDL	4	אוטוע	NDL	4	NUN	ODL	4	ODIX	
Fraffic Vol, veh/h	9	0	28	47	0	12	65	476	76	15	1203	25	
-uture Vol, veh/h	9	0	28	47	0	12	65	476	76	15	1203	25	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	Stop -	Stop	None	Stop -	Stop -	None	-		None	riee	riee	None	
	-	-	None	_	-	None		-	None	-	-	None	
Storage Length		0	-		0	-	-	0	-	-	_	-	
/eh in Median Storage			-	-	0	-	-		-	-	0	-	
Grade, %	-	0	-	-	0	-	- 04	0	- 04	-	0	-	
Peak Hour Factor	63	63	63	83	83	83	94	94	94	89	89	89	
Heavy Vehicles, %	0	0	0	12	0	29	0	1	12	22	1	0	
1vmt Flow	14	0	44	57	0	14	69	506	81	17	1352	28	
/lajor/Minor	Minor2			Minor1			Major1			Major2			
Conflicting Flow All	2092	2125	1366	2107	2099	547	1380	0	0	587	0	0	
Stage 1	1400	1400	-	685	685	-	-	-	-	-	-	-	
Stage 2	692	725	-	1422	1414	-	-	-	-	-	-	-	
ritical Hdwy	7.1	6.5	6.2	7.22	6.5	6.49	4.1	_	-	4.32	-	-	
Critical Hdwy Stg 1	6.1	5.5	-	6.22	5.5	-	-	_	-	-	_	-	
Critical Hdwy Stg 2	6.1	5.5	_	6.22	5.5	_	-	_	_	-	_	-	
ollow-up Hdwy	3.5	4	3.3	3.608	4	3.561	2.2	_	-	2.398	_	_	
ot Cap-1 Maneuver	39	51	182	~ 35	53	488	503	-	-	897	-	-	
Stage 1	176	209	_	422	451	_	-	_	-	-	_	_	
Stage 2	437	433	_	160	206	_	_	_	_	_	_	_	
Platoon blocked, %								_	_		_	_	
Nov Cap-1 Maneuver	30	37	182	~ 21	39	488	503	_	_	897	_	_	
Nov Cap-2 Maneuver	30	37	-	~ 21	39	-	-	_	_	-	_	_	
Stage 1	140	192	_	335	358	_	_	_	_	_	_	_	
Stage 2	337	344	_	111	189	_	_	_	_	_	_	_	
Olugo Z	501	UTT		111	100								
u u u u a a a b	ED			\A/D			ND			CD			
pproach	EB		Φ.	WB			NB			SB			
ICM Control Delay, s			\$ '	1101.6			1.4			0.1			
ICM LOS	F			F									
Minor Lane/Major Mvm	nt	NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR				
Capacity (veh/h)		503	-	-	82	26	897	-	-				
ICM Lane V/C Ratio		0.137	-	-	0.716	2.734	0.019	-	-				
ICM Control Delay (s)		13.3	0	-	120.\$	1101.6	9.1	0	-				
ICM Lane LOS		В	Α	-	F	F	Α	Α	-				
ICM 95th %tile Q(veh)	0.5	-	-	3.5	8.7	0.1	-	-				
Notes													
	naoit.	¢. D.	Jav. ava	ands 20	100	0	outotio-	Not D	fine d	*, A1	maiss	olure e !	n nlota a r
: Volume exceeds ca	pacity	\$: De	ay exc	eeds 30	JUS -	+: Com	putation	NOT DE	enned	: All i	major v	olume II	n platoon

Intersection						
Int Delay, s/veh	0.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	VVDL	₩ P	<u> </u>	NDIX	ODL	↑ ↑
Traffic Vol, veh/h	0	68	T 549	0	0	TT 1278
			549			1278
Future Vol, veh/h	0	68		0	0	
Conflicting Peds, #/hr	0	0	0		0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage,		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	100	100	92	92	100
Heavy Vehicles, %	2	13	1	2	2	1
Mvmt Flow	0	68	549	0	0	1278
		_				
	linor1		/lajor1	N	/lajor2	
Conflicting Flow All	-	549	0	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.395	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	_	-	_	-	_	-
Follow-up Hdwy	_ ?	3.4235	_	_	_	_
Pot Cap-1 Maneuver	0	509	_	0	0	_
Stage 1	0	-	_	0	0	_
Stage 2	0	_	_	0	0	_
	U	-	_	U	U	
Platoon blocked, %		500	-			-
Mov Cap-1 Maneuver	-	509	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-		-	-	
Approach	WB		NB		SB	
			0			
HOMO LIBI			()		0	
HCM Control Delay, s	13.2		•			
HCM Control Delay, s HCM LOS	13.2 B					
HCM LOS	В	NBTV		SBT		
HCM LOS Minor Lane/Major Mvmt	В	NBTV	/BLn1	SBT -		
Minor Lane/Major Mvmt Capacity (veh/h)	В	-	/BLn1 509	-		
Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio	В	-	VBLn1 509 0.134	-		
Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	В	- -	VBLn1 509 0.134 13.2	- - -		
Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio	В	-	VBLn1 509 0.134	-		

	٠	→	*	•	←	•	1	†	~	-	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†		44	↑ ↑			र्स	77		4	
Traffic Volume (vph)	0	157	8	1504	697	148	8	2	465	6	0	0
Future Volume (vph)	0	157	8	1504	697	148	8	2	465	6	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	12	11	12	12	16	12
Total Lost time (s)		6.0		6.0	6.0			6.0	6.0		6.0	
Lane Util. Factor		0.95		0.97	0.95			1.00	0.88		1.00	
Frt		0.99		1.00	0.97			1.00	0.85		1.00	
Flt Protected		1.00		0.95	1.00			0.96	1.00		0.95	
Satd. Flow (prot)		3376		3433	3446			1483	2760		2046	
Flt Permitted		1.00		0.95	1.00			0.86	1.00		0.75	
Satd. Flow (perm)		3376		3433	3446			1322	2760		1613	
Peak-hour factor, PHF	0.71	0.71	0.71	0.73	0.73	0.73	0.78	0.78	0.78	0.75	0.75	0.75
Adj. Flow (vph)	0	221	11	2060	955	203	10	3	596	8	0	0
RTOR Reduction (vph)	0	4	0	0	6	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	228	0	2060	1152	0	0	13	596	0	8	0
Heavy Vehicles (%)	0%	4%	50%	2%	2%	2%	25%	0%	3%	0%	0%	0%
Turn Type	Prot	NA		Prot	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	6	2		1	5			8			4	
Permitted Phases							8		8	4		
Actuated Green, G (s)		12.1		50.0	68.1			20.0	20.0		20.0	
Effective Green, g (s)		12.1		50.0	68.1			20.0	20.0		20.0	
Actuated g/C Ratio		0.12		0.50	0.68			0.20	0.20		0.20	
Clearance Time (s)		6.0		6.0	6.0			6.0	6.0		6.0	
Vehicle Extension (s)		3.0		3.0	3.0			3.0	3.0		3.0	
Lane Grp Cap (vph)		408		1714	2344			264	551		322	
v/s Ratio Prot		0.07		c0.60	c0.33							
v/s Ratio Perm								0.01	c0.22		0.00	
v/c Ratio		0.56		1.20	0.49			0.05	1.08		0.02	
Uniform Delay, d1		41.5		25.0	7.7			32.4	40.0		32.2	
Progression Factor		1.00		1.00	1.00			1.00	1.00		1.00	
Incremental Delay, d2		1.8		96.7	0.2			0.1	62.3		0.0	
Delay (s)		43.2		121.8	7.8			32.4	102.3		32.2	
Level of Service		D		F	A			C	F		С	
Approach Delay (s)		43.2			80.8			100.8			32.2	
Approach LOS		D			F			F			С	
Intersection Summary												
HCM 2000 Control Delay			81.5	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capacit	y ratio		1.08									
Actuated Cycle Length (s)			100.1	S	um of lost	time (s)			18.0			
Intersection Capacity Utilization	n		67.9%	IC	CU Level o	of Service			С			
Analysis Period (min)			15									
o Critical Lana Croup												

102: US Route 4 SB On-Ramp/US Route 4 SB Off-Ramp & Pease Blvd 2035 Build Conditions Weekday AM Peak

	۶	-	•	•	•	•	1	†	-	-	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		1111	7	14	^					44		77
Traffic Volume (vph)	0	436	192	175	1330	0	0	0	0	618	0	1068
Future Volume (vph)	0	436	192	175	1330	0	0	0	0	618	0	1068
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	10	11	10	11	12	12	12	12	12	12	12
Total Lost time (s)		6.0	6.0	6.0	6.0					6.0		6.0
Lane Util. Factor		0.86	1.00	0.97	0.95					0.97		0.88
Frt		1.00	0.85	1.00	1.00					1.00		0.85
Flt Protected		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (prot)		5981	1419	2918	3455					3502		2814
Flt Permitted		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (perm)		5981	1419	2918	3455					3502		2814
Peak-hour factor, PHF	0.80	0.80	0.80	0.80	0.80	0.80	0.92	0.92	0.92	0.75	0.75	0.75
Adj. Flow (vph)	0	545	240	219	1662	0	0	0	0	824	0	1424
RTOR Reduction (vph)	0	0	158	0	0	0	0	0	0	0	0	72
Lane Group Flow (vph)	0	545	82	219	1663	0	0	0	0	824	0	1352
Heavy Vehicles (%)	0%	2%	10%	12%	1%	0%	2%	2%	2%	0%	0%	1%
Turn Type		NA	Prot	Prot	NA					Prot		Prot
Protected Phases		6	6	5	2 5					3		3
Permitted Phases												
Actuated Green, G (s)		35.0	35.0	25.0	66.0					25.0		25.0
Effective Green, g (s)		35.0	35.0	25.0	66.0					25.0		25.0
Actuated g/C Ratio		0.34	0.34	0.24	0.64					0.24		0.24
Clearance Time (s)		6.0	6.0	6.0						6.0		6.0
Vehicle Extension (s)		5.0	5.0	4.0						5.0		5.0
Lane Grp Cap (vph)		2032	482	708	2213					850		683
v/s Ratio Prot		0.09	0.06	0.08	c0.48					0.24		c0.48
v/s Ratio Perm												
v/c Ratio		0.27	0.17	0.31	0.75					0.97		1.98
Uniform Delay, d1		24.7	23.8	31.9	12.8					38.6		39.0
Progression Factor		1.00	1.00	0.92	1.49					1.00		1.00
Incremental Delay, d2		0.1	0.3	0.0	0.2					23.7		446.1
Delay (s)		24.8	24.2	29.4	19.3					62.3		485.1
Level of Service		С	С	С	В					Е		F
Approach Delay (s)		24.6			20.5			0.0			330.1	
Approach LOS		С			С			А			F	
Intersection Summary												
HCM 2000 Control Delay			162.8	Н	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capaci	ty ratio		1.17									
Actuated Cycle Length (s)			103.0		um of lost				18.0			
Intersection Capacity Utilizati	on		93.2%	IC	CU Level o	of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

103: US Route 4 NB Off-ramp/US Route 4 NB On-Ramp & Pease Blvd 2035 Build Conditions Weekday AM Peak

·	۶	→	*	•	+	•	1	†	-	1	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	44	^			††		44		77			
Traffic Volume (vph)	192	862	0	0	550	86	955	0	409	0	0	0
Future Volume (vph)	192	862	0	0	550	86	955	0	409	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	11	12	12	12	12	12	12	12	12	12	12
Grade (%)		0%			11%			0%			0%	
Total Lost time (s)	6.0	6.0			6.0		6.0		6.0			
Lane Util. Factor	0.97	0.95			0.91		0.97		0.88			
Frt	1.00	1.00			0.98		1.00		0.85			
Flt Protected	0.95	1.00			1.00		0.95		1.00			
Satd. Flow (prot)	3113	3421			4690		3433		2733			
FIt Permitted	0.36	1.00			1.00		0.95		1.00			
Satd. Flow (perm)	1166	3421			4690		3433		2733			
Peak-hour factor, PHF	0.87	0.87	0.92	0.92	0.85	0.85	0.78	0.92	0.78	0.92	0.92	0.92
Adj. Flow (vph)	221	991	0	0	647	101	1224	0	524	0	0	0
RTOR Reduction (vph)	0	0	0	0	18	0	0	0	320	0	0	0
Lane Group Flow (vph)	221	991	0	0	730	0	1224	0	204	0	0	0
Heavy Vehicles (%)	5%	2%	2%	2%	2%	5%	2%	2%	4%	2%	2%	2%
Turn Type	pm+pt	NA			NA		Prot		Prot			
Protected Phases	1	6			2		3		3			
Permitted Phases	6											
Actuated Green, G (s)	52.0	35.0			43.0		25.0		25.0			
Effective Green, g (s)	52.0	35.0			43.0		25.0		25.0			
Actuated g/C Ratio	0.50	0.34			0.42		0.24		0.24			
Clearance Time (s)	6.0	6.0			6.0		6.0		6.0			
Vehicle Extension (s)	4.0	5.0			5.0		5.0		5.0			
Lane Grp Cap (vph)	910	1162			1957		833		663			
v/s Ratio Prot	c0.04	c0.29			c0.16		c0.36		0.07			
v/s Ratio Perm	0.08											
v/c Ratio	0.24	0.85			0.37		1.47		0.31			
Uniform Delay, d1	13.6	31.6			20.7		39.0		31.9			
Progression Factor	1.04	1.15			1.00		1.00		1.00			
Incremental Delay, d2	0.1	5.0			0.3		217.8		0.6			
Delay (s)	14.3	41.2			21.0		256.8		32.5			
Level of Service	В	D			С		F		С			
Approach Delay (s)		36.3			21.0			189.5			0.0	
Approach LOS		D			С			F			Α	
Intersection Summary												
HCM 2000 Control Delay			105.4	H	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capac	city ratio		0.86									
Actuated Cycle Length (s)			103.0		um of lost				18.0			
Intersection Capacity Utiliza	tion		93.2%	IC	CU Level o	of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

	•	•	†	-	-	↓			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	14.14	7	ተተተ	7	1,1	^			
Traffic Volume (vph)	1222	620	2337	248	388	681			
Future Volume (vph)	1222	620	2337	248	388	681			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Lane Width	12	12	12	11	12	12			
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0			
Lane Util. Factor	0.97	1.00	0.91	1.00	0.97	0.95			
Frt	1.00	0.85	1.00	0.85	1.00	1.00			
FIt Protected	0.95	1.00	1.00	1.00	0.95	1.00			
Satd. Flow (prot)	3303	1599	4988	1229	3242	3374			
FIt Permitted	0.95	1.00	1.00	1.00	0.95	1.00			
Satd. Flow (perm)	3303	1599	4988	1229	3242	3374			
Peak-hour factor, PHF	0.87	0.87	0.93	0.93	0.81	0.81			
Adj. Flow (vph)	1405	713	2513	267	479	841			
RTOR Reduction (vph)	0	319	0	176	0	0			
Lane Group Flow (vph)	1405	394	2513	91	479	841			
Heavy Vehicles (%)	6%	1%	4%	27%	8%	7%			
Turn Type	Prot	Prot	NA	Prot	Prot	NA			
Protected Phases	7	7	6	6	5	2			
Permitted Phases	<u>'</u>	•							
Actuated Green, G (s)	25.0	25.0	31.6	31.6	18.4	56.0			
Effective Green, g (s)	25.0	25.0	31.6	31.6	18.4	56.0			
Actuated g/C Ratio	0.27	0.27	0.34	0.34	0.20	0.60			
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0			
Vehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0			
Lane Grp Cap (vph)	887	429	1694	417	641	2031			
v/s Ratio Prot	c0.43	0.25	c0.50	0.07	c0.15	0.25			
v/s Ratio Prot v/s Ratio Perm	UU.4U	0.23	60.00	0.07	60.15	0.20			
v/c Ratio	1.58	0.92	1.48	0.22	0.75	0.41			
Uniform Delay, d1	34.0	33.0	30.7	21.9	35.1	9.8			
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Incremental Delay, d2	268.2	24.8	220.8	1.00	5.1	0.6			
Delay (s)	302.2	57.8	251.5	23.1	40.2	10.4			
Level of Service	302.2 F	57.6 E	201.5 F	23.1 C	40.2 D	10.4 B			
Approach Delay (s)	219.9	E	229.5	U	U	21.2			
Approach LOS	219.9 F		229.5 F			C C			
••			Г			U			
Intersection Summary			400.0		014 0000				
HCM 2000 Control Delay	., .,		182.0	Н	CM 2000	Level of Service	9	F	
HCM 2000 Volume to Capa	icity ratio		1.34	^		<i>(</i> ; <i>(</i>)		40.0	
Actuated Cycle Length (s)			93.0		um of lost	` '		18.0	
Intersection Capacity Utiliza	ation		106.1%	IC	CU Level of	of Service		G	
Analysis Period (min)			15						
Critical Lane Group									

	•		+	•	-	1			
		EDT	MDT		ODI	000			
Movement	EBL	EBT	WBT	WBR	SBL	SBR			
Lane Configurations	7	^	^	700	7	7			
Traffic Volume (vph)	692	2265	816	708	245	253			
Future Volume (vph)	692	2265	816	708	245	253			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0			
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00			
Frt	1.00	1.00	1.00	0.85	1.00	0.85			
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00			
Satd. Flow (prot)	1787	3471	3343	1583	1719	1538			
FIt Permitted	0.95	1.00	1.00	1.00	0.95	1.00			
Satd. Flow (perm)	1787	3471	3343	1583	1719	1538			
Peak-hour factor, PHF	0.86	0.86	0.96	0.96	0.76	0.76			
Adj. Flow (vph)	805	2634	850	738	322	333			
RTOR Reduction (vph)	0	0	0	513	0	187			
Lane Group Flow (vph)	805	2634	850	225	322	146			
Heavy Vehicles (%)	1%	4%	8%	2%	5%	5%			
Turn Type	Prot	NA	NA	Perm	Prot	Prot			
Protected Phases	1	6	2		3	3			
Permitted Phases				2					
Actuated Green, G (s)	7.0	31.0	18.0	18.0	16.0	16.0			
Effective Green, g (s)	7.0	31.0	18.0	18.0	16.0	16.0			
Actuated g/C Ratio	0.12	0.53	0.31	0.31	0.27	0.27			
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0			
Vehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0			
Lane Grp Cap (vph)	212	1823	1019	482	466	417			
v/s Ratio Prot	c0.45	c0.76	0.25	102	c0.19	0.09			
v/s Ratio Perm	00.40	00.70	0.20	0.14	00.10	0.00			
v/c Ratio	3.80	1.44	0.83	0.14	0.69	0.35			
Uniform Delay, d1	26.0	14.0	19.1	16.6	19.3	17.3			
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Incremental Delay, d2	1270.1	203.3	8.0	3.2	4.7	0.7			
Delay (s)	1276.1	217.3	27.1	19.8	24.0	18.0			
Level of Service	1230.1 F	217.5 F	27.1 C	19.0 B	24.0 C	В			
Approach Delay (s)	I -	469.9	23.7	U	21.0	U			
Approach LOS		409.9 F	23.7 C		21.0 C				
••		Г	C		C				
Intersection Summary									
HCM 2000 Control Delay			293.4	Н	CM 2000	Level of Service		F	
HCM 2000 Volume to Capa	acity ratio		1.64						
Actuated Cycle Length (s)			59.0		um of lost		18	3.0	
Intersection Capacity Utiliza	ation		92.2%	IC	CU Level o	of Service		F	
Analysis Period (min)			15						
c Critical Lane Group									

	-	*	1	•	1	-	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	^	7	*	^	*	7	
Traffic Volume (vph)	1588	922	123	915	609	783	
Future Volume (vph)	1588	922	123	915	609	783	
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
_ane Width	12	12	12	12	13	12	
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0	
Lane Util. Factor	0.95	1.00	1.00	0.95	1.00	1.00	
Frt	1.00	0.85	1.00	1.00	1.00	0.85	
FIt Protected	1.00	1.00	0.95	1.00	0.95	1.00	
Satd. Flow (prot)	3539	1468	1752	3438	1680	1538	
Flt Permitted	1.00	1.00	0.95	1.00	0.95	1.00	
Satd. Flow (perm)	3539	1468	1752	3438	1680	1538	
Peak-hour factor, PHF	0.95	0.95	0.90	0.90	0.80	0.80	
Adj. Flow (vph)	1672	971	137	1017	761	979	
RTOR Reduction (vph)	0	459	0	0	0	369	
Lane Group Flow (vph)	1672	512	137	1017	761	610	
Heavy Vehicles (%)	2%	10%	3%	5%	11%	5%	
Turn Type	NA	Prot	Prot	NA	Prot	Prot	
Protected Phases	6	6	5	2	7	7	
Permitted Phases	U	U	J		, , , , , , , , , , , , , , , , , , ,	,	
Actuated Green, G (s)	62.9	62.9	17.1	86.0	40.0	40.0	
Effective Green, g (s)	62.9	62.9	17.1	86.0	40.0	40.0	
Actuated g/C Ratio	0.46	0.46	0.12	0.62	0.29	0.29	
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	
Vehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0	
Lane Grp Cap (vph)	1613	669	217	2142	486	445	
v/s Ratio Prot	c0.47	0.35	c0.08	0.30	c0.45	0.40	
v/s Ratio Perm	60.47	0.55	60.00	0.50	60.43	0.40	
v/c Ratio	1.04	0.77	0.63	0.47	1.57	1.37	
Uniform Delay, d1	37.5	31.4	57.5	13.9	49.0	49.0	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	32.5	8.2	6.6	0.8	264.5	180.4	
Delay (s)	70.0	39.5	64.0	14.7	313.5	229.4	
Level of Service	70.0 E	39.3 D	04.0 E	14.7 B	515.5 F	F	
Approach Delay (s)	58.8	U		20.5	266.2	Г	
Approach LOS	50.0 E			20.5 C	200.2 F		
				U	'		
Intersection Summary							
HCM 2000 Control Delay			116.0	Н	CM 2000	Level of Service	Э
HCM 2000 Volume to Capa	acity ratio		1.15				
Actuated Cycle Length (s)			138.0		um of lost		
Intersection Capacity Utiliz	ation		102.4%	IC	CU Level	of Service	
Analysis Period (min)			15				
Critical Lane Group							

Intersection												
Intersection Delay, s/veh	71.6											
Intersection LOS	F											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		7	1			र्स	7		4	
Traffic Vol, veh/h	0	31	10	349	132	123	23	110	123	28	316	36
Future Vol, veh/h	0	31	10	349	132	123	23	110	123	28	316	36
Peak Hour Factor	0.50	0.50	0.50	0.70	0.70	0.70	0.87	0.87	0.87	0.70	0.70	0.70
Heavy Vehicles, %	0	0	0	2	0	5	0	6	8	14	0	0
Mvmt Flow	0	62	20	499	189	176	26	126	141	40	451	51
Number of Lanes	0	1	0	1	1	0	0	1	1	0	1	0
Approach		EB		WB			NB			SB		
Opposing Approach		WB		EB			SB			NB		
Opposing Lanes		2		1			1			2		
Conflicting Approach Left		SB		NB			EB			WB		
Conflicting Lanes Left		1		2			1			2		
Conflicting Approach Right		NB		SB			WB			EB		
Conflicting Lanes Right		2		1			2			1		
HCM Control Delay		14.9		68.9			14.9			115.2		
HCM LOS		В		F			В			F		
Lane		NBLn1	NBLn2	EBLn1	WBLn1	WBLn2	SBLn1					
Lane Vol Left, %		NBLn1 17%	NBLn2	EBLn1	WBLn1 100%	WBLn2	SBLn1 7%					
		17% 83%			100% 0%		7% 83%					
Vol Left, % Vol Thru, % Vol Right, %		17%	0% 0% 100%	0% 76% 24%	100%	0%	7%					
Vol Left, % Vol Thru, % Vol Right, % Sign Control		17% 83% 0% Stop	0% 0% 100% Stop	0% 76% 24% Stop	100% 0% 0% Stop	0% 52% 48% Stop	7% 83% 9% Stop					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		17% 83% 0% Stop 133	0% 0% 100% Stop 123	0% 76% 24% Stop 41	100% 0% 0% Stop 349	0% 52% 48% Stop 255	7% 83% 9% Stop 380					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		17% 83% 0% Stop 133 23	0% 0% 100% Stop 123	0% 76% 24% Stop 41	100% 0% 0% Stop 349	0% 52% 48% Stop 255	7% 83% 9% Stop 380 28					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		17% 83% 0% Stop 133 23 110	0% 0% 100% Stop 123 0	0% 76% 24% Stop 41 0 31	100% 0% 0% Stop 349 349 0	0% 52% 48% Stop 255 0 132	7% 83% 9% Stop 380 28 316					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		17% 83% 0% Stop 133 23 110	0% 0% 100% Stop 123 0 0	0% 76% 24% Stop 41 0 31	100% 0% 0% Stop 349 349 0	0% 52% 48% Stop 255 0 132 123	7% 83% 9% Stop 380 28 316 36					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		17% 83% 0% Stop 133 23 110 0	0% 0% 100% Stop 123 0 0 123 141	0% 76% 24% Stop 41 0 31 10	100% 0% 0% Stop 349 0 0	0% 52% 48% Stop 255 0 132 123 364	7% 83% 9% Stop 380 28 316 36 543					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		17% 83% 0% Stop 133 23 110 0 153	0% 0% 100% Stop 123 0 0 123 141	0% 76% 24% Stop 41 0 31 10 82 6	100% 0% 0% Stop 349 0 0 499	0% 52% 48% Stop 255 0 132 123 364	7% 83% 9% Stop 380 28 316 36 543					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		17% 83% 0% Stop 133 23 110 0 153 7 0.348	0% 0% 100% Stop 123 0 0 123 141 7 0.295	0% 76% 24% Stop 41 0 31 10 82 6	100% 0% 0% Stop 349 349 0 0 499 7	0% 52% 48% Stop 255 0 132 123 364 7 0.712	7% 83% 9% Stop 380 28 316 36 543 6					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		17% 83% 0% Stop 133 23 110 0 153 7 0.348 8.632	0% 0% 100% Stop 123 0 0 123 141 7 0.295 7.921	0% 76% 24% Stop 41 0 31 10 82 6 0.201 9.502	100% 0% 0% Stop 349 0 0 499 7 1.095 8.321	0% 52% 48% Stop 255 0 132 123 364 7 0.712 7.423	7% 83% 9% Stop 380 28 316 36 543 6 1.146 7.833					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		17% 83% 0% Stop 133 23 110 0 153 7 0.348 8.632 Yes	0% 0% 100% Stop 123 0 0 123 141 7 0.295 7.921 Yes	0% 76% 24% Stop 41 0 31 10 82 6 0.201 9.502 Yes	100% 0% 0% Stop 349 0 0 499 7 1.095 8.321 Yes	0% 52% 48% Stop 255 0 132 123 364 7 0.712 7.423 Yes	7% 83% 9% Stop 380 28 316 36 543 6 1.146 7.833 Yes					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		17% 83% 0% Stop 133 23 110 0 153 7 0.348 8.632 Yes 419	0% 0% 100% Stop 123 0 0 123 141 7 0.295 7.921 Yes 457	0% 76% 24% Stop 41 0 31 10 82 6 0.201 9.502 Yes 380	100% 0% 0% Stop 349 0 0 499 7 1.095 8.321 Yes 439	0% 52% 48% Stop 255 0 132 123 364 7 0.712 7.423 Yes 492	7% 83% 9% Stop 380 28 316 36 543 6 1.146 7.833 Yes 467					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		17% 83% 0% Stop 133 23 110 0 153 7 0.348 8.632 Yes 419 6.332	0% 0% 100% Stop 123 0 0 123 141 7 0.295 7.921 Yes 457 5.621	0% 76% 24% Stop 41 0 31 10 82 6 0.201 9.502 Yes 380 7.502	100% 0% 0% Stop 349 0 0 499 7 1.095 8.321 Yes 439 6.021	0% 52% 48% Stop 255 0 132 123 364 7 0.712 7.423 Yes 492 5.123	7% 83% 9% Stop 380 28 316 36 543 6 1.146 7.833 Yes 467 5.833					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		17% 83% 0% Stop 133 23 110 0 153 7 0.348 8.632 Yes 419 6.332 0.365	0% 0% 100% Stop 123 0 0 123 141 7 0.295 7.921 Yes 457 5.621 0.309	0% 76% 24% Stop 41 0 31 10 82 6 0.201 9.502 Yes 380 7.502 0.216	100% 0% 0% Stop 349 0 0 499 7 1.095 8.321 Yes 439 6.021 1.137	0% 52% 48% Stop 255 0 132 123 364 7 0.712 7.423 Yes 492 5.123 0.74	7% 83% 9% Stop 380 28 316 36 543 6 1.146 7.833 Yes 467 5.833 1.163					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay		17% 83% 0% Stop 133 23 110 0 153 7 0.348 8.632 Yes 419 6.332 0.365 15.9	0% 0% 100% Stop 123 0 0 123 141 7 0.295 7.921 Yes 457 5.621 0.309 13.9	0% 76% 24% Stop 41 0 31 10 82 6 0.201 9.502 Yes 380 7.502 0.216 14.9	100% 0% 0% Stop 349 0 0 499 7 1.095 8.321 Yes 439 6.021 1.137 99.9	0% 52% 48% Stop 255 0 132 123 364 7 0.712 7.423 Yes 492 5.123 0.74 26.4	7% 83% 9% Stop 380 28 316 36 543 6 1.146 7.833 Yes 467 5.833 1.163 115.2					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		17% 83% 0% Stop 133 23 110 0 153 7 0.348 8.632 Yes 419 6.332 0.365	0% 0% 100% Stop 123 0 0 123 141 7 0.295 7.921 Yes 457 5.621 0.309	0% 76% 24% Stop 41 0 31 10 82 6 0.201 9.502 Yes 380 7.502 0.216	100% 0% 0% Stop 349 0 0 499 7 1.095 8.321 Yes 439 6.021 1.137	0% 52% 48% Stop 255 0 132 123 364 7 0.712 7.423 Yes 492 5.123 0.74	7% 83% 9% Stop 380 28 316 36 543 6 1.146 7.833 Yes 467 5.833 1.163					

Intersection Int Delay, s/veh
Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR
Traffic Vol, veh/h
Traffic Vol, veh/h
Traffic Vol, veh/h 8 13 15 39 6 23 39 277 49 51 519 49 Future Vol, veh/h 8 13 15 39 6 23 39 277 49 51 519 49 Conflicting Peds, #/hr 0
Future Vol, veh/h 8 13 15 39 6 23 39 277 49 51 519 49 Conflicting Peds, #/hr 0 <t< td=""></t<>
Conflicting Peds, #/hr 0
Sign Control Stop Stop Stop Stop Stop Stop Free 165 2
RT Channelized - None - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - 1 4 1
Storage Length - 0 - - 0 - 0 - - 0 - 1 4 1 4 0 4 0
Veh in Median Storage, # - 0 - 0 - - 0 - - 0 - - 0 - - 0 - - - - - - - -
Grade, % - 0 - - - - 0 -<
Peak Hour Factor 71 71 71 83 83 83 79 79 79 66 66 66 Heavy Vehicles, % 25 0 14 0 33 9 0 4 0 4 1 4 Mvmt Flow 11 18 21 47 7 28 49 351 62 77 786 74 Major/Minor Minor2 Minor1 Major1 Major2 Major2 Conflicting Flow All 1475 1488 823 1477 1494 382 860 0 0 413 0 0 Stage 1 977 977 - 480 480 -
Heavy Vehicles, % 25 0 14 0 33 9 0 4 0 4 1 4 Mvmt Flow 11 18 21 47 7 28 49 351 62 77 786 74 Major/Minor Minor2 Minor1 Major1 Major2 Conflicting Flow All 1475 1488 823 1477 1494 382 860 0 0 413 0 0 Stage 1 977 977 - 480 480 -
Mvmt Flow 11 18 21 47 7 28 49 351 62 77 786 74 Major/Minor Minor2 Minor1 Major1 Major2 Major2 Conflicting Flow All 1475 1488 823 1477 1494 382 860 0 0 413 0 0 Stage 1 977 977 - 480 480 - - - - - - -
Major/Minor Minor2 Minor1 Major1 Major2 Conflicting Flow All Stage 1 1475 1488 823 1477 1494 382 860 0 0 413 0 0 0 413 0 0
Conflicting Flow All 1475 1488 823 1477 1494 382 860 0 0 413 0 0 Stage 1 977 977 - 480 480
Conflicting Flow All 1475 1488 823 1477 1494 382 860 0 0 413 0 0 Stage 1 977 977 - 480 480
Stage 1 977 977 - 480 480
•
Stage 2 498 511 - 997 1014
Critical Hdwy 7.35 6.5 6.34 7.1 6.83 6.29 4.1 4.14
Critical Hdwy Stg 1 6.35 5.5 - 6.1 5.83
Critical Hdwy Stg 2 6.35 5.5 - 6.1 5.83
Follow-up Hdwy 3.725 4 3.426 3.5 4.297 3.381 2.2 2.236
Pot Cap-1 Maneuver 93 125 356 105 106 650 790 1135
Stage 1 274 332 - 571 506
Stage 2 514 540 - 297 280
Platoon blocked, %
Mov Cap-1 Maneuver 76 109 356 78 93 650 790 1135
Mov Cap-2 Maneuver 76 109 - 78 93
Stage 1 257 309 - 536 475
Stage 2 455 507 - 245 261
Approach EB WB NB SB
HCM Control Delay, s 46.9 80 1.1 0.7
HCM LOS E F
Minor Lane/Major Mymt NRI NRT NRR FRI n1WRI n1WRI n2 SRI SRT SRP
Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1WBLn2 SBL SBT SBR
Capacity (veh/h) 790 135 80 650 1135
Capacity (veh/h) 790 135 80 650 1135 HCM Lane V/C Ratio 0.062 0.376 0.678 0.043 0.068
Capacity (veh/h) 790 135 80 650 1135 HCM Lane V/C Ratio 0.062 0.376 0.678 0.043 0.068 HCM Control Delay (s) 9.9 46.9 115.3 10.8 8.4
Capacity (veh/h) 790 135 80 650 1135 HCM Lane V/C Ratio 0.062 0.376 0.678 0.043 0.068

Interception												
Intersection Int Delay, s/veh	2.2											
int Delay, S/Ven												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	6	11	6	46	11	11	6	402	285	17	169	17
Future Vol, veh/h	6	11	6	46	11	11	6	402	285	17	169	17
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	7	12	7	51	12	12	7	447	317	19	188	19
Major/Minor	Minor2			Minor1			Major1		ı	Major2		
Conflicting Flow All	868	1014	198	865	865	606	207	0	0	764	0	0
Stage 1	236	236	-	620	620	-		-	-	-	-	-
Stage 2	632	778	_	245	245	_	_	_	_	_	_	_
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	_	_	4.12	_	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52			_	_		_	_
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	_	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	_	_	2.218	_	_
Pot Cap-1 Maneuver	273	239	843	274	292	497	1364	_	_	849	_	-
Stage 1	767	710	-	476	480	-	-	-	-	-	-	-
Stage 2	468	407	-	759	703	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	251	231	843	254	282	497	1364	-	-	849	-	-
Mov Cap-2 Maneuver	251	231	-	254	282	-	-	-	-	-	-	-
Stage 1	760	692	-	472	476	-	-	-	-	-	-	-
Stage 2	441	403	-	721	685	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	18.5			22.5			0.1			0.8		
HCM LOS	10.5 C			22.5 C			U. I			0.0		
TIOWI LOG	U			U								
Minor Lane/Major Mvm	nt	NBL	NBT		EBLn1V		SBL	SBT	SBR			
Capacity (veh/h)		1364	-	-	292	281	849	-	-			
HCM Lane V/C Ratio		0.005	-	-	0.088			-	-			
HCM Control Delay (s)		7.7	0	-	18.5	22.5	9.3	0	-			
HCM Lane LOS		A	Α	-	С	С	A	Α	-			
HCM 95th %tile Q(veh)	0	-	-	0.3	1.1	0.1	-	-			
(· · · · ·	/	_										

Intersection								
Int Delay, s/veh	96							
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	7	T T	Ť	↑	<u> </u>	7		
Traffic Vol, veh/h	682	348	136	T	T	186		
Future Vol, veh/h	682	348	136	10	46	186		
Conflicting Peds, #/hr		0	0	0	0	0		
Sign Control	Stop	Stop	Free	Free	Free	Free		
RT Channelized	-	None	400	None	-	None		
Storage Length	0	290	100	-	-	175		
Veh in Median Storag		-	-	0	0	-		
Grade, %	0	-	-	0	0	-		
Peak Hour Factor	90	90	90	90	90	90		
leavy Vehicles, %	2	2	2	2	2	2		
1vmt Flow	758	387	151	11	51	207		
/lajor/Minor	Minor2		Major1	<u> </u>	Major2			
Conflicting Flow All	364	51	258	0	-	0		
Stage 1	51	-	-	-	-	-		
Stage 2	313	-	-	-	-	-		
Critical Hdwy	6.42	6.22	4.12	-	-	-		
ritical Hdwy Stg 1	5.42	-	-	-	-	-		
ritical Hdwy Stg 2	5.42	-	-	-	-	-		
ollow-up Hdwy	3.518	3.318	2.218	-	-	-		
ot Cap-1 Maneuver	~ 635	1017	1307	-	-	_		
Stage 1	971	-	-	_	-	_		
Stage 2	~ 741	-	_	-	-	-		
Platoon blocked, %				-	-	-		
Mov Cap-1 Maneuver	~ 561	1017	1307	-	_	-		
Nov Cap-2 Maneuver		-		-	-	_		
Stage 1	858	-	-	-	-	-		
Stage 2	~ 741	_	_	_	-	_		
nnroach	EB		NB		SB			
pproach			7.6		0			
HCM Control Delay, s			0.1		U			
HCM LOS	F							
linor Lane/Major Mv	mt	NBL	NBT	EBLn1 I	EBLn2	SBT	SBR	
Capacity (veh/h)		1307	-	561	1017	-	-	
ICM Lane V/C Ratio		0.116	-	1.351	0.38	-	-	
ICM Control Delay (s	s)	8.1	-	191	10.7	-	-	
CM Lane LOS		Α	-	F	В	-	-	
CM 95th %tile Q(vel	h)	0.4	-	33.2	1.8	-	-	
Votes								
		ф. D	.lav.		20-	0-	outotion Not D. C	* All maior values 1. L.
: Volume exceeds ca	apacity	\$: De	elay exc	eeds 30	JUS	+: Comp	outation Not Defined	*: All major volume in platoon

Intersection						
Int Delay, s/veh	1.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	KA			र्स	1	
Traffic Vol, veh/h	0	20	207	1362	451	0
Future Vol, veh/h	0	20	207	1362	451	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	50	50	67	67	75	75
Heavy Vehicles, %	2	2	1	2	2	0
Mvmt Flow	0	40	309	2033	601	0
IVIVIII(I IOW	U	70	303	2000	001	U
Major/Minor	Minor2	1	Major1	N	/lajor2	
Conflicting Flow All	3252	601	601	0	-	0
Stage 1	601	-	-	-	-	-
Stage 2	2651	_	_	_	-	-
Critical Hdwy	6.42	6.22	4.11	_	_	_
Critical Hdwy Stg 1	5.42	-		<u>_</u>	_	_
Critical Hdwy Stg 2	5.42	_	_	_	_	_
Follow-up Hdwy	3.518	3.318	2.209	_	_	_
	10	500	981	-		-
Pot Cap-1 Maneuver			901	-	-	-
Stage 1	547	-	-	-	-	-
Stage 2	53	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver		500	981	-	-	-
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	547	-	-	-	-	-
Stage 2	53	-	-	-	-	-
Ammanah	ED		ND		CD.	
Approach	EB		NB		SB	
HCM Control Delay, s	12.8		1.4		0	
HCM LOS	В					
Minor Lane/Major Mvr	nt	NBL	NRT I	EBLn1	SBT	SBR
	110					SDIX
Capacity (veh/h)		981	-		-	-
HCM Lane V/C Ratio		0.315	-	0.08	-	-
HCM Control Delay (s)	10.3	0	12.8	-	-
HCM Lane LOS	,	В	Α	В	-	-
HCM 95th %tile Q(veh	1)	1.4	-	0.3	-	-

Intersection													
Int Delay, s/veh	94.8												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			4			4	<u> </u>	
Traffic Vol, veh/h	0	0	6	40	0	5	36	1566	86	13	452	0	
Future Vol, veh/h	0	0	6	40	0	5	36	1566	86	13	452	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	_	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	38	38	38	71	71	71	71	71	71	70	70	70	
Heavy Vehicles, %	0	0	33	17	0	50	6	1	7	17	3	0	
Mvmt Flow	0	0	16	56	0	7	51	2206	121	19	646	0	
Major/Minor N	Minor2			Minor1			Major1		ı	Major2			
Conflicting Flow All	3056	3113	646	3061	3053	2267	646	0	0	2327	0	0	
Stage 1	684	684	-	2369	2369	-	-	-	-		-	-	
Stage 2	2372	2429	_	692	684	_	_	_	_	_	_	_	
Critical Hdwy	7.1	6.5	6.53	7.27	6.5	6.7	4.16	_	_	4.27	_	_	
Critical Hdwy Stg 1	6.1	5.5	-	6.27	5.5	-	-	_	_	-	_	_	
Critical Hdwy Stg 2	6.1	5.5	_	6.27	5.5	-	_	_	_	_	_	_	
Follow-up Hdwy	3.5	4	3.597	3.653	4	3.75	2.254	-	-	2.353	_	_	
Pot Cap-1 Maneuver	8	12	421	~ 7	13	37	921	_	_	188	_	-	
Stage 1	442	452	-	~ 42	68	-	_	_	-	-	_	_	
Stage 2	47	64	-	411	452	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	6	10	421	~ 6	11	37	921	-	-	188	-	-	
Mov Cap-2 Maneuver	6	10	-	~ 6	11	-	-	-	-	-	-	-	
Stage 1	442	381	-	~ 42	68	-	-	-	-	-	-	-	
Stage 2	38	64	-	333	381	-	-	-	-	-	-	-	
-													
Approach	EB			WB			NB			SB			
HCM Control Delay, s	13.9		\$ 4	4650.9			0.2			0.7			
HCM LOS	В		•	F									
Minor Lane/Major Mvm	ıt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR				
Capacity (veh/h)		921	-	-	421	7	188	-	-				
HCM Lane V/C Ratio		0.055	-	-		9.054		-	-				
HCM Control Delay (s)		9.1	0	_		4650.9	26.2	0	-				
HCM Lane LOS		Α	A	-	В	F	D	A	-				
HCM 95th %tile Q(veh)		0.2	-	-	0.1	9.5	0.3	-	-				
Notes													
~: Volume exceeds cap	nacity	\$: De	elav exc	eeds 30)0s	+. Com	putation	Not De	efined	*· All	maior v	olume ii	n platoon
. Foldino oxocodo odp	Jaonty	ψ. DC	.ay onc	.5545 0		. 50111	Patation	, AUC DO	J.11100	. 7 11	ilajoi v	Cidino II	piatoon

Intersection						
Int Delay, s/veh	110.7					
		MES	NOT	NDD	ODI	057
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	<u></u>			^
Traffic Vol, veh/h	0	288	1400	0	0	498
Future Vol, veh/h	0	288	1400	0	0	498
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-		_		-	None
Storage Length	-	0	-	-	_	-
Veh in Median Storag	je,# 0	_	0	_	_	0
Grade, %	0	_	0	_	_	0
Peak Hour Factor	92	76	95	92	92	80
Heavy Vehicles, %	2	3	2	2	2	4
Mvmt Flow	0	379	1474	0	0	623
Major/Minor	Minor1	ı	Major1	M	lajor2	
Conflicting Flow All	-		0	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.245	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-;	3.3285	_	_	_	-
Pot Cap-1 Maneuver		~ 154	_	0	0	_
Stage 1	0	-	_	0	0	_
			-			
Stage 2	0	-	-	0	0	-
Platoon blocked, %			-			-
Mov Cap-1 Maneuver		~ 154	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
						
Approach	WB		NB		SB	
HCM Control Delay, s	\$ 723		0		0	
HCM LOS	F					
110111200	•					
Minor Lane/Major Mv	mt	NBTV	VBLn1	SBT		
Capacity (veh/h)		_	154	-		
HCM Lane V/C Ratio		_	2.461	_		
HCM Control Delay (s	2)		\$ 723	_		
HCM Lane LOS	'/	-	φ 123 F	_		
HCM 95th %tile Q(ve	h)	-				
HOW SOUT MITE Q(VE	11)	-	32.5	-		
Notes						
~: Volume exceeds ca	anacity	\$· De	lav evo	eeds 30	Os .	+: Com
. Volumo exceeds of	apaoity	ψ. υ	nay GAL	,5003 JU	00	ວວກຖ

	٠	→	*	•	—	•	1	1	~	/	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†		44	↑ ↑			र्स	77		4	
Traffic Volume (vph)	6	533	8	315	301	339	11	0	1450	113	17	3
Future Volume (vph)	6	533	8	315	301	339	11	0	1450	113	17	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	12	11	12	12	16	12
Total Lost time (s)	5.0	6.0		6.0	6.0			6.0	6.0		6.0	
Lane Util. Factor	1.00	0.95		0.97	0.95			1.00	0.88		1.00	
Frt	1.00	1.00		1.00	0.92			1.00	0.85		1.00	
Flt Protected	0.95	1.00		0.95	1.00			0.95	1.00		0.96	
Satd. Flow (prot)	1357	3532		3155	3308			1491	2842		2059	
Flt Permitted	0.95	1.00		0.95	1.00			0.69	1.00		0.75	
Satd. Flow (perm)	1357	3532		3155	3308			1089	2842		1610	
Peak-hour factor, PHF	0.69	0.69	0.69	0.88	0.88	0.88	0.93	0.93	0.93	0.81	0.81	0.81
Adj. Flow (vph)	9	772	12	358	342	385	12	0	1559	140	21	4
RTOR Reduction (vph)	0	1	0	0	121	0	0	0	0	0	1	0
Lane Group Flow (vph)	9	783	0	358	606	0	0	12	1559	0	164	0
Heavy Vehicles (%)	33%	2%	0%	11%	1%	0%	17%	0%	0%	0%	0%	0%
Turn Type	Prot	NA		Prot	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	6	2		1	5			8			4	
Permitted Phases							8		8	4		
Actuated Green, G (s)	4.4	27.3		14.3	38.2			20.2	20.2		20.2	
Effective Green, g (s)	4.4	27.3		14.3	38.2			20.2	20.2		20.2	
Actuated g/C Ratio	0.06	0.34		0.18	0.48			0.25	0.25		0.25	
Clearance Time (s)	5.0	6.0		6.0	6.0			6.0	6.0		6.0	
Vehicle Extension (s)	2.0	3.0		3.0	3.0			3.0	3.0		3.0	
Lane Grp Cap (vph)	74	1208		565	1583			275	719		407	
v/s Ratio Prot	0.01	c0.22		c0.11	0.18							
v/s Ratio Perm								0.01	c0.55		0.10	
v/c Ratio	0.12	0.65		0.63	0.38			0.04	2.17		0.40	
Uniform Delay, d1	35.9	22.2		30.3	13.3			22.5	29.8		24.8	
Progression Factor	1.00	1.00		1.00	1.00			1.00	1.00		1.00	
Incremental Delay, d2	0.3	1.2		2.3	0.2			0.1	530.3		0.7	
Delay (s)	36.1	23.4		32.6	13.4			22.6	560.1		25.4	
Level of Service	D	C		С	10.0			C	F		C 25.4	
Approach LOS		23.5 C			19.8			556.0			25.4	
Approach LOS		C			В			F			С	
Intersection Summary												
HCM 2000 Control Delay			254.0	H	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capaci	ity ratio		1.14									
Actuated Cycle Length (s)			79.8		um of lost				18.0			
Intersection Capacity Utilizati	on		88.0%	IC	U Level o	of Service	!		Е			
Analysis Period (min)			15									
Critical Lana Croup			10									

102: US Route 4 SB On-Ramp/US Route 4 SB Off-Ramp & Pease Blvd 2035 Build Conditions Weekday PM Peak

	۶	-	•	•	←	•	1	†	-	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		1111	7	14.54	^					44		77
Traffic Volume (vph)	0	1388	708	764	692	0	0	0	0	434	0	277
Future Volume (vph)	0	1388	708	764	692	0	0	0	0	434	0	277
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	10	11	10	11	12	12	12	12	12	12	12
Total Lost time (s)		6.0	6.0	6.0	6.0					6.0		6.0
Lane Util. Factor		0.86	1.00	0.97	0.95					0.97		0.88
Frt		1.00	0.85	1.00	1.00					1.00		0.85
Flt Protected		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (prot)		6040	1546	3236	3455					3502		2814
Flt Permitted		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (perm)		6040	1546	3236	3455					3502		2814
Peak-hour factor, PHF	0.92	0.85	0.85	0.94	0.94	0.92	0.92	0.92	0.92	0.75	0.25	0.75
Adj. Flow (vph)	0	1633	833	813	736	0	0	0	0	579	0	369
RTOR Reduction (vph)	0	0	364	0	0	0	0	0	0	0	0	279
Lane Group Flow (vph)	0	1633	469	813	736	0	0	0	0	579	0	90
Heavy Vehicles (%)	0%	1%	1%	1%	1%	0%	2%	2%	2%	0%	0%	1%
Turn Type		NA	Prot	Prot	NA					Prot		Prot
Protected Phases		6	6	5	2 5					3		3
Permitted Phases												
Actuated Green, G (s)		35.0	35.0	25.0	66.0					25.0		25.0
Effective Green, g (s)		35.0	35.0	25.0	66.0					25.0		25.0
Actuated g/C Ratio		0.34	0.34	0.24	0.64					0.24		0.24
Clearance Time (s)		6.0	6.0	6.0						6.0		6.0
Vehicle Extension (s)		5.0	5.0	4.0						5.0		5.0
Lane Grp Cap (vph)		2052	525	785	2213					850		683
v/s Ratio Prot		0.27	c0.30	c0.25	0.21					c0.17		0.03
v/s Ratio Perm		<u> </u>										
v/c Ratio		0.80	0.89	1.04	0.33					0.68		0.13
Uniform Delay, d1		30.8	32.2	39.0	8.4					35.4		30.5
Progression Factor		1.00	1.00	1.29	1.36					1.00		1.00
Incremental Delay, d2		2.6	18.5	29.8	0.1					2.9		0.2
Delay (s)		33.3	50.7	80.2	11.6					38.3		30.7
Level of Service		С	D	F	В					D		С
Approach Delay (s)		39.2			47.6			0.0			35.3	_
Approach LOS		D			D			Α			D	
Intersection Summary												
HCM 2000 Control Delay			41.1	H	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capaci	ty ratio		0.87									
Actuated Cycle Length (s)	·		103.0	Sı	um of lost	time (s)			18.0			
Intersection Capacity Utilization	on		93.0%			of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

103: US Route 4 NB Off-ramp/US Route 4 NB On-Ramp & Pease Blvd 2035 Build Conditions Weekday PM Peak

	٠	→	•	•	—	•	1	†	~	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	44	^			ተተጉ		44		77			
Traffic Volume (vph)	828	994	0	0	1121	454	335	0	698	0	0	0
Future Volume (vph)	828	994	0	0	1121	454	335	0	698	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	11	12	12	12	12	12	12	12	12	12	12
Grade (%)		0%			11%			0%			0%	
Total Lost time (s)	6.0	6.0			6.0		6.0		6.0			
Lane Util. Factor	0.97	0.95			0.91		0.97		0.88			
Frt	1.00	1.00			0.96		1.00		0.85			
Flt Protected	0.95	1.00			1.00		0.95		1.00			
Satd. Flow (prot)	3236	3455			4657		3433		2814			
Flt Permitted	0.11	1.00			1.00		0.95		1.00			
Satd. Flow (perm)	389	3455			4657		3433		2814			
Peak-hour factor, PHF	0.87	0.87	0.92	0.92	0.90	0.90	0.94	0.92	0.94	0.92	0.92	0.92
Adj. Flow (vph)	952	1143	0	0	1246	504	356	0	743	0	0	0
RTOR Reduction (vph)	0	0	0	0	71	0	0	0	563	0	0	0
Lane Group Flow (vph)	952	1143	0	0	1679	0	356	0	180	0	0	0
Heavy Vehicles (%)	1%	1%	2%	2%	1%	0%	2%	2%	1%	2%	2%	2%
Turn Type	pm+pt	NA			NA		Prot		Prot			
Protected Phases	1	6			2		3		3			
Permitted Phases	6											
Actuated Green, G (s)	60.0	35.0			35.0		25.0		25.0			
Effective Green, g (s)	60.0	35.0			35.0		25.0		25.0			
Actuated g/C Ratio	0.58	0.34			0.34		0.24		0.24			
Clearance Time (s)	6.0	6.0			6.0		6.0		6.0			
Vehicle Extension (s)	4.0	5.0			5.0		5.0		5.0			
Lane Grp Cap (vph)	917	1174			1582		833		683			
v/s Ratio Prot	c0.25	0.33			c0.36		c0.10		0.06			
v/s Ratio Perm	0.35	0.07			4.00		0.40		0.00			
v/c Ratio	1.04	0.97			1.06		0.43		0.26			
Uniform Delay, d1	30.7	33.5			34.0		33.0		31.6			
Progression Factor	1.58	0.63			1.00		1.00		1.00			
Incremental Delay, d2	33.9	15.0			41.0		0.7		0.4			
Delay (s)	82.3	36.0			75.0		33.7		32.0			
Level of Service	F	D 57.1			E 75.0		С	32.5	С		0.0	
Approach Delay (s) Approach LOS		57.1 E			75.0 E			32.5 C			0.0 A	
Intersection Summary												
HCM 2000 Control Delay			57.9	Н	CM 2000	Level of S	Service		Е			
HCM 2000 Volume to Capa	city ratio		0.87									
Actuated Cycle Length (s)			103.0		um of lost				18.0			
Intersection Capacity Utiliza	ition		93.0%	IC	CU Level of	of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

	1	•	†	-	-	↓		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	1/4	7	ተተተ	7	1/1/	^		
Traffic Volume (vph)	1162	197	2000	313	866	1588		
Future Volume (vph)	1162	197	2000	313	866	1588		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Lane Width	12	12	12	11	12	12		
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Lane Util. Factor	0.97	1.00	0.91	1.00	0.97	0.95		
Frt	1.00	0.85	1.00	0.85	1.00	1.00		
FIt Protected	0.95	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (prot)	3367	1509	5085	1323	3433	3539		
Flt Permitted	0.95	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (perm)	3367	1509	5085	1323	3433	3539		
Peak-hour factor, PHF	0.89	0.89	0.95	0.95	0.84	0.84		
Adj. Flow (vph)	1306	221	2105	329	1031	1890		
RTOR Reduction (vph)	0	140	0	223	0	0		
_ane Group Flow (vph)	1306	81	2105	106	1031	1890		
Heavy Vehicles (%)	4%	7%	2%	18%	2%	2%		
Turn Type	Prot	Prot	NA	Prot	Prot	NA		
Protected Phases	7	7	6	6	5	2		
Permitted Phases		•				_		
Actuated Green, G (s)	25.0	25.0	30.0	30.0	20.0	56.0		
Effective Green, g (s)	25.0	25.0	30.0	30.0	20.0	56.0		
Actuated g/C Ratio	0.27	0.27	0.32	0.32	0.22	0.60		
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Vehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0		
_ane Grp Cap (vph)	905	405	1640	426	738	2131		
//s Ratio Prot	c0.39	0.05	c0.41	0.08	c0.30	0.53		
//s Ratio Perm	60.00	0.00	60.41	0.00	00.00	0.00		
v/c Ratio	1.44	0.20	1.28	0.25	1.40	0.89		
Jniform Delay, d1	34.0	26.3	31.5	23.2	36.5	15.8		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	205.7	0.3	132.4	1.4	186.9	5.9		
Delay (s)	239.7	26.6	163.9	24.6	223.4	21.7		
_evel of Service	259.7 F	20.0 C	F	24.0 C	223.4 F	C C		
Approach Delay (s)	208.8		145.1			92.9		
Approach LOS	200.0 F		143.1 F			52.5 F		
ntersection Summary								
HCM 2000 Control Delay			137.1	Н	CM 2000	Level of Service	F	
HCM 2000 Control Delay	city ratio		1.37		OIVI 2000	LOVE OF OUR VICE		
Actuated Cycle Length (s)	ionly ratio		93.0	Q	um of lost	time (s)	18.0	
ntersection Capacity Utiliza	ation		111.5%		CU Level		H	
Analysis Period (min)	auOH		15	IC	O LEVEL	OFI VICE	11	
Critical Lane Group			10					

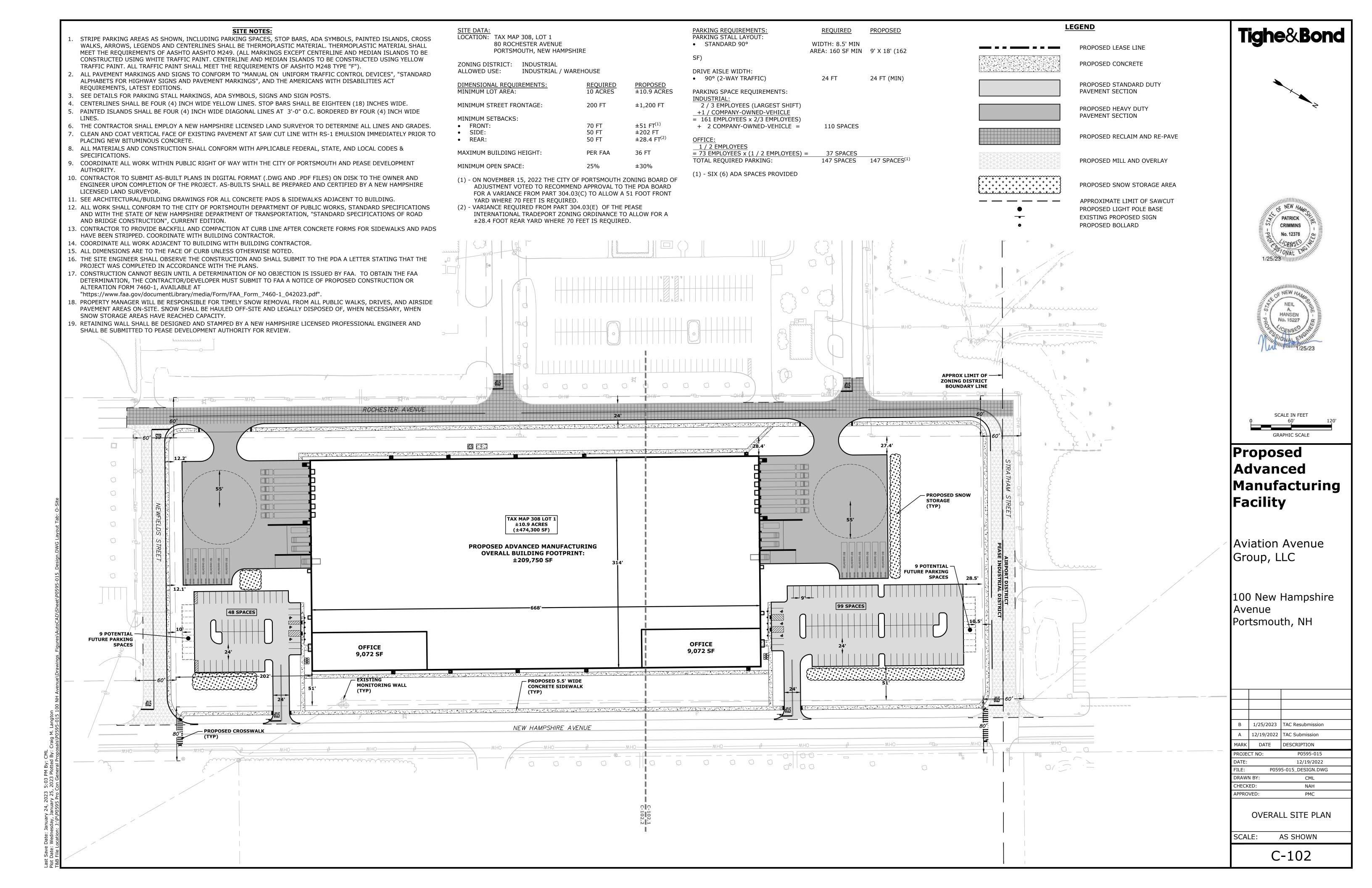
	•	2012	+	4	_	1		
			2224234			3.0		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	ሻ	^	^	7	7	7		
Traffic Volume (vph)	353	1844	1433	273	573	1021		
Future Volume (vph)	353	1844	1433	273	573	1021		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00		
Frt	1.00	1.00	1.00	0.85	1.00	0.85		
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (prot)	1787	3539	3539	1583	1787	1599		
FIt Permitted	0.95	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (perm)	1787	3539	3539	1583	1787	1599		
Peak-hour factor, PHF	0.88	0.88	0.93	0.93	0.87	0.87		
Adj. Flow (vph)	401	2095	1541	294	659	1174		
RTOR Reduction (vph)	0	0	0	204	0	165		
Lane Group Flow (vph)	401	2095	1541	90	659	1009		
Heavy Vehicles (%)	1%	2%	2%	2%	1%	1%		
Turn Type	Prot	NA	NA	Perm	Prot	Prot		
Protected Phases	1	6	2		3	3		
Permitted Phases				2				
Actuated Green, G (s)	5.0	29.0	18.0	18.0	18.0	18.0		
Effective Green, g (s)	5.0	29.0	18.0	18.0	18.0	18.0		
Actuated g/C Ratio	0.08	0.49	0.31	0.31	0.31	0.31		
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Vehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0		
Lane Grp Cap (vph)	151	1739	1079	482	545	487		
v/s Ratio Prot	c0.22	0.59	c0.44		0.37	c0.63		
v/s Ratio Perm	00.22	0.00	••••	0.06	0.0.	55.55		
v/c Ratio	2.66	1.20	1.43	0.19	1.21	2.07		
Uniform Delay, d1	27.0	15.0	20.5	15.1	20.5	20.5		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	763.7	97.9	198.1	0.9	110.4	489.0		
Delay (s)	790.7	112.9	218.6	16.0	130.9	509.5		
Level of Service	F	F	F	В	F	F		
Approach Delay (s)		221.8	186.1		373.4			
Approach LOS		F	F		F			
Intersection Summary								
HCM 2000 Control Delay			256.2	Н	CM 2000	Level of Service	F	
HCM 2000 Volume to Capac	city ratio		1.86					
Actuated Cycle Length (s)	,		59.0	Sı	um of los	t time (s)	18.0	
Intersection Capacity Utilizat	tion		112.8%			of Service	Н	
			15					
Analysis Period (min)			13					

	-	*	1	←	1	-		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	^	7	7	^	*	1		
Traffic Volume (vph)	1070	1347	463	1470	236	534		
Future Volume (vph)	1070	1347	463	1470	236	534		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Lane Width	12	12	12	12	13	12		
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Lane Util. Factor	0.95	1.00	1.00	0.95	1.00	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Flt Protected	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (prot)	3539	1568	1787	3539	1636	1583		
Flt Permitted	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (perm)	3539	1568	1787	3539	1636	1583		
Peak-hour factor, PHF	0.89	0.89	0.86	0.86	0.88	0.88		
	1202	1513	538	1709	268	607		
Adj. Flow (vph)								
RTOR Reduction (vph)	1202	414	0	1700	0	426		
Lane Group Flow (vph)	1202	1099	538	1709	268	181 2%		
Heavy Vehicles (%)	2%	3%	1%	2%	14%			
Turn Type	NA	Prot	Prot	NA	Prot	Prot		
Protected Phases	6	6	5	2	7	7		
Permitted Phases								
Actuated Green, G (s)	41.6	41.6	47.8	95.4	30.6	30.6		
Effective Green, g (s)	41.6	41.6	47.8	95.4	30.6	30.6		
Actuated g/C Ratio	0.30	0.30	0.35	0.69	0.22	0.22		
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Vehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0		
Lane Grp Cap (vph)	1066	472	618	2446	362	351		
v/s Ratio Prot	0.34	c0.70	c0.30	0.48	c0.16	0.11		
v/s Ratio Perm								
v/c Ratio	1.13	2.33	0.87	0.70	0.74	0.52		
Uniform Delay, d1	48.2	48.2	42.2	12.7	50.0	47.2		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	69.7	604.8	13.1	1.7	8.4	1.7		
Delay (s)	117.9	653.0	55.3	14.4	58.4	48.9		
Level of Service	F	F	Е	В	Е	D		
Approach Delay (s)	416.1			24.2	51.8			
Approach LOS	F			С	D			
Intersection Summary								
HCM 2000 Control Delay			210.6	Н	CM 2000	Level of Service	<u> </u>	
HCM 2000 Volume to Capa	acity ratio		1.34		ON 2000	2010: 0: 00: 100		
Actuated Cycle Length (s)	acity ratio		138.0	S	um of lost	time (s)		
Intersection Capacity Utiliza	ation		119.1%		CU Level o			
Analysis Period (min)	uuUII		119.176	ic	O LEVEI U	U OEI VICE		
o Critical Land Group			10					

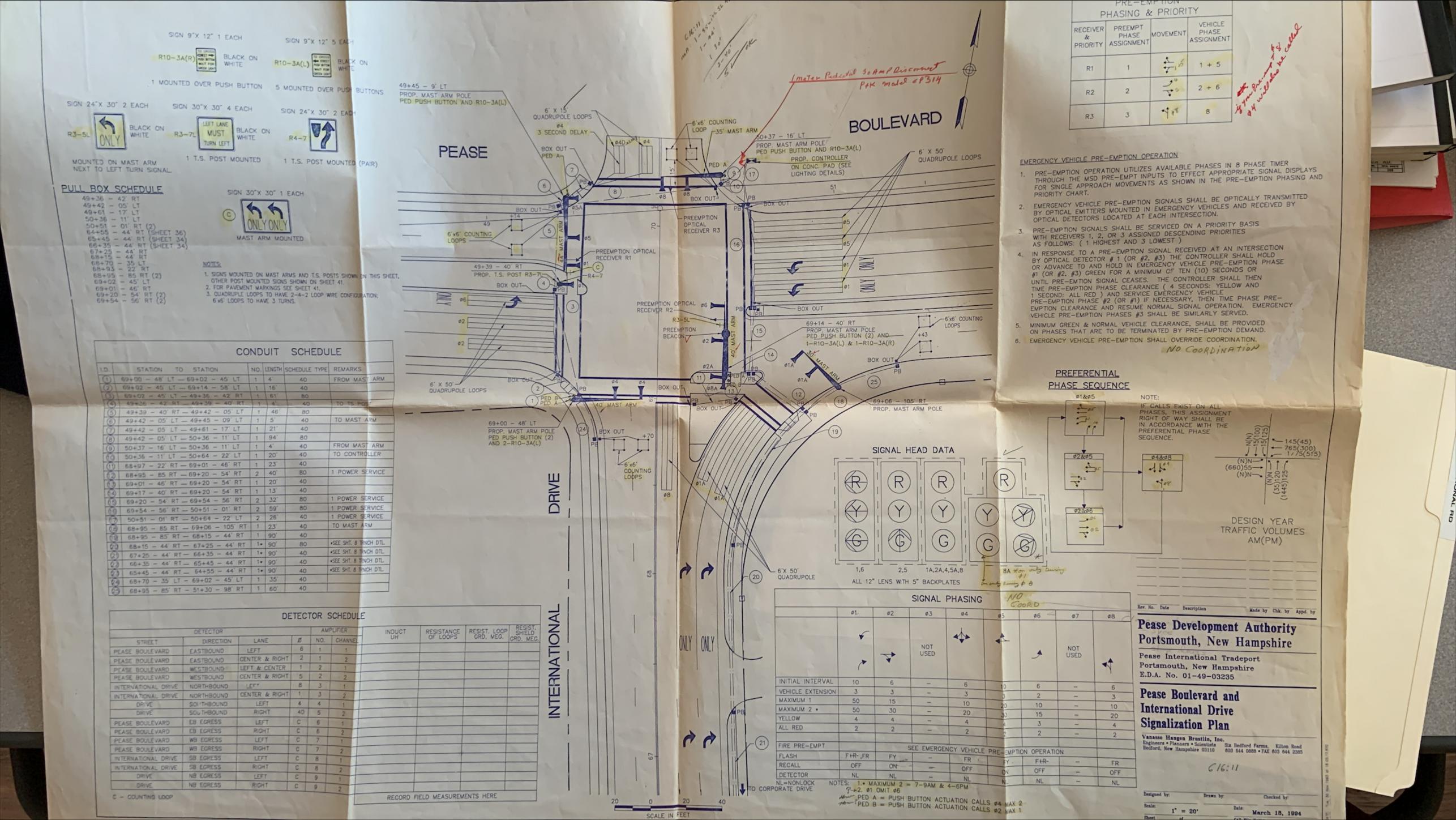
Intersection												
Intersection Delay, s/veh	37.2											
Intersection LOS	57.2 E											
IIILEI SECLIOIT LOS	L											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		7	f)			र्स	7		4	
Traffic Vol, veh/h	71	90	24	273	24	19	2	337	299	72	109	3
Future Vol, veh/h	71	90	24	273	24	19	2	337	299	72	109	3
Peak Hour Factor	0.71	0.71	0.71	0.90	0.90	0.90	0.75	0.75	0.75	0.88	0.88	0.88
Heavy Vehicles, %	0	0	0	2	0	10	0	1	3	11	4	0
Mvmt Flow	100	127	34	303	27	21	3	449	399	82	124	3
Number of Lanes	0	1	0	1	1	0	0	1	1	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			1			1			2		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			2			1			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	2			1			2			1		
HCM Control Delay	25.4			30.8			47.2			21.9		
HCM LOS	D			D			Е			С		
110111 200				D			_			J		
.10.11.200				D			_			U		
Lane		NBLn1	NBLn2	EBLn1	WBLn1	WBLn2	SBLn1					
		NBLn1 1%	NBLn2		WBLn1 100%	WBLn2						
Lane				EBLn1			SBLn1					
Lane Vol Left, %		1%	0%	EBLn1 38%	100%	0%	SBLn1 39%					
Lane Vol Left, % Vol Thru, %		1% 99%	0% 0%	EBLn1 38% 49%	100% 0%	0% 56%	SBLn1 39% 59%					
Lane Vol Left, % Vol Thru, % Vol Right, %		1% 99% 0%	0% 0% 100%	EBLn1 38% 49% 13%	100% 0% 0%	0% 56% 44%	SBLn1 39% 59% 2%					
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control		1% 99% 0% Stop	0% 0% 100% Stop	EBLn1 38% 49% 13% Stop 185 71	100% 0% 0% Stop	0% 56% 44% Stop	SBLn1 39% 59% 2% Stop 184 72					
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		1% 99% 0% Stop 339	0% 0% 100% Stop 299 0	EBLn1 38% 49% 13% Stop 185 71 90	100% 0% 0% Stop 273 273	0% 56% 44% Stop 43 0 24	SBLn1 39% 59% 2% Stop 184 72 109					
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		1% 99% 0% Stop 339 2 337 0	0% 0% 100% Stop 299 0 0	EBLn1 38% 49% 13% Stop 185 71 90 24	100% 0% 0% Stop 273 273 0	0% 56% 44% Stop 43 0 24	SBLn1 39% 59% 2% Stop 184 72 109 3					
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		1% 99% 0% Stop 339 2 337 0 452	0% 0% 100% Stop 299 0	EBLn1 38% 49% 13% Stop 185 71 90 24 261	100% 0% 0% Stop 273 273	0% 56% 44% Stop 43 0 24 19	SBLn1 39% 59% 2% Stop 184 72 109 3 209					
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		1% 99% 0% Stop 339 2 337 0 452	0% 0% 100% Stop 299 0 0 299 399	EBLn1 38% 49% 13% Stop 185 71 90 24 261 6	100% 0% 0% Stop 273 273 0 0 303 7	0% 56% 44% Stop 43 0 24 19 48	SBLn1 39% 59% 2% Stop 184 72 109 3 209 6					
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		1% 99% 0% Stop 339 2 337 0 452 7	0% 0% 100% Stop 299 0 0 299 399 7 0.775	EBLn1 38% 49% 13% Stop 185 71 90 24 261 6 0.63	100% 0% 0% Stop 273 273 0 0 303 7	0% 56% 44% Stop 43 0 24 19 48 7 0.106	SBLn1 39% 59% 2% Stop 184 72 109 3 209 6 0.529					
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		1% 99% 0% Stop 339 2 337 0 452	0% 0% 100% Stop 299 0 0 299 399	EBLn1 38% 49% 13% Stop 185 71 90 24 261 6	100% 0% 0% Stop 273 273 0 0 303 7	0% 56% 44% Stop 43 0 24 19 48	SBLn1 39% 59% 2% Stop 184 72 109 3 209 6					
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		1% 99% 0% Stop 339 2 337 0 452 7 0.968 7.821 Yes	0% 0% 100% Stop 299 0 0 299 399 7 0.775 7.114 Yes	EBLn1 38% 49% 13% Stop 185 71 90 24 261 6 0.63 8.707 Yes	100% 0% 0% Stop 273 273 0 0 303 7 0.747 8.864 Yes	0% 56% 44% Stop 43 0 24 19 48 7 0.106 7.992 Yes	SBLn1 39% 59% 2% Stop 184 72 109 3 209 6 0.529 9.106 Yes					
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		1% 99% 0% Stop 339 2 337 0 452 7 0.968 7.821 Yes 466	0% 0% 100% Stop 299 0 0 299 399 7 0.775 7.114 Yes 510	EBLn1 38% 49% 13% Stop 185 71 90 24 261 6 0.63 8.707 Yes 417	100% 0% 0% Stop 273 273 0 0 303 7 0.747 8.864 Yes 406	0% 56% 44% Stop 43 0 24 19 48 7 0.106 7.992 Yes 446	SBLn1 39% 59% 2% Stop 184 72 109 3 209 6 0.529 9.106 Yes 397					
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		1% 99% 0% Stop 339 2 337 0 452 7 0.968 7.821 Yes 466 5.521	0% 0% 100% Stop 299 0 0 299 399 7 0.775 7.114 Yes 510 4.814	EBLn1 38% 49% 13% Stop 185 71 90 24 261 6 0.63 8.707 Yes 417 6.707	100% 0% 0% Stop 273 273 0 0 303 7 0.747 8.864 Yes 406 6.664	0% 56% 44% Stop 43 0 24 19 48 7 0.106 7.992 Yes 446 5.791	SBLn1 39% 59% 2% Stop 184 72 109 3 209 6 0.529 9.106 Yes 397 7.124					
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		1% 99% 0% Stop 339 2 337 0 452 7 0.968 7.821 Yes 466 5.521 0.97	0% 0% 100% Stop 299 0 0 299 399 7 0.775 7.114 Yes 510 4.814 0.782	EBLn1 38% 49% 13% Stop 185 71 90 24 261 6 0.63 8.707 Yes 417 6.707 0.626	100% 0% 0% Stop 273 273 0 0 303 7 0.747 8.864 Yes 406 6.664 0.746	0% 56% 44% Stop 43 0 24 19 48 7 0.106 7.992 Yes 446 5.791 0.108	SBLn1 39% 59% 2% Stop 184 72 109 3 209 6 0.529 9.106 Yes 397 7.124 0.526					
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay		1% 99% 0% Stop 339 2 337 0 452 7 0.968 7.821 Yes 466 5.521 0.97 62.1	0% 0% 100% Stop 299 0 0 299 399 7 0.775 7.114 Yes 510 4.814 0.782 30.2	EBLn1 38% 49% 13% Stop 185 71 90 24 261 6 0.63 8.707 Yes 417 6.707 0.626 25.4	100% 0% 0% Stop 273 273 0 0 303 7 0.747 8.864 Yes 406 6.664 0.746 33.8	0% 56% 44% Stop 43 0 24 19 48 7 0.106 7.992 Yes 446 5.791 0.108 11.7	SBLn1 39% 59% 2% Stop 184 72 109 3 209 6 0.529 9.106 Yes 397 7.124 0.526 21.9					
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		1% 99% 0% Stop 339 2 337 0 452 7 0.968 7.821 Yes 466 5.521 0.97	0% 0% 100% Stop 299 0 0 299 399 7 0.775 7.114 Yes 510 4.814 0.782	EBLn1 38% 49% 13% Stop 185 71 90 24 261 6 0.63 8.707 Yes 417 6.707 0.626	100% 0% 0% Stop 273 273 0 0 303 7 0.747 8.864 Yes 406 6.664 0.746	0% 56% 44% Stop 43 0 24 19 48 7 0.106 7.992 Yes 446 5.791 0.108	SBLn1 39% 59% 2% Stop 184 72 109 3 209 6 0.529 9.106 Yes 397 7.124 0.526					

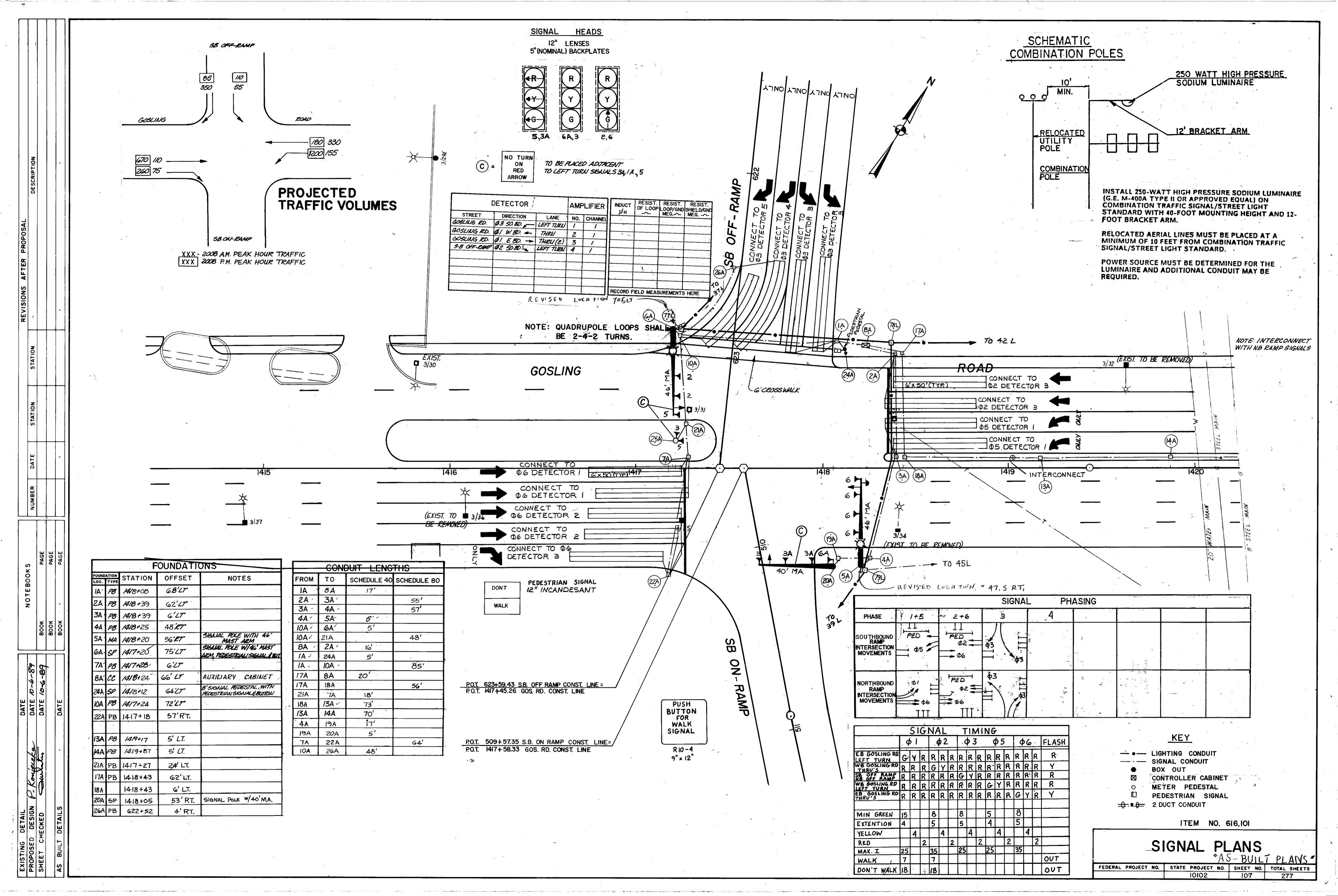
ludous a ski s a
Intersection
Int Delay, s/veh 7.4
Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR
Lane Configurations 4 7 7 5
Traffic Vol, veh/h 6 11 8 68 8 39 14 521 55 22 424 19
Future Vol, veh/h 6 11 8 68 8 39 14 521 55 22 424 19
Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0 0
Sign Control Stop Stop Stop Stop Stop Free Free Free Free Free Free
RT Channelized None None None
Storage Length 80 85 165
Veh in Median Storage, # - 0 0 0 0
Grade, % - 0 0 0 -
Peak Hour Factor 65 65 65 87 87 87 73 73 90 90 90
Heavy Vehicles, % 0 0 25 3 25 0 0 3 0 0 1 0
Mvmt Flow 9 17 12 78 9 45 19 714 75 24 471 21
Majay/Minay MinayO MinayA MajayA MajayA
Major/Minor Minor2 Minor1 Major1 Major2
Conflicting Flow All 1347 1357 482 1334 1330 752 492 0 0 789 0 0
Stage 1 530 530 - 790 790
Stage 2 817 827 - 544 540
Critical Hdwy 7.1 6.5 6.45 7.13 6.75 6.2 4.1 4.1
Critical Hdwy Stg 1 6.1 5.5 - 6.13 5.75
Critical Hdwy Stg 2 6.1 5.5 - 6.13 5.75
Follow-up Hdwy 3.5 4 3.525 3.527 4.225 3.3 2.2 2.2
Pot Cap-1 Maneuver 129 150 540 130 139 413 1082 840
Stage 1 536 530 - 382 370
Stage 2 373 389 - 521 486
Platoon blocked, %
Mov Cap-1 Maneuver 105 143 540 112 133 413 1082 840
Mov Cap-2 Maneuver 105 143 - 112 133
Stage 1 526 515 - 375 363
Stage 2 318 382 - 478 472
Approach EB WB NB SB
HCM Control Delay, s 32.7 71.6 0.2 0.4
HCM LOS D F
Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1WBLn2 SBL SBT SBR
HCM Control Delay (s) 8.4 32.7 100.8 14.8 9.4
HCM Lane LOS A D F B A
HCM 95th %tile Q(veh) 0.1 0.8 4.3 0.4 0.1

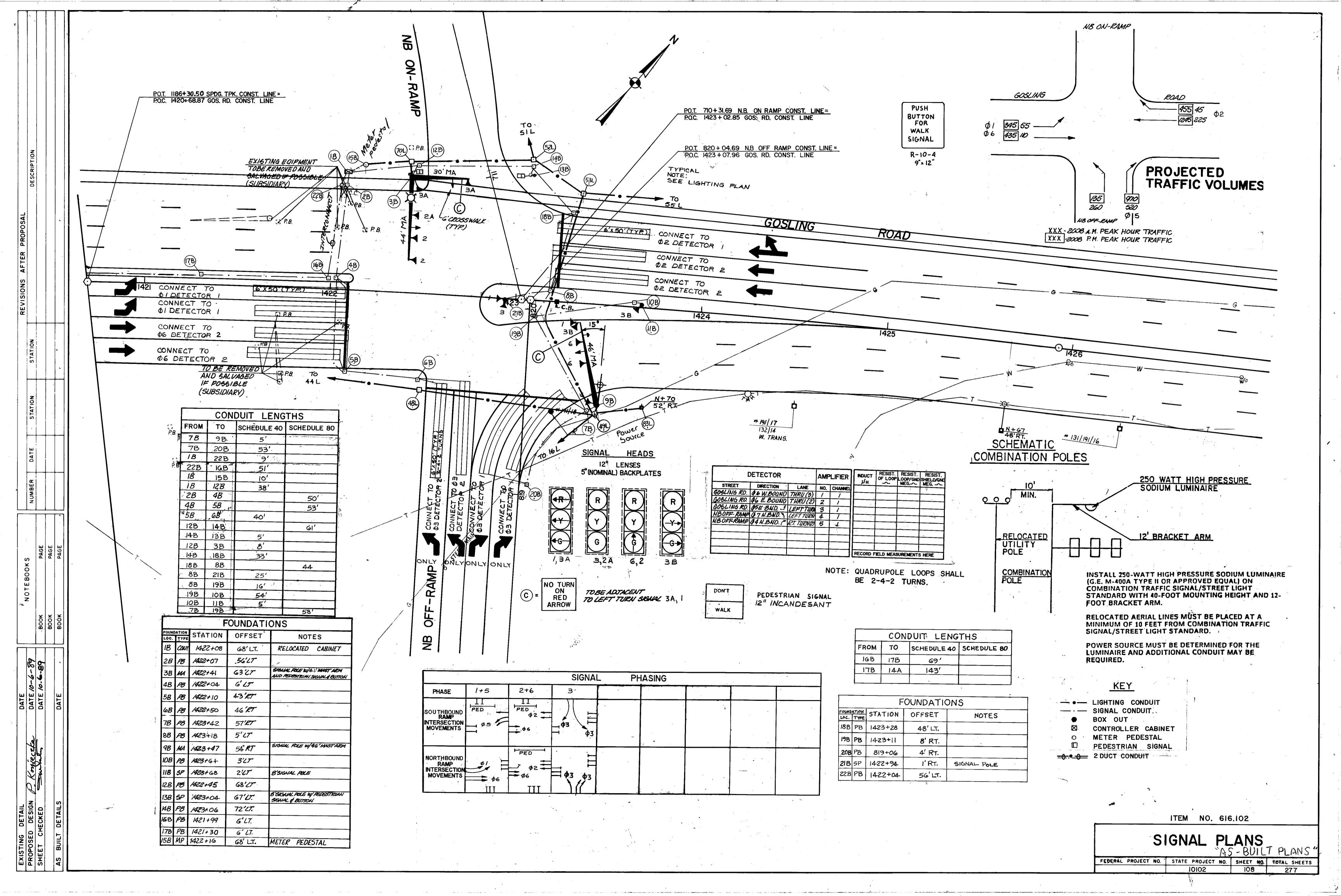
Intersection													
Int Delay, s/veh	51.5												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		43	LDIT	1100	4	WEIT	INDL	4	HOIL	ODL	4	ODIT	
Traffic Vol, veh/h	6	17	6	267	11	6	0	215	108	6	528	6	
Future Vol, veh/h	6	17	6	267	11	6	0	215	108	6	528	6	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	_	-	-	-	-	-	
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	_	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	7	19	7	297	12	7	0	239	120	7	587	7	
Major/Minor	Minor2			Minor1			Major1		ı	Major2			
Conflicting Flow All	914	964	591	917	907	299	594	0	0	359	0	0	
Stage 1	605	605	-	299	299	233	-	-	-	-	-	-	
Stage 2	309	359	_	618	608	_	_	_	_	_	_	_	
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	_	_	4.12	_	_	
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	_	_	-	_	_	
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	_	-	-	-	-	-	
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218	_	-	
Pot Cap-1 Maneuver	254	255		~ 253	276	741	982	-	-	1200	-	-	
Stage 1	485	487	-	710	666	-	-	-	-	-	-	-	
Stage 2	701	627	-	477	486	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	242	253	507	~ 234	274	741	982	-	-	1200	-	-	
Mov Cap-2 Maneuver	242	253	-	~ 234	274	-	-	-	-	-	-	-	
Stage 1	485	483	-	710	666	-	-	-	-	-	-	-	
Stage 2	682	627	-	448	482	-	-	-	-	-	-	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	19.6			211.1			0			0.1			
HCM LOS	С			F									
Minor Lane/Major Mvm	nt	NBL	NBT	NRR	EBLn1V	VBI n1	SBL	SBT	SBR				
Capacity (veh/h)		982	-	TADIA	279	239	1200	- 100	יופט				
HCM Lane V/C Ratio		302	<u> </u>	_	0.115		0.006		_				
HCM Control Delay (s)		0		_		211.1	8	0	_				
HCM Lane LOS		A	_	_	13.0 C	F	A	A	_				
HCM 95th %tile Q(veh))	0	_	-	0.4	16.7	0	-	_				
`					V. 1								
Notes		Α			00			NI 15	<i>c</i> .				
~: Volume exceeds cap	pacity	\$: De	elay exc	eeds 3	UUS	+: Com	putation	Not De	etined	î: All	major v	olume ii	n platoon

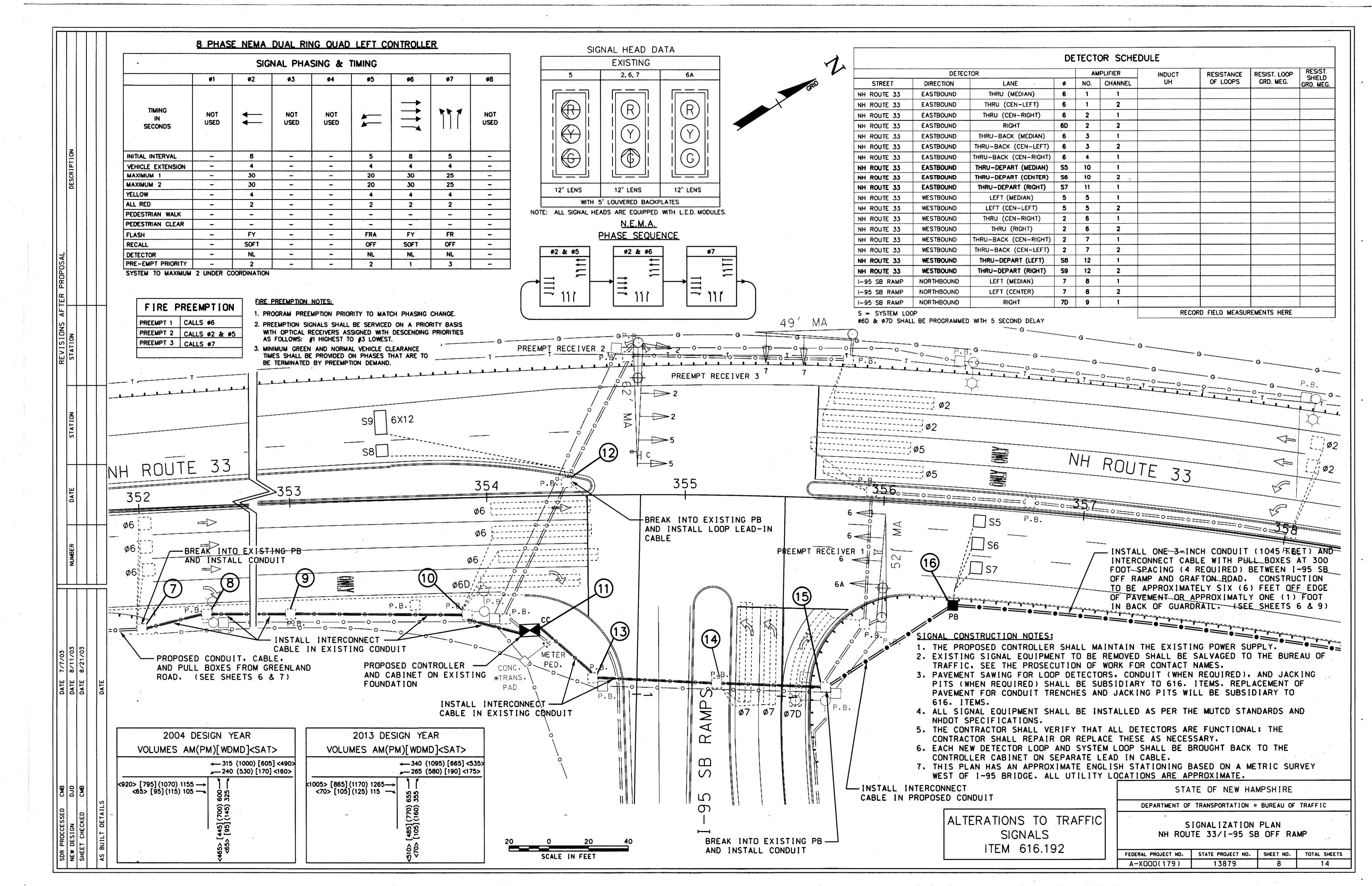

Intersection								
Int Delay, s/veh	141.8							
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	CDL Š		NDL 1					
		155		↑ 34	↑ 28	772		
raffic Vol, veh/h	289	155	394			772		
Future Vol, veh/h	289 0	155	394	34	28	772		
Conflicting Peds, #/hr		0	0	0	0	0		
Sign Control	Stop	Stop	Free	Free	Free	Free		
RT Channelized	-	None	400	None	-			
Storage Length	0	290	100	-	-	175		
Veh in Median Storag		-	-	0	0	-		
Grade, %	0	-	-	0	0	-		
Peak Hour Factor	90	90	90	90	90	90		
Heavy Vehicles, %	2	2	2	2	2	2		
Mvmt Flow	321	172	438	38	31	858		
	Minor2		Major1		Major2			
Conflicting Flow All	945	31	889	0	-	0		
Stage 1	31	-	-	-	-	-		
Stage 2	914	-	-	-	-	-		
ritical Hdwy	6.42	6.22	4.12	-	-	-		
ritical Hdwy Stg 1	5.42	-	-	-	-	-		
ritical Hdwy Stg 2	5.42	-	-	-	-	-		
ollow-up Hdwy	3.518	3.318	2.218	-	-	-		
ot Cap-1 Maneuver	~ 291	1043	762	-	-	-		
Stage 1	992	-	-	-	-	-		
Stage 2	391	-	-	-	-	-		
latoon blocked, %				-	-	-		
Nov Cap-1 Maneuver	~ 124	1043	762	-	-	-		
Nov Cap-2 Maneuver		-	-	-	-	-		
Stage 1	422	_	_	_	-	_		
Stage 2	391	_	_	_	-	_		
	301							
Approach	EB		NB		SB			
HCM Control Delay, s			14.6		0			
HCM LOS	φ 515.5 F		1-7.0		- 0			
TOWN EOO	ı							
Minor Lane/Major Mvr	mt	NBL	NRT	EBLn1 E	FRI n2	SBT	SBR	
Capacity (veh/h)	TIC.	762	- 10011		1043	- 301	-	
HCM Lane V/C Ratio			-		0.165			
HCM Control Delay (s	.\	0.575				-	-	
, t	9)	15.9		793.9	9.1	-	-	
HCM Lane LOS	2)	C	-	70 O	A	-	-	
HCM 95th %tile Q(veh	1)	3.7	-	28.8	0.6	-	-	
Votes								
: Volume exceeds ca	apacity	\$: De	elay exc	eeds 30	00s	+: Comp	outation Not Defined	*: All major volume in platoon

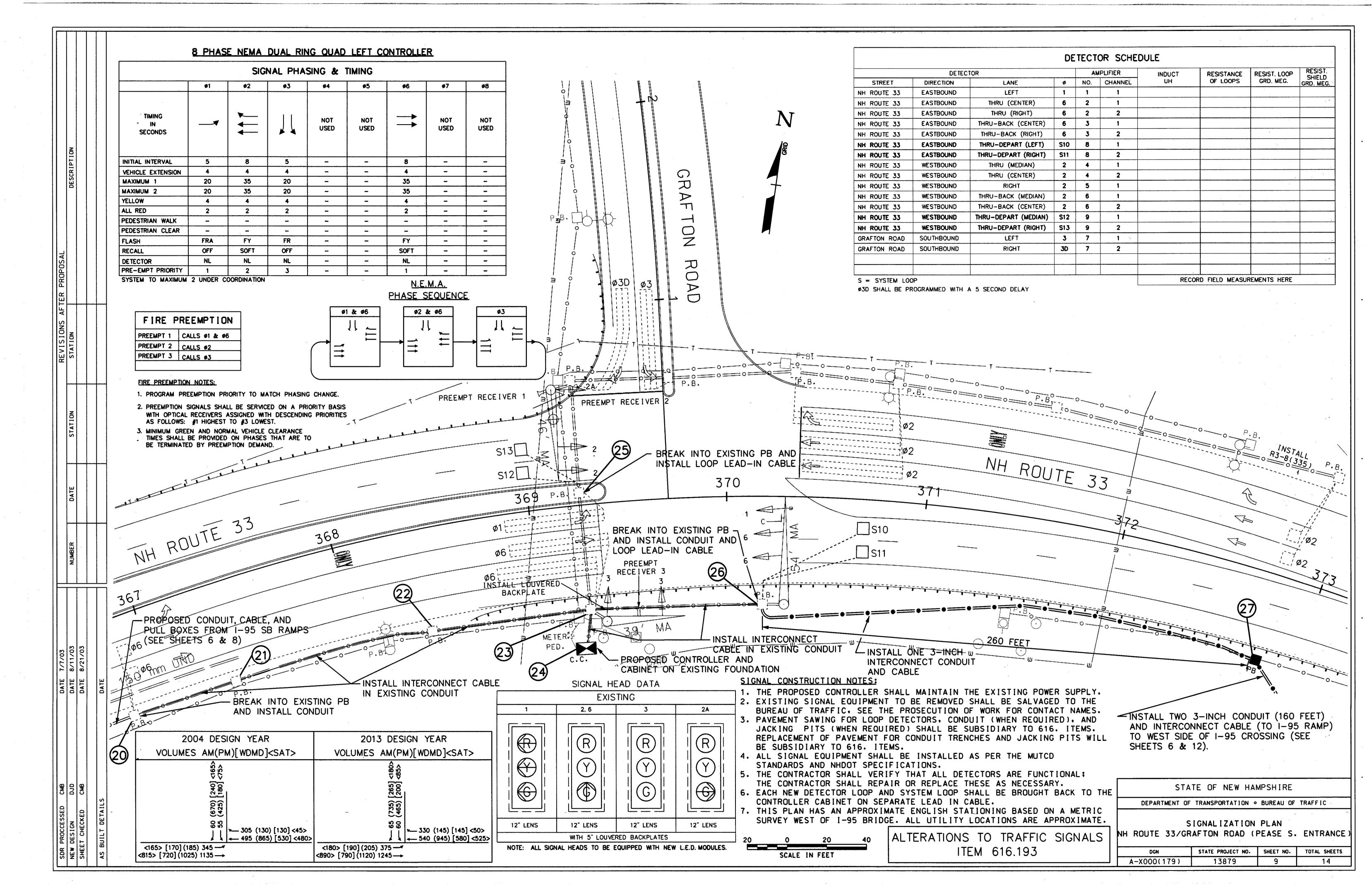
Intersection								
Int Delay, s/veh	35.6							
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	Y	LDI	NDL	4	3B1 ⅓	אופט		
Traffic Vol, veh/h	2	158	25	548	1340	2		
Future Vol, veh/h	2	158	25	548	1340	2		
Conflicting Peds, #/hr		0	0	0	0	0		
			Free	Free	Free	Free		
Sign Control RT Channelized	Stop	Stop						
	-	None	-		-	None		
Storage Length	0		-	-	-	-		
Veh in Median Storag		-	-	0	0	-		
Grade, %	0	-	- 0 <i>E</i>	0	0	- 00		
Peak Hour Factor	68	68	85	85	89	89		
Heavy Vehicles, %	0	1	0	1	1506	0		
//vmt Flow	3	232	29	645	1506	2		
Major/Minor	Minor2		Major1	N	Major2			
Conflicting Flow All	2210	1507	1508	0	-	0		
Stage 1	1507	-	-	-	-	-		
Stage 2	703	-	-	-	-	-		
Critical Hdwy	6.4	6.21	4.1	-	-	-		
Critical Hdwy Stg 1	5.4	-	-	-	-	-		
Critical Hdwy Stg 2	5.4	-	-	-	-	-		
Follow-up Hdwy	3.5	3.309	2.2	-	-	-		
Pot Cap-1 Maneuver	49	~ 149	450	-	-	-		
Stage 1	204	-	-	-	-	-		
Stage 2	495	-	-	-	-	-		
Platoon blocked, %				-	-	-		
Mov Cap-1 Maneuver	44	~ 149	450	-	-	-		
Mov Cap-2 Maneuver		-	-	-	-	-		
Stage 1	184	-	-	-	-	-		
Stage 2	495	-	-	-	-	-		
Approach	EB		NB		SB			
HCM Control Delay, s			0.6		0			
HCM LOS	φ 304.5 F		0.0		U			
I IOIVI LOO	I ⁻							
		NE	NIST	EDL 4	057	055		
Minor Lane/Major Mvi	mt	NBL		EBLn1	SBT	SBR		
Capacity (veh/h)		450	-	145	-	-		
HCM Lane V/C Ratio	,	0.065		1.623	-	-		
HCM Control Delay (s	S)	13.6		364.3	-	-		
HCM Lane LOS		В	Α	F	-	-		
HCM 95th %tile Q(vel	h)	0.2	-	16.6	-	-		
Notes								
~: Volume exceeds ca	apacity	\$: De	elav exc	ceeds 30	00s	+: Com	outation Not Defined	*: All major volume in platoon
		Ţ. D (, 0.110	30000				

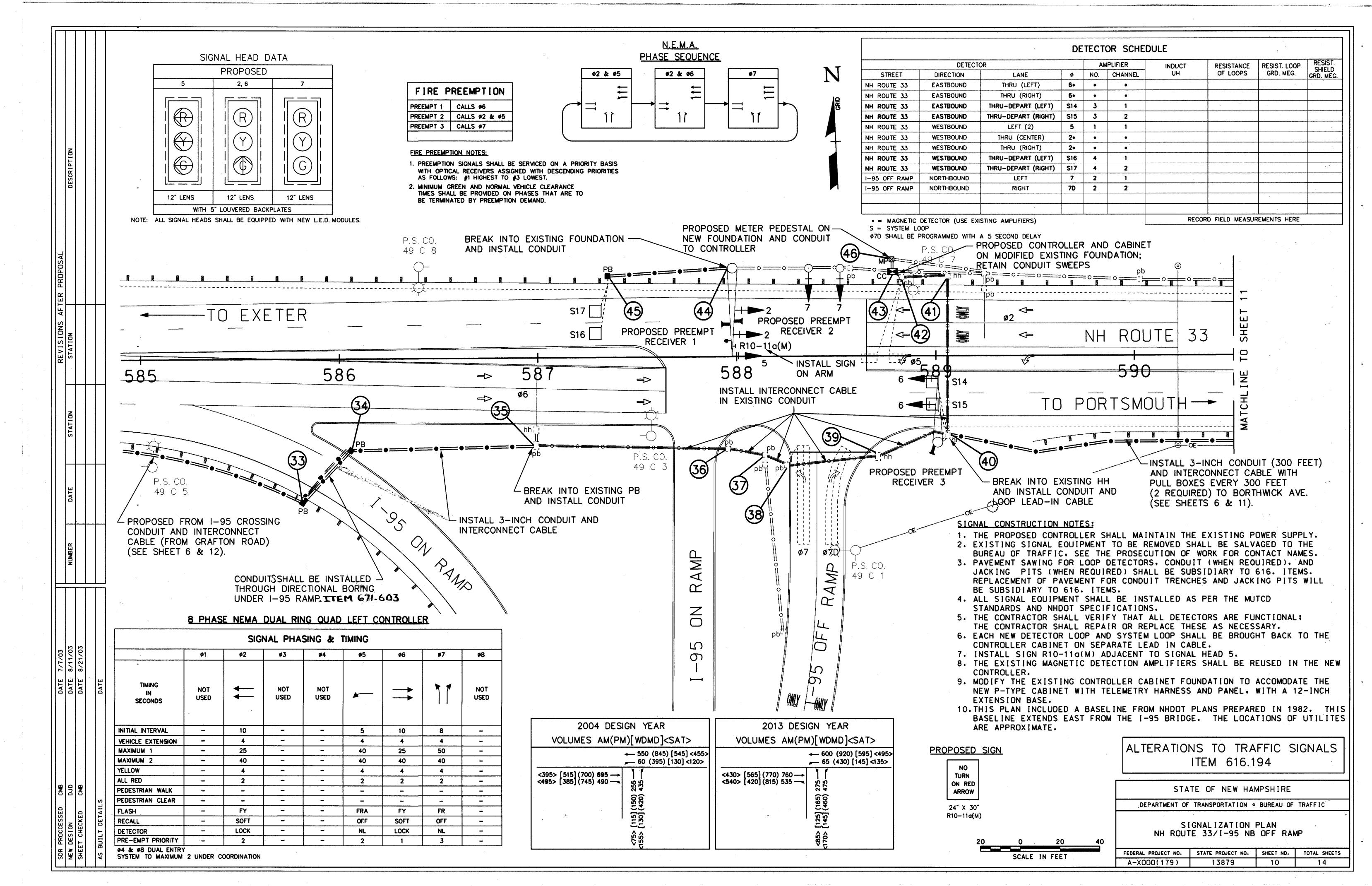

Intersection													
Int Delay, s/veh	335.6												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	LDL	4	LDIN	VVDL	4	VVDIX	NDL	4	NUIN	ODL	4	ODIX	
Traffic Vol, veh/h	10	0	31	52	0	14	72	559	84	17	1511	27	
Future Vol, veh/h	10	0	31	52	0	14	72	559	84	17	1511	27	
	0	0	0	0	0	0	0	0	04	0	0	0	
Conflicting Peds, #/hr									Free		Free	Free	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free		Free			
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage		0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	- 04	0	- 04	-	0	-	
Peak Hour Factor	63	63	63	83	83	83	94	94	94	89	89	89	
Heavy Vehicles, %	0	0	0	12	0	29	0	1	12	22	1	0	
Mvmt Flow	16	0	49	63	0	17	77	595	89	19	1698	30	
Major/Minor	Minor2			Minor1		I	Major1		ı	Major2			
Conflicting Flow All	2553	2589	1713	2570	2560	640	1728	0	0	684	0	0	
Stage 1	1751	1751	-	794	794	-	-	-	-	-	-	-	
Stage 2	802	838	-	1776	1766	-	-	-	-	-	-	-	
Critical Hdwy	7.1	6.5	6.2	7.22	6.5	6.49	4.1	-	-	4.32	_	-	
Critical Hdwy Stg 1	6.1	5.5	_	6.22	5.5	-	_	_	-	_	_	_	
Critical Hdwy Stg 2	6.1	5.5	-	6.22	5.5	-	_	-	-	-	-	-	
Follow-up Hdwy	3.5	4	3.3	3.608	4	3.561	2.2	_	_	2.398	_	_	
Pot Cap-1 Maneuver	18	26	113	~ 16	27	430	370	_	_	823	_	_	
Stage 1	110	141	-	367	403	-	-	_	_	-	_	_	
Stage 2	381	384	_	99	138	_	_	_	_	_	_	_	
Platoon blocked, %	301	- 00 i			.00			_	_		_	_	
Mov Cap-1 Maneuver	~ 7	6	113	~ 3	7	430	370	_	_	823	_	_	
Mov Cap-1 Maneuver	~ 7	6	-	~ 3	7	-	-	_	<u>-</u>	-	_	_	
Stage 1	72	52	_	242	266	_	_	_	_	_	_	_	
Stage 2	241	253	_	~ 21	51	_	_	_	_	_	_	_	
Olaye Z	471	200		۷۱	Ji				_				
A	ED			MD			ND			OD			
Approach	EB			WB			NB			SB			
HCM Control Delay, \$			\$ 10	0261.3			1.7			0.1			
HCM LOS	F			F									
Minor Lane/Major Mvm	nt	NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR				
Capacity (veh/h)		370	-		24	4	823	_	_				
HCM Lane V/C Ratio		0.207	-	-		19.88		_	_				
HCM Control Delay (s)		17.3	0		1115\$.81		9.5	0	_				
HCM Lane LOS		С	A	-	F	F	A	A	_				
HCM 95th %tile Q(veh))	0.8	-	-	8.1	11.9	0.1	-	-				
`													
Notes		Δ.5		, 6	20			NI . P	c .	.			
~: Volume exceeds cap	\$: De	elay exc	eeds 30)Us	+: Com	putation	Not De	etined	*: All	major v	olume ii	n platoon	

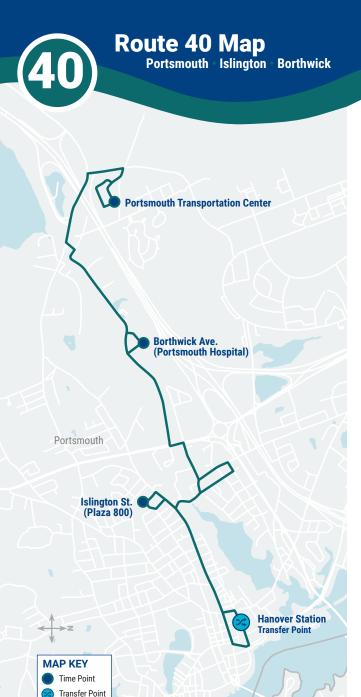

Intersection						
Int Delay, s/veh	0.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
	WDL	VVDK	ND1	INDIN	ODL	
Lane Configurations Traffic Vol, veh/h	0	89	T 626	Λ	0	^
				0		1594
Future Vol, veh/h	0	89	626	0	0	1594
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage,		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	100	100	92	92	100
Heavy Vehicles, %	2	13	1	2	2	1
Mvmt Flow	0	89	626	0	0	1594
		_		_		
	Minor1		Major1	N	/lajor2	
Conflicting Flow All	-	626	0	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.395	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	_	-	_	-	_	-
Follow-up Hdwy	- 3	3.4235	_	_	_	_
Pot Cap-1 Maneuver	0	459	_	0	0	_
Stage 1	0	-	_	0	0	_
Stage 2	0	_	_	0	0	
	U	-	_	U	U	-
Platoon blocked, %						
		450	-			-
Mov Cap-1 Maneuver	-	459	-	-	-	-
Mov Cap-2 Maneuver	-	459 -	- - -	-	- -	
Mov Cap-2 Maneuver Stage 1						-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Mov Cap-2 Maneuver Stage 1	-	-	-	-	-	- - -
Mov Cap-2 Maneuver Stage 1 Stage 2	- - -	-	- - -	-	- - -	- - -
Mov Cap-2 Maneuver Stage 1 Stage 2 Approach	- - - WB	-	- - - NB	-	- - - SB	- - -
Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s	- - - WB 14.7	-	- - -	-	- - -	- - -
Mov Cap-2 Maneuver Stage 1 Stage 2 Approach	- - - WB	-	- - - NB	-	- - - SB	- - -
Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s	- - - WB 14.7	-	- - - NB	-	- - - SB	- - -
Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS	- - - - WB 14.7 B		- - - NB 0	-	- - - SB	- - -
Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm	- - - - WB 14.7 B		- - - NB 0	SBT	- - - SB	- - -
Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h)	- - - - WB 14.7 B	- - - NBTV	- - - NB 0 VBLn1 459	- - - - SBT	- - - SB	- - -
Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	- - - - WB 14.7 B	- - - NBTV	NB 0 VBLn1 459 0.194		- - - SB	- - -
Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	- - - - WB 14.7 B	NBTV	NB 0 VBLn1 459 0.194 14.7	SBT -	- - - SB	- - -
Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	- - - WB 14.7 B	- - - NBTV	NB 0 VBLn1 459 0.194		- - - SB	- - -


APPENDIX H Site Development Plan




APPENDIX I
Traffic Control Signal Plans





APPENDIX J

COAST Bus Schedules & Map

COAST BUS FARES

Base Cash Fare

\$1.50

All passengers ages 5 and up are required to pay this fare each time they board a COAST bus.

\$ 0.75 Half-Fare

Passengers 65 and older, or passengers with a disability are entitled to pay half the cash fare. Proof of eligibility is required by showing a Medicare card, photo ID with birth date, COAST ADA Paratransit Card, or COAST Half-Fare Card. Please contact COAST to apply for a Half-Fare Card.

Multi-Ride Tickets and Passes

Available at www.coastbus.org or call 603-743-5777, TTY 711.

Unlimited Monthly Pass

\$ 52

Unlimited rides on COAST Routes for the month.

YOUR RIGHTS

COAST adheres to all Federal regulations regarding Civil Rights. If you need to request an ADA Reasonable Modification/ Accommodation, or if you believe you have been discriminated against or would like to file a complaint under the ADA or Title VI, please contact COAST's Civil Rights Officer at 603-516-0788. TTY 711 or email CivilRights@coastbus.org.

NO SERVICE DAYS

COAST does not operate on the following holidays:

- New Year's Day
- Labor Day
- Martin Luther King Jr./ Civil Rights Day
- Thanksgiving Day
- Memorial Day
- · Christmas Eve Day
- · Christmas Day
- Independence Day

42 Sumner Drive • Dover, NH 03820 603-743-5777 • TTY 711 • www.coastbus.org

This brochure is available in alternative formats upon request.

Bus Schedule & Map (40)

Portsmouth | Islington | Borthwick

Find all of the full COAST schedules online at coastbus.org

MAP OUT YOUR GAME PLAN

Planning your trip has never been easier!

www.coastbus.org

OUTBOUND • INBOUND Route 40 Portsmouth · Islington · Borthwick

How to Read the Schedule

Printed bus schedules only show the timepoints (major bus stops where the bus will hold until the scheduled departure time). In between those timepoints are many other stops that you can use. For a full listing of bus stops, visit www.coastbus.org, or use the Passio GO! App.

The times shown represent the number of minutes after the hour that the bus will depart from that stop. Last stop times are arrivals. Any exceptions will be noted.

OUTBOUND (M-Sat)	Service On Every Hour						
Hanover Station - Portsmouth Transportation Center	First Bus	Minutes Past Hour	Last Bus				
Hanover Station	6:00am	:00*	7:00pm				
• Islington St. (Plaza 800)	6:07am	:07*	7:07pm				
Borthwick Ave. (Ports. Hospital)	6:15am	:15*	7:15pm				
Portsmouth Transportation Center	6:23am	:23*	7:23pm				

*No Service during the hour of 3pm.

INBOUND (M-Sat)	Service On Every Hour		
Portsmouth Transportation Center- Hanover Station	First Bus	Minutes Past Hour	Last Bus
Portsmouth Transportation Center	6:24am	:24*	7:24pm
Borthwick Ave. (Ports. Hospital)	6:31am	:31*	7:31pm
• Islington St. (Plaza 800)	6:39am	:39*	7:39pm
Hanover Station	6:47am	:47*	7:47pm

*No Service during the hour of 3pm.

COAST BUS FARES

Base Cash Fare

\$1.50

All passengers ages 5 and up are required to pay this fare each time they board a COAST bus.

\$ 0.75 Half-Fare

Passengers 65 and older, or passengers with a disability are entitled to pay half the cash fare. Proof of eligibility is required by showing a Medicare card, photo ID with birth date, COAST ADA Paratransit Card, or COAST Half-Fare Card. Please contact COAST to apply for a Half-Fare Card.

Multi-Ride Tickets and Passes

Available at www.coastbus.org or call 603-743-5777, TTY 711.

Unlimited Monthly Pass

\$ 52

Unlimited rides on COAST Routes for the month.

YOUR RIGHTS

COAST adheres to all Federal regulations regarding Civil Rights. If you need to request an ADA Reasonable Modification/ Accommodation, or if you believe you have been discriminated against or would like to file a complaint under the ADA or Title VI, please contact COAST's Civil Rights Officer at 603-516-0788, TTY 711 or email CivilRights@coastbus.org.

NO SERVICE DAYS

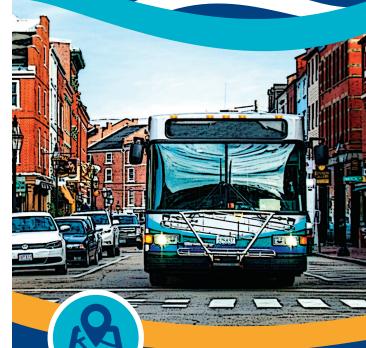
COAST does not operate on the following holidays:

- New Year's Day
- Labor Day
- Martin Luther King Jr./ Civil Rights Day
- · Thanksgiving Day
- Memorial Day
- · Christmas Eve Day

- Independence Day
- · Christmas Day

42 Sumner Drive • Dover, NH 03820 603-743-5777 • TTY 711 • www.coastbus.org

This brochure is available in alternative formats upon request.


Bus Schedule & Map (42)

Portsmouth • Pease Shuttle

Find all of the full COAST schedules online at coastbus.org

MAP OUT YOUR GAME PLAN

Planning your trip has never been easier!

www.coastbus.org

OUTBOUND • INBOUND Route 42 Portsmouth · Pease Shuttle

How to Read the Schedule

Printed bus schedules only show the timepoints (major bus stops where the bus will hold until the scheduled departure time). In between those timepoints are many other stops that you can use. For a full listing of bus stops, visit www.coastbus.org, or use the Passio Go! App.

The times shown represent the number of minutes after the hour that the bus will depart from that stop. Last stop times are arrivals. Any exceptions will be noted.

OUTBOUND (M-F)	Service On Every Hour		
Hanover Station - Pease Airline Terminal	First Bus	Minutes Past Hour	Last Bus
Hanover Station	6:22am	:00*	6:00pm
Portsmouth Transportation Center	6:33am	:11*	6:11pm
Pease Airline Terminal	6:42am	:20*	6:20pm

*Regular hourly schedule starts during the hour of 7am and No Service during the hour of 10am.

INBOUND (M-F)	Service On Every Hour		
Pease Airline Terminal - Hanover Station	First Bus	Minutes Past Hour	Last Bus
Pease Airline Terminal	6:43am	:21*	6:21pm
Portsmouth Transportation Center	6:47am	:25*	6:25pm
Hanover Station	6:57am	:35*	6:35pm

*Regular hourly schedule starts during the hour of 7am and No Service during the hour of 10am.

COAST SYSTEM MAP

www.tighebond.com

March 1, 2023 Rev. March 7, 2023

Ref: 52659.02

Michael R. Mates, PE Pease Development Authority 55 International Drive Portsmouth, NH 03801

Re: Second Traffic Engineering Peer Review

Advanced Manufacturing Facility

100 New Hampshire Avenue, Portsmouth, NH

Dear Mr. Mates:

VHB previously conducted a peer review of the October 7, 2022 Traffic Impact Assessment (TIA) prepared by Tighe & Bond, Inc. for the proposed 209,750 square foot advanced manufacturing facility to be located at 100 New Hampshire Avenue within the Pease International Tradeport in Portsmouth, New Hampshire. VHB prepared a February 1, 2023 letter that documented concerns and recommendations on the traffic study. Subsequently, Tighe & Bond, Inc. submitted a February 17, 2023 letter in response to these peer review comments and a February 17, 2023 TIA with associated updated methodologies. VHB has reviewed these supplemental traffic documents for consistency with standard engineering practice and methodologies, including Pease Development Authority's (PDA's) Land Use Controls: Zoning Ordinance, Site Plan Regulations, and Subdivision Regulations dated June 16, 2022. The following provides a summary of additional or outstanding concerns and recommendations.

Future Conditions

As proposed a 209,750 square foot advanced manufacturing facility will be constructed on a vacant parcel at 100 New Hampshire Avenue within the Pease International Tradeport. Access will be provided by way of two unsignalized driveways on New Hampshire Avenue for passenger vehicles and two unsignalized driveways on Rochester Avenue for trucks.

Original Comment 2:

Due to the location of the proposed site driveways with respect to the adjacent roadway system, there may be concerns related to trucks maneuvering at the "sharp curvature" (page-4-1 of the traffic study) of the Rochester Avenue and Stratham Street junction. Based on a preliminary review of the December 19, 2022 Truck Turning Exhibits submitted for the proposed development, trucks do not appear to be expected to travel through this connection. Therefore, the applicant should commit to not allowing trucks through this junction or provide truck turning plans to demonstrate that trucks would safely travel through this connection.

Tighe & Bond Response: Trucks are not expected to travel through this intersection, with all truck traffic

distributed to the south as shown in Figure 6 of the TIA.

Supplemental Comment: As presented in the original and revised traffic studies, adequate sightlines are not

provided at the Rochester Avenue site driveway to the north due to the horizontal curvature of the Rochester Avenue and Stratham Street junction. Figure 6 shows the overall truck traffic being distributed to the south but does not show the distribution of tucks on Rochester Avenue. **Therefore, there should be a commitment to not allow**

trucks through this junction.

Capacity and Queue Analysis

Intersection operational analyses were performed for the study area intersections based on the concepts and procedures in the Highway Capacity Manual using the *Trafficware Synchro Software* computer program. Many of the following comments may seem repetitive from the review of the October 7, 2022 TIA, but are based on the updated traffic volumes associated with the pandemic adjustment factors presented in the February 17, 2023 TIA.

Original Comment 3: The Pease Boulevard and International Drive signalized intersection is shown to

operate with capacity deficiencies (volume-to-capacity [v/c] ratios > 1.00) during 2035 No-Build weekday PM peak hour traffic volume conditions (i.e., without the proposed development). Therefore, PDA and local officials should understand the impact that the proposed development would have on intersection operations at this

location moving forward.

Tighe & Bond Response: The updated analyses presented in the revised TIA indicate no change between No-

Build and Build analyses at this intersection.

Supplemental Comment: With the revised traffic volumes, the Pease Boulevard and International Drive signalized

intersection is shown to operate with capacity deficiencies (volume-to-capacity [v/c] ratios >1.00) during 2022 Existing weekday PM peak hour traffic volumes and 2025 Build weekday AM peak hour traffic volumes that would be exacerbated with additional traffic growth. Therefore, PDA and local officials should understand the impact that the proposed development would have on intersection operations at

this location moving forward.

Original Comment 4: The Pease Boulevard and US Route 4 southbound ramps signalized intersection is

shown to operate with capacity deficiencies during 2035 weekday AM peak hour traffic volume conditions with and without the proposed development. Similarly, the Pease Boulevard and US Route 4 northbound ramps signalized intersection is shown to operate with capacity deficiencies during 2035 No-Build weekday AM peak hour traffic volume conditions. Therefore, local and NHDOT officials should understand the impact that the proposed development would have on intersection operations moving

forward.

Tighe & Bond Response: The updated analyses presented in the revised TIA indicate no change between No-Build and Build analyses at this intersection.

Supplemental Comment: Based on the updated traffic volumes, the Pease Boulevard signalized intersections with the US Route 4 southbound ramps and with the US Route 4 northbound ramps are shown to operate with capacity deficiencies during 2022 Existing weekday AM peak hour traffic volume conditions and 2035 No-Build weekday PM peak hour conditions. Therefore, local and NHDOT officials should understand the impact that the proposed development would have on intersection operations moving forward.

Original Comment 5:

The Greenland Road and I-95 southbound ramps signalized intersection is shown to operate with capacity deficiencies during 2035 No-Build weekday AM and PM peak hour traffic volume conditions. In addition, the Greenland Road and I-95 northbound ramps signalized intersection is shown to operate with capacity deficiencies during 2035 No-Build weekday AM peak hour traffic volume conditions. Therefore, local and NHDOT officials should understand the impact that the proposed development would have on intersection operations at this location moving forward.

Tighe & Bond Response:

The updated analyses presented in the revised TIA indicate no change between No-Build and Build analyses at this intersection.

Supplemental Comment: As presented in the February 17, 2023 TIA, the Greenland Road signalized intersections with the I-93 northbound ramps and with the I-93 southbound ramps are shown to operate with capacity deficiencies during 2022 Existing weekday AM and PM peak hour traffic volume conditions. Therefore, local and NHDOT officials should understand the impact that the proposed development would have on intersection operations moving forward.

Original Comment 6:

The proposed development is shown to have an impact at the Pease Boulevard, Arboretum Drive, and New Hampshire Avenue all-way stop control intersection during 2025 and 2035 Build weekday PM peak hour traffic volumes. The addition of 67 site trips through this intersection results in increases in delay on New Hampshire Avenue northbound approach in the range of 14.4 to 28.0 seconds. In addition, the site trips would result in the New Hampshire Avenue northbound approach operating over capacity during 2035 Build weekday PM peak hour traffic volumes.

This intersection is currently being designed for the addition of a right-turn lane on the New Hampshire Avenue northbound approach. This project is on the State's Ten Year Plan for 2025 with the improvements envisioned to be in place by 2035. Therefore, the applicant should coordinate with PDA officials on these improvements and update the intersection analyses accordingly to determine the development's traffic impacts with this improvement in place.

Tighe & Bond Response:

Planned improvements at the intersection of Pease Boulevard at New Hampshire Avenue/Arboretum Drive as part of NHDOT Project No. 42879 include the construction of a dedicated right-turn lane on the northbound approach. Because the

improvements are expected to begin construction in 2025 and be in place by 2035, the proposed northbound right-turn lane was included in the 2035 No Build and 2035 Build Conditions analyses.

Supplemental Comment: With the revised traffic volumes, the Pease Boulevard, Arboretum Drive, and New Hampshire Avenue all-way stop control intersection would remain overcapacity even with the northbound right-turn lane in place under 2035 No-Build weekday AM peak hour traffic volumes. The 2035 No-Build weekday AM peak hour traffic volumes show that long delays are projected on the Pease Boulevard westbound left-turn lane and the Arboretum Drive southbound approach. The 2035 No-Build weekday PM peak hour traffic volumes are shown to operate with deficiencies on the New Hampshire Avenue northbound shared left-turn/through lane. Therefore, local and NHDOT officials should understand the impact that the proposed development would have on intersection operations moving forward.

Original Comment 7:

The proposed development is shown to have an impact at the New Hampshire Avenue, Corporate Drive, International Drive, and Durham Street unsignalized intersection during 2025 and 2035 Build weekday PM peak hour traffic volumes. The International Drive westbound approach is modeled to operate with long delays (LOS F) during 2022 Existing weekday PM peak hour traffic volumes and, with the addition of 86 site trips through the intersection (82 passenger vehicles and 6 trucks), this approach would operate over capacity during 2025 Build weekday PM peak hour conditions.

PDA has a Master Plan and Implementation Plan for improvements that includes the construction of a roundabout or the installation of a traffic signal with additional turn lanes at this intersection. Therefore, PDA and local officials should understand the impact that the proposed development would have on intersection operations moving forward.

Tighe & Bond Response:

The updated analyses presented in the revised TIA indicate no change between No-Build and Build analyses at this intersection. PDA and local officials should understand Existing and Future deficiencies at this location outside of the project impact, which support efforts included in their Master Plan.

Supplemental Comment:

Based on the updated traffic volumes, the International Drive westbound approach is shown to operate overcapacity with the addition of site trips during 2025 Build weekday PM peak hour traffic volumes. In addition, the addition of site trips is shown to increase operational delays on the International Drive westbound by 77.5 seconds with the 2035 Build weekday PM peak hour traffic volumes (Synchro worksheets show the delay to be 211.1 seconds). Since PDA has a Master Plan and Implementation Plan for improvements for this intersection, PDA and local officials should understand the impact that the proposed development would have on intersection operations moving forward.

Original Comment 8:

The Corporate Drive and Grafton Road unsignalized intersection is shown to operate with capacity deficiencies during 2035 weekday AM and PM peak hour traffic volume conditions with and without the proposed development. Similar to Comment 7, PDA has a Master Plan and Implementation Plan for improvements that includes installing a traffic signal at this intersection. Therefore, PDA and local officials should understand the impact that the proposed development would have on intersection operations at this location moving forward.

Tighe & Bond Response:

The updated analyses presented in the revised TIA indicate no change between No-Build and Build analyses at this intersection. PDA and local officials should understand Existing and Future deficiencies at this location outside of the project impact, which support efforts included in their Master Plan.

Supplemental Comment: As presented in the February 17, 2023 TIA, the Grafton Road eastbound approach to Corporate Drive is shown to operate with capacity deficiencies during 2035 weekday AM and PM peak hour traffic volume conditions with and without the proposed development. Since PDA has a Master Plan and Implementation Plan for improvements, PDA and local officials should understand the impact that the proposed development would have on intersection operations at this location moving forward.

Original Comment 9:

The proposed development is shown to have an impact at the Grafton Road and Aviation Avenue unsignalized intersection during 2035 Build weekday PM peak hour traffic volumes. The addition of 86 site trips through the intersection (82 passenger vehicles and 6 trucks) results in increases in delay on Aviation Avenue eastbound approach by 12.9 seconds and drop service levels from LOS E to LOS F.

Similar to previous comments, PDA has a Master Plan and Implementation Plan for improvements that includes the construction of a left-turn lane on the Grafton Road northbound approach (interim improvement) and separate left- and right-turn lanes on the Aviation Avenue approach (full improvements). Therefore, PDA and local officials should understand the impact that the proposed development would have on intersection operations moving forward.

Tighe & Bond Response:

The updated analyses presented in the revised TIA indicate no change between No-Build and Build analyses at this intersection. PDA and local officials should understand Existing and Future deficiencies at this location outside of the project impact, which support efforts included in their Master Plan.

Supplemental Comment: With the revised traffic volumes, Aviation Avenue eastbound approach to Grafton Road is shown to operate with capacity deficiencies during 2022 Existing weekday PM peak hour traffic volume conditions that will be exacerbated with future traffic growth. Since PDA has a Master Plan and Implementation Plan for improvements, PDA and local officials should understand the impact that the proposed development would have on intersection operations at this location moving forward.

Original Comment 10:

There are long delays modeled along the Park & Ride lot driveway at the unsignalized intersection with Grafton Road and Pease Golf Course driveway during 2022 Existing weekday AM and PM peak hour traffic volumes. These delays will be exacerbated with the addition of future traffic growth as this approach would operate over capacity during 2035 No-Build and Build conditions.

Improvements to this intersection have been identified within PDA's Master Plan and Implementation Plan. Interim improvements for consideration include widening Grafton Road to provide a center-turn lane (two-way left-turn-lane) and full improvements considered include placing the intersection under traffic signal control with additional turn lanes. Therefore, PDA and local officials should understand the impact that the proposed development would have on intersection operations at this location moving forward.

Tighe & Bond Response:

The updated analyses presented in the revised TIA indicate no change between No-Build and Build analyses at this intersection. PDA and local officials should understand Existing and Future deficiencies at this location outside of the project impact, which support efforts included in their Master Plan.

Supplemental Comment:

Based on the updated traffic volumes, the Park & Ride lot driveway westbound approach to this unsignalized intersection is shown to operate overcapacity during the 2022 Existing weekday AM and PM peak hour that will be exacerbated with the addition of future traffic growth. In addition, the Pease Golf Course driveway westbound approach operates with long delays during the 2022 Existing weekday PM peak hour and overcapacity during the 2035 No-Build weekday PM peak hour. Since PDA has a Master Plan and Implementation Plan for improvements, PDA and local officials should understand the impact that the proposed development would have on intersection operations at this location moving forward.

Original Comment 11:

The proposed development is shown to have an impact at the Grafton Road and I-95 southbound off-ramp unsignalized intersection during 2035 Build weekday AM peak hour traffic volumes. The I-95 southbound off-ramp is shown to operate with long delays (LOS F) with 2035 No-Build weekday AM peak hour traffic volumes that would then operate over capacity with the addition of 82 site trips through the intersection (76 passenger vehicles and 6 trucks). Therefore, local and NHDOT officials should understand the impact that the proposed development would have on intersection operations at this location moving forward.

Tighe & Bond Response:

The updated analyses presented in the revised TIA indicate no change between No-Build and Build analyses at this intersection. Local and NHDOT officials should understand Existing and Future deficiencies at this location outside of the project impact.

Supplemental Comment: As presented in the February 17, 2023 TIA, the I-95 southbound off-ramp at this unsignalized intersection is shown to operate overcapacity during 2022 Existing

Page 7

weekday PM peak hour traffic volume conditions that will be exacerbated with future traffic growth. Consistent with VHB's original comment, local and NHDOT officials should understand the impact that the proposed development would have on intersection operations at this location moving forward.

New Comment 12:

With the revised traffic volumes, the operations at the Greenland Road and Grafton Road signalized intersection are shown to be overcapacity during the 2022 Existing weekday AM and PM peak hour traffic volume conditions that will be exacerbated with future traffic growth. Therefore, local and NHDOT officials should understand the impact that the proposed development would have on intersection operations at this location moving forward.

Findings

The intersection operational results have identified intersections with capacity deficiencies without the proposed development. With the addition of future traffic growth, these operations will be exacerbated. Therefore, PDA, City of Portsmouth, and NHDOT officials should be aware of these existing and projected deficiencies and include the site trips from the proposed development with any measures considered for improvements. A concern has been identified within this and the previous traffic peer review letters with respect to the sightlines at the proposed Rochester Avenue site driveway to the north due to the horizontal curvature of where Rochester Avenue and Stratham Street join. Therefore, there should be a commitment to not allow trucks through this junction.

Please do not hesitate to contact us if you have any questions or if we can be of any further assistance.

Sincerely,

VHB

Jason R. Plourde, PE, PTP

Transportation Systems Team Leader

Mosestith Dachen

Jawn R. Plom Le

Revised by: Meredith Graham, PE, PTOE

25-0595-015 February 17, 2023

Michael R. Mates, PE Pease Development Authority 55 International Drive Portsmouth, NH 03801

Re: Response to Traffic Engineering Peer Review Comments
Advanced Manufacturing Facility
100 New Hampshire Avenue, Portsmouth, NH

Dear Mr. Mates:

Tighe & Bond has prepared this letter in response to peer review comments on the Traffic Impact Assessment (TIA) for the subject project provided by VHB in a letter dated February 1, 2023. For ease of review, VHB comments are repeated herein in *italics*, followed by our response in **bold** text.

Peer Review Comments

- Comment 1: To determine whether a pandemic adjustment should be made to 2022 traffic counts, NHDOT guidance is to review historical traffic counts from 2019 prepandemic conditions and compare with current traffic volumes. The traffic volume comparison provided in Section 2.3 Traffic Volumes and as reflected in Table 1 of the traffic study compares NHDOT traffic volumes from 2021 with the February 2022 traffic counts seasonally adjusted. The applicant should provide the following:
 - > The Thursday, February 22, 2022, ATR counts presented in the Appendix of the traffic study (peak hours highlighted on those sheets by Tighe & Bond, Inc.) show 14,555 vehicles per day were observed along Pease Boulevard (7,333 vehicles per day eastbound and 7,222 vehicles per day westbound). Table 1 of the traffic study, however, shows that the annual average daily traffic calculated from these counts was reduced to 12,894 vehicles per day. Therefore, the applicant should either clarify the rationalization for this reduction or reevaluate the 2022 traffic volumes used in determining the pandemic adjustment factor.
 - > NHDOT guidance is to compare current traffic counts with 2019 prepandemic traffic volumes. Since the traffic study shows a comparison of 2022 and 2021 traffic volumes, the applicant should revisit the pandemic adjustment evaluation by comparing the 2019 and 2022 AADTs (updated as required).
 - Should the February traffic counts need to be modified to represent pre-pandemic peak month traffic volumes, then the applicant would need to update the traffic volumes and intersection analyses used throughout the traffic study.

Response:

The February 2022 average daily traffic volume on Pease Boulevard was updated to reflect the corrected volumes, which were then seasonally adjusted in accordance with NHDOT quidance.

NHDOT preference on comparing current traffic volumes with 2019 pre-pandemic traffic volumes was confirmed, with a resultant 53% increase in weekday morning peak period volumes and a 45% adjustment to weekday afternoon peak period volumes. Volume summaries and resultant analysis were updated, and a revised Traffic Impact Assessment (TIA) is included with these responses.

We note that while the application of these adjustment factors aligns with NHDOT guidance on review and adjustment of post-pandemic traffic volumes, it should be understood that application of adjustment factors based on ATR data from Pease Boulevard across all turning movements within the study area may artificially inflate turning movements and overstate calculated operational delay and resultant capacity analysis results.

Comment 2: Due to the location of the proposed site driveways with respect to the adjacent roadway system, there may be concerns related to trucks maneuvering at the "sharp curvature" (page-4-1 of the traffic study) of the Rochester Avenue and Stratham Street junction. Based on a preliminary review of the December 19, 2022 Truck Turning Exhibits submitted for the proposed development, trucks do not appear to be expected to travel through this connection. Therefore, the applicant should commit to not allowing trucks through this junction or provide truck turning plans to demonstrate that trucks would safely travel through this connection.

Response:

Trucks are not expected to travel through this connection, with all truck traffic distributed to the south as shown in Figure 6 of the TIA.

Comment 3: The Pease Boulevard and International Drive signalized intersection is shown to operate with capacity deficiencies (volume-to-capacity [v/c] ratios >1.00) during 2035 No-Build weekday PM peak hour traffic volume conditions (i.e., without the proposed development). Therefore, PDA and local officials should understand the impact that the proposed development would have on intersection operations at this location moving forward.

Response:

The updated analyses presented in the revised TIA indicate no change between No-Build and Build analyses at this intersection.

Comment 4: The Pease Boulevard and US Route 4 southbound ramps signalized intersection is shown to operate with capacity deficiencies during 2035 weekday AM peak hour traffic volume conditions with and without the proposed development. Similarly, the Pease Boulevard and US Route 4 northbound ramps signalized intersection is shown to operate with capacity deficiencies during 2035 No-Build weekday AM peak hour traffic volume conditions. Therefore, local and NHDOT officials should understand the impact that the proposed development would have on intersection operations moving forward.

Response: The updated analyses presented in the revised TIA indicate no change between No-Build and Build analyses at this intersection.

Comment 5: The Greenland Road and I-95 southbound ramps signalized intersection is shown to operate with capacity deficiencies during 2035 No-Build weekday AM and PM peak hour traffic volume conditions. In addition, the Greenland Road and I-95 northbound ramps signalized intersection is shown to operate with capacity deficiencies during 2035 No-Build weekday AM peak hour traffic volume conditions. Therefore, local and NHDOT officials should understand the impact that the proposed development would have on intersection operations at this location moving forward.

Response: The updated analyses presented in the revised TIA indicate no change between No-Build and Build analyses at this intersection.

Comment 6: The proposed development is shown to have an impact at the Pease Boulevard, Arboretum Drive, and New Hampshire Avenue all-way stop control intersection during 2025 and 2035 Build weekday PM peak hour traffic volumes. The addition of 67 site trips through this intersection results in increases in delay on New Hampshire Avenue northbound approach in the range of 14.4 to 28.0 seconds. In addition, the site trips would result in the New Hampshire Avenue northbound approach operating over capacity during 2035 Build weekday PM peak hour traffic volumes. This intersection is currently being designed for the addition of a right-turn lane on the New Hampshire Avenue northbound approach. This project is on the State's Ten Year Plan for 2025 with the improvements envisioned to be in place by 2035. Therefore, the applicant should coordinate with PDA officials on these improvements and update the intersection analyses accordingly to determine the development's traffic impacts with this improvement in place.

Response: Planned improvements at the intersection of Pease Boulevard at New Hampshire Avenue/ Arboretum Drive as part of NHDOT Project No. 42879 include the construction of a dedicated right-turn lane on the northbound approach. Because the improvements are expected to begin construction in 2025 and be in place by 2035, the proposed northbound right-turn lane was included in the 2035 No Build and 2035

Build Conditions analyses.

Comment 7: The proposed development is shown to have an impact at the New Hampshire Avenue, Corporate Drive, International Drive, and Durham Street unsignalized intersection during 2025 and 2035 Build weekday PM peak hour traffic volumes. The International Drive westbound approach is modeled to operate with long delays (LOS F) during 2022 Existing weekday PM peak hour traffic volumes and, with the addition of 86 site trips through the intersection (82 passenger

vehicles and 6 trucks), this approach would operate over capacity during 2025 Build weekday PM peak hour conditions.

PDA has a Master Plan and Implementation Plan for improvements that includes the construction of a roundabout or the installation of a traffic signal with additional turn lanes at this intersection. Therefore, PDA and local officials should understand the impact that the proposed development would have on intersection operations moving forward.

Response:

The updated analyses presented in the revised TIA indicate no change between No-Build and Build analyses at this intersection. PDA and local officials should understand Existing and Future deficiencies at this location outside of the project impact, which support efforts included in their Master Plan.

Comment 8: The Corporate Drive and Grafton Road unsignalized intersection is shown to operate with capacity deficiencies during 2035 weekday AM and PM peak hour traffic volume conditions with and without the proposed development. Similar to Comment 7, PDA has a Master Plan and Implementation Plan for improvements that includes installing a traffic signal at this intersection.

> Therefore, PDA and local officials should understand the impact that the proposed development would have on intersection operations at this location moving forward.

Response:

The updated analyses presented in the revised TIA indicate no change between No-Build and Build analyses at this intersection. PDA and local officials should understand Existing and Future deficiencies at this location outside of the project impact, which support efforts included in their Master Plan.

Comment 9: The proposed development is shown to have an impact at the Grafton Road and Aviation Avenue unsignalized intersection during 2035 Build weekday PM peak hour traffic volumes. The addition of 86 site trips through the intersection (82 passenger vehicles and 6 trucks) results in increases in delay on Aviation Avenue eastbound approach by 12.9 seconds and drop service levels from LOS E to LOS F.

> Similar to previous comments, PDA has a Master Plan and Implementation Plan for improvements that includes the construction of a left-turn lane on the Grafton Road northbound approach (interim improvement) and separate leftand right-turn lanes on the Aviation Avenue approach (full improvements). Therefore, PDA and local officials should understand the impact that the proposed development would have on intersection operations moving forward.

Response:

The updated analyses presented in the revised TIA indicate no change between No-Build and Build analyses at this intersection. PDA and local officials should understand Future deficiencies at this location outside of the project impact, which support efforts included in their Master Plan.

Comment 10: There are long delays modeled along the Park & Ride lot driveway at the unsignalized intersection with Grafton Road and Pease Golf Course driveway during 2022 Existing weekday AM and PM peak hour traffic volumes. These delays will be exacerbated with the addition of future traffic growth as this approach would operate over capacity during 2035 No-Build and Build conditions.

Improvements to this intersection have been identified within PDA's Master Plan and Implementation Plan. Interim improvement for consideration include widening Grafton Road to provide a center-turn lane (two-way left-turn-lane) and full improvements considered include placing the intersection under traffic signal control with additional turn lanes. Therefore, PDA and local officials should understand the impact that the proposed development would have on intersection operations at this location moving forward.

Response:

The updated analyses presented in the revised TIA indicate no change between No-Build and Build analyses at this intersection. PDA and local officials should understand Existing and Future deficiencies at this location outside of the project impact, which support efforts included in their Master Plan.

Comment 11: The proposed development is shown to have an impact at the Grafton Road and I-95 southbound off-ramp unsignalized intersection during 2035 Build weekday AM peak hour traffic volumes. The I-95 southbound off-ramp is shown to operate with long delays (LOS F) with 2035 No-Build weekday AM peak hour traffic volumes that would then operate over capacity with the addition of 82 site trips through the intersection (76 passenger vehicles and 6 trucks). Therefore, local and NHDOT officials should understand the impact that the proposed development would have on intersection operations at this location moving forward.

Response:

The updated analyses presented in the revised TIA indicate no change between No-Build and Build analyses at this intersection. Local and NHDOT officials should understand Existing and Future deficiencies at this location outside of the project impact.

City of Portsmouth Comments

In addition to the peer review comments outlined above, the following comment from the City of Portsmouth was received via email on February 2, 2023:

City Comment: 3rd party traffic review did not address concerns with proposed crosswalks across New Hampshire Ave. Based on projected traffic volumes and width of crossings, additional safety measures could be warranted if speeds are

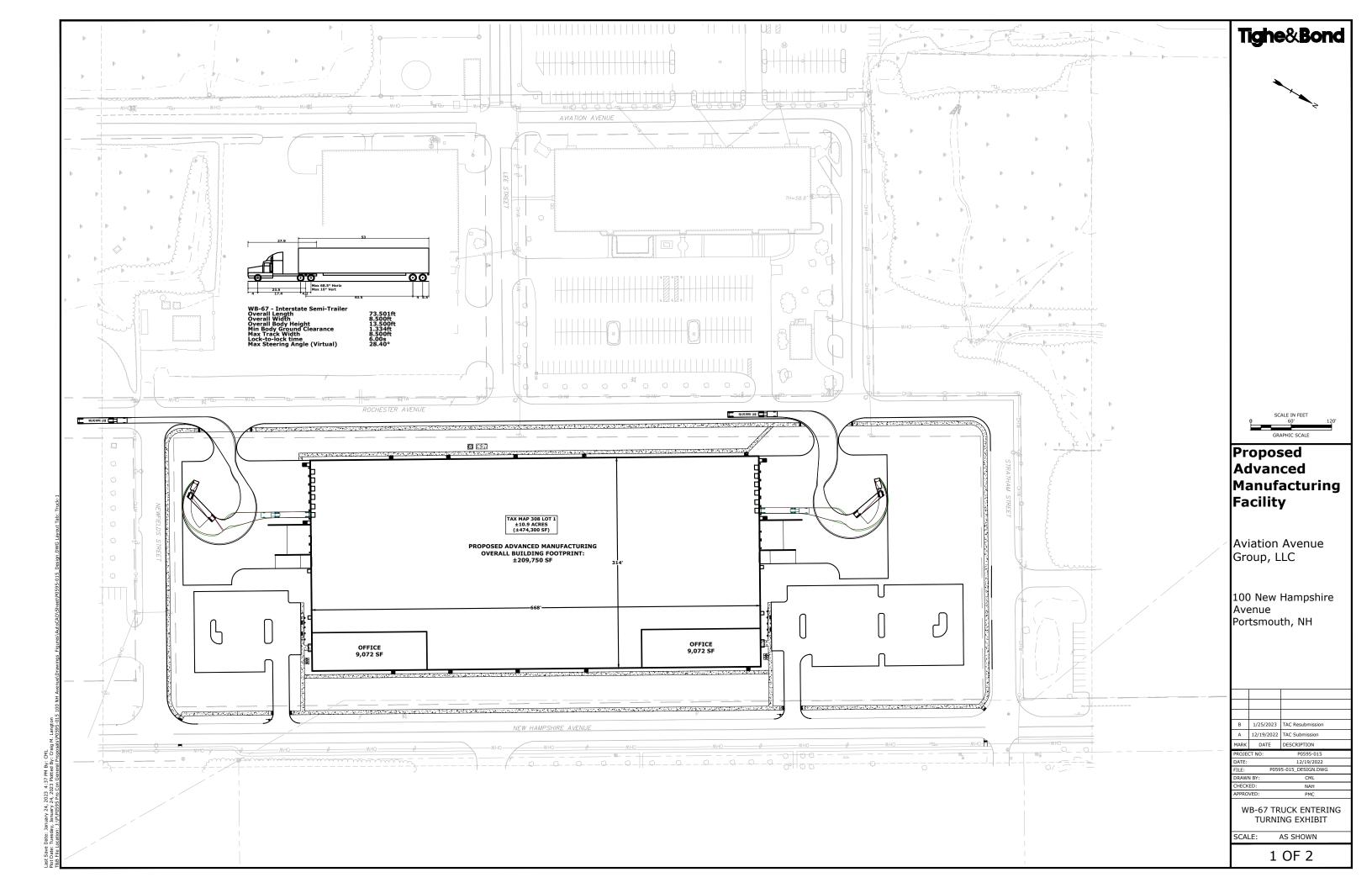
in excess of 35 MPH. Crosswalks are not usually warranted if less than 20 pedestrians per hour during peak pedestrian hour.

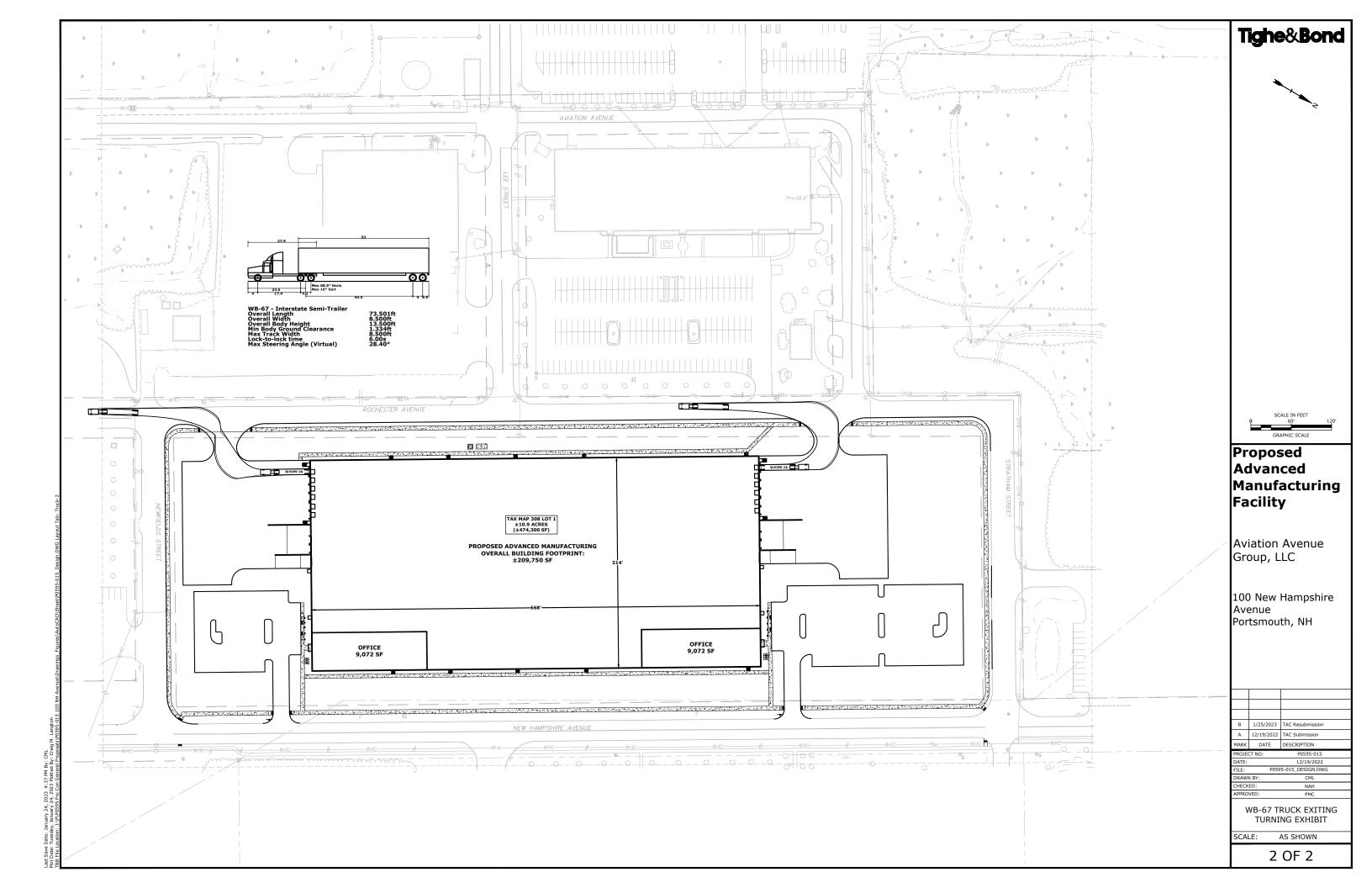
Response:

A review of ATR data collected in February 2022 indicates 85th percentile speeds of up to 40 mph in the northbound direction and 39 mph in the southbound direction and average daily traffic volumes of approximately 5,200 vehicles per day on New Hampshire Avenue, approximately 500 feet south of Pease Boulevard. Based on guidance outlined in the FHWA Safe Transportation for Every Pedestrian (STEP) guide and the collected data, high-visibility crosswalk markings and crossing warning signs can be considered at this location, but are not required due to the low number of anticipated pedestrian traffic generated by the development. Because there is no existing sidewalk on the west side of New Hampshire Avenue and there are no marked crossings currently, at least one marked crossing is recommended to provide convenient access to the existing sidewalk on the east side of the roadway.

Sincerely,

TIGHE & BOND, INC.


Greg E. Lucas, PE, PTOE, RSP1


Senior Project Manager

Enclosures February 2023 Revised Traffic Impact Assessment

\\tighebond.com\\data\Data\Projects\P\P0595 Pro Con General Proposals\P0595-015 100 NH Avenue\Report_Evaluation\Traffic Impact Study\Rev Subission-Peer Review (February 2023)\2023-02-13 Traffic Peer Review Response 1.docx

December 6, 2022

1700 Lafayette Road Portsmouth, NH 03801

Michael J Busby 603-436-7708 x555-5678 michael.busby@eversource.com

Craig Langton Tighe & Bond, Inc. 177 Corporate Drive Portsmouth, NH 03801

Dear Mr. Langton:

I am responding to your request to confirm the availability of electric service for the proposed 80 Rochester Avenue project being constructed for/by Aviation Avenue Group, LLC.

The proposed project consists of a 1-story ±191,600 SF Manufacturing and approximately 18,144 s/f of office space with at grade parking. The proposed development will be constructed along New Hampshire Avenue.

The developer will be responsible for the installation of all underground/overhead facilities and infrastructure required to service the new building. The service will be as shown on attached marked up Utility Plan C-104, dated 12/6/2022. The proposed building service will be fed from new transforms adjacent to the building as determined by Eversource Engineering as depicted on utility plan C-104, dated 12/6/2022. The developer will work with Eversource to obtain all necessary easements and licenses for the proposed underground/overhead facilities listed above.

This letter serves as confirmation that Eversource has sufficient capacity in the area to provide service to this proposed development. The cost of extending service to the aforementioned location and any associated infrastructure improvements necessary to provide service will be borne by the developer unless otherwise agreed upon.

The attached drawing titled "Overall Utility Plan" sheet C-104 dated 12/6/2022, shows proposed transformer locations to service your proposed project.

Eversource approves the location shown; assuming the final installed location meet all clearances, physical protection, and access requirements as outlined in Eversource's "Information & Requirements For Electric Supply" (https://www.eversource.com/content/docs/default-source/pdfs/requirements-for-electric-serviceconnections.pdf?sfvrsn=2).

If you require additional information or I can be of further assistance please do not hesitate to contact me at our Portsmouth Office, 603-436-7708 Ext. 555-5678

Respectfully.

NH Eastern Regional Engineering and Design Manager, Eversource

CC:

(via e-mail)

Thomas Boulter, Eastern Region Operations Manager, Eversource Nickolai Kosko, Field Supervisor, Electric Design, Eversource

December 1st, 2022

Craig Langton, PE
Project Engineer
Tighe & Bond
177 Corporate Drive Portsmouth, NH

Natural Gas to 100 New Hampshire Ave - Portsmouth, NH

Hi Craig,

Unitil/Northern Utilities Natural Gas Division has reviewed the requested site for natural gas service:

Unitil hereby confirms that natural gas is available for the proposed building at 100 New Hampshire Ave - Portsmouth, NH.

If you have any questions, please contact me at 603-534-2379.

Sincerely,

Dave MacLean

Senior Business Development Rep

7/ML

T 603.294.5261 **M** 603.534.2379

F 603.294.5264

Email macleand@unitil.com

Craig M. Langton

From: MacLean, David <macleand@unitil.com>
Sent: Thursday, January 5, 2023 1:54 PM

To: Craig M. Langton; Olson, Jeffery; Beaulieu, David

Cc: Kickham, Charlie; Kenny, Gary

Subject: RE: 100 New Hampshire Ave - Portsmouth, NH (Pease)

[Caution - External Sender]

Hi Craig,

This location has high pressure gas on several sides of the property- I stopped in to gas engineering and they agree you are in a great place for gas. The service location looks good. Once you have an estimated gas load please let me know and I will have engineering run an analysis and size your service.

Dave

Dave MacLean

Senior Business Development Rep

325 West Rd
Portsmouth, NH 03801
T 603.294.5261
M 603.534.2379
F 603.294.5264
Email macleand@unitil.com
www.unitil.com

From: Craig M. Langton < CMLangton@tigheBond.com>

Sent: Thursday, January 5, 2023 12:48 PM

To: Olson, Jeffery <olsonj@unitil.com>; Beaulieu, David <beaulieu@unitil.com>

Cc: MacLean, David <macleand@unitil.com>; Kickham, Charlie <kickham@unitil.com>; Kenny, Gary

<kennyg@unitil.com>

Subject: RE: 100 New Hampshire Ave - Portsmouth, NH (Pease)

Mimecast Attachment Protection has deemed this file to be safe, but always exercise caution when opening files.

Jeff / David,

We are going through the local permitting process for this project now there was a comment that the City brought ups and wanted us to confirm with you, is the status of the existing gas mains around the site and if any upgrades would be required. As you will see on the attached draft utilities plan for the site we are proposing to tap into the main as it crosses Lee street. Is this an acceptable place to tap into the gas main?

Thanks, Craig

Craig Langton, PE

Project Engineer

Tighe&Bond

o. 603.433.8818 | d. 603.294.9231

177 Corporate Drive, Portsmouth, NH, 03801 w: tighebond.com | halvorsondesign.com

From: Olson, Jeffery < olsonj@unitil.com > Sent: Friday, October 14, 2022 5:58 PM

To: Craig M. Langton < CMLangton@tigheBond.com>

Cc: Beaulieu, David < beaulieu@unitil.com >; Neil A. Hansen < NAHansen@tighebond.com >; MacLean, David < macleand@unitil.com >; Kickham, Charlie < kickham@unitil.com >; Kenny, Gary < kennyg@unitil.com >

Subject: RE: 100 New Hampshire Ave - Portsmouth, NH (Pease)

[Caution - External Sender]

Craig,

As requested in your correspondence, we have reviewed the location of our gas mains in the subject project area. Please be advised that any information provided in this response referencing the location of Unitil gas mains and any attributes describing these facilities in the subject project area is to be considered <u>SUE-LEVEL D data – "REFERENCE ONLY"</u> if used to help facilitate graphic representation on your project plans.

Attached to this email is a pdf showing Unitil owned gas mains around 100 New Hampshire Ave. In your project area pdf, the highlighted gas pipe that your survey found turned is most likely an abandoned service line to the building formerly stadning on the 100 New Hampshire Ave property. That being said, a digsafe ticket is still the best method to determine exact locations of active gas pipes before any construction.

It is understood between Unitil Corp. and any other parties who may be provided these map drawings, that this information is <u>"reference only"</u> and that prior to any construction commencing on this project appropriate DigSafe ticket must be executed.

Let me know if you need anything else or have any questions.

Thanks,

Jeff Olson, GISP GIS Analyst

30 Energy Way Exeter, NH 03833 T 603.379.3837

The information transmitted in this e-mail is intended for the person or entity to which it is addressed and may contain confidential and/or privileged material. Electronic files transmitted are for the use and information of the intended recipient only, and are not intended as official documents issued by Unitil Service Corporation. Unitil has prepared these data based on best available information; the data provided are not warranted for accuracy and may be incomplete. Field verification is advised for all data. It is the recipient's responsibility to check these files against any corresponding signed drawings and specifications issued by Unitil Service Corporation. Once transmitted, Unitil Service Corporation, Inc. has no control over the use or application of

these files, and assumes no responsibility or liability for their accuracy or completeness, or for any changes made to them. If you have received this e-mail in error, please reply to the sender so that we may redirect this information.

From: Craig M. Langton [mailto:CMLangton@tigheBond.com]

Sent: Wednesday, October 5, 2022 10:18 AM **To:** MacLean, David <macleand@unitil.com>

Cc: Beaulieu, David

beaulieu@unitil.com>; Neil A. Hansen <NAHansen@tighebond.com>

Subject: 100 New Hampshire Ave - Portsmouth, NH (Pease)

Your attachments have been security checked by Mimecast Attachment Protection. Files where no threat or malware was detected are attached.

David,

We are working on a potential development on the Pease Tradeport at a site on the corner of Rochester Ave, Stratham St, and New Hampshire Ave. We have survey for the site, but as you'll see in the attached gas was only picked up in one location around the site. I was hoping you could provide us with any GIS or other information you have for gas service in the area se we can include in our conceptual design plans?

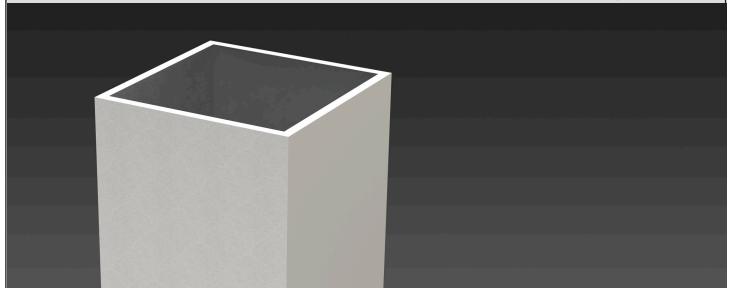
Thanks, Craig

Craig Langton, PE

Project Engineer

Tighe&Bond

o. 603.433.8818 | d. 603.294.9231


177 Corporate Drive, Portsmouth, NH, 03801 w: tighebond.com | halvorsondesign.com

Square Straight Aluminum Pole

Height

10' - 25'

Pole Shaft

Square straight aluminum 6061 alloy, extruded pole shaft. Heat treated to produce a T6 temper. Ground lug welded inside hand hole opposite side of the Pole Extrusion. Pole shaft is welded to base plate on top and bottom of base plate.

Raca Diata

Machined from aluminum. The Base Plate vary in size from 3/4" thick for poles 10 to 20 feet, or 1" thick for poles 20 feet and over.

Anchor Bolts

All anchor bolts are hot dipped galvanized steel and come with two galvanized nuts and washers per bolt. Minimum yield strength 50,000 psi. Anchor bolts are not included for Custom Bolt Circle.

Base Cove

All base covers are fabricated two-piece 6063 aluminum and powder coated to match the pole.

Hand-Hole

A reinforced hand-hole is 12" on center from the base plate and is constructed of 3"x 5" rectangular aluminum tubing which is welded to pole shaft for added strength. The hand-hole covers are provided with internal bridge support and powder coated to match pole finish.

Pole Cap

All poles come with removable polymer pole cap installed. All pole caps are black finish.

Finish

All poles are treated with sand blast media for a near white finish, power blasted with 100 psi prior to powder coat application. Poles are pre-heated then electrostatically applied polyester powder coat with a 3 to 5 mil thickness for maximum adherence.

Marine Grade Finish

All poles are washed through a 5-stage cleaning system with a deionized rinse, a 3 to 5 mils zinc rich durable polyester primer powder coat, followed by a 3 to 5 mils super durable polyester powder coat finish.

Anodized Under Powder

Anodized Under Powder (AUP) poles are dipped in a 3 step process for a clear anodized finish inside and outside of the pole. The final stage is electrostatically applied polyester powder coat with a 3 to 5 mil thickness for maximum adherence.

Vibration Dampener

The Vibration Dampener is factory installed. The Vibration Dampener consists of a rugged galvanized chain coated with heavy duty polyester tubing that is factory secured at the bottom 2-3rds of the pole and field secured by contractor at the base during installation.

4" 5" 6"

Type:

SSAP ORDERING GUIDE

Cat#	Height	Pole Dimension	Gauge	Base Pattern
------	--------	----------------	-------	--------------

Square Straight Aluminum Pole (SSAP) 10' (10) 12' (12) 14' (14) 16' (16) 18' (18) 20' (20) 22' (22) 24' (24) 25' (25)

4" Square (4S) 5" Square (5S) 6" Square (6S) .120
Wall Thickness
(120)
.188
Wall Thickness

.25 Wall Thickness (250) (10'-20') 8 3/16"- 10 3/16" Bolt Circle **(9BC)** (22'-Over)

Bolt Circle
(12BC)

Custom
Bolt Circle
(CBC)

* Consult Factory

11 1/2"- 14"

Mounting

Color

Bolts

3/4" x 30"

(3430)

1" x 36"

(136)

Less Anchor

Bolts (LAB)

Options

Single (SGL)

Double (D-90) (D-180)

Triple **(T-90)**Quad **(QD)**

No Drill **(ND)** *Tenon Option

Tenon

2 3/8" Round **(T2R)**

3" Round (T3R) 3 1/2" Round (T312R)

0 1/2 110ana (101211)

4 1/2" Round **(T412R)** 3 1/2" Square **(T312S)**

4 1/2" Square **(T412S)**

5 1/2" Square (T512S)

Bronze Textured (BRZ)

White Textured (WHT)

Smooth White Gloss (SWT)

Silver (SVR)

Green Textured (GRN)

Hunter Green Textured (HGN)

Black Textured (BLK)

Smooth Black Gloss (SBK)

Graphite Textured (GPH)

Grey Textured (GRY)

Custom (CS)

GFI Kit (**GFI20A)** 20 Amp

Weather Proof Receptacle

GFI Provision Only **(PROV)**

1/2" Coupling (COUP) * Specify Location

Vibration Dampener (VD)

Extra Hand Hole **(XHH)**

* Specify Location

Marine Grade Finish (MGF)

Anodized Under Powder (AUP)

Notes:

.120 Wall Thickness only available in Poles 16' or shorter.
 Pole Dimension of 6" not available with .120 Wall Thickness.

						Max	k. all	owa	ble	EPA	- SS	AP p	oles	(per	· AA	SHT) LF	RFDL	TS-	1)								_	_	
Catalog Number	Shaft Length, ft	Wall thick- ness, in.	Shaft dia., in.	Base Plate	Bolt Circle	Bolts	80 mph	Max. wt. (lb)	90 mph	Max. wt. (lb)		Max. wt. (l b)	110 mph	Max. wt. (lb)	115 mph	Max. wt., lb	120 mph	Max. wt., lb	130 mph	Max. wt., lb		Max. wt., lb	150 mph	Max. wt., lb	160 mph	Max. wt., lb	170 mph	Max. wt., lb	180 mph	Max. wt., lb
SSAP-10-4S-120-9BC	10	0.120	4	9"sq X 3/4"	9-3/16"	3/4"x30"	9.0	225	9.0	225	9.0	225	8.3	208	7.3	208	6.4	208	5.1	208	4.0	208	3.2	208	2.5	208	1.9	208	1.4	208
SSAP-12-4S-120-9BC	12	0.120	4	9"sq X 3/4"	9-3/16"	3/4"x30"	9.0	225	9.0	225	6.9	173	5.1	128	4.5	128	4.0	128	3.2	128	2.4	128	1.7	128	1.1	128	0.6	128		128
SSAP-14-4S-120-9BC	14	0.120	4	9"sq X 3/4"	9-3/16"	3/4"x30"	9.0	225	6.0	150	4.6	115	3.3	83	2.8	83	2.5	83	1.5	83	0.8	83	0.2	83		83		83		83
SSAP-15-4S-120-9BC	15	0.120	4	9"sq X 3/4"	9-3/16"	3/4"x30"	7.1	178	4.9	123	3.8	95	2.7	68	2.1	68	1.8	68	1.0	68	0.2	68		68		68	-	68		68
SSAP-16-4S-120-9BC	16	0.120	_		,	3/4"x30"	5.2	130	3.9	98	2.9	73	1.9	60	1.3	60	0.9	60	0.2	60	-	60		60		60		60		60
SSAP-18-4S-120-9BC	18	0.120	4	9"sq X 3/4"	9-3/16"	3/4"x30"	3.7	93	2.6	65	1.6	60	0.7	60	0.3	60		60	-	60		60		60		60		60		60
	P-10-4S-188-9BC 10 0.188 4 9"sq X 3/4" 9-3/16" 3/4"x30" 9.0 225 9.0 225 9.0 225 9.0 225 9.0 225 9.0 225 9.0 225 9.0 225 5.4 225 5.4 225 4.4 225 3.8 225																													
SSAP-10-4S-188-9BC	- 12	-	_		_		_	_	_		_		_	_	_	_		_	_	_	_				_			_	_	_
SSAP-12-4S-188-9BC	2-12-4S-188-9BC 12 0.188 4 9*sq X 3/4* 9.316* 3/4*x30* 9.0 225																													
SSAP-14-4S-188-9BC	-12-4S-188-9BC 12 0.188 4 9"sq X 3/4" 9-3/16" 3/4"x30" 9.0 225																													
SSAP-15-4S-188-9BC	15	0.188				3/4"x30"	9.0	225	9.0	225	8.2	205	5.7	143	5.0	143	4.5	143	3.3	143	2.5		1.7	143	1.0	143	0.4	143		143
SSAP-16-4S-188-9BC	16	0.188	_			3/4"x30"	9.0	225	8.8	220	6.0	150	4.6	115	4.0	115	3.3	115	2.5	115	1.5		0.9	115	0.3	115		115		115
SSAP-18-4S-188-9BC	18	0.188	_	9"sq X 3/4"		3/4"x30"	8.7	218	5.6	140	4.2	105	3.0	75	2.3	75	2.0	75	1.1	75	0.2	75	-	75		75		75		75
SSAP-20-4S-188-9BC	20	0.188	4			3/4"x30"	5.3	133	4.0	100	2.6	65	1.5	60	1.0	60	0.7	60		60	-	60	-	60		60		60		60
SSAP-22-4S-188-12BC SSAP-24-4S-188-12BC	22	0.188	4		12-3/4" 12-3/4"	1"x36" 1"x36"	3.6 2.5	90 63	2.3	60	1.2	60	0.4	60	-	60		60 60		60 60	-	60	-	60		60 60		60		60
SSAP-24-4S-188-12BC SSAP-25-4S-188-12BC	25	0.188	4		12-3/4"	1"x36"	1.9	60	0.6	60	0.1	60	-	60	-	60		60		60		60	-	60		60		60		60
33AF-23-43-100-12BC	20	0.100	-4	12 34 X I	12-3/4	1 200	1.5	00	0.0	00		00		00		00		00		00		00		00		00		00		00
SSAP-15-4S-250-9BC	15	0.250	4	9"sq X 3/4"	9-3/16"	3/4"x30"	9.0	225	9.0	225	9.0	225	9.0	225	8.3	225	7.0	225	5.4	225	4.0	225	3.0	225	1.9	225	1.1	225	0.6	225
SSAP-16-4S-250-9BC	16	0.250	4	9"sq X 3/4"	9-3/16"	3/4"x30"	9.0	225	9.0	225	9.0	225	7.2	180	6.1	180	5.4	180	4.2	180	3.0	180	2.0	180	1.0	180	0.3	180	-	180
SSAP-18-4S-250-9BC	18	0.250	4	9"sq X 3/4"	9-3/16"	3/4"x30"	9.0	225	9.0	225	6.6	165	4.9	123	4.1	123	3.5	123	2.4	123	1.3	123	0.4	123		123		123		123
SSAP-20-4S-250-9BC	20	0.250	4	9"sq X 3/4"	9-3/16"	3/4"x30"	9.0	225	6.3	158	4.6	115	3.1	78	2.7	78	2.0	78	0.9	78		78	-	78		78		78		78
SSAP-22-4S-250-12BC	22	0.250	4	12"sq X 1"	12-3/4"	1"x36"	5.6	140	4.0	100	2.7	68	1.7	60	1.2	60	0.7	60		60		60	-	60		60		60	-	60
SSAP-24-4S-250-12BC	24	0.250	4	12"sq X 1"	12-3/4"	1"x36"	4.0	100	2.6	65	1.4	60	0.5	60		60		60		60		60	-	60		60		60	-	60
SSAP-25-4S-250-12BC	25	0.250	4	12"sq X 1"	12-3/4"	1"x36"	3.3	83	2.1	60	0.8	60	-	60	-	60		60		60	-	60	-	60		60		60		60
								*Pole	Ass	emblie	es Wi	th EPA	×9.0	Requi	re Spe	ecific I	Revie	w												

4"

*Anchor Bolts are NOT included with Custom Bolt Circle.
*Do NOT pour concrete referencing this drawing. Consult Factory.

*All wind loading calculations are based on sustained wind force plus an additional 1.3 gust.

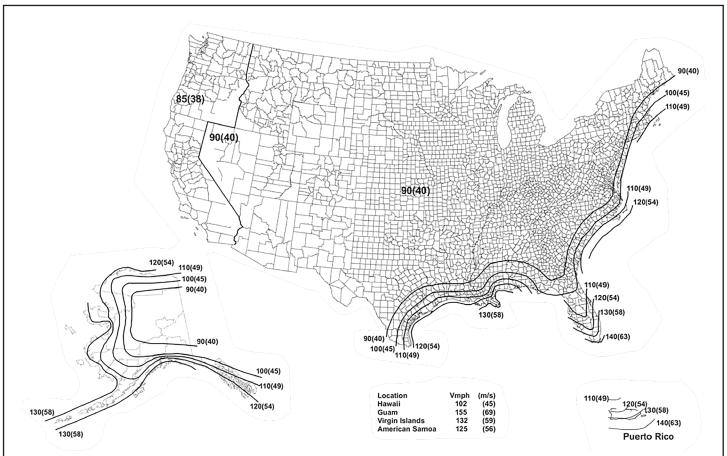
MOUNTING CONFIGURATION

Single (**SGL)** Double **(D-90)**

Double **(D-180)**

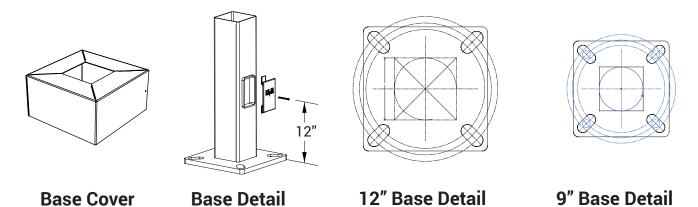
Triple **(T-90)**

NLS LIGHTING


701 Kingshill Place, Carson, CA 90746 Call Us Today (310) 341-2037

						Ma	x. al	lowa	ble	EPA	- SS	AP p	oles	(pe	r AA	SHT	O LF	RFDL	TS-	1)										
Catalog Number	Shaft Length, ft	Wall thick- ness, in.	Shaft dia., in.	Base Plate	Bolt Circle	Bolts	80 mph	Max. wt. (lb)	90 mph	Max. wt. (lb)		Max. wt. (l b)			115 mph	Max. wt., lb	120 mph	Max. wt., lb		Max. wt., lb		Max. wt., lb	150 mph	Max. wt., lb	160 mph	Max. wt., lb	170 mph	Max. wt., lb	180 mph	Max wt., ll
SSAP-10-5S-120-9BC	10	0.120	5	9"sq X 3/4"	9-3/16"	3/4"x30"	9.0	225	9.0	225	9.0	225	9.0	225	9.0	225	9.0	225	9.0	225	8.2	225	6.4	225	5.3	225	4.2	225	3.5	225
SSAP-12-5S-120-9BC	12	0.120	5	9"sq X 3/4"	9-3/16"	3/4"x30"	9.0	225	9.0	225	9.0	225	9.0	225	9.0	225	8.6	225	6.4	225	4.9	225	3.8	225	3.0	225	2.0	225	1.3	225
SSAP-14-5S-120-9BC	14	0.120	5	9"sq X 3/4"	9-3/16"	3/4"x30"	9.0	225	9.0	225	9.0	225	7.4	185	6.2	185	5.4	185	3.9	185	2.9	185	1.8	185	1.1	185	0.4	185	-	185
SSAP-15-5S-120-9BC	15	0.120	5	9"sq X 3/4"	9-3/16"	3/4"x30"	9.0	225	9.0	225	8.4	210	5.9	148	4.9	148	4.2	148	2.9	148	2.0	148	0.9	148	0.3	148		148		148
SSAP-16-5S-120-9BC	16	0.120	5	9"sq X 3/4"	9-3/16"	3/4"x30"	9.0	225	9.0	225	6.2	155	4.5	113	3.8	113	3.0	113	2.0	113	0.9	113	0.2	113		113	-	113	-	113
SSAP-18-5S-120-9BC	18	0.120	5	9"sq X 3/4"	9-3/16"	3/4"x30"	9.0	225	6.0	150	4.0	100	2.5	63	1.9	63	1.3	63	0.4	63	-	63		63		63		63	-	63
	AP-10-5S-188-9BC 10 0.188 5 9*sq X 3/4* 9-3/16* 3/4*x30* 9.0 225 9.0 225 9.0 225 9.0 225 9.0 225 9.0 225 9.0 225 9.0 225 7.7 225 6.1 225 4.9 225 4.1 225																													
SSAP-10-5S-188-9BC	10	0.188	5	9"sq X 3/4"	9-3/16"	3/4"x30"	9.0	225	9.0	225	9.0	225	9.0	225	9.0	225	9.0	225	9.0	225	9.0	225	7.7	225	6.1	225	4.9	225	4.1	225
SSAP-12-5S-188-9BC	12	0.188	5	9"sq X 3/4"	9-3/16"	3/4"x30"	9.0	225	9.0	225	9.0	225	9.0	225	9.0	225	9.0	225	8.0	225	6.1	225	4.7	225	3.7	225	2.6	225	1.9	225
SSAP-14-5S-188-9BC	14	0.188	5	9"sq X 3/4"	9-3/16"	3/4"x30"	9.0	225	9.0	225	9.0	225	9.0	225	8.5	225	7.3	225	5.2	225	3.7	225	2.5	225	1.5	225	0.8	225	0.1	225
SSAP-15-5S-188-9BC	15	0.188	5	9"sq X 3/4"	9-3/16"	3/4"x30"	9.0	225	9.0	225	9.0	225	8.2	205	7.1	205	5.8	205	4.2	205	2.7	205	1.7	205	0.6	205		205		205
SSAP-16-5S-188-9BC	16	0.188	5	9"sq X 3/4"	9-3/16"	3/4"x30"	9.0	225	9.0	225	9.0	225	6.3	158	5.2	158	4.3	158	2.8	158	1.7	158	0.7	158		158		158		158
SSAP-18-5S-188-9BC	18	0.188	5	9"sq X 3/4"	9-3/16"	3/4"x30"	9.0	225	9.0	225	6.5	163	4.2	105	3.1	105	2.3	105	0.9	105	-	105		105		105		105		105
SSAP-20-5S-188-9BC	20	0.188	5	9"sq X 3/4"	9-3/16"	3/4"x30"	9.0	225	7.0	175	4.3	108	2.1	60	1.4	60	0.5	60	-	60	-	60		60		60		60		60
SSAP-22-5S-188-12BC	22	0.188	5	9"sq X 3/4"	9-3/16"	3/4"x30"	7.6	190	4.4	110	2.1	60	0.2	60		60	-	60		60		60		60		60		60		60
SSAP-24-5S-188-12BC	24	0.188	5	12"sq X 1"	12-3/4"	1"x36"	6.9	173	4.1	103	2.5	63	0.9	60	0.2	60		60	-	60	-	60		60		60		60		60
SSAP-25-5S-188-12BC	25	0.188	5	12"sq X 1"	12-3/4"	1"x36"	5.4	135	3.3	83	1.6	60	0.3	60		60		60		60	-	60		60		60		60		60
SSAP-10-5S-250-9BC	10	0.250	5	9"sq X 3/4"	9-3/16"	3/4"x30"	9.0	225	9.0	225	9.0	225	9.0	225	9.0	225	9.0	225	9.0	225	9.0	225	7.7	193	6.1	153	4.9	123	4.1	103
SSAP-12-5S-250-9BC	12	0.250	5	9"sq X 3/4"	9-3/16"	3/4"x30"	9.0	225	9.0	225	9.0	225	9.0	225	9.0	225	9.0	225	8.0	200	6.1	153	4.7	118	3.7	93	2.6	65	1.9	60
SSAP-14-5S-250-9BC	14	0.250	5	9"sq X 3/4"	9-3/16"	3/4"x30"	9.0	225	9.0	225	9.0	225	9.0	225	8.5	213	7.3	183	5.2	130	3.7	93	2.5	63	1.5	60	0.8	60	0.1	60
SSAP-15-5S-250-9BC	15	0.250	5	9"sq X 3/4"	9-3/16"	3/4"x30"	9.0	225	9.0	225	9.0	225	8.2	205	7.1	178	5.8	145	4.2	105	2.7	68	1.7	60	0.6	60		60		60
SSAP-16-5S-250-9BC	16	0.250	5	9"sq X 3/4"	9-3/16"	3/4"x30"	9.0	225	9.0	225	9.0	225	6.3	158	5.2	130	4.3	108	2.8	70	1.7	60	0.7	60		60	-	60		60
SSAP-18-5S-250-9BC	18	0.250	5	9"sq X 3/4"	9-3/16"	3/4"x30"	9.0	225	9.0	225	6.5	163	4.2	105	3.1	78	2.3	60	0.9	60	-	60		60	-	60		60		60
SSAP-20-5S-250-9BC	20	0.250	5	9"sq X 3/4"	9-3/16"	3/4"x30"	9.0	225	7.0	175	4.3	108	2.1	60	1.4	60	0.5	60	-	60	-	60		60	-	60	-	60		60
SSAP-22-5S-250-12BC	22	0.250	5	9"sq X 3/4"	9-3/16"	3/4"x30"	7.6	190	4.4	110	2.1	60	0.2	60		60		60		60		60		60		60		60		60
SSAP-24-5S-250-12BC	24	0.250	5	12"sq X 1"	12-3/4"	1"x36"	9.0	225	7.9	198	5.0	125	3.2	80	2.4	60	1.7	60	0.4	60		60		60		60		60		60
SSAP-25-5S-250-12BC	25	0.250	5	12"sq X 1"	12-3/4"	1"x36"	9.0	225	6.4	160	4.1	103	2.2	60	1.6	60	0.9	60		60	-	60		60		60		60		60

5"


						Ма	x. al	lowa	ble	EPA	- SS/	AP p	oles	(per	AAS	SHTO) LR	FDL	TS-1)										
Catalog Number	Shaft Length, ft	Wall thick- ness, in.	Shaft dia., in.	Base Plate	Bolt Circle	Bolts	80 mph	Max. wt. (lb)	90 mph	Max. wt. (lb)	100 mph	Max. wt. (I b)	110 mph	Max. wt. (lb)	115 mph	Max. wt., lb	120 mph	Max. wt., lb	130 mph	Max. wt., lb	140 mph	Max. wt., lb	150 mph	Max. wt., lb	160 mph	Max. wt., lb	170 mph	Max. wt., lb	180 mph	Max. wt., lb
SSAP-10-6S-120-9BC	10	0.120	6	9"sq X 3/4"	9-3/16"	3/4"x30"	9.0	225	9.0	225	9.0	225	9.0	225	9.0	225	9.0	225	9.0	225	8.4	210	6.6	165	5.2	130	4.2	105	3.1	78
SSAP-12-6S-120-9BC	12	0.120	6	9"sq X 3/4"	9-3/16"	3/4"x30"	9.0	225	9.0	225	9.0	225	9.0	225	9.0	225	9.0	225	7.0	175	5.2	130	3.8	95	2.5	63	1.7	60	0.7	60
SSAP-14-6S-120-9BC	14	0.120	6	9"sq X 3/4"	9-3/16"	3/4"x30"	9.0	225	9.0	225	9.0	225	8.4	210	7.2	180	6.0	150	4.0	100	2.5	63	1.3	60	0.3	60		60		60
SSAP-16-6S-120-9BC	16	0.120	6	9"sq X 3/4"	9-3/16"	3/4"x30"	9.0	225	9.0	225	7.6	190	4.9	123	3.9	98	3.1	78	1.7	60	0.3	60		60		60		60	-	60
SSAP-18-6S-120-9BC	18	0.120	6	9"sq X 3/4"	9-3/16"	3/4"x30"	9.0	225	8.0	200	4.8	120	2.8	70	1.7	60	0.9	60		60		60		60		60		60	-	60
SSAP-20-6S-120-12BC	20	0.120	6	12"sq X 1"	12-3/4"	1"x36"	9.0	225	8.8	220	5.3	133	3.4	85	2.5	60	1.7	60	0.3	60		60		60		60		60		60
SSAP-22-6S-120-12BC	22	0.120	6	12"sq X 1"	12-3/4"	1"x36"	8.8	220	5.0	125	3.0	60	1.1	60	0.5	60		60	-	60		60		60		60		60		60
SSAP-24-6S-120-12BC	24	0.120	6	12"sq X 1"	12-3/4"	1"x36"	5.2	60	3.0	60	1.2	60		60		60		60		60		60		60		60		60		60
SSAP-25-6S-120-12BC	25	0.120	6	12"sq X 1"	12-3/4"	1"x36"	4.4	60	2.1	60	0.2	60		60		60		60		60		60		60		60		60		60
SSAP-10-6S-188-9BC	_	0.188	_	9"sq X 3/4"				225	9.0	225	9.0	225	9.0	225	9.0	225	9.0	225	9.0	225	8.4	210	6.6	165	5.2	130	4.2	105	3.1	78
SSAP-12-6S-188-9BC	12	0.188	_	9"sq X 3/4"			9.0	225	9.0	225	9.0	225	9.0	225	9.0	225	9.0	225	7.0	175	5.2	130	3.8	95	2.5	63	1.7	60	0.7	60
SSAP-14-6S-188-9BC	14	0.188	6	9"sq X 3/4"		3/4"x30"	9.0	225	9.0	225	9.0	225	8.4	210	7.2	180	6.0	150	4.0	100	2.5	63	1.3	60	0.3	60		60		60
SSAP-16-6S-120-9BC	16	0.188	_	9"sq X 3/4"		3/4"x30"		225	9.0	225	7.8	195	5.1	128	4.1	103	3.2	80	1.5	60	0.4	60		60		60		60		60
SSAP-18-6S-188-9BC	18	0.188	6	9"sq X 3/4"		3/4"x30"	9.0	225	8.2	205	5.0	125	2.6	65	1.8	60	1.0	60		60		60	-	60		60		60		60
SSAP-20-6S-188-12BC	20	0.188	6	12"sq X 1"	12-3/4"	1"x36"	9.0	225	9.0	225	9.0	225	8.7	218	7.1	178	5.5	138	3.3	83	1.5	60		60		60		60	-	60
SSAP-22-6S-188-12BC	22	0.188	6	12"sq X 1"	12-3/4"	1"x36"	9.0	225	9.0	225	8.4	210	5.1	128	4.0	100	2.7	68	0.8	60		60		60		60	-	60		60
SSAP-24-6S-188-12BC SSAP-25-6S-188-12BC	24 25	0.188	6	12"sq X 1"	12-3/4" 12-3/4"	1"x36" 1"x36"	9.0	225	9.0	225	5.8 4.6	145	2.9 1.8	73 60	1.6 0.5	60	0.7	60		60		60		60		60		60		60
55AP-20-05-188-12BC	25	0.188	0	12 SQ X 1	12-3/4	1 X30	9.0	225	8.3	208	4.0	113	1.8	60	0.5	60		00		60		60		00		00		60		60
SSAP-10-6S-250-9BC	10	0.250	6	9"sq X 3/4"	9-3/16"	3/4"x30"	9.0	225	9.0	225	9.0	225	9.0	225	9.0	225	9.0	225	9.0	225	8.4	210	6.6	165	5.2	130	4.2	105	3.1	78
SSAP-12-6S-250-9BC	12	0.250	6	9"sq X 3/4"	9-3/16"	3/4"x30"	9.0	225	9.0	225	9.0	225	9.0	225	9.0	225	9.0	225	7.0	175	5.2	130	3.8	95	2.5	63	1.7	60	0.7	60
SSAP-14-6S-250-9BC	14	0.250	6	9"sq X 3/4"	9-3/16"	3/4"x30"	9.0	225	9.0	225	9.0	225	8.4	210	7.2	180	6.0	150	4.0	100	2.5	63	1.3	60	0.3	60	-	60	-	60
SSAP-16-6S-250-9BC	16	0.250	6	9"sq X 3/4"	9-3/16"	3/4"x30"	9.0	225	9.0	225	7.8	195	5.1	128	4.1	103	3.2	80	1.5	60	0.4	60		60		60		60	-	60
SSAP-18-6S-250-9BC	18	0.250	6	9"sq X 3/4"	9-3/16"	3/4"x30"	9.0	225	8.2	205	5.0	125	2.6	65	1.8	60	1.0	60	-	60		60	-	60		60		60	-	60
SSAP-20-6S-250-12BC	20	0.250	6	12"sq X 1"	12-3/4"	1"x36"	9.0	225	9.0	225	9.0	225	8.7	218	7.1	178	5.5	138	3.3	83	1.5	60		60		60	-	60	-	60
SSAP-22-6S-250-12BC	22	0.250	6	12"sq X 1"	12-3/4"	1"x36"	9.0	225	9.0	225	8.4	210	5.1	128	4.0	100	2.7	68	0.8	60		60		60		60		60		60
SSAP-24-6S-250-12BC	24	0.250	6	12"sq X 1"	12-3/4"	1"x36"	9.0	225	9.0	225	5.8	145	2.9	73	1.6	60	0.7	60	-	60		60		60		60		60		60
SSAP-25-6S-250-12BC	25	0.250	6	12"sq X 1"	12-3/4"	1"x36"	9.0	225	8.3	208	4.6	115	1.8	60	0.5	60		60	-	60		60		60		60		60		60
								*Pol	e Ass	emblie	es Wit	h EPA	>9 N F	Requir	e Sne	cific F	Reviev	N												

6"

- 1) All wind load calculations are based on sustained wind force plus and additional 1.3 gust
- 2) Wind Map is to be used as a reference only. Please coordinate with local agencies for further review.

 3) Wind Map values are based on a 50 year mean recurrence. These values do not account for severe conditions, such as hurricanes, tornadoes, etc...
- 4) For review of poles with additional configurations (arms, banners, shorter/longer pole lengths, etc...), please contact factory.

LIGHTING

701 Kingshill Place, Carson, CA 90746 Call Us Today (310) 341-2037

AREA, SITE & ROADWAY

FORM AND FUNCTION

- Sleek, low profile housing
 Spec grade performance
 Engineered for optimum thermal management
 Low depreciation rate
 Reduces energy consumption and costs up to 65%
 Exceeds IES foot candle levels utilizing the least number of poles and fixtures per project
- Optical system designed for:
 - Parking Lots

 - Auto Dealerships General Area Lighting

CONSTRUCTION

- Die Cast Aluminum
- · External cooling fins
- · Corrosion resistant external hardware
- One-piece silicone gasket ensures IP-65 seal for electronics compartment
- One-piece Optics Plate™ mounting silicone Micro Optics
- Two-piece silicone Micro Optic system ensures IP-67 level seal around each PCB
- Grade 2 Clear Anodized Optics Plate™ standard

FINISH

- 3-5 mils electrostatic powder coat.
- NLS' standard high-quality finishes prevent corrosion, protects against extreme environmental conditions

Five-year limited warranty for drivers and LEDs.

		LED WATTAGE CHART		
	16L	32L	48L	64L
350 milliamps	18w	-	-	-
530 milliamps	28w	-	-	-
700 milliamps	36w	71w	104w	136w
1050 milliamps	56w	106w	156w	205w

Project Name:	Type:
Project Name.	гурч

Cat#	Light Dist.	# of LEDs	Milliamps	Kelvin	Volts	Mounting	Color	Options
NV-1 (NV-1)	Type 2 (T2)	16 (16L)	350 (35)	2700K, 70 CRI (27K7)[©]	120-277 (UNV)	Architectural Sweep Arm (ASA)	Bronze Textured (BRZ)	Bird Spikes (BS) Marine Grade Finish (MGF) Optic Plate Painted to Match Fixture (OPP)
	Type 3 (T3)	32 (32L)	530 (53)	2700K, 80 CRI (27K8) [©]	347-480 (HV)	Direct Pole 3" Arm Single, D180	White Textured (WHT)	Nema 7-Pin Receptacle (PET) Photocell + Receptacle (PCR) Receptacle + Shorting Cap (PER)
	Type 4 (T4) Type 5	48 (48L)	700 (7)	3000K, 70 CRI (30K7)[©]		(DPS3) ² Direct Pole 7" Arm D180, D90, T90, T120, Quad	Smooth White Gloss (SWT)	FSP-211 with Motion Sensor (FSP-20) \$\frac{0}{2}\)? 20" Heights (FSP-40) \$\frac{0}{2}\)? 40' Heights Quick Mount Bracket (QMB)
	(T5) Nema 2 24° Narrow Beam	64 (64L)	1050 (1)	3000K, 80 CRI (30K8) • •		(DPS7) ² Knuckle Mount (KM)	Silver (SVR)	Retrofit Mount Bracket (RMB) Round Pole Adaptor 3"- 4" Pole (RPA4) Round Pole Adaptor 5"- 6" Pole (RPA5) Rotated Optic Left (ROL)
	(N2) Nema 3 30° Narrow Beam			3500K, 80 CRI (35K8) 4000K, 70 CRI		Wall Mount (WM)	Black Textured (BLK) Smooth Black	Rotated Optic Right (ROR) Automotive House Side Shield (AHS) House Side Shield (HSS)[©]
	(N3)			(40K7) 4000K, 80 CRI		Trunnion Mount (TM)	Gloss (SBK)	Black Hardware (BH) Black Optic Frame (BOF)
	actory for Lead Time. Cons I Pole Specify RPA4 or RP		CRI Requests.	(40K8) [●]		Tennis Arm (TA)	Graphite Textured (GPH)	
Standard match fixt Universal	finish is stainless steel. Ca ure Voltage 120-277	n be painted to		5000K, 70 CRI (50K7)		Mast Arm (MA)	Grey Textured (GRY)	
6 3000K or l	pplicable with Nema 2 and lower must be selected to Association certification.		al	5000K, 80 CRI (50K8) ^{1}			Custom (CS)	

REV. 12.01.22

PRODUCT SPECIFICATIONS

ELECTRICAL

- 120-277 Volts (UNV) or 347-480 Volts (HV)
- 0-10V dimming driver
- Driver power factor at maximum load is ≥ .95, THD maximum load is 15%
- LED Drivers Ambient Temp. Min is -40°C and Ambient Temp. Max ranges from 50°C to 55°C and, in some cases, even higher. Consult the factory for revalidation by providing the fixture catalog string before quoting and specifying it.
- All internal wiring UL certified for 600 VAC and 105°C
- All drivers, controls, and sensors housed in enclosed IP65 compartment
- CRI 70, 80 or 90
- Color temperatures: 2700K, 3000K, 3500K, 4000K, 5000K
- · Surge Protection: 20KVA supplied as standard.

CONSTRUCTION

- Die Cast Aluminum
- External cooling fins
- · Corrosion resistant external hardware
- One-piece silicone gasket ensures IP65 seal for electronics compartment
- One-piece Optics Plate™ mounting silicone Micro Optics
 Two-piece silicone Micro Optic system ensures IP67 level seal around each PCB
- Grade 2 Clear Anodized Optics Plate™ standard

- · BIRD SPIKES (BS) Offers a practical and humane deterrent for larger bird species and provides a cost-effective long-term solution to nuisance bird infestations and protects your property.
- MARINE GRADE FINISH (MGF) A multi-step process creating protective finishing coat against harsh environments. Chemically washed in a 5 stage cleaning system. Pre-baked, Powder coated 3-5 mils of Zinc Rich Super Durable Polyester Primer. Oven Baked. Finished Powder Coating of Super Durable Polyester Powder Coat 3-5 mil thickness.
- OPTIC PLATE PAINTED TO MATCH FIXTURE (OPP) Optic plate is clear anodized as standard. The optic plate can be powder coated to match the finish of the fixture.
- QUICK MOUNT BRACKET (QMB) Optional Cast Aluminum Bracket designed for quick mounting on Direct Square or Round Poles. Cleat mounts directly to pole for easily hung fixtures. Has a 2"x4" Drill Pattern.
- RETROFIT MOUNT BRACKET Optional Cast Aluminum Bracket designed for quick mounting on Direct Square or Round Poles. Cleat mounts directly to pole for easily hung fixtures. Drill Pattern is adjustable from 2"x4" to 2"x6".
- ROUND POLE ADAPTER (RPA) When using round poles, specify Round Pole Adapter (RPA). Specify RPA4 when installing on 3"-4" round poles, and RPA5 when installing on 5"-6" round poles.
- ROTATED OPTICS (ROL) (ROR) Rotated optics are designed for perimeter lighting for auto dealerships.
- SHIELDS (HSS, AHS) House Side Shield (HSS) is designed for full property line cut-off. Automotive House Side Shield (AHS) is a singlesided shield allowing partial cut-off on either side or front of luminaire.
- BLACK HARDWARE (BH) Optional black, zinc coated steel hardware.
- BLACK OPTIC FRAME (BOF) Optional black optic frame. Standard is white.

The information and specifications on this document are subject to change without any notification. All values are design, nominal, typical or prorated values when measured under internal and external laboratory conditions.

701 Kingshill Place, Carson, CA 90746 Call Us Today (310) 341-2037

nlslighting.com

CONTROL OPTIONS

- FSP-211 (FSP-X) Passive infrared (PIR) sensor providing multi-level control based on motion/daylight contribution.
- · All control parameters adjustable via wireless configuration remote storing and transmitting sensor profiles.
- FSP-20 mounting heights 9-20 feet
- FSP-40 mounting heights 21-40 feet.
- Includes 5 dimming event cycles, 0-10V dimming with motion sensing, re-programmable in the field.
- FSIR-100 commissioning remote is required to change sensor settings. Please contact factory for ordering.
- · Controls Agnostics: Please contact factory for your preferred controls option.
- NEMA 7-PIN RECEPTACLE (PE7)—An ANSI C136.41-2013 receptacle provides electrical and mechanical interconnection between photo control cell and luminaire. Dimming receptacle available two or four dimming contacts supports 0-10 VDC dimming methods or Digital Addressable Lighting Interface (DALI), providing reliable power interconnect.
- PHOTOCELL + RECEPTACLE (PCR)-7-Pin Receptacle and Electronic Twist Lock Photocell for dusk to dawn operation.
- RECEPTACLE + SHORTING CAP (PER)-7-Pin Receptacle and Shorting Cap.

FINISH

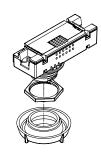
- · 3-5 mils electrostatic powder coat.
- NLS Light's standard high-quality finishes prevent corrosion protects against and extreme environmental conditions

WARRANTY

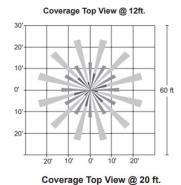
Five-year limited warranty for drivers and LEDs.

Silicone optics high thermal stability and light output provide higher powered LEDs with minimized lumen depreciation. UV stability with scratch resistance increases exterior application durability. Silicone optics do not yellow, crack or brittle over time

LISTINGS

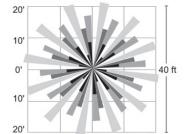

- Certified to UL 1598
- UL 8750 CSA C22.2 No. 250.0
- DesignLights Consortium® (DLC)
- DesignLights Consortium Premium® (DLCP)
- IP65/ IP67 Rated
- 3G Vibration Rated per ANSI C136.31-2010
- IDA Dark Sky Approved
- IK10 Rated

PRODUCT SPECIFICATIONS

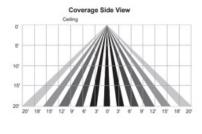

CONTROLS

- DIMMING CONTROL (FSP)—Passive infrared (PIR) sensor providing multi-level control based on motion/daylight contribution.
 - · All control parameters adjustable via wireless configuration remote storing and transmitting sensor profiles.
 - FSP-8 mounting heights 8 feet and below

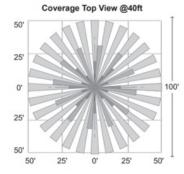
 - FSP-20 mounting heights 9-20 feet
 FSP-40 mounting heights 21-40 feet.
 - Includes 5 dimming event cycles, 0-10V dimming with motion sensing, re-programmable in the field.

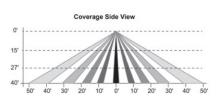


FSP-8

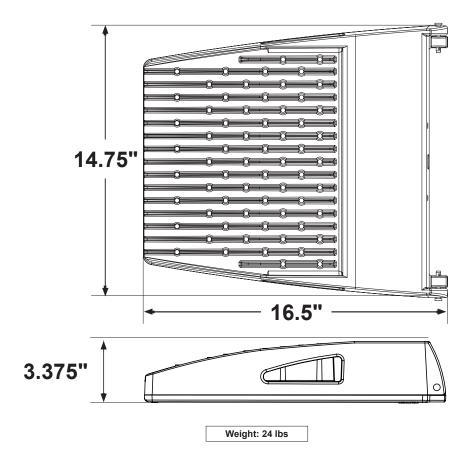


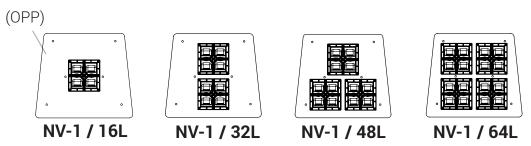
FSP-20




20'

20'

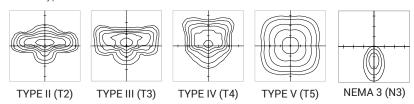

FSP-40



PRODUCT SPECIFICATIONS

OPTICAL CONFIGURATIONS

Rotatable Optics (ROR) Rotated Right, (ROL) Rotated Left options available. Optics field and factory rotatable.

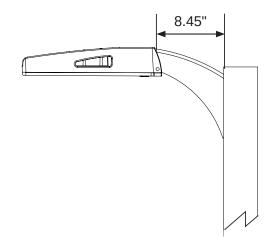


* OPTIC PLATE PAINTED TO MATCH FIXTURE FINISH (OPP) – Optic Plate standard clear anodized, Grade 2. When (OPP) specified, Optic Plate finish will match fixture finish.

OPTICS

Silicone optics high photothermal stability and light output provides higher powered LEDs with minimized lumen depreciation LED life. UV and thermal stability with scratch resistance increases exterior application durability.

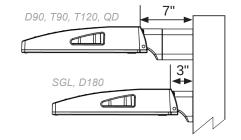
IES Types



MOUNTING OPTIONS

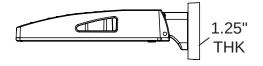
ARCHITECTURAL SWEEP ARM (ASA)

Cast Sweep Arm includes (as standard) Internal Quick Mount Bracket.



DIRECT POLE (DP)

Standard mounting arm is extruded aluminum in lengths of 3" and 7". *Arm lengths may vary depending on configuration


DPX ARM LENGTH

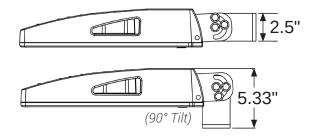
DPX ARM LENGTH	SGL -	D90 📲	D180 €	D180 €	T90	T120 🞝	QD 🖷
NV-1	3"	7"	3"	7"	7"	7"	7"

WALL MOUNT (WM)

Cast Aluminum Plate for direct wall mount. 3" extruded aluminum arm mounts directly to a cast wall mount box.

EPA

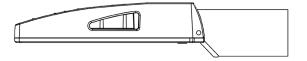
EPA	SGL	D90	D180	T90	T120	QD
NV-1-DP3	0.46		0.92			
NV-1-DP7		1.14	1.05	1.34	1.37	1.34
NV-1-KM	0.54	N/A	1.08	N/A	N/A	N/A
NV-1-ASA	0.75	1.29	1.50	1.99	2.05	1.99



MOUNTING OPTIONS

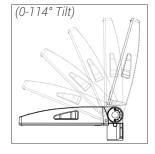
TRUNNION MOUNT (TM)

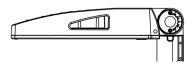
Steel, bolt-on-mounting for adjustable installation with a maximum uplift of 90 degrees.


*Unpainted stainless steel is standard

TENNIS ARM (TA)

Steel fitter slips over 3.5" x 1.5" rectangular arm.

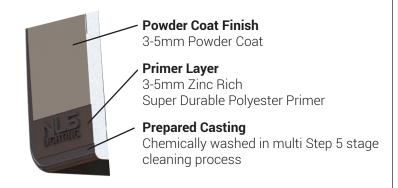

*See Tennis Arm Spec Sheet for details



KNUCKLE MOUNT (KM)

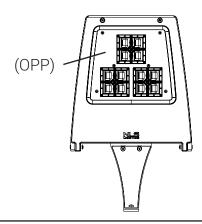
Die Cast Knuckle great for adjustable installation on 2-3/8" OD vertical or horizontal tenon.

- Max Up-tilt of 90 degrees
- Adjustable in 6 degree increments
- 1.5G Vibration Rated per ANSI C136.31-2010

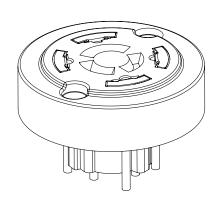


BIRD SPIKES (BS)

Bird Spikes offers effective and humane deterrent for larger bird species and provides cost-effective long-term solution to nuisance bird infestations and protect your property.


MARINE GRADE FINISH (MGF)

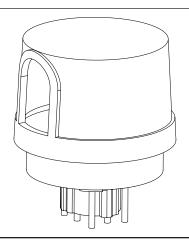
The **(MGF)** is a multi step process. Chemically washed in a 5 stage cleaning system. Pre-baked. Powder coated 3-5 mils of Zinc Rich Super Durable Polyester Primer. Oven Baked. Finished Powder Coating of Super Durable Polyester Powder Coat 3-5 mil thickness.


OPTIC PLATE PAINTED TO MATCH (OPP)

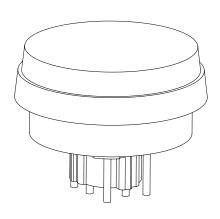
Optic plate is clear anodized as standard. The optic plate can be powder coated to match the finish of the fixture.

NEMA 7-PIN RECEPTACLE (PE7)

An ANSI C136.41-2013 receptacle provides electrical and mechanical interconnection between photo control cell and luminaire. Dimming receptacle available two or four dimming contacts supports 0-10 VDC dimming methods or Digital Addressable Lighting Interface (DALI), providing reliable power interconnect.

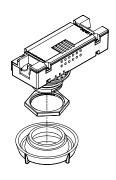


701 Kingshill Place, Carson, CA 90746 **Call Us Today** (310) 341-2037


PHOTOCELL + RECEPTACLE (PCR)

7-Pin Receptacle and Electronic Twist Lock Photocell for dusk to dawn operation.

RECEPTACLE + SHORTING CAP (PER)


7-Pin Receptacle and Shorting Cap.

FSP-211 WITH MOTION SENSOR (FSP-XX)

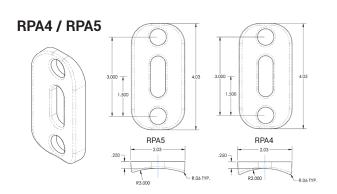
- FSP-211 (FSP-X)—Passive infrared (PIR) sensor providing multi-level control based on motion/daylight contribution.
- All control parameters adjustable via wireless configuration remote storing and transmitting sensor profiles.
- FSP-20 mounting heights 9-20 feet
- FSP-40 mounting heights 21-40 feet.
- Includes 5 dimming event cycles, 0-10V dimming with motion sensing, re-programmable in the field.

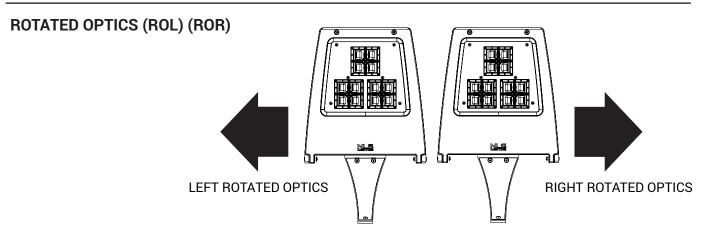
FSP-211

QUICK MOUNT BRACKET (QMB)

Optional Cast Aluminum Bracket designed for quick mounting on Direct Square or Round Poles. Cleat mounts directly to pole for easily hung fixtures. Has a 2"x4" Drill Pattern.

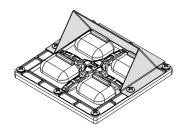
701 Kingshill Place, Carson, CA 90746 **Call Us Today** (310) 341-2037

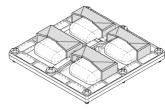

RETROFIT MOUNT BRACKET (RQMB)


Optional Cast Aluminum Bracket designed for quick mounting on Direct Square or Round Poles. Cleat mounts directly to pole for easily hung fixtures. Drill Pattern is adjustable from 2"x4" to 2"x6".

ROUND POLE ADAPTER OPTIONS (RPA4) (RPA5)

When using round poles, specify Round Pole Adapter (RPA). Specify RPA4 when installing on 3"-4" round poles, and RPA5 when installing on 5"-6" round poles.

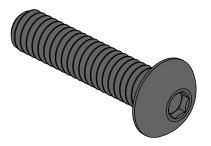



SHIELDING OPTIONS (AHS) (HSS)

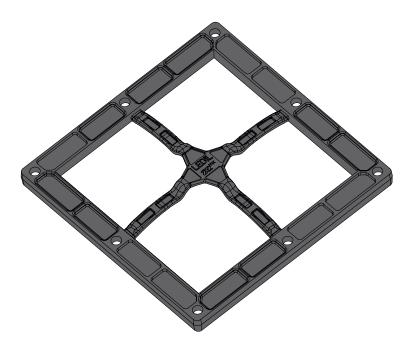
SHIELDS (HSS, AHS)—House Side Shield (HSS) is designed for full property line cutoff. Automotive House Side Shield (AHS) is a single-sided shield allowing partial cut-off on either side or front of luminaire.

AUTOMOTIVE HOUSE SIDE SHIELD

HOUSE SIDE SHIELD



701 Kingshill Place, Carson, CA 90746 **Call Us Today** (310) 341-2037


BLACK HARDWARE

Optional black, zinc coated steel hardware.

BLACK OPTIC FRAME

Optional Black Optic Frame. Standard is white.

PART NUMBER	N3	LM/W	T2	LM/W	DLC	Т3	LM/W	DLC	T3 HSS	LM/W	T4	LM/W	DLC	T4 AHS	LM/W	T4 HSS	LM/W	T5	LM/W	DLC	w
NV-1-16L-35-30K7	2016	112	2106	117	Р	2106	117	Р	1134	63	2187	116	Р	1296	72	1116	62	2231	118	Р	18
NV-1-16L-35-40K7	2088	116	2268	126	Р	2286	127	Р	1206	67	2250	125	Р	1368	76	1188	66	2304	128	Р	18
NV-1-16L-35-50K7	2160	120	2376	132	Р	2394	133	Р	1278	71	2358	131	Р	1440	80	1260	70	2412	134	Р	18
NV-1-16L-53-30K7	3136	112	3192	114	Р	3220	115	Р	1764	63	3119	113	Р	2016	72	1736	62	3248	116	Р	28
NV-1-16L-53-40K7	3248	116	3472	124	Р	3472	124	Р	1876	67	3444	123	Р	2128	76	1848	66	3500	125	Р	28
NV-1-16L-53-50K7	3360	120	3612	129	Р	3640	130	Р	1988	71	3584	128	Р	2240	80	1960	70	3668	131	Р	28
NV-1-16L-7-30K7	4032	112	3960	110	Р	3960	110	Р	2268	63	3973	109	Р	2592	72	2232	62	3996	111	Р	36
NV-1-16L-7-40K7	4176	116	4428	123	Р	4284	119	Р	2412	67	4212	117	Р	2736	76	2376	66	4320	120	Р	36
NV-1-16L-7-50K7	4320	120	4644	129	Р	4500	125	Р	2556	71	4428	123	Р	2880	80	2520	70	4500	125	Р	36
NV-1-16L-1-30K7	6272	112	6160	110	S	6384	114	Р	3528	63	6232	112	Р	4032	72	3472	62	6440	115	Р	56
NV-1-16L-1-40K7	6496	116	6832	122	Р	6888	123	Р	3752	67	6776	121	Р	4256	76	3696	66	6944	124	Р	56
NV-1-16L-1-50K7	6720	120	7168	128	Р	7224	129	Р	3976	71	7112	127	Р	4480	80	3920	70	7280	130	Р	56
NV-1-32L-7-30K7	7952	112	7810	110	S	7810	110	S	4473	63	7739	109	S	5112	72	4402	62	7881	111	S	71
NV-1-32L-7-40K7	8236	116	9017	127	Р	8449	119	Р	4757	67	8307	117	Р	5396	76	4686	66	8520	120	Р	71
NV-1-32L-7-50K7	8520	120	9159	129	Р	8875	125	Р	5041	71	8733	123	Р	5680	80	4970	70	8946	126	Р	71
NV-1-32L-1-30K7	11872	112	11660	110	S	12084	114	S	6678	63	11820	112	S	7632	72	6572	62	12190	115	S	106
NV-1-32L-1-40K7	12296	116	12932	122	P	13038	123	Р	7102	67	12826	121	Р	8056	76	6996	66	13144	124	Р	106
NV-1-32L-1-50K7	12720	120	13568	128	Р	13674	129	Р	7526	71	13462	127	Р	8480	80	7420	70	13780	130	Р	106
NV-1-48L-7-30K7	11648	112	11440	110	S	11440	110	S	6552	63	11336	109	S	7488	72	6448	62	11544	111	S	104
NV-1-48L-7-40K7	12064	116	13208	127	Р	12376	119	Р	6968	67	12168	117	Р	7904	76	6864	66	12480	120	Р	104
NV-1-48L-7-50K7	12480	120	13520	130	Р	13000	125	Р	7384	71	12792	123	Р	8320	80	7280	70	13104	126	Р	104
NV-1-48L-1-30K7	17472	112	17160	110	S	17784	114	S	9828	63	17472	112	S	11232	72	9672	62	17940	115	S	156
NV-1-48L-1-40K7	18096	116	19032	122	P	19188	123	Р	10452	67	18876	121	Р	11856	76	10296	66	19344	124	Р	156
NV-1-48L-1-50K7	18720	120	19968	128	Р	20124	129	Р	11076	71	19812	127	Р	12480	80	10920	70	20280	130	Р	156
NV-1-64L-7-30K7	15232	112	14960	110	S	14960	110	S	8568	63	14824	109	S	9792	72	8432	62	15096	111	S	136
NV-1-64L-7-40K7	15776	116	17272	127	Р	16184	119	Р	9112	67	15912	117	Р	10336	76	8976	66	16320	120	Р	136
NV-1-64L-7-50K7	16320	120	17680	130	Р	17000	125	Р	9656	71	16728	123	Р	10880	80	9520	70	17136	126	Р	136
NV-1-64L-1-30K7	22960	112	22550	110	S	23370	114	S	12915	63	22960	112	S	14760	72	12710	62	23575	115	S	205
NV-1-64L-1-40K7	23780	116	25010	122	Р	25215	123	Р	13735	67	24805	121	Р	15580	76	13530	66	25420	124	Р	205
NV-1-64L-1-50K7	24600	120	26240	128	Р	26445	129	Р	14555	71	26035	127	Р	16400	80	14350	70	26650	130	Р	205

BUG RATINGS						
PART NUMBER	T2	Т3	T3 HSS	T4	T4 HSS	Т5
NV-1-16L-35-30K7	B1-U0-G1	B1-U0-G1	B0-U0-G0	B1-U0-G1	B0-U0-G0	B2-U0-G0
NV-1-16L-35-40K7	B1-U0-G1	B1-U0-G1	B0-U0-G0	B1-U0-G1	B0-U0-G0	B2-U0-G0
NV-1-16L-35-50K7	B1-U0-G1	B1-U0-G1	B0-U0-G0	B1-U0-G1	B0-U0-G0	B2-U0-G2
NV-1-16L-53-30K7	B1-U0-G1	B1-U0-G1	B0-U0-G1	B1-U0-G1	B0-U0-G1	B2-U0-G1
NV-1-16L-53-40K7	B1-U0-G1	B1-U0-G1	B0-U0-G1	B1-U0-G1	B0-U0-G1	B2-U0-G1
NV-1-16L-53-50K7	B1-U0-G1	B1-U0-G1	B0-U0-G1	B1-U0-G1	B0-U0-G1	B2-U0-G1
NV-1-16L-7-30K7	B1-U0-G1	B1-U0-G1	B0-U0-G1	B1-U0-G1	B0-U0-G1	B3-U0-G1
NV-1-16L-7-40K7	B1-U0-G1	B1-U0-G1	B0-U0-G1	B1-U0-G1	B0-U0-G1	B3-U0-G1
NV-1-16L-7-50K7	B1-U0-G1	B1-U0-G1	B0-U0-G1	B1-U0-G1	B0-U0-G1	B3-U0-G1
NV-1-16L-1-30K7	B1-U0-G1	B1-U0-G1	B0-U0-G1	B1-U0-G1	B0-U0-G1	B3-U0-G1
NV-1-16L-1-40K7	B1-U0-G1	B2-U0-G2	B0-U0-G1	B2-U0-G2	B0-U0-G1	B3-U0-G2
NV-1-16L-1-50K7	B1-U0-G2	B2-U0-G2	B0-U0-G1	B2-U0-G2	B0-U0-G1	B3-U0-G2
NV-1-32L-7-30K7	B1-U0-G2	B2-U0-G2	B0-U0-G1	B2-U0-G2	B0-U0-G1	B3-U0-G2
NV-1-32L-7-40K7	B1-U0-G2	B2-U0-G2	B0-U0-G1	B2-U0-G2	B0-U0-G2	B3-U0-G2
NV-1-32L-7-50K7	B2-U0-G2	B2-U0-G2	B0-U0-G2	B2-U0-G2	B0-U0-G2	B3-U0-G2
NV-1-32L-1-30K7	B2-U0-G2	B2-U0-G2	B0-U0-G2	B2-U0-G2	B0-U0-G2	B4-U0-G2
NV-1-32L-1-40K7	B2-U0-G2	B2-U0-G2	B0-U0-G2	B3-U0-G2	B0-U0-G2	B4-U0-G2
NV-1-32L-1-50K7	B2-U0-G2	B3-U0-G3	B0-U0-G2	B3-U0-G3	B0-U0-G2	B4-U0-G2
NV-1-48L-7-30K7	B2-U0-G2	B2-U0-G2	B0-U0-G2	B2-U0-G2	B0-U0-G2	B4-U0-G2
NV-1-48L-7-40K7	B2-U0-G2	B2-U0-G2	B0-U0-G2	B2-U0-G2	B0-U0-G2	B4-U0-G2
NV-1-48L-7-50K7	B2-U0-G2	B3-U0-G3	B0-U0-G2	B2-U0-G2	B0-U0-G2	B4-U0-G2
NV-1-48L-1-30K7	B3-U0-G3	B3-U0-G3	B1-U0-G2	B3-U0-G3	B1-U0-G2	B4-U0-G2
NV-1-48L-1-40K7	B3-U0-G3	B3-U0-G3	B1-U0-G2	B3-U0-G3	B1-U0-G2	B5-U0-G3
NV-1-48L-1-50K7	B3-U0-G3	B3-U0-G3	B1-U0-G2	B3-U0-G3	B1-U0-G2	B5-U0-G3
NV-1-64L-7-30K7	B2-U0-G2	B3-U0-G3	B0-U0-G2	B3-U0-G3	B1-U0-G2	B4-U0-G2
NV-1-64L-7-40K7	B3-U0-G3	B3-U0-G3	B0-U0-G2	B3-U0-G3	B1-U0-G2	B4-U0-G2
NV-1-64L-7-50K7	B3-U0-G3	B3-U0-G3	B1-U0-G2	B3-U0-G3	B1-U0-G2	B4-U0-G2
NV-1-64L-1-30K7	B3-U0-G3	B3-U0-G3	B1-U0-G2	B3-U0-G3	B1-U0-G3	B5-U0-G3
NV-1-64L-1-40K7	B3-U0-G3	B3-U0-G3	B1-U0-G3	B3-U0-G4	B1-U0-G3	B5-U0-G3
NV-1-64L-1-50K7	B3-U0-G3	B3-U0-G3	B1-U0-G3	B3-U0-G4	B1-U0-G3	B5-U0-G3

·	·		Lumen Mainte	enance Data	·	·	
Ambient Temperature	Drive Current	L90 Hours*	L70 Hours**	30,000 Hours*	50,000 Hours*	60,00 Hours*	100,000 Hours**
25°C	Up to 700mA	58,000	173,000	95.7%	91.6%	89.6%	82.1%
	1050mA	48,000	143,000	94.3%	89.5%	87.2%	78.5%
*R	eported extrapola	ations per IESNA	A TM-21	**Projecte	ed extrapolations	s per IESNA TM-:	21

AREA LIGHTING

FORM AND FUNCTION

- · Sleek, low profile housing
- Spec grade performance
- Engineered for optimum thermal management
- Low depreciation rate
- Reduces energy consumption and costs up to 65%
- Exceeds IES foot candle levels utilizing the least number of poles and fixtures per project
- · Optical system designed for:
 - Parking Lots
 - Auto Dealerships
 - General Area Lighting

CONSTRUCTION

- Die Cast Aluminum
- · External cooling fins
- · Corrosion resistant external hardware
- One-piece silicone gasket ensures IP-65 seal for electronics compartment
- One-piece Optics Plate™ mounting silicone Micro Optics
- Two-piece silicone Micro Optic system ensures IP-67 level seal around each PCB
- Grade 2 Clear Anodized Optics Plate™ standard

FINISH

- 3-5 mils electrostatic powder coat.
- NLS' standard high-quality finishes prevent corrosion protects against and extreme environmental conditions

WARRANTY

Five-year limited warranty for drivers and LEDs.

- · Certified to UL 1598
- UL 8750
- CSA C22.2 No. 250.0
- DesignLights Consortium® (DLC)
- DesignLights Consortium Premium® (DLCP)
- IP65/ IP67 Rated
- 3G Vibration Rated per ANSI C136.31-2010
- IDA Dark Sky Approved

Project Name:	Type:
---------------	-------

Cat#	Light Dist.	# of LEDs	Milliamps	Kelvin	Volts	Mounting	Color	Options
NV-2 (NV-2)	Type 2 (T2)	80 (80L)	700 (7)	2700K, 70 CRI (27K7) [©]	120-277 (UNV)	Direct Pole 6" Arm Single, D180 (DPS6) @	Bronze Textured (BRZ)	Bird Spikes (BS) Marine Grade Finish (MGF) Optic Plate Painted to Match Fixture (OPP)
	Type 3 (T3) Type 4	96 (96L)	1050 (1)	2700K, 80 CRI (27K8) ¹	347-480 (HV)	Direct Pole 11" Arm D90, T90, T120, Quad (DPS11) 2	White Textured (WHT) Smooth White	Nema 7-Pin Receptacle (PE7) Photocell + Receptacle (PCR) Receptacle + Shorting Cap (PER) FSP-211 with Motion Sensor
	(T4) Type 5 (T5)	112 (112L)		3000K, 70 CRI (30K7) [©] 3000K, 80 CRI		Knuckle Mount (KM)	Gloss (SWT)	(FSP-20) ♥9'-20" Heights (FSP-40) ♥ 21'-40' Heights Quick Mount Bracket (QMB) Retrofit Mount Bracket (RQMB)
	Nema 3 30° Narrow Beam	128 (128L)		(30K8) [®] ®		Wall Mount (WM) Trunnion Mount	Silver (SVR) Black Textured	Round Pole Adaptor 3"- 4" Pole (RPA4) Round Pole Adaptor 5"- 6" Pole (RPA5) Rotated Optic Left (ROL)
	(143)			(35K8) 4000K, 70 CRI (40K7)		(TM) © Tennis Arm	(BLK) Smooth Black	Rotated Optic Right (ROR) Automotive House Side Shield (AHS) House Side Shield (HSS)
	actory for Lead Time. Cons) CRI Requests	4000K, 80 CRI (40K8)		(TA) Mast Arm (MA)	Gloss (SBK) Graphite Textured	
Standard finish is stainless steel. Can be painted to match fixture For Round Pole Specify RPA4 or RPA5 Universal Voltage 120-277 HSS not applicable with Nema 2		5000K, 70 CRI (50K7)			(GPH) Grey Textured (GRY)			
3 3000K or	pplicable with Nema 2 ower must be selected to Association certification.	meet Internationa	al	5000K, 80 CRI (50K8) [●]			Custom (CS)	

REV. 11.07.22

ELECTRICAL

- 120-277 Volts (UNV) or 347-480 Volts (HV)
- 0-10V dimming driver
- Driver power factor at maximum load is ≥ .95, THD maximum load is 15%
- LED Drivers Ambient Temp. Min is -40°C and Ambient Temp. Max ranges from 50°C to 55°C and, in some cases, even higher. Consult the factory for revalidation by providing the fixture catalog string before quoting and specifying it.
- All internal wiring UL certified for 600 VAC and 105°C
- All drivers, controls, and sensors housed in enclosed IP-65 compartment
- CRI 70.80 or 90
- Color temperatures: 2700K, 3000K, 3500K, 4000K, 5000K
- Surge Protection: 20KA supplies as standard.

- BIRD SPIKES (BS)—Offers effective and humane deterrent for larger bird species and provides cost-effective long-term solution to nuisance bird infestations and protect your property.
- MARINE GRADE FINISH (MGF)—A multi-step process creating protective finishing coat against harsh environments.
 - · Chemically washed in a 5 stage cleaning system.
 - Pre-baked
 - Powder coated 3-5 mils of Zinc Rich Super Durable Polyester Primer.
 - 1-2 feet inside pole coverage top and bottom.
 - · Oven Baked.
 - Finished Powder Coating of Super Durable Polyester Powder Coat 3-5 mil thickness.
- **SHIELDS (HSS. AHS)**—House Side Shield (HSS) is designed for full property line cut-off. Automotive House Side Shield (AHS) is a single-sided shield allowing partial cut-off on either side or front of luminaire.
- ROUND POLE ADAPTER (RPA) When using round poles, specify Round Pole Adapter (RPA). Specify RPA4 when installing on 3"-4" round poles, and RPA5 when installing on 5"-6" round poles.

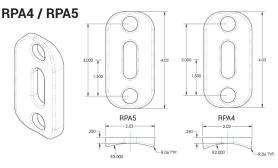
CONTROLS

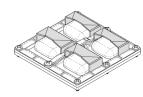
- FSP-211 (FSP-X)—Passive infrared (PIR) sensor providing multi-level control based on motion/daylight contribution.
 - · All control parameters adjustable via wireless configuration remote storing and transmitting sensor profiles.
 - · FSP-20 mounting heights 9-20 feet
 - · FSP-40 mounting heights 21-40 feet.
 - Includes 5 dimming event cycles, 0-10V dimming with motion sensing, reprogrammable in the field.
 - FSIR-100 commissioning remote is required to change sensor settings. Please contact factory for ordering.
- NEMA 7-PIN RECEPTACLE (PE7)—An ANSI C136.41-2013 receptacle provides electrical and mechanical interconnection between photo control cell and luminaire. Dimming receptacle available two or four dimming contacts supports 0-10 VDC dimming methods or Digital Addressable Lighting Interface (DALI), providing reliable power interconnect.

OPTICS

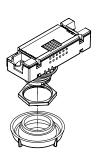
Silicone optics high photothermal stability and light output provides higher powered LEDs with minimized lumen depreciation LED life. UV and thermal stability with scratch resistance increases exterior application durability.

· IES Types




24.11

HOUSE SIDE SHIELD


18

AUTOMOTIVE HOUSE SIDE SHIELD

FSP-211

NEMA 3 (N3)

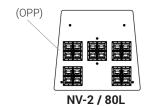
The information and specifications on this document are subject to change without any notification. All values are design, nominal, typical or prorated values when measured under internal and external laboratory conditions.

701 Kingshill Place, Carson, CA 90746 Call Us Today (310) 341-2037

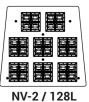
LUMENS								-						•							
PART NUMBER	N3	LM/W	T2	LM/W	DLC	Т3	LM/W	DLC	T3 HSS	LM/W	T4	LM/W	DLC	T4 AHS	LM/W	T4 HSS	LM/W	T5	LM/W	DLC	w
NV-2-80L-7-30K7	18816	112	19744	116	S	19218	113	S	9744	58	18992	112	S	12096	72	9576	57	19713	117	Р	168
NV-2-80L-7-40K7	19488	116	21000	125	Р	20328	121	Р	10416	62	20160	120	Р	12768	76	10248	61	21168	126	Р	168
NV-2-80L-7-50K7	20160	120	21672	129	P	21168	126	Р	11088	66	21000	125	Р	13440	80	10920	65	21840	130	Р	168
NV-2-80L-1-30K7	29456	112	28141	107	S	27352	104	S	15254	58	30245	115	S	18936	72	14991	57	29193	111	S	263
NV-2-80L-1-40K7	30508	116	30245	115	S	29456	112	S	16306	62	32086	122	S	19988	76	16043	61	31297	119	S	263
NV-2-80L-1-50K7	31560	120	31297	119	Р	30508	116	S	17358	66	33664	128	Р	21040	80	17095	65	33138	126	Р	263
NV-2-96L-7-30K7	22400	112	23200	116	S	22600	113	S	11600	58	22400	112	S	14400	72	11400	57	23400	117	S	200
NV-2-96L-7-40K7	23200	116	25000	125	Р	24200	121	Р	12400	62	24000	120	Р	15200	76	12200	61	25200	126	Р	200
NV-2-96L-7-50K7	24000	120	25800	129	Р	25200	126	Р	13200	66	25000	125	Р	16000	80	13000	65	26000	130	Р	200
NV-2-96L-1-30K7	35392	112	33812	107	S	32864	104	S	18328	58	36340	115	S	22752	72	18012	57	35076	111	S	316
NV-2-96L-1-40K7	36656	116	36340	115	S	35392	112	S	19592	62	38552	122	S	24016	76	19276	61	37604	119	S	316
NV-2-96L-1-50K7	37920	120	37604	119	Р	36656	116	S	20856	66	40448	128	Р	25280	80	20540	65	39816	126	Р	316
NV-2-112L-7-30K7	27216	112	28188	116	S	27459	113	S	14094	58	27216	112	S	17496	72	13851	57	28431	117	Р	243
NV-2-112L-7-40K7	28188	116	30375	125	Р	29403	121	Р	15066	62	29160	120	Р	18468	76	14823	61	30618	126	Р	243
NV-2-112L-7-50K7	29160	120	31347	129	Р	30618	126	Р	16038	66	30375	125	Р	19440	80	15795	65	31590	130	Р	243
NV-2-112L-1-30K7	40992	112	39162	107	S	38064	104	S	21228	58	42090	115	S	26352	72	20862	57	40626	111	S	366
NV-2-112L-1-40K7	42456	116	42090	115	S	40992	112	S	22692	62	44652	122	S	27816	76	22326	61	43554	119	S	366
NV-2-112L-1-50K7	43920	120	43554	119	Р	42456	116	S	24156	66	46848	128	Р	29280	80	23790	65	46116	126	Р	366
NV-2-128L-7-30K7	29680	112	30740	116	S	29945	113	S	15370	58	29680	112	S	19080	72	15105	57	31005	117	Р	265
NV-2-128L-7-40K7	30740	116	33125	125	Р	32065	121	Р	16430	62	31800	120	Р	20140	76	16165	61	33390	126	Р	265
NV-2-128L-7-50K7	31800	120	34185	129	Р	33390	126	Р	17490	66	33125	125	Р	21200	80	17225	65	34450	130	Р	265
NV-2-128L-1-30K7	45808	112	43763	107	S	42536	104	S	23722	58	47035	115	S	29448	72	23313	57	45399	111	S	409
NV-2-128L-1-40K7	47444	116	47035	115	S	45808	112	S	25358	62	49898	122	S	31084	76	24949	61	48671	119	S	409
NV-2-128L-1-50K7	49080	120	48671	119	Р	47445	116	S	26994	66	52352	128	Р	33129	81	26585	65	51534	126	Р	409

3000k or warmer must be selected to meet International Dark-Sky Association certification.

*DLC S= Standard


P= Premium

BUG RATINGS						
PART NUMBER	T2	Т3	T3 HSS	T4	T4 HSS	Т5
NV-2-80L-7-30K7	B3-U0-G3	B3-U0-G3	B1-U0-G2	B3-U0-G3	B1-U0-G2	B5-U0-G3
NV-2-80L-7-40K7	B3-U0-G3	B3-U0-G3	B1-U0-G2	B3-U0-G3	B1-U0-G2	B5-U0-G3
NV-2-80L-7-50K7	B3-U0-G3	B3-U0-G3	B1-U0-G2	B3-U0-G3	B1-U0-G2	B5-U0-G3
NV-2-80L-1-30K7	B3-U0-G3	B3-U0-G4	B1-U0-G3	B3-U0-G4	B1-U0-G3	B5-U0-G3
NV-2-80L-1-40K7	B3-U0-G3	B3-U0-G4	B1-U0-G3	B3-U0-G4	B1-U0-G3	B5-U0-G3
NV-2-80L-1-50K7	B3-U0-G4	B3-U0-G4	B1-U0-G3	B3-U0-G4	B1-U0-G3	B5-U0-G4
NV-2-96L-7-30K7	B3-U0-G3	B3-U0-G3	B1-U0-G2	B3-U0-G3	B1-U0-G2	B5-U0-G3
NV-2-96L-7-40K7	B3-U0-G3	B3-U0-G3	B1-U0-G2	B3-U0-G3	B1-U0-G2	B5-U0-G3
NV-2-96L-7-50K7	B3-U0-G3	B3-U0-G3	B1-U0-G2	B3-U0-G4	B1-U0-G3	B5-U0-G3
NV-2-96L-1-30K7	B3-U0-G4	B4-U0-G4	B1-U0-G3	B3-U0-G4	B1-U0-G3	B5-U0-G4
NV-2-96L-1-40K7	B3-U0-G4	B4-U0-G4	B1-U0-G3	B3-U0-G4	B1-U0-G4	B5-U0-G4
NV-2-96L-1-50K7	B3-U0-G4	B4-U0-G4	B1-U0-G4	B3-U0-G4	B1-U0-G4	B5-U0-G4
NV-2-112L-7-30K7	B3-U0-G3	B3-U0-G4	B1-U0-G3	B3-U0-G4	B1-U0-G3	B5-U0-G3
NV-2-112L-7-40K7	B3-U0-G3	B3-U0-G4	B1-U0-G3	B3-U0-G4	B1-U0-G3	B5-U0-G3
NV-2-112L-7-50K7	B3-U0-G4	B3-U0-G4	B1-U0-G3	B3-U0-G4	B1-U0-G3	B5-U0-G4
NV-2-112L-1-30K7	B4-U0-G4	B4-U0-G4	B1-U0-G4	B4-U0-G5	B1-U0-G4	B5-U0-G4
NV-2-112L-1-40K7	B4-U0-G4	B4-U0-G4	B1-U0-G4	B4-U0-G5	B1-U0-G4	B5-U0-G4
NV-2-112L-1-50K7	B4-U0-G4	B4-U0-G4	B1-U0-G4	B4-U0-G5	B1-U0-G4	B5-U0-G4
NV-2-128L-7-30K7	B3-U0-G3	B3-U0-G4	B1-U0-G3	B3-U0-G4	B1-U0-G3	B5-U0-G4
NV-2-128L-7-40K7	B3-U0-G3	B3-U0-G4	B1-U0-G3	B3-U0-G4	B1-U0-G3	B5-U0-G4
NV-2-128L-7-50K7	B3-U0-G4	B4-U0-G4	B1-U0-G3	B3-U0-G4	B1-U0-G3	B5-U0-G4
NV-2-128L-1-30K7	B4-U0-G4	B4-U0-G4	B1-U0-G4	B4-U0-G5	B1-U0-G4	B5-U0-G4
NV-2-128L-1-40K7	B4-U0-G4	B4-U0-G4	B1-U0-G4	B4-U0-G5	B1-U0-G4	B5-U0-G4
NV-2-128L-1-50K7	B4-U0-G4	B4-U0-G5	B1-U0-G4	B4-U0-G5	B1-U0-G4	B5-U0-G5


OPTICAL CONFIGURATIONS

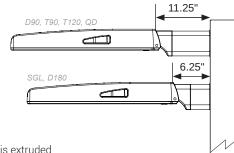
Rotatable Optics (ROR) Rotated Right, (ROL) Rotated Left options available. Optics field and factory rotatable.

NV-2 / 112L

* OPTIC PLATE PAINTED TO MATCH FIXTURE FINISH (OPP)— Optic Plate standard clear anodized, Grade 2. When (OPP) specified, Optic Plate finish will match fixture finish.

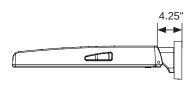
EPA

EPA	SGL	D90	D180	T90	T120	QD
NV-2-DP	0.89	1.22	1.78	1.96	1.91	1.96
NV-2-KM	0.69	1.18	1.38	1.85	2.68	1.85
NV-2-ASA	0.98	1.96	1.75	2.66	2.62	2.66


Lumen Maintenance Data											
Ambient Drive L90 L70 30,000 50,000 60,00 100,0 Temperature Current Hours* Hours** Hours* Hours* Hours* Hours*											
25°C	Up to 700mA	58,000	173,000	95.7%	91.6%	89.6%	82.1%				
	1050mA	48,000	143,000	94.3%	89.5%	87.2%	78.5%				
*Reported extrapolations per IESNA TM-21 **Projected extrapolations per IESNA TM-21											

DPX ARM LENGTH

DPX ARM LENGTH	SGL -₁■	D90 📲	D180 € -™	T90 □	T120 👼	QD 🖷
NV-2	6.25"	11.25"	6.25"	11.25"	11.25"	11.25"


MOUNTING OPTIONS

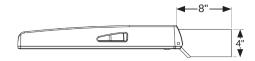
DIRECT POLE (DP)

Standard mounting arm is extruded aluminum in lengths of 6.25" and 11.25".

*Arm lengths may vary depending on configuration

WALL MOUNT (WM)

Cast Aluminum Plate for direct wall mount. 3" extruded aluminum arm mounts directly to a cast wall mount box.

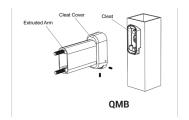


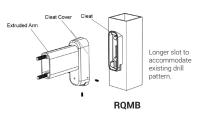
Steel, bolt-on-mounting for adjustable installation with a maximum uplift of 90 degrees. *Unpainted stainless steel is standard

KNUCKLE MOUNT (KM) Die Cast Knuckle great for adjustable installation

on 2-3/8" OD vertical or horizontal tenon.

- Max Up-tilt of 90 degrees
- · Adjustable in 6 degree increments




TENNIS ARM (TA)

Steel fitter slips over 3.5" x 1.5" rectangular arm. *See Tennis Arm Spec Sheet for details

OPTIONAL

Optional Cast Aluminum Bracket, Quick Mount Bracket (QMB) and Retrofit Quick Mount Bracket (RQMB), designed for quick mounting on Direct Square or Round Poles. Cleat mounts directly to pole for easily hung fixtures.

701 Kingshill Place, Carson, CA 90746 Call Us Today (310) 341-2037

P0595-015 March 29, 2023

Mr. Peter Britz, Director of Planning and Sustainability City of Portsmouth Planning Department 1 Junkins Avenue Portsmouth, New Hampshire 03801

Re: Site Review Permit & Subdivision Applications Proposed Advanced Manufacturing Facility

Dear Peter:

On behalf of Aviation Avenue Group, LLC, we are pleased to submit one (1) set of hard copies and one electronic file (.pdf) of the following information to support a request to the Planning Board for a recommendation for approval to the Pease Development Authority (PDA) for Site Plan Review and Subdivision for a proposed Advanced Manufacturing Facility on a previously developed site located at 80 Rochester Avenue:

- One (1) full size & one (1) half size copy of the Site Plan Set, last revised March 29, 2023
- Three (3) full size & one (1) half size copy of the Subdivision Plan, dated March 29, 2023
- PDA Application for Site Review, dated December 19, 2022;
- PDA Application for Subdivision, dated January 25, 2023;
- Owner Authorization, dated October 25, 2022;
- TAC Conditions Response Report, dated March 29, 2023
- Drainage Analysis, last revised March 29, 2023;
- Drainage Peer Review Documents
 - Underwood Engineers No Further Comments Memo, dated March 1, 2023;
 - Drainage Peer Review Comment Response Letter 2, dated February 23, 2023;
 - Drainage Peer Review Comment Response Letter 1, dated February 7, 2023;
- Operations and Maintenance Plan, dated December 19, 2022;
- Traffic Impact Assessment, last revised February 17, 2023;
- Traffic Peer Review Documents
 - VHB Peer Review Letter 2, dated March 7, 2023;
 - Traffic Peer Review Comment Response Letter 1, dated February 17, 2023;
- Truck Turning Exhibits, dated January 25,2023;
- Eversource Will Serve Letter, dated December 6, 2022;
- Correspondence with Unitil; dated January 5, 2023;
- Proposed Light Poles and Fixtures Cut Sheets;

The proposed project is located at 80 Rochester Avenue which is identified as Map 308 Lot 1 on the City of Portsmouth Tax Maps. The proposed project is for the construction of a $\pm 209,750$ SF advanced manufacturing building including $\pm 18,145$ SF of office space, two (2) parking areas, two (2) loading dock areas, minor realignment of a portion of Rochester Avenue, and associated site improvements consisting of underground utilities, landscaping, lighting, and a stormwater management system.

There is approximately 196,665 SF of existing impervious area that is currently untreated before entering the municipal drainage system. The proposed stormwater management system has been designed to provide treatment for the existing impervious surface that is currently untreated and for $\pm 161,130$ SF of additional impervious that results from the proposed project as required by the PDA Site Plan Regulations.

On October 20, 2022, the PDA Board granted conceptual approval for the proposed project. The project was granted a variance from the Zoning Board of Adjustment (ZBA) for the front yard setback requirements at their meeting on November 15, 2022, and was granted a variance for the rear yard setback requirements at their meeting on March 21, 2023.

We respectfully request to be placed on the Planning Board (PB) meeting agenda meeting agenda for the April 20, 2023, meeting. If you have any questions or need any additional information, please contact Patrick Crimmins by phone at (603) 433-8818 or by email at pmcrimmins@tighebond.com.

Sincerely,

TIGHE & BOND, INC.

Patrick M. Crimmins, PE

Vice President

Copy: Aviation Avenue Group, LLC (via email)

Pease Development Authority

Neil A. Hansen, PE Project Manager

REFERENCE:

SURVEY).

TAX MAP 308 LOT 1 100 NEW HAMPSHIRE AVENUE (AKA 80 ROCHESTER AVE)

2. OWNER OF RECORD: PEASE DEVELOPMENT AUTHORITY 55 INTERNATIONAL DRIVE

PORTSMOUTH NH 03801

PORTSMOUTH, NH 03801

R.C.R.D. BK. 4227 PG. 1 & BK. 4564 PG. 985

LESSEE OF RECORD: AVIATION AVENUE GROUP, LLC 210 COMMERCE WAY, SUITE 300

PORTSMOUTH, NH

- FIELD SURVEY PERFORMED BY DOUCET SURVEY LLC STAFF DURING JANUARY & FEBRUARY 2022 AND MARCH 2023 USING A TRIMBLE TOTAL STATION AND A TRIMBLE SURVEY GRADE GPS WITH A TRIMBLE DATA COLLECTOR AND A SOKKIA B21 AUTO LEVEL. TRAVERSE ADJUSTMENT BASED ON LEAST SQUARE ANALYSIS.
- 4. HORIZONTAL DATUM BASED ON NAD83(2011) NEW HAMPSHIRE STATE PLANE COORDINATE ZONE (2800) DERIVED FROM REDUNDANT GPS OBSERVATIONS UTILIZING THE KEYNET ĞPS VRS NETWORK INCLUDING OBSERVATIONS ON PRIMARY AIRPORT CONTROL STATION PSM C AND PSM D.
- 5. VERTICAL DATUM IS BASED PRIMARY AIRPORT CONTROL STATION PSM C (NAVD88 ELEVATION = 78.70 AS PUBLISHED BY NATIONAL GEODETIC
- 6. PROPER FIELD PROCEDURES WERE FOLLOWED IN ORDER TO GENERATE CONTOURS AT 2' INTERVALS. ANY MODIFICATION OF THIS INTERVAL WILL DIMINISH THE INTEGRITY OF THE DATA, AND DOUCET SURVEY. WILL NOT BE RESPONSIBLE FOR ANY SUCH ALTERATION PERFORMED BY THE USER.
- 7. UNDERGROUND UTILITIES SHOWN HEREON ARE BASED ON OBSERVED PHYSICAL EVIDENCE AND PAINT MARKS FOUND ON-SITE.
- 8. THE ACCURACY OF MEASURED UTILITY INVERTS AND PIPE SIZES/TYPES IS SUBJECT TO NUMEROUS FIELD CONDITIONS, INCLUDING; THE ABILITY TO MAKE VISUAL OBSERVATIONS, DIRECT ACCESS TO THE VARIOUS ELEMENTS, MANHOLE CONFIGURATION, ETC. SEVERAL STRUCTURES SHOWN HEREON WERE INACCESSIBLE FOR INVERT MEASUREMENTS DUE TO WINTER CONDITIONS.
- 9. DUE TO THE COMPLEXITY OF RESEARCHING ROAD RECORDS AS A RESULT OF INCOMPLETE, UNORGANIZED, INCONCLUSIVE, OBLITERATED, OR LOST DOCUMENTS, THERE IS AN INHERENT UNCERTAINTY INVOLVED WHEN ATTEMPTING TO DETERMINE THE LOCATION AND WIDTH OF A ROADWAY RIGHT OF WAY. THE EXTENT OF NEW HAMPSHIRE AVE, STRATHAM STREET, ROCHESTER AVE, AND NEWFIELDS STREET AS DEPICTED HEREON ARE BASED ON RESEARCH CONDUCTED AT THE PEASE DEVELOPMENT AUTHORITY (PDA), NHDOT, PORTSMOUTH ENGINEERING DEPARTMENT, AND ROCKINGHAM COUNTY REGISTRY OF DEEDS. AN OFFICIAL AT PDA ADVISED DOUCET SURVEY THAT THEY HAVE PREVIOUSLY SEARCHED AND BELIEVE THAT THERE WERE NEVER ANY LAYOUT PLANS DEVELOPED FOR ANY OF THE RIGHT-OF-WAYS AT PEASE. NOTE HOWEVER THAT SECTION 5.3 OF A DOCUMENT TITLED "MUNICIPAL SERVICES AGREEMENT BETWEEN CITY OF PORTSMOUTH TOWN OF NEWINGTON AND PEASE DEVELOPMENT AUTHORITY EFFECTIVE AS OF JULY 1, 1998" IDENTIFIES THE STREETS SHOWN ON APPENDIX VI (WHICH IS REF. PLAN 4 HEREON) AS PUBLIC WAYS AND STATES THAT THE CITY OF PORTSMOUTH SHALL PROVIDE PUBLIC WORKS SERVICES ON THOSE ROADWAYS.
- 10. ALL UNDERGROUND UTILITIES (ELECTRIC, GAS, TEL. WATER, SEWER DRAIN SERVICES) ARE SHOWN IN SCHEMATIC FASHION, THEIR LOCATIONS ARE NOT PRECISE OR NECESSARILY ACCURATE. NO WORK WHATSOEVER SHALL BE UNDERTAKEN USING THIS PLAN TO LOCATE THE ABOVE SERVICES. CONSULT WITH THE PROPER AUTHORITIES CONCERNED WITH THE SUBJECT SERVICE LOCATIONS FOR INFORMATION REGARDING SUCH. CALL DIG-SAFE AT 1-888-DIG-SAFE.
- 11. AERIAL TOPOGRAPHY WAS CONDUCTED BY EASTERN TOPOGRAPHICS FROM IMAGES TAKEN DURING DECEMBER 2021 WITH A PHOTO SCALE OF 40 FEET. AERIAL MAPPING CONTOURS AND OBJECTS SHOWN WITHIN OBSCURED AREAS ARE APPROXIMATE AND SHOULD BE VERIFIED BEFORE USE FOR DESIGN & CONSTRUCTION PURPOSES.
- 12. THE ENTIRETY OF TAX MAP 308 LOT 1 IS WITHIN THE SPECIAL GROUNDWATER MANAGEMENT ZONE 3 PER REFERENCE PLAN 9. THE LOCATION OF THAT ZONE IS BASED ON COORDINATE VALUES PROVIDED IN THAT PLAN AND/OR FEATURES SHOWN ON THAT PLAN (E.G. MONITORING WELLS) THAT WERE LOCATED DURING THIS SURVEY.
- 13. ZONE: INDUSTRIAL DIMENSIONAL REQUIREMENTS (REFER TO ZONING ORDINANCE SECTION 304.03):

LOT SIZE LOT FRONTAGE 3,195' FRONT SETBACK LEFT SIDE SETBACK RIGHT SIDE SETBACK 50' REAR SETBACK

ZONING INFORMATION LISTED HEREON IS BASED ON THE PEASE DEVELOPMENT AUTHORITY ZONING ORDINANCE DATED JUNE 16, 2022 AS AVAILABLE ON THE PEASE DEVELOPMENT WEBSITE ON MARCH 24, 2023. ADDITIONAL REGULATIONS APPLY, AND REFERENCE IS HEREBY MADE TO E ZONING ORDINANCE. THE LESSEE IS RESPONSIBLE FOR COMPLYING WITH ALL APPLICABLE MUNICIPAL, STATE AND FEDERAL

REFERENCE PLANS:

OPEN SPACE

- "SUBLEASE BOUNDARY PLAN FOR PEASE DEVELOPMENT AUTHORITY BUILDINGS 115 AND 116 31 ROCHESTER AVENUE PEASE INTERNATIONAL TRADEPORT - PORTSMOUTH, N.H.: DATED NOV. 6, 1995 AND LAST REVISED (REV-2) ON 03/03/97 BY RICHARD P. MILLETTE AND ASSOCIATES.
- "SUBDIVISION PLAN FOR 5, 7, 19, AND 21 HAMPTON STREET PORTSMOUTH, NH LAND OF PEASE DEVELOPMENT AUTHORITY LEASED TO EXECUTIVE AIRDOCK, LLC (A PORTION OF TAX MAP 310, LOT 0) HAMPTON ST. & AVIATION AVE. PORTSMOUTH, NEW HAMPSHIRE" DATED JULY 1, 2021 AND REVISED (REV-1) NOV 30, 2021 BY DOUCET SURVEY LLC
- "ALTA/NSPS LAND TITLE SURVEY FOR CINTHESYS REAL ESTATE MANAGEMENT LLC (LESSEE) C/O THE KANE COMPANY AND PEASE DEVELOPMENT AUTHORITY (LESSOR) OF TAX MAP 307, LOT 1 - 68 NEW HAMPSHIRE AVE. PORTSMOUTH, NEW HAMPSHIRE" DATED DECEMBER 21, 2021 BY DOUCET
- . "APPENDIX VI MUNICIPAL SERVICES AGREEMENT BETWEEN CITY OF PORTSMOUTH TOWN OF NEWINGTON— AND PEASE DEVELOPMENT AUTHORITY EFFECTIVE AS OF JULY 1, 1998".
- 5. "SUBDIVISION PLAN 68 NEW HAMPSHIRE AVENUE" FOR LONDAVIA, INC. DATED 29-SEPT-1998 BY KIMBALL CHASE. R.C.R.D. PLAN 26777.

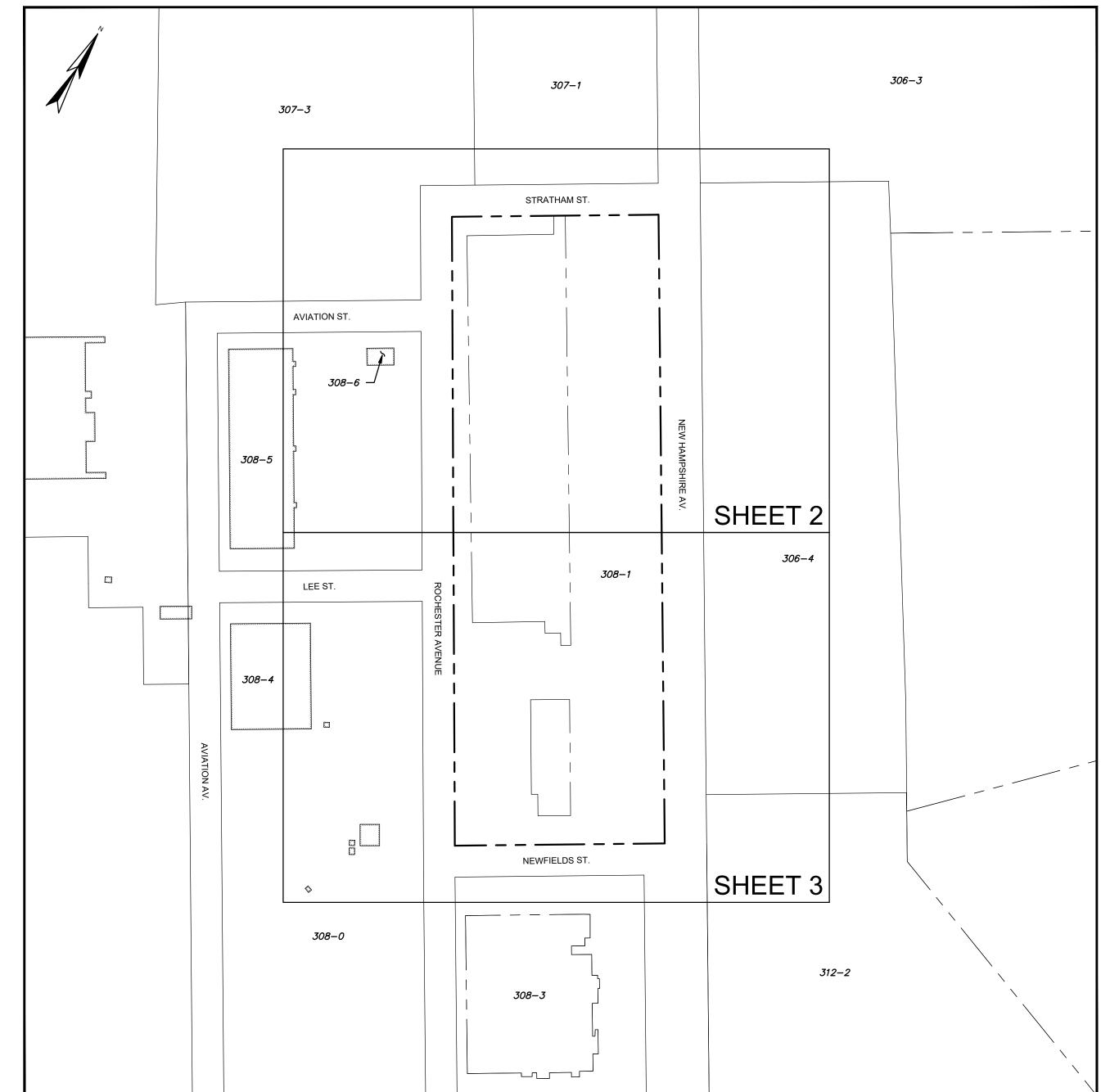
MWH AMERICAS MALVERN, PA" DATED JUNE 4, 2002 AND LAST REVISED (REV-2) 6/27/02 BY TFM. R.C.R.D. PLAN 31503.

AMERICAS MALVERN, PA" DATED JUNE 10, 2005 BY TFM. R.C.R.D. PLAN 33302.

REVISED (REV-4) 10/15/07 BY DOUCET SURVEY INC. R.C.R.D. PLAN 35260.

- "SUBDIVISION PLAN AIR CARGO FACILITY 139 FLIGHTLINE ROAD" DATED 20—FEB—1998 AND REVISED (REV—1) 26—OCT—98 BY KIMBALL CHASE. R.C.R.D. PLAN 26778.
- "SUBDIVISON PLAN FOR LAND TO BE LEASED TO PAN-AM 14 AVIATION AVE. PEASE INTERNATIONAL TRADEPORT PORTSMOUTH, NH" LAST REVISED (REV-3) ON AUG. 26, 1999 BY EMANUEL ENGINEERING, INC. R.C.R.D. PLAN 27540.
- EXCEPTED SUBPARCEL ZONE 3 PEASE AIR FORCE BASE PORTSMOUTH AND NEWINGTON, NEW HAMPSHIRE PREPARED FOR MWH AMERICAS MALVERN,
- PA" DATED OCTOBER 22, 2002 AND LAST REVISED (REV-3) 10/22-03 BY TFM. R.C.R.D. PLAN 31494. 9. "PLAN OF GROUNDWATER MANAGEMENT ZONE - ZONE 3 - PEASE AIR FORCE BASE PORTSMOUTH AND NEWINGTON, NEW HAMPSHIRE PREPARED FOR
- 10. "PLAN OF USE RESTRICTION ZONE SITE 32 PEASE AIR FORCE BASE PORTSMOUTH, NEW HAMPSHIRE PREPARED FOR MWH AMERICAS MALVERN, PA"
- DATED JULY 11, 2002 AND REVISED (REV-1) 7/18/02 BY TFM. R.C.R.D. PLAN 31506. 11. "PLAN OF USE RESTRICTION ZONE SITE 81 PEASE AIR FORCE BASE PORTSMOUTH, NEW HAMPSHIRE PREPARED FOR MWH AMERICAS MALVERN, PA"
- DATED JUNE 10, 2005 BY TFM. R.C.R.D. PLAN 33301. 12. "PLAN OF USE RESTRICTION ZONE SITE 72 - BASE MOTOR POOL - PEASE AIR FORCE BASE PORTSMOUTH, NEW HAMPSHIRE PREPARED FOR MWH
- 13. "SUBDIVISION PLAN DEPICTING PORTSMOUTH TAX MAP 306 LOT 3" DATED AUGUST 1, 2005 AND LAST REVISED (REV-2) SAME DATE AUGUST 1, 2005 BY ALTUS ENGINEERING. R.C.R.D. PLAN 33592.
- 14. 'USE RESTRICTION ZONE ZONE 3 PEASE AIR FORCE BASE PORTSMOUTH AND NEWINGTON, NEW HAMPSHIRE PREPARED FOR MWH AMERICAS

MALVERN, PA" DATED JUNE 10, 2005 AND REVISED (REV-1) JUNE 17, 2005 BY TFM. R.C.R.D. PLAN 33593.

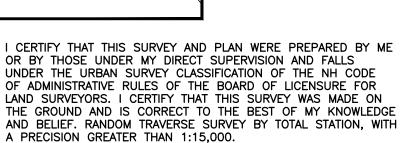

15. "SUBDIVISION PLAN FOR 75 NEW HAMPSHIRE LLC — 75 NEW HAMPSHIRE AVENUE — 50 INTERNATIONAL DRIVE & 80 INTERNATIONAL DRIVE (TAX MAP 306, LOTS 1, 2, 4 & 5) PEASE INTERNATIONAL TRADEPORT ROCKINGHAM COUNTY PORTSMOUTH, NEW HAMPSHIRE" DATED AUG 14, 2007 AND LAST

APPROVED BY:

PEASE DEVELOPMENT AUTHORITY

CITY OF PORTSMOUTH PLANNING BOARD

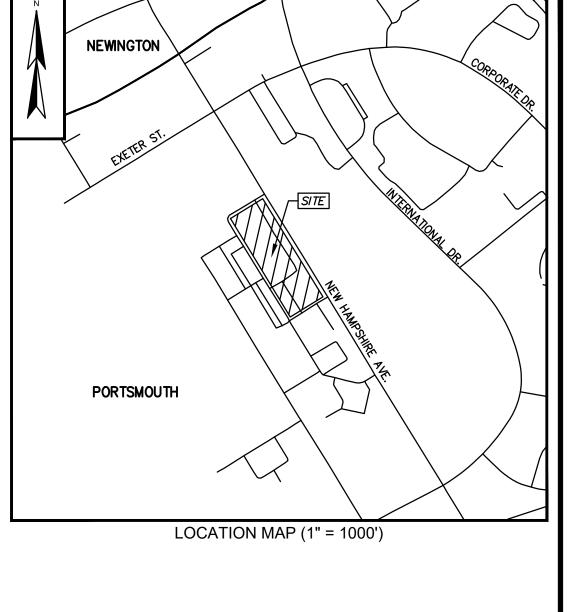
- 16. "PLAN FOR NEW HAMPSHIRE AIR NATIONAL GUARD PEASE BLVD, AIRLINE AVE & NEW HAMSHIRE AVE PEASE INTERNATIONAL TRADEPORT, NEWINGTON ROCKINGHAM COUNTY, NH" DATED 7-DEC-2009 AND LAST REVISED 1/21/11 BY EASTERLY SURVEYING, INC.
- 17. "PROPOSED 4 STORY OFFICE BUILDING 100 NEW HAMPSHIRE AVENUE PORTSMOUTH, NH" DATED NOVEMBER 16, 2018 AND LAST REVISED 12/04/18 BY HOYLE, TANNER & ASSOCIATES.
- 18. "EXISTING CONDITIONS PLAN FOR TIGHE & BOND OF PEASE HANGAR 227 AREA" DATED FEBRUARY 2022 LAST UPDATED 09/21/22. BY DOUCET
- SURVEY LLC NOT RECORDED.



KEY MAP

SCALE: 1" = 150'

DATE


DATE

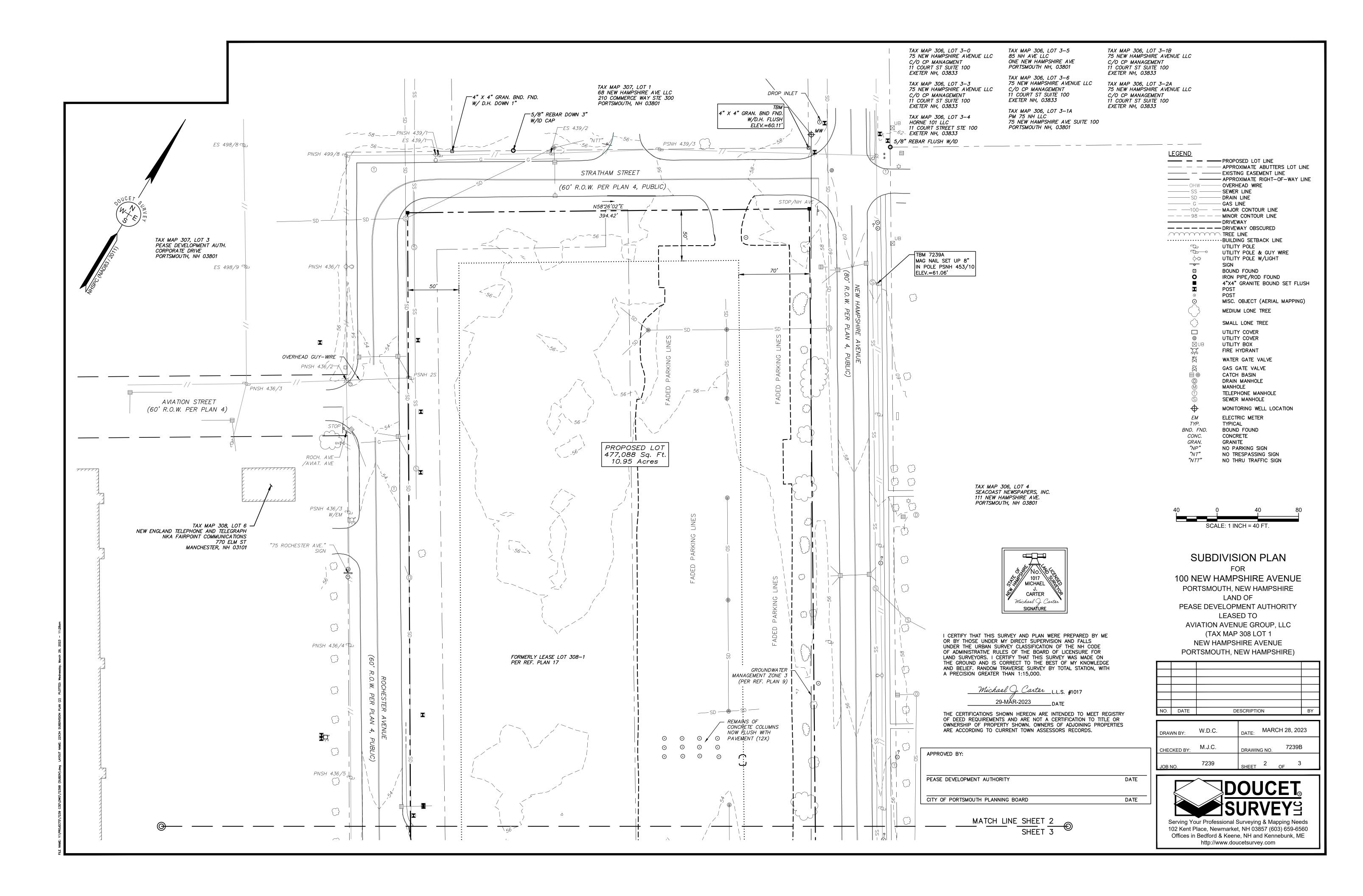
Michael Q. Carter L.L.S. #1017 29-MAR-2023

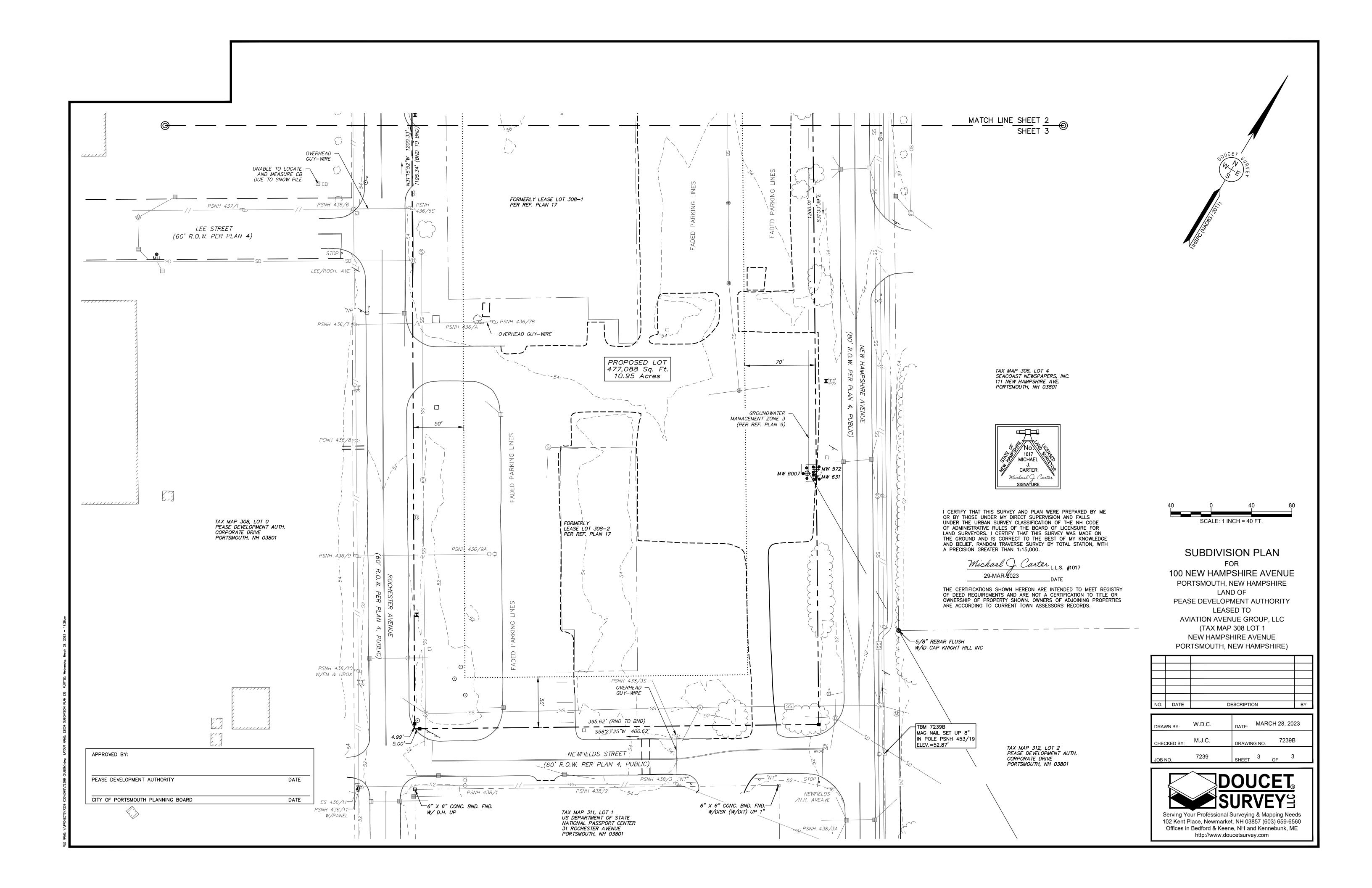
CARTER

THE CERTIFICATIONS SHOWN HEREON ARE INTENDED TO MEET REGISTRY OF DEED REQUIREMENTS AND ARE NOT A CERTIFICATION TO TITLE OR OWNERSHIP OF PROPERTY SHOWN. OWNERS OF ADJOINING PROPERTIES ARE ACCORDING TO CURRENT TOWN ASSESSORS RECORDS.

SUBDIVISION PLAN

100 NEW HAMPSHIRE AVENUE PORTSMOUTH, NEW HAMPSHIRE LAND OF PEASE DEVELOPMENT AUTHORITY


LEASED TO AVIATION AVENUE GROUP, LLC (TAX MAP 308 LOT 1 NEW HAMPSHIRE AVENUE PORTSMOUTH, NEW HAMPSHIRE)


NO.	DATE	DESCRIPTION	BY

DRAWN BY:	W.D.C.	DATE: MARCH 28, 2023
CHECKED BY:	M.J.C.	DRAWING NO. 7239B
JOB NO.	7239	SHEET 1 OF 3

Serving Your Professional Surveying & Mapping Needs 102 Kent Place, Newmarket, NH 03857 (603) 659-6560 Offices in Bedford & Keene, NH and Kennebunk, ME http://www.doucetsurvey.com

Pease Development Authority 55 International Drive, Portsmouth, NH 03801, (603) 433-6088

Subdivision Application

			PORTSMOUTH, NH				
For PDA Use Only							
Date Submitted:	Municipal Review:	Fee:					
Application Complete:	Date Forwarded:	Paid:	Check #:				
		-					
	Applicant	Information					
Applicant: Aviation Avenue		Agent: Tighe	e & Bond				
Address: 210 Commerce W Portsmouth, NH	/ay, Suite 300,		Corporate Drive smouth, NH				
Business Phone: 603-430-40	000	Business Phone: 603	-433-8818				
Mobile Phone:		Mobile Phone:					
Fax: 603-430-8940		Fax:					
	Site Inf	formation					
Address / Location of Original Lot	: 80 Rochester Av	ve (100 New Ham	pshire Ave)				
Portsmouth Tax Map: 308	Lot #: 1	Zone: Pease Indu					
		-	. ,				
Proposed Activity (check one)	Subdivision X	_Lot Line Adjustment					
Existing Lot							
LAISTING LOT	Total # of Existing Lot(s)	1					
	Existing Lot Area	±10.9					
Created Lot							
	Total # of Proposed Lot(s)						
	Area of Proposed Lot(s)	±11.4					
All above information shall be sho copy of all application materials as be required by applicable municip	s well as 1 half size set of dra	wings to PDA. Applicant	ide 3 Full size hard copies and 1 PDF shall supply additional copies as may or additional information				
Checklist: Application fee (as req	uired) (X) r any Required State/Federal p	Abbutters List (X)	Drawings (X)				
Copies of approvals to	any required State/r ederal p	errints (See Cit 300 of FDA	()				
	Certif	fication					
I hereby certify under the penalties of are true and complete to the best of range conditions established by the Re	my knowledge. I hereby apply fo	or Subdivision and acknowle					
Mul L	an		12/19/22				
Signature	e of Applicant		Date				
Neil A. Hansen							

N:\Engineer\Subdivision Application.xlsx

Printed Name

AUTHORIZATION 100 New Hampshire Avenue Map 308, Lot 1

The undersigned owner of the above referenced property hereby authorizes representatives of Bosen & Associates, PLLC, and Tighe & Bond to represent the company's interests before the Portsmouth land use boards and to submit any and all applications and materials related thereto on its behalf.

Date: October 25, 2022

Aviation Avenue Group, LLC

By: Name: JOHN STEBBER
Title: MANAGRE MRINBER