

Civil Engineers Structural Engineers Traffic Engineers Land Surveyors Landscape Architects Scientists



July 20, 2022

Rick Chellman, Chair Portsmouth Planning Board 1 Junkins Ave, 3<sup>rd</sup> Floor Portsmouth, NH 03801

## RE: 70 Pleasant Point Drive – Katara, LLC – Tax Map 207 Lot 15 Project #47307.01

Dear Mr. Chellman,

On behalf of our client, Katara, LLC, please find a Wetland Conditional Use Permit submission relative to the above-referenced project. The following materials have been uploaded to Viewpoint and are included in this submission:

- Invasive Species Removal Report, prepared by Terrain Planning & Design LLC;
- Drainage Analysis (1 copy); and
- Site Plans entitled "Site Renovation Plans, 70 Pleasant Point Drive, Portsmouth, New Hampshire", prepared by TFMoran, Inc., dated May 25, 2022, Last Revised June 27, 2022 (1 copy at 22"x34").

## Project Description

The project includes the demolition and removal of the existing home and constructing a new two-story, 2,306 SF, single family dwelling at 70 Pleasant Point Drive. The existing lot (Tax Map 207 Lot 15) is approximately .642 acres and currently contains a single-story residence with a shed and water access. The site is within the Single Residence B (SRB) Zone and is adjacent to the Piscataqua River.

Associated improvements include but are not limited to access, grading, utilities, stormwater management system, and landscaping. The project proposes a 3,306 SF building footprint and total of 3,642 SF of impervious area within the 100' wetland buffer. Approximately 20,582 SF of disturbance is required to facilitate the development.

The new home is proposed 53.9' from the adjacent Wetland. This will replace the existing home which is 44.7' from the adjacent wetland. The project received unanimous favorable recommendation from the Portsmouth Conservation Commission during their July meeting and is currently under review by the New Hampshire Department of Environmental Services for both Wetland and Shoreland Impacts.





#### 70 Pleasant Point Drive – Katara, LLC – Tax Map 207 Lot 15 Project #47307.01

July 18, 2022

We appreciate your consideration of these matters and look forward to presenting this project to you at the August 18<sup>th</sup> Planning Board Meeting.

Respectfully, **TFMoran, Inc.** 

nul

Jason Cook Civil Project Engineer

JKC/jcc

cc: Katara, LLC

Joshua Butkus, Maugel Destefano Architects (via <u>jbutkus@maugel.com</u>) Marcos Cintra, Auger Building Company (via <u>marcos@augerbuildingcompany.com</u>) Eric Buck, Terrain Planning & Design (via <u>eric@terrainplanning.com</u>)



Civil Engineers Structural Engineers Traffic Engineers Land Surveyors Landscape Architects Scientists



# Letter of Authorization

I, Rebecca Rowe, of Katara, LLC, 274 Miller Avenue, Portsmouth, NH, hereby authorize TFMoran, Inc., 170 Commerce Way, Suite 102, Portsmouth, NH, to act on my behalf concerning property owned by Katara, LLC, located on 70 Pleasant Point Drive, Portsmouth, NH, known as Tax Map 207, Lot 15.

I hereby appoint TFMoran, Inc. as my agent to act on my behalf in the review process, to include any required signatures.

Rebecco J. Kowe

Client Name

5/24/2022

Date

Witness

Date





May 19, 2022

Peter Britz Environmental Planner/Sustainability Coordinator City of Portsmouth NH

Re: 70 Pleasant Point Drive Portsmouth NH

#### Dear Peter:

This letter is intended to address recommendations for invasive species removal and native plant restoration along the shorefront of 70 Pleasant Point Drive. The site is .65 acres with an existing, non-conforming, single family residence that is planned to be torn down and rebuilt. Accompanying the house construction project is the conversion of existing impervious driveway and hardscape surfaces into new permeable driveway and outdoor patio spaces. The project also includes introduction of native plantings along the shoreline and around the home, as well as the transition of a large lawn area into a native, low maintenance grass and ground cover mix mix.

The property sits on the Piscataqua River with almost 336 feet of frontage. A majority of the site is a level plateau that perches above the shoreline. A majority of the site sits within the 100ft buffer and the 250ft NH DES Shoreland protection zone. There is a drastic slope along the southerly shore frontage from the relatively flat part of the site to the tide line. This slope is covered in a mix of ornamental, native and invasive plantings.

Acting as good stewards the owners have asked that we put together an invasive species analysis and plan for removal and replacement. Enclosed is an outline of our findings as well as recommendations for new native plants to be installed.

Respectfully Submitted,

Ein R. Bund

Eric R. Buck, PLA, ASLA Owner/ Landscape Architect Terrain Planning & Design LLC

Our list of existing invasive plant species can be found below. We propose removing invasive species by lowimpact manual hand pulling methods whenever possible. During our inventory a majority of the invasives we found had stems less than 1" in diameter. This means they likely have minimal root mass in the slope. However, should larger plants be discovered during the removal process, we recommend a cut & dab herbicide application by licensed applicators. This method of removal for larger specimens will greatly reduce the chance of erosion along the shoreline. All existing erosion shall be stabilized and any soil disturbed during planting will be seeded with native conservation/ wetlands mix.

Likely Invasive species identified:

- Celastrus orbiculatus, Asiatic Bittersweet
- *Fallopia japonica,* Japanese Knotweed
- Rosa multiflora, Multiflora Rose
- Deutzia scabra, Fuzzy Deutzia

Recommended Native Plantings:

- *Amelanchier laevis* Shadblow Serviceberry
- Clethra alnifolia Summersweet
- Cornus amonum Silky Dogwood
- Cornus racemosa Gray Dogwood
- Ilex vertilicillata Winterberry
- Rosa virginiana Virginia Rose

Whenever possible native plantings should be installed via a live staking method, rather than as field grown plant material with a root ball. This will avoid added erosion on the slope caused by excavation of the soil to place the plants. Should the existing slope not have sufficient soil for live staking method to take place, erosion control tubes filled with growing medium are to be staked to the slope and live staking should be placed into the soil socks. Enclosed are specifications for recommended soil medium and erosion sock type and method.

Below are images of the area that was inventoried.











# **GREENLOXX®** VEGETATED WALL & SLOPE SYSTEMS



# DESIGNED FOR STRENGTH. ROOTED IN SUSTAINABILITY.





GreenLoxx<sup>®</sup> vegetated systems allow for the restoration of eroded or damaged slopes, riparian waterways, shoreline banks, and more.

Create attractive, naturally vegetated landscapes without the use of hard concrete materials on your restoration projects.

# GREENLOXX SYSTEM COMPARISON

| System Name                                              | MSE | Slope<br>Degree | Anchors | FLW<br>Geogrid | GroSoxx®<br>Size | Purpose                            |
|----------------------------------------------------------|-----|-----------------|---------|----------------|------------------|------------------------------------|
| <b>GreenLoxx VSF</b><br>Vegetated Slope Facing           | No  | up to 60°       | Yes     | Yes            | 8″x3′            | Protect slope surface from erosion |
| <b>GreenLoxx MSE</b><br>Mechanically Stabilized<br>Earth | Yes | 70° - 90°       | No      | Yes            | 12″x2′           | Gain back land                     |
| <b>GreenLoxx MSE - RSS</b><br>Reinforced Soil Slope      | Yes | 50° - 70°       | No      | Yes            | 12″x2′           | Gain back land                     |

# **GREENLOXX COMPONENTS**

**GroSoxx:** Durable mesh is filled with Certified GrowingMedia<sup>™</sup> as the basis to quickly establish vegetation.

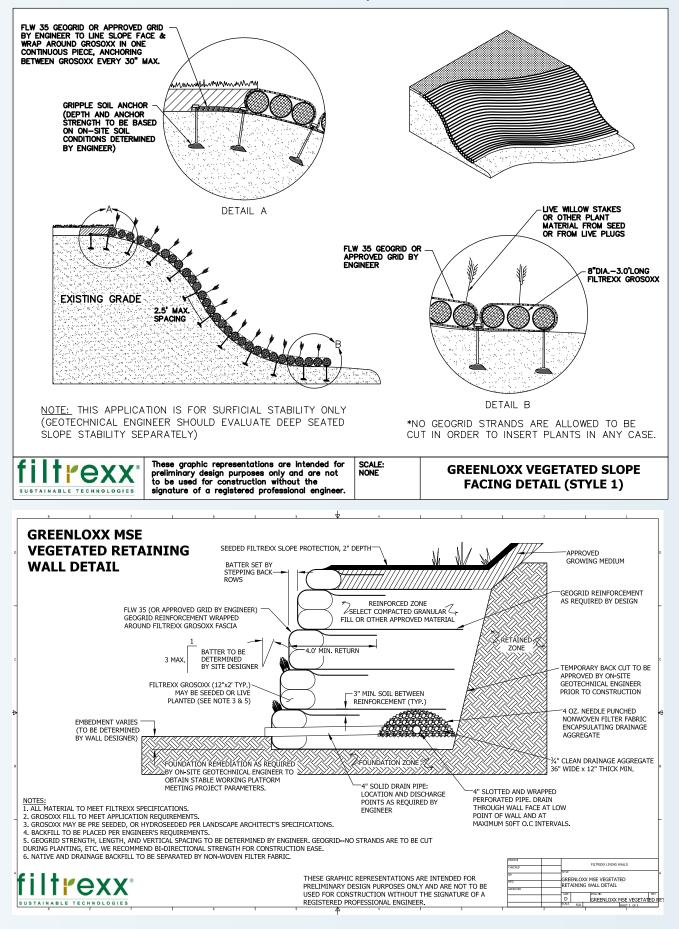
**FLW Geogrid:** Used to wrap layers of GroSoxx. Biaxial pattern provides strength and features a 2"x2" opening to eliminate cutting the grid for planting.

Soil Anchors: Used in GreenLoxx VSF to secure layers of geogrid and GroSoxx.

Vegetation: Options include pre-seeded GroSoxx, live staking, broadcast seeding, or plugs.



GroSoxx is the basis of GreenLoxx systems for quickly establishing vegetation on shorelines, banks, walls, and slopes. GroSoxx uses Durable mesh, filled with certified, composted GrowingMedia<sup>™</sup> to provide a stable and fertile environment for plant growth. The use of GroSoxx for wall infill speeds construction, eliminates waste, prevents weeds from taking root, and offers a safer installation process. Available pre-seeded throughout, or plant after construction is complete. GroSoxx provides the highest amount of facial growing material in each application, maximizing environmental benefits.




# **Vegetation Options**

- Grasses, including natives
- · Vines and ground cover
- Wildflowers
- Perennials and annuals
- Woody vegetation from live stakes or pots (2" diameter or less so that grids are not cut in planting)

# **DESIGN DRAWINGS**

Refer to Design Specifications and CADs for complete application, design, installation, and maintenance documentation at www.filtrexx.com/specs



# GREENLOXX VEGETATED SLOPE FACING (VSF)



GreenLoxx VSF is typically used to protect the face of the slope or bank from erosion. Requires minimal base preparation/excavation, and no backfill. FLW Geogrid is wrapped over the GroSoxx and secured with soil anchors.

- Lightweight components
- Immediate protection from toe cutting & sloughing
- Establish and reinforce vegetation under intense hydraulic pressure
- Drains freely, less hydrostatic pressure

Project location: Lake Erie shoreline, Rocky River, OH







# GREENLOXX MECHANICALLY STABILIZED EARTH (MSE)







GreenLoxx MSE is typically used to build a more vertical, structural wall. GroSoxx are stacked in courses wrapped in FLW Geogrid and tied back into the compacted fill behind the face of the wall.

Note: For slopes from 50° - 70°, the GreenLoxx MSE Vegetated Retaining Wall - Reinforced Soil Slope (RSS) alternate design is used.

- Lightweight components
- Withstands high flow velocities—ideal for sensitive riparian areas
- Safer & more flexible installation than block walls

Project location: Roadway along Spring Creek, Harrisburg, PA



# SUSTAINABILITY BENEFITS

Our compost-based GreenLoxx systems are designed for environmental benefits and can have a significant impact on your project's sustainability.



## Vegetated Wall & Slope Benefits<sup>1</sup>

- Reduction of the Urban Heat Island Effect
- Improved Exterior Air Quality
- Noise Reduction
- Increased Green Space, Biodiversity and Habitat
- Forage for Native Pollinators
- Urban Agriculture
- On-Site Wastewater Treatment
- Improved Health and Well-Being
- Aesthetic Improvements
- Local Job Creation



# **Carbon Footprint Reduction<sup>2</sup>**

There are three key ways in which compost-based GreenLoxx systems can significantly lower a site's carbon footprint:

- Methane avoidance resulting from diverting organics from landfills
- Carbon sequestration by permanent vegetation
- Carbon sequestration by storing carbon in the soil

This GreenLoxx MSE project on the Chattahoochee River has the following impact:

- 656,000 lbs of Organics Diverted from Landfills
- 1,148,000 lbs of CO<sub>2</sub>e Methane Avoidance
- 205 lbs of CO<sub>2</sub> Sequestered in Vegetation
- 110,700 lbs of  $CO_2$  Sequestered in Soil

This is the equivalent of offsetting the greenhouse gas emissions of 121 passenger vehicles driven for one year.<sup>2</sup>

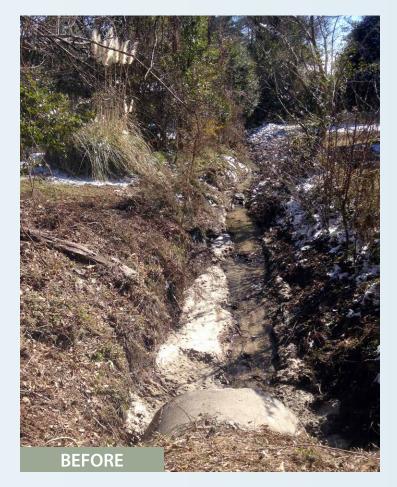


# Treating Stormwater Runoff<sup>2</sup>

With approximately 50% organic matter, a high porosity, and high relative surface area, compost has the ability to absorb significant volumes of water.

This GreenLoxx MSE project, restoring a bluff on Lake Michigan, not only provides habitat and beauty, it can also absorb significant amounts of stormwater. Each linear ft of 12-in GroSoxx (1 square foot) can absorb up to 4 gallons of water. Utilizing 2,000 ft of 12-in GroSoxx, this wall has the potential to absorb up to 8,000 gallons of rainfall per event.<sup>2</sup>

In other applications, replacing a traditional concrete block wall with a permeable GreenLoxx system on a site with a stormwater retention basin or bioretention system, may allow engineering and construction of a smaller stormwater retention basin or bioretention system, and/or increased absorption of area rainfall, and may also contribute to LEED Green Building Credits.


## Filtrexx Environmental Sustainability Benefits

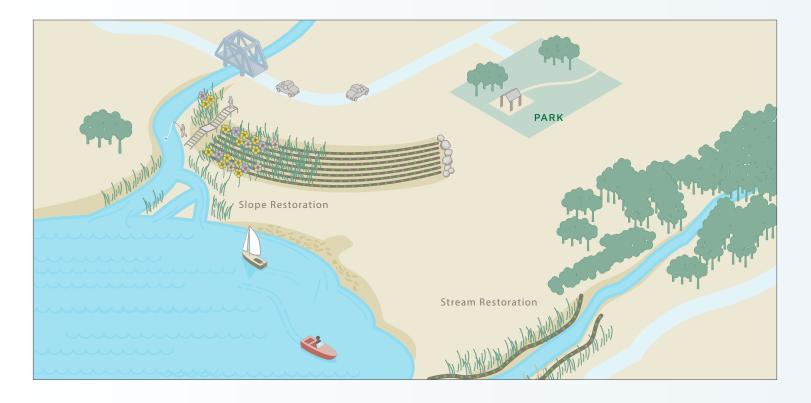

Filtrexx GroSoxx<sup>®</sup> uses **locally recycled organic materials** inside of photodegradable or biodegradable mesh. Diverting these organic materials from landfills and applying them to the soil means a reduction in greenhouse gas emissions. For every 1,000' of 12" GroSoxx used, 160,000 lbs of organic materials are diverted and your carbon footprint is reduced by 307,000 lbs CO<sub>2</sub>e. This is the equivalent of offsetting the greenhouse gas emissions of 29 passenger vehicles driven for one year. In addition, the potential water absorption equals up to 4,000 gallons, per rainfall event.<sup>2</sup>

# **PROJECT PROFILE: STREAMBANK RESTORATION**

## Columbia, SC

A Richland County stream had heavily eroded banks, and residents had begun voicing concerns to the County about the loss of land. Richland County took on the project in order to restore the lost real estate. The engineer originally proposed using turf reinforcement mats, but that would have meant taking away even more land to create the necessary slope angle. "The County was looking for a design that would allow for the streambanks to be built back up quickly, almost vertically in some locations, and a design that would also look very natural," said Allison Steele, Stormwater Engineer for Richland County. "The whole point of the project was to give them their yards back." Engineering firm CDM Smith decided to use the GreenLoxx system, not only for its verticality, but also for its ease of installation in a forested environment. The GroSoxx used in the GreenLoxx system mold to fit around trees, eliminating the need to clear cut. Filtrexx® Certified<sup>SM</sup> Installers Eco-FX, Inc. (Charlotte, NC) and Coogler Construction, Inc. (Ballentine, SC) teamed up for the custom installation. Together they installed approximately 600 feet of streambank, and the work was completed in about two weeks. GreenLoxx can be installed with or without mechanical reinforcement—this project used both. The GroSoxx were pre-seeded with an annual cover crop. The team returned in spring to plant several hundred native plants for permanent stabilization.








# Use GreenLoxx Systems for a variety of applications and industries



# PROMOTES GROWTH



# APPLICATIONS

- STREAMBANKS
- STEEP SLOPES
- SHORELINES
- RETAINING WALLS
- ROADSIDE SLOPES

# INDUSTRIES

- MUNICIPALITIES
- RESIDENTIAL/HOA
- LANDSCAPING
- CONSERVATION DISTRICTS

Contact Filtrexx for availability and system packages.



filtrexx.com | 877-542-7699 | info@filtrexx.com

# **DESIGN SPECIFICATION**

# 5.2 GrowingMedia™



#### **PURPOSE & DESCRIPTION**

Composted products used for Filtrexx **GrowingMedia<sup>™</sup>** shall be weed free and derived from a well-decomposed source of organic matter. The composted products shall be produced using an aerobic composting process meeting USEPA CFR 503 regulations (In Canada: M.O.E. 101, C.C.M.E. Type "A" and Type "AA" regulations), including time and temperature data indicating effective weed seed, pathogen and insect larvae kill. The composted products shall be free of any refuse, contaminants or other materials toxic to plant growth. Non-composted products will not be accepted. Test methods for the items below should follow USCC TMECC guidelines for laboratory procedures:

#### Section

A. PH – 5.0-8.0 in accordance with TMECC 04.11-A, "Electrometric pH Determinations for Compost"

B. Moisture content of less than 60% in accordance with standardized test methods for moisture determination.

C. GrowingMedia to be used with Filtrexx® Soxx<sup>™</sup> where seeding and/or live stakes are specified; on low grade slopes where vegetation establishment is the priority; or where rainwater absorption, water holding capacity, runoff reduction and infiltration are the priority shall meet the following particle size distribution. Examples include Soxx for Runoff Diversion, Channel Protection, Bank Stabilization, Severe Slope Stabilization, Vegetated Retaining Walls, Vegetated Gabion, Filtration System, Compost Vegetated Cover, Compost Erosion Control Blanket<sup>™</sup>, Compost Storm Water Blanket<sup>™</sup>, Compost Engineered Soil, Compost Bioretention System, Green Roof GrowingMedia.

Particle Sizes - 100% passing a 2 in (50mm) sieve, 99% passing a 1 in (25mm) sieve, minimum of 60% passing a ½ in (12.5mm) sieve in accordance with TMECC 02.02-B, "Sample Sieving for Aggregate Size Classification".

D. Material shall be relatively free (<1% by dry weight) of inert or foreign man made materials.

E. Material feedstocks shall not contain wood materials that have been treated or painted, contain preservatives or adhesives, or are composed of engineered wood products.

F. A sample shall be submitted to the Engineer for approval prior to being used and must comply with all local, state and federal regulations.

#### Option A: Erosion Control

For vegetated non Soxx applications where slope grades are greater than 3:1, where sheet runoff rate or velocity may be high, or rainfall rate/intensity may be high.

Substitution for Section C. Particle Size of GrowingMedia shall use the following particle size distribution specification: 99% passing a 1 in (25mm) sieve, maximum of 50% passing a 1/2 in (12.5mm) sieve.

Option B: Non-vegetated Temporary Erosion Control

For non-vegetated non Soxx applications where slope grades are greater than 3:1, where sheet runoff rate or velocity may be high, or rainfall rate/intensity may be high.

Substitution for Section C. Particle Size of GrowingMedia shall use the following particle size distribution specification: 99% passing a 3 in (75mm) sieve and a maximum of 30% passing a 1/2 in (12.5mm) sieve.

Rationale for Options: Research conducted at The University of Georgia and Auburn University (Faucette et al, 2006; Faucette, 2006) to evaluate the performance of particle sizes in compost erosion control blankets found that distributions with predominantly small particles absorbed more rainfall, reduced a greater volume of runoff, increased the delay of runoff commencement, and exhibited greater vegetation growth, relative to compost erosion control blankets with large particle sizes. However, compost erosion control blankets with distributions of predominantly large particles slowed runoff rate and reduced soil loss prior to vegetation establishment over compost erosion control blankets with smaller particles sizes.

#### FIELD APPLICATION PHOTO REFERENCES



GrowingMedia Sample

#### **ADDITIONAL INFORMATION**

For other references on this topic, including additional research reports and trade magazine and press coverage, visit the Filtrexx website at filtrexx.com

Filtrexx International, Technical Support 877-542-7699 | www.filtrexx.com | info@filtrexx.com Call for complete list of international installers and distributors.

branch & leaf® logo, EnviroSoxx®, Filtrexx®, GreenLoxx®, GroSoxx®, and the color GREEN®, are Registered Trademarks used by Filtrexx International.

CECB<sup>TM</sup> [Compost Erosion Control Blanket], CSWB<sup>TM</sup> [Compost StormWater Blanket], DitchChexx<sup>TM</sup>, EdgeSaver<sup>TM</sup>, FilterCell<sup>TM</sup>, FilterMedia<sup>TM</sup>, FilterSoxx<sup>TM</sup>, GrowingMedia<sup>TM</sup>, InletSoxx<sup>TM</sup>, LivingWall<sup>TM</sup>, Lockdown<sup>TM</sup>, SiltSoxx<sup>TM</sup>, and Soxx<sup>TM</sup> are Trademarks used by Filtrexx International.

Filtrexx Certified<sup>SM</sup> and its accompanying logo are Service Marks used by Filtrexx International.

The information contained herein may be subject to confidential intellectual property of Filtrexx International, including but not limited to US Patents 7,226,240; 7,452,165; 7,654,292; 8,272,812; 8,439,607; 8,740,503; 8,821,076; 9,044,795; 9,945,090; and 9,982,409 or Patents Pending and is the property of Filtrexx International.

Copyright 2005-2021, Filtrexx International, all rights reserved. Unauthorized reproduction prohibited. All statements, product characteristics, and performance data contained herein are believed to be reliable based on observation and testing, but no representations, guarantees, or warranties of any kind are made as to accuracy, suitability for particular applications, or the results to be obtained. Nothing contained herein is to be considered to be permission or a recommendation to use any proprietary process or technology without permission of the owner. No warranty of any kind, expressed or implied, is made or intended.

#### **REFERENCES CITED & ADDITIONAL RESOURCES**

Demars, K.R. and R.P. Long, 1998. Field evaluation of source separated compost and Coneg model procurement specifications for Connecticut DOT projects. University of Connecticut and Connecticut Department of Transportation. December, 1998. JHR 98-264.

Faucette, L.B., J. Governo, C.F. Jordan, B.G. Lockaby, H.F. Carino, and R. Governo. 2006. Storm water quality, C factors, and particle size specifications for compost and mulch blankets relative to straw blankets with PAM used for erosion control. Currently Under Peer Review by Journal of Soil and Water Conservation. In: Filtrexx Library #706

Faucette, B. 2006. How Important is Particle Size in Specifications for Compost Erosion Control Blankets? In: Filtrexx Tech Link #3310; and Filtrexx Standard Specifications and Design Manual 5.0, Appendix 5.9.

Faucette B, C. Jordan, M. Risse, M. Cabrera, D. Coleman, and L. West. 2005. Evaluation of storm water from compost and conventional erosion control practices in construction activities. Journal of Soil and Water Conservation. 60:6:288-297.

Faucette, B., M. Risse, M. Nearing, J. Gaskin, and L. West. 2004. Runoff, erosion, and nutrient losses from compost and mulch blankets under simulated rainfall. Journal of Soil and Water Conservation. 59:4:154-160.

Mukhtar, S., M. McFarland, C. Gerngross, F. Mazac. 2004. Efficacy of using dairy manure

compost as erosion control and revegetation material. 2004 American Society of Agricultural Engineers/Canadian Society of Agricultural Engineers Annual International Meeting, Ontario, CA. Paper #44079.

Persyn, R.A., T.D. Glanville, T.L. Richard, J.M. Laflen, and P.M. Dixon. 2004. Environmental effects of applying composted organics to new highway impacts: Part 1. Interrill runoff and erosion. Transactions of the American Society of Agricultural and Biological Engineers. 47:2:463-469.

# DRAINAGE ANALYSIS REPORT

# FOR

# **Site Renovation Plans**

70 Pleasant Point Drive Portsmouth, New Hampshire Rockingham County

Tax Map 207, Lot 15

Owned by and Prepared for Katara, LLC

May 25, 2022

**Prepared By:** 



Civil Engineers Structural Engineers Traffic Engineers Land Surveyors Landscape Architects Scientists (This Page Is Intentionally Blank)

| Contents |
|----------|
|----------|

| 1.0 - SUMMARY & PROJECT DESCRIPTION                              | 1         |
|------------------------------------------------------------------|-----------|
| 2.0 - CALCULATION METHODS                                        | 1         |
| 3.0 – EXISTING SITE CONDITIONS                                   | 2         |
| 4.0 - PRE-DEVELOPMENT CONDITIONS                                 | 2         |
| 5.0 - POST-DEVELOPMENT CONDITIONS                                | 2         |
| 6.0 – REGULATORY COMPLIANCE                                      | 4         |
| 6.1 – PORTSMOUTH STORMWATER MANAGEMENT STANDARDS                 | 4         |
| 7.0 – BEST MANAGEMENT PRACTICES                                  | 4         |
| 7.1 – TEMPORARY PRACTICES                                        | 5         |
| 7.2 – PERMANENT PRACTICES                                        | 6         |
| 7.3 – BEST MANAGEMENT PRACTICE EFFICIENCIES                      | 6         |
| 8.0 – GENERAL CONSTRUCTION SEQUENCING                            | 6         |
| 9.0 – CONCLUSION                                                 | 7         |
| APPENDIX A – EXTREME PRECIPITATION RATES                         | 10        |
| APPENDIX B – SITE-SPECIFIC SOIL SURVEY & NRCS WEB SOIL REPORT    | <u>13</u> |
| APPENDIX C – TEST PIT LOGS & INFILTRATION TEST DATA              | 14        |
| APPENDIX D – PRE-DEVELOPMENT CALCULATIONS                        | 47        |
| APPENDIX E – PRE-DEVELOPMENT CALCULATIONS (10-YEAR STORM EVENT)  | <u>59</u> |
| APPENDIX F – POST-DEVELOPMENT CALCULATIONS                       | 65        |
| APPENDIX G – POST-DEVELOPMENT CALCULATIONS (10-YEAR STORM EVENT) | 81        |
| APPENDIX H – PRE-DEVELOPMENT DRAINAGE MAP                        | 95        |
| APPENDIX I – POST-DEVELOPMENT DRAINAGE MAP                       | 99        |

# Table of Figures

| Table 1 – 24-Hour Rainfall Rates                                  | .1 |
|-------------------------------------------------------------------|----|
| Table 2 - Pre and Post- Development Peak Runoff Rate Comparison   | .3 |
| Table 3 - Pre and Post- Development Peak Runoff Volume Comparison | .3 |

(This Page Is Intentionally Blank)

## **1.0 - SUMMARY & PROJECT DESCRIPTION**

The project includes the development of a single-family residential house on 70 Pleasant Point Drive. The existing lot is approximately 0.642 acres and currently contains a single-family residence. The site is within the Single Residence B Zone and Flood Plain Overlay District and is adjacent to the Piscatagua River on both the southeast and southwest side.

The project proposes to remove the existing dwelling and replace with a new modern 2-story dwelling. Associated improvements include, but are not limited to access, grading, utilities, stormwater management system, lighting, and landscaping. The project proposes a 2,605 SF building footprint and total of 3,546 SF of impervious area within the property lines and approximately 19,907 SF of disturbance to facilitate the development.

This analysis has been completed to verify the project will not pose adverse stormwater effects on-site and off-site. Compared to the pre-development conditions, the post-development stormwater management system has been designed to reduce peak runoff rates, reduce runoff volume, reduce the risk of erosion and sedimentation, and improve stormwater runoff quality. In addition, Best Management Practices are employed to formulate a plan that assures stormwater quality both during and after construction. The following summarizes the findings from the study.

## 2.0 - CALCULATION METHODS

The design storms analyzed in this study are the 2-year, 10-year, 25 year, and 50-year 24hour storm events. The software program, HydroCAD version 10.00<sup>1</sup> was utilized to calculate the peak runoff rates from these storm events. The program estimates the peak rates using the TR-20 method. A Type III storm pattern was used in the model. Rainfall frequencies for the analyzed region were also incorporated into the model. Rainfall frequencies from the higher of the Extreme Precipitation Rates from Cornell University's Northeast Regional Climate Center (see Appendix A, Table 1). Due to the project's location within the Coastal/Great Bay Region community, the design rainfall increases the Cornell rates by 15% to address projected storm surge, sea level rise, and precipitation events per Env-Wg 1503.08(l). Design standards were taken from the New Hampshire Stormwater Manual, December 2008<sup>2</sup>.

|             | 24-HOUR RAINFALL RATES            |          |  |  |  |  |  |  |  |  |  |  |  |  |
|-------------|-----------------------------------|----------|--|--|--|--|--|--|--|--|--|--|--|--|
| Storm-Event | Northeast Regional Climate Center | Design   |  |  |  |  |  |  |  |  |  |  |  |  |
| (year)      | Extreme Precipitation             | Rainfall |  |  |  |  |  |  |  |  |  |  |  |  |
|             | (in)                              | (in)     |  |  |  |  |  |  |  |  |  |  |  |  |
| 2           | 3.21                              | 3.69     |  |  |  |  |  |  |  |  |  |  |  |  |
| 10          | 4.86                              | 5.59     |  |  |  |  |  |  |  |  |  |  |  |  |
| 25          | 6.17                              | 7.10     |  |  |  |  |  |  |  |  |  |  |  |  |
| 50          | 7.38                              | 8.49     |  |  |  |  |  |  |  |  |  |  |  |  |
|             | Table 1 – 24-Hour Rainfall Rates  |          |  |  |  |  |  |  |  |  |  |  |  |  |

#### Table 1 – 24-Hour Rainfall Rates

Time of Concentration is the time it takes for water to flow from the hydraulically most remote point in the watershed (with the longest travel time) to the watershed outlet. This time is

<sup>&</sup>lt;sup>1</sup> HydroCAD version 10.00, HydroCAD Software Solutions LLC, Chocorua, NH, 2013.

<sup>&</sup>lt;sup>2</sup> New Hampshire Stormwater Manual: Volume One - Stormwater and Antidegradation, December 2008; Volume Two - Post-Construction Best Management Practices Selection and Design, December 2008; Volume Three -Erosion and Sediment Controls During Construction, December 2008.

determined by calculating the time it takes runoff to travel this route under one of three hydrologic conditions: sheet flow, shallow concentrated flow, or channel flow. Because the Intensity-Duration-Frequency (IDF) curve is steep with short TC's, estimating the actual intensity is subject to error and overestimates actual runoff. Due to this, the TC's are adjusted to a minimum of 6 minutes.

## 3.0 – EXISTING SITE CONDITIONS

The soils within the proposed area of disturbance are identified per the NRCS Web Soil (see Appendix B for detail and soil locations). The soils are composed of Urban land – canton complex (HSG A). These soils are classified as well-drained.

Three test pits and infiltration tests were conducted. In nearly all test pit locations, loam was discovered. Infiltration tests were determined per Ksat testing using a Compact Constant Head Permeameter (Amoozemeter) per Env-Wq 1504.14(d). The highest Estimated Seasonal High-Water Table (ESWT) observed was at: elevation 10.17' at the location of the proposed bioretention system.

### 4.0 - PRE-DEVELOPMENT CONDITIONS

The pre-development condition is characterized by four subcatchments composing two watersheds, which flows towards the Piscataqua River. Pre-development subcatchment areas are depicted on the attached plan entitled "Pre-Development Drainage Map," Sheet DRAIN-01 in Appendix H.

Stormwater runoff from the site primarily infiltrates into the well-drained soils on-site. The remaining stormwater runoff discharges primarily towards the Piscataqua River (EPR) while the remaining runoff is directed to the neighboring properties to the north of the site (POI-1).

In the pre-development condition, the total impervious area is 3,642 SF over a total drainage analysis area of 27,965 SF.

### 5.0 - POST-DEVELOPMENT CONDITIONS

The post-development condition is characterized by two watersheds divided into many subcatchment areas. Post-development subcatchment areas are depicted on the attached plan entitled "Post-Development Drainage Map," sheet DRAIN-02 in Appendix I.

In the post-development condition, the total impervious area is 3,561 SF over a total drainage analysis area of 27,965 SF. The total impervious area decreases from the existing amount. Impervious area from the project consists of a 2,605 SF footprint residential building and associated improvements. One rain garden is proposed to treat and mitigate the stormwater runoff from the impact of the new impervious area from the proposed development.

Table 2 summarizes the pre- and post-development peak runoff rates for the 2-year, 10-year, 25 year, and 50-year 24-hour Type III storm events for all discharge. Table 3 summarizes the pre- and post-development peak runoff volumes for the 2-year 24-hour Type III storm events for all discharge.

47307.01 Drainage Analysis Report.docx

Page 2

|            | T.   |              | <b>TE COMPAR</b> |         | JNOFF   |  |  |  |  |  |  |  |  |  |
|------------|------|--------------|------------------|---------|---------|--|--|--|--|--|--|--|--|--|
| POINT OF   |      | DESIGN STORM |                  |         |         |  |  |  |  |  |  |  |  |  |
| INTEREST   |      | 2-year       | 10-year          | 25-year | 50-year |  |  |  |  |  |  |  |  |  |
|            | Pre  | 0.0          | 0.1              | 0.2     | 0.3     |  |  |  |  |  |  |  |  |  |
| POI-1      | Post | 0.0          | 0.1              | 0.1     | 0.2     |  |  |  |  |  |  |  |  |  |
| Piscataqua | Pre  | 0.3          | 1.1              | 1.8     | 2.5     |  |  |  |  |  |  |  |  |  |
| River      | Post | 0.3          | 0.9              | 1.6     | 2.3     |  |  |  |  |  |  |  |  |  |

Table 2 - Pre- and Post- Development Peak Runoff Rate Comparison

|      | TABL           |            | FACE WATER PEAK RUNOFF<br>IE COMPARISON (CF) |     |  |  |  |  |  |
|------|----------------|------------|----------------------------------------------|-----|--|--|--|--|--|
|      | POINT OF       |            | DESIGN STORM                                 |     |  |  |  |  |  |
|      | INTEREST       |            | 2-year                                       |     |  |  |  |  |  |
|      |                | Pre        | 87                                           |     |  |  |  |  |  |
|      | POI-1          | Post       | 87                                           |     |  |  |  |  |  |
|      | Piscataqua     | Pre        | 1,437                                        |     |  |  |  |  |  |
|      | River          | Post       | 1,220                                        |     |  |  |  |  |  |
| able | 3 - Pre- and F | Post- Deve | elopment Peak Runoff Volume Compa            | ris |  |  |  |  |  |

The proposed project reduces peak rates of runoff compared to existing conditions for all storm events, in accordance with AoT regulations and Portsmouth stormwater regulations. Additionally, per NHDES, the 2-year 24-hour storm does not result in an increased peak flow rate and reduces volume within the limits of Env-Wq 1507.05(b)(1) from the pre-development to post-development condition. There will be no adverse effects on the abutting properties from the proposed stormwater management system.

Appendices D and F summarize all 24-hour storm events for pre- and post-development drainage calculations using HydroCAD analysis. Appendices E and G provide a full summary of the 10-year, 24-hour storm for the pre- and post-development drainage calculations using HydroCAD analysis.

There were three warning messages for the 10-year storm event related to the proposed rain garden:

- [87] Warning: Pond ST Oscillations may require smaller dt or Finer Routing (severity=114)
- [87] Warning: Pond ST2 Oscillations may require smaller dt or Finer Routing (severity=88)
- [87] Warning: Pond ST3: Oscillations may require smaller dt or Finer Routing (severity=156)

There was one warning message for the 10-year storm event related to the proposed pervious patio and:

• [87] Warning: Pond PVP Oscillations may require smaller dt or Finer Routing (severity=282)

Warning 87 is related to the dt and fine routing were adjusted to minimize the severity of this occurrence. The oscillation occurs as the water drains down to the surface of the subsurface

infiltration basins (See Figure 1). Oscillation warnings less than 100 are considered minor. All oscillation errors occur outside of the peak runoff and therefore are not a significant factor in the calculations.

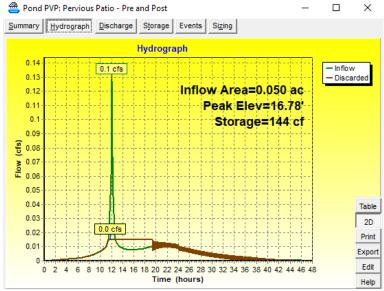



Figure 1: View of the Hydrographs with Oscillation Warning

## 6.0 - REGULATORY COMPLIANCE

The project meets the stricter of the stormwater standards identified in the New Hampshire Department of Environmental Services (DES) Env-Wq 1500 Alteration of Terrain Regulations and Portsmouth stormwater management regulations.

### 6.1 – PORTSMOUTH STORMWATER MANAGEMENT STANDARDS

The following regulatory requirements are provided to show project conformance to the applicable criteria of Portsmouth Stormwater Management Performance Standards defined in the Portsmouth Zoning Ordinance Section 10.1018.10. All regulations are met.

All construction activities and uses of buildings, structures, and land within wetlands and wetland buffers shall be carried out so as to minimize the volume and rate of stormwater runoff, the amount of erosion, and the export of sediment from the site. All such activities shall be conducted in accordance with Best Management Practices for stormwater management including but not limited to:

- 1. New Hampshire Stormwater Manual, NHDES, current version.
- 2. Best Management Practices to Control Non-point Source Pollution: A Guide for Citizens and City Officials, NHDES, January 2004.

## 7.0 – BEST MANAGEMENT PRACTICES

47307.01 Drainage Analysis Report.docx

Best Management Practices will be developed in accordance with the New Hampshire Stormwater Manual, Volumes Two and Three, December 2008<sup>3</sup> to formulate a plan that assures stormwater quality both during and after construction. The intent of the outlined measures is to minimize erosion and sedimentation during construction, stabilize and protect the site from erosion after construction is complete and mitigate any adverse impacts to stormwater quality resulting from development. Best Management Practices for this project include:

- Temporary practices to be implemented during construction.
- Permanent practices to be implemented after construction.

## 7.1 – TEMPORARY PRACTICES

- 1. Erosion, sediment, and stormwater detention measures must be installed as directed by the engineer.
- 2. All disturbed areas, as well as loam stockpiles, shall be seeded and contained by a silt barrier.
- 3. Silt barriers must be installed prior to any construction commencing. All erosion control devices including silt barriers and storm drain inlet filters shall be inspected at least once per week and following any rainfall. All necessary maintenance shall be completed within twenty-four (24) hours.
- 4. Any silt barriers found to be failing must be replaced immediately. Sediment is to be removed from behind the silt barrier if found to be one-third the height of the silt barrier or greater.
- 5. Any area of the site, which has been disturbed and where construction activity will not occur for more than twenty-one (21) days, shall be temporarily stabilized by mulching and seeding.
- 6. No construction materials shall be buried on-site.
- 7. After all areas have been stabilized, temporary practices are to be removed, and the area they are removed from must be smoothed and revegetated.
- 8. Areas must be temporarily stabilized within 14 days of disturbance or seeded and mulched within 3 days of final stabilization.
- 9. After November 15<sup>th</sup>, incomplete driveways or parking areas must be protected with a minimum of 3" of crushed gravel, meeting the standards of NHDOT item 304.3.
- 10. An area shall be considered stable if one of the following has occurred:
  - a) Base course gravels are installed in areas to be paved.
  - b) A minimum of 85% vegetated growth has been established.
  - c) A minimum of 3" of non-erosive material such as stone or rip rap has been installed.
  - d) Erosion control blankets have been properly installed.

<sup>&</sup>lt;sup>3</sup> New Hampshire Stormwater Manual: Volume One - Stormwater and Antidegradation, December 2008; Volume Two - Post-Construction Best Management Practices Selection and Design, December 2008; Volume Three - Erosion and Sediment Controls During Construction, December 2008.

### 7.2 – PERMANENT PRACTICES

The objectives for developing permanent Best Management Practices for this site include the following:

- 1. Maintain existing runoff flow characteristics.
  - a) Drainage is structured to minimize any offsite increase in runoff
- 2. Treatment BMP's are established to ensure the water quality.
- 3. Maintenance schedules are set to safeguard the long-term working of the stormwater BMP's.

### 7.3 – BEST MANAGEMENT PRACTICE EFFICIENCIES

Appendix E of Volume 2 of the New Hampshire Stormwater <sup>4</sup> lists the pollutant removal efficiencies of various BMP's. All proposed BMP's meet all state and Portsmouth requirements for total suspended solids (TSS) and pollutant removal, Total Nitrogen (TN), and Total Phosphorous (TP).

Bioretention Systems have a 90% TSS removal efficiency, 65% TN removal efficiency, and 65% TP efficiency.

## 8.0 – GENERAL CONSTRUCTION SEQUENCING

To minimize erosion and sedimentation due to construction, construction shall follow this general construction sequence.

Modifications to the sequence necessary due to the contractor's schedule shall include appropriate temporary and permanent erosion and sedimentation control measures.

The contractor shall schedule work such that any construction area is stabilized within 45 days of initial disturbance except as noted below. No more than 5 acres of disturbed land shall be unstabilized at any one time.

The project shall be managed so that it meets the requirements and intent of RSA 430:53 and chapter ARG 3800 relative to invasive species.

Do not traffic exposed soil surface of infiltration systems with construction equipment. If feasible, perform excavations with equipment positioned outside the limits of the infiltration components of the system.

Do not discharge sediment-laden waters from construction activities (runoff, water from excavations) to stormwater bmp's. Stormwater runoff must be directed to temporary practices until stormwater bmp's are stabilized.

Do not place stormwater bmp's into service until the contributing areas have been fully stabilized.

<sup>&</sup>lt;sup>4</sup> New Hampshire Stormwater Manual: Volume One - Stormwater and Antidegradation, December 2008; Volume Two - Post-Construction Best Management Practices Selection and Design, December 2008; Volume Three - Erosion and Sediment Controls During Construction, December 2008.

After the infiltration system is excavated to the final design elevation, the floor should be deeply tilled with a rotary tiller or disc harrow to restore the infiltration rates, followed by a pass with a leveling drag.

1. Notify easement owners prior to commencement of work.

2. Install all perimeter erosion protection measures as indicated on the plans prior to the commencement of construction.

3. Stormwater treatment ponds and swales shall be installed before rough grading the site.

4. During construction every effort shall be made to manage surface runoff quality.

5. Daily, or as required, construct temporary berms, drains, ditches, silt barriers, sediment traps, etc. Mulch and seed as required. (temporary seed mixture of winter rye applied at a rate of 2.5 lbs/1000 sf shall be used).

6. Conduct major earthwork, including clearing and grubbing, within the limits of work. All cut and fill slopes shall be seeded within 72 hours after grading.

7. All stripped topsoil and other earth materials shall be stockpiled outside the immediate work and 100' buffer. A silt barrier shall be constructed around these piles in a manner to provide access and avoid sediment outside of the work area.

8. Construct building pad and commence new building construction.

9. Construct temporary diversions as required.

10. Begin permanent and temporary installation of seed and mulch.

11. Perform earthwork necessary to establish rough grading around driveway. Manage exposed soil surfaces to avoid transporting sediments into wetlands.

12. Install subsurface utilities (water, sewer, gas, electric, communications, drainage, drainage facilities, etc.).

Construct proposed driveway, rain gardens, gravel wetlands and drainage swales. All ditches, swales, and gravel wetlands shall be fully stabilized prior to directing flow to them.
 Complete building and all off-site improvements.

15. Complete seeding and mulching. Seed to be applied with broadcast spreader or by hydroseeding, then rolled, raked, or dragged to assure seed/soil contact.

16. Remove temporary erosion control measures after seeded areas have become firmly established and site improvements are complete.

17. During the course of the work and upon completion, the contractor shall remove all sediment deposits, either on or off site, including catch basins, and sumps, drain pipes and ditches, curb lines, along silt barriers, etc. Resulting from soil and/or construction operations.18. See winter construction sequence for work conducted after October 15th.

## 9.0 - CONCLUSION

The proposed stormwater management system will treat, infiltrate, and mitigate the runoff generated from the proposed development and provide protection of groundwater and surface waters as required through the Alteration of Terrain Bureau and Portsmouth stormwater management regulations. Further, the surface water peak runoff rate is reduced in the 2-year, 10-year, 25-year, and 50-year storm. The project has been designed in accordance with NHDES and Portsmouth regulations. There is little change in the flow characteristics of the site. The proposed project has been designed to pose no adverse effects on surrounding properties.

Page 7

Respectfully, **TFMoran, Inc. Seacoast Division** 

Jason Cook Civil Project Engineer

JKC/jcc

Page 8

(This Page Is Intentionally Blank)

# <u>APPENDIX A – EXTREME PRECIPITATION</u> <u>RATES</u>

(This Page Is Intentionally Blank)

# **Extreme Precipitation Tables**

## Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

| Smoothing | Yes                             |
|-----------|---------------------------------|
| State     |                                 |
| Location  |                                 |
| Longitude | 70.746 degrees West             |
| Latitude  | 43.068 degrees North            |
| Elevation | 0 feet                          |
| Date/Time | Mon, 18 Apr 2022 11:32:07 -0400 |

## **Extreme Precipitation Estimates**

|       | 5min | 10min | 15min | 30min | 60min | 120min |       | 1hr  | 2hr  | 3hr  | 6hr  | 12hr  | 24hr              | 48hr  |       | 1day  | 2day  | 4day  | 7day  | 10day |       |
|-------|------|-------|-------|-------|-------|--------|-------|------|------|------|------|-------|-------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1yr   | 0.26 | 0.40  | 0.50  | 0.65  | 0.81  | 1.04   | 1yr   | 0.70 | 0.98 | 1.21 | 1.56 | 2.03  | 2.66              | 2.92  | 1yr   | 2.35  | 2.81  | 3.22  | 3.94  | 4.55  | 1yr   |
| 2yr   | 0.32 | 0.50  | 0.62  | 0.81  | 1.02  | 1.30   | 2yr   | 0.88 | 1.18 | 1.52 | 1.94 | 2.49  | <mark>3.21</mark> | 3.57  | 2yr   | 2.84  | 3.43  | 3.94  | 4.68  | 5.33  | 2yr   |
| 5yr   | 0.37 | 0.58  | 0.73  | 0.98  | 1.25  | 1.61   | 5yr   | 1.08 | 1.47 | 1.89 | 2.43 | 3.14  | 4.07              | 4.58  | 5yr   | 3.60  | 4.40  | 5.04  | 5.94  | 6.70  | 5yr   |
| 10yr  | 0.41 | 0.65  | 0.82  | 1.12  | 1.45  | 1.89   | 10yr  | 1.25 | 1.73 | 2.23 | 2.90 | 3.75  | <mark>4.86</mark> | 5.53  | 10yr  | 4.30  | 5.32  | 6.09  | 7.11  | 7.98  | 10yr  |
| 25yr  | 0.48 | 0.76  | 0.97  | 1.34  | 1.78  | 2.34   | 25yr  | 1.54 | 2.15 | 2.78 | 3.64 | 4.74  | <mark>6.17</mark> | 7.10  | 25yr  | 5.46  | 6.83  | 7.81  | 9.02  | 10.05 | 25yr  |
| 50yr  | 0.54 | 0.86  | 1.10  | 1.54  | 2.08  | 2.77   | 50yr  | 1.79 | 2.53 | 3.30 | 4.33 | 5.67  | <mark>7.38</mark> | 8.58  | 50yr  | 6.54  | 8.25  | 9.43  | 10.81 | 11.97 | 50yr  |
| 100yr | 0.60 | 0.97  | 1.25  | 1.78  | 2.43  | 3.27   | 100yr | 2.09 | 2.99 | 3.92 | 5.17 | 6.77  | <mark>8.85</mark> | 10.37 | 100yr | 7.83  | 9.98  | 11.39 | 12.96 | 14.26 | 100yr |
| 200yr | 0.68 | 1.11  | 1.43  | 2.05  | 2.84  | 3.85   | 200yr | 2.45 | 3.53 | 4.63 | 6.14 | 8.09  | 10.60             | 12.54 | 200yr | 9.38  | 12.06 | 13.76 | 15.54 | 17.00 | 200yr |
| 500yr | 0.80 | 1.32  | 1.72  | 2.50  | 3.50  | 4.79   | 500yr | 3.02 | 4.40 | 5.79 | 7.72 | 10.23 | 13.47             | 16.13 | 500yr | 11.92 | 15.51 | 17.68 | 19.77 | 21.47 | 500yr |

## **Lower Confidence Limits**

|       | 5min | 10min | 15min | 30min | 60min | 120min |       | 1hr  | 2hr  | 3hr  | 6hr  | 12hr | 24hr | 48hr  |       | 1day | 2day  | 4day  | 7day  | 10day |       |
|-------|------|-------|-------|-------|-------|--------|-------|------|------|------|------|------|------|-------|-------|------|-------|-------|-------|-------|-------|
| 1yr   | 0.23 | 0.36  | 0.44  | 0.59  | 0.72  | 0.88   | 1yr   | 0.62 | 0.86 | 0.93 | 1.33 | 1.69 | 2.25 | 2.48  | 1yr   | 1.99 | 2.38  | 2.87  | 3.20  | 3.91  | 1yr   |
| 2yr   | 0.31 | 0.49  | 0.60  | 0.81  | 1.00  | 1.19   | 2yr   | 0.86 | 1.16 | 1.37 | 1.82 | 2.33 | 3.06 | 3.45  | 2yr   | 2.71 | 3.32  | 3.82  | 4.55  | 5.09  | 2yr   |
| 5yr   | 0.35 | 0.54  | 0.67  | 0.92  | 1.17  | 1.40   | 5yr   | 1.01 | 1.37 | 1.61 | 2.11 | 2.73 | 3.78 | 4.18  | 5yr   | 3.35 | 4.02  | 4.72  | 5.53  | 6.23  | 5yr   |
| 10yr  | 0.39 | 0.59  | 0.73  | 1.03  | 1.33  | 1.60   | 10yr  | 1.14 | 1.56 | 1.80 | 2.38 | 3.05 | 4.36 | 4.85  | 10yr  | 3.86 | 4.66  | 5.43  | 6.40  | 7.18  | 10yr  |
| 25yr  | 0.44 | 0.67  | 0.83  | 1.19  | 1.56  | 1.90   | 25yr  | 1.35 | 1.86 | 2.10 | 2.75 | 3.52 | 4.74 | 5.87  | 25yr  | 4.20 | 5.64  | 6.62  | 7.77  | 8.66  | 25yr  |
| 50yr  | 0.48 | 0.73  | 0.91  | 1.31  | 1.76  | 2.16   | 50yr  | 1.52 | 2.12 | 2.34 | 3.06 | 3.91 | 5.36 | 6.76  | 50yr  | 4.75 | 6.50  | 7.69  | 9.01  | 9.99  | 50yr  |
| 100yr | 0.53 | 0.81  | 1.01  | 1.46  | 2.01  | 2.46   | 100yr | 1.73 | 2.41 | 2.62 | 3.40 | 4.32 | 6.03 | 7.80  | 100yr | 5.34 | 7.50  | 8.92  | 10.47 | 11.53 | 100yr |
| 200yr | 0.59 | 0.89  | 1.13  | 1.63  | 2.27  | 2.81   | 200yr | 1.96 | 2.75 | 2.93 | 3.76 | 4.76 | 6.77 | 8.99  | 200yr | 5.99 | 8.64  | 10.34 | 12.17 | 13.33 | 200yr |
| 500yr | 0.68 | 1.02  | 1.31  | 1.90  | 2.70  | 3.36   | 500yr | 2.33 | 3.28 | 3.41 | 4.28 | 5.40 | 7.89 | 10.84 | 500yr | 6.99 | 10.43 | 12.56 | 14.89 | 16.15 | 500yr |

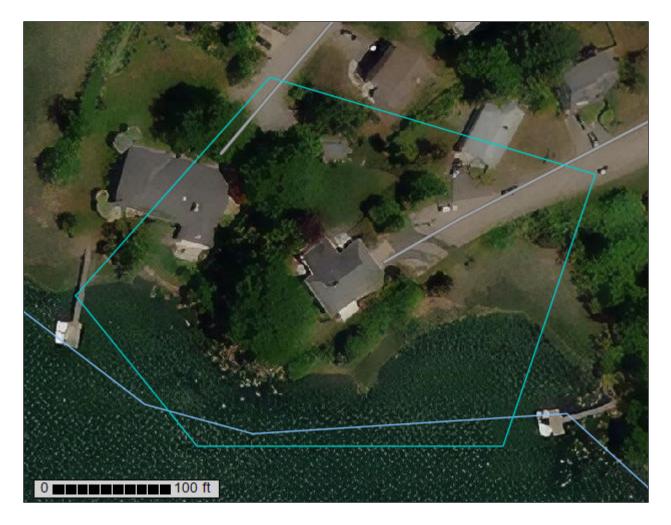
## **Upper Confidence Limits**

|       | 5min | 10min | 15min | 30min | 60min | 120min |       | 1hr  | 2hr  | 3hr  | 6hr   | 12hr  | 24hr  | 48hr  |       | 1day  | 2day  | 4day  | 7day  | 10day |       |
|-------|------|-------|-------|-------|-------|--------|-------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1yr   | 0.29 | 0.44  | 0.54  | 0.72  | 0.89  | 1.09   | 1yr   | 0.77 | 1.06 | 1.26 | 1.74  | 2.20  | 2.97  | 3.17  | 1yr   | 2.63  | 3.05  | 3.58  | 4.37  | 5.04  | 1yr   |
| 2yr   | 0.34 | 0.52  | 0.64  | 0.87  | 1.07  | 1.27   | 2yr   | 0.92 | 1.24 | 1.48 | 1.96  | 2.52  | 3.42  | 3.71  | 2yr   | 3.03  | 3.57  | 4.10  | 4.84  | 5.62  | 2yr   |
| 5yr   | 0.40 | 0.62  | 0.77  | 1.05  | 1.34  | 1.62   | 5yr   | 1.15 | 1.59 | 1.89 | 2.54  | 3.26  | 4.34  | 4.97  | 5yr   | 3.84  | 4.78  | 5.38  | 6.39  | 7.17  | 5yr   |
| 10yr  | 0.47 | 0.72  | 0.89  | 1.25  | 1.61  | 1.98   | 10yr  | 1.39 | 1.94 | 2.29 | 3.11  | 3.97  | 5.34  | 6.22  | 10yr  | 4.72  | 5.98  | 6.84  | 7.86  | 8.77  | 10yr  |
| 25yr  | 0.58 | 0.88  | 1.09  | 1.56  | 2.05  | 2.58   | 25yr  | 1.77 | 2.52 | 2.96 | 4.08  | 5.17  | 7.74  | 8.37  | 25yr  | 6.85  | 8.05  | 9.20  | 10.36 | 11.43 | 25yr  |
| 50yr  | 0.67 | 1.03  | 1.28  | 1.84  | 2.47  | 3.14   | 50yr  | 2.13 | 3.07 | 3.61 | 5.02  | 6.35  | 9.69  | 10.50 | 50yr  | 8.57  | 10.10 | 11.51 | 12.76 | 13.99 | 50yr  |
| 100yr | 0.79 | 1.20  | 1.50  | 2.17  | 2.98  | 3.83   | 100yr | 2.57 | 3.74 | 4.39 | 6.18  | 7.81  | 12.11 | 13.17 | 100yr | 10.72 | 12.66 | 14.41 | 15.74 | 17.13 | 100yr |
| 200yr | 0.93 | 1.40  | 1.77  | 2.57  | 3.58  | 4.68   | 200yr | 3.09 | 4.57 | 5.36 | 7.61  | 9.61  | 15.19 | 16.53 | 200yr | 13.44 | 15.89 | 18.08 | 19.41 | 20.97 | 200yr |
| 500yr | 1.16 | 1.72  | 2.21  | 3.21  | 4.57  | 6.07   | 500yr | 3.94 | 5.94 | 6.96 | 10.07 | 12.67 | 20.50 | 22.33 | 500yr | 18.14 | 21.48 | 24.39 | 25.60 | 27.40 | 500yr |



# <u>APPENDIX B – SITE-SPECIFIC SOIL SURVEY &</u> <u>NRCS WEB SOIL REPORT</u>

(This Page Is Intentionally Blank)




United States Department of Agriculture

Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource Report for Rockingham County, New Hampshire



## Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2\_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

## Contents

| Preface                                               | 2  |
|-------------------------------------------------------|----|
| How Soil Surveys Are Made                             |    |
| Soil Map                                              |    |
| Soil Map                                              |    |
| Legend                                                |    |
| Map Unit Legend                                       |    |
| Map Unit Descriptions                                 | 11 |
| Rockingham County, New Hampshire                      |    |
| 799—Urban land-Canton complex, 3 to 15 percent slopes | 13 |
| W—Water                                               | 14 |
| References                                            | 15 |

## **How Soil Surveys Are Made**

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

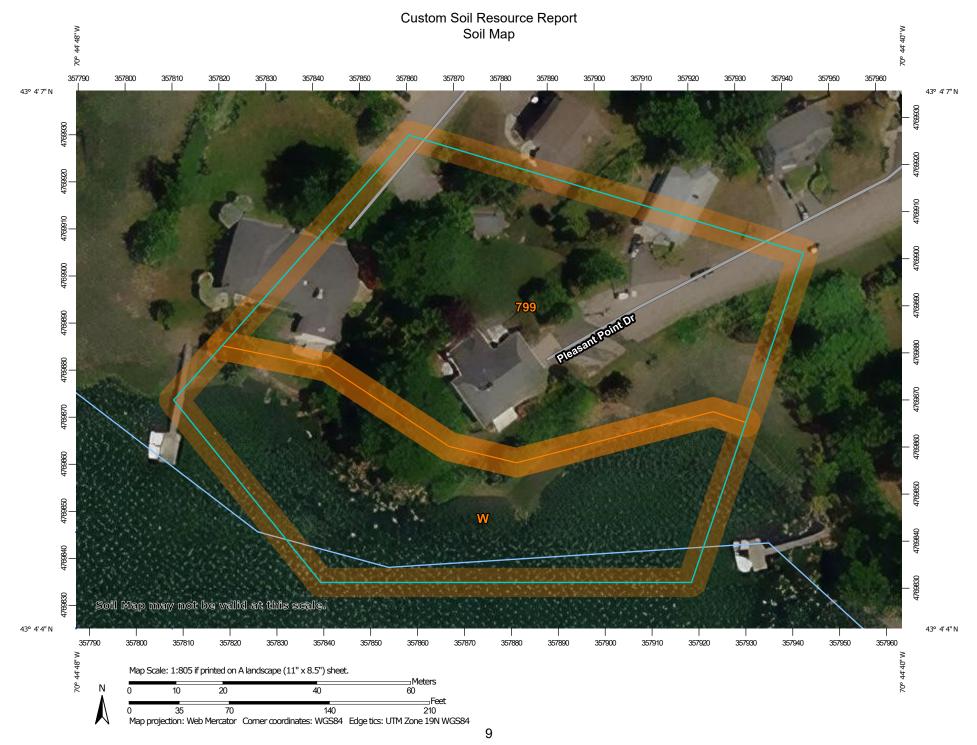
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.


Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

## Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.



2

|            | MAP L                                  | EGEND       |                       | MAP INFORMATION                                                                                                                                                                   |
|------------|----------------------------------------|-------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Area of In | terest (AOI)<br>Area of Interest (AOI) | 80          | Spoil Area            | The soil surveys that comprise your AOI were mapped at 1:24,000.                                                                                                                  |
| Soils      |                                        | ۵           | Stony Spot            |                                                                                                                                                                                   |
|            | Soil Map Unit Polygons                 | 0           | Very Stony Spot       | Warning: Soil Map may not be valid at this scale.                                                                                                                                 |
| ~          | Soil Map Unit Lines                    | \$          | Wet Spot              | Enlargement of maps beyond the scale of mapping can cause                                                                                                                         |
|            | Soil Map Unit Points                   | $\triangle$ | Other                 | misunderstanding of the detail of mapping and accuracy of soil                                                                                                                    |
| _          | Point Features                         | ·**         | Special Line Features | line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed                                                           |
| అ          | Blowout                                | Water Fea   |                       | scale.                                                                                                                                                                            |
|            | Borrow Pit                             | ~           | Streams and Canals    |                                                                                                                                                                                   |
| *          | Clay Spot                              | Transport   | ation<br>Rails        | Please rely on the bar scale on each map sheet for map<br>measurements.                                                                                                           |
| $\diamond$ | Closed Depression                      | ~           | Interstate Highways   |                                                                                                                                                                                   |
| X          | Gravel Pit                             | 2           | US Routes             | Source of Map: Natural Resources Conservation Service<br>Web Soil Survey URL:                                                                                                     |
| 000        | Gravelly Spot                          | ~           | Major Roads           | Coordinate System: Web Mercator (EPSG:3857)                                                                                                                                       |
| 0          | Landfill                               | ~           | Local Roads           | Maps from the Web Soil Survey are based on the Web Mercator                                                                                                                       |
| ٨.         | Lava Flow                              | Backgrou    |                       | projection, which preserves direction and shape but distorts                                                                                                                      |
| علا        | Marsh or swamp                         | Buokgrou    | Aerial Photography    | distance and area. A projection that preserves area, such as the<br>Albers equal-area conic projection, should be used if more                                                    |
| ~          | Mine or Quarry                         |             |                       | accurate calculations of distance or area are required.                                                                                                                           |
| 0          | Miscellaneous Water                    |             |                       | This product is generated from the USDA-NRCS certified data as                                                                                                                    |
| õ          | Perennial Water                        |             |                       | of the version date(s) listed below.                                                                                                                                              |
| v          | Rock Outcrop                           |             |                       | Soil Survey Area: Rockingham County, New Hampshire                                                                                                                                |
| +          | Saline Spot                            |             |                       | Survey Area Data: Version 24, Aug 31, 2021                                                                                                                                        |
| °*°        | Sandy Spot                             |             |                       | Soil map units are labeled (as space allows) for map scales                                                                                                                       |
| -          | Severely Eroded Spot                   |             |                       | 1:50,000 or larger.                                                                                                                                                               |
| ô          | Sinkhole                               |             |                       | Data(s) agrial images were photographed. Dec 21, 2000 him                                                                                                                         |
| *          | Slide or Slip                          |             |                       | Date(s) aerial images were photographed: Dec 31, 2009—Jun 14, 2017                                                                                                                |
| ø          | Sodic Spot                             |             |                       | The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result some minor |
| ja<br>B    |                                        |             |                       | 14, 2017<br>The orthophoto or other base map on which the                                                                                                                         |

### **Map Unit Legend**

| Map Unit Symbol             | Map Unit Name                                        | Acres in AOI | Percent of AOI |
|-----------------------------|------------------------------------------------------|--------------|----------------|
| 799                         | Urban land-Canton complex, 3<br>to 15 percent slopes | 1.3          | 59.0%          |
| W                           | Water                                                | 0.9          | 41.0%          |
| Totals for Area of Interest |                                                      | 2.2          | 100.0%         |

### **Map Unit Descriptions**

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,

onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

#### **Rockingham County, New Hampshire**

#### 799—Urban land-Canton complex, 3 to 15 percent slopes

#### **Map Unit Setting**

National map unit symbol: 9cq0 Elevation: 0 to 1,000 feet Mean annual precipitation: 42 to 46 inches Mean annual air temperature: 45 to 48 degrees F Frost-free period: 120 to 160 days Farmland classification: Not prime farmland

#### **Map Unit Composition**

*Urban land:* 55 percent *Canton and similar soils:* 20 percent *Minor components:* 25 percent *Estimates are based on observations, descriptions, and transects of the mapunit.* 

#### **Description of Canton**

#### Setting

Parent material: Till

#### **Typical profile**

*H1 - 0 to 5 inches:* gravelly fine sandy loam *H2 - 5 to 21 inches:* gravelly fine sandy loam *H3 - 21 to 60 inches:* loamy sand

#### **Properties and qualities**

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 5.3 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: A Ecological site: F144AY034CT - Well Drained Till Uplands Hydric soil rating: No

#### **Minor Components**

#### Udorthents

*Percent of map unit:* 5 percent *Hydric soil rating:* No

#### Squamscott and scitico

*Percent of map unit:* 4 percent *Landform:* Marine terraces

Hydric soil rating: Yes

#### Walpole

Percent of map unit: 4 percent Landform: Depressions Hydric soil rating: Yes

#### Chatfield

Percent of map unit: 4 percent Hydric soil rating: No

#### Scituate and newfields

Percent of map unit: 4 percent Hydric soil rating: No

#### Boxford and eldridge

*Percent of map unit:* 4 percent *Hydric soil rating:* No

#### W-Water

#### Map Unit Setting

National map unit symbol: 9cq3 Elevation: 200 to 2,610 feet Farmland classification: Not prime farmland

#### Map Unit Composition

*Water:* 100 percent *Estimates are based on observations, descriptions, and transects of the mapunit.* 

## References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2\_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2\_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2\_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2\_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2\_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE\_DOCUMENTS/nrcs142p2\_052290.pdf

### <u>APPENDIX C – TEST PIT LOGS & INFILTRATION</u> <u>TEST DATA</u>

(This Page Is Intentionally Blank)

# **Test Pit Report**

For

### 70 Pleasant Point Drive,

Portsmouth, NH

**Prepared For** 

Katara, LLC

47307.01

PREPARED BY

TFMoran, Inc.

**48 Constitution Drive** 

Bedford, NH 03110

April 6<sup>th</sup>, 2022

#### Test Pit # 1 April 6<sup>th</sup>, 2022

0 – 8 10YR 3/4 Dark Yellowish Brown, Loam, High Organic Concentration, Blocky, Friable,

8 – 21 10YR 5/8 Yellowish Brown, Silt Loam, > 15% Angular Rock Fragments, Friable, Homogeneous, Granular

21 – 28 10YR 6/8 Brownish Yellow, Sandy Loam, > 15% Rounded Cobbles, Friable, Blocky

28 – 37 10YR 6/4 Light Yellowish Brown, Fine Sand, Single Grained, Homogenous

37 - 4810YR 7/3 Very Pale Brown, Very Fine Sand, Single Grained,Homogenous

48 – 61 2.5Y 5/4 Light Olive Brown, Sandy Clay Loam, > 50% Angular Rock Fragments, Decaying Bedrock

REDOX OBS: 57 – 61 10R 4/8 Red (Oxidization of Iron)

#### Soil Series: Canton

OBSWT: > 61" Below Grade

ESHWT: 57" Below Grade

Roots: 0 – 23" Below Grade

Ledge: 33" Below Grade & 61" below Grade



#### Test Pit # 2 April 6<sup>th</sup>, 2022

0 – 9 10YR 3/3 Dark Brown, Loam, Organic Horizon, Friable, Blocky

9 – 19 2.5Y 4/3 Olive Brown, Loamy Sand, Friable, Common Gravels, Granular

19 – 36 10YR 5/6 Yellowish Brown, Loamy Sand, Common Gravels, Heterogeneous, Massive

36 – 58 2.5Y 6/4 Light Yellowish Brown, Sandy Loam, Blocky, Medium Grain Size, Few Cobbles

58 – 68 10YR 7/6 Yellow, Medium Sand, Heterogeneous, loose, Single Grained

REDOX OBS: 43" Below Grade 7.5YR 5/8 Strong Brown

#### Soil Series: Canton

OBSWT: > 68" Below Grade

ESHWT: 43" Below Grade

Roots: 8 – 26" Below Grade

Ledge: 50" Below Grade & 68" below Grade



#### Test Pit # 3 April 6<sup>th</sup>, 2022

0 – 8 10YR 3/2 Very Dark Grayish Brown, Loam, Organic Horizon, Friable, Blocky

8 – 24 2.5Y 5/6 Light Olive Brown, Sandy Loam, Massive,

24 – 40 2.5Y 7/4 Pale Brown, Loamy Sand, Friable, Granular, Homogenous, Very Few Cobbles

40 – 88 10YR 5/4 Yellowish Brown, Loamy Sand, > 15% Angular Rock Fragments, Homogenous Soils, Platy, Decaying Bedrock

REDOX OBS: 70" Below Grade 2.5YR 4/8 Red

#### Soil Series: Canton

OBSWT: > 88" Below Grade

ESHWT: 70" Below Grade

Roots: 20 – 24" Below Grade

Ledge: 62" Below Grade



| face                                                                                                            |                     |          | ulic<br><sub>at</sub> )                                                                                      | <u> </u>        |    | 0          | 2          | 2          | 0          | 6          | 0          | 0          | 6          |  | 1.215                              |  |
|-----------------------------------------------------------------------------------------------------------------|---------------------|----------|--------------------------------------------------------------------------------------------------------------|-----------------|----|------------|------------|------------|------------|------------|------------|------------|------------|--|------------------------------------|--|
| und Su                                                                                                          |                     | :2H      | Hydraı<br>vity (K <sub>s</sub>                                                                               | in/hr           |    | 1.220      | 1.342      | 1.342      | 1.220      | 1.189      | 1.250      | 1.220      | 1.189      |  | 1.                                 |  |
| (From Ground Surface                                                                                            |                     | if s<2H  | Saturated Hydraulic Saturated Hydraulic<br>Conductivity (K <sub>sat</sub> ) Conductivity (K <sub>sat</sub> ) | cm/hr           |    | 3.099      | 3.408      | 3.408      | 3.099      | 3.021      | 3.176      | 3.099      | 3.021      |  |                                    |  |
|                                                                                                                 | ion                 | 2H       | Hydraulic<br>/ity (K <sub>sat</sub> )                                                                        | in/hr           |    | 1.894      | 2.084      | 2.084      | 1.894      | 1.847      | 1.942      | 1.894      | 1.847      |  | 1.886                              |  |
| 56 in                                                                                                           | Glover Solution     | if s>2H  | Saturated Hydraulic<br>Conductivity (K <sub>sat</sub> )                                                      | cm/hr           |    | 4.811      | 5.293      | 5.293      | 4.811      | 4.691      | 4.932      | 4.811      | 4.691      |  |                                    |  |
| e e                                                                                                             | 9                   |          | B1                                                                                                           |                 |    | 0.0003     | 0.0003     | 0.0003     | 0.0003     | 0.0003     | 0.0003     | 0.0003     | 0.0003     |  |                                    |  |
| cm <sup>2</sup><br>cm<br>48.0<br>142.2 0                                                                        |                     |          | A1                                                                                                           |                 |    | 0.000501   | 0.000501   | 0.000501   | 0.000501   | 0.000501   | 0.000501   | 0.000501   | 0.000501   |  |                                    |  |
|                                                                                                                 |                     |          | S                                                                                                            | cm              |    | 94.2       | 94.2       | 94.2       | 94.2       | 94.2       | 94.2       | 94.2       | 94.2       |  |                                    |  |
| of Auger Hole = 19.6<br>Radius of Hole = 2.5<br>Depth of Auger Hole =<br>rvious Layer or ESHWT =                | e Glover            | on       | lydraulic<br>ity (K <sub>sat</sub> )                                                                         | in/hr           |    | 1.895      | 2.085      | 2.085      | 1.895      | 1.848      | 1.943      | 1.895      | 1.848      |  | 1.887                              |  |
| A of Auger Hole = 19.6<br>Radius of Hole = 2.5<br>Depth of Auger Hole =<br>Depth to Impervious Layer or ESHWT = | Approximate Glover  | Solution | Saturated Hydraulic<br>Conductivity (K <sub>sat</sub> )                                                      | cm/hr           |    | 4.813926   | 5.295318   | 5.295318   | 4.813926   | 4.693577   | 4.934274   | 4.813926   | 4.693577   |  |                                    |  |
| Depth to Ir                                                                                                     |                     |          | Outflow                                                                                                      | cm³/hr          |    | 9600       | 10560      | 10560      | 9600       | 9360       | 9840       | 9600       | 9360       |  |                                    |  |
|                                                                                                                 |                     |          | Conv.<br>Factor<br>(Area)                                                                                    | cm <sup>3</sup> |    | 20         | 20         | 20         | 20         | 20         | 20         | 20         | 20         |  |                                    |  |
|                                                                                                                 |                     |          | # On<br>Azm                                                                                                  | c               |    | 1          | 1          | 1          | 1          | 1          | 1          | 1          | 1          |  |                                    |  |
| Auger                                                                                                           |                     |          | Elapsed<br>Time                                                                                              | hrs             |    | 0.008      | 0.008      | 0.008      | 0.008      | 0.008      | 0.008      | 0.008      | 0.008      |  | gs 2-7                             |  |
| For 5 cm Auger                                                                                                  |                     |          | Δ                                                                                                            | cIJ             |    | 4.0        | 4.4        | 4.4        | 4.0        | 3.9        | 4.1        | 4.0        | 3.9        |  | on reading                         |  |
|                                                                                                                 |                     |          | Reading                                                                                                      | cm              | 36 | 32         | 27.6       | 23.2       | 19.2       | 15.3       | 11.2       | 7.2        | 3.3        |  | Average Ksat based on readings 2-7 |  |
|                                                                                                                 | = 26                |          | Coefficient<br>A                                                                                             | l/cm            |    | 0.00050145 | 0.00050145 | 0.00050145 | 0.00050145 | 0.00050145 | 0.00050145 | 0.00050145 | 0.00050145 |  | Average                            |  |
|                                                                                                                 | H= D-d = 48-22 = 26 |          | Ξ                                                                                                            | cIJ             |    | 26 C       |  |                                    |  |
|                                                                                                                 | H= D-d              |          | Time<br>Interval                                                                                             | min             | 0  | 0.5        | 1          | 1.5        | 2          | 2.5        | 3          | 3.5        | 4          |  |                                    |  |
|                                                                                                                 |                     |          | Reading #                                                                                                    |                 | 1  | 2          | 3          | 4          | 5          | 6          | 7          | 8          | 6          |  |                                    |  |

Date: 4/6/2022 Location: TP-1

Project No: 47307.01 Project Name: Katara -70 Pleasant Point Drive - Portsmouth, NH

NOTE: Could not keep a steady H reading in the Hole - Infiltrating beyond equipment ability to read

Steady Head (amount of water in auger hole from bottom of the hole to the surface of the water D-d)

Coefficient A from CCHP Manual - Approximate for Glover Solution Distinance from top of water to outflow of CCHP (D-H)

Calculated Coefficient A for Glover Solution (H>2s) ь А В1 A s1 A

Calculated Coefficient A for Glover Solution (H<2s)

Distance from bottom of auger hole to impereable layer

| d Surface                                                                                                       |                     | т        | ydraulic<br>:y (K <sub>sat</sub> )                                       | in/hr  |    | 0.648     | 0.596     | 0.570     | 0.544     | 0.492     | 0.544     | 0.492     |  | 0.518                                |  |
|-----------------------------------------------------------------------------------------------------------------|---------------------|----------|--------------------------------------------------------------------------|--------|----|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--------------------------------------|--|
| (From Ground Surface                                                                                            |                     | if s<2H  | Saturated Hydraulic Saturated Hydraulic Conductivity (K <sub>sat</sub> ) | cm/hr  |    | 1.645     | 1.514     | 1.448     | 1.382     | 1.250     | 1.382     | 1.250     |  |                                      |  |
|                                                                                                                 | on                  | μ        | Hydraulic<br>ity (K <sub>sat</sub> )                                     | in/hr  |    | 0.9439    | 0.8684    | 0.8307    | 0.793     | 0.717     | 0.793     | 0.717     |  | 0.755                                |  |
| 56 in                                                                                                           | Glover Solution     | if s>2H  | Saturated Hydraulic<br>Conductivity (K <sub>sat</sub> )                  | cm/hr  |    | 2.398     | 2.206     | 2.110     | 2.014     | 1.822     | 2.014     | 1.822     |  |                                      |  |
| cm                                                                                                              | Ð                   |          | B1                                                                       |        |    | 0.0003    | 0.0003    | 0.0003    | 0.0003    | 0.0003    | 0.0003    | 0.0003    |  |                                      |  |
| <mark>3.0</mark><br>42.2                                                                                        |                     |          | A1                                                                       |        |    | 0.000400  | 0.000400  | 0.000400  | 0.000400  | 0.000400  | 0.000400  | 0.000400  |  |                                      |  |
|                                                                                                                 |                     |          | S                                                                        | cm     | ī  | 99.2      | 99.2      | 99.2      | 99.2      | 99.2      | 99.2      | 99.2      |  |                                      |  |
| A of Auger Hole = 19.6<br>Radius of Hole = 2.5<br>Depth of Auger Hole =<br>ervious Layer or ESHWT =             | ite Glover          | tion     | Hydraulic<br>/ity (K <sub>sat</sub> )                                    | in/hr  |    | 0.9444    | 0.8689    | 0.8311    | 0.7933    | 0.7177    | 0.7933    | 0.7177    |  | 0.7555                               |  |
| A of Auger Hole = 19.6<br>Radius of Hole = 2.5<br>Depth of Auger Hole =<br>Depth to Impervious Layer or ESHWT = | Approximate Glover  | Solution | Saturated Hydraulic<br>Conductivity (K <sub>sat</sub> )                  | cm/hr  |    | 2.398782  | 2.206879  | 2.110928  | 2.014977  | 1.823074  | 2.014977  | 1.823074  |  |                                      |  |
| Depth to I                                                                                                      |                     |          | Outflow                                                                  | cm³/hr |    | 6000      | 5520      | 5280      | 5040      | 4560      | 5040      | 4560      |  |                                      |  |
|                                                                                                                 |                     |          | Conv.<br>Factor<br>(Area)                                                | cm³    |    | 20        | 20        | 20        | 20        | 20        | 20        | 20        |  |                                      |  |
|                                                                                                                 |                     |          | # On<br>Azm                                                              | cm     |    | ц,        | 1         | 1         | 1         | 1         | 1         | 1         |  |                                      |  |
| Auger                                                                                                           |                     |          | Elapsed<br>Time                                                          | hrs    | -  | 0.008     | 0.008     | 0.008     | 0.008     | 0.008     | 0.008     | 0.008     |  | ss 2,4-8                             |  |
| For 5 cm Auger                                                                                                  |                     |          | Δ                                                                        | cm     |    | 2.5       | 2.3       | 2.2       | 2.1       | 1.9       | 2.1       | 1.9       |  | on reading                           |  |
|                                                                                                                 |                     |          | Reading                                                                  | cm     | 37 | 34.5      | 32.2      | 30        | 27.9      | 26        | 23.9      | 22        |  | Average Ksat based on readings 2,4-8 |  |
|                                                                                                                 | = 30                |          | Coefficient<br>A                                                         | l/cm   |    | 0.0003998 | 0.0003998 | 0.0003998 | 0.0003998 | 0.0003998 | 0.0003998 | 0.0003998 |  | Average                              |  |
|                                                                                                                 | H= D-d = 43-13 = 30 |          | н                                                                        | cm     |    | 30        | 30        | 30        | 30        | 30        | 30        | 30        |  |                                      |  |
|                                                                                                                 | H= D-d              |          | Time<br>Interval                                                         | min    | 0  | 0.5       | 1         | 1.5       | 2         | 2.5       | 3         | 3.5       |  |                                      |  |
|                                                                                                                 |                     |          | Reading #                                                                |        | Ļ  | 2         | 3         | 4         | 5         | 9         | 7         | 8         |  |                                      |  |

Date: 4/6/2022 Location: TP-1

Project No: 45407.12 Project Name: 437 Lafatette Road - Portsmouth, NH

NOTE: Could not keep a steady H reading in the Hole - Infiltrating beyond equipment ability to read

Steady Head (amount of water in auger hole from bottom of the hole to the surface of the water

Coefficient A from CCHP Manual - Approximate for Glover Solution

Distinance from top of water to outflow of CCHP (D-H) A A d A B1 s

Calculated Coefficient A for Glover Solution (H>2s)

Calculated Coefficient A for Glover Solution (H<2s)

Distance from bottom of auger hole to impereable layer

For 5 cm Auger

cm<sup>2</sup> g

19.6 2.5

A of Auger Hole = Radius of Hole =

Date: 4/6/2022 Location: TP-1

|                     |   |                  |         |     |                 |             |                           |         | Dept                                                    | Depth of Auger Hole =                 | Hole = | 34.0     | cm     |                                                         |                                       |                                                                          |                                      |
|---------------------|---|------------------|---------|-----|-----------------|-------------|---------------------------|---------|---------------------------------------------------------|---------------------------------------|--------|----------|--------|---------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------|--------------------------------------|
|                     |   |                  |         |     |                 |             |                           | _       | mpervious Layer or ESHWT =                              | Layer or ES                           | SHWT = | 142.2    | cm     | 56 in                                                   |                                       | (From Ground Surface                                                     | nd Surface                           |
| H= D-d = 34-12 = 22 |   |                  |         |     |                 |             |                           |         | Approximate Glover                                      | ate Glover                            |        |          | 9      | <b>Glover Solution</b>                                  | ion                                   |                                                                          |                                      |
|                     |   |                  |         |     |                 |             |                           |         | Solution                                                | tion                                  |        |          |        | if s>2H                                                 | 2H                                    | if s<2H                                                                  | H                                    |
| т                   | Ŭ | Coefficient<br>A | Reading | Δ   | Elapsed<br>Time | # On<br>Azm | Conv.<br>Factor<br>(Area) | Outflow | Saturated Hydraulic<br>Conductivity (K <sub>sat</sub> ) | Hydraulic<br>vity (K <sub>sat</sub> ) | S      | A1       | B1     | Saturated Hydraulic<br>Conductivity (K <sub>sat</sub> ) | Hydraulic<br>/ity (K <sub>sat</sub> ) | Saturated Hydraulic Saturated Hydraulic Conductivity (K <sub>sat</sub> ) | łydraulic<br>ity (K <sub>sat</sub> ) |
| cm                  |   | l/cm             | cm      | cm  | hrs             | cm          | cm³                       | cm³/hr  | cm/hr                                                   | in/hr                                 | cm     |          |        | cm/hr                                                   | in/hr                                 | cm/hr                                                                    | in/hr                                |
|                     | _ |                  | 38.0    |     | •               |             |                           | -       | •                                                       |                                       | ı      |          |        |                                                         |                                       |                                                                          |                                      |
| 22                  | _ | 0.000651         | 34.6    | 3.4 | 0.008           | 1           | 20                        | 8160    | 5.31216                                                 | 2.091                                 | 108.2  | 0.000651 | 0.0003 | 5.308                                                   | 2.090                                 | 2.727                                                                    | 1.074                                |
| 22                  |   | 0.000651         | 32.3    | 2.3 | 0.008           | 1           | 20                        | 5520    | 3.59352                                                 | 1.415                                 | 108.2  | 0.000651 | 0.0003 | 3.591                                                   | 1.414                                 | 1.845                                                                    | 0.726                                |
| 22                  |   | 0.000651         | 27.8    | 4.5 | 0.017           | 1           | 20                        | 5400    | 3.5154                                                  | 1.384                                 | 108.2  | 0.000651 | 0.0003 | 3.513                                                   | 1.383                                 | 1.805                                                                    | 0.710                                |
| 22                  |   | 0.000651         | 25.8    | 2.0 | 0.008           | 1           | 20                        | 4800    | 3.1248                                                  | 1.230                                 | 108.2  | 0.000651 | 0.0003 | 3.123                                                   | 1.229                                 | 1.604                                                                    | 0.632                                |
| 22                  |   | 0.000651         | 23.9    | 1.9 | 0.008           | 1           | 20                        | 4560    | 2.96856                                                 | 1.169                                 | 108.2  | 0.000651 | 0.0003 | 2.966                                                   | 1.168                                 | 1.524                                                                    | 0.600                                |
| 22                  |   | 0.000651         | 22.0    | 1.9 | 0.008           | 1           | 20                        | 4560    | 2.96856                                                 | 1.169                                 | 108.2  | 0.000651 | 0.0003 | 2.966                                                   | 1.168                                 | 1.524                                                                    | 0.600                                |
| 22                  |   | 0.000651         | 20.2    | 1.8 | 0.008           | 1           | 20                        | 4320    | 2.81232                                                 | 1.107                                 | 108.2  | 0.000651 | 0.0003 | 2.810                                                   | 1.106                                 | 1.444                                                                    | 0.568                                |
| 22                  |   | 0.000651         | 18.5    | 1.7 | 0.008           | 1           | 20                        | 4080    | 2.65608                                                 | 1.046                                 | 108.2  | 0.000651 | 0.0003 | 2.654                                                   | 1.045                                 | 1.363                                                                    | 0.537                                |
|                     |   |                  |         |     |                 |             |                           |         |                                                         |                                       |        |          |        |                                                         |                                       |                                                                          |                                      |
|                     |   |                  |         |     |                 |             |                           |         |                                                         | 1.123                                 |        |          |        |                                                         | 1.122                                 |                                                                          | 1.123                                |
|                     | - |                  |         |     |                 |             |                           |         |                                                         |                                       |        |          |        |                                                         |                                       |                                                                          |                                      |

- NOTE: Could not keep a steady H reading in the Hole Infiltrating beyond equipment ability to read
  - Steady Head (amount of water in auger hole from bottom of the hole to the surface of the water т
    - Coefficient A from CCHP Manual Approximate for Glover Solution
      - Distinance from top of water to outflow of CCHP (D-H)
    - Calculated Coefficient A for Glover Solution (H>2s)
- Calculated Coefficient A for Glover Solution (H<2s) Distance from bottom of auger hole to impereable layer

| 1.9     | 0.8     | 1.1     | 1.3     |  |
|---------|---------|---------|---------|--|
| Hole #1 | Hole #2 | Hole #3 | Average |  |

For 5 cm Auger

cm<sup>2</sup> 2.5 19.6

A of Auger Hole = Radius of Hole =

Date: 4/6/2022 Location: TP-2

|           |                   |      |                  |             |                                    |                 |             |                           |            | Dept                                                    | Depth of Auger Hole =                 | Hole =  | 93.4 C   | cm<br>2 | 3." Down in                                             | - the hole -                         | 23" Down in the hole = $35+23*2.54$                                      | 4                                  |
|-----------|-------------------|------|------------------|-------------|------------------------------------|-----------------|-------------|---------------------------|------------|---------------------------------------------------------|---------------------------------------|---------|----------|---------|---------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------|------------------------------------|
|           |                   |      |                  |             |                                    |                 |             |                           | Depth to I | mpervious                                               | Depth to Impervious Layer or ESHWT =  | HWT =   | 243.8 c  | cm      | 96 in                                                   |                                      | (From Ground Surface                                                     | id Surface                         |
| H= D      | H= D-d = 35-15=20 | 5=20 |                  |             |                                    |                 |             |                           |            | Approximate Glover                                      | ate Glover                            |         |          | 9       | Glover Solution                                         | uo                                   |                                                                          |                                    |
|           |                   |      |                  |             |                                    |                 |             |                           |            | Solu                                                    | Solution                              |         |          |         | if s>2H                                                 | рн                                   | if s<2H                                                                  | т                                  |
| Reading # | Time<br>Interval  | Н    | Coefficient<br>A | Reading     | ν                                  | Elapsed<br>Time | # On<br>Azm | Conv.<br>Factor<br>(Area) | Outflow    | Saturated Hydraulic<br>Conductivity (K <sub>sat</sub> ) | Hydraulic<br>vity (K <sub>sat</sub> ) | S       | A1       | B1      | Saturated Hydraulic<br>Conductivity (K <sub>sat</sub> ) | Hydraulic<br>ity (K <sub>sat</sub> ) | Saturated Hydraulic Saturated Hydraulic Conductivity (K <sub>sat</sub> ) | ydraulic<br>ty (K <sub>sat</sub> ) |
|           | min               | cm   | I/cm             | cm          | cm                                 | hrs             | cm          | cm³                       | cm³/hr     | cm/hr                                                   | in/hr                                 | cm      |          |         | cm/hr                                                   | in/hr                                | cm/hr                                                                    | in/hr                              |
| Ч         | 0                 | •    | -                | 34.0        |                                    | •               |             |                           | •          |                                                         | •                                     | •       |          |         |                                                         |                                      |                                                                          |                                    |
| 2         | 0.5               | 20   | 0.000753         | 30.5        | 3.5                                | 0.008           | 1           | 20                        | 8400       | 6.3252                                                  | 2.4902                                | 150.4 ( | 0.000753 | 0.0003  | 6.329                                                   | 2.492                                | 2.311                                                                    | 0.910                              |
| Э         | 1                 | 20   | 0.000753         | 26.5        | 4.0                                | 0.008           | 1           | 20                        | 0096       | 7.2288                                                  | 2.8460                                | 150.4 ( | 0.000753 | 0.0003  | 7.233                                                   | 2.848                                | 2.641                                                                    | 1.040                              |
| 4         | 1.5               | 20   | 0.000753         | 23.0        | 3.5                                | 0.008           | 1           | 20                        | 8400       | 6.3252                                                  | 2.4902                                | 150.4 ( | 0.000753 | 0.0003  | 6.329                                                   | 2.492                                | 2.311                                                                    | 0.910                              |
| 5         | 2                 | 20   | 0.000753         | 19.8        | 3.2                                | 0.008           | 1           | 20                        | 7680       | 5.78304                                                 | 2.2768                                | 150.4 ( | 0.000753 | 0.0003  | 5.787                                                   | 2.278                                | 2.113                                                                    | 0.832                              |
| 9         | 2.5               | 20   | 0.000753         | 16.4        | 3.4                                | 0.008           | 1           | 20                        | 8160       | 6.14448                                                 | 2.4191                                | 150.4 ( | 0.000753 | 0.0003  | 6.148                                                   | 2.421                                | 2.245                                                                    | 0.884                              |
| 7         | 3                 | 20   | 0.000753         | 13.2        | 3.2                                | 0.008           | 1           | 20                        | 7680       | 5.78304                                                 | 2.2768                                | 150.4 ( | 0.000753 | 0.0003  | 5.787                                                   | 2.278                                | 2.113                                                                    | 0.832                              |
| 8         | 3.5               | 20   | 0.000753         | 10.0        | 3.2                                | 0.008           | 1           | 20                        | 7680       | 5.78304                                                 | 2.2768                                | 150.4 ( | 0.000753 | 0.0003  | 5.787                                                   | 2.278                                | 2.113                                                                    | 0.832                              |
|           |                   |      |                  |             |                                    |                 |             |                           |            |                                                         |                                       |         |          |         |                                                         |                                      |                                                                          |                                    |
|           |                   |      | Average          | e Ksat base | Average Ksat based on readings 1-6 | gs 1-6          |             |                           |            |                                                         | 2.3717                                |         |          |         |                                                         | 2.373                                |                                                                          | 0.867                              |
|           |                   |      |                  |             |                                    |                 |             |                           |            |                                                         |                                       |         |          |         |                                                         |                                      |                                                                          |                                    |

NOTE: Could not keep a steady H reading in the Hole - Infiltrating beyond equipment ability to read

Steady Head (amount of water in auger hole from bottom of the hole to the surface of the water н Аd 81

Coefficient A from CCHP Manual - Approximate for Glover Solution Distinance from top of water to outflow of CCHP (D-H)

Calculated Coefficient A for Glover Solution (H>2s)

Calculated Coefficient A for Glover Solution (H<2s)

Distance from bottom of auger hole to impereable layer

Project Name: Katara -70 Pleasant Point Drive - Portsmouth, NH 47307.01 Project No:

For 5 cm Auger

23" Down in the hole = 40+23\*2.54

98.4

Depth of Auger Hole =

cm<sup>2</sup> g

19.6 2.5

A of Auger Hole = Radius of Hole =

4/6/2022

Date: Location:

TP-2

(From Ground Surface 0.769 Saturated Hydraulic Conductivity (K<sub>sat</sub>) 0.909 0.749 0.749 0.882 0.829 0.668 0.829 0.749 in/hr if s<2H 2.241 2.105 2.309 1.698 2.105 1.902 1.902 1.902 cm/hr Saturated Hydraulic Conductivity (K<sub>sat</sub>) 2.349 1.993 1.7802.207 2.047 in/hr 2.207 2.421 1.993 1.993 Solution 96 in if s>2H 5.606 5.063 5.063 6.148 5.063 5.968 4.521 5.606 cm/hr Glover 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 5 5 0.000753 0.000753 0.000753 0.000753 0.000753 0.000753 0.000753 0.000753 243.8 Depth to Impervious Layer or ESHWT = 145.4 145.4 145.4 145.4 145.4 145.4 145.4 145.4 Saturated Hydraulic Approximate Glover 1.9922 2.0456 Conductivity (K<sub>sat</sub>) 2.3479 2.4191 1.9922 1.9922 2.2056 1.7787 2.2056 in/hr Solution 5.06016 6.14448 5.06016 5.96376 5.60232 5.60232 5.06016 4.518 cm/hr Outflow cm<sup>3</sup>/hr 7920 8160 6000 7440 6720 7440 6720 6720 Factor (Area) Conv. 20 20 20 20 20 20 # Ou ---0.008 0.008 0.008 0.008 0.008 0.008 0.008 Time 0.008 Average Ksat based on readings 1-3 3.3 2.8 2.8 3.4 2.5 3.1 2.8 3.1 Reading 33.6 30.2 24.6 21.8 36.7 27.7 16.2 19 40 0.000753 Coefficient 0.000753 0.000753 0.000753 0.000753 0.000753 0.000753 0.000753 H= D-d = 40-20 = 20 20 20 20 20 20 20 20 Interval Time 0.5 1.5 2.5 3.5 e 4 0 -2 Reading # 4 ە ∞ б m ഗ 2 

NOTE: Could not keep a steady H reading in the Hole - Infiltrating beyond equipment ability to read

Steady Head (amount of water in auger hole from bottom of the hole to the surface of the water 

Coefficient A from CCHP Manual - Approximate for Glover Solution

Distinance from top of water to outflow of CCHP (D-H)

Calculated Coefficient A for Glover Solution (H>2s)

Calculated Coefficient A for Glover Solution (H<2s)

Distance from bottom of auger hole to impereable layer (ESHW - Depth of Auger Hole in cm)

For 5 cm Auger


cm<sup>2</sup> С 2.5 19.6

A of Auger Hole = Radius of Hole =

Date: 4/6/2022 Location: TP-2

|           |                  |                     |                  |                                    |             |                 |             |                           |         | Depti                                                   | Depth of Auger Hole =                 | Hole = | 84.4 C   | cm<br>2 | 23" Down in the hole = 26+23*2.54                       | the hole =                           | = 26+23*2.5                                                              | 4                                    |
|-----------|------------------|---------------------|------------------|------------------------------------|-------------|-----------------|-------------|---------------------------|---------|---------------------------------------------------------|---------------------------------------|--------|----------|---------|---------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------|--------------------------------------|
|           |                  |                     |                  |                                    |             |                 |             |                           | _       | mpervious Layer or ESHWT =                              | Layer or ES                           | HWT =  | 243.8 c  | cm      | 96 in                                                   |                                      | (From Ground Surface                                                     | nd Surface                           |
|           | H= D             | H= D-d = 26-13 = 13 | 3 = 13           |                                    |             |                 |             |                           |         | Approximate Glover                                      | ite Glover                            |        |          | 0       | <b>Glover Solution</b>                                  | on                                   |                                                                          |                                      |
|           |                  |                     |                  |                                    |             |                 |             |                           |         | Solution                                                | tion                                  |        |          |         | if s>2H                                                 | ΕH                                   | if s<2H                                                                  | H                                    |
| Reading # | Time<br>Interval | н                   | Coefficient<br>A | Reading                            | Δ           | Elapsed<br>Time | # On<br>Azm | Conv.<br>Factor<br>(Area) | Outflow | Saturated Hydraulic<br>Conductivity (K <sub>sat</sub> ) | Hydraulic<br>vity (K <sub>sat</sub> ) | s      | A1       | B1      | Saturated Hydraulic<br>Conductivity (K <sub>sat</sub> ) | Hydraulic<br>ity (K <sub>sat</sub> ) | Saturated Hydraulic Saturated Hydraulic Conductivity (K <sub>sat</sub> ) | łydraulic<br>ity (K <sub>sat</sub> ) |
|           | min              | cm                  | l/cm             | c                                  | cm          | hrs             | cm          | cm³                       | cm³/hr  | cm/hr                                                   | in/hr                                 | cm     |          |         | cm/hr                                                   | in/hr                                | cm/hr                                                                    | in/hr                                |
| 1         | 0                | •                   | '                | 32.0                               |             | •               |             |                           |         |                                                         |                                       | 1      |          |         |                                                         |                                      |                                                                          |                                      |
| 2         | 0.5              | 13                  | 0.001436         | 28.0                               | 4.0         | 0.008           | 1           | 20                        | 0096    | 13.7856                                                 | 5.427                                 | 159.4  | 0.001436 | 0.0003  | 13.786                                                  | 5.428                                | 3.249                                                                    | 1.279                                |
| 3         | 1                | 13                  | 0.001436         | 23.4                               | 4.6         | 0.008           | 1           | 20                        | 11040   | 15.85344                                                | 6.242                                 | 159.4  | 0.001436 | 0.0003  | 15.854                                                  | 6.242                                | 3.736                                                                    | 1.471                                |
| 4         | 1.5              | 13                  | 0.001436         | 19.1                               | 4.3         | 0.008           | 1           | 20                        | 10320   | 14.81952                                                | 5.834                                 | 159.4  | 0.001436 | 0.0003  | 14.820                                                  | 5.835                                | 3.493                                                                    | 1.375                                |
| 5         | 2                | 13                  | 0.001436         | 14.8                               | 4.3         | 0.008           | 1           | 20                        | 10320   | 14.81952                                                | 5.834                                 | 159.4  | 0.001436 | 0.0003  | 14.820                                                  | 5.835                                | 3.493                                                                    | 1.375                                |
| 9         | 2.5              | 13                  | 0.001436         | 10.4                               | 4.4         | 0.008           | 1           | 20                        | 10560   | 15.16416                                                | 5.970                                 | 159.4  | 0.001436 | 0.0003  | 15.165                                                  | 5.970                                | 3.574                                                                    | 1.407                                |
| 7         | £                | 13                  | 0.001436         | 5.8                                | 4.6         | 0.008           | 1           | 20                        | 11040   | 15.85344                                                | 6.242                                 | 159.4  | 0.001436 | 0.0003  | 15.854                                                  | 6.242                                | 3.736                                                                    | 1.471                                |
|           |                  |                     |                  |                                    |             |                 |             |                           |         |                                                         |                                       |        |          |         |                                                         |                                      |                                                                          |                                      |
|           |                  |                     |                  |                                    |             |                 |             |                           |         |                                                         |                                       |        |          |         |                                                         |                                      |                                                                          |                                      |
|           |                  |                     | Averag           | Average Ksat based on readings 3-6 | d on readin | gs 3-6          |             |                           |         |                                                         | 5.880                                 |        |          |         |                                                         | 5.880                                |                                                                          | 1.386                                |
|           |                  |                     |                  |                                    |             |                 |             |                           |         |                                                         |                                       |        |          |         |                                                         |                                      |                                                                          |                                      |

- NOTE: Could not keep a steady H reading in the Hole Infiltrating beyond equipment ability to read \*
  - Steady Head (amount of water in auger hole from bottom of the hole to the surface of the water
    - Coefficient A from CCHP Manual Approximate for Glover Solution
      - Distinance from top of water to outflow of CCHP (D-H)
        - Calculated Coefficient A for Glover Solution (H>2s)
- Calculated Coefficient A for Glover Solution (H<2s)
- Distance from bottom of auger hole to impereable layer



For 5 cm Auger

cm<sup>2</sup>

19.6 2.5

A of Auger Hole = Radius of Hole =

Date: 4/6/2022 Location: TP-3

|                  |   |                  |                                    |              |                 |             |                           |          | Dept                                                    | Depth of Auger Hole =                 | Hole = | 88.3     | cm<br>cm | .9" Down ir              | n the hole                           | 19" Down in the hole = $40+19*2.54$                                      | 4                                  |
|------------------|---|------------------|------------------------------------|--------------|-----------------|-------------|---------------------------|----------|---------------------------------------------------------|---------------------------------------|--------|----------|----------|--------------------------|--------------------------------------|--------------------------------------------------------------------------|------------------------------------|
|                  |   |                  |                                    |              |                 |             |                           | Depth to | Depth to Impervious Layer or ESHWT =                    | Layer or ES                           | HWT =  | 243.8 c  | cm       | 96 in                    | L                                    | (From Ground Surface                                                     | id Surface                         |
| H= D-d = 40-8=32 |   |                  |                                    |              |                 |             |                           |          | Approximate Glover                                      | ite Glover                            |        |          | G        | Glover Solution          | uo                                   |                                                                          |                                    |
|                  |   |                  |                                    |              |                 |             |                           |          | Solu <sup>-</sup>                                       | Solution                              |        |          |          | if s>2H                  | 2H                                   | if s<2H                                                                  | т                                  |
| С<br>Н           | S | Coefficient<br>A | Reading                            | Δ            | Elapsed<br>Time | # On<br>Azm | Conv.<br>Factor<br>(Area) | Outflow  | Saturated Hydraulic<br>Conductivity (K <sub>sat</sub> ) | Hydraulic<br>vity (K <sub>sat</sub> ) | s      | A1       | B1       | Saturated H<br>Conductiv | Hydraulic<br>ity (K <sub>sat</sub> ) | Saturated Hydraulic Saturated Hydraulic Conductivity (K <sub>sat</sub> ) | ydraulic<br>ty (K <sub>sat</sub> ) |
| cm               |   | l/cm             | cm                                 | cm           | hrs             | cm          | cm³                       | cm³/hr   | cm/hr                                                   | in/hr                                 | cm     |          |          | cm/hr                    | in/hr                                | cm/hr                                                                    | in/hr                              |
|                  |   |                  | 18.0                               |              |                 |             |                           | -        | -                                                       |                                       | ı      |          |          |                          |                                      |                                                                          |                                    |
| 32 0.            | 0 | 0.00036064       | 14.8                               | 3.2          | 0.008           | 1           | 20                        | 7680     | 2.769736                                                | 1.0904                                | 155.6  | 0.000360 | 0.0002   | 2.768                    | 1.090                                | 1.435                                                                    | 0.565                              |
| 32 0             | 0 | 0.00036064       | 11.5                               | 3.3          | 0.008           | 1           | 20                        | 7920     | 2.856291                                                | 1.1245                                | 155.6  | 0.000360 | 0.0002   | 2.855                    | 1.124                                | 1.480                                                                    | 0.583                              |
| 32 C             | 0 | 0.00036064       | 8.2                                | 3.3          | 0.008           | 1           | 20                        | 7920     | 2.856291                                                | 1.1245                                | 155.6  | 0.000360 | 0.0002   | 2.855                    | 1.124                                | 1.480                                                                    | 0.583                              |
| 32 (             | _ | 0.00036064       | 4.8                                | 3.4          | 0.008           | 1           | 20                        | 8160     | 2.942845                                                | 1.1586                                | 155.6  | 0.000360 | 0.0002   | 2.941                    | 1.158                                | 1.525                                                                    | 0.600                              |
| 32 (             | - | 0.00036064       | 0.6                                | 4.2          | 0.008           | 1           | 20                        | 10080    | 3.635279                                                | 1.4312                                | 155.6  | 0.000360 | 0.0002   | 3.633                    | 1.430                                | 1.883                                                                    | 0.742                              |
|                  |   |                  |                                    |              |                 |             |                           |          |                                                         |                                       |        |          |          |                          |                                      |                                                                          |                                    |
|                  |   |                  |                                    |              |                 |             |                           |          |                                                         |                                       |        |          |          |                          |                                      |                                                                          |                                    |
|                  |   |                  |                                    |              |                 |             |                           |          |                                                         |                                       |        |          |          |                          |                                      |                                                                          |                                    |
|                  |   | Average          | Average Ksat based on readings 1-6 | l on reading | gs 1-6          |             |                           |          |                                                         | 1.1245                                |        |          |          |                          | 1.124                                |                                                                          | 0.583                              |
|                  |   |                  |                                    |              |                 |             |                           |          |                                                         |                                       |        |          |          |                          |                                      |                                                                          |                                    |

NOTE: Could not keep a steady H reading in the Hole - Infiltrating beyond equipment ability to read

Steady Head (amount of water in auger hole from bottom of the hole to the surface of the water н Аd B1

Coefficient A from CCHP Manual - Approximate for Glover Solution Distinance from top of water to outflow of CCHP (D-H)

Calculated Coefficient A for Glover Solution (H>2s)

Calculated Coefficient A for Glover Solution (H<2s)

Distance from bottom of auger hole to impereable layer

For 5 cm Auger

Radius of Hole = 2.5

cm<sup>2</sup> СIJ

19.6

A of Auger Hole =

Date: 4/6/2022 Location: TP-3

|                                     | Ψ                                    |                    |          |                                                         |          |    | _        |          |          |          |          |          |          |  |                                    | _ |
|-------------------------------------|--------------------------------------|--------------------|----------|---------------------------------------------------------|----------|----|----------|----------|----------|----------|----------|----------|----------|--|------------------------------------|---|
| 54                                  | ind Surfac                           |                    | 2H       | Hydraulic<br>⁄ity (K <sub>sat</sub> )                   | in/hr    |    | 0.536    | 0.583    | 0.560    | 0.653    | 0.536    | 0.583    | 0.560    |  | 1.530                              |   |
| = 31+19*2.                          | (From Ground Surface                 |                    | if s<2H  | Saturated Hydrauli<br>Conductivity (K <sub>sat</sub> )  | cm/hr    |    | 1.362    | 1.481    | 1.421    | 1.658    | 1.362    | 1.481    | 1.421    |  |                                    |   |
| the hole -                          | L                                    | on                 | 2H       | Hydraulic<br>ity (K <sub>sat</sub> )                    | in/hr    |    | 1.519    | 1.651    | 1.585    | 1.849    | 1.519    | 1.651    | 1.585    |  | 1.598                              |   |
| 19" Down in the hole = $31+19*2.54$ | 96 in                                | Glover Solution    | if s>2H  | $\begin{array}{llllllllllllllllllllllllllllllllllll$    | cm/hr    |    | 3.859    | 4.194    | 4.026    | 4.697    | 3.859    | 4.194    | 4.026    |  |                                    |   |
| cu                                  | cm                                   | Ð                  |          | B1                                                      | <u> </u> |    | 0.0002   | 0.0002   | 0.0002   | 0.0002   | 0.0002   | 0.0002   | 0.0002   |  |                                    |   |
| 79.3                                | 243.8 (                              |                    |          | A1                                                      |          |    | 0.000699 | 0.000699 | 0.000699 | 0.000699 | 0.000699 | 0.000699 | 0.000699 |  |                                    |   |
| Hole =                              | HWT =                                |                    |          | s*                                                      | cm       | ı  | 164.6    | 164.6    | 164.6    | 164.6    | 164.6    | 164.6    | 164.6    |  |                                    |   |
| Depth of Auger Hole =               | Layer or ES                          | te Glover          | ion      | Hydraulic<br>⁄ity (K <sub>sat</sub> )                   | in/hr    |    | 1.4539   | 1.5803   | 1.5171   | 1.7700   | 1.4539   | 1.5803   | 1.5171   |  | 1.5297                             |   |
| Deptl                               | Depth to Impervious Layer or ESHWT = | Approximate Glover | Solution | Saturated Hydraulic<br>Conductivity (K <sub>sat</sub> ) | cm/hr    |    | 3.69288  | 4.014    | 3.85344  | 4.49568  | 3.69288  | 4.014    | 3.85344  |  |                                    |   |
|                                     | Depth to I                           |                    |          | Outflow                                                 | cm³/hr   | ı  | 5520     | 6000     | 5760     | 6720     | 5520     | 6000     | 5760     |  |                                    |   |
|                                     |                                      |                    |          | Conv.<br>Factor<br>(Area)                               | cm³      |    | 20       | 20       | 20       | 20       | 20       | 20       | 20       |  |                                    |   |
|                                     |                                      |                    |          | # On<br>Azm                                             | cm       |    | 1        | 1        | 1        | 1        | 1        | 1        | 1        |  |                                    |   |
|                                     |                                      |                    |          | Elapsed<br>Time                                         | hrs      | -  | 0.008    | 0.008    | 0.008    | 0.008    | 0.008    | 0.008    | 0.008    |  | gs 1-3                             |   |
|                                     |                                      |                    |          | Δ                                                       | cm       |    | 2.3      | 2.5      | 2.4      | 2.8      | 2.3      | 2.5      | 2.4      |  | l on readin                        |   |
|                                     |                                      |                    |          | Reading                                                 | cm       | 38 | 35.7     | 33.2     | 30.8     | 28       | 25.7     | 23.2     | 20.8     |  | Average Ksat based on readings 1-3 |   |
|                                     |                                      | )=21               |          | Coefficient<br>A                                        | l/cm     |    | 0.000669 | 0.000669 | 0.000669 | 0.000669 | 0.000669 | 0.000669 | 0.000669 |  | Average                            |   |
|                                     |                                      | H= D-d = 31-10=21  |          | т                                                       | cm       |    | 21       | 21       | 21       | 21       | 21       | 21       | 21       |  |                                    |   |
|                                     |                                      | H= D-              |          | Time<br>Interval                                        | min      | 0  | 0.5      | 1        | 1.5      | 2        | 2.5      | £        | 3.5      |  |                                    |   |
|                                     |                                      |                    |          | Reading #                                               |          | 1  | 2        | е        | 4        | 5        | 9        | 7        | 8        |  |                                    |   |

NOTE: Could not keep a steady H reading in the Hole - Infiltrating beyond equipment ability to read

Steady Head (amount of water in auger hole from bottom of the hole to the surface of the water

Coefficient A from CCHP Manual - Approximate for Glover Solution

Distinance from top of water to outflow of CCHP (D-H) A d d A1 s A1

Calculated Coefficient A for Glover Solution (H>2s)

Calculated Coefficient A for Glover Solution (H<2s)

Distance from bottom of auger hole to impereable layer (ESHW - Depth of Auger Hole in cm)

For 5 cm Auger

Date: 4/6/2022 Location: TP-3

A of Auger Hole =  $19.6 \text{ cm}^2$ Radius of Hole = 2.5 cm

ទួទ 243.8 Depth of Auger Hole = 77.3 Depth to Impervious Layer or ESHWT =

(From Ground Surface 19" Down in the hole = 29+19\*2.54 96 in

|           |                  |                    |                  |                                    |             |                 |             |                           | עראני נס |                                                        | הכלווו נט וווולכו זוטמי במלכו טו בטווזע ו               |       | 0.014                 |        |                                                                                                              |                                                        | לו ומוו מוממים מווממי                                  | וומ סמוומרי                          |
|-----------|------------------|--------------------|------------------|------------------------------------|-------------|-----------------|-------------|---------------------------|----------|--------------------------------------------------------|---------------------------------------------------------|-------|-----------------------|--------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------|
|           | U =H             | H= D-d = 29-12 =17 | 2 = 17           |                                    |             |                 |             |                           |          | Approxim                                               | Approximate Glover                                      |       |                       |        | Glover Solution                                                                                              | ion                                                    |                                                        |                                      |
|           |                  |                    |                  |                                    |             |                 |             |                           |          | Solu                                                   | Solution                                                |       |                       |        | if s>2H                                                                                                      | 2H                                                     | if s<2H                                                | 2H                                   |
| Reading # | Time<br>Interval | Н                  | Coefficient<br>A | Reading                            | Δ           | Elapsed<br>Time | # On<br>Azm | Conv.<br>Factor<br>(Area) | Outflow  | Saturated Hydrauli<br>Conductivity (K <sub>sat</sub> ) | Saturated Hydraulic<br>Conductivity (K <sub>sat</sub> ) | s*    | A1                    | B1     | Saturated Hydraulic Saturated Hydraulic<br>Conductivity (K <sub>sat</sub> ) Conductivity (K <sub>sat</sub> ) | aturated Hydraulic<br>Conductivity (K <sub>sat</sub> ) | Saturated Hydrauli<br>Conductivity (K <sub>sat</sub> ) | Hydraulic<br>ity (K <sub>sat</sub> ) |
|           | min              | cm                 | l/cm             | cm                                 | cm          | hrs             | cm          | cm³                       | cm³/hr   | cm/hr                                                  | in/hr                                                   | cm    |                       |        | cm/hr                                                                                                        | in/hr                                                  | cm/hr                                                  | in/hr                                |
| Ļ         | 0                | •                  | 1                | 35                                 |             | •               |             |                           | -        | -                                                      | •                                                       |       |                       |        |                                                                                                              |                                                        |                                                        |                                      |
| 2         | 0.5              | 20                 | 0.000753         | 32.4                               | 2.6         | 0.008           | 1           | 20                        | 6240     | 4.69872                                                | 1.8499                                                  | 166.6 | 0.000753              | 0.0003 | 4.702                                                                                                        | 1.851                                                  | 1.576                                                  | 0.620                                |
| £         | 1                | 20                 | 0.000753         | 29.9                               | 2.5         | 0.008           | 1           | 20                        | 6000     | 4.518                                                  | 1.7787                                                  | 166.6 | <b>166.6</b> 0.000753 | 0.0003 | 4.521                                                                                                        | 1.780                                                  | 1.515                                                  | 0.597                                |
| 4         | 1.5              | 20                 | 0.000753         | 27.2                               | 2.7         | 0.008           | 1           | 20                        | 6480     | 4.87944                                                | 1.9210                                                  | 166.6 | <b>166.6</b> 0.000753 | 0.0003 | 4.883                                                                                                        | 1.922                                                  | 1.636                                                  | 0.644                                |
| 5         | 2                | 20                 | 0.000753         | 24.9                               | 2.3         | 0.008           | 1           | 20                        | 5520     | 4.15656                                                | 1.6364                                                  | 166.6 | <b>166.6</b> 0.000753 | 0.0003 | 4.159                                                                                                        | 1.637                                                  | 1.394                                                  | 0.549                                |
| 9         | 2.5              | 20                 | 0.000753         | 22.6                               | 2.3         | 0.008           | 1           | 20                        | 5520     | 4.15656                                                | 1.6364                                                  | 166.6 | 0.000753              | 0.0003 | 4.159                                                                                                        | 1.637                                                  | 1.394                                                  | 0.549                                |
| 7         | 3                | 20                 | 0.000753         | 20.4                               | 2.2         | 0.008           | 1           | 20                        | 5280     | 3.97584                                                | 1.5653                                                  | 166.6 | 0.000753              | 0.0003 | 3.978                                                                                                        | 1.566                                                  | 1.333                                                  | 0.525                                |
| 8         | 3.5              | 20                 | 0.000753         | 18.1                               | 2.3         | 0.008           | 1           | 20                        | 5520     | 4.15656                                                | 1.6364                                                  | 166.6 | 0.000753              | 0.0003 | 4.159                                                                                                        | 1.637                                                  | 1.394                                                  | 0.549                                |
|           |                  |                    |                  |                                    |             |                 |             |                           |          |                                                        |                                                         |       |                       |        |                                                                                                              |                                                        |                                                        |                                      |
|           |                  |                    |                  |                                    |             |                 |             |                           |          |                                                        |                                                         |       |                       |        |                                                                                                              |                                                        |                                                        |                                      |
|           |                  |                    |                  |                                    |             |                 |             |                           |          |                                                        |                                                         |       |                       |        |                                                                                                              |                                                        |                                                        |                                      |
|           |                  |                    | Averag           | Average Ksat based on readings 1-3 | d on readir | ıgs 1-3         |             |                           |          |                                                        | 1.6187                                                  |       |                       |        |                                                                                                              | 1.620                                                  |                                                        | 1.619                                |
|           |                  |                    |                  |                                    |             |                 |             |                           |          |                                                        |                                                         |       |                       |        |                                                                                                              |                                                        |                                                        |                                      |

NOTE: Could not keep a steady H reading in the Hole - Infiltrating beyond equipment ability to read

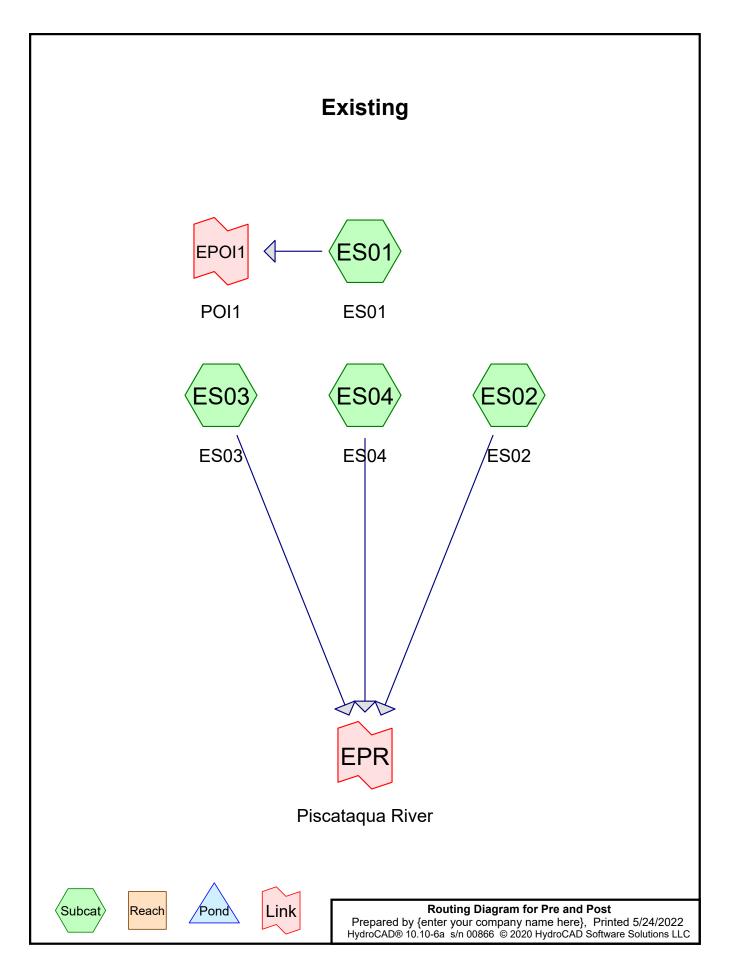
Steady Head (amount of water in auger hole from bottom of the hole to the surface of the water

Coefficient A from CCHP Manual - Approximate for Glover Solution

Distinance from top of water to outflow of CCHP (D-H)

Calculated Coefficient A for Glover Solution (H>2s) 

Calculated Coefficient A for Glover Solution (H<2s)


Distance from bottom of auger hole to impereable layer (ESHW - Depth of Auger Hole in cm)

|  | 1.1     | 1.5     | 1.6     | 1.4     |  |
|--|---------|---------|---------|---------|--|
|  | Hole #1 | Hole #2 | Hole #3 | Average |  |

Page 46

### <u>APPENDIX D – PRE-DEVELOPMENT</u> <u>CALCULATIONS</u>

(This Page Is Intentionally Blank)



| Event# | Event<br>Name | Storm Type     | Curve | Mode    | Duration<br>(hours) | B/B | Depth<br>(inches) | AMC |
|--------|---------------|----------------|-------|---------|---------------------|-----|-------------------|-----|
| 1      | 2 yr          | Type III 24-hr |       | Default | 24.00               | 1   | 3.69              | 2   |
| 2      | 10 yr         | Type III 24-hr |       | Default | 24.00               | 1   | 5.59              | 2   |
| 3      | 25 yr         | Type III 24-hr |       | Default | 24.00               | 1   | 7.10              | 2   |
| 4      | 50 yr         | Type III 24-hr |       | Default | 24.00               | 1   | 8.49              | 2   |

# Rainfall Events Listing (selected events)

# Area Listing (selected nodes)

| Are   | ea CN | Description                                                   |
|-------|-------|---------------------------------------------------------------|
| (acre | s)    | (subcatchment-numbers)                                        |
| 0.14  | 2 35  | Brush, Fair, HSG A (ES02, ES03, ES04)                         |
| 0.43  | 35 49 | Pasture/grassland/range, Fair, HSG A (ES01, ES02, ES03, ES04) |
| 0.12  | 20 98 | Paved parking, HSG A (ES02, ES03, ES04)                       |
| 0.05  | 57 98 | Roofs, HSG A (ES01, ES03, ES04)                               |
| 0.00  | )5 43 | Woods/grass comb., Fair, HSG A (ES01)                         |
| 0.7   | 59 58 | TOTAL AREA                                                    |

## Soil Listing (selected nodes)

| Area    | Soil  | Subcatchment           |
|---------|-------|------------------------|
| (acres) | Group | Numbers                |
| 0.759   | HSG A | ES01, ES02, ES03, ES04 |
| 0.000   | HSG B |                        |
| 0.000   | HSG C |                        |
| 0.000   | HSG D |                        |
| 0.000   | Other |                        |
| 0.759   |       | TOTAL AREA             |

| HSG-A       | HSG-B   | HSG-C   | HSG-D   | Other   | Total   | Ground                        | Subcatchment |
|-------------|---------|---------|---------|---------|---------|-------------------------------|--------------|
| <br>(acres) | (acres) | (acres) | (acres) | (acres) | (acres) | Cover                         | Numbers      |
| 0.142       | 0.000   | 0.000   | 0.000   | 0.000   | 0.142   | Brush, Fair                   | ES0          |
|             |         |         |         |         |         |                               | 2,           |
|             |         |         |         |         |         |                               | ES0          |
|             |         |         |         |         |         |                               | 3,           |
|             |         |         |         |         |         |                               | ES0          |
|             |         |         |         |         |         |                               | 4            |
| 0.435       | 0.000   | 0.000   | 0.000   | 0.000   | 0.435   | Pasture/grassland/range, Fair | ES0          |
|             |         |         |         |         |         |                               | 1,           |
|             |         |         |         |         |         |                               | ES0          |
|             |         |         |         |         |         |                               | 2,           |
|             |         |         |         |         |         |                               | ES0          |
|             |         |         |         |         |         |                               | 3,           |
|             |         |         |         |         |         |                               | ES0          |
|             |         |         |         |         |         |                               | 4            |
| 0.120       | 0.000   | 0.000   | 0.000   | 0.000   | 0.120   | Paved parking                 | ES0          |
|             |         |         |         |         |         |                               | 2,           |
|             |         |         |         |         |         |                               | ES0          |
|             |         |         |         |         |         |                               | 3,           |
|             |         |         |         |         |         |                               | ES0          |
|             |         |         |         |         |         |                               | 4            |
| 0.057       | 0.000   | 0.000   | 0.000   | 0.000   | 0.057   | Roofs                         | ES0          |
|             |         |         |         |         |         |                               | 1,           |
|             |         |         |         |         |         |                               | ES0          |
|             |         |         |         |         |         |                               | 3,           |
|             |         |         |         |         |         |                               | ES0          |
|             |         |         |         |         |         |                               | 4            |
| 0.005       | 0.000   | 0.000   | 0.000   | 0.000   | 0.005   | Woods/grass comb., Fair       | ES0          |
|             |         |         |         |         |         |                               | 1            |
| 0.759       | 0.000   | 0.000   | 0.000   | 0.000   | 0.759   | TOTAL AREA                    |              |

## Ground Covers (selected nodes)

| Pre and Post                                                        | Type III 24-hr 2 yr Rainfall=3.69" |
|---------------------------------------------------------------------|------------------------------------|
| Prepared by {enter your company name here}                          | Printed 5/24/2022                  |
| HydroCAD® 10.10-6a s/n 00866 © 2020 HydroCAD Software Solutions LLC | Page 6                             |

| SubcatchmentES01: ES01     | Flow Length=85 | Runoff Area=4,670 sf 3.55% Impervious Runoff Depth=0.24"<br>' Slope=0.0235 '/' Tc=8.1 min CN=50 Runoff=0.0 cfs 0.002 af |
|----------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------|
| SubcatchmentES02: ES02     |                | Runoff Area=10,846 sf 38.00% Impervious Runoff Depth=0.96"<br>Flow Length=120' Tc=6.0 min CN=67 Runoff=0.2 cfs 0.020 af |
| SubcatchmentES03: ES03     |                | Runoff Area=13,313 sf 17.35% Impervious Runoff Depth=0.31"<br>Flow Length=141' Tc=8.5 min CN=52 Runoff=0.0 cfs 0.008 af |
| SubcatchmentES04: ES04     |                | Runoff Area=4,216 sf 26.54% Impervious Runoff Depth=0.66"<br>Flow Length=93' Tc=6.0 min CN=61 Runoff=0.1 cfs 0.005 af   |
| Link EPOI1: POI1           |                | Inflow=0.0 cfs 0.002 af<br>Primary=0.0 cfs 0.002 af                                                                     |
| Link EPR: Piscataqua River | r              | Inflow=0.3 cfs 0.033 af<br>Primary=0.3 cfs 0.033 af                                                                     |

#### Total Runoff Area = 0.759 ac Runoff Volume = 0.035 af Average Runoff Depth = 0.56" 76.65% Pervious = 0.581 ac 23.35% Impervious = 0.177 ac

| Pre and Post                                                       | Type III 24-hr | 10 yr Rainfall=5.59" |
|--------------------------------------------------------------------|----------------|----------------------|
| Prepared by {enter your company name here}                         |                | Printed 5/24/2022    |
| HydroCAD® 10.10-6a s/n 00866 © 2020 HydroCAD Software Solutions LI | LC             | Page 7               |

| SubcatchmentES01: ES01     | Flow Length=85 | Runoff Area=4,670 sf 3.55% Impervious Runoff Depth=0.95"<br>Slope=0.0235 '/' Tc=8.1 min CN=50 Runoff=0.1 cfs 0.008 af   |
|----------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------|
| SubcatchmentES02: ES02     |                | Runoff Area=10,846 sf 38.00% Impervious Runoff Depth=2.23"<br>Flow Length=120' Tc=6.0 min CN=67 Runoff=0.6 cfs 0.046 af |
| SubcatchmentES03: ES03     |                | Runoff Area=13,313 sf 17.35% Impervious Runoff Depth=1.08"<br>Flow Length=141' Tc=8.5 min CN=52 Runoff=0.3 cfs 0.028 af |
| SubcatchmentES04: ES04     |                | Runoff Area=4,216 sf 26.54% Impervious Runoff Depth=1.74"<br>Flow Length=93' Tc=6.0 min CN=61 Runoff=0.2 cfs 0.014 af   |
| Link EPOI1: POI1           |                | Inflow=0.1 cfs 0.008 af<br>Primary=0.1 cfs 0.008 af                                                                     |
| Link EPR: Piscataqua River | r              | Inflow=1.1 cfs 0.088 af<br>Primary=1.1 cfs 0.088 af                                                                     |

#### Total Runoff Area = 0.759 ac Runoff Volume = 0.096 af Average Runoff Depth = 1.52" 76.65% Pervious = 0.581 ac 23.35% Impervious = 0.177 ac

| Pre and Post                                                      | Type III 24-hr | 25 yr Rainfall=7.10" |
|-------------------------------------------------------------------|----------------|----------------------|
| Prepared by {enter your company name here}                        |                | Printed 5/24/2022    |
| HydroCAD® 10.10-6a s/n 00866 © 2020 HydroCAD Software Solutions L | LC             | Page 8               |
|                                                                   |                | Page o               |

| SubcatchmentES01: ES01    | Flow Length=85 | Runoff Area=4,670 sf 3.55% Impervious Runoff Depth=1.72"<br>' Slope=0.0235 '/' Tc=8.1 min CN=50 Runoff=0.2 cfs 0.015 af |
|---------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------|
| SubcatchmentES02: ES02    |                | Runoff Area=10,846 sf 38.00% Impervious Runoff Depth=3.39"<br>Flow Length=120' Tc=6.0 min CN=67 Runoff=1.0 cfs 0.070 af |
| SubcatchmentES03: ES03    |                | Runoff Area=13,313 sf 17.35% Impervious Runoff Depth=1.91"<br>Flow Length=141' Tc=8.5 min CN=52 Runoff=0.6 cfs 0.049 af |
| SubcatchmentES04: ES04    |                | Runoff Area=4,216 sf 26.54% Impervious Runoff Depth=2.77"<br>Flow Length=93' Tc=6.0 min CN=61 Runoff=0.3 cfs 0.022 af   |
| Link EPOI1: POI1          |                | Inflow=0.2 cfs 0.015 af<br>Primary=0.2 cfs 0.015 af                                                                     |
| Link EPR: Piscataqua Rive | r              | Inflow=1.8 cfs_0.141 af<br>Primary=1.8 cfs_0.141 af                                                                     |

#### Total Runoff Area = 0.759 ac Runoff Volume = 0.157 af Average Runoff Depth = 2.48" 76.65% Pervious = 0.581 ac 23.35% Impervious = 0.177 ac

| Pre and Post                                                      | Type III 24-hr | 50 yr Rainfall=8.49" |
|-------------------------------------------------------------------|----------------|----------------------|
| Prepared by {enter your company name here}                        |                | Printed 5/24/2022    |
| HydroCAD® 10.10-6a s/n 00866 © 2020 HydroCAD Software Solutions I | LLC            | Page 9               |

| SubcatchmentES01: ES01    | Flow Length=85' | , | • | s Runoff Depth=2.55"<br>unoff=0.3 cfs 0.023 af    |
|---------------------------|-----------------|---|---|---------------------------------------------------|
| SubcatchmentES02: ES02    |                 | , | • | s Runoff Depth=4.53"<br>unoff=1.3 cfs 0.094 af    |
| SubcatchmentES03: ES03    |                 |   | • | s Runoff Depth=2.78"<br>unoff=0.8 cfs 0.071 af    |
| SubcatchmentES04: ES04    |                 | , | • | s Runoff Depth=3.82"<br>unoff=0.4 cfs 0.031 af    |
| Link EPOI1: POI1          |                 |   |   | Inflow=0.3 cfs                                    |
| Link EPR: Piscataqua Rive |                 |   |   | Inflow=2.5 cfs 0.196 af<br>imary=2.5 cfs 0.196 af |

#### Total Runoff Area = 0.759 ac Runoff Volume = 0.218 af Average Runoff Depth = 3.46" 76.65% Pervious = 0.581 ac 23.35% Impervious = 0.177 ac

# <u>APPENDIX E – PRE-DEVELOPMENT</u> CALCULATIONS (10-YEAR STORM EVENT)

(This Page Is Intentionally Blank)

|        |               |                |       |         |                     |   | , , ,             |     |
|--------|---------------|----------------|-------|---------|---------------------|---|-------------------|-----|
| Event# | Event<br>Name | Storm Type     | Curve | Mode    | Duration<br>(hours) |   | Depth<br>(inches) | AMC |
| 1      | 10 yr         | Type III 24-hr |       | Default | 24.00               | 1 | 5.59              | 2   |

## **Rainfall Events Listing (selected events)**

### Summary for Subcatchment ES01: ES01

Runoff = 0.1 cfs @ 12.15 hrs, Volume= 0.008 af, Depth= 0.95" Routed to Link EPOI1 : POI1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.59"

| A     | rea (sf) | CN      | Description |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------|----------|---------|-------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | 166      | 98      | Roofs, HSC  | θA          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | 225      | 43      | Woods/gras  | ss comb., F | air, HSG A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | 4,279    | 49      | Pasture/gra | ssland/rang | ge, Fair, HSG A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | 4,670    | 50      | Weighted A  | verage      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | 4,504    | 9       | 96.45% Pei  | rvious Area | l de la constante d |
|       | 166      | ;       | 3.55% Impe  | ervious Are | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |          |         |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Тс    | Length   | Slope   |             | Capacity    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (min) | (feet)   | (ft/ft) | (ft/sec)    | (cfs)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8.1   | 85       | 0.0235  | 0.18        |             | Sheet Flow, Sheet Flow 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       |          |         |             |             | Grass: Short n= 0.150 P2= 3.21"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

### Summary for Subcatchment ES02: ES02

| Runoff | =        | 0.6 cfs @     | 12.10 hrs, | Volume= |
|--------|----------|---------------|------------|---------|
| Route  | d to Lin | k EPR : Pisca | taqua Rive | r       |

0.046 af, Depth= 2.23"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.59"

| A     | rea (sf) | CN D    | escription  |            |                                                   |
|-------|----------|---------|-------------|------------|---------------------------------------------------|
|       | 4,121    | 98 P    | aved park   | ing, HSG A | Ν                                                 |
|       | 738      | 35 B    | rush, Fair, | HSG A      |                                                   |
|       | 5,987    | 49 P    | asture/gra  | ssland/ran | ge, Fair, HSG A                                   |
|       | 10,846   | 67 V    | Veighted A  | verage     |                                                   |
|       | 6,725    | 6       | 2.00% Per   | vious Area | L                                                 |
|       | 4,121    | 3       | 8.00% Imp   | ervious Ar | ea                                                |
|       |          |         |             |            |                                                   |
| Tc    | Length   | Slope   | Velocity    | Capacity   | Description                                       |
| (min) | (feet)   | (ft/ft) | (ft/sec)    | (cfs)      |                                                   |
| 2.6   | 48       | 0.1250  | 0.31        |            | Sheet Flow, Sheet Flow 1                          |
|       |          |         |             |            | Grass: Short n= 0.150 P2= 3.21"                   |
| 0.4   | 51       | 0.0660  | 1.94        |            | Sheet Flow, Sheet Flow 2                          |
|       |          |         |             |            | Smooth surfaces n= 0.011 P2= 3.21"                |
| 0.2   | 21       | 0.1900  | 2.18        |            | Shallow Concentrated Flow, Shallow Concentrated 1 |
|       |          |         |             |            | Woodland Kv= 5.0 fps                              |
| 2.8   |          |         |             |            | Direct Entry, Direct Entry                        |
| 6.0   | 120      | Total   |             |            |                                                   |

### Summary for Subcatchment ES03: ES03

Runoff = 0.3 cfs @ 12.15 hrs, Volume= 0.028 af, Depth= 1.08" Routed to Link EPR : Piscataqua River

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.59"

| A                   | rea (sf)         | CN [              | Description          |                   |                                                             |
|---------------------|------------------|-------------------|----------------------|-------------------|-------------------------------------------------------------|
|                     | 650              | 98 F              | Paved park           | ing, HSG A        | \                                                           |
|                     | 1,660            | 98 F              | Roofs, HSG           | <b>S</b> A        |                                                             |
|                     | 5,154            | 35 E              | Brush, Fair,         | , HSG A           |                                                             |
|                     | 5,849            | 49 F              | Pasture/gra          | ssland/rang       | ge, Fair, HSG A                                             |
|                     | 13,313           | 52 V              | Veighted A           | verage            |                                                             |
|                     | 11,003           | 8                 | 32.65% Per           | rvious Area       |                                                             |
|                     | 2,310            | 1                 | 7.35% Imp            | pervious Ar       | ea                                                          |
|                     |                  |                   |                      |                   |                                                             |
|                     |                  |                   |                      |                   |                                                             |
| Тс                  | Length           | Slope             |                      | Capacity          | Description                                                 |
| Tc<br>(min)         | Length<br>(feet) | Slope<br>(ft/ft)  | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                 |
|                     | •                | •                 |                      |                   | Description Sheet Flow, Sheet Flow 1                        |
| (min)               | (feet)           | (ft/ft)           | (ft/sec)             |                   |                                                             |
| (min)               | (feet)           | (ft/ft)           | (ft/sec)             |                   | Sheet Flow, Sheet Flow 1                                    |
| <u>(min)</u><br>8.3 | (feet)<br>100    | (ft/ft)<br>0.0300 | (ft/sec)<br>0.20     |                   | Sheet Flow, Sheet Flow 1<br>Grass: Short n= 0.150 P2= 3.21" |

## Summary for Subcatchment ES04: ES04

Runoff = 0.2 cfs @ 12.10 hrs, Volume= Routed to Link EPR : Piscataqua River 0.014 af, Depth= 1.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.59"

| Area (sf) | CN | Description                          |
|-----------|----|--------------------------------------|
| 463       | 98 | Paved parking, HSG A                 |
| 656       | 98 | Roofs, HSG A                         |
| 283       | 35 | Brush, Fair, HSG A                   |
| 2,814     | 49 | Pasture/grassland/range, Fair, HSG A |
| 4,216     | 61 | Weighted Average                     |
| 3,097     |    | 73.46% Pervious Area                 |
| 1,119     |    | 26.54% Impervious Area               |

## Pre and Post

 Type III 24-hr
 10 yr Rainfall=5.59"

 Printed
 5/24/2022

 .C
 Page 4

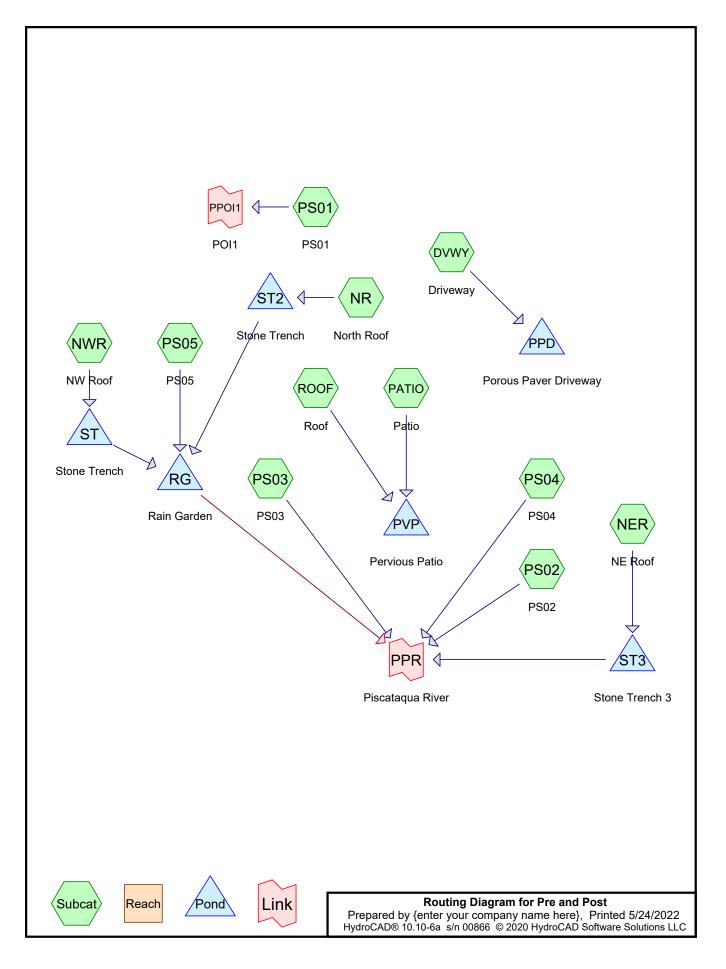
Prepared by {enter your company name here} HydroCAD® 10.10-6a s/n 00866 © 2020 HydroCAD Software Solutions LLC

| Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                       |
|-------------|------------------|------------------|----------------------|-------------------|---------------------------------------------------|
| 0.1         | 19               | 0.1500           | 2.21                 |                   | Sheet Flow, Sheet Flow 1                          |
|             |                  |                  |                      |                   | Smooth surfaces n= 0.011 P2= 3.21"                |
| 0.1         | 26               | 0.0100           | 2.99                 | 0.30              | Channel Flow, Channel 1                           |
|             |                  |                  |                      |                   | Area= 0.1 sf Perim= 1.3' r= 0.08'                 |
|             |                  |                  |                      |                   | n= 0.009 PVC, smooth interior                     |
| 0.2         | 48               | 0.2900           | 3.77                 |                   | Shallow Concentrated Flow, Shallow Concentrated 1 |
|             |                  |                  |                      |                   | Short Grass Pasture Kv= 7.0 fps                   |
| <br>5.6     |                  |                  |                      |                   | Direct Entry, Direct Entry                        |
| 6.0         | 93               | Total            |                      |                   |                                                   |

# Summary for Link EPOI1: POI1

| Inflow Area = | 0.107 ac, | 3.55% Impervious, Inflow | Depth = 0.95" for 10 yr event     |
|---------------|-----------|--------------------------|-----------------------------------|
| Inflow =      | 0.1 cfs @ | 12.15 hrs, Volume=       | 0.008 af                          |
| Primary =     | 0.1 cfs @ | 12.15 hrs, Volume=       | 0.008 af, Atten= 0%, Lag= 0.0 min |

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs


### Summary for Link EPR: Piscataqua River

| Inflow Area = | 0.651 ac, | 26.61% Impervious, | Inflow Depth = 1.62" | for 10 yr event     |
|---------------|-----------|--------------------|----------------------|---------------------|
| Inflow =      | 1.1 cfs @ | 12.11 hrs, Volume= | • 0.088 af           |                     |
| Primary =     | 1.1 cfs @ | 12.11 hrs, Volume= | e 0.088 af, Atte     | n= 0%, Lag= 0.0 min |

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

# <u>APPENDIX F – POST-DEVELOPMENT</u> <u>CALCULATIONS</u>

(This Page Is Intentionally Blank)



|   | Event# | Event | Storm Type     | Curve | Mode    | Duration | B/B | Depth    | AMC |
|---|--------|-------|----------------|-------|---------|----------|-----|----------|-----|
| _ |        | Name  |                |       |         | (hours)  |     | (inches) |     |
|   | 1      | 2 yr  | Type III 24-hr |       | Default | 24.00    | 1   | 3.69     | 2   |
|   | 2      | 10 yr | Type III 24-hr |       | Default | 24.00    | 1   | 5.59     | 2   |
|   | 3      | 25 yr | Type III 24-hr |       | Default | 24.00    | 1   | 7.10     | 2   |
|   | 4      | 50 yr | Type III 24-hr |       | Default | 24.00    | 1   | 8.49     | 2   |

# Rainfall Events Listing (selected events)

# Area Listing (selected nodes)

| Area    | CN | Description                                                         |
|---------|----|---------------------------------------------------------------------|
| (acres) |    | (subcatchment-numbers)                                              |
| 0.513   | 49 | Pasture/grassland/range, Fair, HSG A (PS01, PS02, PS03, PS04, PS05) |
| 0.138   | 98 | Paved parking, HSG A (DVWY, PS01, PS02)                             |
| 0.026   | 98 | Pervious Patio, HSG A (PATIO)                                       |
| 0.013   | 98 | Retaining Wall & Steps, HSG A (PS03)                                |
| 0.005   | 98 | Retaining Wall & Walkway, HSG A (PS05)                              |
| 0.004   | 98 | Retaining Wall and Steps, HSG A, (PS04)                             |
| 0.059   | 98 | Roofs, HSG A (NER, NR, NWR, ROOF)                                   |
| 0.759   | 65 | TOTAL AREA                                                          |

# Soil Listing (selected nodes)

|   | Area   | Soil  | Subcatchment                                                  |
|---|--------|-------|---------------------------------------------------------------|
| ( | acres) | Group | Numbers                                                       |
|   | 0.759  | HSG A | DVWY, NER, NR, NWR, PATIO, PS01, PS02, PS03, PS04, PS05, ROOF |
|   | 0.000  | HSG B |                                                               |
|   | 0.000  | HSG C |                                                               |
|   | 0.000  | HSG D |                                                               |
|   | 0.000  | Other |                                                               |
|   | 0.759  |       | TOTAL AREA                                                    |

| Pre and Post                                                        |
|---------------------------------------------------------------------|
| Prepared by {enter your company name here}                          |
| HydroCAD® 10.10-6a s/n 00866 © 2020 HydroCAD Software Solutions LLC |
|                                                                     |

| HSG-A     | HSG-B   | HSG-C   | HSG-D   | Other   | Total   | Ground                        | Subcatchment |
|-----------|---------|---------|---------|---------|---------|-------------------------------|--------------|
| (acres)   | (acres) | (acres) | (acres) | (acres) | (acres) | Cover                         | Numbers      |
| <br>0.513 | 0.000   | 0.000   | 0.000   | 0.000   | 0.513   | Pasture/grassland/range, Fair | PS0          |
|           |         |         |         |         |         |                               | 1,           |
|           |         |         |         |         |         |                               | PS0          |
|           |         |         |         |         |         |                               | 2,           |
|           |         |         |         |         |         |                               | PS0          |
|           |         |         |         |         |         |                               | 3,           |
|           |         |         |         |         |         |                               | PS0          |
|           |         |         |         |         |         |                               | 4,           |
|           |         |         |         |         |         |                               | PS0          |
|           |         |         |         |         |         |                               | 5            |
| 0.138     | 0.000   | 0.000   | 0.000   | 0.000   | 0.138   | Paved parking                 | DV           |
|           |         |         |         |         |         |                               | WY,          |
|           |         |         |         |         |         |                               |              |
|           |         |         |         |         |         |                               | PS0          |
|           |         |         |         |         |         |                               | 1,           |
|           |         |         |         |         |         |                               | PS0          |
|           |         |         |         |         |         |                               | 2            |
| 0.026     | 0.000   | 0.000   | 0.000   | 0.000   | 0.026   | Pervious Patio                | PAT          |
|           |         |         |         |         |         |                               | IO           |
| 0.013     | 0.000   | 0.000   | 0.000   | 0.000   | 0.013   | Retaining Wall & Steps        | PS0          |
|           |         |         |         |         |         |                               | 3            |
| 0.005     | 0.000   | 0.000   | 0.000   | 0.000   | 0.005   | Retaining Wall & Walkway      | PS0          |
|           |         |         |         |         |         |                               | 5            |
| 0.004     | 0.000   | 0.000   | 0.000   | 0.000   | 0.004   | Retaining Wall and Steps      | PS0          |
|           |         |         |         |         |         |                               | 4            |
| 0.059     | 0.000   | 0.000   | 0.000   | 0.000   | 0.059   | Roofs                         | NER          |
|           |         |         |         |         |         |                               | ,<br>ND      |
|           |         |         |         |         |         |                               | NR,          |
|           |         |         |         |         |         |                               | NW           |
|           |         |         |         |         |         |                               | R,           |
|           |         |         |         |         |         |                               | RO           |
| 0 750     | 0 000   | 0 000   | 0 000   | 0.000   | 0 750   |                               | OF           |
| 0.759     | 0.000   | 0.000   | 0.000   | 0.000   | 0.759   | TOTAL AREA                    |              |

# Ground Covers (selected nodes)

| SubcatchmentDVWY: Drive                            | eway            | Runoff Area=2,397 sf 100.00% Impervious Runoff Depth>3.44"<br>Tc=790.0 min CN=98 Runoff=0.0 cfs 0.016 af                  |
|----------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------|
| SubcatchmentNER: NE Roo                            | of              | Runoff Area=871 sf 100.00% Impervious Runoff Depth=3.46"<br>Tc=0.0 min CN=98 Runoff=0.1 cfs 0.006 af                      |
| SubcatchmentNR: North Ro                           | oof             | Runoff Area=288 sf 100.00% Impervious Runoff Depth=3.46"<br>Tc=0.0 min CN=98 Runoff=0.0 cfs 0.002 af                      |
| SubcatchmentNWR: NW Ro                             | oof             | Runoff Area=359 sf 100.00% Impervious Runoff Depth=3.46"<br>Tc=0.0 min CN=98 Runoff=0.0 cfs 0.002 af                      |
| SubcatchmentPATIO: Patio                           | )               | Runoff Area=1,136 sf 100.00% Impervious Runoff Depth>3.44"<br>Tc=790.0 min CN=98 Runoff=0.0 cfs 0.007 af                  |
| SubcatchmentPS01: PS01                             | Flow Length=63  | Runoff Area=3,398 sf 3.91% Impervious Runoff Depth=0.27"<br>3' Slope=0.0630 '/' Tc=6.0 min CN=51 Runoff=0.0 cfs 0.002 af  |
| SubcatchmentPS02: PS02                             |                 | Runoff Area=11,262 sf 30.98% Impervious Runoff Depth=0.80"<br>Flow Length=145' Tc=6.0 min CN=64 Runoff=0.2 cfs 0.017 af   |
| SubcatchmentPS03: PS03                             | Flow Length=71  | Runoff Area=7,487 sf 7.71% Impervious Runoff Depth=0.34"<br>I' Slope=0.0600 '/' Tc=6.0 min CN=53 Runoff=0.0 cfs 0.005 af  |
| SubcatchmentPS04: PS04                             | Flow Length=68  | Runoff Area=2,723 sf 6.17% Impervious Runoff Depth=0.31"<br>3' Slope=0.1760 '/' Tc=6.0 min CN=52 Runoff=0.0 cfs 0.002 af  |
| SubcatchmentPS05: PS05                             | Flow Length=35  | Runoff Area=2,083 sf 10.66% Impervious Runoff Depth=0.38"<br>5' Slope=0.1070 '/' Tc=6.0 min CN=54 Runoff=0.0 cfs 0.001 af |
| SubcatchmentROOF: Roof                             |                 | Runoff Area=1,041 sf 100.00% Impervious Runoff Depth=3.46"<br>Tc=6.0 min CN=98 Runoff=0.1 cfs 0.007 af                    |
| Pond PPD: Porous Paver Dr                          | riveway         | Peak Elev=9.70' Storage=0 cf Inflow=0.0 cfs 0.016 af<br>Outflow=0.0 cfs 0.016 af                                          |
| Pond PVP: Pervious Patio                           |                 | Peak Elev=16.61' Storage=75 cf Inflow=0.1 cfs 0.014 af<br>Outflow=0.0 cfs 0.014 af                                        |
| Pond RG: Rain Garden<br>Discarded=0.0 cfs 0.003 af | Primary=0.0 cfs | Peak Elev=14.02' Storage=88 cf Inflow=0.1 cfs 0.003 af 0.000 af Secondary=0.0 cfs 0.000 af Outflow=0.0 cfs 0.003 af       |
| Pond ST: Stone Trench                              | Discarded=0.0   | Peak Elev=14.71' Storage=0.000 af Inflow=0.0 cfs 0.002 af cfs 0.001 af Primary=0.0 cfs 0.001 af Outflow=0.0 cfs 0.002 af  |
| Pond ST2: Stone Trench                             | Discarded=0.0   | Peak Elev=18.23' Storage=0.000 af Inflow=0.0 cfs 0.002 af cfs 0.001 af Primary=0.0 cfs 0.001 af Outflow=0.0 cfs 0.002 af  |

Pond ST3: Stone Trench 3Peak Elev=19.01' Storage=42 cf Inflow=0.1 cfs 0.006 af<br/>Discarded=0.0 cfs 0.002 af Primary=0.1 cfs 0.004 af Outflow=0.1 cfs 0.006 af

Link PPOI1: POI1

Inflow=0.0 cfs 0.002 af Primary=0.0 cfs 0.002 af

Link PPR: Piscataqua River

Inflow=0.3 cfs 0.028 af Primary=0.3 cfs 0.028 af

Total Runoff Area = 0.759 ac Runoff Volume = 0.067 af Average Runoff Depth = 1.06" 67.68% Pervious = 0.513 ac 32.32% Impervious = 0.245 ac

| SubcatchmentDVWY: Drive                            | eway            | Runoff Area=2,397 sf 100.00% Impervious Runoff Depth>5.32"<br>Tc=790.0 min CN=98 Runoff=0.0 cfs 0.024 af                  |
|----------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------|
| SubcatchmentNER: NE Roo                            | of              | Runoff Area=871 sf 100.00% Impervious Runoff Depth=5.35"<br>Tc=0.0 min CN=98 Runoff=0.1 cfs 0.009 af                      |
| SubcatchmentNR: North Ro                           | oof             | Runoff Area=288 sf 100.00% Impervious Runoff Depth=5.35"<br>Tc=0.0 min CN=98 Runoff=0.0 cfs 0.003 af                      |
| SubcatchmentNWR: NW Ro                             | oof             | Runoff Area=359 sf 100.00% Impervious Runoff Depth=5.35"<br>Tc=0.0 min CN=98 Runoff=0.1 cfs 0.004 af                      |
| SubcatchmentPATIO: Patio                           |                 | Runoff Area=1,136 sf 100.00% Impervious Runoff Depth>5.32"<br>Tc=790.0 min CN=98 Runoff=0.0 cfs 0.012 af                  |
| SubcatchmentPS01: PS01                             | Flow Length=63' | Runoff Area=3,398 sf 3.91% Impervious Runoff Depth=1.01"<br>S' Slope=0.0630 '/' Tc=6.0 min CN=51 Runoff=0.1 cfs 0.007 af  |
| SubcatchmentPS02: PS02                             |                 | Runoff Area=11,262 sf 30.98% Impervious Runoff Depth=1.98"<br>Flow Length=145' Tc=6.0 min CN=64 Runoff=0.6 cfs 0.043 af   |
| SubcatchmentPS03: PS03                             | Flow Length=71' | Runoff Area=7,487 sf 7.71% Impervious Runoff Depth=1.15"<br>' Slope=0.0600 '/' Tc=6.0 min CN=53 Runoff=0.2 cfs 0.016 af   |
| SubcatchmentPS04: PS04                             | Flow Length=68' | Runoff Area=2,723 sf 6.17% Impervious Runoff Depth=1.08"<br>S' Slope=0.1760 '/' Tc=6.0 min CN=52 Runoff=0.1 cfs 0.006 af  |
| SubcatchmentPS05: PS05                             | Flow Length=35' | Runoff Area=2,083 sf 10.66% Impervious Runoff Depth=1.22"<br>5' Slope=0.1070 '/' Tc=6.0 min CN=54 Runoff=0.1 cfs 0.005 af |
| SubcatchmentROOF: Roof                             |                 | Runoff Area=1,041 sf 100.00% Impervious Runoff Depth=5.35"<br>Tc=6.0 min CN=98 Runoff=0.1 cfs 0.011 af                    |
| Pond PPD: Porous Paver Dr                          | iveway          | Peak Elev=9.70' Storage=0 cf Inflow=0.0 cfs 0.024 af<br>Outflow=0.0 cfs 0.024 af                                          |
| Pond PVP: Pervious Patio                           |                 | Peak Elev=16.78' Storage=144 cf Inflow=0.1 cfs 0.022 af<br>Outflow=0.0 cfs 0.022 af                                       |
| Pond RG: Rain Garden<br>Discarded=0.0 cfs 0.005 af | Primary=0.0 cfs | Peak Elev=14.38' Storage=153 cf Inflow=0.1 cfs 0.008 af 0.004 af Secondary=0.0 cfs 0.000 af Outflow=0.0 cfs 0.008 af      |
| Pond ST: Stone Trench                              | Discarded=0.0   | Peak Elev=14.71' Storage=0.000 af Inflow=0.1 cfs 0.004 af cfs 0.002 af Primary=0.0 cfs 0.002 af Outflow=0.0 cfs 0.004 af  |
| Pond ST2: Stone Trench                             | Discarded=0.0   | Peak Elev=18.23' Storage=0.000 af Inflow=0.0 cfs 0.003 af cfs 0.001 af Primary=0.0 cfs 0.001 af Outflow=0.0 cfs 0.003 af  |

Type III 24-hr 10 yr Rainfall=5.59" Printed 5/24/2022 ons LLC Page 9

Pond ST3: Stone Trench 3Peak Elev=19.02' Storage=42 cfInflow=0.1 cfs0.009 afDiscarded=0.0 cfs0.002 afPrimary=0.1 cfs0.007 afOutflow=0.1 cfs0.009 af

Link PPOI1: POI1

Inflow=0.1 cfs 0.007 af Primary=0.1 cfs 0.007 af

Link PPR: Piscataqua River

Inflow=0.9 cfs 0.076 af Primary=0.9 cfs 0.076 af

Total Runoff Area = 0.759 ac Runoff Volume = 0.138 af Average Runoff Depth = 2.19" 67.68% Pervious = 0.513 ac 32.32% Impervious = 0.245 ac

| SubcatchmentDVWY: Drive                            | eway            | Runoff Area=2,397 sf 100.00% Impervious Runoff Depth>6.82"<br>Tc=790.0 min CN=98 Runoff=0.0 cfs 0.031 af                  |
|----------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------|
| SubcatchmentNER: NE Roo                            | of              | Runoff Area=871 sf 100.00% Impervious Runoff Depth=6.86"<br>Tc=0.0 min CN=98 Runoff=0.2 cfs 0.011 af                      |
| SubcatchmentNR: North Ro                           | oof             | Runoff Area=288 sf 100.00% Impervious Runoff Depth=6.86"<br>Tc=0.0 min CN=98 Runoff=0.1 cfs 0.004 af                      |
| SubcatchmentNWR: NW Ro                             | oof             | Runoff Area=359 sf 100.00% Impervious Runoff Depth=6.86"<br>Tc=0.0 min CN=98 Runoff=0.1 cfs 0.005 af                      |
| SubcatchmentPATIO: Patio                           |                 | Runoff Area=1,136 sf 100.00% Impervious Runoff Depth>6.82"<br>Tc=790.0 min CN=98 Runoff=0.0 cfs 0.015 af                  |
| SubcatchmentPS01: PS01                             | Flow Length=63  | Runoff Area=3,398 sf 3.91% Impervious Runoff Depth=1.81"<br>3' Slope=0.0630 '/' Tc=6.0 min CN=51 Runoff=0.1 cfs 0.012 af  |
| SubcatchmentPS02: PS02                             |                 | Runoff Area=11,262 sf 30.98% Impervious Runoff Depth=3.08"<br>Flow Length=145' Tc=6.0 min CN=64 Runoff=0.9 cfs 0.066 af   |
| SubcatchmentPS03: PS03                             | Flow Length=71  | Runoff Area=7,487 sf 7.71% Impervious Runoff Depth=2.00"<br>' Slope=0.0600 '/' Tc=6.0 min CN=53 Runoff=0.4 cfs 0.029 af   |
| SubcatchmentPS04: PS04                             | Flow Length=68  | Runoff Area=2,723 sf 6.17% Impervious Runoff Depth=1.91"<br>3' Slope=0.1760 '/' Tc=6.0 min CN=52 Runoff=0.1 cfs 0.010 af  |
| SubcatchmentPS05: PS05                             | Flow Length=35  | Runoff Area=2,083 sf 10.66% Impervious Runoff Depth=2.09"<br>5' Slope=0.1070 '/' Tc=6.0 min CN=54 Runoff=0.1 cfs 0.008 af |
| SubcatchmentROOF: Roof                             |                 | Runoff Area=1,041 sf 100.00% Impervious Runoff Depth=6.86"<br>Tc=6.0 min CN=98 Runoff=0.2 cfs 0.014 af                    |
| Pond PPD: Porous Paver Dr                          | iveway          | Peak Elev=9.70' Storage=0 cf Inflow=0.0 cfs 0.031 af<br>Outflow=0.0 cfs 0.031 af                                          |
| Pond PVP: Pervious Patio                           |                 | Peak Elev=16.94' Storage=207 cf Inflow=0.2 cfs 0.028 af<br>Outflow=0.0 cfs 0.029 af                                       |
| Pond RG: Rain Garden<br>Discarded=0.0 cfs 0.005 af | Primary=0.2 cfs | Peak Elev=14.43' Storage=166 cf Inflow=0.2 cfs 0.014 af 0.009 af Secondary=0.0 cfs 0.000 af Outflow=0.2 cfs 0.014 af      |
| Pond ST: Stone Trench                              | Discarded=0.0   | Peak Elev=14.71' Storage=0.000 af Inflow=0.1 cfs 0.005 af cfs 0.002 af Primary=0.1 cfs 0.003 af Outflow=0.1 cfs 0.005 af  |
| Pond ST2: Stone Trench                             | Discarded=0.0   | Peak Elev=18.23' Storage=0.000 af Inflow=0.1 cfs 0.004 af cfs 0.002 af Primary=0.0 cfs 0.002 af Outflow=0.1 cfs 0.004 af  |

Pond ST3: Stone Trench 3Peak Elev=19.02' Storage=42 cfInflow=0.2 cfs0.011 afDiscarded=0.0 cfs0.002 afPrimary=0.2 cfs0.009 afOutflow=0.2 cfs0.011 af

Link PPOI1: POI1

Inflow=0.1 cfs 0.012 af Primary=0.1 cfs 0.012 af

Link PPR: Piscataqua River

Inflow=1.6 cfs 0.123 af Primary=1.6 cfs 0.123 af

Total Runoff Area = 0.759 ac Runoff Volume = 0.205 af Average Runoff Depth = 3.24" 67.68% Pervious = 0.513 ac 32.32% Impervious = 0.245 ac

*Type III 24-hr 25 yr Rainfall=7.10"* Printed 5/24/2022 LC Page 11

| SubcatchmentDVWY: Drive                            | eway            | Runoff Area=2,397<br>Tc                | sf 100.00%<br>=790.0 min |   |                              |  |
|----------------------------------------------------|-----------------|----------------------------------------|--------------------------|---|------------------------------|--|
| SubcatchmentNER: NE Roo                            | of              | Runoff Area=871                        | sf 100.00%<br>Tc=0.0 min |   |                              |  |
| SubcatchmentNR: North Ro                           | oof             | Runoff Area=288                        | sf 100.00%<br>Tc=0.0 min |   |                              |  |
| SubcatchmentNWR: NW Ro                             | oof             | Runoff Area=359                        | sf 100.00%<br>Tc=0.0 min |   |                              |  |
| SubcatchmentPATIO: Patio                           | )               | Runoff Area=1,136<br>Tc                | sf 100.00%<br>=790.0 min |   |                              |  |
| SubcatchmentPS01: PS01                             | Flow Length=63' | Runoff Area=3,39<br>Slope=0.0630 '/'   |                          |   |                              |  |
| SubcatchmentPS02: PS02                             |                 | Runoff Area=11,262<br>Flow Length=145' |                          |   |                              |  |
| SubcatchmentPS03: PS03                             | Flow Length=71' | Runoff Area=7,48<br>Slope=0.0600 '/'   |                          |   |                              |  |
| SubcatchmentPS04: PS04                             | Flow Length=68' | Runoff Area=2,72<br>Slope=0.1760 '/'   |                          |   |                              |  |
| SubcatchmentPS05: PS05                             | Flow Length=35' | Runoff Area=2,083<br>Slope=0.1070 '/'  |                          |   |                              |  |
| SubcatchmentROOF: Roof                             |                 | Runoff Area=1,041                      | sf 100.00%<br>Tc=6.0 min |   |                              |  |
| Pond PPD: Porous Paver Dr                          | riveway         | Peak Elev                              | /=9.70' Stora            |   | flow=0.0 cfs<br>flow=0.0 cfs |  |
| Pond PVP: Pervious Patio                           |                 | Peak Elev=17                           | 7.10' Storage            | - | flow=0.2 cfs<br>flow=0.0 cfs |  |
| Pond RG: Rain Garden<br>Discarded=0.0 cfs 0.005 af | Primary=0.3 cfs | Peak Elev=14<br>0.014 af Secondar      |                          |   |                              |  |
| Pond ST: Stone Trench                              | Discarded=0.0   | Peak Elev=14.7<br>cfs 0.002 af Primar  |                          |   |                              |  |
| Pond ST2: Stone Trench                             | Discarded=0.0   | Peak Elev=18.2<br>cfs 0.002 af Primar  |                          |   |                              |  |

Pond ST3: Stone Trench 3 Peak Elev=19.03' Storage=42 cf Inflow=0.2 cfs 0.014 af Discarded=0.0 cfs 0.002 af Primary=0.2 cfs 0.012 af Outflow=0.2 cfs 0.014 af

Link PPOI1: POI1

Inflow=0.2 cfs 0.017 af Primary=0.2 cfs 0.017 af

Link PPR: Piscataqua River

Inflow=2.3 cfs 0.172 af Primary=2.3 cfs 0.172 af

Total Runoff Area = 0.759 ac Runoff Volume = 0.271 af Average Runoff Depth = 4.29" 67.68% Pervious = 0.513 ac 32.32% Impervious = 0.245 ac

#### Type III 24-hr 50 yr Rainfall=8.49" Printed 5/24/2022 LLC Page 13

# <u>APPENDIX G – POST-DEVELOPMENT</u> CALCULATIONS (10-YEAR STORM EVENT)

(This Page Is Intentionally Blank)

|        |               |                |       |         |                     |     | , ,               |     |  |
|--------|---------------|----------------|-------|---------|---------------------|-----|-------------------|-----|--|
| Event# | Event<br>Name | Storm Type     | Curve | Mode    | Duration<br>(hours) | B/B | Depth<br>(inches) | AMC |  |
| 1      | 10 yr         | Type III 24-hr |       | Default | 24.00               | 1   | 5.59              | 2   |  |

### Rainfall Events Listing (selected events)

### Summary for Subcatchment DVWY: Driveway

Runoff = 0.0 cfs @ 21.94 hrs, Volume= 0.024 af, Depth> 5.32" Routed to Pond PPD : Porous Paver Driveway

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.59"

| A           | rea (sf)         | CN [             | Description          |                   |                            |
|-------------|------------------|------------------|----------------------|-------------------|----------------------------|
|             | 2,397            | 98 F             | Paved park           | ing, HSG A        | N                          |
|             | 2,397            |                  | 100.00% In           | npervious A       | vrea                       |
| Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                |
| 790.0       |                  |                  |                      |                   | Direct Entry, Direct Entry |

### Summary for Subcatchment NER: NE Roof

0.009 af, Depth= 5.35"

Runoff = 0.1 cfs @ 12.00 hrs, Volume= Routed to Pond ST3 : Stone Trench 3

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.59"

| Are | a (sf) | CN | Description             |
|-----|--------|----|-------------------------|
|     | 871    | 98 | Roofs, HSG A            |
|     | 871    |    | 100.00% Impervious Area |

#### Summary for Subcatchment NR: North Roof

Runoff = 0.0 cfs @ 12.00 hrs, Volume= 0.003 af, Depth= 5.35" Routed to Pond ST2 : Stone Trench

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.59"

| <br>Area (sf) | CN | Description             |
|---------------|----|-------------------------|
| <br>288       | 98 | Roofs, HSG A            |
| <br>288       |    | 100.00% Impervious Area |

#### Summary for Subcatchment NWR: NW Roof

| Runoff | =       | 0.1 cfs @    | 12.00 hrs, | Volume= | 0.004 af, | Depth= 5.35" |
|--------|---------|--------------|------------|---------|-----------|--------------|
| Routed | to Pond | d ST : Stone | Trench     |         |           |              |

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.59"

| Area (sf) CN Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 359 98 Roofs, HSG A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 359 100.00% Impervious Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Summary for Subcatchment PATIO: Patio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Runoff = 0.0 cfs @ 21.94 hrs, Volume= 0.012 af, Depth> 5.32"<br>Routed to Pond PVP : Pervious Patio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs<br>Type III 24-hr  10 yr Rainfall=5.59"                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Area (sf) CN Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| * 1,136 98 Pervious Patio, HSG A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1,136 100.00% Impervious Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Tc Length Slope Velocity Capacity Description<br>(min) (feet) (ft/ft) (ft/sec) (cfs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 790.0 Direct Entry, Direct Entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Summary for Subcatchment PS01: PS01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Runoff = 0.1 cfs @ 12.11 hrs, Volume= 0.007 af, Depth= 1.01"<br>Routed to Link PPOI1 : POI1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Runoff = 0.1 cfs @ 12.11 hrs, Volume= 0.007 af, Depth= 1.01"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Runoff = 0.1 cfs @ 12.11 hrs, Volume= 0.007 af, Depth= 1.01"<br>Routed to Link PPOI1 : POI1<br>Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Runoff = 0.1 cfs @ 12.11 hrs, Volume= 0.007 af, Depth= 1.01"<br>Routed to Link PPOI1 : POI1<br>Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs<br>Type III 24-hr 10 yr Rainfall=5.59"                                                                                                                                                                                                                                                                                                                                                                          |
| Runoff = 0.1 cfs @ 12.11 hrs, Volume= 0.007 af, Depth= 1.01"<br>Routed to Link PPOI1 : POI1<br>Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs<br>Type III 24-hr 10 yr Rainfall=5.59"<br><u>Area (sf) CN Description</u><br>133 98 Paved parking, HSG A<br>0 98 Roofs, HSG A                                                                                                                                                                                                                                                                                   |
| Runoff = 0.1 cfs @ 12.11 hrs, Volume= 0.007 af, Depth= 1.01"<br>Routed to Link PPOI1 : POI1<br>Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs<br>Type III 24-hr 10 yr Rainfall=5.59"<br><u>Area (sf) CN Description</u><br>133 98 Paved parking, HSG A<br>0 98 Roofs, HSG A<br>3,265 49 Pasture/grassland/range, Fair, HSG A                                                                                                                                                                                                                                  |
| Runoff       =       0.1 cfs @       12.11 hrs, Volume=       0.007 af, Depth= 1.01"         Routed to Link PPOI1 : POI1       Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs         Type III 24-hr       10 yr Rainfall=5.59"         Area (sf)       CN       Description         133       98       Paved parking, HSG A         0       98       Roofs, HSG A         3,265       49       Pasture/grassland/range, Fair, HSG A         3,398       51       Weighted Average                                                                            |
| Runoff       =       0.1 cfs @ 12.11 hrs, Volume=       0.007 af, Depth= 1.01"         Routed to Link PPOI1 : POI1       Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs         Type III 24-hr       10 yr Rainfall=5.59"         Area (sf)       CN       Description         133       98       Paved parking, HSG A         0       98       Roofs, HSG A         3,265       49       Pasture/grassland/range, Fair, HSG A         3,398       51       Weighted Average         3,265       96.09% Pervious Area                                         |
| Runoff       =       0.1 cfs @       12.11 hrs, Volume=       0.007 af, Depth= 1.01"         Routed to Link PPOI1 : POI1       Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs         Type III 24-hr       10 yr Rainfall=5.59"         Area (sf)       CN       Description         133       98       Paved parking, HSG A         0       98       Roofs, HSG A         3,265       49       Pasture/grassland/range, Fair, HSG A         3,398       51       Weighted Average                                                                            |
| Runoff       =       0.1 cfs @ 12.11 hrs, Volume=       0.007 af, Depth= 1.01"         Routed to Link PPOI1 : POI1       Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs         Type III 24-hr       10 yr Rainfall=5.59"         Area (sf)       CN       Description         133       98       Paved parking, HSG A         0       98       Roofs, HSG A         3,265       49       Pasture/grassland/range, Fair, HSG A         3,398       51       Weighted Average         3,265       96.09% Pervious Area         133       3.91% Impervious Area |
| Runoff       =       0.1 cfs @ 12.11 hrs, Volume=       0.007 af, Depth= 1.01"         Routed to Link PPOI1 : POI1       Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs         Type III 24-hr       10 yr Rainfall=5.59"         Area (sf)       CN       Description         133       98       Paved parking, HSG A         0       98       Roofs, HSG A         3,265       49       Pasture/grassland/range, Fair, HSG A         3,398       51       Weighted Average         3,265       96.09% Pervious Area                                         |
| Runoff = 0.1 cfs @ 12.11 hrs, Volume= 0.007 af, Depth= 1.01"<br>Routed to Link PPOI1 : POI1<br>Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs<br>Type III 24-hr 10 yr Rainfall=5.59"<br><u>Area (sf) CN Description</u><br>133 98 Paved parking, HSG A<br>0 98 Roofs, HSG A<br>3,265 49 Pasture/grassland/range, Fair, HSG A<br>3,398 51 Weighted Average<br>3,265 96.09% Pervious Area<br>133 3.91% Impervious Area<br>Tc Length Slope Velocity Capacity Description                                                                                         |

# Summary for Subcatchment PS02: PS02

Runoff 0.6 cfs @ 12.10 hrs, Volume= = Routed to Link PPR : Piscataqua River

63 Total

1.7

6.0

0.043 af, Depth= 1.98"

Direct Entry, Direct Entry

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.59"

| A     | rea (sf) | CN [                    | Description  |             |                                                   |  |  |
|-------|----------|-------------------------|--------------|-------------|---------------------------------------------------|--|--|
|       | 3,489    | 98 Paved parking, HSG A |              |             |                                                   |  |  |
|       | 0        | 98 F                    | Roofs, HSC   | θĂ.         |                                                   |  |  |
|       | 7,773    | 49 F                    | Pasture/gra  | ssland/ran  | ge, Fair, HSG A                                   |  |  |
|       | 0        | 35 E                    | Brush, Fair, | HSG A       |                                                   |  |  |
|       | 11,262   | 64 V                    | Veighted A   | verage      |                                                   |  |  |
|       | 7,773    | 6                       | 9.02% Per    | vious Area  |                                                   |  |  |
|       | 3,489    | 3                       | 30.98% Imp   | pervious Ar | ea                                                |  |  |
|       |          |                         |              |             |                                                   |  |  |
| Tc    | Length   | Slope                   | Velocity     | Capacity    | Description                                       |  |  |
| (min) | (feet)   | (ft/ft)                 | (ft/sec)     | (cfs)       |                                                   |  |  |
| 4.7   | 78       | 0.0770                  | 0.28         |             | Sheet Flow, Sheet Flow 1                          |  |  |
|       |          |                         |              |             | Grass: Short n= 0.150 P2= 3.21"                   |  |  |
| 0.3   | 22       | 0.0450                  | 1.41         |             | Sheet Flow, Sheet Flow 2                          |  |  |
|       |          |                         |              |             | Smooth surfaces n= 0.011 P2= 3.21"                |  |  |
| 0.1   | 18       | 0.0555                  | 4.78         |             | Shallow Concentrated Flow, Shallow Concentrated 1 |  |  |
|       |          |                         |              |             | Paved Kv= 20.3 fps                                |  |  |
| 0.2   | 27       | 0.1850                  | 2.15         |             | Shallow Concentrated Flow, Shallow Concentrated 2 |  |  |
| 07    |          |                         |              |             | Woodland Kv= 5.0 fps                              |  |  |
| 0.7   |          |                         |              |             | Direct Entry, Direct Entry                        |  |  |
| 6.0   | 145      | Total                   |              |             |                                                   |  |  |

# Summary for Subcatchment PS03: PS03

| Runoff                                | = | 0.2 cfs @ | 12.11 hrs, | Volume= |  |  |  |  |
|---------------------------------------|---|-----------|------------|---------|--|--|--|--|
| Routed to Link PPR : Piscataqua River |   |           |            |         |  |  |  |  |

0.016 af, Depth= 1.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.59"

|   | Α     | rea (sf) | CN E    | Description                      |             |                                 |  |  |  |  |
|---|-------|----------|---------|----------------------------------|-------------|---------------------------------|--|--|--|--|
| * |       | 577      | 98 F    | 98 Retaining Wall & Steps, HSG A |             |                                 |  |  |  |  |
|   |       | 6,910    | 49 F    | Pasture/gra                      | ssland/rang | ge, Fair, HSG A                 |  |  |  |  |
|   |       | 7,487    | 53 V    | 53 Weighted Average              |             |                                 |  |  |  |  |
|   |       | 6,910    | ç       | 2.29% Pe                         | rvious Area |                                 |  |  |  |  |
|   |       | 577      | 7       | '.71% Impe                       | ervious Are | а                               |  |  |  |  |
|   | Тс    | Length   | Slope   | Velocity                         | Capacity    | Description                     |  |  |  |  |
|   | (min) | (feet)   | (ft/ft) | (ft/sec)                         | (cfs)       | Description                     |  |  |  |  |
|   | 4.8   | 71       | 0.0600  | 0.25                             |             | Sheet Flow, Sheet Flow 1        |  |  |  |  |
|   |       |          |         |                                  |             | Grass: Short n= 0.150 P2= 3.21" |  |  |  |  |
|   | 1.2   |          |         |                                  |             | Direct Entry, Direct Entry      |  |  |  |  |
|   | 6.0   | 71       | Total   |                                  |             |                                 |  |  |  |  |

### Summary for Subcatchment PS04: PS04

Runoff = 0.1 cfs @ 12.11 hrs, Volume= 0.006 af, Depth= 1.08" Routed to Link PPR : Piscataqua River

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.59"

|    | A    | rea (sf) | CN      | Description                      |             |                                 |  |  |  |  |  |
|----|------|----------|---------|----------------------------------|-------------|---------------------------------|--|--|--|--|--|
| *  |      | 168      | 98      | Retaining Wall and Steps, HSG A, |             |                                 |  |  |  |  |  |
|    |      | 0        | 98      | Roofs, HSC                       | βA          |                                 |  |  |  |  |  |
|    |      | 2,555    | 49      | Pasture/gra                      | ssland/ran  | ge, Fair, HSG A                 |  |  |  |  |  |
|    |      | 0        | 35      | Brush, Fair,                     | HSG A       | -                               |  |  |  |  |  |
|    |      | 2,723    | 52      | 52 Weighted Average              |             |                                 |  |  |  |  |  |
|    |      | 2,555    |         | 93.83% Pei                       | rvious Area |                                 |  |  |  |  |  |
|    |      | 168      |         | 6.17% Impe                       | ervious Are | а                               |  |  |  |  |  |
|    |      |          |         |                                  |             |                                 |  |  |  |  |  |
|    | Тс   | Length   | Slope   | Velocity                         | Capacity    | Description                     |  |  |  |  |  |
| (1 | min) | (feet)   | (ft/ft) | (ft/sec)                         | (cfs)       |                                 |  |  |  |  |  |
|    | 4.4  | 68       | 0.1760  | 0.26                             |             | Sheet Flow, Sheet Flow 1        |  |  |  |  |  |
|    |      |          |         |                                  |             | Grass: Dense n= 0.240 P2= 3.21" |  |  |  |  |  |
|    | 1.6  |          |         |                                  |             | Direct Entry, Direct Entry      |  |  |  |  |  |
|    | 6.0  | 68       | Total   |                                  |             |                                 |  |  |  |  |  |

#### Summary for Subcatchment PS05: PS05

Runoff = 0.1 cfs @ 12.11 hrs, Volume= Routed to Pond RG : Rain Garden 0.005 af, Depth= 1.22"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.59"

|   | A           | rea (sf)         | CN [             | Description          |                   |                                 |  |  |  |  |
|---|-------------|------------------|------------------|----------------------|-------------------|---------------------------------|--|--|--|--|
| * |             | 222              | 98 F             | Retaining V          | Vall & Walk       | way, HSG A                      |  |  |  |  |
| _ |             | 1,861            | 49 F             | Pasture/gra          | ssland/ran        | ge, Fair, HSG A                 |  |  |  |  |
|   |             | 2,083            | 54 \             | 54 Weighted Average  |                   |                                 |  |  |  |  |
|   |             | 1,861            | 8                | 39.34% Pei           | rvious Area       |                                 |  |  |  |  |
|   |             | 222              |                  | 0.66% Imp            | pervious Ar       | ea                              |  |  |  |  |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                     |  |  |  |  |
| - | 2.2         | 35               | 0.1070           | 0.27                 | (010)             | Sheet Flow, Sheet Flow          |  |  |  |  |
|   |             |                  |                  | 0.21                 |                   | Grass: Short n= 0.150 P2= 3.21" |  |  |  |  |
| _ | 3.8         |                  |                  |                      |                   | Direct Entry, Direct Entry      |  |  |  |  |
|   | 6.0         | 35               | Total            |                      |                   |                                 |  |  |  |  |

### Summary for Subcatchment ROOF: Roof

Runoff = 0.1 cfs @ 12.09 hrs, Volume= Routed to Pond PVP : Pervious Patio 0.011 af, Depth= 5.35"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.59"

| A           | rea (sf)         | CN I                    | Description          |                   |                            |  |
|-------------|------------------|-------------------------|----------------------|-------------------|----------------------------|--|
|             | 1,041            | 98 I                    | Roofs, HSG           | βA                |                            |  |
|             | 1,041            | 100.00% Impervious Area |                      |                   |                            |  |
| Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft)        | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                |  |
| 6.0         |                  |                         |                      |                   | Direct Entry, Direct Entry |  |

### Summary for Pond PPD: Porous Paver Driveway

| Inflow Area = | 0.055 ac,100.00% Impervious, Inflov | v Depth > 5.32" for 10 yr event   |
|---------------|-------------------------------------|-----------------------------------|
| Inflow =      | 0.0 cfs @ 21.94 hrs, Volume=        | 0.024 af                          |
| Outflow =     | 0.0 cfs @ 21.94 hrs, Volume=        | 0.024 af, Atten= 0%, Lag= 0.0 min |
| Discarded =   | 0.0 cfs @ 21.94 hrs, Volume=        | 0.024 af                          |

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 9.70' @ 21.94 hrs Surf.Area= 2,099 sf Storage= 0 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (1,455.9 - 1,455.9)

| Volume    | Invert / | Avail.Storage | Storage Descripti                | on                                                                                        |                      |  |  |  |  |
|-----------|----------|---------------|----------------------------------|-------------------------------------------------------------------------------------------|----------------------|--|--|--|--|
| #1        | 10.95'   | 210 cf        | Subbase (Irregu 2,099 cf Overall |                                                                                           | Recalc) -Impervious  |  |  |  |  |
| #2        | 10.70'   | 210 cf        |                                  | ular)Listed below                                                                         | (Recalc) -Impervious |  |  |  |  |
| #3        | 9.70'    | 840 cf        | <b>Rock Reservoir</b>            | <b>Rock Reservoir (Irregular)</b> Listed below (Recalc)<br>2,099 cf Overall x 40.0% Voids |                      |  |  |  |  |
|           |          | 1,259 cf      | Total Available Storage          |                                                                                           |                      |  |  |  |  |
| Elevation | Surf.Ar  | ea Perim.     | Inc.Store                        | Cum.Store                                                                                 | Wet.Area             |  |  |  |  |
| (feet)    | (sq      | -ft) (feet)   | (cubic-feet)                     | (cubic-feet)                                                                              | (sq-ft)              |  |  |  |  |
| 10.95     | 2,0      | 99 257.0      | 0                                | 0                                                                                         | 2,099                |  |  |  |  |
| 11.95     | 2,0      | 99 257.0      | 2,099                            | 2,099                                                                                     | 2,356                |  |  |  |  |
| Elevation | Surf.Ar  |               | Inc.Store                        | Cum.Store                                                                                 | Wet.Area             |  |  |  |  |
| (feet)    | (sq      | -ft) (feet)   | (cubic-feet)                     | (cubic-feet)                                                                              | <u>(sq-ft)</u>       |  |  |  |  |
| 10.70     | 2,0      | 99 257.0      | 0                                | 0                                                                                         | 2,099                |  |  |  |  |
| 10.95     | 2,0      | 99 257.0      | 525                              | 525                                                                                       | 2,163                |  |  |  |  |

| Inflow Area<br>Inflow<br>Outflow<br>Discarded | = 0.1<br>= 0.0                                                                                                                                   | 050 ac,100.00% l<br>l cfs @  12.09 hr<br>) cfs @  11.85 hr<br>) cfs @  11.85 hr | s, Volume= 0.022 af, Atten= 88%, Lag= 0.0 min           |  |  |  |  |  |  |  |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------|--|--|--|--|--|--|--|
|                                               | Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3<br>Peak Elev= 16.78' @ 12.76 hrs Surf.Area= 1,000 sf Storage= 144 cf |                                                                                 |                                                         |  |  |  |  |  |  |  |
|                                               | - 10.70 @                                                                                                                                        |                                                                                 |                                                         |  |  |  |  |  |  |  |
| •                                             |                                                                                                                                                  | •                                                                               | ed: outflow precedes inflow)                            |  |  |  |  |  |  |  |
| Center-or-i                                   | Center-of-Mass det. time= 36.4 min(1,151.9 - 1,115.6)                                                                                            |                                                                                 |                                                         |  |  |  |  |  |  |  |
| Volume                                        | Invert                                                                                                                                           | Avail.Storage                                                                   | Storage Description                                     |  |  |  |  |  |  |  |
| #1                                            | 19.00'                                                                                                                                           | 100 cf                                                                          | Subbase (Irregular)Listed below (Recalc) -Impervious    |  |  |  |  |  |  |  |
|                                               |                                                                                                                                                  |                                                                                 | 1,000 cf Overall x 10.0% Voids                          |  |  |  |  |  |  |  |
| #2                                            | 18.75'                                                                                                                                           | 100 cf                                                                          | Pea Stone (Irregular)Listed below (Recalc) -Impervious  |  |  |  |  |  |  |  |
|                                               |                                                                                                                                                  |                                                                                 | 250 cf Overall x 40.0% Voids                            |  |  |  |  |  |  |  |
| #2                                            | 16 40                                                                                                                                            | 022 of                                                                          | <b>Back Bacameric (Innersular)</b> istad balaw (Bacala) |  |  |  |  |  |  |  |

| Pre      | and | Po        | st |
|----------|-----|-----------|----|
| <b>D</b> |     | <b>Ia</b> | C  |

Type III 24-hr 10 yr Rainfall=5.59" Printed 5/24/2022

Page 7

Prepared by {enter your company name here} HydroCAD® 10.10-6a s/n 00866 © 2020 HydroCAD Software Solutions LLC

| Elevation<br>(feet) | Surf.Area<br>(sq-ft) | Perim.<br>(feet) | Inc.Store<br>(cubic-feet) | Cum.Store<br>(cubic-feet) | Wet.Area<br>(sq-ft) |
|---------------------|----------------------|------------------|---------------------------|---------------------------|---------------------|
| 9.70                | 2,099                | 257.0            | 0                         | 0                         | 2,099               |
| 10.70               | 2,099                | 257.0            | 2,099                     | 2,099                     | 2,356               |
| Device Routing      | ı İnv                | ert Outlet       | Devices                   |                           |                     |

| #1      | Discarded      | 9.70'    | 0.650 in/hr E | Exfiltration | over Horizontal area |
|---------|----------------|----------|---------------|--------------|----------------------|
| Discard | ed OutFlow Max | =0.0 cfs | @ 21.94 hrs   | HW=9.70'     | (Free Discharge)     |

**1=Exfiltration** (Exfiltration Controls 0.0 cfs)

# **Summary for Pond PVP: Pervious Patio**

| Volume | Invert | Avail.Storage | Storage Description                                    |
|--------|--------|---------------|--------------------------------------------------------|
| #1     | 19.00' | 100 cf        | Subbase (Irregular)Listed below (Recalc) - Impervious  |
|        |        |               | 1,000 cf Overall x 10.0% Voids                         |
| #2     | 18.75' | 100 cf        | Pea Stone (Irregular)Listed below (Recalc) -Impervious |
|        |        |               | 250 cf Overall x 40.0% Voids                           |
| #3     | 16.42' | 932 cf        | Rock Reservoir (Irregular)Listed below (Recalc)        |
|        |        |               | 2,330 cf Overall x 40.0% Voids                         |
|        |        | 1 100 5       |                                                        |

1,132 cf Total Available Storage

| Elevation                            | Surf.Area | Perim. | Inc.Store    | Cum.Store    | Wet.Area |  |
|--------------------------------------|-----------|--------|--------------|--------------|----------|--|
| (feet)                               | (sq-ft)   | (feet) | (cubic-feet) | (cubic-feet) | (sq-ft)  |  |
| 19.00                                | 1,000     | 212.1  | 0            | 0            | 1,000    |  |
| 20.00                                | 1.000     | 212.1  | 1,000        | 1,000        | 1,212    |  |
| Elevation                            | Surf.Area | Perim. | Inc.Store    | Cum.Store    | Wet.Area |  |
| (feet)                               | (sq-ft)   | (feet) | (cubic-feet) | (cubic-feet) | (sq-ft)  |  |
| 18.75                                | 1,000     | 212.1  | 0            | 0            | 1,000    |  |
| 19.00                                | 1,000     | 212.1  | 250          | 250          | 1,053    |  |
| Elevation                            | Surf.Area | Perim. | Inc.Store    | Cum.Store    | Wet.Area |  |
| (feet)                               | (sq-ft)   | (feet) | (cubic-feet) | (cubic-feet) | (sq-ft)  |  |
| 16.42                                | 1,000     | 212.1  | 0            | 0            | 1,000    |  |
| 18.75                                | 1,000     | 212.1  | 2,330        | 2,330        | 1,494    |  |
| Device Routing Invert Outlet Devices |           |        |              |              |          |  |

| #1 | Discarded |  |
|----|-----------|--|

Outlet Devices

**Discarded OutFlow** Max=0.0 cfs @ 11.85 hrs HW=16.46' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.0 cfs)

# Summary for Pond RG: Rain Garden

| Inflow Area =                         | 0.063 ac,   | 31.83% Impervious, | Inflow Depth = 1.62" for 10 yr event |  |  |  |
|---------------------------------------|-------------|--------------------|--------------------------------------|--|--|--|
| Inflow =                              | 0.1 cfs @   | 12.04 hrs, Volume= | 0.008 af                             |  |  |  |
| Outflow =                             | 0.0 cfs @   | 12.46 hrs, Volume= | 0.008 af, Atten= 71%, Lag= 25.3 min  |  |  |  |
| Discarded =                           | 0.0 cfs @   | 11.45 hrs, Volume= | 0.005 af                             |  |  |  |
| Primary =                             | 0.0 cfs @   | 12.46 hrs, Volume= | 0.004 af                             |  |  |  |
| Routed to Link PPR : Piscataqua River |             |                    |                                      |  |  |  |
| Secondary =                           | 0.0 cfs @   | 0.00 hrs, Volume=  | 0.000 af                             |  |  |  |
| Routed to Link                        | PPR : Pisca | ataqua River       |                                      |  |  |  |

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 14.38' @ 12.46 hrs Surf.Area= 115 sf Storage= 153 cf

Plug-Flow detention time= 390.0 min calculated for 0.008 af (100% of inflow) Center-of-Mass det. time= 390.9 min (1,217.7 - 826.8)

| Volume       | Invert    | Avail      | .Storage         | Storage Descripti                          | on                  |                    |             |
|--------------|-----------|------------|------------------|--------------------------------------------|---------------------|--------------------|-------------|
| #1           | 14.00'    |            | 99 cf            | <b>Custom Stage D</b>                      | ata (Irregular)List | ted below (Recalc) | -Impervious |
| #2           | 12.25'    |            | 40 cf            |                                            |                     | w (Recalc) -Imperv | ious        |
|              |           |            |                  | 201 cf Overall x                           |                     |                    |             |
| #3           | 11.25'    |            | 46 cf            |                                            | Irregular)Listed b  | elow (Recalc)      |             |
|              |           |            |                  | 115 cf Overall x                           |                     |                    |             |
|              |           |            | 185 cf           | Total Available St                         | torage              |                    |             |
| Elevatio     | n Sı      | urf.Area   | Perim.           | Inc.Store                                  | Cum.Store           | Wet.Area           |             |
| (feet        | t)        | (sq-ft)    | (feet)           | (cubic-feet)                               | (cubic-feet)        | (sq-ft)            |             |
| 14.0         | 0         | 115        | 44.1             | 0                                          | 0                   | 115                |             |
| 14.5         | 0         | 296        | 64.2             | 99                                         | 99                  | 290                |             |
|              |           |            |                  |                                            |                     |                    |             |
| Elevatio     |           | urf.Area   | Perim.           | Inc.Store                                  | Cum.Store           | Wet.Area           |             |
| (feet        | /         | (sq-ft)    | (feet)           | (cubic-feet)                               | (cubic-feet)        | (sq-ft)            |             |
| 12.2         |           | 115        | 44.1             | 0                                          | 0                   | 115                |             |
| 14.0         | 0         | 115        | 44.1             | 201                                        | 201                 | 192                |             |
| Flovetic     |           |            | Derim            | In a Chara                                 | Curra Chana         | \A/at Area         |             |
| Elevatio     |           | urf.Area   | Perim.           | Inc.Store                                  | Cum.Store           | Wet.Area           |             |
| (feet        | 1         | (sq-ft)    | (feet)           | (cubic-feet)                               | (cubic-feet)        | <u>(sq-ft)</u>     |             |
| 11.2<br>12.2 |           | 115<br>115 | 44.1<br>44.1     | 0<br>115                                   | 0<br>115            | 115<br>159         |             |
| 12.2         | 5         | 115        | 44.1             | 115                                        | 115                 | 109                |             |
| Device       | Routing   | Inv        | vert Outle       | et Devices                                 |                     |                    |             |
| #1           | Primary   | 12         | .00' <b>6.0"</b> | Round Culvert                              |                     |                    |             |
|              |           |            |                  | 2.0' CPP, square                           |                     |                    |             |
|              |           |            |                  |                                            |                     | ).0244 '/' Cc= 0.9 |             |
|              |           |            |                  | 0                                          |                     | r, Flow Area= 0.20 | ) sf        |
| #2           | Discarded |            |                  | 00 in/hr Exfiltration over Horizontal area |                     |                    |             |
| #3           | Secondary | 15.        | .10' <b>20.0</b> | ' long x 5.0' brea                         | dth Broad-Creste    | ed Rectangular W   | eir         |

| Pre and Post                                                       | Type III 24-hr 10 yr Rainfall=5.59" |
|--------------------------------------------------------------------|-------------------------------------|
| Prepared by {enter your company name here}                         | Printed 5/24/2022                   |
| HydroCAD® 10.10-6a s/n 00866 © 2020 HydroCAD Software Solutions LL | <u>C Page 9</u>                     |

|    |          |        | Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00        |
|----|----------|--------|----------------------------------------------------------------------|
|    |          |        | 2.50 3.00 3.50 4.00 4.50 5.00 5.50                                   |
|    |          |        | Coef. (English) 2.34 2.50 2.70 2.68 2.68 2.66 2.65 2.65 2.65         |
|    |          |        | 2.65 2.67 2.66 2.68 2.70 2.74 2.79 2.88                              |
| #4 | Device 1 | 14.40' | <b>24.0" Horiz. Grate</b> C= 0.600 Limited to weir flow at low heads |
| #5 | Device 1 | 14.20' | <b>2.0" Vert. Orifice</b> C= 0.600 Limited to weir flow at low heads |

**Discarded OutFlow** Max=0.0 cfs @ 11.45 hrs HW=11.29' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.0 cfs)

Primary OutFlow Max=0.0 cfs @ 12.46 hrs HW=14.38' TW=0.00' (Dynamic Tailwater) 1=Culvert (Passes 0.0 cfs of 1.1 cfs potential flow) 4=Grate (Controls 0.0 cfs) 5=Orifice (Orifice Controls 0.0 cfs @ 1.50 fps)

Secondary OutFlow Max=0.0 cfs @ 0.00 hrs HW=11.25' TW=0.00' (Dynamic Tailwater) -3=Broad-Crested Rectangular Weir( Controls 0.0 cfs)

# Summary for Pond ST: Stone Trench

| Inflow Area =                   | 0.008 ac,100.00% Impervious, In | Iflow Depth = 5.35" for 10 yr event |  |  |  |  |
|---------------------------------|---------------------------------|-------------------------------------|--|--|--|--|
| Inflow =                        | 0.1 cfs @ 12.00 hrs, Volume=    | 0.004 af                            |  |  |  |  |
| Outflow =                       | 0.0 cfs @ 12.00 hrs, Volume=    | 0.004 af, Atten= 5%, Lag= 0.0 min   |  |  |  |  |
| Discarded =                     | 0.0 cfs @ 7.00 hrs, Volume=     | 0.002 af                            |  |  |  |  |
| Primary =                       | 0.0 cfs @ 12.00 hrs, Volume=    | 0.002 af                            |  |  |  |  |
| Routed to Pond RG : Rain Garden |                                 |                                     |  |  |  |  |

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 14.71' @ 12.00 hrs Surf.Area= 0.001 ac Storage= 0.000 af

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 105.7 min ( 846.4 - 740.7 )

| Volume             | Invert                          | Avail.Storage                              | Storage Description                                                                                                                                                                                                                                                                                                                                         |
|--------------------|---------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1                 | 13.70'                          | 0.000 af                                   | 3.00'W x 14.70'L x 1.00'H Prismatoid                                                                                                                                                                                                                                                                                                                        |
| #2                 | 14.70'                          | 0.000 af                                   | 0.001 af Overall x 40.0% Voids<br><b>3.00'W x 14.70'L x 0.20'H Prismatoid</b> Impervious<br>0.000 af Overall x 0.0% Voids                                                                                                                                                                                                                                   |
|                    |                                 | 0.000 af                                   | Total Available Storage                                                                                                                                                                                                                                                                                                                                     |
| Device<br>#1<br>#2 | Routing<br>Discarded<br>Primary | 13.70' <b>0.</b><br>14.70' <b>16</b><br>He | utlet Devices           700 in/hr Exfiltration over Surface area           6.0' long x 14.0' breadth Broad-Crested Rectangular Weir           ead (feet)         0.20         0.40         0.60         0.80         1.20         1.40         1.60           beef. (English)         2.64         2.65         2.63         2.63         2.65         2.63 |

**Discarded OutFlow** Max=0.0 cfs @ 7.00 hrs HW=13.71' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.0 cfs)

Primary OutFlow Max=0.0 cfs @ 12.00 hrs HW=14.71' TW=13.02' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir (Weir Controls 0.0 cfs @ 0.28 fps)

# Summary for Pond ST2: Stone Trench

| Outflow =<br>Discarded =<br>Primary =                                                                                               | 0.0 cfs @ 12<br>0.0 cfs @ 12<br>0.0 cfs @ 7 | .00% Impervious, Inflow Depth = 5.35" for 10 yr event         .00 hrs, Volume=       0.003 af         .00 hrs, Volume=       0.003 af, Atten= 7%, Lag= 0.0 min         .80 hrs, Volume=       0.001 af         .00 hrs, Volume=       0.001 af |   |  |
|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|
|                                                                                                                                     |                                             | Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3<br>Surf.Area= 0.001 ac Storage= 0.000 af                                                                                                                                                           |   |  |
|                                                                                                                                     |                                             | lculated: outflow precedes inflow)<br>min(857.6-740.7)                                                                                                                                                                                         |   |  |
| Volume                                                                                                                              | Invert Avail.Stor                           | age Storage Description                                                                                                                                                                                                                        |   |  |
| #1                                                                                                                                  | 17.22' 0.00                                 | 0 af 3.00'W x 14.70'L x 1.00'H Prismatoid                                                                                                                                                                                                      | _ |  |
|                                                                                                                                     |                                             | 0.001 af Overall x 40.0% Voids                                                                                                                                                                                                                 |   |  |
| #2                                                                                                                                  | 18.22' 0.00                                 | 0 af <b>3.00'W x 14.70'L x 0.20'H Prismatoid</b> Impervious 0.000 af Overall x 0.0% Voids                                                                                                                                                      |   |  |
|                                                                                                                                     | 0.00                                        | 0 af Total Available Storage                                                                                                                                                                                                                   | _ |  |
| Device Rout                                                                                                                         | ing Invert                                  | Outlet Devices                                                                                                                                                                                                                                 |   |  |
| #1 Disc                                                                                                                             | arded 17.22'                                | 0.700 in/hr Exfiltration over Surface area                                                                                                                                                                                                     | _ |  |
| #2 Prim                                                                                                                             | ary 18.22'                                  | 16.0' long x 14.0' breadth Broad-Crested Rectangular Weir                                                                                                                                                                                      |   |  |
|                                                                                                                                     |                                             | Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60                                                                                                                                                                                            |   |  |
|                                                                                                                                     |                                             | Coef. (English) 2.64 2.67 2.70 2.65 2.64 2.65 2.65 2.63                                                                                                                                                                                        |   |  |
| <b>Discarded OutFlow</b> Max=0.0 cfs @ 7.80 hrs HW=17.23' (Free Discharge)<br><b>1=Exfiltration</b> (Exfiltration Controls 0.0 cfs) |                                             |                                                                                                                                                                                                                                                |   |  |

Primary OutFlow Max=0.0 cfs @ 12.00 hrs HW=18.23' TW=13.02' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir (Weir Controls 0.0 cfs @ 0.25 fps)

# Summary for Pond ST3: Stone Trench 3

| Inflow Area =                         | 0.020 ac,1 | 00.00% Impervious, In | flow Depth = 5.35" for 10 yr event |  |  |  |
|---------------------------------------|------------|-----------------------|------------------------------------|--|--|--|
| Inflow =                              | 0.1 cfs @  | 12.00 hrs, Volume=    | 0.009 af                           |  |  |  |
| Outflow =                             | 0.1 cfs @  | 12.00 hrs, Volume=    | 0.009 af, Atten= 1%, Lag= 0.0 min  |  |  |  |
| Discarded =                           | 0.0 cfs @  | 3.05 hrs, Volume=     | 0.002 af                           |  |  |  |
| Primary =                             | 0.1 cfs @  | 12.00 hrs, Volume=    | 0.007 af                           |  |  |  |
| Routed to Link PPR : Piscataqua River |            |                       |                                    |  |  |  |

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 19.02' @ 12.00 hrs Surf.Area= 33 sf Storage= 42 cf

Plug-Flow detention time= 172.2 min calculated for 0.009 af (100% of inflow) Center-of-Mass det. time= 173.3 min (914.0 - 740.7)

## Pre and Post

 Type III 24-hr
 10 yr Rainfall=5.59"

 Printed
 5/24/2022

 C
 Page 11

Prepared by {enter your company name here} HydroCAD® 10.10-6a s/n 00866 © 2020 HydroCAD Software Solutions LLC

| Volume                                                                          | Invert    | Avail.Stor | rage  | Storage Description                                        |  |
|---------------------------------------------------------------------------------|-----------|------------|-------|------------------------------------------------------------|--|
| #1                                                                              | 17.75'    | ۷          | l2 cf | 2.00'W x 16.60'L x 1.25'H Prismatoid                       |  |
| #2                                                                              | 19.00'    |            | 0 cf  | 2.00'W x 16.65'L x 0.20'H Prismatoid Impervious            |  |
|                                                                                 |           |            |       | 7 cf Overall x 0.0% Voids                                  |  |
|                                                                                 |           | 4          | l2 cf | Total Available Storage                                    |  |
|                                                                                 |           |            |       |                                                            |  |
| Device                                                                          | Routing   | Invert     | Outl  | et Devices                                                 |  |
| #1                                                                              | Discarded | 17.75'     | 0.70  | 0 in/hr Exfiltration over Surface area                     |  |
| #2                                                                              | Primary   | 19.00'     | 20.0  | ' long x 5.0' breadth Broad-Crested Rectangular Weir       |  |
|                                                                                 | ·         |            | Hea   | d (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 |  |
|                                                                                 |           |            | 2.50  | 3.00 3.50 4.00 4.50 5.00 5.50                              |  |
|                                                                                 |           |            | Coe   | f. (English) 2.34 2.50 2.70 2.68 2.68 2.66 2.65 2.65 2.65  |  |
|                                                                                 |           |            | 2.65  | 5 2.67 2.66 2.68 2.70 2.74 2.79 2.88                       |  |
| <b>Discourded OutElow</b> May-0.0 of $0.2.05$ hrs. $HW=17.77'$ (Erec Discharge) |           |            |       |                                                            |  |

**Discarded OutFlow** Max=0.0 cfs @ 3.05 hrs HW=17.77' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.0 cfs)

**Primary OutFlow** Max=0.1 cfs @ 12.00 hrs HW=19.02' TW=0.00' (Dynamic Tailwater) **2=Broad-Crested Rectangular Weir** (Weir Controls 0.1 cfs @ 0.32 fps)

# Summary for Link PPOI1: POI1

| Inflow Are | a = | 0.078 ac, | 3.91% Impervious, Inflow | Depth = 1.01" for 10 yr event     |
|------------|-----|-----------|--------------------------|-----------------------------------|
| Inflow     | =   | 0.1 cfs @ | 12.11 hrs, Volume=       | 0.007 af                          |
| Primary    | =   | 0.1 cfs @ | 12.11 hrs, Volume=       | 0.007 af, Atten= 0%, Lag= 0.0 min |

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

# Summary for Link PPR: Piscataqua River

| Inflow Are | a = | 0.576 ac, 23.83% Impervious, Inflow Depth = 1.57" for 10 yr even | nt     |
|------------|-----|------------------------------------------------------------------|--------|
| Inflow     | =   | 0.9 cfs @ 12.10 hrs, Volume= 0.076 af                            |        |
| Primary    | =   | 0.9 cfs @ 12.10 hrs, Volume= 0.076 af, Atten= 0%, Lag= 0         | .0 min |

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

# <u>APPENDIX H – PRE-DEVELOPMENT DRAINAGE</u> <u>MAP</u>

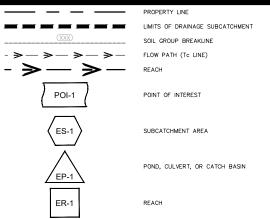
(This Page Is Intentionally Blank)





HORIZONTAL SCALE 1"=20'

REV DATE

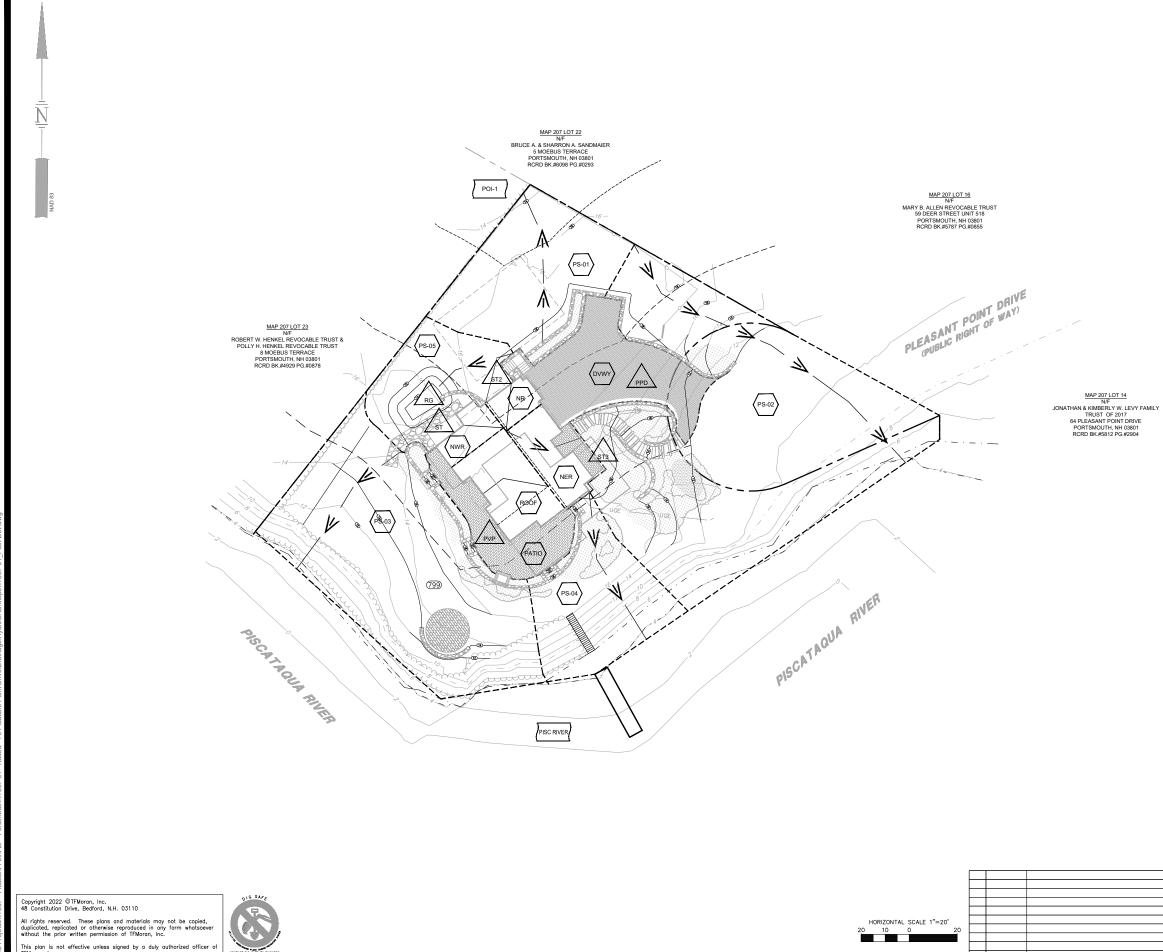

DESCRIPTION

20 10 0

All rights reserved. These plans and materials may not be copied, duplicated, replicated or otherwise reproduced in any form whatsoeve without the prior written permission of TFMoran, Inc.

This plan is not effective unless signed by a duly authorized officer o

#### LEGEND



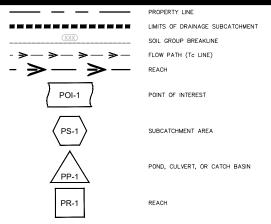

| SOIL LEGEND<br>(PER USDA NRCS WEB SOIL SURVEY)           |  |   |  |
|----------------------------------------------------------|--|---|--|
| SYMBOL DESCRIPTION HYDROLOGIC SOIL GROUP                 |  |   |  |
| 799 URBAN LAND-CANTON COMPLEX,<br>3 TO 15 PERCENT SLOPES |  | A |  |



# <u>APPENDIX I – POST-DEVELOPMENT DRAINAGE</u> <u>MAP</u>

(This Page Is Intentionally Blank)




CONTACT DIG SAFE 72 BUSINESS HOURS PRIOR TO CONSTRUCTION

Page 101

REV DATE

DESCRIPTION

#### LEGEND



| SOIL LEGEND<br>(PER USDA NRCS WEB SOIL SURVEY)           |  |   |  |
|----------------------------------------------------------|--|---|--|
| SYMBOL DESCRIPTION HYDROLOGIC SOIL GROUP                 |  |   |  |
| 799 URBAN LAND-CANTON COMPLEX,<br>3 TO 15 PERCENT SLOPES |  | A |  |



# **GENERAL INFORMATION**

OWNER/APPLICANT MAP 207 LOT 15 KATARA, LLC 274 MILLER AVENUE PORTSMOUTH, NH 03801

# **RESOURCE LIST**

PLANNING DEPARTMENT JUNKINS AVENUE, 3RD FLOOR PORTSMOUTH, NH Ó3801 (603) 610-7216 BEVERLY MESA-ZENDT, PLANNING DIRECTOR

CONSERVATION COMMISSION JUNKINS AVENUE, 3RD FLOOR PORTSMOUTH NH, 03801 (603) 610-7216 BARBARA McMILLAN, CHAIR

POLICE DEPARTMENT 3 JUNKINS AVENUE PORTSMOUTH, NH 03801 (603) 427-1500 MARK NEWPORT, CHIEF OF POLICE

FIRE DEPARTMENT 170 COURT STREET PORTSMOUTH, NH 03801 (603) 427-1515 TODD GERMAIN, FIRE CHIEF

# ASSOCIATED PROFESSIONALS

ARCHITECT DESTEFANO MAUGEL ARCHITECTS 22 LADD STREET PORTSMOUTH, NH 03801 (603) 431-8701 JOSHUA BUTKUS, PROJECT ARCHITECT

STRUCTURAL CONSULTANT JSN ASSOCIATES 1 AUTUMN STREET PORTSMOUTH, NH 03801 (603) 766-4898 SARAH DESIDERIO, STRUCTURAL ENGINEER

LANDSCAPE ARCHITECT TERRAIN PLANNING & DESIGN, LLC 311 KAST HILL ROAD HOPKINTON, NH 03229 (603) 491-2322 ERIC BUCK, LANDSCAPE ARCHITECT

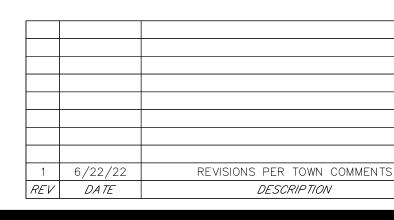
CIVIL ENGINEERING/SURVEYOR TFMORAN, INC. 170 COMMERCE WAY, SUITE 102 PORTSMOUTH, NH 03801 (603) 431-2222

Copyright 2022 ©TFMoran, Inc. 48 Constitution Drive, Bedford, N.H. 03110

All rights reserved. These plans and materials may not be copied, duplicated, replicated or otherwise reproduced in any form whatsoeve without the prior written permission of TFMoran, Inc.

This plan is not effective unless signed by a duly authorized officer o TFMoran, Inc.




# SITE RENOVATION PLANS

# **70 PLEASANT POINT DRIVE PORTSMOUTH, NEW HAMPSHIRE**

# MAY 25, 2022 LAST REVISED JUNE 27, 2022

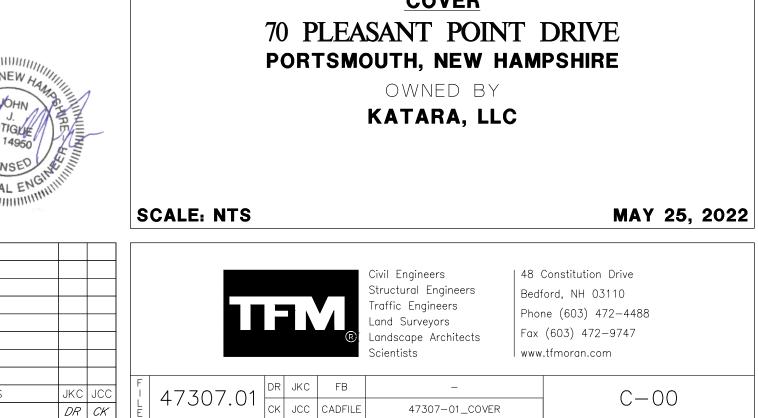
VICINITY PLAN





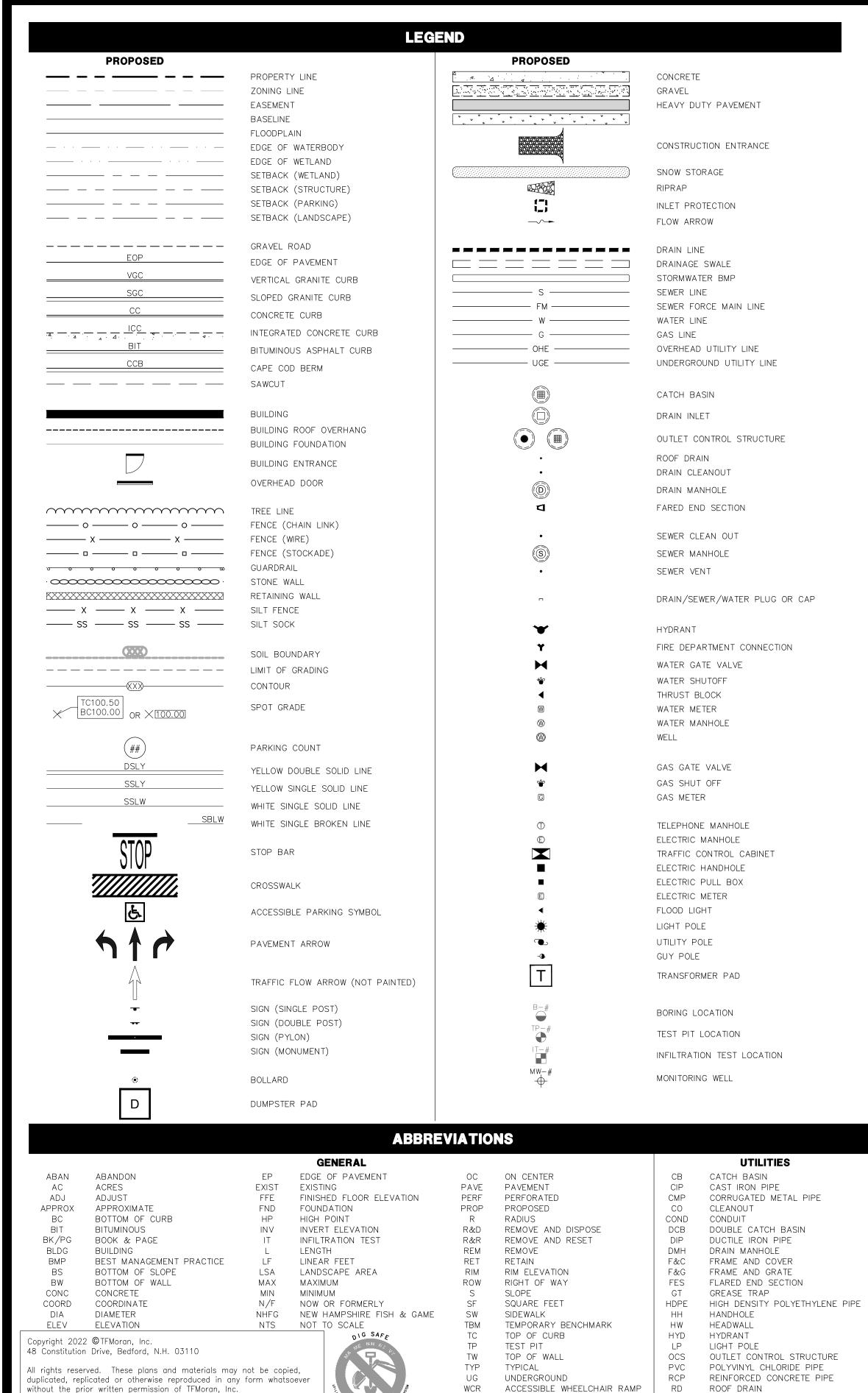
JKC JCC

DR CK


THESE PLANS ARE PERMIT DRAWINGS ONLY AND HAVE NOT BEEN DETAILED FOR CONSTRUCTION OR BIDDING.

|                   | INDEX OF SHEETS                              |
|-------------------|----------------------------------------------|
| SHEET             | SHEET TITLE                                  |
| C-00              | COVER                                        |
| C-01              | NOTES & LEGEND                               |
| S-01              | EXISTING CONDITIONS PLAN                     |
| C-02              | SITE PREPARATION & DEMOLITION                |
| C-03              | SITE PLAN                                    |
| C-04              | GRADING & DRAINAGE                           |
| C-05              | DETAILS                                      |
|                   |                                              |
| REFERENCE PLANS E | BY ASSOCIATED PROFESSIONALS                  |
| _                 | ARCHITECTURAL ELEVATION PLAN                 |
| _                 | LANDSCAPING PLAN – TERRAIN PLANNING & DESIGN |
|                   |                                              |

# PERMITS/APPROVALS


|                                                             | NUMBER | APPROVED | EXPIRES |
|-------------------------------------------------------------|--------|----------|---------|
| PORTSMOUTH PLANNING BOARD<br>WETLAND CONDITIONAL USE PERMIT | _      | _        | _       |
| NHDES WETLAND DREDGE AND FILL<br>PERMIT                     | _      | _        | _       |
| NHDES SHORELAND WATER QUALITY<br>PROTECTION ACT PERMIT      | -      | -        | -       |

|             | OARD |
|-------------|------|
| V           |      |
| OARD MEMBER | A    |
| DARD MEMBER |      |



47307-01\_COVER

C - 00



W/

CONTACT DIG SAFE 72 BUSINESS HOURS PRIOR TO CONSTRUCTION

WITH

FMoran, Inc.

This plan is not effective unless signed by a duly authorized officer of

# **GENERAL NOTES**

- 1. THESE PLANS ARE PERMIT DRAWINGS ONLY AND HAVE NOT BEEN DETAILED FOR CONSTRUCTION OR BIDDING.
- 2. THESE PLANS WERE PREPARED UNDER THE SUPERVISION OF A LICENSED PROFESSIONAL ENGINEER. TFMORAN, INC. ASSUMES NO LIABILITY AS A RESULT OF ANY CHANGES OR NON-CONFORMANCE WITH THESE PLANS EXCEPT UPON THE WRITTEN APPROVAL OF THE ENGINEER OF RECORD.
- 3. ALL IMPROVEMENTS SHOWN ON THE SITE PLAN SHALL BE CONSTRUCTED AND MAINTAINED IN ACCORDANCE WITH THE PLAN BY THE PROPERTY OWNER AND ALL FUTURE PROPERTY OWNERS. NO CHANGES SHALL BE MADE TO THIS SITE PLAN WITHOUT THE EXPRESS APPROVAL OF THE PORTSMOUTH PLANNING BOARD.
- 4. ALL WORK SHALL CONFORM TO THE APPLICABLE REGULATIONS AND STANDARDS OF THE CITY OF PORTSMOUTH, AND SHALL BE BUILT IN A WORKMANLIKE MANNER IN ACCORDANCE WITH THE PLANS AND SPECIFICATIONS. ALL WORK TO CONFORM TO CITY OF PORTSMOUTH DEPARTMENT OF PUBLIC WORKS STANDARD SPECIFICATIONS. ALL WORK WITHIN THE RIGHT-OF-WAY OF THE CITY AND/OR STATE SHALL COMPLY WITH APPLICABLE STANDARDS. COORDINATE ALL WORK WITHIN THE RIGHT-OF-WAY WITH APPROPRIATE CITY, COUNTY, AND/OR STATE AGENCY.
- 5. THE SITE CONTRACTOR SHALL ENSURE THAT ALL WORK IS PERFORMED IN ACCORDANCE WITH APPLICABLE SECTIONS OF ENV-WQ 1500. THE SITE CONTRACTOR SHALL NOTIFY THE ENGINEER IN ADVANCE OF CONSTRUCTION OF EACH STORMWATER FACILITY TO COORDINATE REQUIRED INSPECTIONS. THE CONTRACTOR SHALL TAKE PROGRESS PHOTOS DURING CONSTRUCTION OF ALL STORMWATER DRAINAGE COMPONENTS AND SEND TO THE ENGINEER.
- 6. SEE EXISTING CONDITIONS PLAN FOR THE HORIZONTAL AND VERTICAL DATUM.
- 7. SEE EXISTING CONDITIONS PLAN FOR BENCHMARK INFORMATION. VERIFY TBM ELEVATIONS PRIOR TO CONSTRUCTION.
- 8. CONTACT EASEMENT OWNERS PRIOR TO COMMENCING ANY WORK WITHIN THE EASEMENTS. 9. PRIOR TO COMMENCING ANY SITE WORK, ALL LIMITS OF WORK SHALL BE CLEARLY MARKED
- IN THE FIELD. 10. SITE WORK SHALL BE CONSTRUCTED FROM A COMPLETE SET OF PLANS, NOT ALL FEATURES
- ARE DETAILED ON EVERY PLAN. THE ENGINEER IS TO BE NOTIFIED OF ANY CONFLICT WITHIN THIS PLAN SET.
- 11. TFMORAN, INC. ASSUMES NO LIABILITY FOR WORK PERFORMED WITHOUT AN ACCEPTABLE PROGRAM OF TESTING AND INSPECTION AS APPROVED BY THE ENGINEER OF RECORD.
- 12. TEMPORARY FENCING SHALL BE PROVIDED AND COVERED WITH A FABRIC MATERIAL TO CONTROL DUST MITIGATION.
- 13. ALL DEMOLITION SHALL INSURE MINIMUM INTERFERENCE WITH ROADS, STREETS, WALKWAYS, AND ANY OTHER ADJACENT OPERATING FACILITIES. PRIOR WRITTEN PERMISSION FROM THE OWNER/DEVELOPER AND LOCAL PERMITTING AUTHORITY IS REQUIRED IF CLOSURE/OBSTRUCTIONS TO ROADS, STREET, WALKWAYS, AND OTHERS IS DEEMED NECESSARY. CONTRACTOR TO PROVIDE ALTERNATE ROUTES AROUND CLOSURES/OBSTRUCTIONS PER LOCAL/STATE/FEDERAL REGULATIONS
- 14. REFER TO ARCHITECTURAL PLANS FOR LAYOUT OF BUILDING FOUNDATIONS AND CONCRETE ELEMENTS WHICH ABUT THE BUILDING SUCH AS STAIRS, SIDEWALKS, LOADING DOCK RAMPS, PADS, AND COMPACTOR PADS. DO NOT USE SITE PLANS FOR LAYOUT OF FOUNDATIONS.
- 15. IN THE EVENT OF A CONFLICT BETWEEN PLANS, SPECIFICATIONS, AND DETAILS, THE ENGINEER SHALL BE NOTIFIED IMMEDIATELY FOR CLARIFICATION.
- 16. IF CONDITIONS AT THE SITE ARE DIFFERENT THAN SHOWN ON THE PLANS, THE ENGINEER SHALL BE NOTIFIED PRIOR TO PROCEEDING WITH THE AFFECTED WORK.
- 17. CONTRACTOR'S GENERAL RESPONSIBILITIES:
- A. BID AND PERFORM THE WORK IN ACCORDANCE WITH ALL LOCAL, STATE, AND NATIONAL CODES, SPECIFICATIONS, REGULATIONS, AND STANDARDS AND CONDITIONS OF ALL PROJECT-SPECIFIC PERMITS AND APPROVALS AS LISTED ON THE COVER SHEET TO THESE PLANS OR OTHERWISE REQUIRED.
- B. NOTIFY ENGINEER IN WRITING OF ANY DISCREPANCIES OF PROPOSED LAYOUT AND/OR EXISTING FEATURES.
- C. EMPLOY A LICENSED SURVEYOR TO DETERMINE ALL LINES AND GRADES AND LAYOUT OF SITE ELEMENTS AND BUILDINGS.
- D. THE CONTRACTOR SHALL BE RESPONSIBLE TO BECOME FAMILIAR WITH THE SITE AND ALL SURROUNDING CONDITIONS. THE CONTRACTOR SHALL ADVISE THE APPROPRIATE AUTHORITY OF INTENTIONS AT LEAST 48 HOURS IN ADVANCE.
- E. TAKE APPROPRIATE MEASURES TO REDUCE, TO THE FULLEST EXTENT POSSIBLE, NOISE DUST, AND UNSIGHTLY DEBRIS. CONSTRUCTION ACTIVITIES SHALL BE CARRIED OUT BETWEEN THE HOURS OF 7 AM AND 6 PM, MONDAY THROUGH FRIDAY IN ACCORDANCE WITH THE APPLICABLE MUNICIPAL ORDINANCES AND REGULATIONS OF THE CITY OF PORTSMOUTH, NEW HAMPSHIRE.
- F. MAINTAIN EMERGENCY ACCESS TO ALL AREAS AFFECTED BY WORK AT ALL TIMES.
- G. IN ACCORDANCE WITH RSA 430:53 AND AGR 3800, THE CONTRACTOR SHALL NOT TRANSPORT INVASIVE SPECIES OFF THE PROPERTY, AND SHALL DISPOSE OF INVASIVE SPECIES ON-SITE IN A LEGAL MANNER.
- H. COORDINATE WITH ALL UTILITY COMPANIES AND CONTACT DIGSAFE (811 OR 888-344-7233) AT LEAST 72 HOURS PRIOR TO ANY EXCAVATION.
- I. PROTECT NEW AND EXISTING BURIED UTILITIES DURING INSTALLATION OF ALL SITE ELEMENTS. DAMAGED UTILITIES SHALL BE REPAIRED OR REPLACED AT NO ADDITIONAL COST TO THE OWNER.
- J. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE MEANS AND METHODS OF CONSTRUCTION AND FOR CONDITIONS AT THE SITE. THESE PLANS, PREPARED BY TFMORAN, INC., DO NOT EXTEND TO OR INCLUDE SYSTEMS PERTAINING TO THE SAFETY OF THE CONSTRUCTION CONTRACTOR OR THEIR EMPLOYEES, AGENTS, OR REPRESENTATIVES IN THE PERFORMANCE OF THE WORK. THE SEAL OF THE SURVEYOR OR ENGINEER HEREON DOES NOT EXTEND TO ANY SUCH SAFETY SYSTEMS THAT MAY NOW OR HEREAFTER BE INCORPORATED INTO THESE PLANS. THE CONSTRUCTION CONTRACTOR SHALL PREPARE OR OBTAIN THE APPROPRIATE SAFETY SYSTEMS WHICH MAY BE REQUIRED BY THE US OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION (OSHA) AND/OR LOCAL REGULATIONS.
- WRITTEN DIMENSIONS HAVE PRECEDENCE OVER SCALED DIMENSIONS. THE CONTRACTOR SHALL USE CAUTION WHEN SCALING REPRODUCED PLANS. IN CASE OF CONFLICT BETWEEN THIS PLAN SET AND ANY OTHER DRAWING AND/OR SPECIFICATION, THE ENGINEER SHALL BE NOTIFIED IMMEDIATELY FOR CLARIFICATIONS.
- L. VERIFY LAYOUT OF PROPOSED BUILDING FOUNDATIONS WITH ARCHITECT AND THAT PROPOSED FOUNDATION MEETS PROPERTY LINE AND/OR WETLAND SETBACKS PRIOR TO COMMENCING ANY FOUNDATION CONSTRUCTION.
- M. AN AS-BUILT PLAN WILL BE REQUIRED AT THE COMPLETION OF THE PROJECT TO THE PLANNING DIRECTOR AND PER CITY REGULATIONS.
- N. IF ANY DEVIATIONS FROM THE APPROVED PLANS AND SPECIFICATIONS HAVE BEEN MADE. THE SITE CONTRACTOR SHALL PROVIDE AS-BUILT DRAWINGS STAMPED BY A LICENSED SURVEYOR OR QUALIFIED ENGINEER ALONG WITH A LETTER STAMPED BY A QUALIFIED ENGINEER DESCRIBING ALL SUCH DEVIATIONS, AND BEAR ALL COSTS FOR PREPARING AND FILING ANY NEW PERMITS OR PERMIT AMENDMENTS THAT MAY BE REQUIRED.
- O. AT COMPLETION OF CONSTRUCTION, THE SITE CONTRACTOR SHALL PROVIDE A LETTER CERTIFYING THAT THE PROJECT WAS COMPLETED IN ACCORDANCE WITH THE APPROVED PLANS AND SPECIFICATIONS, AND A LETTER STAMPED BY A QUALIFIED ENGINEER THAT THEY HAVE OBSERVED ALL UNDERGROUND DETENTION SYSTEMS, INFILTRATION SYSTEMS, OR FILTERING SYSTEMS PRIOR TO BACKFILL, AND THAT SUCH SYSTEMS CONFORM TO THE APPROVED PLANS AND SPECIFICATIONS.

**GRADING & DRAINAGE NOTES** 

- 1. THE CONTRACTOR SHALL ENSURE THAT ALL WORK IS PERFORMED IN ACCORDANCE WITH THE REQUIREMENTS OF NHDES ENV-WQ 1500 AS APPLICABLE.
- 2. IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR TO CHECK THE ACCURACY OF THE TOPOGRAPHY AND REPORT ANY DISCREPANCIES TO THE ENGINEER PRIOR TO ANY EARTHWORK BEING PERFORMED ON THE SITE. NO CLAIM FOR EXTRA WORK WILL BE CONSIDERED FOR PAYMENT AFTER EARTHWORK HAS COMMENCED.
- 3. COORDINATE WITH STRUCTURAL PLANS FOR SITE PREPARATION AND OTHER BUILDING INFORMATION.
- 4. COORDINATE WITH ARCHITECTURAL PLANS FOR DETAILED GRADING AT BUILDING, AND SIZE AND LOCATION OF ALL BUILDING SERVICES.
- 5. COORDINATE WITH MECHANICAL AND PLUMBING PLANS FOR ROOF DRAIN INFORMATION.
- 6. LIMITS OF WORK ARE SHOWN AS APPROXIMATE. THE CONTRACTOR SHALL COORDINATE ALL WORK TO PROVIDE SMOOTH TRANSITIONS. THIS INCLUDES GRADING, PAVEMENT, CURBING, SIDEWALKS, AND ALIGNMENTS.
- 7. THE CONTRACTOR SHALL PROVIDE A FINISH PAVEMENT SURFACE FREE OF LOW SPOTS AND PONDING AREAS. CRITICAL AREAS INCLUDE BUILDING ENTRANCE, RAMPS, AND LOADING ARFAS.
- 8. THE SITE SHALL BE GRADED SO ALL FINISHED PAVEMENT HAS POSITIVE DRAINAGE AND SHALL NOT POND WATER DEEPER THAN 1/4" FOR A PERIOD OF MORE THAN 15 MINUTES AFTER FLOODING.
- 9. ADJUST ALL MANHOLES, CATCH BASINS, CURB BOXES, ETC. WITHIN LIMITS OF WORK TO FINISH GRADE PRIOR TO INSTALLATION OF FINISHED SURFACE.
- 10. ROAD AND DRAINAGE CONSTRUCTION SHALL CONFORM TO THE DETAILS SHOWN ON THE PLANS AND SHALL MEET LOCAL STANDARDS AND THE REQUIREMENTS OF THE LATEST NHDOT STANDARD SPECIFICATIONS FOR ROADS AND BRIDGE CONSTRUCTION AND THE NHDOT STANDARD STRUCTURE DRAWINGS UNLESS OTHERWISE NOTED.
- 11. STORMWATER DRAINAGE SYSTEM SHALL BE CONSTRUCTED TO LINE AND GRADE AS SHOWN ON THE PLANS. CONSTRUCTION METHODS SHALL CONFORM TO NHDOT STANDARD SPECIFICATIONS, SECTION 603.
- 12. NO FILL SHALL BE PLACED IN ANY WETLAND AREA OR OTHER AREAS THAN SHOWN ON THE GRADING PLAN.
- 13. ALL EXCAVATIONS SHALL BE THOROUGHLY SECURED ON A DAILY BASIS BY THE CONTRACTOR AT THE COMPLETION OF CONSTRUCTION OPERATIONS IN THE IMMEDIATE AREA.
- 14. ALL DISTURBED AREAS NOT TO BE PAVED OR OTHERWISE TREATED SHALL RECEIVE 6" LOAM, SEED, FERTILIZER, AND MULCH.
- 15. DENSITY REQUIREMENTS: MINIMUM DENSITY\*

95%

LOCATION BELOW PAVED OR CONCRETE AREAS

95% TRENCH BEDDING MATERIAL AND SAND BLANKET BACKFILL 90% BELOW LOAM AND SEED AREAS \*ALL PERCENTAGES OF COMPACTION SHALL BE OF THE MAXIMUM DRY DENSITY AT THE OPTIMUM MOISTURE CONTENT AS DETERMINED AND CONTROLLED IN ACCORDANCE WITH ASTM D-1557, METHOD C. FIELD DENSITY TESTS SHALL BE MADE IN ACCORDANCE WITH ASTM D-1556 OR ASTM D-6938.

|         |    |           | /    |      | 1 11 |
|---------|----|-----------|------|------|------|
|         |    |           |      |      |      |
|         |    |           |      |      |      |
|         |    |           |      |      |      |
|         |    |           |      |      |      |
|         |    |           |      |      |      |
|         |    |           |      |      |      |
|         |    |           |      |      |      |
|         |    |           |      |      |      |
| 6/27/22 | NO | REVISIONS | с то | THIS | SHEE |

DESCRIPTION

REV DATE

SEDIMENT OIL SEPARATOR TAPPING SLEEVE, VALVE, AND BOX

SMH

SOS

TSV

SEWER MANHOLE

UTILITY POLF

1. LENGTH OF PIPE IS FOR CONVENIENCE ONLY. ACTUAL PIPE LENGTH SHALL BE DETERMINED IN THE FIELD.

UTILITY NOTES

- 2. ALL PROPOSED UTILITY WORK, INCLUDING MATERIAL, INSTALLATION, TERMINATION, EXCAVATION, BEDDING, BACKFILL, COMPACTION, TESTING, CONNECTIONS, AND CONSTRUCTION SHALL BE COORDINATED WITH AND COMPLETED IN ACCORDANCE WITH THE APPROPRIATE REQUIREMENTS, CODES, AND STANDARDS OF ALL CORRESPONDING UTILITY ENTITIES AND SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR.
- 3. THE CONTRACTOR SHALL BE RESPONSIBLE FOR VERIFYING AND DETERMINING THE LOCATION, SIZE, AND ELEVATION OF ALL EXISTING UTILITIES, SHOWN OR NOT SHOWN ON THESE PLANS, PRIOR TO THE START OF ANY CONSTRUCTION. THE ENGINEER SHALL BE NOTIFIED IN WRITING OF ANY UTILITIES FOUND INTERFERING WITH THE PROPOSED CONSTRUCTION AND APPROPRIATE REMEDIAL ACTION BE AGREED TO BY THE ENGINEER BEFORE PROCEEDING WITH THE WORK. THE CONTRACTOR SHALL BE RESPONSIBLE TO CONTACT "DIGSAFE" (811) AT LEAST 72 HOURS BEFORE DIGGING.
- 4. COORDINATE ALL WORK ADJACENT TO PROPOSED BUILDINGS WITH ARCHITECTURAL BUILDING DRAWINGS. CONFIRM UTILITY PENETRATIONS AND INVERT ELEVATIONS ARE COORDINATED PRIOR TO INSTALLATION.
- 5. THE CONTRACTOR SHALL CONTACT ALL UTILITY COMPANIES OWNING UTILITIES, EITHER OVERHEAD OR UNDERGROUND, WITHIN THE CONSTRUCTION AREA AND SHALL COORDINATE AS NECESSARY WITH THE UTILITY COMPANIES OF SAID UTILITIES. THE PROTECTION OR RELOCATION OF UTILITIES IS ULTIMATELY THE RESPONSIBILITY OF THE CONTRACTOR.
- 6. THE EXACT LOCATION OF NEW UTILITY CONNECTIONS SHALL BE DETERMINED BY THE CONTRACTOR IN COORDINATION WITH UTILITY COMPANY, COUNTY AGENCY, AND/OR PRIVATE UTILITY COMPANY
- 7. THE CONTRACTOR SHALL PROVIDE AND INSTALL ALL MANHOLES. BOXES, FITTINGS, CONNECTORS, COVER PLATES, AND OTHER MISCELLANEOUS ITEMS NOT NECESSARILY DETAILED ON THESE DRAWINGS TO RENDER THE UTILITY INSTALLATION COMPLETE AND OPERATIONAL
- 8. ALL UTILITY COMPANIES REQUIRE INDIVIDUAL CONDUITS. CONTRACTOR TO COORDINATE WITH TELEPHONE, CABLE, AND ELECTRIC COMPANIES REGARDING NUMBER, SIZE, AND TYPE OF CONDUITS REQUIRED PRIOR TO INSTALLATION OF ANY CONDUIT.
- 9. SANITARY SEWER SHALL BE CONSTRUCTED TO THE STANDARDS AND SPECIFICATIONS AS SHOWN ON THESE PLANS. ALL SEWER MAINS AND FITTINGS SHALL BE PVC AND SHALL CONFORM TO ASTM F 679 (SDR 35 MINIMUM). FORCE MAINS AND FITTINGS SHALL CONFORM TO NH CODE OF ADMINISTRATIVE RULES ENV-WQ 700. ALL SEWER CONSTRUCTION SHALL BE IN ACCORDANCE WITH NH CODE OF ADMINISTRATIVE RULES ENV-WQ 700. SANITARY MANHOLES SHALL CONFORM TO NHDES WATER DIVISION WASTEWATER ENGINEERING BUREAU STANDARDS AND SPECIFICATIONS SHOWN HEREON.
- 10. ON-SITE WATER DISTRIBUTION SHALL BE TO CITY OF PORTSMOUTH STANDARDS AND SPECIFICATIONS. WATER MAINS SHALL HAVE A MINIMUM OF 5.5' COVER. WHERE WATER PIPES CROSS SEWER LINES A MINIMUM OF 18" VERTICAL SEPARATION BETWEEN THE TWO OUTSIDE PIPE WALLS SHALL BE OBSERVED. HORIZONTAL SEPARATION BETWEEN WATER AND SEWER SHALL BE 10' MINIMUM. WHERE A SANITARY LINE CROSSES A WATER LINE, SEWER LINE MUST BE CONSTRUCTED OF FORCE MAIN MATERIALS (PER ENV-WQ 704.08) FROM BUILDING OR MANHOLE TO MANHOLE, OR SUBSTITUTE RUBBER-GASKETED PRESSURE PIPE FOR THE SAME DISTANCE. WHEN SANITARY LINES PASS BELOW WATER LINES, LAY PIPE SO THAT NO JOINT IN THE SANITARY LINE WILL BE CLOSER THAN 6' HORIZONTALLY TO THE WATER LINE.
- 11. THRUST BLOCKS SHALL BE PROVIDED AT ALL LOCATIONS WHERE WATER LINE CHANGES DIRECTIONS OR CONNECTS TO ANOTHER WATER LINE.
- 12. THE GENERAL CONTRACTOR IS RESPONSIBLE FOR CONDUIT AND WIRING TO ALL SIGNS AND LIGHTS. CONDUIT TO BE A MINIMUM OF 24" BELOW FINISH GRADE.
- 13. ALL PROPOSED UTILITIES SHALL BE UNDERGROUND. ALL UNDERGROUND CONDUITS SHALL HAVE NYLON PULL ROPES.
- 14. THE CONTRACTOR SHALL ARRANGE AND PAY FOR ALL INSPECTIONS. TESTING, AND RELATED SERVICES AND SUBMIT COPIES OF ACCEPTANCE TO THE OWNER, UNLESS OTHERWISE INDICATED.
- 15. PROVIDE PERMANENT PAVEMENT REPAIR FOR ALL UTILITY TRENCHES IN EXISTING ROAD OR PAVEMENT TO REMAIN. SAW CUT TRENCH, PAVEMENT, AND GRANULAR BASE THICKNESS TO MATCH EXISTING PAVEMENT. OBTAIN ALL PERMITS REQUIRED FOR TRENCHING.
- 16. UNLESS OTHERWISE SPECIFIED, ALL UNDERGROUND STRUCTURES, PIPES, CHAMBERS, ETC. SHALL BE COVERED WITH A MINIMUM OF 18" OF COMPACTED SOIL BEFORE EXPOSURE TO VEHICLE LOADS.

17. THE PROPERTY WILL BE SERVICED BY THE FOLLOWING: DRAINAGE PRIVATE

| DIVINU    |
|-----------|
| SEWER     |
| WATER     |
| GAS       |
| ELECTRIC  |
| TELEPHONE |
| CABLE     |
|           |

CITY SEWEF CITY WATER NOT AVAILABLE EVERSOURCE CONSOLIDATED COMMUNICATIONS COMCAST

SITE DEVELOPMENT PLANS

# TAX MAP 207 LOT 15 NOTES & LEGEND 70 PLEASANT POINT DRIVE PORTSMOUTH, NEW HAMPSHIRE OWNED BY

KATARA, LLC

Civil Engineers

Structural Engineers

affic Engineers

andscape Architects

and Surveyors

cientists

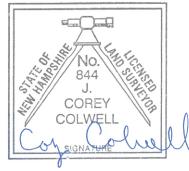
DR JKC FB

SCALE: NTS

47307.01

DR CK

MAY 25, 2022

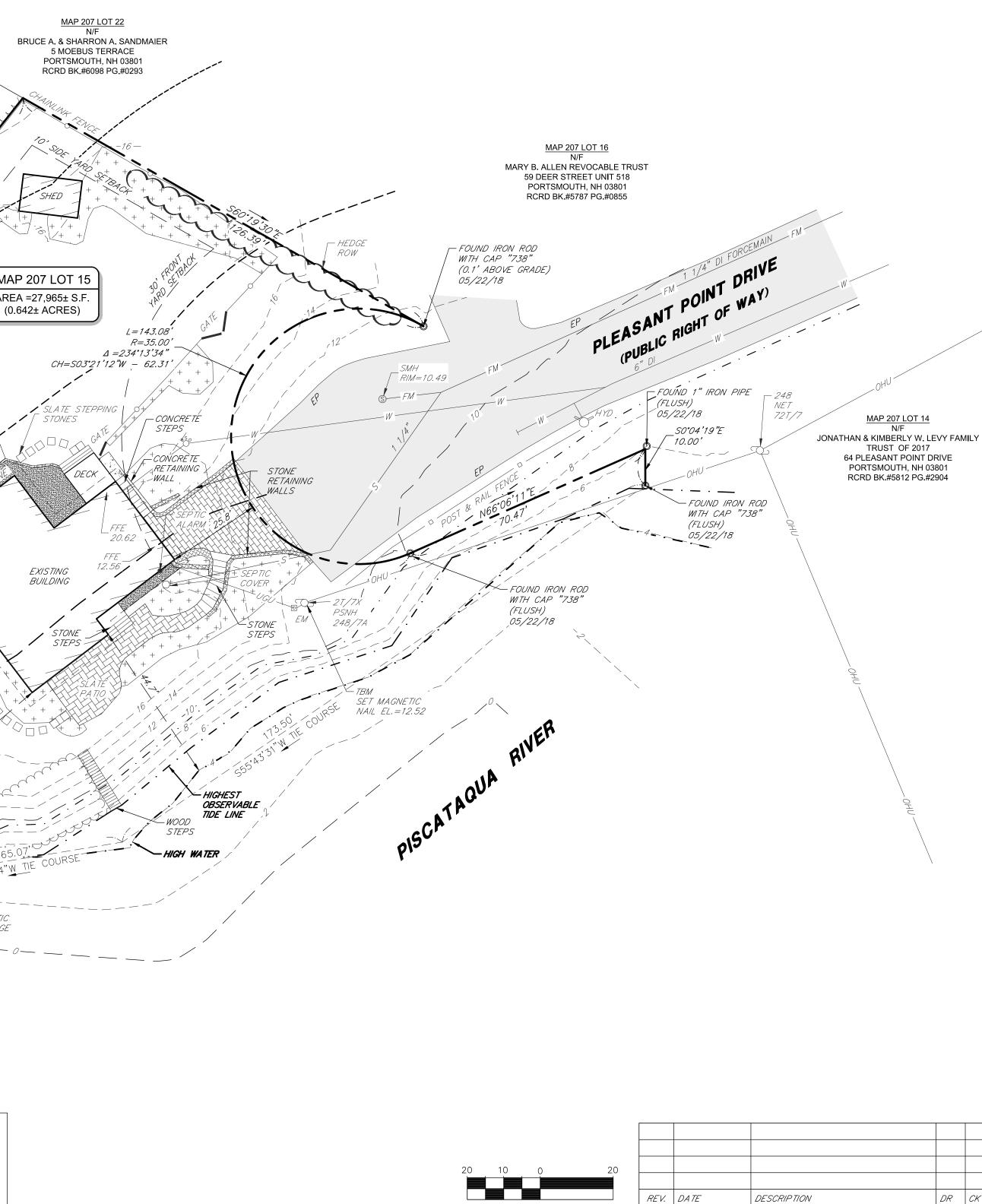

| 48 Constitution Drive Bedford, NH 03110 Phone (603) 472-4488 Fax (603) 472-9747 www.tfmoran.com

CK JCC CADFILE 47307-01\_NOTES&LEGEND

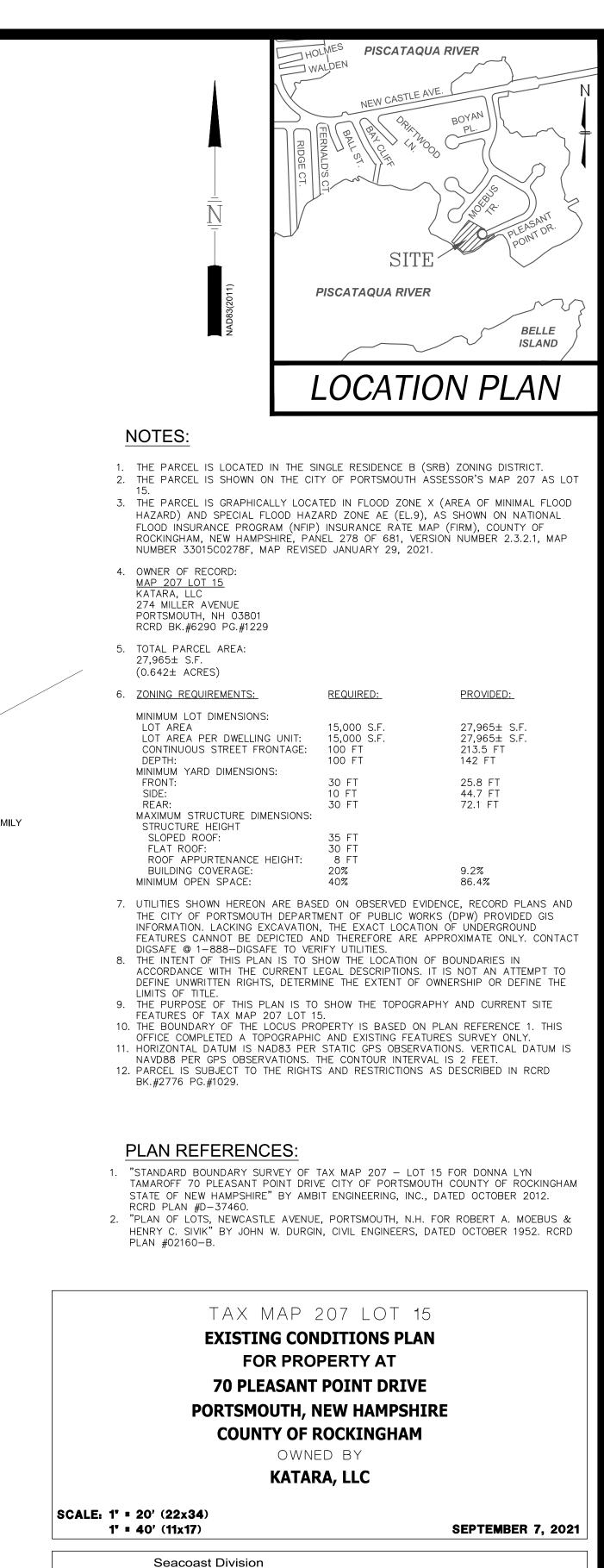
C - 01

# LEGEND:

| (                                                               |                                                                                  |                                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BK/PG<br>CH                                                     | BOOK & PAGE<br>CHORD                                                             |                                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DI                                                              | DUCTILE IRON PIPE                                                                |                                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EL.<br><i>EM</i> ©                                              | ELEVATION<br>ELECTRIC METER                                                      |                                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EP                                                              | EDGE OF PAVEMENT                                                                 |                                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FFE<br>L                                                        | FINISHED FLOOR ELEVATION<br>LENGTH                                               |                                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NET                                                             | NEW ENGLAND TELEPHONE                                                            |                                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PSNH<br>N/F                                                     | PUBLIC SERVICE COMPANY OF NEW HAMPSH<br>NOW OR FORMERLY                          | IRE                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| R                                                               | RADIUS                                                                           |                                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RCRD<br>S.F.                                                    | ROCKINGHAM COUNTY REGISTRY OF DEEDS<br>SQUARE FEET                               |                                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SMH                                                             | SEWER MANHOLE                                                                    |                                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TBM<br>Δ                                                        | TEMPORARY BENCH MARK<br>CENTRAL ANGLE                                            |                                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MAP 47 LOT 11                                                   | ASSESSOR'S MAP NUMBER/ LOT                                                       |                                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 | NUMBER                                                                           |                                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b></b>                                                         | PROPERTY LINE<br>EXISTING CONTOUR                                                |                                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| □                                                               | POST & RAIL FENCE                                                                |                                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0                                                               | CHAINLINK FENCE<br>TREE LINE                                                     |                                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S                                                               | SEWER LINE                                                                       |                                                     |                                                                                                                 | l l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| FM                                                              | FORCE MAIN                                                                       |                                                     | 11-15-                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 | WATER LINE<br>OVERHEAD UTILITIES                                                 |                                                     | NOOD A                                                                                                          | NATIRAL MARKEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                 | UNDERGROUND UTILITIES                                                            |                                                     |                                                                                                                 | BURNE /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| E CON                                                           | DECIDUOUS TREE                                                                   |                                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                          |                                                                                  |                                                     |                                                                                                                 | A the start of the |
| S                                                               | EVERGREEN TREE                                                                   | <u>MAP 207 LOT 23</u><br>N/F                        |                                                                                                                 | C VARD SE BACK (MAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (S)<br>س                                                        | SEWER MANHOLE<br>UTILITY POLE                                                    | ROBERT W. HENKEL REVOCAE<br>POLLY H. HENKEL REVOCAE |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| THYD                                                            | HYDRANT                                                                          | 8 MOEBUS TERRAC<br>PORTSMOUTH, NH 03                |                                                                                                                 | OF MAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                 | WATER SHUTOFF                                                                    | RCRD BK.#4929 PG.#0                                 | 878                                                                                                             | SOF MAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                 | BRICK DRIVEWAY                                                                   |                                                     | 10 Ak.                                                                                                          | (0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                 | SLATE PATIO                                                                      |                                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 | LANDSCAPED AREA                                                                  |                                                     | 130.                                                                                                            | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                 | CRUSHED STONE                                                                    |                                                     | COBBLE                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 | PAVED AREA                                                                       |                                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 | STONE RETAINING WALL<br>COBBLE EDGE                                              |                                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 |                                                                                  |                                                     |                                                                                                                 | +<br>+<br>RUSHED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                 |                                                                                  |                                                     | + + +<br>+ +<br>+ +                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 |                                                                                  |                                                     |                                                                                                                 | A LEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                 |                                                                                  |                                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 |                                                                                  |                                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 |                                                                                  | 50 + + + +                                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 | `:                                                                               |                                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 |                                                                                  |                                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 | $\sim$                                                                           | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1            | + + + + + +                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 | FOUND IRON ROD -                                                                 |                                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 | WITH CAP "738"<br>(1.0' ABOVE GRADE)                                             |                                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 | 05/22/18                                                                         | No. Company                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 |                                                                                  |                                                     |                                                                                                                 | ·/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                 |                                                                                  |                                                     |                                                                                                                 | - 12. <sup>1</sup> /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                 |                                                                                  | ISC I                                               | Volt 1                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 |                                                                                  |                                                     | 1 A Charles and a charles a |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 |                                                                                  | R                                                   | I IN CONTRACT                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 |                                                                                  | PISCATAQUA                                          |                                                                                                                 | attat 65.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                 |                                                                                  |                                                     |                                                                                                                 | 580°37'14"W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                 |                                                                                  | AL                                                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 |                                                                                  | AWER                                                |                                                                                                                 | └─ <i>TBM</i><br>SET MAGNETIC<br>NAIL IN LEDGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                 |                                                                                  | -                                                   | `                                                                                                               | NAIL IN LEDGE<br>EL.=13.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                 |                                                                                  |                                                     | ~                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                 |                                                                                  |                                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| I CERTIFY THAT THIS SURVEY AND<br>SUPERVISION AND ARE THE RESUL | ) PLAN WERE PREPARED BY THOSE UNDER M<br>_T OF A FIELD SURVEY CONDUCTED IN MAY 2 | Y DIRECT<br>018. THIS                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SURVEY CONFORMS TO THE ACCU<br>HAMPSHIRE CODE OF ADMINISTRA     | RACY REQUIREMENTS OF AN URBAN SURVEY<br>TIVE RULES OF THE BOARD OF LICENSURE FO  | OF THE NEW                                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SURVEYORS.<br>I FURTHER CERTIFY THAT THIS SU                    | IRVEY IS CORRECT TO THE BEST OF MY PROF                                          | ESSIONAL                                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| KNOWLEDGE, AND THE FIELD TRAN                                   | ERSE SURVEY EXCEEDS A PRECISION OF 1:15                                          | ,000.                                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |




LICENSED LAND SURVEYOR


2022-05-23 DATE

Copyright 2021 © Thomas F. Moran, Inc. 48 Constitution Drive, Bedford, N.H. 03110 All rights reserved. These plans and materials may not be copied, duplicated, replicated or otherwise reproduced in any form whatsoever without the prior written permission of Thomas F. Moran, Inc.

This plan is not effective unless signed by a duly authorized officer of Thomas F. Moran, Inc.



Graphic Scale in Feet

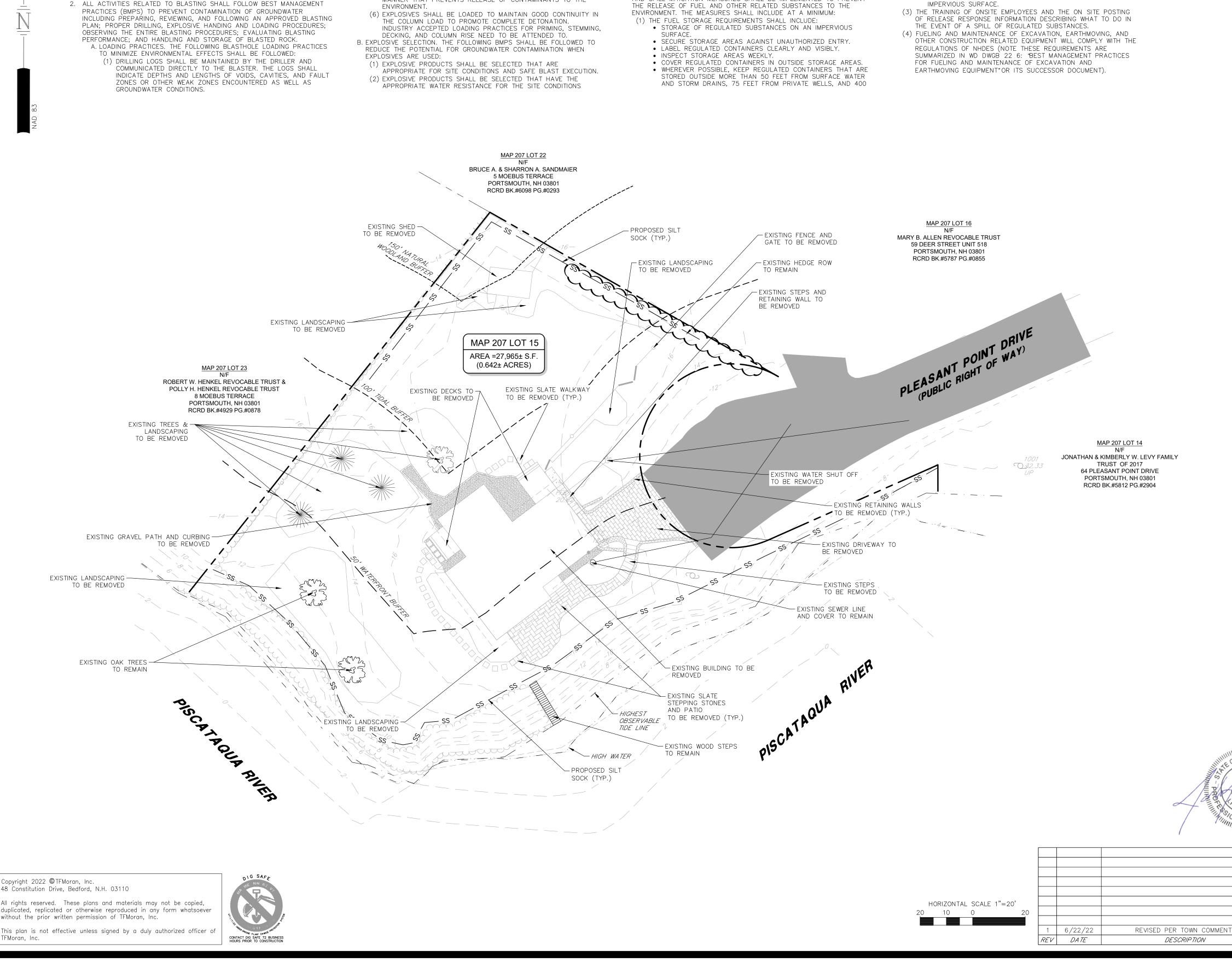


DR IID FB

CK JCC CADFILE

Scientists

DR CK 47307.01


| 170 Commerce Way, Suite 102 Civil Engineers Structural Engineers Portsmouth, NH 03801 Traffic Engineers Phone (603) 431-2222 Land Surveyors Fax (603) 431-0910 Landscape Architects www.tfmoran.com 549

S-1

# **ROCK BLASTING AND WATER** QUALITY NOTES

- IDENTIFY DRINKING WATER WELLS LOCATED WITHIN 2000 FEET OF THE PROPOSED BLASTING ACTIVITIES. DEVELOP A GROUNDWATER QUALITY SAMPLING PROGRAM TO MONITOR FOR NITRATE AND NITRITE EITHER IN THE DRINKING WATER SUPPLY WELLS OR IN OTHER WELLS THAT ARE REPRESENTATIVE OF THE DRINKING WATER SUPPLY WELLS IN THE AREA. THE PLAN MUST INCLUDE PRE AND POST BLAST WATER QUALITY MONITORING AND BE APPROVED BY NHDES PRIOR TO INITIATING BLASTING. THE GROUNDWATER SAMPLING PROGRAM MUST BE IMPLEMENTED ONCE APPROVED BY NHDES
- 2. ALL ACTIVITIES RELATED TO BLASTING SHALL FOLLOW BEST MANAGEMENT PRACTICES (BMPS) TO PREVENT CONTAMINATION OF GROUNDWATER PLAN: PROPER DRILLING, EXPLOSIVE HANDING AND LOADING PROCEDURES: OBSERVING THE ENTIRE BLASTING PROCEDURES; EVALUATING BLASTING PERFORMANCE; AND HANDLING AND STORAGE OF BLASTED ROCK.
  - TO MINIMIZE ENVIRONMENTAL EFFECTS SHALL BE FOLLOWED: (1) DRILLING LOGS SHALL BE MAINTAINED BY THE DRILLER AND COMMUNICATED DIRECTLY TO THE BLASTER. THE LOGS SHALL

- (2) EXPLOSIVE PRODUCTS SHALL BE MANAGED ON SITE SO THAT THEY ARE EITHER USED IN THE BOREHOLE, RETURNED TO THE DELIVERY VEHICLE, OR PLACED IN SECURE CONTAINERS FOR OFF-SITE DISPOSAL
- (3) SPILLAGE AROUND THE BOREHOLE SHALL EITHER BE PLACED IN THE BOREHOLE OR CLEANED UP AND RETURNED TO AN APPROPRIATE VEHICLE FOR HANDLING OR PLACEMENT IN SECURED CONTAINERS FOR OFF SITE DISPOSA
- (4) LOADED EXPLOSIVES SHALL BE DETONATED AS SOON AS POSSIBLE AND SHALL NOT BE LEFT IN THE BLASTHOLES OVERNIGHT, UNLESS WEATHER OR OTHER SAFETY CONCERNS REASONABLY DICTATE THAT DETONATION SHOULD BE POSTPONED.
- (5) LOADING EQUIPMENT SHALL BE CLEANED IN AN AREA WHERE WASTEWATER CAN BE PROPERLY CONTAINED AND HANDLED IN A MANNER THAT PREVENTS RELEASE OF CONTAMINANTS TO THE ENVIRONMENT. (6) EXPLOSIVES SHALL BE LOADED TO MAINTAIN GOOD CONTINUITY IN
- THE COLUMN LOAD TO PROMOTE COMPLETE DETONATION. DECKING, AND COLUMN RISE NEED TO BE ATTENDED TO.
- REDUCE THE POTENTIAL FOR GROUNDWATER CONTAMINATION WHEN EXPLOSIVES ARE USED: (1) EXPLOSIVE PRODUCTS SHALL BE SELECTED THAT ARE (2) EXPLOSIVE PRODUCTS SHALL BE SELECTED THAT HAVE THE



#### THE PRODUCT UPON GROUNDWATER. C. PREVENTION OF MISFIRES. APPROPRIATE PRACTICES SHALL BE DEVELOPED AND IMPLEMENTED TO PREVENT MISFIRES. D. MUCK PILE MANAGEMENT. MUCK PILES (THE BLASTED PIECES OF ROCK)

- AND ROCK PILES SHALL BE MANAGED IN A MANNER TO REDUCE THE POTENTIAL FOR CONTAMINATION BY IMPLEMENTING THE FOLLOWING MEASURES: (1) REMOVE THE MUCK PILE FROM THE BLAST AREA AS SOON AS
- REASONABLY POSSIBLE. (2) MANAGE THE INTERACTION OF BLASTED ROCK PILES AND STORMWATER TO PREVENT CONTAMINATION OF WATER SUPPLY
- WELLS OR SURFACE WATER. E. SPILL PREVENTION MEASURES AND SPILL MITIGATION. SPILL PREVENTION AND SPILL MITIGATION MEASURES SHALL BE IMPLEMENTED TO PREVENT THE RELEASE OF FUEL AND OTHER RELATED SUBSTANCES TO THE
- FEET FROM PUBLIC WELLS. • SECONDARY CONTAINMENT IS REQUIRED FOR CONTAINERS
- CONTAINING REGULATED SUBSTANCES STORED OUTSIDE, EXCEPT FOR ON PREMISE USE HEATING FUEL TANKS. OR ABOVEGROUND OR UNDERGROUND STORAGE TANKS OTHERWISE REGULATED
- (2) THE FUEL HANDLING REQUIREMENTS SHALL INCLUDE: • EXCEPT WHEN IN USE, KEEP CONTAINERS CONTAINING
- REGULATED SUBSTANCES CLOSED AND SEALED. • PLACE DRIP PANS UNDER SPIGOTS, VALVES, AND PUMPS.
- HAVE SPILL CONTROL AND CONTAINMENT EQUIPMENT READILY AVAILABLE IN ALL WORK AREAS.
- USE FUNNELS AND DRIP PANS WHEN TRANSFERRING REGULATED SUBSTANCES.
- PERFORM TRANSFERS OF REGULATED SUBSTANCES OVER AN
- PRESENT TO MINIMIZE THE POTENTIAL FOR HAZARDOUS EFFECT OF

# NOTES

- 1. SEE NOTES ON SHEET C-01.
- 2. THE CONTRACTOR SHALL BE RESPONSIBLE FOR VERIFYING AND DETERMINING THE LOCATIONS, SIZE, AND ELEVATIONS OF ALL EXISTING UTILITIES, SHOWN OR NOT SHOWN ON THESE PLANS PRIOR TO THE START OF ANY DEMOLITION. THE LOCATIONS SHOWN ON THESE PLANS ARE NOT GUARANTEED BY THE OWNER OR THE ENGINEER. THE ENGINEER SHALL BE NOTIFIED IN WRITING OF ANY UTILITIES INTERFERING WITH THE PROPOSED DEMOLITION TO DETERMINE APPROPRIATE ACTION TO BE TAKEN BEFORE PROCEEDING WITH THE WORK. IT IS ALSO THE CONTRACTOR'S RESPONSIBILITY TO ANTICIPATE CONFLICTS AND REPAIR EXISTING UTILITIES AS NECESSARY TO COMPLETE THE WORK AT NO ADDITIONAL COST TO THE OWNER.
- 3. THE CONTRACTOR SHALL MAINTAIN EMERGENCY ACCESS TO ALL AREAS AFFECTED BY WORK AT ALL
- 4. THE CONTRACTOR SHALL VERIFY ALL SURVEY INFORMATION IN THE FIELD AND REPORT ANY DISCREPANCIES TO THE ENGINEER PRIOR TO THE START OF CONSTRUCTION.
- 5. EXISTING UTILITY SERVICES TO BE DISCONTINUED ARE TO BE CAPPED AS REQUIRED BY THE RESPECTIVE UTILITY COMPANIES.
- 6. CONSTRUCTION DEBRIS AND INVASIVE SPECIES SHALL BE REMOVED FROM SITE AND DISPOSED OF IN A LEGAL MANNER. 7. PRIOR TO THE START OF WORK, THE CONTRACTOR SHALL PLACE ORANGE CONSTRUCTION FENCING
- AROUND EACH TREE TO BE RETAINED THROUGHOUT CONSTRUCTION. NO STOCKPILES OF MATERIAL ARE PERMITTED WITHIN THE DRIP LINE OF THE TREES TO BE SAVED.
- 8. CONTACT THE LANDSCAPE ARCHITECT IMMEDIATELY IF ANY TREES ARE DAMAGED DURING CONSTRUCTION.

# **CONSTRUCTION SEQUENCE NOTES**

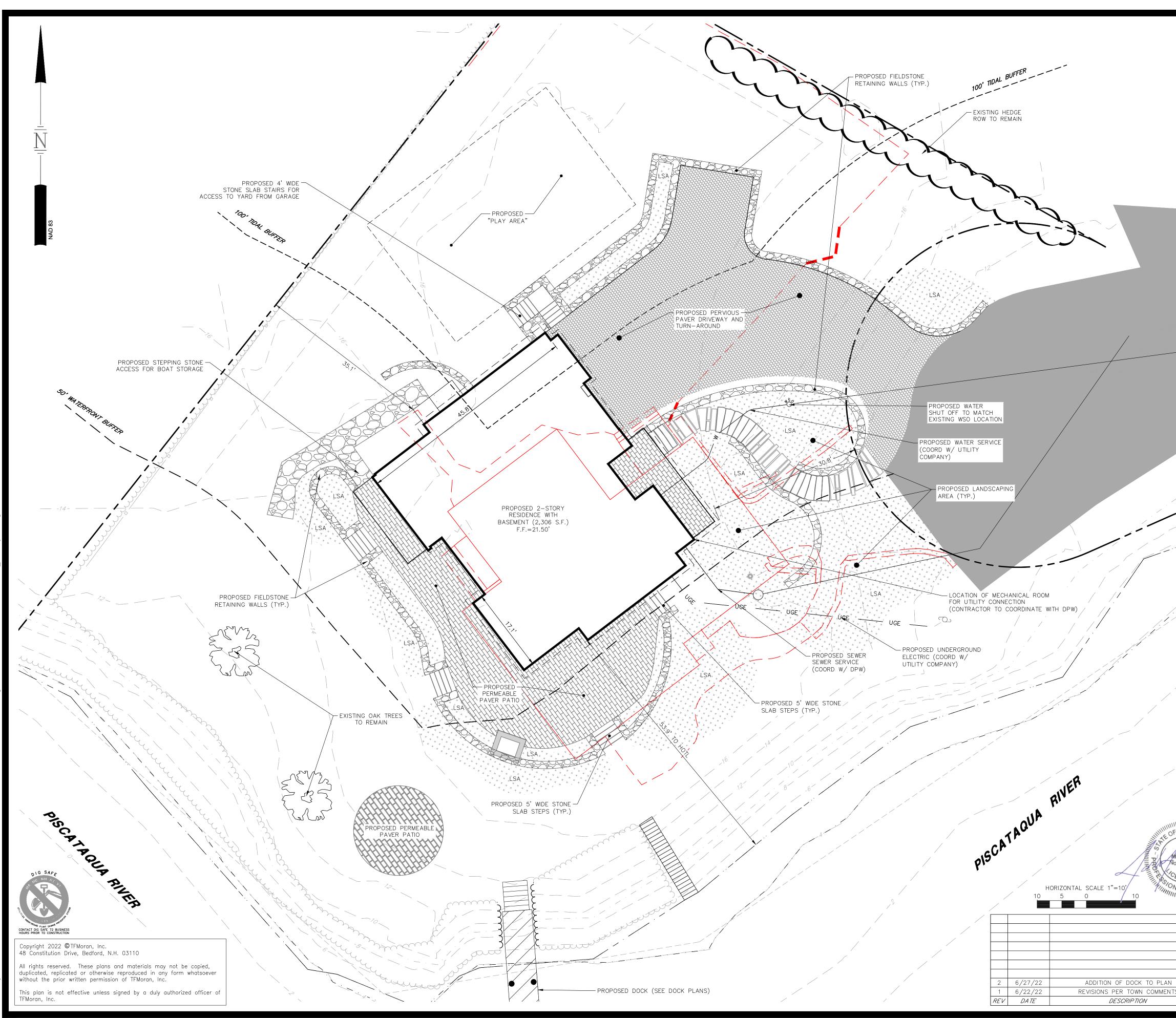
TO MINIMIZE EROSION AND SEDIMENTATION DUE TO CONSTRUCTION, CONSTRUCTION SHALL FOLLOW THIS GENERAL CONSTRUCTION SEQUENCE.

MODIFICATIONS TO THE SEQUENCE NECESSARY DUE TO THE CONTRACTOR'S SCHEDULE SHALL INCLUDE APPROPRIATE TEMPORARY AND PERMANENT EROSION AND SEDIMENTATION CONTROL MEASURES.

THE CONTRACTOR SHALL SCHEDULE WORK SUCH THAT ANY CONSTRUCTION AREA IS STABILIZED WITHIN 45 DAYS OF INITIAL DISTURBANCE EXCEPT AS NOTED BELOW. NO MORE THAN 5 ACRES OF DISTURBED LAND SHALL BE UNSTABILIZED AT ANY ONE TIME

THE PROJECT SHALL BE MANAGED SO THAT IT MEETS THE REQUIREMENTS AND INTENT OF RSA 430:53 AND CHAPTER ARG 3800 RELATIVE TO INVASIVE SPECIES.

DO NOT TRAFFIC EXPOSED SOIL SURFACE OF INFILTRATION SYSTEMS WITH CONSTRUCTION EQUIPMENT. IF FEASIBLE, PERFORM EXCAVATIONS WITH EQUIPMENT POSITIONED OUTSIDE THE LIMITS OF THE INFILTRATION COMPONENTS OF THE SYSTEM.


DO NOT DISCHARGE SEDIMENT-LADEN WATERS FROM CONSTRUCTION ACTIVITIES (RUNOFF, WATER FROM EXCAVATIONS) TO STORMWATER BMP'S. STORMWATER RUNOFF MUST BE DIRECTED TO TEMPORARY PRACTICES UNTIL STORMWATER BMP'S ARE STABILIZED.

DO NOT PLACE STORMWATER BMP'S INTO SERVICE UNTIL THE CONTRIBUTING AREAS HAVE BEEN FULLY STABILIZED.

AFTER THE INFILTRATION SYSTEM IS EXCAVATED TO THE FINAL DESIGN ELEVATION, THE FLOOR SHOULD BE DEEPLY TILLED WITH A ROTARY TILLER OR DISC HARROW TO RESTORE THE INFILTRATION RATES, FOLLOWED BY A PASS WITH A LEVELING DRAG.

- NOTIFY EASEMENT OWNERS PRIOR TO COMMENCEMENT OF WORK.
- 2. INSTALL ALL PERIMETER EROSION PROTECTION MEASURES AS INDICATED ON THE PLANS PRIOR TO THE COMMENCEMENT OF CONSTRUCTION. STORMWATER TREATMENT PONDS AND SWALES SHALL BE INSTALLED BEFORE ROUGH GRADING THE SIT
- 4. DURING CONSTRUCTION EVERY EFFORT SHALL BE MADE TO MANAGE SURFACE RUNOFF QUALITY. 5. DAILY, OR AS REQUIRED, CONSTRUCT TEMPORARY BERMS, DRAINS, DITCHES, SILT BARRIERS, SEDIMENT TRAPS, ETC. MULCH AND SEED AS REQUIRED. (TEMPORARY SEED MIXTURE OF WINTER RYE APPLIED A
- A RATE OF 2.5 LBS/1000 SF SHALL BE USED) 6. CONDUCT MAJOR EARTHWORK, INCLUDING CLEARING AND GRUBBING, WITHIN THE LIMITS OF WORK. ALL CUT AND FILL SLOPES SHALL BE SEEDED WITHIN 72 HOURS AFTER GRADING. 7. ALL STRIPPED TOPSOIL AND OTHER EARTH MATERIALS SHALL BE STOCKPILED OUTSIDE THE IMMEDIATE
- WORK AND 100' BUFFER. A SILT BARRIER SHALL BE CONSTRUCTED AROUND THESE PILES IN A MANNER TO PROVIDE ACCESS AND AVOID SEDIMENT OUTSIDE OF THE WORK AREA. CONSTRUCT BUILDING PAD AND COMMENCE NEW BUILDING CONSTRUCTION.
- CONSTRUCT TEMPORARY DIVERSIONS AS REQUIRED 10. BEGIN PERMANENT AND TEMPORARY INSTALLATION OF SEED AND MULCH.
- 11. PERFORM EARTHWORK NECESSARY TO ESTABLISH ROUGH GRADING AROUND DRIVEWAY. MANAGE EXPOSED SOIL SURFACES TO AVOID TRANSPORTING SEDIMENTS INTO WETLANDS
- 12. INSTALL SUBSURFACE UTILITIES (WATER, SEWER, GAS, ELECTRIC, COMMUNICATIONS, DRAINAGE,
- DRAINAGE FACILITIES, ETC.).
- 13. CONSTRUCT PROPOSED DRIVEWAY, RAIN GARDENS, GRAVEL WETLANDS AND DRAINAGE SWALES. ALL DITCHES, SWALES, AND GRAVEL WETLANDS SHALL BE FULLY STABILIZED PRIOR TO DIRECTING FLOW TO THEM.
- 14. COMPLETE BUILDING AND ALL OFF-SITE IMPROVEMENTS 15. COMPLETE SEEDING AND MULCHING. SEED TO BE APPLIED WITH BROADCAST SPREADER OR BY HYDRO-SEEDING, THEN ROLLED, RAKED, OR DRAGGED TO ASSURE SEED/SOIL CONTACT.
- 16. REMOVE TEMPORARY EROSION CONTROL MEASURES AFTER SEEDED AREAS HAVE BECOME FIRMLY ESTABLISHED AND SITE IMPROVEMENTS ARE COMPLETE. 17. DURING THE COURSE OF THE WORK AND UPON COMPLETION, THE CONTRACTOR SHALL REMOVE ALL
- SEDIMENT DEPOSITS, EITHER ON OR OFF SITE, INCLUDING CATCH BASINS, AND SUMPS, DRAIN PIPES AND DITCHES, CURB LINES, ALONG SILT BARRIERS, ETC. RESULTING FROM SOIL AND/OR CONSTRUCTION
- OPERATIONS 18. SEE WINTER CONSTRUCTION SEQUENCE FOR WORK CONDUCTED AFTER OCTOBER 15TH.

| OHN<br>J.<br>TIGLE<br>NSED<br>AL ENGINU | SITE DEVELOPMENT PLANS         TAX MAP 207 LOT 15         SITE PREPARATION & DEMOLITION         OT PLEASANT POINT DRIVE         OWNED BY         KATARA, LLC         1"=20' (11"x17")         SCALE: 1"=10' (22"x34") |                                                                                                                                    |  |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|
|                                         | Civil Engineers<br>Structural Engineers<br>Traffic Engineers<br>Land Surveyors<br>Landscape Architects<br>Scientists                                                                                                  | <b>MAY 25, 2022</b><br>48 Constitution Drive<br>Bedford, NH 03110<br>Phone (603) 472–4488<br>Fax (603) 472–9747<br>www.tfmoran.com |  |
| JKC JCC<br>DR CK                        | F         L         47307.01         DR         JKC         FB         -           CK         JCC         CADFILE         47307-01_SITE         PF                                                                    | с-02                                                                                                                               |  |



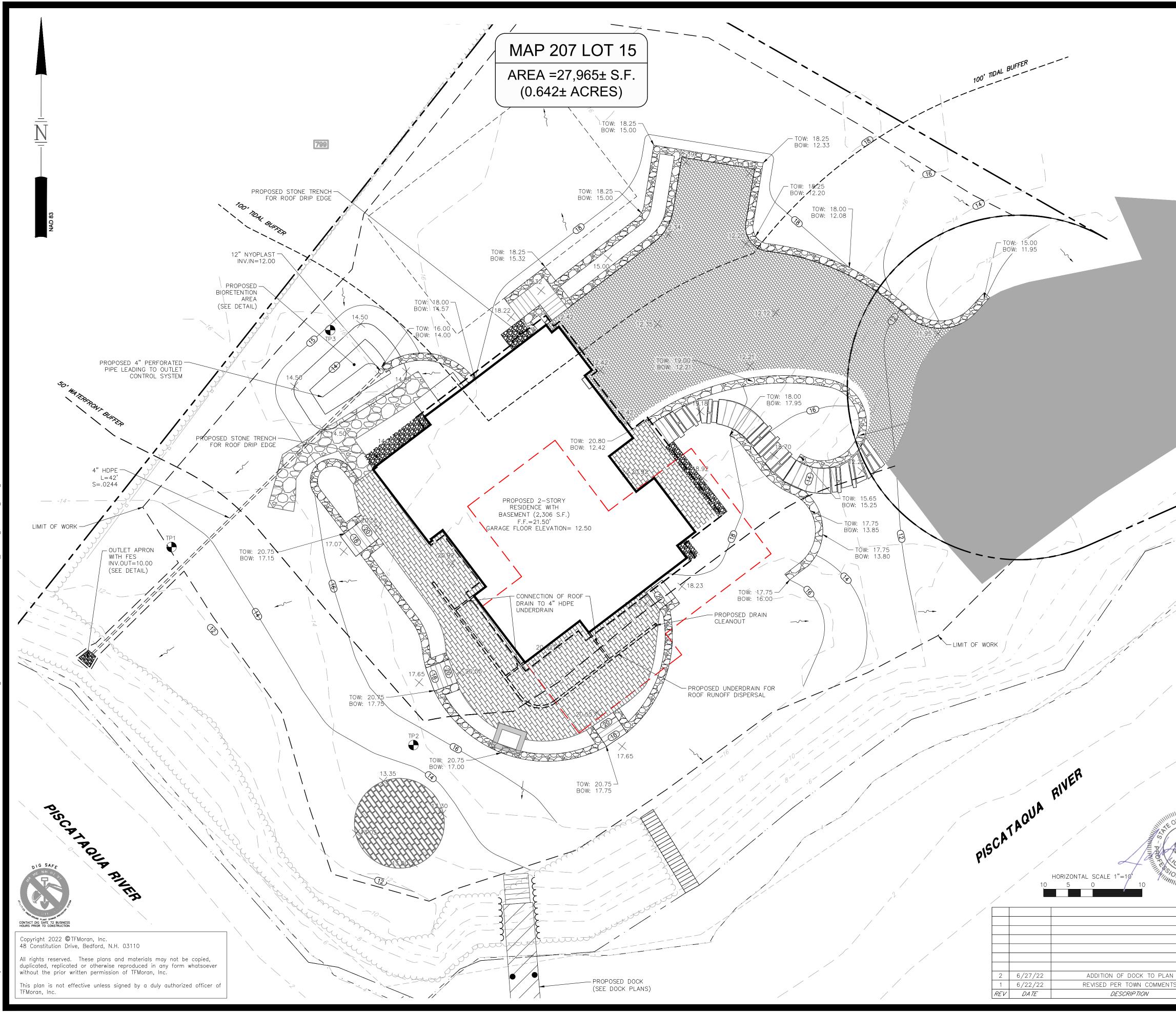
# SITE DATA

ZONED: SINGLE RESIDENCE B (SRB) EXISTING USE: SINGLE RESIDENCE PROPOSED USE: SINGLE RESIDENCE

DIMENSIONAL REQUIREMENTS (CURRENT ZONING)

| MINIMUM LOT DIMENSIONS:                                                                                      | REQUIRED:                                | PROVIDED:                                   |
|--------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------|
| LOT AREA<br>LOT FRONTAGE<br>DEPTH                                                                            | 15,000 SF (0.34± AC)<br>100 FT<br>100 FT | 27,965 SF (0.642± AC)<br>213.5 FT<br>142 FT |
| MINIMUM YARD DIMENSIONS:<br>FRONT<br>SIDE<br>REAR                                                            | 30 FT<br>10 FT<br>30 FT                  | 30.8 FT<br>44.7 FT<br>72.1 FT               |
| MAXIMUM STRUCTURE DIMENSIONS:<br>STRUCTURE HEIGHT<br>SLOPED ROOF<br>ROOF APPURTENANCE HEIGHT<br>LOT COVERAGE | 35 FT<br>8 FT<br>20%                     | 35 FT<br>>8 FT<br>12.70%                    |
| MINIMUM OPEN SPACE                                                                                           | 40%                                      | 87.30%                                      |

# NOTES

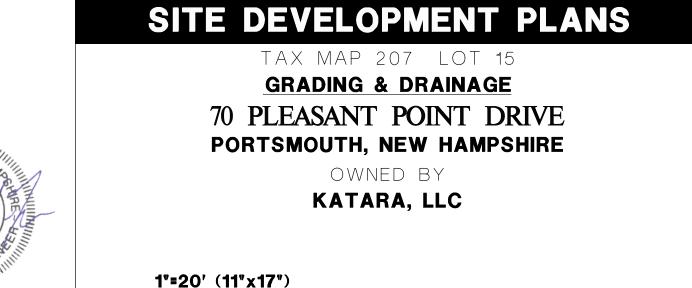

1. SEE NOTES ON SHEET C-01.

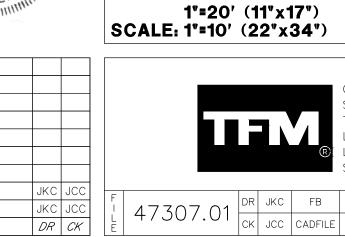
| PRE-CONSTRUCTION IMPE               | RVIOUS AREA                  |
|-------------------------------------|------------------------------|
| EXISTING DWELLING                   | 1,971 S.F.                   |
| DRIVEWAY                            | 512 S.F.                     |
| SLATE PATIO                         | 442 S.F.                     |
| DECKS                               | 202 S.F.                     |
| RETAINING WALLS                     | 113 S.F                      |
| STEPS                               | 211 S.F.                     |
| SHED                                | 166 S.F.                     |
| CONCRETE PAD                        | 25 S.F.                      |
| ООСК                                | N/A                          |
| тот                                 | AL 3,642 S.F.                |
| IMPERVIOUS COVERAGE = 13.02% (3,642 | 2 S.F. / 27,965 S.F. * 100%) |

| POST-CONSTRUCTION IMPER                 | VIOUS AREA              |
|-----------------------------------------|-------------------------|
| PROPOSED DWELLING                       | 2,605 S.F.              |
| DRIVEWAY (PERVIOUS PAVERS)              | N/A                     |
| PERVIOUS PATIO                          | N/A                     |
| DECKS                                   | N/A                     |
| RETAINING WALLS                         | 684 S.F.                |
| STEPS                                   | 257 S.F.                |
| SHED                                    | N/A                     |
| CONCRETE PAD                            | N/A                     |
| DOCK                                    | 96 S.F.                 |
| TOTAL                                   | 3,642 S.F.              |
| IMPERVIOUS COVERAGE = 13.02% (3,642 S.F | . / 27,965 S.F. * 100%) |

----- EXISTING FEATURES TO BE REMOVED

| NILLINGUE                            | SIT                   | тах<br>70 реел                | <b>ELOPME</b><br>MAP 207 LO<br><u>Site Plan</u><br>Sant Poin<br>Suth, New H<br>Owned By<br>Katara, LLO               | OT<br>T]<br>AM      | 15<br>DRIVE                                                                               |
|--------------------------------------|-----------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------|
| ENSED AS                             | 1'=20<br>SCALE: 1'=10 | D' (11"x17")<br>)' (22"x34")  |                                                                                                                      |                     | MAY 25, 2022                                                                              |
|                                      |                       | <b>IFM</b>                    | Civil Engineers<br>Structural Engineers<br>Traffic Engineers<br>Land Surveyors<br>Landscape Architects<br>Scientists | Bedf<br>Phor<br>Fax | Constitution Drive<br>ord, NH 03110<br>ne (603) 472—4488<br>(603) 472—9747<br>tfmoran.com |
| JKC JCC<br>5 JKC JCC<br><i>DR CK</i> |                       | 1 DR JKC FB<br>CK JCC CADFILE | -<br>47307-01_SITE LAYOU                                                                                             | JT                  | C-03                                                                                      |





# NOTES

- 1. SEE NOTES ON SHEET C-01.
- 2. ALL DOORS AND GARAGE ENTRANCES SHALL BE AT FINISHED FLOOR ELEVATION UNLESS OTHERWISE NOTED.
- 3. PROPOSED SPOT GRADES ARE PROVIDED TO THE NEAREST 0.05. IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR TO ENSURE FINISHED GRADES.
- 4. LENGTH OF PIPE IS FOR CONVENIENCE ONLY. ACTUAL PIPE LENGTH SHALL BE DETERMINED IN THE FIELD.
- 5. THE CONTRACTOR SHALL REFER TO THE ARCHITECTURAL PLANS FOR SUBDRAINAGE SYSTEMS FOR THE BUILDING FOUNDATION. SUBDRAINAGE MUST DAYLIGHT OR TIE INTO THE STORMWATER MANAGEMENT SYSTEM. COORDINATE SUBDRAINAGE SYSMTEM DESIGN WITH THE ENGINEER OF RECORD.

| TEST PIT & INFILTRATION TEST |                  |                                                                           |                                      |                                                       |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                           |  |  |
|------------------------------|------------------|---------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| TEST<br>PIT #                | APPROX<br>GROUND | BOTTOM<br>OF POND                                                         |                                      |                                                       | TE<br>Pl                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                           |  |  |
|                              | ELEV             | ELEV                                                                      | ELEV                                 | DEPTH<br>(IN)                                         | ELEV                                                                                                                                                                                                                                        | DEPTH<br>(MIN)                                                                                                                                                                                                                            |  |  |
| 1                            | 13.1             | _                                                                         | 13.1                                 | 16.4                                                  | 13.1                                                                                                                                                                                                                                        | 61"                                                                                                                                                                                                                                       |  |  |
| 2                            | 15.8             | _                                                                         | 12.8                                 | 36.2                                                  | 15.8                                                                                                                                                                                                                                        | 68"                                                                                                                                                                                                                                       |  |  |
| 3                            | 16.1             | 13.0                                                                      | 14.1                                 | 32.1                                                  | 16.1                                                                                                                                                                                                                                        | 62"                                                                                                                                                                                                                                       |  |  |
|                              | PIT #            | PIT #         GROUND           ELEV         13.1           2         15.8 | PIT #GROUNDOF PONDLEEVELEV113.1215.8 | PIT #GROUNDOF PONDTELELEVELEVELEV113.1-13.1215.8-12.8 | PIT #         GROUND         OF POND         TELEV           ELEV         ELEV         ELEV         DEPTH<br>(IN)           1         13.1         -         13.1         16.4           2         15.8         -         12.8         36.2 | PIT #         GROUND         OF POND         TELEV         DEPTH<br>(IN)         ELEV           1         13.1         -         13.1         16.4         13.1           2         15.8         -         12.8         36.2         15.8 |  |  |

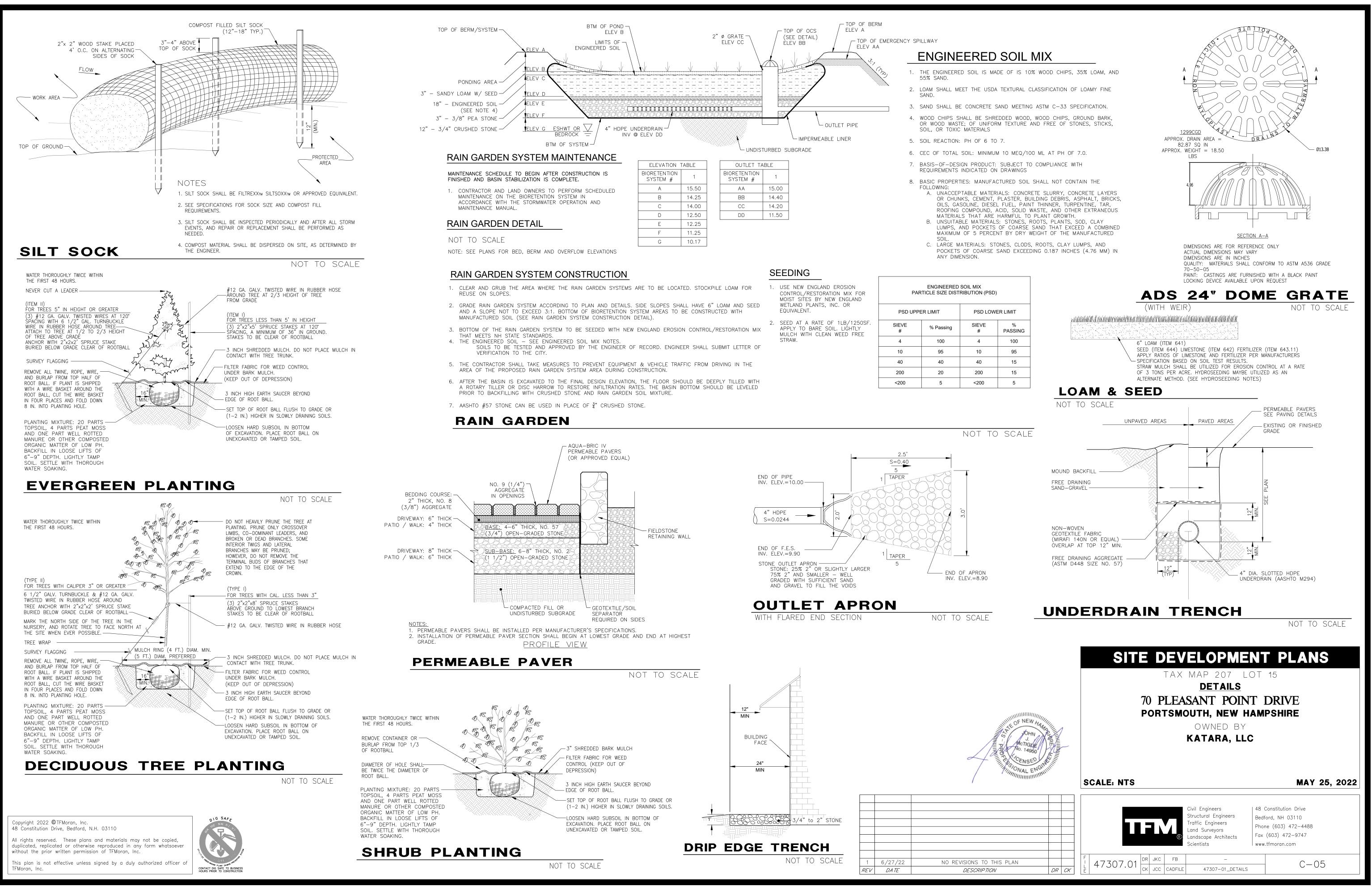
|                                         | SOIL LEGEND<br>(PER USDA NRCS WEB SOIL SURVEY)       |   |  |  |  |
|-----------------------------------------|------------------------------------------------------|---|--|--|--|
| SYMBOL DESCRIPTION HYDROLOGIC SOIL GROU |                                                      |   |  |  |  |
| 799                                     | URBAN LAND-CANTON COMPLEX,<br>3 TO 15 PERCENT SLOPES | A |  |  |  |

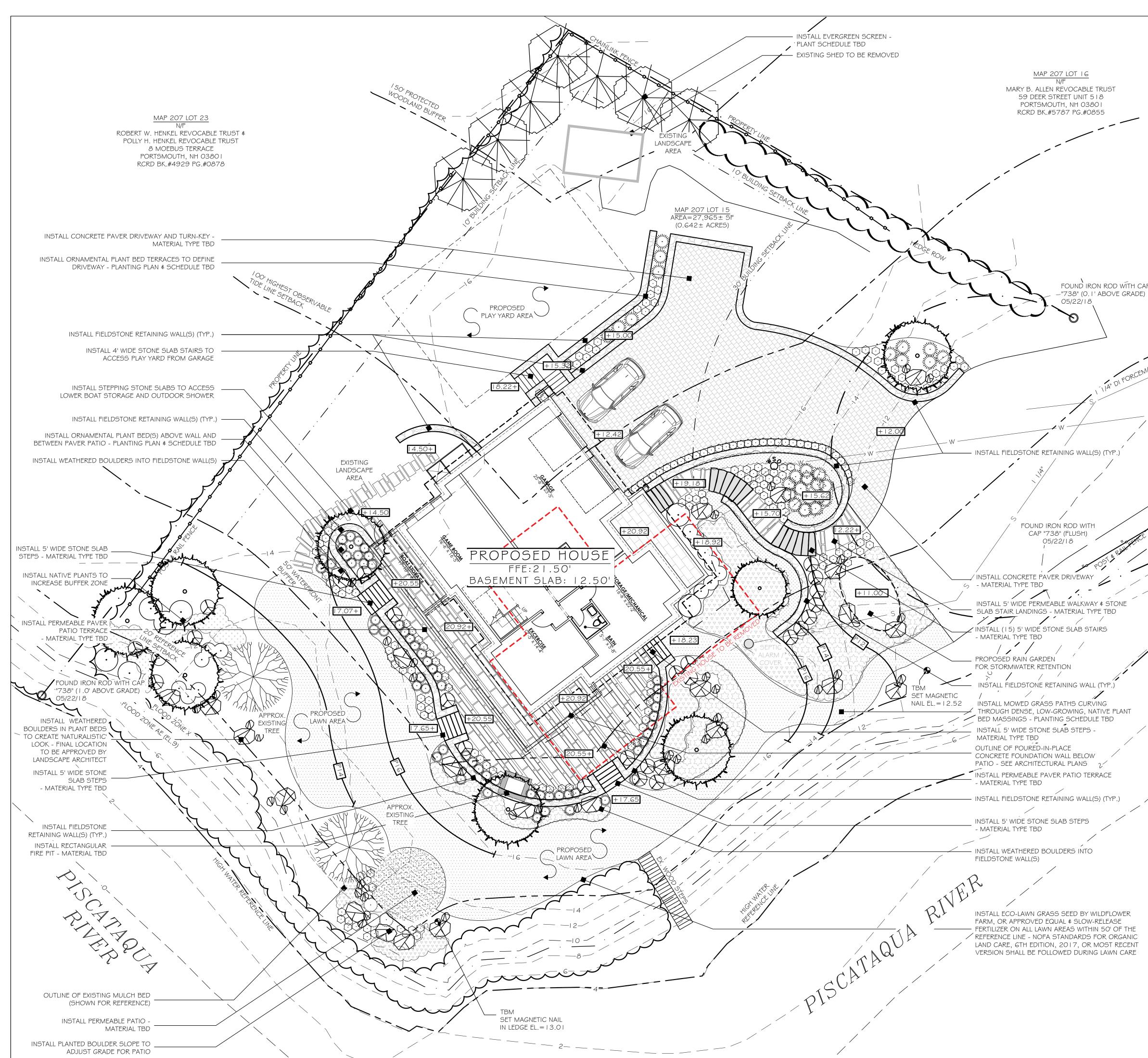




Civil Engineers Structural Engineers Traffic Engineers Land Surveyors Landscape Architects icientists

Phone (603) 472-4488 Fax (603) 472-9747 www.tfmoran.com


| 48 Constitution Drive


Bedford, NH 03110

MAY 25, 2022

C-04

47307.01 DR JKC FB -





# EROSION CONTROL NOTES

. EXPOSED EARTHWORK SHALL BE CONFINED TO AS LIMITED AN AREA AS IS PRACTICAL AT ANY GIVEN TIME THROUGHOUT THE CONSTRUCTION SEQUENCE. LIMIT OF WORK IS NOTED ON THIS SHEET. CONTRACTOR TO WORK WITHIN THESE LIMITS AS SHOWN. NO AREA OF THE SITE SHALL BE LEFT IN AN UNSTABILIZED CONDITION FOR A PERIOD OF TIME EXCEEDING FIVE CALENDAR DAYS.

2. TEMPORARY EROSION CONTROL MEASURES SHALL BE INSTALLED IN STRICT ACCORDANCE WITH PROJECT PANS. IN ADDITION SIMILAR MEASURES SHALL BE INSTALLED WHERE AND WHEN THE FIELD CONDITION, OR FIELD OPERATION OF THE INDIVIDUAL SITE CONTRACTOR MAY WARRANT. ALL TEMPORARY EROSION CONTROL MEASURES USED SHALL BE INSPECTED WEEKLY AND WITHIN 24 HOURS AFTER 0.5" OF RAINFALL OR MORE. THEY SHALL BE CLEANED AND MAINTAINED AND OTHERWISE KEPT IN AN EFFECTIVE OPERATING MANNER THROUGHOUT THE CONSTRUCTION PERIOD.

3. ALL DISTURBED AREAS DESIGNATED TO BE TURF SHALL RECEIVE A MINIMUM OF 4" LOAM (COMPACTED THICKNESS), PRIOR TO SEEDING AND MULCHING.

4. ALL SWALES AND DITCH LINES SHALL BE PERIODICALLY CLEANED OF DEPOSITED SEDIMENT SO AS TO MAINTAIN AND EFFECTIVE GRADE AND CROSS SECTION. ALL SWALES AND DITCH LINES SHALL BE FULLY STABILIZED PRIOR TO HAVING STORMWATER DIRECTED TOWARDS THEM.

5. IN THE EVENT THAT, DURING CONSTRUCTION OF ANY PORTION OF THIS PROJECT, A WINTER SHUTDOWN IS NECESSARY, THE CONTRACTOR SHALL STABILIZE ALL INCOMPLETE WORK AND PROVIDE FOR SUITABLE METHODS OF DIVERTING RUNOFF IN ORDER TO ELIMINATE SHEET FLOW ACROSS FROZEN SURFACES.

6. AN AREA SHALL BE CONSIDERED STABILIZE IF ONE OF THE FOLLOWING HAS

- OCCURRED: A. BASE COURSE OF GRADES ARE INSTALLED IN AREAS TO BE PAVED;
  - B. A MINIMUM OF 85% VEGETATIVE GROWTH HAS BEEN ESTABLISHED; C. A MINIMUM OF 3" OF NON-EROSIVE MATERIALS, SUCH AS STONE OR
  - RIP-RAP HAS BEEN INSTALLED; AND/OR D. EROSION CONTROL BLANKETS HAVE BEEN PROPERLY INSTALLED.

7. DUST SHALL BE CONTROLLED BY THE USE OF WATER AS NECESSARY THROUGHOUT THE CONSTRUCTION PERIOD.

8. IN NO WAY ARE THE TEMPORARY EROSION CONTROL MEASURES INDICATED ON THESE PLANS CONSIDERED ALL INCLUSIVE. THE CONTRACTOR SHALL USE JUDGMENT IN INSTALLING SUPPLEMENTARY EROSION CONTROL MEASURES WHERE AND WHEN SPECIFIC SITE CONDITIONS AND/OR CONSTRUCTION METHODOLOGIES MAY WARRANT.

9. ALL EROSION CONTROL METHODS TO BE INSTALLED AS PER MANUFACTURERS SPECIFICATIONS AS WELL AS INDICATED IN THE NEW HAMPSHIRE STORMWATER MANUAL "EROSION AND SEDIMENT CONTROL DURING CONSTRUCTION."

IO. ALL ROADS, PATHS, DRIVEWAYS, PATIOS AND POOL DECKS SHALL BE STABILIZED WITHIN 72 HOURS OF ACHIEVING FINISH GRADE.

I I. ALL CUT AND FILL SLOPES SHALL BE STABILIZED WITHIN 48 HOURS OF ACHIEVING FINISH GRADE.



| PROPOSED IMPERVI                                                                          | IOUS | CALCULATIONS                                                             |
|-------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------|
| HOUSE<br>DRIVEWAY<br>DECK<br>SHED<br>WALKWAY / PAVER<br>STAIRS<br>PATIO<br>RETAINING WALL |      | 2,948 SF<br>1,754 SF<br>0 SF<br>0 SF<br>0 SF<br>205 SF<br>0 SF<br>683 SF |
| TOTAL<br>IMPERVIOUS                                                                       | :    | 5,590 SF                                                                 |
| TOTAL LOT<br>WITHIN 250'                                                                  | :    | 27,965 SF                                                                |
| 19.99% IMPERVIOUS                                                                         | 6    |                                                                          |

| The ADER CANON PLANT DAMAGE FREEDRIC | TOTAL<br>WITHIN |               | :   | 27,965  |
|--------------------------------------|-----------------|---------------|-----|---------|
| PRIOR TO CONSTRUCTION                | 19.999          | 6 IMPERVIOUS  |     |         |
|                                      | -               |               |     |         |
|                                      | LINETY          | PE LEGEND     |     |         |
| x x                                  | x —             | EROSION CON   | TRO | L       |
| ·                                    |                 | PROPERTY LINE | :   |         |
| · · · ·                              |                 | PROPERTY SET  | BAC | XKS     |
|                                      |                 | REFERENCE LIN | E   |         |
|                                      |                 | REFERENCE LIN | ΕS  | ETBACKS |
|                                      |                 | TOPOGRAPHY    | MIN |         |
|                                      |                 | TOPOGRAPHY    | MAJ |         |

\_\_\_\_\_

| 53                                                                                |
|-----------------------------------------------------------------------------------|
| terrain<br>planning & design llc                                                  |
| 311 kast hill road<br>hopkinton nh 03229<br>603. 746. 3512<br>terrainplanning.com |
| ROWE - SMALL<br>RESIDENCE                                                         |
| te Location:<br>) Pleasant Point Drive<br>ortsmouth, NH 03801<br>ax Map: 207      |

Tax Map: 207 Lot #: 15

Prepared For: KATARA LLC Rebecca Rowe & Marc Small 274 Miller Avenue Portsmouth, NH 03801

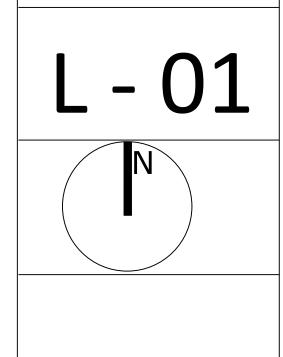
# LANDSCAPING PLAN

DATE: 01 - 04 - 2022

SCALE: 1" = 10'

PROJECT #: 2186

Drawn By: CGB


Checked By: ERB

| REVISIONS:         | DATE:      |
|--------------------|------------|
| Revised per client | comments   |
|                    | 01-31-22   |
| Revised per client | t comments |
|                    | 02-17-22   |
| Revised footnrint  |            |

Revised footprint 05-24-22 Revised per Con Com comments

06-23-22 Revised per Con Com comments 07-08-22

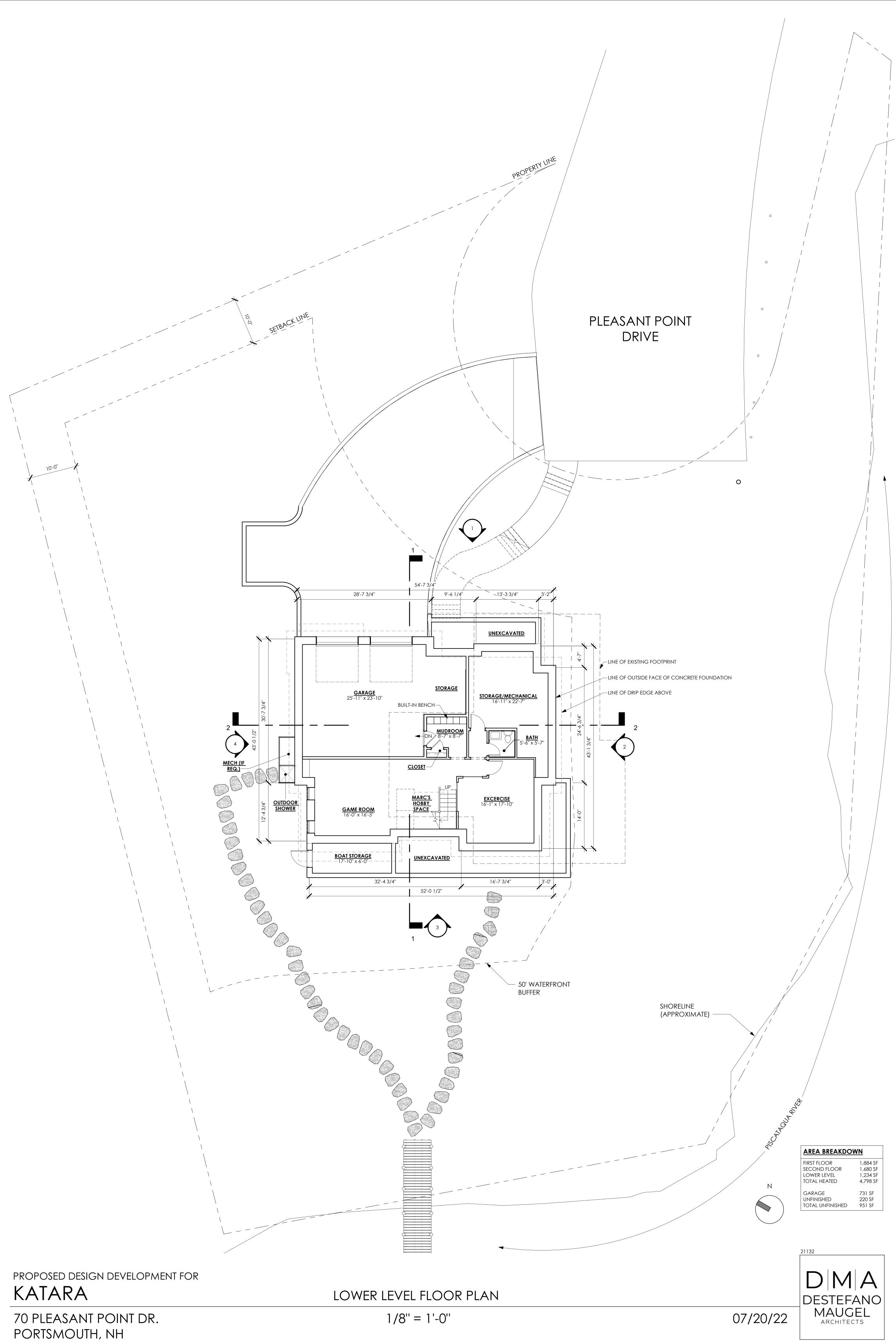
This plan is the property of Terrain Planning & Design LLC. Use or reproduction of this plan by any means without permission or purchase from Terrain Planning & Design LLC is prohibited.

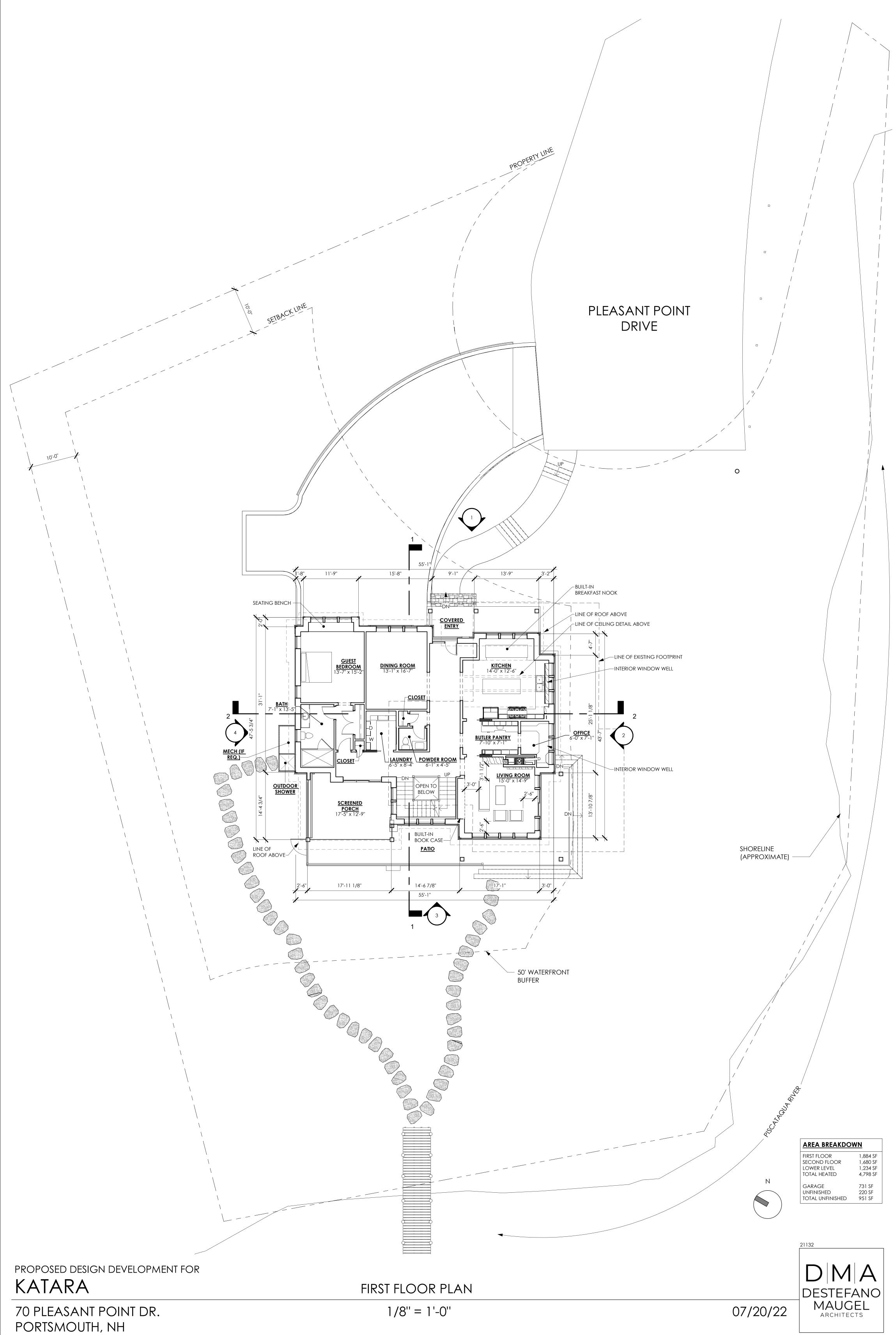


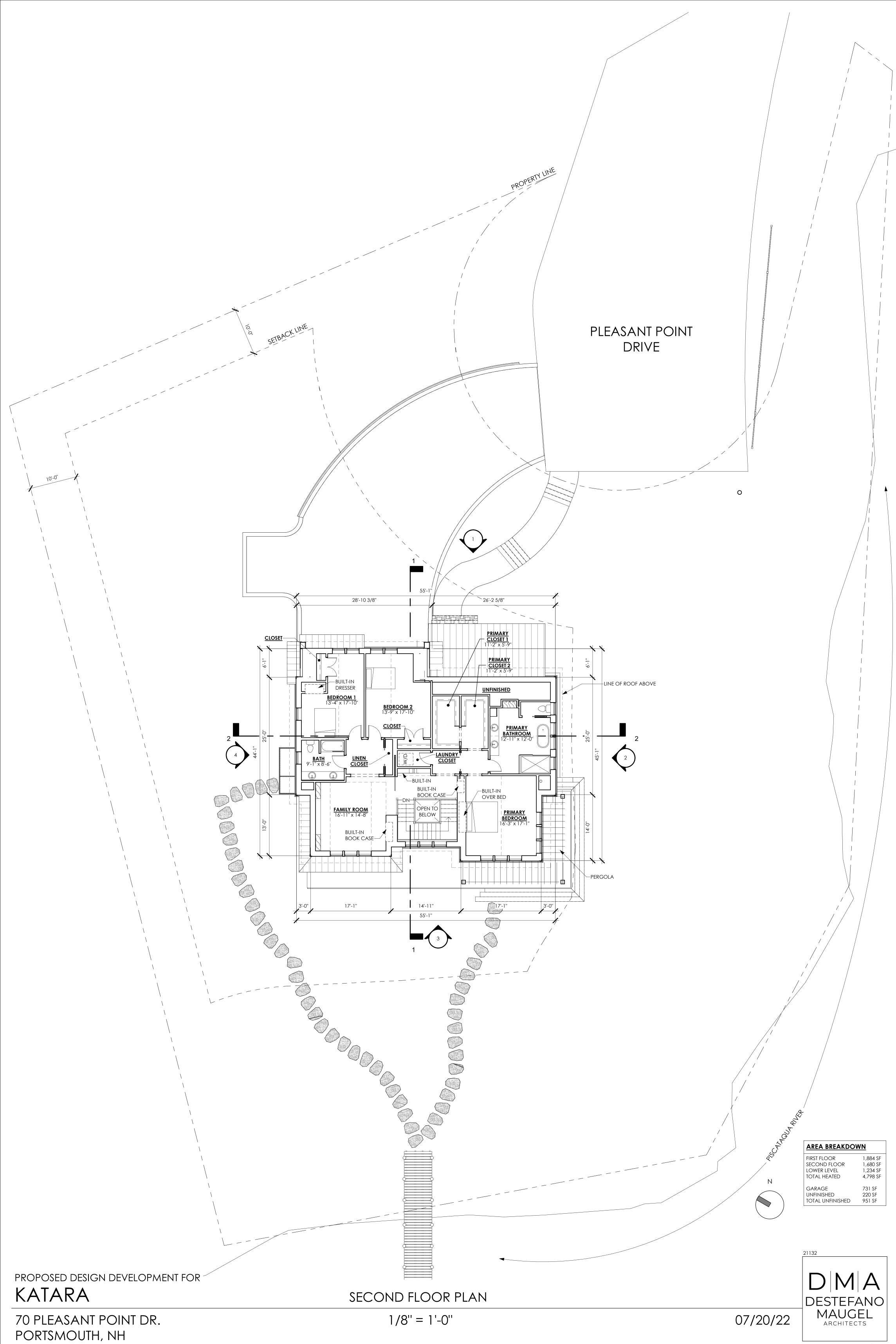
| <br>UNALTERED AREA |
|--------------------|
|                    |

OF WORK

TEMPORARY IMPACT AREA


MESH FENCING / PARAMETERS


VEGETATION QUAD


ECO-LAWN GRASS SEED \$ SLOW RELEASE FERTILIZER

50'

| ) | WITH | CAP |  |
|---|------|-----|--|







© 2022

|              |       |          |                | WINDOWS         | SCHEDULE                       |                                  |          |
|--------------|-------|----------|----------------|-----------------|--------------------------------|----------------------------------|----------|
| KEY          | Count | TYPE     | ROUGH<br>WIDTH | ROUGH<br>HEIGHT | Solar Heat Gain<br>Coefficient | Heat Transfer<br>Coefficient (U) | COMMENTS |
| А            | 36    | AWNING   | 2'-9''         | 1'-11 5/8"      | 0.41                           | 0.2563 BTU/(h ·ft² ·°F)          |          |
| В            | 8     | CASEMENT | 2'-9''         | 3'-7 5/8"       | 0.41                           | 0.2563 BTU/(h ·ft² ·°F)          |          |
| B2           | 4     | CASEMENT | 2'-9''         | 3'-7 5/8"       | 0.41                           | 0.2563 BTU/(h ·ft² ·°F)          |          |
| С            | 18    | CASEMENT | 2'-9''         | 5'-3 5/8"       | 0.41                           | 0.2563 BTU/(h ·ft² ·°F)          |          |
| C2           | 3     | CASEMENT | 2'-9''         | 5'-3 5/8"       | 0.41                           | 0.2563 BTU/(h ·ft² ·°F)          |          |
| D            | 6     | CASEMENT | 2'-9''         | 5'-11 5/8''     | 0.41                           | 0.2563 BTU/(h ·ft² ·°F)          |          |
| E            | 3     | CASEMENT | 2'-9''         | 6'-11 5/8''     | 0.41                           | 0.2563 BTU/(h ·ft² ·°F)          |          |
| F2           | 6     | CASEMENT | 2'-9''         | 7'-2 1/2"       | 0.41                           | 0.2563 BTU/(h ·ft² ·°F)          |          |
| G            | 5     | FIXED    | 2'-9''         | 9'-2 1/4''      | 0.41                           | 0.2563 BTU/(h ·ft² ·°F)          |          |
| GRAND TOTAL: | 89    |          |                |                 |                                |                                  |          |

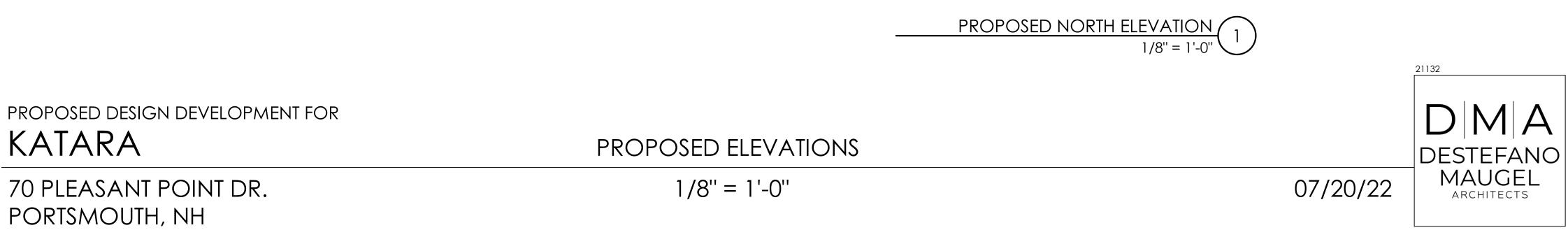
KATARA

| DD DOOR SCHEDULE |          |            |        |
|------------------|----------|------------|--------|
| NUMBER           | Function | SIZE       |        |
|                  |          | WIDTH      | HEIGHT |
| Exterior         |          |            |        |
| 001A             | Exterior | 9'-0''     | 8'-0'' |
| 001B             | Exterior | 9'-0''     | 8'-0'' |
| 002A             | Exterior | 3'-0''     | 6'-8'' |
| 101A             | Exterior | 5'-4''     | 7'-0'' |
| 110A             | Exterior | 5'-9 1/8"  | 7'-2'' |
| 111A             | Exterior | 8'-2 3/4'' | 7'-2'' |
| Interior         |          |            |        |
| 002B             | Interior | 2'-6"      | 6'-8'' |
| 005A             | Interior | 3'-0''     | 6'-8'' |
| 006A             | Interior | 2'-6"      | 6'-8'' |
| 007A             | Interior | 3'-0''     | 6'-8'' |
| 008A             | Interior | 3'-6"      | 5'-6'' |
| 101C             | Interior | 2'-0''     | 7'-0'' |
| 101D             | Interior | 1'-3"      | 7'-0'' |
| 103A             | Interior | 2'-8"      | 7'-0'' |
| 103B             | Interior | 2'-8"      | 7'-0'' |
| 107A             | Interior | 2'-6"      | 7'-0'' |
| 108A             | Interior | 3'-2"      | 7'-0'' |
| 109A             | Interior | 2'-8"      | 7'-0'' |
| 110A             | Interior | 2'-8"      | 7'-0'' |
| 110B             | Interior | 5'-0''     | 7'-0'' |
| 203A             | Interior | 2'-6"      | 7'-0'' |
| 203B             | Interior | 2'-6"      | 7'-0'' |
| 203D             | Interior | 0''        | 0''    |
| 203H             | Interior | 4'-0''     | 7'-0'' |
| 2031             | Interior | 0''        | 0''    |
| 203J             | Interior | 0''        | 0''    |
| 203K             | Interior | 0''        | 0''    |
| 203L             | Interior | 4'-0''     | 7'-0'' |
| 203M             | Interior | 2'-6"      | 7'-0'' |
| 206A             | Interior | 7'-0''     | 7'-0'' |
| 207A             | Interior | 2'-8"      | 7'-0'' |
| 208A             | Interior | 2'-8"      | 7'-0'' |
| 208B             | Interior | 4'-0''     | 7'-0'' |
| 209A             | Interior | 2'-8"      | 7'-0'' |
| 210A             | Interior | 4'-0''     | 7'-0'' |





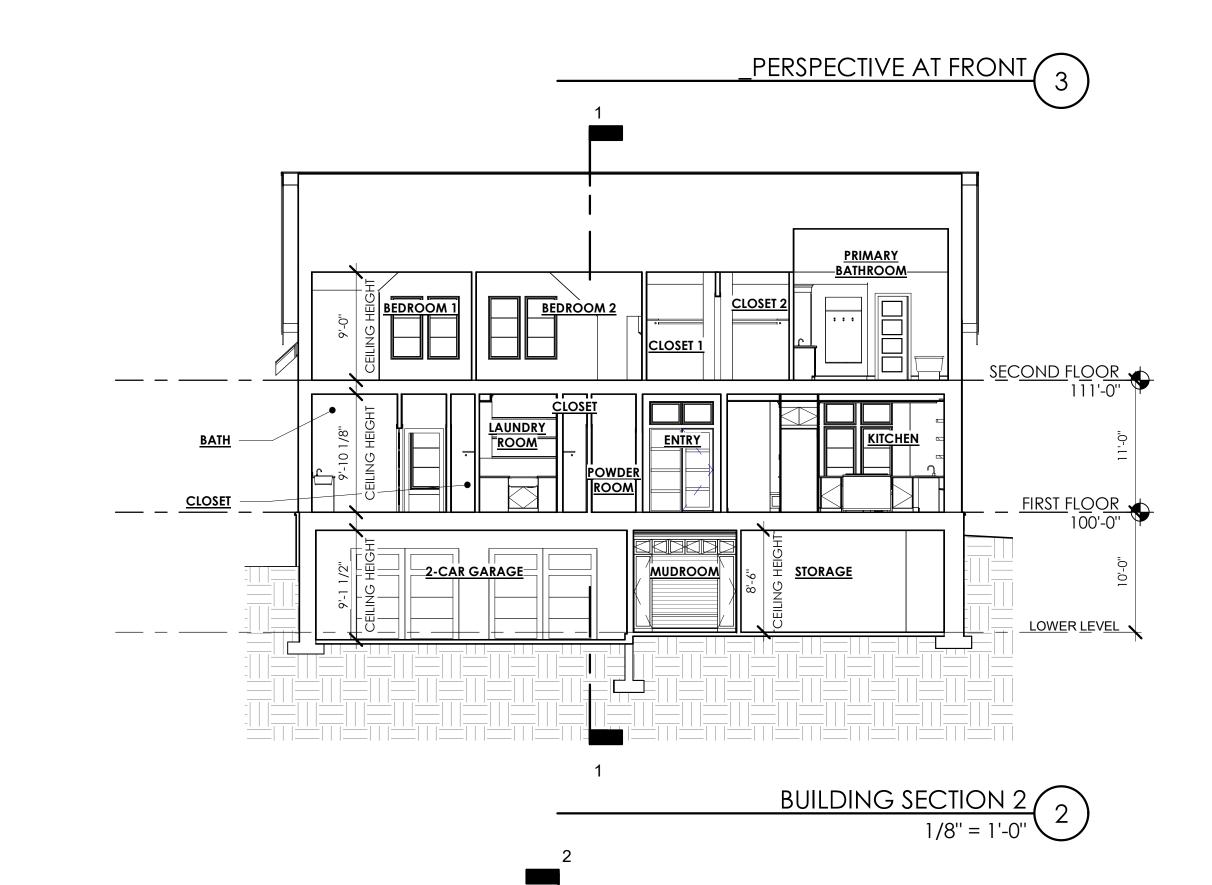


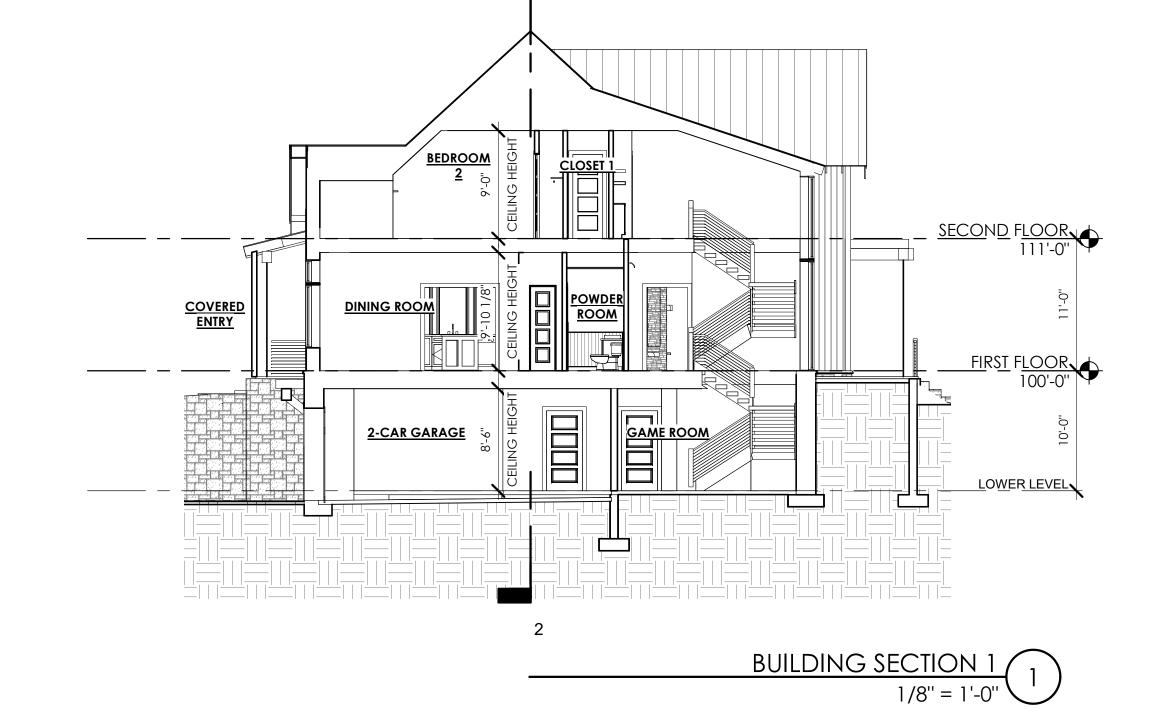

PROPOSED SOUTH ELEVATION 1/8" = 1'-0" 3

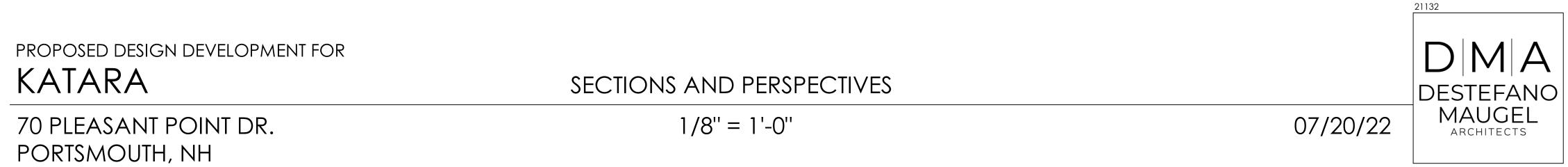


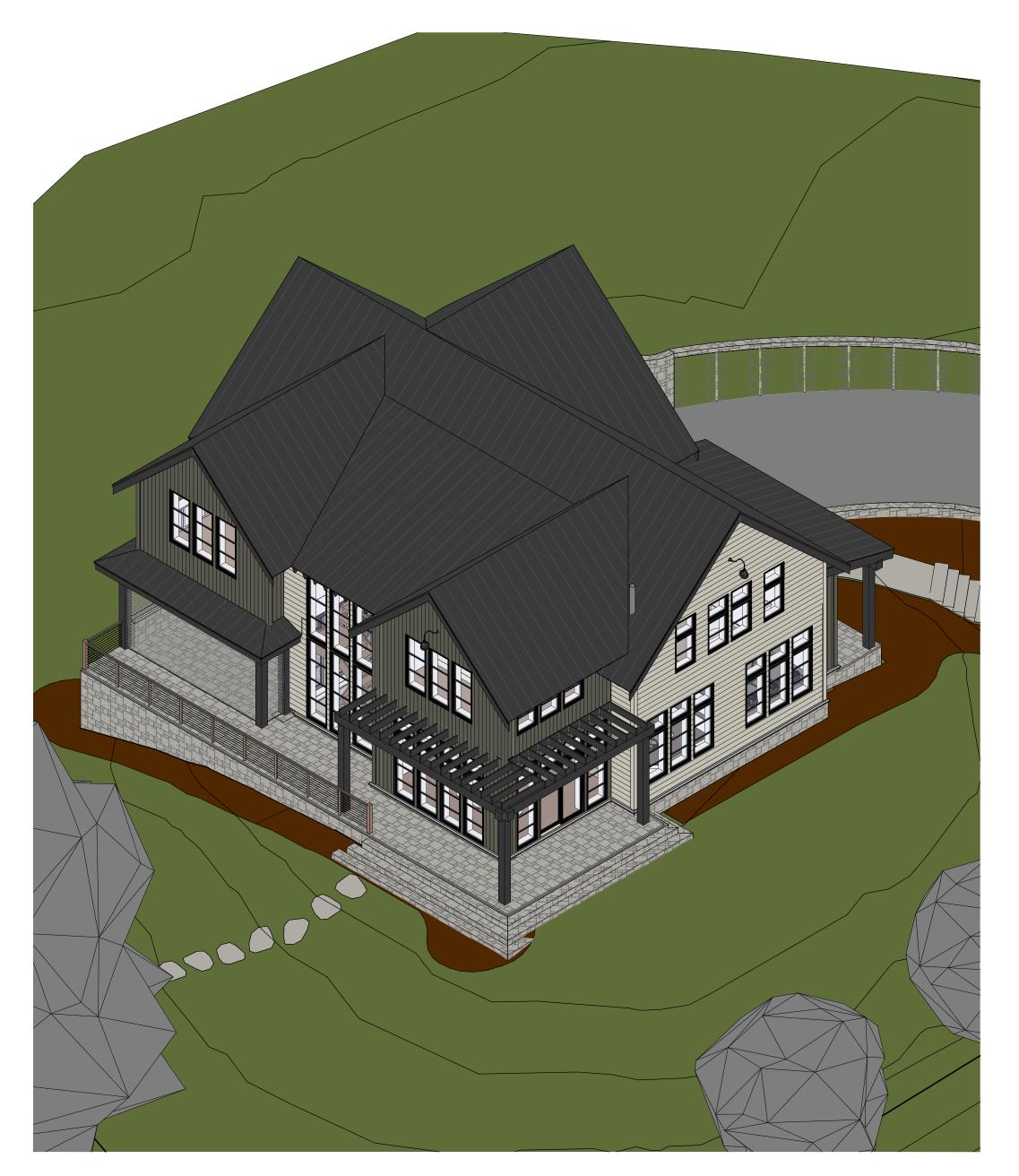






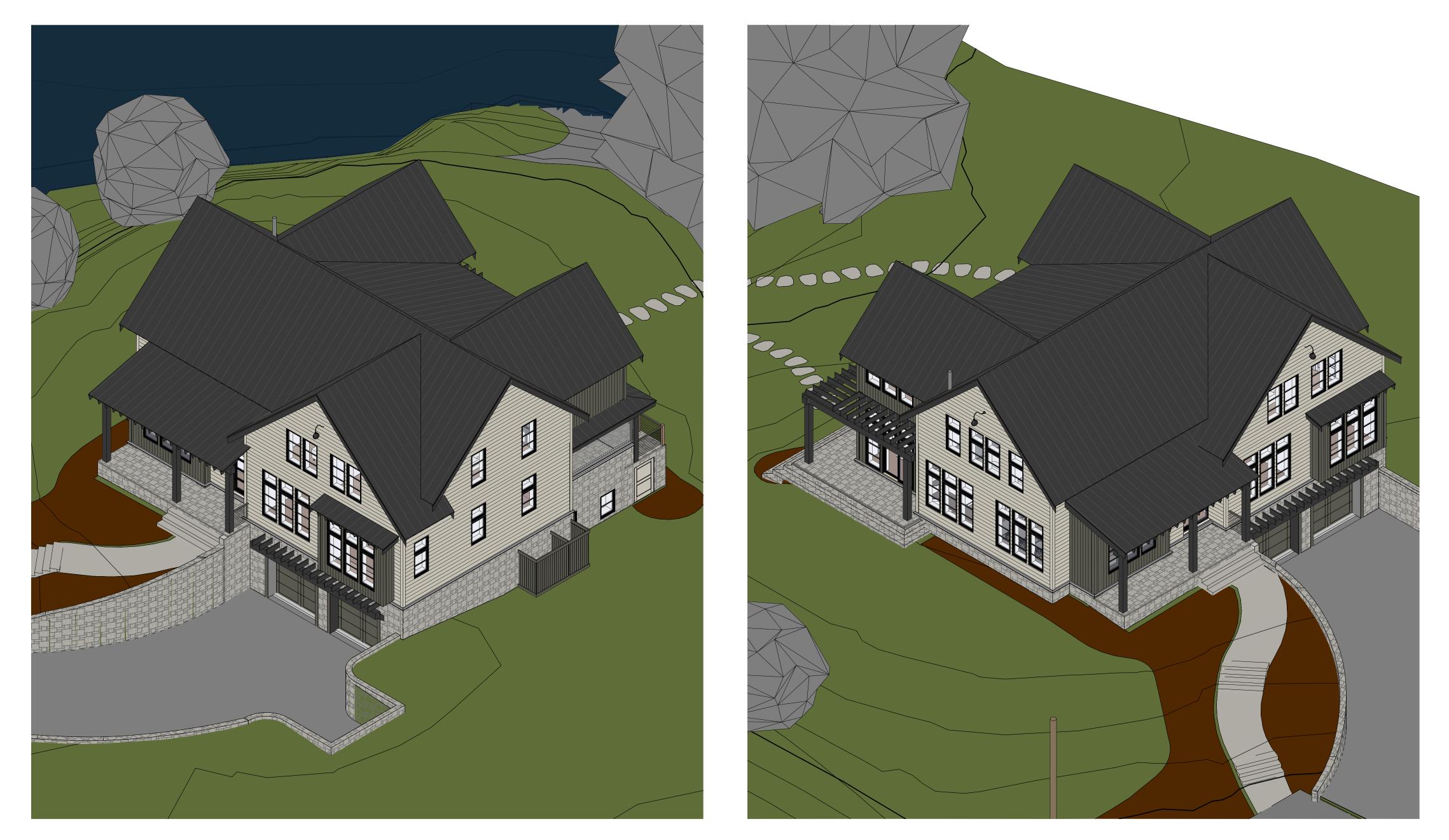





\_PERSPECTIVE AT REAR 4
















# SOUTH AXONOMETRIC VIEW







70 PLEASANT POINT DR. PORTSMOUTH, NH