

Civil Site Planning Environmental Engineering

133 Court Street Portsmouth, NH 03801-4413

May 23, 2022

Beverly Zendt, Planning Director Planning Department, City of Portsmouth 1 Junkins Avenue Porsmouth, NH 03801

Re: Application for Planning Board Approval 445 Marcy Street, LLC Tax Map 101, Lot 03 445 Marcy Street P5217

Dear Ms. Zendt:

On behalf of Gail and James Sanders and 445 Marcy Street, LLC, Altus Engineering, Inc. (Altus) is pleased to submit a subdivision application to the Portsmouth Planning Board. This project received Technical Advisory Committee (TAC) approval on May 3, 2022.

The parcel is 14,947 SF in area and has frontage on three streets. There are no wetlands on the property. A portion of the property lies within the 100-year flood zone and is within 250-feet of the highest observable tide line which will require a Shoreland Permit from NHDES. The Sanders' intend to construct their new home on Lot 2. As such, we know the development scenario for the lot and have included it with the Subdivision Application.

The following items were addressed as part of TAC approval:

- 1. Applicant will cut into 8" City sewer in Pray Street and install a wye and use gasketed solid couplings on either side of the wye. Altus: Revised Sheet C-2 indicating "Install 4" PVC sewer service, connection to municipal system w/wye connection & solid gasketed couplings.
- 2. Applicant will use a larger pipe for both inserta-tee and sewer connection to culvert than the proposed 8" pipe. Altus: The wall underdrain to the 8" culvert will be a wye connection.
- 3. 1' water service will be used for property. Altus: Water service size corrected.
- 4. Applicant will coordinate with City DPW, Eversource, Consolidated Communications, and Comcast and report back on the implications of undergrounding wires as shown. Additional guying or other work may be necessary and not possible/feasible. Altus: Altus met with Dave Defosses and Eversource to determine the location of the new pole to correct the alignment. Underground installation is not feasible along Pray Street.
- 5. Driveway for Lot 1 will be at least 30 feet from the intersection of Pray Street and Marcy Street. Altus: Note added to subdivision plan.
- 6. A note on the plan will be added to articulate Lot 1 has drainage rights across Lot 2. Altus: Note added to subdivision plan.

7. Address for Lot 2 will correspond to Partridge Street until such time when a second driveway is provided on Pray Street. Altus: Note added to Site Plan.

We look forward to presenting this application at the June 16, 2022 Planning Board meeting. Please feel free to contact me directly if you have any questions or require any additional supporting documentation.

Sincerely,

Eric D. Weinrieb, P.E. President

5217 Cover.ltr.docx

Enclosure

ecopy: Gail and Jim Sanders Tracy Kozak, Arcove Jim Verra, James Verra and Associates, Inc.

City of Portsmouth, New Hampshire

Subdivision Application Checklist

This subdivision application checklist is a tool designed to assist the applicant in the planning process and for preparing the application for Planning Board review. A pre-application conference with a member of the planning department is strongly encouraged as additional project information may be required depending on the size and scope. <u>The applicant is cautioned that this checklist is only a guide and is not intended to be a complete list of</u> <u>all subdivision review requirements</u>. <u>Please refer to the Subdivision review regulations for full details</u>.

Applicant Responsibilities (Section III.C): Applicable fees are due upon application submittal along with required number of copies of the Preliminary or final plat and supporting documents and studies. Please consult with Planning staff for submittal requirements.

Owner: Dat		Date Submitted:		
Applicant:				
Phone Number:	E-mail:			
Site Address 1:		Map:	Lot:	
Site Address 2:		Map:	Lot:	

	Application Requirements				
Ø	Required Items for Submittal	Item Location (e.g. Page or Plan Sheet/Note #)	Waiver Requested		
	Completed Application form. (III.C.2-3)		N/A		
	All application documents, plans, supporting documentation and other materials provided in digital Portable Document Format (PDF) on compact disc, DVD or flash drive. (III.C.4)		N/A		

Requirements for Preliminary/Final Plat				
Ø	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Required for Preliminary / Final Plat	Waiver Requested
	Name and address of record owner, any option holders, descriptive name of subdivision, engineer and/or surveyor or name of person who prepared the plat. (Section IV.1/V.1)		☑ Preliminary Plat ☑ Final Plat	N/A

M	Required Items for Submittal Item Location Required for				
		(e.g. Page/line or Plan Sheet/Note #)	Preliminary / Final Plat	Requested	
	Preliminary Plat Names and addresses of all adjoining property owners. (Section IV.2) Final Plat		 ✓ Preliminary Plat ✓ Final Plat 	N/A	
	Names and addresses of all abutting property owners, locations of buildings within one hundred (100) feet of the parcel, and any new house numbers within the subdivision. (Section V.2)				
	North point, date, and bar scale. (Section IV.3/V3)	Required on all Plan Sheets	☑ Preliminary Plat ☑ Final Plat	N/A	
	Zoning classification and minimum yard dimensions required. (Section IV.4/V.4)		☑ Preliminary Plat ☑ Final Plat	N/A	
	Preliminary Plat Scale (not to be smaller than one hundred (100) feet = 1 inch) and location map (at a scale of 1" = 1000'). (Section IV.5) Final Plat Scale (not to be smaller than 1"=100'), Location map (at a scale of 1"=1,000') showing the property being subdivided and its relation to the surrounding area within a radius of 2,000 feet. Said location map shall delineate all streets and other major physical features that my either affect or be affected by the proposed development. (Section V.5) Location and approximate dimensions of all existing and proposed property lines including the entire area proposed to be subdivided, the areas of proposed lots, and any adjacent parcels in the same ownership. (Section IV.6)		 ✓ Preliminary Plat ✓ Final Plat ✓ Preliminary Plat ✓ Final Plat 	N/A	
	Dimensions and areas of all lots and any and all property to be dedicated or reserved for schools, parks, playgrounds, or other public purpose. Dimensions shall include radii and length of all arcs and calculated bearing for all straight lines. (Section V.6/ IV.7)		☑ Preliminary Plat ☑ Final Plat	N/A	
	Location, names, and present widths of all adjacent streets, with a designation as to whether public or private and approximate location of existing utilities to be used. Curbs and sidewalks shall be shown.		☑ Preliminary Plat ☑ Final Plat		

Requirements for Preliminary/Final Plat				
Ø	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Required for Preliminary / Final Plat	Waiver Requested
	Location of significant physical features, including bodies of water, watercourses, wetlands, railroads, important vegetation, stone walls and soils types that my influence the design of the subdivision. (Section IV.9/V.8)		 ✓ Preliminary Plat ✓ Final Plat 	
	Preliminary Plat Proposed locations, widths and other dimensions of all new streets and utilities, including water mains, storm and sanitary sewer mains, catch basins and culverts, street lights, fire hydrants, sewerage pump stations, etc. (Section IV.10) Final Plat Proposed locations and profiles of all proposed streets and utilities, including water mains, storm and sanitary sewer mains, catchbasins and culverts, together with typical cross sections. Profiles shall be drawn to a horizontal scale of 1"=50' and a vertical scale of 1"=5', showing existing centerline grade, existing left and right sideline grades, and proposed centerline grade.		 ✓ Preliminary Plat ✓ Final Plat 	
	When required by the Board, the plat shall be accompanied by profiles of proposed street grades, including extensions for a reasonable distance beyond the subject land; also grades and sizes of proposed utilities. (Section IV.10)		☑ Preliminary Plat ☑ Final Plat	
	Base flood elevation (BFE) for subdivisions involving greater than five (5) acres or fifty (50) lots. (Section IV.11)		☑ Preliminary Plat ☑ Final Plat	
	For subdivisions of five (5) lots or more, or at the discretion of the Board otherwise, the preliminary plat shall show contours at intervals no greater than two (2) feet. Contours shall be shown in dotted lines for existing natural surface and in solid lines for proposed final grade, together with the final grade elevations shown in figures at all lot corners. If existing grades are not to be changed, then the contours in these areas shall be solid lines. (Section IV.12/ V.12)		 ✓ Preliminary Plat ✓ Final Plat 	

	Requirements for Pre	liminary/Final Plat		
Ð	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Required for Preliminary / Final Plat	Waiver Requested
	Dates and permit numbers of all necessary permits from governmental agencies from which approval is required by Federal or State law. (Section V.10)		□ Preliminary Plat ☑ Final Plat	
	For subdivisions involving greater than five (5) acres or fifty (50) lots, the final plat shall show hazard zones and shall include elevation data for flood hazard zones. (Section V.11)		 □ Preliminary Plat ☑ Final Plat 	
	Location of all permanent monuments. (Section V.12)		 □ Preliminary Plat ☑ Final Plat 	

	General Requireme	nts ¹	
\mathbf{N}	Required Items for Submittal	Item Location	Waiver
		(e.g. Page/line or	Requested
		Plan Sheet/Note #)	
님	1. Basic Requirements: (VI.1)		
님	a. Conformity to Official Plan or Map		
	b. Hazards c. Polation to Tonography		
	d Planned Unit Development		
	d. Flaimed om Development		
	2. Lots: (VI.2)		
	a. Lot Arrangement		
	b. Lot sizes		
	c. Commercial and Industrial Lots		
	3. Streets: (VI.3)		
	a. Relation to adjoining Street System		
	b. Street Rights-of-Way		
	c. Access		
님	d. Parallel Service Roads		
	e. Street Intersection Angles		
	I. IVIERGING STREETS		
	 b. Marginal Access Streets 		
	i Cul-de-Sars		
	i. Rounding Street Corners		
	k. Street Name Signs		
	I. Street Names		
	m. Block Lengths		
	n. Block Widths		
	o. Grade of Streets		
	p. Grass Strips		
	4. Curbing: (VI.4)		
	5. Driveways: (VI.5)		
	6. Drainage Improvements: (VI.6)		
	7. Municipal Water Service: (VI.7)		
	8. Municipal Sewer Service: (VI.8)		
	9. Installation of Utilities: (VI.9)		
	a. All Districts		
	b. Indicator Tape		
	10. On-Site Water Supply: (VI.10)		
	11. On-Site Sewage Disposal Systems: (VI.11)		
	12. Open Space: (VI.12)		
	a. Natural Features		
	b. Buffer Strips		
	c. Parks		
	a. Tree Planting		
	13. Flood Hazard Areas: (VI.13)		
	a. Permits		
	b. Minimization of Flood Damage		
	c. Elevation and Flood-Proofing Records		
	d. Alteration of Watercourses		
	14. Erosion and Sedimentation Control (VI.14)		

Subdivision Application Checklist/January 2018

Ø	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested
	15. Easements (VI.15) a. Utilities b. Drainage		
	16. Monuments: (VI.16)		
	17. Benchmarks: (VI.17)		
	18. House Numbers (VI.18)		

	Design Standards		
	Required Items for Submittal	Indicate compliance and/or	Waiver
		provide explanation as to	Requested
		alternative design	
1.	Streets have been designed according to the design		
	standards required under Section (VII.1).		
	a. Clearing		
	b. Excavation		
	c. Rough Grade and Preparation of Sub-Grade		
	d. Base Course		
	e. Street Paving		
	r. Side Slopes		
	g. Approval specifications		
	i. Curbing		
	i. Inspection and Methods		
2	J. Inspection and Methods Storm water Sewers and Other Drainage Annurtenances		
۷.	have been designed according to the design standards		
	required under Section (VII 2)		
	a. Design		
2	D. Standards of Construction		
5.	design standards required under Section (VII 2)		
	design standards required under Section (VII.3).		
	d. Design		
	D. LIT Stations		
	d Construction Standards		
Л	Water Mains and Fire Hydrants have been designed		
4.	according to the design standards required under		
	Section (VII 4)		
	Section (VII.4).		
	a. Connections to Lots		
	D. Design dhu Construction		
	d Notification Prior to Construction		
	d. Notification Prior to Construction		

Tric D. Weinrieb PC

Applicant's/Representative's Signature:____

Date:___

¹ See City of Portsmouth, NH Subdivision Rules and Regulations for details. Subdivision Application Checklist/January 2018

Letter of Authorization

We, Gail and James Sanders of 30 Walden Street, Portsmouth, NH 03801, hereby authorize Altus Engineering, Inc. of Portsmouth, New Hampshire to represent us as the Applicant in all matters concerning engineering and related land use permitting for Portsmouth Tax Map 101, Lot 03 located at 445 Marcy Street in Portsmouth, NH. This authorization shall include any signatures required for Federal, State and Municipal permit applications.

The Sandra Gail H. Canders 4-18-2022 Print Name Date Date Jane Janes H Sandras 4/18/2022

James 14 SANDEAS 4/18/2022

Witness

Print Name

Date

445 MARCY STREET RESIDENCE

Owner/Applicant:

445 Marcy Street, LLC (Gail & James Sanders) 30 Walden Street Portsmouth, NH 03801 (603) 498-2636

Architect:

3 Congress Street, Suite 1 Portsmouth, NH 03801 (603) 731–5187

133 Court StreetPortsmouth, NH 03801(603) 433-2335www.altus-eng.com

Surveyor:

James Verra

& Associates Inc. LAND SURVEYORS 101 SHATTUCK WAY, SUITE 8 Newington, New Hampshire 03801-7876 Tel 603-436-3557

445 Marcy Street Portsmouth, NH 03801

Assessor's Parcel 101, Lot 03

Plan Issue Date:

APRIL 15, 2022 MAY 24, 2022 TAC Review PB Submission

Sheet Index Title

Existing Conditions Plan Subdivision Plan Site Plan Grading, Drainage and Utility Details Sheet Details Sheet Details Sheet Floor Plans Elevation – Front (North) Elevation – West Side Elevation – Rear (South) Elevation – East Side THIS DRAWING SET HAS NOT BEEN RELEASED FOR CONSTRUCTION

EX-1 2 10/06 S-1 1 04/01	
	/21 /22
C-1 1 05/24	/22
y Plan C-2 2 05/24 C-3 1 05/24	/22
C-4 1 05/24	/22
C-5 1 05/24 H.12 0 05/22	/22 /22
H.21 0 05/22	/22
H.22 0 05/22 H.23 0 05/22	/22 /22
H.24 0 05/22	/22

NOTES:

- 1. OWNER OF RECORD. ADDRESS... DEED REFERENCE. TAX SHEET / LOT. PARCEL ARÉA...
- 2. ZONED:. MINIMUM LOT AREA..5,000 S.F. FRONTAGE80'

- (2011)(EPOCH: 2010.0000), US SURVEY FOOT.

- 8. OF PORTSMOUTH TAX MAPS.

REFERENCE PLANS:

..445 MARCY STREET, LLC. .30 WALDEN STREET, PORTSMOUTH, NH 03801 .5829/1409 .101-03 ENGINEERING, INC. ..14,947 S.F, 0.34 ACRES .GENERAL RESIDENCE B FRONT YARD SETBACK5' ...10' SIDE YARD SETBACK 133 COURT STREET PORTSMOUTH, NH 03801 REAR YARD SETBACK25' (603) 433-2335 www.ALTUS-ENG.com 3. THE RELATIVE ERROR OF CLOSURE WAS LESS THAN 1 FOOT IN 15,000 FEET. 4. THE LOCATION OF ALL UNDERGROUND UTILITIES SHOWN HEREON ARE JAMES VERRA APPROXIMATE AND ARE BASED UPON THE FIELD LOCATION OF ALL VISIBLE STRUCTURES (IE CATCH BASINS, MANHOLES, WATER GATES ETC.) AND INFORMATION ASSOCIATES, INC. COMPILED FROM PLANS PROVIDED BY UTILITY COMPANIES AND GOVERNMENTAL AGENCIES. ALL CONTRACTORS SHOULD NOTIFY, IN WRITING, SAID AGENCIES PRIOR TO ANY EXCAVATION WORK AND CALL DIG-SAFE @ 1-888-DIG-SAFE. LAND SURVEYORS HORIZONTAL DATUM: NAD 1983 ESTABLISHED BY SURVEY GRADE GPS OBSERVATION AND NGS "OPUS" SOLUTION. REFERENCE FRAME: NAD83 101 SHATTUCK WAY - SUITE 8 NEWINGTON, N.H. 03801- 7876 VERTICAL DATUM: NAVD 1988. PRIMARY BENCHMARK: CITY OF PORTSMOUTH "ROBE" 603-436-3557 6. CONTRACTOR TO VERIFY SITE BENCHMARKS BY LEVELING BETWEEN 2 BENCHMARKS PRIOR TO THE ESTABLISHMENT OF ANY GRADES OR ELEVATIONS. DISCREPANCIES ARE TO BE REPORTED TO JAMES VERRA AND ASSOCIATES, INC.. JOB NO: 20460-A 7. A PORTION OF THE PARCEL SHOWN HEREON LIES WITHIN ZONE AE (ELEVATION 8.3) & **ISSUED FOR:** ZONE X (AREA OF MINIMAL FLOOD HAZARD) AS IDENTIFIED ON FLOOD INSURANCE RATE APPROVAL MAP, ROCKINGHAM COUNTY, NEW HAMPSHIRE, MAP NUMBER 33015C0259F, EFFECTIVE DATE 1/29/2021 BY THE FEDERAL EMERGENCY MANAGEMENT AGENCY. ISSUE DATE: APPROXIMATE 250' SETBACK TO THE HIGHEST OBSERVABLE TIDE LINE PER THE CITY 5-24-2022 REVISIONS BY NO. DESCRIPTION DATE 1. PLAT OF LAND, #445 MARCY STREET, PORTSMOUTH, NEW HAMPSHIRE FOR GTD DRAWN BY: JAMES H. SANDERS, DATED 9/1/94. RECORDED AS RCRD PLAN #D-23172. GTD APPROVED BY: 20460-A.DWG **DRAWING FILE:** SCALE: $22" \times 34" - 1" = 20'$ $11" \times 17" - 1" = 40'$ APPLICANT: 445 MARCY STREET, LLC. **30 WALDEN STREET** PORTSMOUTH, NH 03801 OWNER: 445 MARCY STREET, LLC. **30 WALDEN STREET** PORTSMOUTH, NH 03801 **PROJECT:** 445 MARCY STREET RESIDENCE TAX MAP 101, LOT O3445 MARCY STREET PURSUANT TO RSA 676:18,III AND RSA 672:14 PORTSMOUTH, NH I CERTIFY THAT THIS SURVEY PLAT IS NOT A SUBDIVISION PURSUANT TO THIS TITLE AND THAT THE LINES OF STREETS AND WAYS SHOWN <u>TITLE:</u> ARE THOSE OF PUBLIC OR PRIVATE STREETS OR WAYS ALREADY ESTABLISHED AND THAT NO NEW WAYS ARE SHOWN. **EXISTING** 5-24-2022 me Uma CONDITIONS PLAN JAMES VERRA DATE 445 MARCY STREET PORTSMOUTH, NH SHEET NUMBER: EX-1

JAMES VERRA & ASSOCIATES, INC. .445 MARCY STREET, LLC. .30 WALDEN STREET, PORTSMOUTH, NH 03801 LAND SURVEYORS ..14,947 S.F, 0.34 ACRES 101 SHATTUCK WAY - SUITE 8 FRONT YARD SETBACK5' NEWINGTON, N.H. 03801- 7876 SIDE YARD SETBACK10' 603-436-3557 REAR YARD SETBACK25' JOB NO: 20460-A APPROXIMATE AND ARE BASED UPON THE FIELD LOCATION OF ALL VISIBLE STRUCTURES (IE CATCH BASINS, MANHOLES, WATER GATES ETC.) AND INFORMATION COMPILED FROM PLANS PROVIDED BY UTILITY COMPANIES AND GOVERNMENTAL AGENCIES. ALL CONTRACTORS SHOULD NOTIFY, IN WRITING, SAID AGENCIES PRIOR TO ANY EXCAVATION WORK AND CALL DIG-SAFE @ 1-888-DIG-SAFE. ENGINEERING, INC. VERTICAL DATUM: NAVD 1988. PRIMARY BENCHMARK: CITY OF PORTSMOUTH "ROBE" 133 COURT STREET PORTSMOUTH, NH 03801 6. PORTIONS OF PROPOSED LOTS 1 & 2 LIE WITHIN THE FLOODPLAIN DISTRICT (FP) AS www.ALTUS-ENG.com (603) 433-2335 DEFINED BY SECTION 10.613.10 OF THE PORTSMOUTH ZONING ORDINANCE. A PORTION OF THE PROPOSED LOT 1 AND ALL OF PROPOSED LOT 2 LIE WITHIN THE EXTENDED FLOOD HAZARD AREA AS DEFINED BY SECTION 10.622.20 OF THE PORTSMOUTH ZONING **ISSUED FOR:** 7. A PORTION OF THE PARCEL SHOWN HEREON LIES WITHIN ZONE AE (ELEVATION 8.3) & APPROVAL ZONE X (AREA OF MINIMAL FLOOD HAZARD) AS IDENTIFIED ON FLOOD INSURANCE RATE **ISSUE DATE:** MAP, ROCKINGHAM COUNTY, NEW HAMPSHIRE, MAP NUMBER 33015C0278F, EFFECTIVE 5-24-2022 8. APPROXIMATE 250' SETBACK TO THE HIGHEST OBSERVABLE TIDE LINE PER THE CITY REVISIONS IO. DESCRIPTION BY 9. THE DRIVEWAY FOR LOT 1 SHALL BE AT LEAST 30' FROM THE INTERSECTION OF PRAY & REVISE PROP. LOTS GTD & SETBACKS PER TAC COMMENTS GTD 5-20-22 1. EXISTING CONDITIONS PLAN 445 MARCY STREET RESIDENCE, TAX MAP 101, LOT 03, DRAWN BY:. APPROVED BY: 20460-A2.DWG DRAWING FILE: SCALE: $22" \times 34" - 1" = 20"$ $11" \times 17" - 1" = 40'$ APPLICANT: 445 MARCY STREET, LLC. **30 WALDEN STREET** PORTSMOUTH, NH 03801 OWNER: 445 MARCY STREET, LLC. **30 WALDEN STREET** PORTSMOUTH, NH 03801 PROJECT: 445 MARCY STREET RESIDENCE TAX MAP 101, APPROVED FOR THE RECORD: LOT 03 445 MARCY STREET CHAIRMAN PORTSMOUTH PLANNING BOARD DATE PORTSMOUTH, NH <u>TITLE:</u> SUBDIVISION PLAN 445 MARCY STREET

DATE

4-1-22

GTD

JV

SHEET NUMBER:

S-′

PORTSMOUTH, NH

GRADING AND DRAINAGE NOTES

1. DO NOT BEGIN CONSTRUCTION UNTIL ALL STATE AND LOCAL PERMITS HAVE BEEN APPLIED FOR AND RECEIVED.

2. CONTRACTOR SHALL OBTAIN A "DIGSAFE" NUMBER AT LEAST 72 HOURS PRIOR TO COMMENCING CONSTRUCTION.

3. ALL CONSTRUCTION SHALL MEET THE MINIMUM CONSTRUCTION STANDARDS OF THE CITY OF PORTSMOUTH AND NHDOT STANDARD SPECIFICATIONS FOR ROAD AND BRIDGE CONSTRUCTION, LATEST EDITION. THE MORE STRINGENT SPECIFICATION SHALL GOVERN.

4. ALL BENCHMARKS AND TOPOGRAPHY SHALL BE FIELD VERIFIED BY THE CONTRACTOR PRIOR TO INITIATING CONSTRUCTION.

5. UNLESS OTHERWISE AGREED IN WRITING, THE CONTRACTOR SHALL BE RESPONSIBLE FOR ESTABLISHING AND MAINTAINING TEMPORARY BENCHMARKS (TBM) AND PERFORMING ALL CONSTRUCTION SURVEY LAYOUT.

PROTECTION OF SUBGRADE: THE CONTRACTOR SHALL BE REQUIRED TO MAINTAIN STABLE, DEWATERED SUBGRADES FOR FOUNDATIONS, PAVEMENT AREAS, UTILITY TRENCHES, AND OTHER AREAS DURING CONSTRUCTION. SUBGRADE DISTURBANCE MAY BE INFLUENCED BY EXCAVATION METHODS, MOISTURE, PRECIPITATION, GROUNDWATER CONTROL, AND CONSTRUCTION ACTIVITIES. THE CONTRACTOR SHALL TAKE PRECAUTIONS TO PREVENT SUBGRADE DISTURBANCE. SUCH PRECAUTIONS MAY INCLUDE DIVERTING STORMWATER RUNOFF AWAY FROM CONSTRUCTION AREAS, REDUCING TRAFFIC IN SENSITIVE AREAS, AND MAINTAINING AN EFFECTIVE DEWATERING PROGRAM. SOILS EXHIBITING HEAVING OR INSTABILITY SHALL BE OVER EXCAVATED TO MORE COMPETENT BEARING SOIL AND REPLACED WITH FREE DRAINING STRUCTURAL FILL. IF THE EARTHWORK IS PERFORMED DURING FREEZING WEATHER, EXPOSED SUBGRADES ARE SUSCEPTIBLE TO FROST. NO FILL OR UTILITIES SHALL BE PLACED ON FROZEN GROUND. THIS WILL LIKELY REQUIRE REMOVAL OF A FROZEN SOIL CRUST AT THE COMMENCEMENT OF EACH DAY'S OPERATIONS. THE FINAL SUBGRADE ELEVATION WOULD ALSO REQUIRE AN APPROPRIATE DEGREE OF INSULATION AGAINST FREEZING.

7. IF SUITABLE, EXCAVATED MATERIALS SHALL BE PLACED AS FILL WITHIN UPLAND AREAS ONLY AND SHALL NOT BE PLACED WITHIN WETLANDS. PLACEMENT OF BORROW MATERIALS SHALL BE PERFORMED IN A MANNER THAT PREVENTS LONG TERM DIFFERENTIAL SETTLEMENT. EXCESSIVELY WET MATERIALS SHALL BE STOCKPILED AND ALLOWED TO DRAIN BEFORE PLACEMENT. FROZEN MATERIAL SHALL NOT BE USED FOR CONSTRUCTION.

8. IN ORDER TO PROVIDE VISUAL CLARITY ON THE PLANS, DRAINAGE AND OTHER UTILITY STRUCTURES MAY NOT BE DRAWN TO SCALE. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE PROPER SIZING AND LOCATION OF ALL STRUCTURES AND IS DIRECTED TO RESOLVE ANY POTENTIAL DISCREPANCY WITH THE ENGINEER PRIOR TO CONSTRUCTION.

UTILITY NOTES

ALL EXISTING UTILITIES SHOWN ARE PER PLAN REFERENCE #1. LOCATIONS AND COMPLETENESS ARE NOT GUARANTEED BY ENGINEER OR OWNER. IT IS THE CONTRACTOR'S RESPONSIBILITY TO VERIFY ALL EXISTING UTILITIES PRIOR TO BEGINNING ANY CONSTRUCTION ACTIVITIES.

2. SITE WILL BE SERVED BY MUNICIPAL WATER & SEWER.

3. COORDINATE ALL WATER LINE CONSTRUCTION ACTIVITIES WITH PORTSMOUTH DPW, JIM TOW, (603) 427-1530.

4. COORDINATE ALL SEWER LINE CONSTRUCTION ACTIVITIES WITH PORTSMOUTH DPW, JIM TOW, (603) 427-1530.

SEDIMENT AND EROSION CONTROL NOTES

PROJECT NAME AND LOCATION SINGLE FAMILY RESIDENCE GAIL AND JAMES SANDERS

445 MARCY STREET PORTSMOUTH, NEW HAMPSHIRE TAX MAP 101 LOT 3

LONGITUDE: 70°44'58" W LATITUDE: 43°04'19" N

<u>OWNER / APPLICANT:</u>

445 MARCY STREET, LLC. 30 WALDEN STREET PORTSMOUTH, NH 038001

DESCRIPTION

The project consists of the development of the lot for the construction of a single-family residential home along with associated site improvements.

DISTURBED AREA

The total area to be disturbed for the redevelopment improvements is approximately 7,300 S.F. (±0.17 acres).

PROJECT PHASING

The proposed project will be completed in one phase.

NAME OF RECEIVING WATER

The site drains overland to the Piscatagua River.

SEQUENCE OF MAJOR ACTIVITIES

- 1. Install temporary erosion control measures including silt fences, stabilized construction entrance and inlet sediment filters as noted on the plan. All temporary erosion control measures shall be maintained in good working condition for the duration of the project. 2. Strip loam and stockpile.
- 3. Site features as shown on plan.
- 4. Rough grade site including placement of borrow materials.
- 5. Construct drainage structures, culverts, utilities, swales & pavement base course materials. 6. Loam (6" min) and seed all disturbed areas not paved or otherwise stabilized.
- 7. Install pavers. 8. When all construction activity is complete and site is stabilized, remove all temporary erosion control measures and any sediment that has been trapped by these devices.

TEMPORARY EROSION & SEDIMENT CONTROL AND STABILIZATION PRACTICES

All work shall be in accordance with state and local permits. Work shall conform to the practices described in the "New Hampshire Stormwater Manual, Volumes 1 - 3", issued December 2008, as amended. As indicated in the sequence of Major Activities, the silt fences shall be installed prior to commencing any clearing or grading of the site. Structural controls shall be installed concurrently with the applicable activity. Once construction activity ceases permanently in an area, silt fences and any earth/dikes will be removed once permanent measures are established.

During construction, runoff will be diverted around the site with stabilized channels where possible. Sheet runoff from the site shall be filtered through hay bale barriers, stone check dams, and silt fences. All storm drain inlets shall be provided with hay bale filters or stone check dams. Stone rip rap shall be provided at the outlets of drain pipes and culverts where shown on the drawings.

Stabilize all ditches, swales, & level spreaders prior to directing flow to them.

Temporary and permanent vegetation and mulching is an integral component of the erosion and sedimentation control plan. All areas shall be inspected and maintained until vegetative cover is established. These control measures are essential to erosion prevention and also reduce costly rework of graded and shaped areas.

Temporary vegetation shall be maintained in these areas until permanent seeding is applied. Additionally, erosion and sediment control measures shall be maintained until permanent vegetation is established

INSTALLATION, MAINTENANCE AND INSPECTION PROCEDURES FOR TEMPORARY EROSION AND SEDIMENT CONTROL MEASURES

- A. GENERAL
- These are general inspection and maintenance practices that shall be used to implement the plan:
- 1. The smallest practical portion of the site shall be denuded at one time.
- 2. All control measures shall be inspected at least once each week and following any storm event of 0.5 inches or greater. 3. All measures shall be maintained in good working order; if a repair is necessary, it will be
- initiated within 24 hours. 4. Built-up sediment shall be removed from silt fence or other barriers when it has reached one-third the height of the fence or bale, or when "bulges" occur
- 5. All diversion dikes shall be inspected and any breaches promptly repaired.
- 6. Temporary seeding and planting shall be inspected for bare spots, washouts, and unhealthy growth. 7. The owner's authorized engineer shall inspect the site on a periodic basis to review compliance
- with the Plans.
- 8. An area shall be considered stable if one of the following has occurred: a. Base coarse gravels have been installed in areas to be paved;
- b. A minimum of 85% vegetated growth as been established;
- c. A minimum of 3 inches of non-erosive material such as stone of riprap has been installed; — or d. Erosion control blankets have been properly installed.
- 9. The length of time of exposure of area disturbed during construction shall not exceed 45 days.
- B. MULCHING

Mulch shall be used on highly erodible soils, on critically eroding areas, on areas where conservation of moisture will facilitate plant establishment, and where shown on the plans.

- 1. Timing In order for mulch to be effective, it must be in place prior to major storm events. There are two (2) types of standards which shall be used to assure this: a. Apply mulch prior to any storm event. This is applicable when working within 100 feet of wetlands. It will be necessary to closely monitor weather predictions, usually by contacting the National Weather Service in Concord, to have adequate warning of
- significant storms. b. Required Mulching within a specified time period. The time period can range from 21 to 28 days of inactivity on a area, the length of time varying with site conditions. Professional judgment shall be used to evaluate the interaction of site conditions (soil erodibility, season of year, extent of disturbance, proximity to sensitive resources, etc.) and the potential impact of erosion on adjacent areas to choose an appropriate time restriction.

INSTALLATION, MAINTENANCE AND INSPECTION PROCEDURES FOR TEMPORARY EROSION AND SEDIMENT CONTROL MEASURES (CON'T)

Guidelines for Winter Mulch	Application –
<u>Type</u> Hay or Straw	<u>Rate per 1,000 s.f.</u> 70 to 90 lbs.
Wood Chips or Bark Mulch	460 to 920 lbs.
Jute and Fibrous Matting (Erosion Blanket	As per manufacturer Specifications
Crushed Stone 1/4" to 1-1/2" dia.	Spread more than 1/2" thick
Erosion Control Mix	2" thick (min)

- 3. Maintenance All mulches must be inspected periodically, in particular after rainstorms, to check for rill erosion. If less than 90% of the soil surface is covered by mulch, additional mulch shall be immediately applied.
- C. TEMPORARY GRASS COVER
- 1. Seedbed Preparation -Apply fertilizer at the rate of 600 pounds per acre of 10-10-10. Apply limestone (equivalent
- 2. Seeding -

2

- a. Utilize annual rye grass at a rate of 40 lbs/acre. b. Where the soil has been compacted by construction operations, loosen soil to a depth of
- two (2) inches before applying fertilizer, lime and seed. c. Apply seed uniformly by hand, cyclone seeder, or hydroseeder (slurry including seed and
- fertilizer). Hydroseedings, which include mulch, may be left on soil surface. Seeding rates must be increased 10% when hydroseeding. 3. Maintenance —
- Temporary seedings shall be periodically inspected. At a minimum, 95% of the soil surface should be covered by vegetation. If any evidence of erosion or sedimentation is apparent, repairs shall be made and other temporary measures used in the interim (mulch, filter barriers, check dams, etc.).
- D. FILTERS
- 1. Sequence of Installation -
- Sediment barriers shall be installed prior to any soil disturbance of the contributing upslope drainage area.
- 2. Maintenance
- a. Silt fence barriers shall be inspected immediately after each rainfall and at least daily during prolonged rainfall. They shall be repaired if there are any signs of erosion or sedimentation below them. Any required repairs shall be made immediately. If there are sians of undercutting at the center or the edges, or impounding of large volumes of water. the sediment barriers shall be replaced with a temporary stone check dam.
- b. Should the fabric on a silt fence or filter barrier decompose or become ineffective prior to the end of the expected usable life and the barrier still is necessary, the fabric shall be replaced promptly.
- a. Sediment deposits must be removed when deposits reach approximately one-third (1/3) the height of the barrier.
- b. Any sediment deposits remaining in place after the silt fence or other barrier is no longer required shall be removed. The area shall be prepared and seeded.
- riprap lined swales, etc., periodically to maintain proper function of the erosion control structure.
- E. PERMANENT SEEDING -
- 1. Bedding stones larger than $1\frac{1}{2}$, trash, roots, and other debris that will interfere with seeding and future maintenance of the area should be removed. Where feasible, the soil should be tilled to a depth of 5" to prepare a seedbed and mix fertilizer into the soil.
- 2. Fertilizer lime and fertilizer should be applied evenly over the area prior to or at the time of seeding and incorporated into the soil. Kinds and amounts of lime and fertilizer should be based on an evaluation of soil tests. When a soil test is not available, the following minimum amounts should be applied:

Agricultural Limestone @ 100 lbs. per 1,000 s.f. 10-20-20 fertilizer @ 12 lbs. per 1,000 s.f.

3. Seed Mixture (recommended):

<u>Type</u> Tall Fescue	<u>Lbs. / Acre</u> 24	<u>Lb</u> 0.:
Creeping Red Fescue	24	0.
Total	48	1.

Seed Mixture (For slope embankments): Grass Seed: Provide fresh, clean, new-crop seed complying with tolerance for purity and germination established by Official Seed Analysts of North America. Provide seed mixture composed of grass species, proportions and minimum percentages of purity, germination, and maximum percentage of weed seed, as specified:

	Min.	Min.
Туре	<u>Purity (%)</u>	<u>Germinati</u>
Creeping Red Fescue (c)	96	85
Perennial Rye Grass (a)	98	90
Redtop	95	80
Alsike Clover	97	90(e)

- a. Ryegrass shall be a certified fine-textured variety such as Pennfine, Fiesta, Yorktown, Diplomat, or equal.
- b. Fescue varieties shall include Creeping Red and/or Hard Reliant, Scaldis, Koket, or Jamestown.

Use and Comments Must be dry and free from mold. May be used with plantings.

Used mostly with trees and shrub plantings.

Used in slope areas, water courses and other Control areas

Effective in controlling wind and water erosion

* The organic matter content is between 80 and 100%, dry weight basis. * Particle size by weight is 100% passing a 6"screen and a minimum of 70 %, maximum of 85%, passing a 0.75" screen. * The organic portion needs to be fibrous and elongated. * Large portions of silts, clays or fine sands

are not acceptable in the mix. * Soluble salts content is less than 4.0

mmhos/cm. * The pH should fall between 5.0 and 8.0.

to 50 percent calcium plus magnesium oxide) at a rate of three (3) tons per acre.

c. Additional stone may have to be added to the construction entrance, rock barrier and

<u>os. / 1,000 sf</u>

Kg./Hectare <u>ion (%)</u> <u>(Lbs/Acre)</u> 45 (40) 35 (30) 5 (5) 5 (5) Total 90 (80)

INSTALLATION, MAINTENANCE AND INSPECTION PROCEDURES FOR TEMPORARY EROSION AND SEDIMENT CONTROL MEASURES (CON'T)

4. Sodding - sodding is done where it is desirable to rapidly establish cover on a disturbed area. Sodding an area may be substituted for permanent seeding procedures anywhere on site. Bed preparation, fertilizing, and placement of sod shall be performed according to the S.C.S. Handbook. Sodding is recommended for steep sloped areas, areas immediately adjacent to sensitive water courses, easily erodible soils (fine sand/silt), etc.

WINTER CONSTRUCTION NOTES

- 1. All proposed vegetated areas which do not exhibit a minimum of 85% vegetative growth by October 15th, or which are disturbed after October 15th, shall be stabilized by seeding and installing erosion control blankets on slopes greater than 3:1, and elsewhere seeding and placing 3 to 4 tons of mulch per acre, secured with anchored netting. The installation of erosion control blankets or mulch and netting shall not occur over accumulated snow or on frozen ground and shall be completed in advance of thaw or spring melt events;
- 2. All ditches or swales which do not exhibit a minimum of 85% vegetative growth by October 15th, or which are disturbed after October 15th, shall be stabilized temporarily with stone or erosion control blankets appropriate for the design flow conditions; and
- 3. After November 15th, incomplete road or parking surfaces where work has stopped for the winter season shall be protected with a minimum of 3 inches of crushed gravel per NHDOT Item 304.3.

FOUIPMENT.

CONSTRUCTION SPECIFICATIONS

- 1. <u>STONE SIZE</u> NHDOT STANDARD STONE SIZE #4 SECTION 703 OF NHDOT STANDARD.
- 2. <u>LENGTH</u> DETAILED ON PLANS (50 FOOT MINIMUM).
- 3. THICKNESS SIX (6) INCHES (MINIMUM).
- 4. <u>WIDTH</u> FULL DRIVE WIDTH UNLESS OTHERWISE SPECIFIED.
- 5. FILTER FABRIC MIRAFI 600X OR EQUAL APPROVED BY ENGINEER.
- 6. SURFACE WATER CONTROL ALL SURFACE WATER THAT IS FLOWING TO OR DIVERTED TOWARD THE CONSTRUCTION ENTRANCE SHALL BE PIPED BENEATH THE ENTRANCE. IF PIPING IS IMPRACTICAL, A BERM WITH 5.1 SLOPES THAT CAN BE CROSSED BY VEHICLES MAY BE SUBSTITUTED FOR THE PIPE.
- 7. MAINTENANCE THE ENTRANCE SHALL BE MAINTAINED IN A CONDITION WHICH WILL PREVENT TRACKING OR FLOWING OF SEDIMENT ONTO PUBLIC RIGHTS-OF-WAY. THIS WILL REQUIRE PERIODIC TOP DRESSING WITH ADDITIONAL STONE OR ADDITIONAL LENGTH AS CONDITIONS DEMAND AND REPAIR AND/OR CLEANOUT OF ANY MEASURES USED TO TRAP SEDIMENT. ALL SEDIMENT SPILLED, DROPPED, WASHED OR TRACKED ONTO PUBLIC RIGHTS-OF-WAY MUST BE REMOVED IMMEDIATELY.
- 8. WHEELS SHALL BE CLEANED TO REMOVE MUD PRIOR TO ENTRANCE ONTO PUBLIC RIGHTS-OF-WAY. WHEN WASHING IS REQUIRED, IT SHALL BE DONE ON AN AREA STABILIZED WITH STONE WHICH DRAINS INTO AN APPROVED SEDIMENT TRAPPING DEVICE.
- 9. STABILIZED CONSTRUCTION EXITS SHALL BE INSTALLED AT ALL ENTRANCES TO PUBLIC RIGHTS-OF-WAY, AT LOCATIONS SHOWN ON THE PLANS, AND/OR WHERE AS DIRECTED BY THE ENGINEER

STABILIZED CONSTRUCTION EXIT

NOT TO SCALE

DRAINAGE, SEWER & FORCEMAIN TRENCH

STANDARD TRENCH NOTES

- ORDERED EXCAVATION OF UNSUITABLE MATERIAL BELOW GRADE: BACKFILL AS STATED IN THE TECHNICAL SPECIFICATIONS OR AS SHOWN ON THE DRAWING.
- 2. BEDDING: SCREENED GRAVEL AND/OR CRUSHED STONE FREE FROM CLAY, LOAM, ORGANIC MATTER AND MEETING THE GRADATION SHOWN IN THE TRENCH DETAIL. WHERE ORDERED BY THE ENGINEER TO STABILIZE THE BASE, SCREENED GRAVEL OR CRUSHED STONE 1-1/2 INCH TO 1/2 INCH SHALL BE USED.
- 3. SAND BLANKET: CLEAN SAND FREE FROM ORGANIC MATTER MEETING THE GRADATION SHOWN IN THE TRENCH DETAIL. BLANKET MAY BE REPLACED WITH BEDDING MATERIAL FOR CAST-IRON, DUCTILE IRON, AND REINFORCED CONCRETE PIPE PROVIDED THAT NO STONE LARGER THAN 2" IS IN CONTACT WITH THE PIPE AND THE GEOTEXTILE IS RELOCATED ACCORDINGLY.
- 4. SUITABLE MATERIAL: IN ROADS, ROAD SHOULDERS, WALKWAYS AND TRAVELED WAYS, SUITABLE MATERIAL FOR TRENCH BACKFILL SHALL BE THE NATURAL MATERIAL EXCAVATED DURING THE COURSE OF CONSTRUCTION, BUT SHALL EXCLUDE DEBRIS, PIECES OF PAVEMENT, ORGANIC MATTER, TOP SOIL, ALL WET OR SOFT MUCK, PEAT, OR CLAY, ALL EXCAVATED LEDGE MATERIAL ALL ROCKS OVER 6 INCHES IN LARGEST DIMENSION, AND ANY MATERIAL WHICH, AS DETERMINED BY THE ENGINEER, WILL NOT PROVIDE SUFFICIENT SUPPORT OR MAINTAIN THE COMPLETED CONSTRUCTION IN A STABLE CONDITION. IN CROSS COUNTRY CONSTRUCTION, SUITABLE MATERIAL SHALL BE AS DESCRIBED ABOVE, EXCEPT THAT THE ENGINEER MAY PERMIT THE USE OF TOP SOIL, LOAM, MUCK, OR PEAT, IF SATISFIED THAT THE COMPLETED CONSTRUCTION WILL BE ENTIRELY STABLE AND PROVIDED THAT EASY ACCESS TO THE SEWER FOR MAINTENANCE AND POSSIBLE RECONSTRUCTION WILL BE PRESERVED.
- 5. BASE COURSE AND PAVEMENT SHALL MEET THE REQUIREMENTS OF THE NEW HAMPSHIRE DEPARTMENT OF TRANSPORTATION'S LATEST EDITION OF THE STANDARD SPECIFICATIONS FOR HIGHWAYS AND BRIDGES - DIVISIONS 300 AND 400 RESPECTIVELY.
- 6. SHEETING, IF REQUIRED: WHERE SHEETING IS PLACED ALONGSIDE THE PIPE AND EXTENDS BELOW MID-DIAMETER, IT SHALL BE CUT OFF AND LEFT IN PLACE TO AN ELEVATION 1 FOOT ABOVE THE TOP OF PIPE. WHERE SHEETING IS ORDERED BY THE ENGINEER TO BE LEFT IN PLACE, IT SHALL BE CUT OFF AT LEAST 3 FEET BELOW FINISHED GRADE, BUT NOT LESS THAT 1 FOOT ABOVE THE TOP OF THE PIPE.
- 7. W = MAXIMUM ALLOWABLE TRENCH WIDTH TO A PLANE 12 INCHES ABOVE THE PIPE. FOR PIPES 15 INCHES NOMINAL DIAMETER OR LESS, W SHALL BE NO MORE THAN 36 INCHES. FOR PIPES GREATER THAN 15 INCHES IN NOMINAL DIAMETER, W SHALL BE 24 INCHES PLUS PIPE OUTSIDE DIAMETER (O.D.) ALSO, W SHALL BE THE PAYMENT WIDTH FOR LEDGE EXCAVATION AND FOR ORDERED EXCAVATION BELOW GRADE.
- 8. FOR CROSS COUNTRY CONSTRUCTION, BACKFILL, FILL AND/OR LOAM SHALL BE MOUNDED TO A HEIGHT OF 6 INCHES ABOVE THE ORIGINAL GROUND SURFACE.
- 9. CONCRETE FOR ENCASEMENT SHALL CONFORM TO THE NEW HAMPSHIRE DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS STANDARD SPECIFICATION REQUIREMENTS FOR CLASS A (3000#) CONCRETE AS FOLLOWS:
 - CEMENT: 6.0 BAGS PER CUBIC YARD WATER: 5.75 GALLONS PER BAG CEMENT MAXIMUM SIZE OF AGGREGATE: 1 INCH CONCRETE ENCASEMENT IS NOT ALLOWED FOR PVC PIPE.
- 10. CONCRETE FULL ENCASEMENT: IF FULL ENCASEMENT IS UTILIZED, DEPTH OF CONCRETE BELOW
- 11. NEW HAMPSHIRE DEPARTMENT OF ENVIRONMENTAL SERVICES DESIGN STANDARDS REQUIRE TEN FEET (10') SEPARATION BETWEEN WATER AND SEWER. REFER TO TOWN'S STANDARD SPECIFICATIONS FOR METHODS OF PROTECTION IN AREAS THAT CANNOT MEET THESE REQUIREMENTS.

PERMEABLE PAVERS DETAIL

PIPE SHALL BE 1/4 I.D. (4" MINIMUM). BLOCK SUPPORT SHALL BE SOLID CONCRETE BLOCKS.

- OF SO THEY WILL NOT INTERFERE WITH THE CONSTRUCTION OR PROPER FUNCTIONING OF THE WATERWAY
- WHICH WILL IMPEDE NORMAL FLOW.
- TOPOGRAPHY SHALL BE COMPACTED TO THE SAME DENSITY AS THE SURROUNDING SOIL TO PREVENT UNEQUAL SETTLEMENT THAT COULD CAUSE DAMAGE TO THE COMPLETED WATERWAY. EARTH REMOVED AND NOT NEEDED IN CONSTRUCTION SHALL BE SPREAD OR DISPOSED OF SO IT
- AND AIR AND WATER POLLUTION. ALL APPROPRIATE STATE AND LOCAL LAWS AND REGULATIONS SHALL BE COMPLIED WITH FOR INSTALLATION.
- TO PREVENT RILLING, EROSION, AND FAILURE OF THE WATERWAY. MOWING SHALL BE DONE FREQUENTLY ENOUGH TO CONTROL ENCROACHMENT OF WEEDS AND WOODY VEGETATION AND TO KEEP THE GRASSES IN A VIGOROUS CONDITION. THE VEGETATION SHALL NOT BE MOWED TOO CLOSELY SO AS TO REDUCE THE EROSION RESISTANCE IN THE WATERWAY
- AREAS SHOULD BE PROMPTLY REPAIRED AND REVEGETATED AS NECESSARY TO PREVENT FURTHER

ELEVATION - FRONT (NORTH)

ELEVATION - WEST SIDE

Drainage Analysis

445 Marcy Street Residence

Tax Map 101, Lot 03

445 Marcy Street Portsmouth, NH

April 2022

Prepared For:

445 Marcy Street, LLC (Gail & James Sanders) 30 Walden Street Portsmouth, NH 03801

Prepared By:

Altus Engineering, Inc.

133 Court Street Portsmouth, NH 03801 Phone: (603) 433-2335 Fax: (603) 433-4194

TABLE OF CONTENTS

Site Location Plan (USGS Map)

Project Description

Calculation Methods

Summary

- Appendix A: Drainage Analysis
- Appendix B: Hydrological Data
- Appendix C: Watershed Plans

Appendix D: Stormwater Management Facility Operation and Maintenance Manual

PROJECT DESCRIPTION

The project consists of a two (2) lot subdivision of Marcy Road in Portsmouth, New Hampshire. The applicant proposes to construct a single-family residence with site improvements one of the lots. While this 8,820-sf. lot will have frontage on both Pray Street and Partridge Street, the proposed curb cut will be located off Partridge Street. The proposed lot is a vacant grassed lot surrounding by single-family residences, some which are owned by the applicant.

The site is partially located with the Flood Hazard Zone AE (elev. 8.3). The owner/applicant proposes to construct a single-family residence for their personal residence. The proposed finished floor elevation will be set at elevation 13.0 feet well above the known Flood Hazard Zone. The driveway and walkway will consist of permeable pavers with underdrain system. The project has been designed to fit harmoniously into the landscape and the neighborhood.

The lot will be serviced by municipal sewer and water.

Stormwater from impervious and other developed areas on the property will be treated by the use of stormwater best management practices (BMPs) designed to remove fine particulates and suspended sediments. Permeable pavers, grassed roadside swale, roof dripline filters, plunge pool, and other practices will be utilized to achieve the required stormwater management. Vegetative control measures are utilized to the greatest extent possible to address the stormwater quality requirements.

The project team believes that this development concept has been developed with significant sensitivity to the environment.

CALCULATION METHODS

The drainage analysis was completed using HydroCAD v.10. The program generates runoff hydrographs for specified storm distributions and performs reservoir routing using the storage indication method. The criteria used for this drainage analysis are the 2-year, 10-year, 25-year, and 50-year 24-hour Type III frequency storm events based on 1.15% of the Northeast Regional Climate Center "extreme precipitation tables" for the Portsmouth, New Hampshire.

Recommended erosion control measures are based upon the "New Hampshire Stormwater Manual", developed in 2008.

The following modeling conservative data and assumptions were incorporated into the analysis:

- Model based on 1.15% of the extreme precipitation values published by Cornell/UNH for coastal communities.
- Project area soils and hydrological group are based on NRCS Web Soil Survey mapping.
- Minimum Tc of 6 minutes SCS TR-55 Urban Hydrology for Small Watersheds indicates that the minimum Tc is 0.1 hour or 6 minutes. The Federal Highway Administration <u>Hydraulic</u> <u>Engineering</u> and NHDOT <u>Drainage Design for Highways</u> states that minimum time of concentration (Tc) for urbanized areas should not be less than 5-minutes. Extremely short Tc times can lead to improbable runoff values and is not appropriate for design.
- Analysis is based on the development of Proposed Lot #2 only.

Altus Engineering notes that stormwater modeling is limited in its capacity to precisely predict peak flow rates and flood elevations. Results should not be considered absolute due to the number of variables and assumptions involved in the modeling effort. Surface roughness coefficients (n), entrance loss coefficients (ke), velocity factors (kv), time of concentration (Tc), and tail water conditions are based on subjective field observations and engineering judgment. For design purposes, curve numbers (CN) describe the <u>average</u> conditions. However, curve numbers will vary from storm to storm depending on the antecedent runoff conditions (ARC). Modeling to simulate an actual storm event requires measurement of the pre-storm ARC to adjust the CN for the event. Also, higher flood elevations than predicted by modeling could occur if drainage channels and culverts are not maintained and become blocked by debris before or during the storm event. Siltation, blockage or damage to culverts or storm drains will impact flow capacity of the structures. Structures should be re-evaluated if future changes occur within drainage basins.

SUMMARY

Drainage Analysis

The NRCS web soils survey indicates the site consists of Urban land-Canton complex soils, a welldrained soil. It is known that this area of the city was built up over time during the colonial period. There is evidence that the soil has restrictive layers and is poorly draining, therefore the soil is best described as Hydrological Group C.

The pre-development watershed is delineated on the accompanying Sheet W-1, Pre-Development Watershed Plan. The runoff flows to the depression in the southeast corner of the parcel. The point of analysis (POA) is a 6" pipe, daylights onto paved surface before flowing to the Piscataqua River. In larger storm events, the depression overflows onto Partridge Street. The flow runs easterly along the north side of the street and other parcels owned by the applicant to the river.

The post-development conditions were analyzed at the same discharge points as the predevelopment conditions. The post-development watersheds are delineated on the accompanying Sheet WS-2, Post-Development Watershed Plan. Modifications to the delineated areas and associated ground cover were made to sub-catchments to account for the improvements to the property. In the 10-year storm event and greater, the magnitude of flooding is decreased in Partridge Street (e.g., a 10-year storm event 0.49 cfs goes down to 0.42 cfs).

A complete summary of the flow conditions and modeling is included in Appendix A. The following compares pre- and post-development peak flow rates at the point of analysis:

		2-Year Storm (3.69 in.) Oout (cfs)	10-Year Storm (5.60 in.)	25-Year Storm (7.10 in.) Oout (cfs)	50-Year Storm (8.50 in.)
Discharge	Pre	0.25	0.41	0.46	0.48
6" pipe	Post	0.23	0.63	0.79	0.91
Overflow from	Pre	0.00	0.49	1.09	1.58
Pond 1P	Post	0.00	0.42	0.87	1.18
Combined	Pre	0.25	0.90	1.55	2.06
Flow	Post	0.24	1.05	1.66	2.03
	Net Change	-0.01	0.15	0.11	0.03

Conclusions

As shown in the summary table, the analysis indicates a minor increase in runoff leaving the site which flows directly to the Piscataqua River. Additionally, the development shows a reduce volume of water or flooding potential along Partridge Street. Altus believes that no down gradient abutters will be negatively impacted by the proposed development.

This analysis is based on the development of Proposed Lot #2 only. Any development of Proposed Lot #1 is expected to address drainage on-site without increasing flow onto Proposed Lot #2.

Stormwater Treatment

Stormwater from impervious and other developed areas on the property will be treated by the use of stormwater best management practices (BMPs) designed to remove fine particulates and suspended sediments. Permeable pavers, grassed roadside swale, roof dripline filters, plunge pool, and other practices will be utilized to achieve the required stormwater management. Vegetative control measures are utilized to the greatest extent possible to address the stormwater quality requirements.

APPENDIX A:

SUPPORTING CALCULATIONS

PRE-DEVELOPMENT CALCULATIONS

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.324	74	>75% Grass cover, Good, HSG C (1S)
0.010	89	Gravel roads, HSG C (1S)
0.009	98	Paved parking, HSG C (1S)
0.343	75	TOTAL AREA

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: (new Subcat)	Runoff Area=14,947 sf 2.73% Impervious Runoff Depth>1.32" Flow Length=185' Tc=6.0 min CN=75 Runoff=0.56 cfs 0.038 af
Pond 2P: (new Pond)	Peak Elev=7.12' Storage=405 cf Inflow=0.56 cfs 0.038 af Outflow=0.25 cfs 0.036 af

Total Runoff Area = 0.343 ac Runoff Volume = 0.038 af Average Runoff Depth = 1.32" 97.27% Pervious = 0.334 ac 2.73% Impervious = 0.009 ac
Summary for Subcatchment 1S: (new Subcat)

Runoff = 0.56 cfs @ 12.10 hrs, Volume= 0.038 af, Depth> 1.32"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-yr Rainfall=3.69"

A	rea (sf)	CN [Description		
	428	89 (Gravel road	ls, HSG C	
	408	98 F	Paved park	ing, HSG C	
	14,111	74 >	•75% Ġras	s cover, Go	ood, HSG C
	14,947	75 \	Veighted A	verage	
	14,539	ç	97.27% Pei	vious Area	
	408	2	2.73% Impe	ervious Area	a
			-		
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
3.8	50	0.0440	0.22		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.69"
1.0	135	0.0220	2.22		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
4.8	185	Total,	ncreased t	o minimum	Tc = 6.0 min

Summary for Pond 2P: (new Pond)

Inflow Area	=	0.343 ac,	2.73% Impervious,	Inflow Depth >	1.32" for	2-yr event
Inflow	=	0.56 cfs @	12.10 hrs, Volume	= 0.038	af	
Outflow	=	0.25 cfs @	12.34 hrs, Volume	= 0.036	af, Atten=	55%, Lag= 14.3 min
Primary	=	0.25 cfs @	12.34 hrs, Volume	= 0.036	af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 7.12' @ 12.34 hrs Surf.Area= 1,618 sf Storage= 405 cf

Plug-Flow detention time= 37.3 min calculated for 0.036 af (96% of inflow) Center-of-Mass det. time= 24.0 min (833.6 - 809.7)

Volume	In	vert	Avail.Sto	rage	Storage D	escription	
#1	6	6.74'	7′	13 cf	Custom S	stage Data (F	Prismatic)Listed below
Elevatio (fee	on et)	Surf./ (s	Area q-ft)	Inc (cubio	.Store c-feet)	Cum.Store (cubic-feet)	
6.7 7.0 7.3	74 00 30	1 2	300 ,230 ,200		0 199 514	0 199 713	
Device	Routing	g	Invert	Outle	et Devices		
#1	Primar	y	6.74'	6.0" L= 2 Inlet n= 0	Round Cu 0.0' RCP, / Outlet Inv .012 Conci	I lvert sq.cut end pi ert= 6.74' / 6 rete pipe, finis	rojecting, Ke= 0.500 .64' S= 0.0050 '/' Cc= 0.900 shed, Flow Area= 0.20 sf
#2	Primar	у	7.20'	10.0	long x 8.0	0' breadth B	road-Crested Rectangular Weir

Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.66 2.64 2.64 2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74

Primary OutFlow Max=0.25 cfs @ 12.34 hrs HW=7.12' (Free Discharge) 1=Culvert (Barrel Controls 0.25 cfs @ 2.15 fps) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs) Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: (new Subcat)	Runoff Area=14,947 sf 2.73% Impervious Runoff Depth>2.74" Flow Length=185' Tc=6.0 min CN=75 Runoff=1.16 cfs 0.078 af
Pond 2P: (new Pond)	Peak Elev=7.28' Storage=672 cf Inflow=1.16 cfs 0.078 af Outflow=0.92 cfs 0.077 af

Total Runoff Area = 0.343 ac Runoff Volume = 0.078 af Average Runoff Depth = 2.74" 97.27% Pervious = 0.334 ac 2.73% Impervious = 0.009 ac

Summary for Subcatchment 1S: (new Subcat)

Runoff = 1.16 cfs @ 12.09 hrs, Volume= 0.078 af, Depth> 2.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

A	vrea (sf)	CN	Description		
	428	89	Gravel road	ls, HSG C	
	408	98	Paved park	ing, HSG C	
	14,111	74	>75% Gras	s cover, Go	bod, HSG C
	14,947	75	Weighted A	verage	
	14,539		97.27% Per	vious Area	
	408		2.73% Impe	ervious Are	а
Tc	Length	Slope	 Velocity 	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
3.8	50	0.0440	0.22		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.69"
1.0	135	0.0220	2.22		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
10	105	Total	Increased t	o minimum	$T_{c} = 6.0 \text{ min}$

4.8 185 Total, Increased to minimum Tc = 6.0 min

Summary for Pond 2P: (new Pond)

Inflow Area	=	0.343 ac,	2.73% Impervious,	Inflow Depth >	2.74" for	10-yr event
Inflow :	=	1.16 cfs @	12.09 hrs, Volume	= 0.078	af	
Outflow =	=	0.92 cfs @	12.17 hrs, Volume	= 0.077	af, Atten=	21%, Lag= 4.6 min
Primary :	=	0.92 cfs @	12.17 hrs, Volume	= 0.077	af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 7.28' @ 12.17 hrs Surf.Area= 2,122 sf Storage= 672 cf

Plug-Flow detention time= 29.0 min calculated for 0.077 af (98% of inflow) Center-of-Mass det. time= 20.1 min (813.4 - 793.3)

Volume	In	vert Ava	ail.Storage	e Storage D	escription	
#1	6	.74'	713 c	f Custom S	Stage Data (P	rismatic)Listed below
Elevatio (fee	on et)	Surf.Area (sq-ft)	lı (cu	nc.Store bic-feet)	Cum.Store (cubic-feet)	
6.7 7.0 7.3	74 00 30	300 1,230 2,200		0 199 514	0 199 713	
Device	Routing	j li	nvert Ou	utlet Devices		
#1	Primary	/	6.74' 6.(L= Inl n=	7 Round C 20.0' RCP, et / Outlet Inv 0.012 Conc	ulvert sq.cut end pr /ert= 6.74' / 6. rete pipe, finis	ojecting, Ke= 0.500 64' S= 0.0050 '/' Cc= 0.900 shed, Flow Area= 0.20 sf
#2	Primary	/	7.20' 10	.0' long x 8.	0' breadth Br	oad-Crested Rectangular Weir

Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.66 2.64 2.64 2.64 2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74

Primary OutFlow Max=0.87 cfs @ 12.17 hrs HW=7.27' (Free Discharge) -1=Culvert (Barrel Controls 0.41 cfs @ 2.43 fps) -2=Broad-Crested Rectangular Weir (Weir Controls 0.46 cfs @ 0.65 fps)

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: (new Subcat)	Runoff Area=14,947 sf 2.73% Impervious Runoff Depth>3.96" Flow Length=185' Tc=6.0 min CN=75 Runoff=1.67 cfs 0.113 af
Pond 2P: (new Pond)	Peak Elev=7.34' Storage=713 cf Inflow=1.67 cfs 0.113 af Outflow=1.79 cfs 0.111 af

Total Runoff Area = 0.343 ac Runoff Volume = 0.113 af Average Runoff Depth = 3.96" 97.27% Pervious = 0.334 ac 2.73% Impervious = 0.009 ac

Page 9

Summary for Subcatchment 1S: (new Subcat)

Runoff = 1.67 cfs @ 12.09 hrs, Volume= 0.113 af, Depth> 3.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-yr Rainfall=7.10"

A	vrea (sf)	CN	Description		
	428	89	Gravel road	ls, HSG C	
	408	98	Paved park	ing, HSG C	
	14,111	74	>75% Gras	s cover, Go	bod, HSG C
	14,947	75	Weighted A	verage	
	14,539		97.27% Per	vious Area	
	408		2.73% Impe	ervious Area	a
Tc	Length	Slope	e Velocity	Capacity	Description
(min)	(feet)	(ft/ft)) (ft/sec)	(cfs)	
3.8	50	0.0440	0.22		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.69"
1.0	135	0.0220) 2.22		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
10	105	Total	Increased t	o minimum	$T_{0} = 6.0 \text{ min}$

4.8 185 Total, Increased to minimum Tc = 6.0 min

Summary for Pond 2P: (new Pond)

Inflow Area	=	0.343 ac,	2.73% Impervious,	Inflow Depth > 3	3.96" for 25-	yr event
Inflow	=	1.67 cfs @	12.09 hrs, Volume	= 0.113 a	af	
Outflow	=	1.79 cfs @	12.11 hrs, Volume	= 0.111 <i>a</i>	af, Atten= 0%,	Lag= 0.8 min
Primary	=	1.79 cfs @	12.11 hrs, Volume	= 0.111 <i>a</i>	af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 7.34' @ 12.11 hrs Surf.Area= 2,200 sf Storage= 713 cf

Plug-Flow detention time= 24.7 min calculated for 0.111 af (98% of inflow) Center-of-Mass det. time= 17.5 min (802.3 - 784.8)

Volume	Ir	nvert	Avail.Sto	rage	Storage D	escription	
#1	(6.74'	71	13 cf	Custom S	tage Data (P	Prismatic)Listed below
Elevatio (fee	on et)	Surf (Area (sq-ft)	Inc (cubio	.Store c-feet)	Cum.Store (cubic-feet)	
6.7 7.0 7.3	74 00 30		300 1,230 2,200		0 199 514	0 199 713	
Device	Routin	g	Invert	Outle	et Devices		
#1	Primar	у У	6.74'	6.0" L= 2 Inlet n= 0	Round Cu 0.0' RCP, / Outlet Inv .012 Conci	I lvert sq.cut end pr ert= 6.74' / 6. rete pipe, finis	rojecting, Ke= 0.500 .64' S= 0.0050 '/' Cc= 0.900 shed, Flow Area= 0.20 sf
#2	Primar	У	7.20'	10.0	long x 8.0)' breadth Bi	road-Crested Rectangular Weir

Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.66 2.64 2.64 2.64 2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74

Primary OutFlow Max=1.71 cfs @ 12.11 hrs HW=7.34' (Free Discharge) -1=Culvert (Barrel Controls 0.46 cfs @ 2.50 fps) -2=Broad-Crested Rectangular Weir (Weir Controls 1.25 cfs @ 0.90 fps)

POST-DEVELOPMENT CALCULATIONS

Area Listing (all nodes)

CN	Description
	(subcatchment-numbers)
74	>75% Grass cover, Good, HSG C (3S, 10S, 11S, 12S, 13S)
89	Gravel roads, HSG C (3S, 10S)
98	Roofs, HSG C (3S, 10S, 11S, 12S, 13S)
98	Unconnected pavers, HSG C (3S, 11S, 12S, 13S)
82	TOTAL AREA
	CN 74 89 98 98 82

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
 1	2R	6.85	6.75	20.0	0.0050	0.013	8.0	0.0	0.0
2	1P	6.74	6.64	20.0	0.0050	0.012	6.0	0.0	0.0
3	3P	7.50	7.00	50.0	0.0100	0.012	4.0	0.0	0.0
4	4P	7.25	7.00	25.0	0.0100	0.012	4.0	0.0	0.0

Pipe Listing (all nodes)

Summary for Subcatchment 3S: (new Subcat)

Runoff = 0.20 cfs @ 12.09 hrs, Volume= 0.014 af, Depth> 2.12"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-yr Rainfall=3.69"

A	rea (sf)	CN I	Description								
	171	89	Gravel road	ls, HSG C							
	1,435	98	Roofs, HSG	oofs, HSG C							
	1,622	74 :	>75% Grass cover, Good, HSG C								
*	172	98	Jnconnecte	ed pavers, l	HSG C						
	3,400	86	Neighted A	verage							
	1,793	!	52.74% Pervious Area								
	1,607	4	7.26% Impervious Area								
	172		10.70% Unconnected								
Тс	Length	Slope	Velocity	Capacity	Description						
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)							
3.8	50	0.0440	0.22		Sheet Flow,						
					Grass: Short n= 0.150 P2= 3.69"						
0.7	100	0.0220	2.22		Shallow Concentrated Flow,						
					Grassed Waterway Kv= 15.0 fps						
4.5	150	Total,	Increased t	o minimum	1 Tc = 6.0 min						

Summary for Subcatchment 10S: (new Subcat)

Runoff = 0.24 cfs @ 12.10 hrs, Volume= 0.017 af, Depth> 1.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-yr Rainfall=3.69"

A	rea (sf)	CN I	Description								
	257	89 (Gravel road	ls, HSG C							
	294	98 I	Roofs, HSG	oofs, HSG C							
	5,689	74 >	>75% Gras	75% Grass cover, Good, HSG C							
	6,240	76 \	Neighted A	verage							
	5,946	ę	95.29% Pervious Area								
	294	4	4.71% Impervious Area								
Tc	Length	Slope	Velocity	Capacity	Description						
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
3.8	50	0.0440	0.22		Sheet Flow,						
					Grass: Short n= 0.150 P2= 3.69"						
0.7	100	0.0220	2.22		Shallow Concentrated Flow,						
					Grassed Waterway Kv= 15.0 fps						
4.5	150	Total	Incroaced t	o minimum	$T_{0} = 6.0 \text{ min}$						

Summary for Subcatchment 11S: (new Subcat)

Runoff = 0.07 cfs @ 12.09 hrs, Volume= 0.005 af, Depth> 2.95"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-yr Rainfall=3.69"

A	rea (sf)	CN	Description								
*	610	98	Unconnecte	ed pavers, ł	HSG C						
	220	98	Roofs, HSC	G C							
	113	74	>75% Gras	>75% Grass cover, Good, HSG C							
	943	95	Weighted A	verage							
	113		11.98% Pe	1.98% Pervious Area							
	830		88.02% Imp	pervious Are	rea						
	610		73.49% Un	connected							
Tc (min)	Length (feet)	Slop (ft/f	e Velocity t) (ft/sec)	Capacity (cfs)	Description						
6.0					Direct Entry,						

Summary for Subcatchment 12S: (new Subcat)

Runoff = 0.08 cfs @ 12.09 hrs, Volume= 0.006 af, Depth> 2.95"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-yr Rainfall=3.69"

A	vrea (sf)	CN	Description								
*	708	98	Unconnecte	Inconnected pavers, HSG C							
	195	98	Roofs, HSC	G C							
	126	74	>75% Grass cover, Good, HSG C								
	1,029	95	Weighted A	Veighted Average							
	126		12.24% Pervious Area								
	903		87.76% Imp	pervious Ar	rea						
	708		78.41% Un	connected							
Тс	Length	Slope	e Velocity	Capacity	Description						
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)							
6.0					Direct Entry,						

Summary for Subcatchment 13S: (new Subcat)

Runoff = 0.18 cfs @ 12.09 hrs, Volume= 0.012 af, Depth> 1.88"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-yr Rainfall=3.69"

Type III 24-hr 2-yr Rainfall=3.69" Printed 3/18/2022 Page 6

A	rea (sf)	CN	Description							
*	93	98	Unconnecte	ed pavers, l	HSG C					
	1,092	98	Roofs, HSG C							
	2,074	74 :	>75% Grass cover, Good, HSG C Roofs, HSG C							
	77	98								
	3,336	83	Neighted Average							
	2,074		62.17% Pervious Area							
	1,262	;	37.83% Imp	pervious Ar	ea					
	93		7.37% Unco	onnected						
_										
Tc	Length	Slope	Velocity	Capacity	Description					
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)						
6.0					Direct Entry,					

Summary for Reach 2R: 8" Culvert

[52] Hint: Inlet/Outlet conditions not evaluated

[82] Warning: Early inflow requires earlier time span

[80] Warning: Exceeded Pond 2P by 0.04' @ 9.75 hrs (0.01 cfs 0.001 af)

Inflow /	Area	=	0.189 ac, 2	24.68% Imp	ervious,	Inflow Depth >	1.7	75" for 2-yr	event
Inflow		=	0.33 cfs @	12.12 hrs,	Volume	= 0.027	af	-	
Outflov	N	=	0.33 cfs @	12.12 hrs,	Volume	= 0.027	af,	Atten= 0%,	Lag= 0.1 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 2.29 fps, Min. Travel Time= 0.1 min Avg. Velocity = 0.85 fps, Avg. Travel Time= 0.4 min

Peak Storage= 3 cf @ 12.12 hrs Average Depth at Peak Storage= 0.29' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 0.85 cfs

8.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 20.0' Slope= 0.0050 '/' Inlet Invert= 6.85', Outlet Invert= 6.75'

Summary for Reach 4R: (new Reach)

Inflow A	rea =	0.155 ac, 42.59% Impervious, Inflow	Depth > 1.99" for 2-yr event	
Inflow	=	0.29 cfs @ 12.11 hrs, Volume=	0.026 af	
Outflow	=	0.29 cfs @ 12.11 hrs, Volume=	0.026 af, Atten= 0%, Lag= 0.0 m	nin

5217postType III 24-hr2-yr Rainfall=3.69"Prepared by {enter your company name here}Printed 3/18/2022HydroCAD® 10.00-26 s/n 01222 © 2020 HydroCAD Software Solutions LLCPage 7

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 1.43 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.55 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 12.11 hrs Average Depth at Peak Storage= 0.15' Bank-Full Depth= 0.33' Flow Area= 0.7 sf, Capacity= 1.59 cfs

3.00' x 0.33' deep Parabolic Channel, n= 0.022 Earth, clean & straight Length= 1.0' Slope= 0.0100 '/' Inlet Invert= 6.66', Outlet Invert= 6.65'

Summary for Pond 1P: (new Pond)

[92] Warning: Device #3 is above defined storage

Inflow Area	a =	0.077 ac, 3	87.83% Imperv	vious, Inflow	Depth > 1	1.88" f	for 2-yre	event
Inflow	=	0.18 cfs @	12.09 hrs, V	′olume=	0.012 a	f	-	
Outflow	=	0.11 cfs @	12.22 hrs, V	′olume=	0.012 a	f, Atten	n= 41%,	Lag= 7.5 min
Primary	=	0.11 cfs @	12.22 hrs, V	′olume=	0.012 a	f		-

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 6.98' @ 12.22 hrs Surf.Area= 660 sf Storage= 103 cf

Plug-Flow detention time= 26.0 min calculated for 0.012 af (98% of inflow) Center-of-Mass det. time= 18.2 min (809.0 - 790.7)

Volume	Inv	ert Avail.Sto	orage	Storage D	escription			
#1	6.7	74' 5	67 cf	Custom S	tage Data (Pr	ismatic)Listed below (Recalc)		
Elevatio	on et)	Surf.Area (sq-ft)	Inc (cubic	.Store c-feet)	Cum.Store (cubic-feet)			
6.7	74	200		0	0			
7.0	00	700		117	117			
7.5	50	1,100		450	567			
Device	Routing	Invert	Outle	et Devices				
#1	#1 Primary 6.74'		6.0" Round Culvert L= 20.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 6.74' / 6.64' S= 0.0050 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior. Flow Area= 0.20 sf					
#2Device 16.74'#3Device 17.54'		4.0" Vert. Orifice/Grate C= 0.600 6.0" Horiz. Orifice/Grate C= 0.600						
			Limit	ed to weir f	low at low hea	IOS		

Primary OutFlow Max=0.10 cfs @ 12.22 hrs HW=6.98' TW=6.79' (Dynamic Tailwater) 1=Culvert (Barrel Controls 0.10 cfs @ 1.65 fps) 2=Orifice/Grate (Passes 0.10 cfs of 0.11 cfs potential flow)

-3=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond 2P: (new Pond)

Inflow Area	=	0.143 ac,	4.71% Impervious, Int	flow Depth > 1.39"	for 2-yr event
Inflow :	=	0.24 cfs @	12.10 hrs, Volume=	0.017 af	-
Outflow :	=	0.21 cfs @	12.12 hrs, Volume=	0.016 af, Att	en= 14%, Lag= 1.7 min
Primary :	=	0.21 cfs @	12.12 hrs, Volume=	0.016 af	-
Secondary :	=	0.00 cfs @	5.00 hrs, Volume=	0.000 af	

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 7.19' @ 12.16 hrs Surf.Area= 134 sf Storage= 40 cf

Plug-Flow detention time= 4.9 min calculated for 0.016 af (100% of inflow) Center-of-Mass det. time= 3.3 min (810.7 - 807.4)

Volume	lı lı	nvert	Avail.Sto	rage	Storage D	escription	
#1		6.85'	10	08 cf	Custom S	Stage Data (P	rismatic)Listed below
Elevatio	on et)	Surf (s	Area sq-ft)	Inc (cubio	.Store c-feet)	Cum.Store (cubic-feet)	
6.8	85		35		0	0	
7.0	00		80		9	9	
7.0	60		250		99	108	
Device	Routin	ıg	Invert	Outle	et Devices		
#1	#1 Primary		6.85'	8.0"	Vert. Orific	ce/Grate C=	0.600
#2	Secon	condary 7.5		10.0	long x 12	2.0' breadth E	Broad-Crested Rectangular Weir
		5		Head	d (feet) 0.2	0 0.40 0.60	0.80 1.00 1.20 1.40 1.60
				Coef	. (Engĺish)	2.57 2.62 2	.70 2.67 2.66 2.67 2.66 2.64

Primary OutFlow Max=0.18 cfs @ 12.12 hrs HW=7.18' TW=7.13' (Dynamic Tailwater) **1=Orifice/Grate** (Orifice Controls 0.18 cfs @ 1.03 fps)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=6.85' TW=6.74' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 3P: Permeable Pavers

[82] Warning: Early inflow requires earlier time span

Inflow Area	ı =	0.022 ac, 8	88.02% Impervio	ous, Inflow De	epth > 2.95	5" for 2-yr	event
Inflow	=	0.07 cfs @	12.09 hrs, Vol	lume=	0.005 af		
Outflow	=	0.05 cfs @	12.17 hrs, Vol	lume=	0.005 af, A	Atten= 26%,	Lag= 4.7 min
Primary	=	0.05 cfs @	12.17 hrs, Vol	lume=	0.005 af		

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 7.66' @ 12.17 hrs Surf.Area= 610 sf Storage= 39 cf

Plug-Flow detention time= 33.5 min calculated for 0.005 af (97% of inflow) Center-of-Mass det. time= 23.2 min (773.6 - 750.4)

Volume		nvert A۱	/ail.Stor	age	Storage Descrip	tion				
#1		7.50'	36	6 cf	Custom Stage I	Data (Prismatic)	₋isted below (Recalc)			
Elevatio (fee	on et)	Surf.Area (sq-ft	a Void) (%	ls 6)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)				
7.5	50	610) O.	0	0	0				
9.0	00	610) 40.	0	366	366				
Device	Routir	ng	Invert	Outle	et Devices					
#1	Prima	ry	7.50'	4.0" L= 5 Inlet n= 0	' Round Culvert 50.0' CPP, square edge headwall, Ke= 0.500 t / Outlet Invert= 7.50' / 7.00' S= 0.0100 '/' Cc= 0.900 0.012 Corrugated PP, smooth interior, Flow Area= 0.09 sf					

Primary OutFlow Max=0.05 cfs @ 12.17 hrs HW=7.66' TW=7.13' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 0.05 cfs @ 1.90 fps)

Summary for Pond 4P: Permeable Pavers

[82] Warning: Early inflow requires earlier time span [44] Hint: Outlet device #1 is below defined storage

Inflow Area	=	0.024 ac, 8	7.76% Impe	ervious,	Inflow Depth >	2.95"	for 2-yr	event
Inflow	=	0.08 cfs @	12.09 hrs,	Volume=	= 0.006	af		
Outflow	=	0.08 cfs @	12.09 hrs,	Volume=	= 0.006	af, At	ten= 0%,	Lag= 0.0 min
Primary	=	0.08 cfs @	12.09 hrs,	Volume=	= 0.006	af		-

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 7.50' @ 12.10 hrs Surf.Area= 708 sf Storage= 0 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= (not calculated: outflow precedes inflow)

Volume	In	vert Ava	il.Stor	age	Storage Description	Storage Description						
#1	7	'.50'	42	5 cf	Custom Stage D	ata (Prismatic)	Listed below (Recalc)					
Elevatio	on et)	Surf.Area (sq-ft)	Void %)	s)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)						
7.	50	708	0.0	0	0	0						
9.0	00	708	40.	0	425	425						
Device	Routing	g Ir	nvert	Outle	et Devices							
#1	Primar	y .	7.25'	4.0" L= 2 Inlet n= 0	4.0" Round Culvert L= 25.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 7.25' / 7.00' S= 0.0100 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.09 sf							

Primary OutFlow Max=0.11 cfs @ 12.09 hrs HW=7.50' TW=7.13' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 0.11 cfs @ 2.21 fps)

Summary for Subcatchment 3S: (new Subcat)

Runoff = 0.35 cfs @ 12.09 hrs, Volume= 0.025 af, Depth> 3.80"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

A	rea (sf)	CN	Description		
	171	89	Gravel road	ls, HSG C	
	1,435	98	Roofs, HSG	С	
	1,622	74	>75% Gras	s cover, Go	bod, HSG C
*	172	98	Unconnecte	ed pavers, l	HSG C
	3,400	86	Weighted A	verage	
	1,793	:	52.74% Per	vious Area	
	1,607		47.26% Imp	pervious Ar	ea
	172		10.70% Un	connected	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
3.8	50	0.0440	0.22		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.69"
0.7	100	0.0220	2.22		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
4.5	150	Total,	Increased t	o minimum	Tc = 6.0 min

Summary for Subcatchment 10S: (new Subcat)

Runoff = 0.50 cfs @ 12.09 hrs, Volume= 0.034 af, Depth> 2.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

A	rea (sf)	CN I	Description		
	257	89 (Gravel road	ls, HSG C	
	294	98 I	Roofs, HSG	ЭС	
	5,689	74 >	>75% Gras	s cover, Go	bod, HSG C
	6,240	76 \	Neighted A	verage	
	5,946	ę	95.29% Pei	vious Area	
	294	4	4.71% Impe	ervious Area	а
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
3.8	50	0.0440	0.22		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.69"
0.7	100	0.0220	2.22		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
4.5	150	Total	Incroaced t	o minimum	$T_{0} = 6.0 \text{ min}$

Summary for Subcatchment 11S: (new Subcat)

Runoff = 0.11 cfs @ 12.09 hrs, Volume= 0.009 af, Depth> 4.71"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

A	vrea (sf)	CN	Description						
*	610	98	Unconnecte	ed pavers, l	HSG C				
	220	98	Roofs, HSC	G C					
	113	74	>75% Gras	s cover, Go	ood, HSG C				
	943	95	Weighted A	verage					
	113		11.98% Pe	rvious Area					
	830		88.02% Impervious Area						
	610		73.49% Un	connected					
Tc (min)	Length (feet)	Slope (ft/ft	e Velocity) (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry,				

Summary for Subcatchment 12S: (new Subcat)

Runoff = 0.12 cfs @ 12.09 hrs, Volume= 0.009 af, Depth> 4.71"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

A	rea (sf)	CN	Description						
*	708	98	Unconnecte	ed pavers, l	HSG C				
	195	98	Roofs, HSC	G C					
	126	74	>75% Gras	s cover, Go	ood, HSG C				
	1,029	95	95 Weighted Average						
	126		12.24% Pervious Area						
	903		87.76% Impervious Area						
	708		78.41% Un	connected					
Tc (min)	Length (feet)	Slope (ft/ft	e Velocity) (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry,				

Summary for Subcatchment 13S: (new Subcat)

Runoff = 0.32 cfs @ 12.09 hrs, Volume= 0.022 af, Depth> 3.50"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

A	rea (sf)	CN	Description							
*	93	98	Unconnecte	ed pavers, l	HSG C					
	1,092	98	Roofs, HSG	S C						
	2,074	74	>75% Gras	s cover, Go	ood, HSG C					
	77	98	Roofs, HSC	G C						
	3,336	83	Weighted A	verage						
	2,074		62.17% Pervious Area							
	1,262		37.83% Impervious Area							
	93		7.37% Unco	onnected						
_										
Tc	Length	Slope	e Velocity	Capacity	Description					
<u>(min)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)						
6.0					Direct Entry,					

Summary for Reach 2R: 8" Culvert

[52] Hint: Inlet/Outlet conditions not evaluated

[82] Warning: Early inflow requires earlier time span

[80] Warning: Exceeded Pond 2P by 0.03' @ 8.10 hrs (0.00 cfs 0.001 af)

Inflow .	Area	=	0.189 ac, 2	24.68% Imp	ervious,	Inflow Depth >	3.2	27" for 10-	yr event
Inflow		=	0.63 cfs @	12.11 hrs,	Volume	= 0.051	af		-
Outflow	N	=	0.63 cfs @	12.12 hrs,	Volume	= 0.051	af,	Atten= 0%,	Lag= 0.1 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 2.68 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.03 fps, Avg. Travel Time= 0.3 min

Peak Storage= 5 cf @ 12.12 hrs Average Depth at Peak Storage= 0.43' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 0.85 cfs

8.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 20.0' Slope= 0.0050 '/' Inlet Invert= 6.85', Outlet Invert= 6.75'

Summary for Reach 4R: (new Reach)

Inflow Area	a =	0.155 ac, 4	12.59% Impervi	ous, Inflow De	epth > 3.6	2" for 10-	yr event
Inflow	=	0.51 cfs @	12.10 hrs, Vo	lume=	0.047 af		-
Outflow	=	0.51 cfs @	12.10 hrs, Vo	lume=	0.047 af,	Atten= 0%,	Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 1.71 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.63 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 12.10 hrs Average Depth at Peak Storage= 0.19' Bank-Full Depth= 0.33' Flow Area= 0.7 sf, Capacity= 1.59 cfs

3.00' x 0.33' deep Parabolic Channel, n= 0.022 Earth, clean & straight Length= 1.0' Slope= 0.0100 '/' Inlet Invert= 6.66', Outlet Invert= 6.65'

Summary for Pond 1P: (new Pond)

[92] Warning: Device #3 is above defined storage

Inflow Area	=	0.077 ac, 3	7.83% Impe	ervious,	Inflow Dep	oth >	3.50"	for 10-yr	event
Inflow	=	0.32 cfs @	12.09 hrs,	Volume	= (0.022 a	af		
Outflow	=	0.18 cfs @	12.22 hrs,	Volume	= (0.022 a	af, Atte	n= 45%,	Lag= 8.0 min
Primary	=	0.18 cfs @	12.22 hrs,	Volume	= (0.022 a	af		

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 7.09' @ 12.22 hrs Surf.Area= 772 sf Storage= 183 cf

Plug-Flow detention time= 22.5 min calculated for 0.022 af (99% of inflow) Center-of-Mass det. time= 16.8 min (793.1 - 776.3)

Volume	Inv	ert Avail.Sto	orage	Storage D	escription				
#1	6.7	74' 5	67 cf	Custom S	tage Data (Pr	ismatic)Listed below (Recalc)			
Elevatio	on et)	Surf.Area (sq-ft)	Inc (cubic	.Store c-feet)	Cum.Store (cubic-feet)				
6.7	74	200		0	0				
7.0	00	700		117	117				
7.5	50	1,100		450	567				
Device	Routing	Invert	Outle	et Devices					
#1	#1 Primary 6.74'		6.0" L= 2 Inlet n= 0	6.0" Round Culvert L= 20.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 6.74' / 6.64' S= 0.0050 '/' Cc= 0.900 n= 0.012 Corrugated PP smooth interior Flow Area= 0.20 sf					
#2 #3	Device 1 Device 1	6.74' 7.54'	4.0" 6.0"	4.0" Vert. Orifice/Grate C= 0.600 6.0" Horiz. Orifice/Grate C= 0.600					
			Limit	ed to weir f	low at low hea	IOS			

Primary OutFlow Max=0.18 cfs @ 12.22 hrs HW=7.09' TW=6.83' (Dynamic Tailwater) 1=Culvert (Passes 0.18 cfs of 0.20 cfs potential flow) 2=Orifice/Grate (Orifice Controls 0.18 cfs @ 2.05 fps) 2=Orifice/Crate (Controls 0.00 cfs)

-3=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond 2P: (new Pond)

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=12)

Inflow Area	=	0.143 ac,	4.71% Impervious,	Inflow Depth >	2.83" fo	or 10-yr	event
Inflow	=	0.50 cfs @	12.09 hrs, Volume	e= 0.034	af		
Outflow :	=	0.45 cfs @	12.11 hrs, Volume	e= 0.034	af, Atten=	= 11%, L	_ag= 1.2 min
Primary	=	0.45 cfs @	12.11 hrs, Volume	e= 0.034	af		
Secondary	=	0.00 cfs @	5.00 hrs, Volume	e= 0.000	af		

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 7.36' @ 12.15 hrs Surf.Area= 183 sf Storage= 69 cf

Plug-Flow detention time= 3.9 min calculated for 0.034 af (99% of inflow) Center-of-Mass det. time= 2.9 min (794.2 - 791.3)

Volume	In	vert A	vail.Sto	rage	Storage D	escription	
#1	6	5.85'	10)8 cf	Custom S	tage Data (P	rismatic)Listed below
Elevatio (fee	on et)	Surf.Are (sq-f	a t)	Inc. (cubic	Store -feet)	Cum.Store (cubic-feet)	
6.8 7.0 7.6	35 00 60	3 8 25	5 0 0		0 9 99	0 9 108	
Device	Routing	9	Invert	Outle	t Devices		
#1 #2	#1 Primary 6.85' #2 Secondary 7.50'		8.0" Vert. Orifice/Grate C= 0.600 10.0' long x 12.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64				

Primary OutFlow Max=0.37 cfs @ 12.11 hrs HW=7.35' TW=7.27' (Dynamic Tailwater) **1=Orifice/Grate** (Orifice Controls 0.37 cfs @ 1.32 fps)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=6.85' TW=6.74' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 3P: Permeable Pavers

[82] Warning: Early inflow requires earlier time span

Inflow Area	ı =	0.022 ac, 8	8.02% Impervic	ous, Inflow Dept	th > 4.71"	for 10-yr	event
Inflow	=	0.11 cfs @	12.09 hrs, Volu	ume= 0).009 af		
Outflow	=	0.08 cfs @	12.16 hrs, Volu	ume= 0	0.008 af, Atte	n= 26%, I	_ag= 4.6 min
Primary	=	0.08 cfs @	12.16 hrs, Volu	ume= 0).008 af		

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 7.72' @ 12.16 hrs Surf.Area= 610 sf Storage= 53 cf

Plug-Flow detention time= 27.3 min calculated for 0.008 af (98% of inflow) Center-of-Mass det. time= 19.1 min (762.3 - 743.2)

Volume	lı lı	nvert	Ava	il.Stor	age	Storage Description						
#1		7.50'		36	6 cf	Custom Stage D)ata (Prismatic)	Listed below (Recalc)				
Elevatio (fee	on et)	Su	rf.Area (sq-ft)	Void %)	s o)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)					
7.5 9.0	50 00		610 610	0. 40.	0 0	0 366	0 366					
Device	Routir	ng	In	vert	Outle	et Devices						
#1	Prima	ry	7	'.50'	4.0 " L= 5 Inlet n= 0)" Round Culvert 50.0' CPP, square edge headwall, Ke= 0.500 et / Outlet Invert= 7.50' / 7.00' S= 0.0100 '/' Cc= 0.900 0.012 Corrugated PP, smooth interior, Flow Area= 0.09 sf						

Primary OutFlow Max=0.08 cfs @ 12.16 hrs HW=7.72' TW=7.25' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.08 cfs @ 2.00 fps)

Summary for Pond 4P: Permeable Pavers

[82] Warning: Early inflow requires earlier time span

[44] Hint: Outlet device #1 is below defined storage

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=75)

Inflow Area	ı =	0.024 ac, 8	37.76% Imp	ervious,	Inflow	Depth >	4.71	" for	10-yr	event	
Inflow	=	0.12 cfs @	12.09 hrs,	Volume	=	0.009	af		-		
Outflow	=	0.11 cfs @	12.07 hrs,	Volume	=	0.009	af, A	tten= 8	3%, La	ag= 0.0) min
Primary	=	0.11 cfs @	12.07 hrs,	Volume	=	0.009	af			-	

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 7.51' @ 12.14 hrs Surf.Area= 708 sf Storage= 3 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.5 min (743.8 - 743.2)

Volume	Inv	ert Ava	il.Storag	e Storage Desc	Storage Description					
#1	7.	50'	425	of Custom Stag	e Data (Prismatic)	₋isted below (Recalc)				
Elevatio (fee	on et)	Surf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)					
7.5	50	708	0.0	0	0					
9.0	00	708	40.0	425	425					
Device	Routing	In	ivert C	utlet Devices						
#1	Primary	7	7.25' 4	0" Round Culve	rt					

L= 25.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 7.25' / 7.00' S= 0.0100 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.09 sf

Primary OutFlow Max=0.10 cfs @ 12.07 hrs HW=7.50' TW=7.25' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 0.10 cfs @ 2.00 fps)

Summary for Subcatchment 3S: (new Subcat)

Runoff = 0.47 cfs @ 12.09 hrs, Volume= 0.034 af, Depth> 5.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-yr Rainfall=7.10"

A	rea (sf)	CN I	Description							
	171	89 (Gravel road	ls, HSG C						
	1,435	98 I	Roofs, HSG	ЭС						
	1,622	74 >	>75% Gras	s cover, Go	bod, HSG C					
*	172	98	Jnconnecte	ed pavers, l	HSG C					
	3,400	86	Neighted A	verage						
	1,793	Į	52.74% Pei	vious Area						
	1,607	4	47.26% Impervious Area							
	172		10.70% Un	connected						
Tc	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
3.8	50	0.0440	0.22		Sheet Flow,					
					Grass: Short n= 0.150 P2= 3.69"					
0.7	100	0.0220	2.22		Shallow Concentrated Flow,					
					Grassed Waterway Kv= 15.0 fps					
4.5	150	Total,	Increased t	o minimum	1 Tc = 6.0 min					

Summary for Subcatchment 10S: (new Subcat)

Runoff = 0.71 cfs @ 12.09 hrs, Volume= 0.049 af, Depth> 4.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-yr Rainfall=7.10"

A	rea (sf)	CN I	Description							
	257	89 (Gravel road	ls, HSG C						
	294	98 I	Roofs, HSG	ЭС						
	5,689	74 >	>75% Gras	s cover, Go	bod, HSG C					
	6,240	76 \	Neighted A	verage						
	5,946	ę	95.29% Pervious Area							
	294	4	4.71% Impervious Area							
Tc	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
3.8	50	0.0440	0.22		Sheet Flow,					
					Grass: Short n= 0.150 P2= 3.69"					
0.7	100	0.0220	2.22		Shallow Concentrated Flow,					
					Grassed Waterway Kv= 15.0 fps					
4.5	150	Total	Incroaced t	o minimum	$T_{0} = 6.0 \text{ min}$					

Summary for Subcatchment 11S: (new Subcat)

Runoff = 0.15 cfs @ 12.09 hrs, Volume= 0.011 af, Depth> 6.09"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-yr Rainfall=7.10"

	Area (sf)	CN	Description								
*	610	98	Unconnecte	ed pavers, l	ISG C						
	220	98	Roofs, HSC	oofs, HSG C							
	113	74	>75% Gras	75% Grass cover, Good, HSG C							
	943	95	Weighted A	verage							
	113		11.98% Pe	1.98% Pervious Area							
	830		88.02% Im	pervious Are	ea						
	610		73.49% Un	connected							
Tc (min)	Length	Slop	e Velocity	Capacity	Description						
	(ieet)	(1011	.) (17360)	(013)							
6.0					Direct Entry,						

Summary for Subcatchment 12S: (new Subcat)

Runoff = 0.16 cfs @ 12.09 hrs, Volume= 0.012 af, Depth> 6.09"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-yr Rainfall=7.10"

Α	vrea (sf)	CN	Description									
*	708	98	Unconnecte	Inconnected pavers, HSG C								
	195	98	Roofs, HSG	Roofs, HSG C								
	126	74	>75% Gras	75% Grass cover, Good, HSG C								
	1,029	95	Weighted A	/eighted Average								
	126		12.24% Per	12.24% Pervious Area								
	903		87.76% Impervious Area									
	708		78.41% Un	connected								
Tc (min)	Length (feet)	Slope (ft/ft	e Velocity) (ft/sec)	Capacity (cfs)	Description							
6.0					Direct Entry,							

Summary for Subcatchment 13S: (new Subcat)

Runoff = 0.44 cfs @ 12.09 hrs, Volume= 0.031 af, Depth> 4.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-yr Rainfall=7.10"

A	rea (sf)	CN	Description								
*	93	98	Unconnecte	ed pavers, l	HSG C						
	1,092	98	Roofs, HSG	S C							
	2,074	74	>75% Gras	s cover, Go	ood, HSG C						
	77	98	Roofs, HSC	S C							
	3,336	83	Weighted A	Veighted Average							
	2,074		62.17% Pervious Area								
	1,262		37.83% Imp	pervious Are	ea						
	93		7.37% Unco	onnected							
_											
Tc	Length	Slope	e Velocity	Capacity	Description						
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)							
6.0					Direct Entry,						

Summary for Reach 2R: 8" Culvert

[52] Hint: Inlet/Outlet conditions not evaluated

[82] Warning: Early inflow requires earlier time span

[80] Warning: Exceeded Pond 2P by 0.03' @ 7.05 hrs (0.00 cfs 0.001 af)

Inflow .	Area	=	0.189 ac,	24.68% Imp	ervious,	Inflow Depth >	4.5	54" for 25-y	/r event
Inflow		=	0.85 cfs @	12.11 hrs,	Volume	= 0.071	af	-	
Outflow	N	=	0.85 cfs @	12.11 hrs,	Volume	= 0.071	af,	Atten= 0%,	Lag= 0.1 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 2.79 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.15 fps, Avg. Travel Time= 0.3 min

Peak Storage= 6 cf @ 12.11 hrs Average Depth at Peak Storage= 0.54' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 0.85 cfs

8.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 20.0' Slope= 0.0050 '/' Inlet Invert= 6.85', Outlet Invert= 6.75'

Summary for Reach 4R: (new Reach)

Inflow Are	ea =	0.155 ac,	42.59% Impervious,	Inflow Depth > 4	.97" for 25-yr event
Inflow	=	0.66 cfs @	12.10 hrs, Volume	e 0.064 at	f
Outflow	=	0.66 cfs @	2 12.10 hrs, Volume	e= 0.064 at	f, Atten= 0%, Lag= 0.0 min

5217post *Ty* Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 01222 © 2020 HydroCAD Software Solutions LLC

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 1.85 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.70 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 12.10 hrs Average Depth at Peak Storage= 0.22' Bank-Full Depth= 0.33' Flow Area= 0.7 sf, Capacity= 1.59 cfs

3.00' x 0.33' deep Parabolic Channel, n= 0.022 Earth, clean & straight Length= 1.0' Slope= 0.0100 '/' Inlet Invert= 6.66', Outlet Invert= 6.65'

Summary for Pond 1P: (new Pond)

[92] Warning: Device #3 is above defined storage

Inflow Area	a =	0.077 ac, 3	7.83% Imper	vious, Inflow	Depth >	4.84" 1	for 25-yr	event
Inflow	=	0.44 cfs @	12.09 hrs, V	olume=	0.031 a	af		
Outflow	=	0.22 cfs @	12.25 hrs, V	olume=	0.030 a	af, Atter	n= 50%,	Lag= 9.4 min
Primary	=	0.22 cfs @	12.25 hrs, V	olume=	0.030 a	af		-

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 7.19' @ 12.25 hrs Surf.Area= 849 sf Storage= 261 cf

Plug-Flow detention time= 21.7 min calculated for 0.030 af (98% of inflow) Center-of-Mass det. time= 16.9 min (785.4 - 768.5)

Volume	Inv	ert Avail.Sto	orage	Storage D	escription					
#1	6.7	74' 5	67 cf	Custom S	tage Data (Pr	ismatic)Listed below (Recalc)				
Elevatio (fee	on et)	Surf.Area (sq-ft)	Inc. (cubic	Store -feet)	Cum.Store (cubic-feet)					
6.7	74	200		0	0					
7.0	00	700		117	117					
7.5	50	1,100		450	567					
Device	Routing Invert		Outle	et Devices						
#1	Primary 6.74'		6.0" L= 20 Inlet n= 0.	6.0" Round Culvert L= 20.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 6.74' / 6.64' S= 0.0050 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior. Flow Area= 0.20 sf						
#2	#2 Device 1 6.74'		4.0"	Vert. Orific	ce/Grate C=	0.600				
#3	#3 Device 1 7.54'		6.0'' Limit	6.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads						

Primary OutFlow Max=0.22 cfs @ 12.25 hrs HW=7.19' TW=6.84' (Dynamic Tailwater) 1=Culvert (Passes 0.22 cfs of 0.30 cfs potential flow) 2=Orifice/Grate (Orifice Controls 0.22 cfs @ 2.54 fps) 3=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond 2P: (new Pond)

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=5)

Inflow Area =	0.143 ac,	4.71% Impervious, Inflow De	epth > 4.07" for 25-yr event
Inflow =	0.71 cfs @	12.09 hrs, Volume=	0.049 af
Outflow =	0.64 cfs @	12.11 hrs, Volume=	0.048 af, Atten= 10%, Lag= 1.0 min
Primary =	0.64 cfs @	12.11 hrs, Volume=	0.048 af
Secondary =	0.01 cfs @	12.15 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 7.51' @ 12.15 hrs Surf.Area= 223 sf Storage= 92 cf

Plug-Flow detention time= 3.5 min calculated for 0.048 af (100% of inflow) Center-of-Mass det. time= 2.7 min (785.6 - 782.9)

Volume	Ir	nvert	Avail.Sto	rage	Storage D	escription	
#1	6	6.85'	1	08 cf	Custom S	tage Data (P	rismatic)Listed below
Elevatio (fee	on et)	Surf.Area (sq-ft)		Inc.Store (cubic-feet)		Cum.Store (cubic-feet)	
6.8 7.0 7.6	35)0 30	35 80 250		0 9 99		0 9 108	
Device	Routin	g	Invert	Outlet Devices			
#1 #2	<u>Device Routing</u> #1 Primary #2 Second		6.85' 7.50'	8.0" 10.0 Head Coef	Vert. Orific long x 12 d (feet) 0.2 f. (English)	ce/Grate C= .0' breadth E 0 0.40 0.60 2.57 2.62 2	0.600 Broad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 .70 2.67 2.66 2.67 2.66 2.64

Primary OutFlow Max=0.49 cfs @ 12.11 hrs HW=7.47' TW=7.39' (Dynamic Tailwater) **1=Orifice/Grate** (Orifice Controls 0.49 cfs @ 1.44 fps)

Secondary OutFlow Max=0.01 cfs @ 12.15 hrs HW=7.51' TW=7.16' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir (Weir Controls 0.01 cfs @ 0.19 fps)

Summary for Pond 3P: Permeable Pavers

[82] Warning: Early inflow requires earlier time span

Inflow Area	=	0.022 ac, 8	38.02% Imperviou	us, Inflow Depth >	6.09" for	25-yr event
Inflow	=	0.15 cfs @	12.09 hrs, Volu	me= 0.011	af	-
Outflow	=	0.11 cfs @	12.18 hrs, Volu	me= 0.011	af, Atten=2	27%, Lag= 5.7 min
Primary	=	0.11 cfs @	12.18 hrs, Volu	me= 0.011	af	-

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 7.76' @ 12.17 hrs Surf.Area= 610 sf Storage= 65 cf

Plug-Flow detention time= 24.4 min calculated for 0.011 af (98% of inflow) Center-of-Mass det. time= 17.2 min (757.4 - 740.2)

Volume	lr	nvert	Avail.Storage		age	e Storage Description							
#1	-	7.50'	36		6 cf	Custom Stage D	<pre>Sustom Stage Data (Prismatic)Listed below (Recalc)</pre>						
Elevatio (fee	on et)	Sur	f.Area (sq-ft)	Void %)	s)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)						
7.9 9.0	50 00		610 610	0. 40.	0 0	0 366	0 366						
Device	Routin	g	In	vert	Outle	et Devices							
#1	Primar	imary 7.50'		4.0" Round Culvert L= 50.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 7.50' / 7.00' S= 0.0100 '/' Cc= 0.900 n= 0.012 Corrugated PP smooth interior. Flow Area= 0.09 sf									

Primary OutFlow Max=0.11 cfs @ 12.18 hrs HW=7.76' TW=7.34' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 0.11 cfs @ 2.04 fps)

Summary for Pond 4P: Permeable Pavers

[82] Warning: Early inflow requires earlier time span

[44] Hint: Outlet device #1 is below defined storage

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=75)

Inflow Area	a =	0.024 ac, 8	7.76% Impervious	, Inflow Depth >	6.09" for	25-yr event
Inflow	=	0.16 cfs @	12.09 hrs, Volum	e= 0.012	af	-
Outflow	=	0.12 cfs @	12.20 hrs, Volum	e= 0.012	af, Atten=2	27%, Lag= 7.1 min
Primary	=	0.12 cfs @	12.20 hrs, Volum	e= 0.012	af	

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 7.56' @ 12.17 hrs Surf.Area= 708 sf Storage= 16 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.7 min (740.9 - 740.2)

Volume	Inv	vert Ava	il.Storage	e Storage Descri	Storage Description							
#1 7		50'	425 c	f Custom Stage	Custom Stage Data (Prismatic)Listed below (Recale							
Elevatio (fee	on et)	Surf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)							
7.5	50 00	708 708	0.0 40.0	0 425	0 425							
Device	Routing	Ir	nvert Ou	Itlet Devices								
#1 Primary 7.25' 4.0''		" Round Culver	t									

L= 25.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 7.25' / 7.00' S= 0.0100 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.09 sf

Primary OutFlow Max=0.12 cfs @ 12.20 hrs HW=7.55' TW=7.32' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 0.12 cfs @ 1.98 fps)

APPENDIX B:

HYDROLOGICAL DATA

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Smoothing	Yes
State	
Location	
Longitude	70.714 degrees West
Latitude	43.061 degrees North
Elevation	0 feet
Date/Time	Fri, 30 Jul 2021 14:38:04 -0400

Extreme Precipitation Estimates

xtrei	treme Precipitation Estimates													15%							
	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.26	0.40	0.50	0.65	0.81	1.04	1yr	0.70	0.98	1.21	1.56	2.03	2.66	2.93	3.06	2.35	2.82	3.23	3.95	4.56	1yr
2yr	0.32	0.50	0.62	0.82	1.03	1.30	2yr	0.89	1.19	1.52	1.94	2.49	3.21	3.58	3.69	2.84	3.44	3.94	4.69	5.33	2yr
5yr	0.37	0.58	0.73	0.98	1.25	1.61	5yr	1.08	1.47	1.89	2.44	3.14	4.07	4.58	4.68	3.60	4.41	5.05	5.94	6.71	5yr
10yr	0.42	0.65	0.83	1.12	1.46	1.90	10yr	1.26	1.74	2.24	2.90	3.76	4.87	5.53	5.60	4.31	5.32	6.10	7.12	7.98	10yr
25yr	0.48	0.77	0.98	1.35	1.79	2.36	25yr	1.55	2.16	2.80	3.65	4.75	6.17	7.10	7.10	5.46	6.83	7.82	9.04	10.05	25yr
50yr	0.54	0.87	1.11	1.56	2.10	2.79	50yr	1.81	2.55	3.32	4.35	5.68	7.39	8.59	8.50	6.54	8.26	9.45	10.83	11.97	50yr
100yr	0.60	0.98	1.26	1.79	2.45	3.30	100yr	2.12	3.01	3.95	5.20	6.80	8.85	10.38	9.88	7.83	9.98	11.41	12.98	14.27	100yr
200yr	0.69	1.12	1.45	2.08	2.87	3.89	200yr	2.48	3.56	4.67	6.18	8.11	10.60	12.55		9.38	12.07	13.79	15.57	17.01	200yr
500yr	0.82	1.34	1.75	2.53	3.54	4.84	500yr	3.05	4.44	5.84	7.78	10.27	13.48	16.14		11.93	15.52	17.73	19.81	21.47	500yr

add

Lower Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.23	0.36	0.44	0.59	0.72	0.88	1yr	0.62	0.86	0.93	1.34	1.71	2.27	2.46	1yr	2.01	2.36	2.88	3.24	3.95	1yr
2yr	0.31	0.49	0.60	0.81	1.00	1.19	2yr	0.86	1.16	1.37	1.81	2.33	3.07	3.45	2yr	2.72	3.31	3.83	4.55	5.11	2yr
5yr	0.35	0.54	0.67	0.92	1.17	1.40	5yr	1.01	1.37	1.61	2.11	2.72	3.78	4.17	5yr	3.34	4.01	4.72	5.52	6.22	5yr
10yr	0.39	0.59	0.74	1.03	1.33	1.60	10yr	1.15	1.57	1.80	2.37	3.04	4.36	4.83	10yr	3.86	4.64	5.42	6.39	7.17	10yr
25yr	0.44	0.67	0.83	1.19	1.56	1.90	25yr	1.35	1.86	2.10	2.73	3.50	4.80	5.83	25yr	4.25	5.61	6.60	7.75	8.64	25yr
50yr	0.48	0.73	0.91	1.31	1.76	2.16	50yr	1.52	2.11	2.35	3.04	3.88	5.44	6.72	50yr	4.82	6.46	7.65	8.98	9.97	50yr
100yr	0.53	0.81	1.01	1.46	2.00	2.46	100yr	1.73	2.41	2.63	3.36	4.28	6.14	7.73	100yr	5.44	7.44	8.85	10.43	11.51	100yr
200yr	0.59	0.88	1.12	1.62	2.26	2.80	200yr	1.95	2.74	2.94	3.72	4.69	6.92	8.90	200yr	6.12	8.56	10.23	12.13	13.31	200yr
500yr	0.68	1.01	1.30	1.89	2.68	3.35	500yr	2.32	3.27	3.42	4.22	5.31	8.09	10.71	500yr	7.16	10.30	12.39	14.84	16.14	500yr

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.29	0.44	0.54	0.73	0.89	1.09	1yr	0.77	1.06	1.27	1.74	2.20	2.96	3.19	1yr	2.62	3.06	3.57	4.36	5.02	1yr
2yr	0.34	0.52	0.64	0.87	1.07	1.27	2yr	0.93	1.25	1.48	1.96	2.52	3.41	3.72	2yr	3.02	3.58	4.11	4.85	5.61	2yr
5yr	0.40	0.62	0.77	1.06	1.34	1.63	5yr	1.16	1.60	1.89	2.55	3.27	4.35	5.00	5yr	3.85	4.81	5.39	6.41	7.19	5yr
10yr	0.47	0.72	0.90	1.25	1.62	1.99	10yr	1.40	1.95	2.30	3.13	3.99	5.34	6.25	10yr	4.73	6.01	6.89	7.89	8.81	10yr
25yr	0.58	0.89	1.10	1.57	2.07	2.60	25yr	1.79	2.54	2.98	4.10	5.22	7.67	8.43	25yr	6.79	8.10	9.28	10.41	11.48	25yr
50yr	0.68	1.04	1.29	1.85	2.50	3.17	50yr	2.15	3.10	3.63	5.05	6.43	9.59	10.58	50yr	8.48	10.17	11.64	12.82	14.06	50yr
100yr	0.80	1.21	1.52	2.20	3.01	3.87	100yr	2.60	3.78	4.42	6.23	7.92	11.97	13.28	100yr	10.59	12.77	14.60	15.83	17.21	100yr
200yr	0.94	1.42	1.80	2.60	3.63	4.73	200yr	3.13	4.63	5.41	7.69	9.77	14.99	16.68	200yr	13.26	16.04	18.35	19.54	21.06	200yr
500yr	1.18	1.75	2.25	3.27	4.65	6.16	500yr	4.01	6.02	7.03	10.19	12.92	20.19	22.57	500yr	17.87	21.71	24.83	25.78	27.52	500yr

APPENDIX C:

WATERSHED PLANS

	PROPERTY LINE
- 60	EXISTING CONTOUR
60	PROPOSED CONTOUR
	WATERSHED BOUNDARY
>	Tc PATH
*~	PROPOSED GROUND SLOPE DIRECTION
⚠ 1	SUBCATCHMENT/POND/REACH
POA	POINT OF ANALYSIS

APPENDIX D:

Stormwater Management Facility Operation and Maintenance (O&M) Manual

445 Marcy Street, LLC (Gail and James Sanders) 445 Marcy Street Portsmouth, NH

Stormwater Management Program

Stormwater Management / BMP Facilities Maintenance Plan

Proper construction, inspection, maintenance, and repair are key elements in maintaining a successful stormwater management program on a developed property. Routine inspections ensure permit compliance and reduces the potential for deterioration of infrastructure or reduced water quality. Maintenance personnel must be qualified to properly maintain stormwater management facilities. Inadequately trained personnel can cause additional problems resulting in additional maintenance costs.

For the purpose of this Stormwater Management Program, a significant rainfall event is considered an event of three (3) inches in a 24-hour period or 0.5 inches in a one-hour period. It is anticipated that a short, intense event is likely to have a higher potential of erosion for this site than a longer, high volume event.

The following provides a list of recommendations and guidelines for managing the stormwater facilities.

MANICURED LANDSCAPED AREAS - LITTER CONTROL

Function – Landscaped areas tend to filter debris and contaminates that may block drainage systems and pollute the surface and ground waters.

Maintenance

- Litter Control and lawn maintenance involves removing litter such as trash, leaves, lawn clippings, pet wastes, oil and chemicals from streets, parking lots, and lawns before materials are transported into surface waters.
- Litter control shall be implemented as part of the ground's maintenance program.

MANICURED LANDSCAPED AREAS - FERTILIZER MANAGEMENT

Function – Fertilizer management involves controlling the rate, timing, and method of fertilizer application so that the nutrients are taken up by the plants thereby reducing the chance of polluting the surface and ground waters. Fertilizer management can be effective in reducing the amounts of phosphorus and nitrogen in runoff from landscaped areas, particularly lawns. Soil tests shall be conducted to determine fertilizer application rates.

Maintenance

- Have the soil tested by your landscaper or local Soil Conservation Service for nutrient requirements and follow the recommendations.
- Do not apply fertilizer to frozen ground.
- Clean up any fertilizer spills.
- Do not allow fertilizer to be broadcast into water bodies.
- When fertilizing a lawn, water thoroughly, but do not create a situation where water runs off the surface of the lawn.

PERMEABLE PAVERS

Function – Pavers are designed to capture rainwater runoff containing suspended solids, nutrients and pollutants. These systems require periodic maintenance to insure infiltration and storage capacity.

Maintenance

• Permeable pavers should be observed periodically during rain events for proper water infiltration into the system and inspected at least once per year to verify water flow and exfiltration. Sediment and debris should be removed from the joint/void opening to increase infiltration through light vacuuming on a semi-annual basic.

DE-ICING CHEMICAL USE AND STORAGE

Function – Salt and sand is used for de-icing of walkways, parking lots and drives. Care shall be taken to prevent the over-application of salt for melting ice.

Maintenance

- Proper storage of salt is critical. Salt is highly water-soluble. Contamination of wetlands and other sensitive areas can occur when salt is stored in open areas. Salt shall always be stored in a building
- When parking lots and walkways are free of snow and ice, they shall be swept clean. Disposal of sweepings shall be at a solid waste disposal facility.

CULVERTS AND DRAINAGE PIPES

Function – Culverts and drainage pipes convey stormwater away from buildings, walkways, and parking areas.

Maintenance

Culverts and drainage pipes shall be inspected semi-annually, or more often as needed, for accumulation of debris and structural integrity. Leaves and other debris shall be removed from the inlet and outlet to insure the functionality of drainage structures. Debris shall be disposed of on site where it will not concentrate back at the drainage structures or at a solid waste disposal facility.

GENERAL CLEAN UP

Upon completion of the project, the contractor shall remove all temporary stormwater structures (i.e., temporary stone check dams, silt fence, temporary diversion swales, catch basin inlet basket, etc.). Any sediment deposits remaining in place after the silt fence or filter barrier is no longer required shall be dressed to conform to the existing grade, prepared, and seeded. Remove any sediment in catch basins and clean drain pipes that may have accumulated during construction.

Once in operation, all paved areas of the site should be swept at least once annually, preferably at the end of winter prior to significant spring rains.