

L0700-026 September 27, 2023

Mr. Rick Chellman, Chair City of Portsmouth Planning Board 1 Junkins Avenue Portsmouth NH, 03801

Re: Lonza Biologics - Proposed Industrial Development
Amended Site Plan Review Application

Dear Chairman Chellman:

On behalf of Lonza Biologics, Inc. (Lonza), we are pleased to submit one (1) set of hard copies and one electronic file (.pdf) of the following information to support a request to the Planning Board for a recommendation for approval to the Pease Development Authority (PDA) for Amended Site Plan Review for a proposed industrial development located at 36, 46, 52, 70 and 80 Corporate Drive on Pease International Tradeport:

- PDA Application for Site Review, dated June 12, 2023;
- Third Party Stormwater Review Response Letter, dated September 27, 2023;
- Site Plan Set, last revised September 27, 2023;
- Drainage Analysis, last revised September 27, 2023;
- Operations & Maintenance Manual, last revised July 17, 2023;
- Traffic Impact Study, last revised July 17, 2023;
- PB Stipulations of Approval Letter, dated July 17, 2023;
- Wastewater Correspondence Letter by DTC Lawyers, dated February 14, 2023;
- Architectural Renderings;

PROJECT SUMMARY

Background

The proposed project will expand Lonza's facility to support its growing product development services to the pharmaceutical and biologic industries. The project was granted Site Plan approval on January 17, 2019, and amended by administrative approvals on September 27, 2019, and January 27, 2023, with seven (7) Conditions Subsequent. Per Condition Subsequent 2.8 the Planning Board's recommended approval applied only to Phases 1A and 1B. Subsequent phases of development shall require submission of updated plans and supporting documents and noticed public hearings with the City's Technical Advisory Committee and Planning Board for amended site plan approval.

Currently Phase 1A construction is complete, and Phase 1B work will be broke ground in mid-July. Accordingly, this amended site review application is submitted to allow Lonza to proceed to Phase 2 of the project which includes the fit up of Building #1 and the construction of a temporary surface parking lot to support the employees of Building #1.

Existing Condition

The project is located on the vacant portion of Lonza's 46-acre parcel, refered to as the Iron Parcel, that once consisted of military housing and streets for Pease Air Force Base. The houses and roads were removed in the mid to late 1990's as part of the Civil Redevelopment Plan for Pease after the closure of the Air Force Base. The Iron Parcel was merged with Lonza's original parcel at 101 International Drive as part of the 2019 subdivision approval.

The existing 101 International Drive facility is approximately 800,000 SF in gross floor area and includes approximately 900 employees. Site work is ongoing on the Iron Parcel for the final completion of Phase 1A and the commercement of Phase 1B. The following summarizes the work completed during Phase 1A and to be completed during Phase 1B:

Phase 1A

- Daylighting of Hodgson Brook on the Iron Parcel
- Removal of the existing Hodgson Brook culvert
- Construction of the sidewalk and landscaping along Corporate Drive
- Completion of Soils Management Plan

Phase 1B

- Construction of building #1 shell
- Construction site improvements for building #1 such as drive aisles, fire lanes, utilities, lighting, sidewalks and stormwater management including Gravel Wetland #1
- Construction of the utility building shell
- Temporary gravel area for construction trailers, parking and laydown in approximate location of Proposed Building #3
- Intermittent grading between stream and Building #1
- Temporary sedimentation basins at locations of Gravel Wetland #2 and Rain Garden #1

Amended Site Plan

The total master plan build-out of the proposed industrial development is depicted in the enclosed Site Plan set. The master plan includes three (3) new buildings totaling approximately 800,000 square feet of gross floor area, a central utility building, and a new parking garage. The full master plan build-out has the potential to create approximately 800 new jobs. The project's site improvements consist of drive aisles, sidewalks, fire lanes, utilities, lighting and landscaping. The site improvements will constist of new stormwater management systems that include two (2) gravel wetlands and one (1) rain garden. The project has already received Alteration of Terrain Permit from the New Hampshire Department of Environmental Services (NHDES) for the the stormwater management design.

This master plan will be constructed in phases. Full-buildout will take several years and must be completed in phases as Lonza identifies clients and fits out the buildings to meet their needs. Phase 2 plans for the development are included in the Site Plan set that is enclosed with this letter, along with the amended master plan. The following summarizes the work to be completed during Phase 2:

Phase 2

- Final fit-up of Building #1
- Final fit-up of Utility Building
- Construction of the temporary surface parking lot

 Temporary gravel area for construction trailers, parking and laydown in approximate location of Proposed Building #2

The enclosed plans and supplemental materials have been provided to address feedback from the Technical Advisory Committee (TAC) at their meeting held on August 1, 2023. Additionally, the applicant has addressed additional coordination items between the building design and the utility and drainage design plans enclosed in this package. Below is a list of items that were modified to either address TAC feedback or the building coordination items;

- Added a fire service connection to the parking garage as depicted on the Master Utility plans Sheet C-111 & C-112.
- A 10" valve has been added after the reducer on the water main connection to Corporate Drive on Sheet C-111 & C-161.
- Added site note #24 stating that all gates shall be equipped with Knox boxes as depicted on sheets C-105 & C-165.
- Corrected the City of Portsmouth DPW references in notes 1 & 2 on the Manhole Joints Detail on sheet C-505.
- Added Exterior Electrical and Building equipment for the utility yards of Building 1 and the CUB as depicted on the Master and Phase 2 Utility plans C-112, C-113, C-172, & C-173.
- Adjusted Roof Drain, Under Slab Drainage and Foundation drain tie-in location for both Building 1 and the CUB as depicted on the Grading and Drainage plans C-109, C-110, C-169, & C-170.

We respectfully request to be placed on the Planning Board meeting agenda for October 19, 2023. If you have any questions or need any additional information, please contact Neil Hansen by phone at (603) 294-9213 or by email at nahansen@tighebond.com.

Sincerely,

TIGHE & BOND, INC.

Neil A. Hansen, PE Project Manager

Copy: Lonza Biologics (via email)

Pease Development Authority

Colter J. Krzcuik, EIT Staff Engineer

J:\L\L0700 Lonza Biologics Expansion was 1576F\026_Project Albacore\Report_Evaluations\Applications\City of Portsmouth\20230925 PB Submission\L0700-026 PB Cover Letter.docx

Pease Development Authority 55 International Drive, Portsmouth, NH 03801, (603) 433-6088

Application for Site Review

		200	POPISMOUTH AD	
For PDA Use Only				
Date Submitted:	Municipal Review:	Fee:		
Application Complete:	Date Forwarded:	Paid:	Check #:	
	A	A lasta amartina		
	Applican	t Information		
Applicant: Lonza Biologics	s, Inc.	Agent: Tighe & Bond		
Address: 101 Internation	al Drive	Address: 177 Corporate Drive		
Portsmouth, NF	₫ 03801	Portsmouth	, NH 03801	
Business Phone: 603-570-36	325	Business Phone: 603-4	33-8818	
Mobile Phone:		Mobile Phone:		
Fax:		Fax:		
	Site In	nformation		
]Lot #: 006	Zone: Airport, Busine	ocs Commercial	
Portsmouth Tax Map: 305			ess, Commercial	
	nternational Drive, Ports	Area of On-site Wetlands	: 4 087 SF	
Site Address / Location :		Area of on site wettered	. 4,007 01	
	Activity	Information		
Change of Use: Yes []	No [x] Existing U	se: Office/Research/M	lanufacturing	
	Dronged	Use: Office/Research/I	Manufacturing	
Description of Project:	Fioposed	OSE. OTHOOPT COOCH OTHE	<u> </u>	
	l-out of the proposed indus	trial development is dep	picted in the enclosed Site Plan se	
The master plan includes t	hree (3) new huildings tota	iling approximately 800.	000 square feet of gross floor	
area a central utility huildi	ng, and a new parking gara	age. Phase 1A construc	tion is nearing completion, and	
Phace 1R work will be bres	aking ground in early July.	Accordingly, this amend	led site review application is	
cubmitted to allow Lonza to	o proceed to Phase 2 of the	e project which includes	the fit up of Building #1 and the	
construction of a temporar	y surface parking lot to sup	port the employees of the	Building #1. Per a condition of I plans and supporting documents	
All above information shall	be shown on a site plan submit	tted with this application. P	rovide 3 full size hard copies and one	
PDF copy of all application ma	terials as well as one half-size	set of drawings to PDA. Ap	plicant shall supply additional copies a	
may be required by applic	able municipality. Refer to Ch	apter 400 of PDA land Use	Controls for additional information.	
	Con	diffection		
	Cer	tification		
I hereby codify under the nena	Ities of perium that the foregoing	information and accompanying	ng plans, documents, and supporting data	
are true and complete to the hes	at of my knowledge. I hereby appl	v for Site Review and acknow	viedge i will comply with all regulations an	
any conditions established	d by the Review Committee(s) an	nd PDA Board in the develops	ment and construction of this project.	
(hours	1.walh	12	TUN 2023	
	nature of Applicant		Date	
- 0.1.	nature of Applicant			

N:\Engineer\ ApplicationforSiteReview.xlsx

L0700-026 September 27, 2023

Mr. Eric D. Weinrieb, PE, President Altus Engineering, Inc. 133 Court Street Portsmouth, New Hampshire 03801

Re: Response to Third Party Review
Lonza Biologics – Iron Parcel Development
70 & 80 Corporate Drive, Tax Map 305, Lot 6
Altus Project 5483

Dear Eric:

On behalf of Lonza Biologics (applicant), we are pleased to submit revised Site Plans and Drainage Analysis for the above referenced project. The enclosed plans have been revised in response to the four (4) Plan Review Comments and eight (8) recommendations received from Altus in a letter dated September 22, 2023. The following are responses (in **bold**) to the recommendations from your review letter:

Plan Review Comments:

1. Title Sheet - The Plan Set Index refers to Phase 1B plan, but the Plans are Phase 2. This is confusing when initially reviewing for project phasing.

Plan Set Index on Cover Sheet has been revised to remove references to Phase 1B.

2. Phase 2 Overall Site Plan (C-164) – The temporary laydown area in the location of Building #2 that is to be constructed during Phase 1B is not shown. Please provide laydown area to be utilized during this Phase 2. It is understood that the laydown area will be removed at the completion of Phase 2 for the planting of the lawn as provided in Landscape Plan C-175 and 176.

Sheet C-163.1 shows the location of the gravel construction laydown area in the location of building #2. Confirmed the intent is for the laydown area to be removed at the completion of Phase 2 for the planting of the lawn as provided in Landscape Plan C-175 and 176.

3. Temporary Sediment Basin #1 – This basin is identified as a temporary basin on the Phase 2 development plans. Please indicate when the temporary basin is to be removed and if it is intended to remain at the completion of Phase 2.

The intent is for sediment basin 1 to remain in place until the construction of Building 2 as part of a future phase of development. At that time sediment basin 1 will be removed, and raingarden 1 will be constructed in its place to treat runoff from Building 2 and associated impervious surfaces.

4. Details Sheet C-510 – The temporary Sediment Basin detail provided shows a sand filter and underdrain. The location of the filter fabric is not shown on the detail. The filter fabric should be shown between the sand and rock layers so that sand does not migrate to the rock. It should be noted that this is a temporary BMP and should be removed at the completion of Phase 2. As this is in the location of the future

raingarden, all rock and sand shall be removed to native soil for construction of the raingarden.

Temporary sediment basin 1 is already constructed per the detail on sheet C-510, which calls for the basin to be lined with geotextile. A line for the location of the fabric has been added to the detail for clarity. The intent is for sediment basin 1 to remain in place until the construction of Building 2 as part of a future phase of development.

Recommendations:

- 1. The applicant should maintain the SWPPP, monitoring, and maintenance with strong oversight by the engineer of record.
 - a. Clean and maintain Catch Basin filters along Goose Bay Drive.
 - b. Fix filter fabric in inlet pond at Goose Bay Drive.

Tighe & Bond is performing the SWPPP monitoring for the project as well as the Environmental Monitoring required by the Alteration of Terrain Permit. The applicants contractor is responsible for performing all maintenance items noted

2. The applicant should verify if an amendment to the existing NHDES Alteration of Terrain Permit is required, per Env-Wq 1503.22, and process amendment if required.

The NHDES Alteration of Terrain Permit for this project is for the full master plan build out of the site. The changes to the plans proposed do not trigger the need for an amended permit at this time.

3. The applicant should revise the detail for the temporary sediment basin with clarification on filter fabric locations.

Temporary sediment basin 1 is already constructed per the detail on sheet C-510, which calls for the basin to be lined with geotextile. A line for the location of the fabric has been added to the for clarity.

4. The applicant should provide the proposed layout and details (approximate size and section) for the gravel construction laydown area in the location of Building #2.

Sheet C-163.1 shows the location of the gravel construction laydown area in the location of building #2. Gravel parking area section is on Detail Sheet C-502.

5. The applicant should remove the temporary gravel laydown area for Phase 2 in the location Building #2 upon completion of Phase 2 and the area shall be restored per the planting plans.

This is the intent shown on the Phase 2 plan set.

6. The applicant should revise the stormwater modeling to include the gravel laydown area for Phase 2 for the sizing of the temporary sediment basin.

The Phase 2 calculations included in the previous version of the Drainage Analysis are for the post-phase 2 construction condition of the site. The gravel laydown area was included in the Phase 1B drainage calculations and used to size sediment basin 1. These calculations have been included in the revised drainage analysis, and peak flow rate comparison table. In order to provide

conservative sizing of the sediment basin, the entire watershed area was modelled as gravel.

7. The City should consider previously tabled items for inclusion in the Phase 2 work.

No Response Required

8. The applicant shall submit for approval any additional work not included in Phases 1A-1B and Phase 2.

No Response Required

If you have any questions or require any additional information, please feel free to contact me.

Sincerely,

TIGHE & BOND, INC.

Neil A. Hansen, PE Project Manager Patrick M. Crimmins, PE Vice President

Enclosures

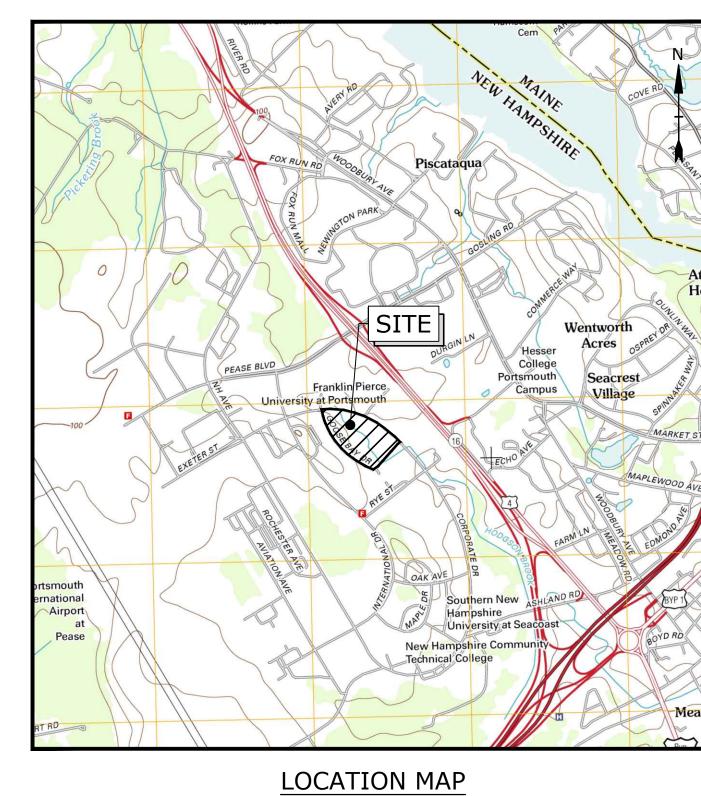
Cc: City of Portsmouth

Lonza Biologics (via email)

Pease Development Authority (via email)

PROPOSED INDUSTRIAL DEVELOPMENT

70 & 80 CORPORATE DRIVE PORTSMOUTH, NEW HAMPSHIRE


PROJECT NO: L-0700-13

APRIL 3, 2018

LAST REVISED: SEPTEMBER 27, 2023

PLAN SET INDEX				
SHEET TITLE	# OF SHEETS	LAST REVISED		
COVER SHEET	1	9/27/2023		
SHEET INDEX	1	9/27/2023		
EXISTING CONDITIONS & SUBDIVISION PLANS COVER SHEET	1	11/2/2021		
EXISTING CONDITIONS & SUBDIVISION PLANS	6	11/2/2021		
MASTER PLAN COVER SHEET	1	9/27/2023		
MASTER PLAN SET	19	9/27/2023		
PHASE 2 COVER SHEET	1	9/27/2023		
PHASE 2 PLAN SET	27	9/27/2023		
DETAILS COVER SHEET	1	9/27/2023		
EROSION CONTROL NOTES & DETAILS SHEETS	12	9/27/2023		

LIST OF PERMITS				
LOCAL	STATUS	DATE		
SITE PLAN REVIEW PERMIT	APPROVED	1/17/2019		
AMENDED SITE PLAN REVIEW PERMIT	PENDING			
STATE				
NHDES - ALTERATION OF TERRAIN PERMIT	ISSUED: AOT-1498	10/02/2018		
NHDES - WETLANDS PERMIT	ISSUED: #2018-01731	12/21/2018		
FEDERAL				
PHASE 1A - EPA - NPDES CGP	ISSUED: NHR1001EU	2/24/2022		
PHASE 1B - EPA - NPDES CGP	ISSUED:NHR1001SK	7/21/2023		
ILLIASE ID - ELA - INPUES COP	ISSUED:NHR1001SL	7/24/2023		

SCALE: 1" = 2,000'

LESSOR: PEASE DEVELOPMENT AUTHORITY

55 INTERNATIONAL DRIVE

PORTSMOUTH, NEW HAMPSHIRE 03801

APPLICANT/OWNER: LONZA BIOLOGICS

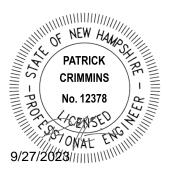
> 101 INTERNATIONAL DRIVE PORTSMOUTH, NH 03801

Tighe&Bond CIVIL ENGINEER:

177 CORPORATE DRIVE

PORTSMOUTH, NEW HAMPSHIRE 03801

SURVEYOR: DOUCET SURVEY, INC.


102 KENT PLACE

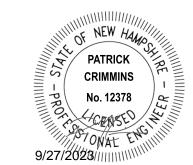
NEWMARKET, NEW HAMPSHIRE 03857

WETLAND SCIENTIST: GOVE ENVIRONMENTAL SERVICES, INC.

> 8 CONTINENTAL DRIVE, UNIT H EXETER, NEW HAMPSHIRE 03833

PLANNING BOARD SUBMISSION **COMPLETE SET 70 SHEETS**

EXIST	EXISTING CONDITIONS & SUBDIVISION PLANS SHEET INDEX			
SHEET NO.	SHEET NO. SHEET TITLE			
	COVER SHEET	11/2/2021		
1 of 4	EXISTING CONDITIONS PLAN	08/16/2018		
2 of 4	EXISTING CONDITIONS PLAN	08/16/2018		
3 of 4	EXISTING CONDITIONS PLAN	08/16/2018		
4 of 4	EXISTING CONDITIONS PLAN	08/16/2018		
1 of 2	SUBDIVISION PLAN	11/2/2021		
2 of 2	SUBDIVISION PLAN	11/2/2021		


MASTER PLAN SET SHEET INDEX				
SHEET NO.	SHEET TITLE	LAST REVISED		
	MASTER PLAN SET COVER SHEET	9/27/2023		
C-101	DEMOLITION PLAN	9/27/2023		
C-102	DEMOLITION PLAN	9/27/2023		
C-103	DEMOLITION PLAN	9/27/2023		
C-104	OVERALL SITE PLAN	9/27/2023		
C-105	SITE PLAN	9/27/2023		
C-106	SITE PLAN	9/27/2023		
C-107	SITE PLAN	9/27/2023		
C-108	GRADING, DRAINAGE & EROSION CONTROL PLAN	9/27/2023		
C-109	GRADING, DRAINAGE & EROSION CONTROL PLAN	9/27/2023		
C-110	GRADING, DRAINAGE & EROSION CONTROL PLAN	9/27/2023		
C-111	UTILITIES PLAN	9/27/2023		
C-112	UTILITIES PLAN	9/27/2023		
C-113	UTILITIES PLAN	9/27/2023		
C-114	LANDSCAPE PLAN	9/27/2023		
C-115	LANDSCAPE PLAN	9/27/2023		
C-116	LANDSCAPE PLAN	9/27/2023		
C-117	PHOTOMETRIC LIGHTING PLAN	9/27/2023		
C-118	PHOTOMETRIC LIGHTING PLAN	9/27/2023		
C-119	PHOTOMETRIC LIGHTING PLAN	9/27/2023		

SHEET NO.	SHEET TITLE	LAST REVISED
	PHASE 2 PLAN SET COVER SHEET	9/27/2023
C-161	PHASE 2 DEMOLITION PLAN	9/27/2023
C-162	PHASE 2 DEMOLITION PLAN	9/27/2023
C-163	PHASE 2 DEMOLITION PLAN	9/27/2023
C-163.1	PHASE 2 PRE-CONSTRUCTION LAYOUT PLAN	9/27/2023
C-164	PHASE 2 OVERALL SITE PLAN	9/27/2023
C-165	PHASE 2 SITE PLAN	9/27/2023
C-166	PHASE 2 SITE PLAN	9/27/2023
C-167	PHASE 2 SITE PLAN	9/27/2023
C-168	PHASE 2 GRADING, DRAINAGE & EROSION CONTROL PLAN	9/27/2023
C-169	PHASE 2 GRADING, DRAINAGE & EROSION CONTROL PLAN	9/27/2023
C-170	PHASE 2 GRADING, DRAINAGE & EROSION CONTROL PLAN	9/27/2023
C-171	PHASE 2 UTILITIES PLAN	9/27/2023
C-172	PHASE 2 UTILITIES PLAN	9/27/2023
C-173	PHASE 2 UTILITIES PLAN	9/27/2023
C-174	PHASE 2 LANDSCAPE PLAN	9/27/2023
C-175	PHASE 2 LANDSCAPE PLAN	9/27/2023
C-176	PHASE 2 LANDSCAPE PLAN	9/27/2023
C-177	PHASE 2 PHOTOMETRIC LIGHTING PLAN	9/27/2023
C-178	PHASE 2 PHOTOMETRIC LIGHTING PLAN	9/27/2023
C-179	PHASE 2 PHOTOMETRIC LIGHTING PLAN	9/27/2023
3-046-1-1110	FIRST FLOOR PLAN - CUB	8/24/2023
3-046-1-2002	BUILDING ELEVATIONS (E-W) - CUB	8/24/2023
3-046-1-2003	BUILDING ELEVATIONS (N-S) - CUB	9/18/2023
3-070-1-1110	FIRST FLOOR PLAN - BL1	8/24/2023
3-070-1-2001	OVERALL BUILDINGS ELEVATIONS	7/12/2023
3-070-1-2002	BUILDING ELEVATIONS (E-W) - BL1	8/24/2023
3-070-1-2003	BUILDING ELEVATIONS (N-S) - BL1	8/24/2023

SHEET NO.	EET NO. SHEET TITLE		
	DETAILS COVER SHEET	9/27/2023	
C-501	EROSION CONTROL NOTES & DETAILS SHEET	9/27/2023	
C-502	DETAILS SHEET	9/27/2023	
C-503	DETAILS SHEET	9/27/2023	
C-504	DETAILS SHEET	9/27/2023	
C-505	DETAILS SHEET	9/27/2023	
C-506	DETAILS SHEET	9/27/2023	
C-507	DETAILS SHEET	9/27/2023	
C-508	DETAILS SHEET	9/27/2023	
C-509	DETAILS SHEET	9/27/2023	
C-510	DETAILS SHEET	9/27/2023	
C-511	DETAILS SHEET	9/27/2023	
C-512	DETAILS SHEET	9/27/2023	

Tighe&Bond

Proposed Industrial Development

Lonza Biologics

Portsmouth, New Hampshire

М	9/27/2023	P.B. Submission	
L	7/17/2023	Amended Site Plan Review	
K	5/5/2023	Phase 1B Issued for Bid	
J	3/15/2023	Phase 1B Issued for Preliminary Pricing	
I	1/9/2023	Admin. Approval Submission	
Н	12/10/2021	Planning Board Stipulation	
G	8/19/2019	Admin. Approval Submission	
F	11/6/2018	P.B. Submission	
MARK	DATE	DESCRIPTION	
PROJECT NO:		L-0700-013	
DATE:	04/03/2018		
EILE: 1-0700-026-C-COVR dwg			

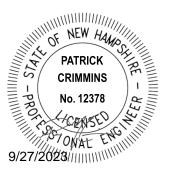
CHECKED: APPROVED: SHEET INDEX

AS SHOWN

DRAWN BY:

C-100

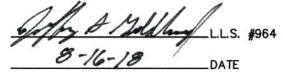
CJK


NAH

EXISTING CONDITIONS & SUBDIVISION PLANS

APRIL 3, 2018 REVISED: NOVEMBER 2, 2021

LIST OF DRAWINGS			
SHEET NO.	SHEET TITLE	LAST REVISED	
	COVER SHEET	11/2/2021	
1 of 4	EXISTING CONDITIONS PLAN	11/2/2021	
2 of 4	EXISTING CONDITIONS PLAN	08/16/2018	
3 of 4	EXISTING CONDITIONS PLAN	08/16/2018	
4 of 4	EXISTING CONDITIONS PLAN	08/16/2018	
1 of 2	of 2 SUBDIVISION PLAN		
2 of 2	SUBDIVISION PLAN	11/2/2021	


CB #1013	CBR #1324	CB #1461	CB #1732
" RIM ELEV.=68.4'	" RIM ELEV.=55.7'	" RIM ELEV.=57.9'	RIM ELEV.=39.1'
(1019) 18" HDPE INV.=64.4"	(A) 12" RCP INV.=52.3'	(1460) 12" RCP INV.=53.2"	(1695) 10" RCP INV.=37.3
(A) 18" HDPE INV.=64.4'	(1325) 12" RCP INV.=51.9"		
	(1305) 15" RCP INV.=51.9'	CB #1478	CBR #1733
CB #1019	(B) 22" RCP INV.=51.7"	RIM ELEV.=54.2'	RIM ELEV.=39.1'
RIM ELEV.=68.5'		(1515) 12" RCP INV.=47.2"	STRUCTURE DAMAGED
(A) 18" HDPE INV.=65.1'	CB #1325		
(1013) 18" HDPE INV.=64.7"	RIM ELEV.=55.7'	CB #1484	DMH #1755
	(1399) 15" RCP INV.=51.9"	RIM ELEV.=49.0'	RIM ELEV.=42'
CB #1088	(1324) 12" RCP INV.=51.8'	BROKEN GRATE - NOT OPENED	(A) 24" RCP INV.=37.2"
RIM ELEV.=66.6'			(B) 24" RCP INV.=37.1'
(A) 6" HDPE INV.=62.0'	DMH #1338	CB #1504	
(1111) 12" RCP INV.=61.6"	RIM ELEV.=57.7'	RIM ELEV.=48.9'	CB #1756
(1095) 12" RCP INV.=61.6'	(SUMP)=49.9' (LARGE VAULT)	(A) 12" RCP INV.=42.7' (1484) 12" RCP INV.=42.6'	RIM ELEV.=42.5' (1769) 12" RCP INV.=39.2
DMH #1095	CB #1345		
RIM ELEV.=65.2'	RIM ELEV.=58.1'	CB #1515	CB #1769
(1088) 12" RCP INV.=60.0"	(1420) 12" RCP INV.=53.9"	RIM ELEV.=54.1'	RIM ELEV.=42.5'
(1137) 12" RCP INV.=59.7"		BROKEN GRATE - NOT OPENED	(1756) 12" RCP INV.=38.1
	CB #1381		(A) 12" RCP INV.=33.5"
CB #1111	RIM ELEV.=57.2'	CB #1542	
RIM ELEV.=66.8'	(1212) 15" RCP INV.=54.3'	RIM ELEV.=44.4	CB #1935
(1088) 12" RCP INV.=61.9"	(1311) 15" RCP INV.=54.4"	(1651) 12" RCP INV.=41.0'	RIM ELEV.=49.7'
			NOT OPENED - SILT SOCK
CB #1137	CB #1399	CB #1570	OD #80074
RIM ELEV.=60.7'	RIM ELEV.=55.5'	RIM ELEV.=40.7'	CB #2031
(1095) 12" RCP INV.=57.3'	(1325) 15" RCP INV.=52.3"	(A) 18" RCP INV.=36.2'	RIM ELEV.=59.0'
(1285) 15" RCP INV.=56.8'	DMH #1401	(B) 18" RCP INV.=36.2'	NOT OPENED - SILT SOCK
(1141) 15" RCP INV.=56.8'	DMH #1401	CB #1572	DMH #2142
DMH #1141	RIM ELEV.=58.3' NOT OPENED — OFF SITE	CB #15/2 RIM ELEV.=42.2'	RIM ELEV.=62.8'
RIM ELEV.=61.1'	HOT OF LINED - OFF SHE	(1611) 12" RCP INV.=38.2'	(A) 24" HDPE INV.=58.2'
(1300) 12" RCP INV.=57.2'	DMH #1408	(.5) 12 // // // // // // // // // // // // //	(B) 24" HDPE INV.=56.8'
(1137) 15" RCP INV.=56.9'	RIM ELEV.=56.8'	CB #1580	\-\/ = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
(1147) 15" RCP INV.=56.6'	NOT OPENED - OFF SITE	RIM ELEV.=41.7'	CB #2152
(A) 15" RCP INV.=56.4'	HOT OF LINED - OFF SHE	(1586) 15" RCP INV.=36.8'	RIM ELEV.=64.3'
(B) 18" ASB INV.=56.3'	CB #1420	, ,	NOT OPENED - SILT SOCK
week more worseout absolute the fitter.	RIM ELEV.=58.1'	CB #1586	
CB #1147	(1345) 12" RCP INV.=54.4'	RIM ELEV.=41.9'	DMH #2153
RIM ELEV.=61.5'	(1421) 12" HDPE INV.=54.1'	(1580) 15" RCP INV.=36.4"	RIM ELEV.=64.5'
(A) 15" RCP INV.=57.2'	FFA 10	(A) 15" RCP INV.=36.6'	(SUMP) INV.=53.9'
(1141) 15" RCP INV.=57.1'	DMH #1421		FULL OF WATER
NO.	RIM ELEV.=57.4'	CB #1611	
CB #1183	(1420) 12" RCP INV.=54.3'	RIM ELEV.=42.4'	CB #2170
RIM ELEV.=60.1'	SUMP=53.4' (FULL OF SILT)	(1572) 12" RCP INV.=37.8'	RIM ELEV.=65.7'
(1212) 15" RCP INV.=55.7'		(A) 12" RCP INV.=37.5'	NOT OPENED - SILT SOCK
	DMH #1438		
CB #1212	RIM ELEV.=50.2'	CB #1651	CB #2246
RIM ELEV.=57.5'	(A) 12" RCP INV.=44.6"	RIM ELEV.=44.6'	RIM ELEV.=65.5'
(1183) 15" RCP INV.=54.8"	(1439) 12" RCP INV.=44.6'	(1542) 12" RCP INV.=39.5"	NOT OPENED - SILT SOCK
(1381) 15" RCP INV.=54.6'	(B) UNK. CMP INV.=42.9'	(A) 12" RCP INV.=39.5'	
	(C) UNK. CMP INV.=42.9'	2000 4000000	CBR #2327
CB #1285		CB #1678	RIM ELEV.=40.2'
RIM ELEV.=60.7'	CBR #1439	RIM ELEV.=39.2'	(A) 12" RCP INV.=38.3'
(1137) 15" RCP INV.=57.0'	RIM ELEV.=47.4'	(TOP OF WATER) INV.=36.5'	a de la constante de la consta
ODD 144757	(1438) 12" RCP INV.=45.2'	(A) 12" RCP INV.=35.4'	CBR #2329
CBR #1305	000 11444	OD #4605	RIM ELEV.=47.4'
RIM ELEV.=56.7'	CBR #1444	CB #1685	(A) 12" RCP INV.=42.0'
(1311) 12" RCP INV.=52.8'	RIM ELEV.=48.3'	RIM ELEV.=39.2'	SILT=41.9'
(A) 15" RCP INV.=52.7'	12" HDPE INV.=46.4'	(TOP OF WATER) INV.=36.6'	DMI #0770
(1324) 15" RCP INV.=52.7'	(SUMP) INV.=42.8'	(2330) 12" RCP INV.=36.4"	DMH #2330
CD #1314	CD MAEC	DML #1605	RIM ELEV.=40.4'
CB #1311	CB #1456	DMH #1695	(1685) 12" RCP INV.=36.5
RIM ELEV.=57.1'	RIM ELEV.=58.1'	RIM ELEV.=42.8'	(A) 12" RCP INV.=36.3'
(1381) 15" RCP INV.=53.4'	(1460) 12" RCP INV.=52.5'	(1732) 10" RCP INV.=36.4'	(B) 15" RCP INV.=36.1'
(1305) 12" RCP INV.=53.0'	DMH #1460	(A) 48" RCP INV.=35.9'	UMI TOSSE
	DMH #1460	(B) NOT MEASURED	DMH #2336
	RIM ELEV.=58'	(RECESSED — LARGE VAULT)	RIM ELEV.=39.7' (A) 18" PCP INV -36.1'
	(1461) 12" RCP INV.=51.6"		(A) 18" RCP INV.=36.1' (B) 24" RCP INV.=35.4'
	(1456) 12" RCP INV.=51.5'		(L) ON DOOR

SMH #1062	SMH #1551
RIM ELEV.=69.8'	RIM ELEV.=43.6'
(A) 6" CLAY INV.=63.9'	(A) 8" PVC INV.=35.6'
(B) 6" CLAY INV.=63.7'	(B) 12" UNK. INV.=34.2'
(1067) 8" CLAY INV.=62.6'	(C) 12" UNK. INV.=34.1'
(1007) 0 0211 111102.0	(6) 12 5111. 111151.1
SMH #1067	SMH #1691
RIM ELEV.=68.6'	RIM ELEV.=39.9'
(1062) 8" CLAY INV.=60.4'	(1784) UNK. INV.=34.2'
(2242) 8" UNK. INV.=60.3"	(1722) UNK. INV.=34.1'
SMH #1078	SMH #1722
RIM ELEV.=69.0'	RIM ELEV.=41.1'
COULD NOT OPEN	(A) 6" CLAY INV.=33.2'
	(1691) UNK. CLAY INV.=3
SMH #1123	
RIM ELEV.=64'	SMH #1784
(1295) 8" PVC INV.=55.8'	RIM ELEV.=41.1'
	(1921) 10" UNK. INV.=35.
SMH #1169	(1691) 10" UNK. INV.=35.
RIM ELEV.=65.2'	The state of the s
(1184) 15" STEEL INV.=53.8'	SMH #1921
(A) 15" STEEL INV.=53.8'	RIM ELEV.=44.8'
V-7 .5 57222 111100.0	(1953) UNK. INV.=37'
SMH #1184	
	(1784) UNK. INV.=36.9'
RIM ELEV.=60.4'	CMU MAGEZ
(1296) 8" CLAY INV.=54.2'	SMH #1953
(1217) 15" STEEL INV.=52.7'	RIM ELEV.=50.1'
(1169) 15" STEEL INV.=52.7"	(A) 6" CLAY INV.=42.4"
	(2080) UNK. INV.=42.2'
SMH #1217	(1921) UNK. INV.=42.2'
RIM ELEV.=57.9'	
(1184) 15" STEEL INV.=52.3'	SMH #2080
(1400) 15" STEEL INV.=52.2'	RIM ELEV.=57.9'
	(A) 8" UNK. INV.=50.1"
SMH #1296	2187) 8" UNK. INV.=50.
RIM ELEV.=63.7'	(1953) 8" UNK. INV.=49.9
(1123) 8" PVC INV.=55.5'	250 2
(2326) 8" UNK. INV.=55.0'	SMH #2187
(1184) 8" UNK. INV.=55.0'	RIM ELEV.=63'
	(A) 6" PVC INV.=54.9'
SMH #1400	(2242) 8" PVC INV.=54.9
	NE 8
RIM ELEV.=55.6'	(2080) 8" PVC INV.=54.9
(1217) 15" ASB INV.=49.3'	
(1415) 15" ASB INV.=49.3'	SMH #2242
	RIM ELEV.=65.0'
SMH #1415	(1067) 8" CLAY INV.=56.
RIM ELEV.=57.9'	(2187) 8" CLAY INV.=57.
(A) 12" PVC INV.=48.3'	
(1400) 18" UNK. INV.=47.9"	SMH #2326
(1450) 18" PVC INV.=48.0'	RIM ELEV.=68.1'
	(1078) 8" PVC INV.=62.2
SMH #1450	(1296) 8" ASB INV.=62.1
RIM ELEV.=60.5'	Victory & Committee of the
(1415) 18" PVC INV.=47.6'	SMH #2328
(1459) 18" PVC INV.=47.5'	RIM ELEV.=43.1'
(1705) 10 F VO INV.=47.0	
CMLL HARC	(1551) 12" UNK INV.=32.3
SMH #1459	(A) 18" UNK INV.=32.3'
RIM ELEV.=58.8'	
(A) 8" PVC INV.=48.4'	
(1450) 18" PVC INV.=47.1'	

PURSUANT TO RSA 676:18, III:

I CERTIFY THAT THIS SURVEY PLAT IS NOT A SUBDIVISION PURSUANT TO THIS TITLE AND THAT THE LINES OF STREETS AND WAYS SHOWN ARE THOSE OF PUBLIC OR PRIVATE STREETS OR WAYS ALREADY ESTABLISHED AND THAT NO NEW WAYS ARE SHOWN.

I CERTIFY THAT THIS SURVEY AND PLAN WERE PREPARED BY ME OR BY THOSE UNDER MY DIRECT SUPERVISION AND FALLS UNDER THE URBAN SURVEY CLASSIFICATION OF THE NH CODE OF ADMINISTRATIVE RULES OF THE BOARD OF LICENSURE FOR LAND SURVEYORS. I CERTIFY THAT THIS SURVEY WAS MADE ON THE GROUND AND IS CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF. RANDOM TRAVERSE SURVEY BY TOTAL STATION, WITH A PRECISION GREATER THAN 1:15,000.

THE CERTIFICATIONS SHOWN HEREON ARE INTENDED TO MEET REGISTRY OF DEED REQUIREMENTS AND ARE NOT A CERTIFICATION TO TITLE OR OWNERSHIP OF PROPERTY SHOWN. OWNERS OF ADJOINING PROPERTIES ARE ACCORDING TO CURRENT TOWN ASSESSORS RECORDS.

REFERENCE PLANS:

- 1. "R.O.W. WORKSHEET, CORPORATE DRIVE PREPARED FOR PEASE DEVELOPMENT AUTHORITY" DATED DEC. 21, 1992 BY RICHARD D. BARTLETT & ASSOCIATES, INC. SHEETS 1 AND 2.
- 2. "PEASE A.F.B. / PORTSMOUTH, N.H. REPAVE BASE STREETS, PORTSMOUTH AVE, ROCKINGHAM AVE." DATED 7 DEC 82 BY STRATETIC AIR COMMAND CIVIL ENGINEERING. SHEET 4 OF 5
- 3. "PORTSMOUTH AIR FORCE BASE, PORTSMOUTH, N.H. ROADS AND STORAGE AREA FY-56" DATED DEC 1955 BY WHITMAN & HOWARD ENGINEERS. INDEX PAGE AND SHEETS 2 - 5 OF 11.
- 4. "PEASE INTERNATIONAL TRADEPORT SUBDIVISION PLAT, INTERNATIONAL DRIVE LOTS BC11-001 & BC11-002, PORTSMOUTH, N.H." DATED FEBRUARY 5, 1993 BY RICHARD D. BARTLETT & ASSOCIATES INC. R.C.R.D. PLAN #D22536.
- 5. "SUBDIVISION PLAN OF LAND FOR REDHOOK ALE BREWERY, INC. CORPORATE DRIVE, COUNTY OF ROCKINGHAM, PORTSMOUTH, N.H." DATED DECEMBER 10, 1994 BY RICHARD P. MILLETTE AND ASSOCIATES. R.C.R.D. PLAN #D-23978.
- 6. "ALTA/ACSM LAND TITLE SURVEY FOR RESPORT, LLC, ONE INTERNATIONAL DRIVE, COUNTY OF ROCKINGHAM, PORTSMOUTH, N.H." DATED FEBRUARY 27, 1998 BY MILLETTE, SPRAGUE & COLWELL, INC. R.C.R.D. PLAN #D-26125.
- 7. "FRANKLIN PIERCE COLLEGE, PEASE INTERNATIONAL TRADEPORT, 73 CORPORATE DRIVE, PORTSMOUTH, NH" DATED JANUARY 15, 1998 BY RONALD R. BURD. R.C.R.D. PLAN #D-26427.
- 8. "SUBDIVISION PLAN FOR LAND LEASED BY PEASE DEVELOPMENT AUTHORITY & KNOWN AS #119 INTERNATIONAL DRIVE LOCATED AT PEASE INTERNATIONAL TRADEPORT, PORTSMOUTH, N.H." DATED MARCH 1, 2000 BY KNIGHT HILL LAND SURVEYING SERVICES, INC. R.C.R.D. PLAN
- 9. "SUBDIVISION PLAT PREPARED FOR 80 CORPORATE DRIVE LLC C/O BOULOS PROPERTY MANAGEMENT, LOCATION CORPORATE & GOOSE BAY DRIVES, PEASE INTERNATIONAL TRADEPORT -PORTSMOUTH, NH" DATED APRIL 11, 2000 BY FWS LAND SURVEYING P.L.L.C. R.C.R.D. PLAN
- 10. "LEASE LINE REVISION PLAN FOR LONZA BIOLOGICS, INC. 101 INTERNATIONAL DRIVE, PORTSMOUTH, NEW HAMPSHIRE" DATED FEB. 5, 2001 BY DOUCET SURVEY, INC. R.C.R.D. PLAN #D-28955.
- 11. "LEASE LINE REVISION PLAN FOR LONZA BIOLOGICS, INC. 101 INTERNATIONAL DRIVE, PORTSMOUTH, NEW HAMPSHIRE" DATED SEPT. 17, 2001 BY DOUCET SURVEY, INC. R.C.R.D. PLAN #D-29538. NOTES:
- 12. "SUBDIVISION PLAN OF LAND OF PEASE DEVELOPMENT AUTHORITY TO BE LEASED TO NORTHEAST 1. REFERENCE: REHABILITATION (A PORTION OF TAX MAP 303, LOT 6) 105 & 121 CORPORATE DRIVE, PEASE TRADEPORT, PORTSMOUTH, NEW HAMPSHIRE" DATED NOV. 5, 2008 BY DOUCET SURVEY, INC. R.C.R.D. PLAN #D-35869.
- 13. "CONDOMINIUM SITE & FLOOR PLAN PREPARED FOR PIONEER NEW HAMPSHIRE, LLC, LAND OF PEASE DEVELOPMENT AUTHORITY, TAX MAP PARCEL 305-3 (108, 110, 112 & 114 CORPORATE DRIVE) PORTSMOUTH, NEW HAMPSHIRE" DATED APRIL 12, 2013 BY FIELDSTONE LAND CONSULTANTS, PLLC. SHEET 1 OF 5. R.C.R.D. PLAN #D-37765.
- 14. "SUBDIVISION PLAN FOR PEASE DEVELOPMENT AUTHORITY, (TAX MAP 303, LOT 4) 67 CORPORATE DRIVE, PEASE TRADEPORT, PORTSMOUTH NEW HAMPSHIRE" DATED MAY 29, 2009 BY DOUCET SURVEY, INC. (NOT RECORDED)
- 15. "EXISTING CONDITIONS, BUILDING A, 80 CORPORATE DRIVE AND BUILDING B, 70 CORPORATE DRIVE, PORTSMOUTH, NH" DATED 4/14/2000 AND REVISED 6/05/2000 BY OPECHEE CONSTRUCTION CORPORATION. (NOT RECORDED)

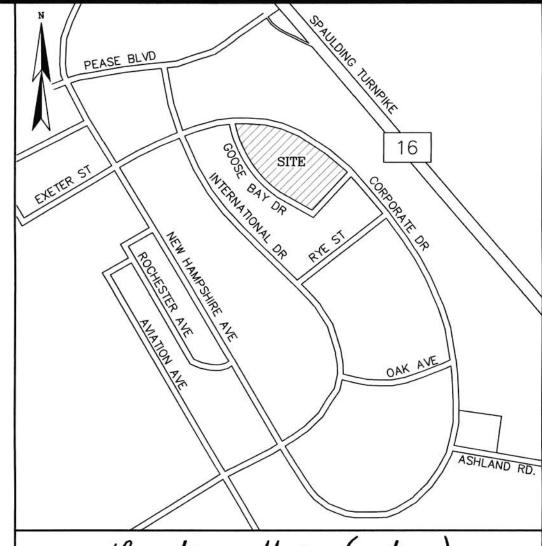
LEGEND

EXISTING LEASE/R.O.W. LINES ---- O --- O -- CHAIN LINK FENCE OHW OVERHEAD WIRES ------ \$ ------ SEWER LINE ---- D ----- DRAIN LINE ----- G ------ GAS LINE ----- W ----- WATER LINE ----- E ------ UNDERGROUND ELECTRIC LINE SEWER LINE PER REF. PLAN #15 - DRAIN LINE PER REF. PLAN #15 — 100— MAJOR CONTOUR LINE - - - 98 - - - MINOR CONTOUR LINE . TREE LINE — · · — · · — EDGE OF WETLAND (SEE NOTE #6) ---- HISS LINE (SEE NOTE #6) UTILITY POLE GRANITE BOUND FOUND DRILL HOLE FOUND IRON PIPE/ROD FOUND 4"X4" GRANITE BOUND TO BE SET 5/8" REBAR W/ ID CAP TO BE SET BOLLARD FIRE HYDRANT WATER GATE VALVE GAS GATE VALVE PAD MOUNTED TRANSFORMER ELECTRIC BOX TELEPHONE BOX UTILITY BOX CABLE BOX CATCH BASIN CATCH BASIN CATCH BASIN DRAIN MANHOLE FLARED END SECTION ELECTRIC MANHOLE TELEPHONE MANHOLE SEWER MANHOLE CATCH BASIN PER REF. PLAN #15 DRAIN MANHOLE PER REF. PLAN #15 SEWER MANHOLE PER REF. PLAN #15 HAND HOLE WETLAND AREA CONIFEROUS TREE DECIDUOUS TREE CONCRETE RIP RAP GRAVEL AREA LEDGE OUTCROP BOUND FOUND BND. FND.

> DRILL HOLE FOUND EDGE OF PAVEMENT

SINGLE WHITE LINE

HISS SOIL TYPE


DOUBLE YELLOW LINE

VERTICAL GRANITE CURB

D.H.F.

EP

SWL DYL

Location Map (n.t.s.

TAX MAP 305, LOT 1 PHYSICAL ADDRESS: 70 CORPORATE DRIVE TAX MAP 305, LOT 2 PHYSICAL ADDRESS: 80 CORPORATE DRIVE

2. TOTAL PARCEL AREA:

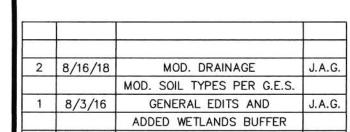
OWNER OF RECORD:

TAX MAP 305, LOT 1: 443,578 SQ. FT. OR 10.183 AC. TAX MAP 305, LOT 2: 604,273 SQ. FT. OR 13.872 AC. TOTAL AREA: 1,047,851 SQ. FT. OR 24.055 AC.

TAX MAP 305, LOTS 1 & 2

PEASE DEVELOPMENT AUTHORITY 55 INTERNATIONAL DRIVE PORTSMOUTH, NEW HAMPSHIRE 03801 R.C.R.D. BOOK 4227, PAGE 001

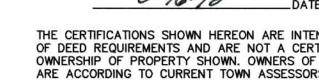
- 4. ZONE: AIRPORT, BUSINESS & COMMERCIAL (ABC)
- 5. FIELD SURVEY PERFORMED BY J.M.L, E.J.S., J.P.E., J.F.K., AND N.J.M. DURING NOVEMBER 2015 USING A TRIMBLE R8 SURVEY GRADE GPS UNIT AND A TRIMBLE S6 ROBOTIC TOTAL STATION WITH A TRIMBLE TSC3
- 6. JURISDICTIONAL WETLANDS DELINEATED BY GOVE ENVIRONMENTAL SERVICES, INC. DURING FALL 2014 IN ACCORDANCE WITH 1987 CORPS OF ENGINEERS WETLANDS DELINEATIONS MANUAL, TECHNICAL REPORT Y-87-1. HISS/SITE SPECIFIC SOILS MAPPING COMPLETED BY GOVE ENVIRONMENTAL SERVICES DURING DECEMBER 2015.
- 7. FLOOD HAZARD ZONE: "X", PER FIRM MAP #33015C0260E, DATED MAY 17, 2005.
- 8. HORIZONTAL DATUM BASED ON NH STATE PLANE 2800(NAD83/86) PER REFERENCE PLANS #10, #11, & #12.
- 9. VERTICAL DATUM IS BASED ON NGVD29 PER REFERENCE PLANS #10, #11, & #12.
- 10. PROPER FIELD PROCEDURES WERE FOLLOWED IN ORDER TO GENERATE CONTOURS AT 2' INTERVALS. ANY MODIFICATION OF THIS INTERVAL WILL DIMINISH THE INTEGRITY OF THE DATA, AND DOUCET SURVEY, INC. WILL NOT BE RESPONSIBLE FOR ANY SUCH ALTERATION PERFORMED BY THE USER.
- 11. UNDERGROUND UTILITIES SHOWN HEREON ARE BASED ON OBSERVABLE PHYSICAL EVIDENCE AND PAINT MARKS FOUND ON-SITE. THE SITE WAS NOT MARKED FOR THE PURPOSES OF THIS SURVEY. SOME UTILITIES ARE SHOWN PER REFERENCE PLANS AS NOTED IN THE LEGEND.
- 12. THE ACCURACY OF MEASURED UTILITY INVERTS AND PIPE SIZES/TYPES IS SUBJECT TO NUMEROUS FIELD CONDITIONS, INCLUDING; THE ABILITY TO MAKE VISUAL OBSERVATIONS, DIRECT ACCESS TO THE VARIOUS ELEMENTS, MANHOLE CONFIGURATION, ETC.
- 13. THE INTENT OF THIS PLAN IS TO SHOW THE LOCATION OF BOUNDARIES IN ACCORDANCE WITH AND IN RELATION TO THE CURRENT LEGAL DESCRIPTION, AND IS NOT AN ATTEMPT TO DEFINE UNWRITTEN RIGHTS, DETERMINE THE EXTENT OF OWNERSHIP, OR DEFINE THE LIMITS OF TITLE.
- 14. TAX MAP 305, LOTS 1 & 2 ARE EITHER SUBJECT TO OR IN BENEFIT OF, BUT NOT LIMITED TO, THE FOLLOWING EASEMENTS/RIGHTS OF RECORD:
- 14.A. 50' WIDE ACCESS EASEMENT FOR THE BENEFIT OF LOT 305-2. (SHOWN PER REFERENCE PLAN #9) 14.B. APPROXIMATE LOCATION OF 20' WIDE LICENSE TO THE CITY OF PORTSMOUTH FOR THE PURPOSES OF MAINTAINING A DRAINAGE LINE. (SHOWN PER REFERENCE PLAN #9)
- 15. FINAL MONUMENTATION MAY BE DIFFERENT THAN THE PROPOSED MONUMENTATION SHOWN HEREON, DUE TO THE FACT THAT SITE CONDITIONS WILL DICTATE THE ACTUAL LOCATION AND TYPE OF MONUMENTS INSTALLED IN THE FIELD. PLEASE REFER TO EITHER THE "MONUMENTATION LOCATION PLAN" TO BE RECORDED OR CONTACT DOUCET SURVEY, INC. FOR CLARIFICATION OF MONUMENTS SET. (A RECORDED PLAN WILL BE PRODUCED AT THE DISCRETION OF DOUCET SURVEY, INC.).

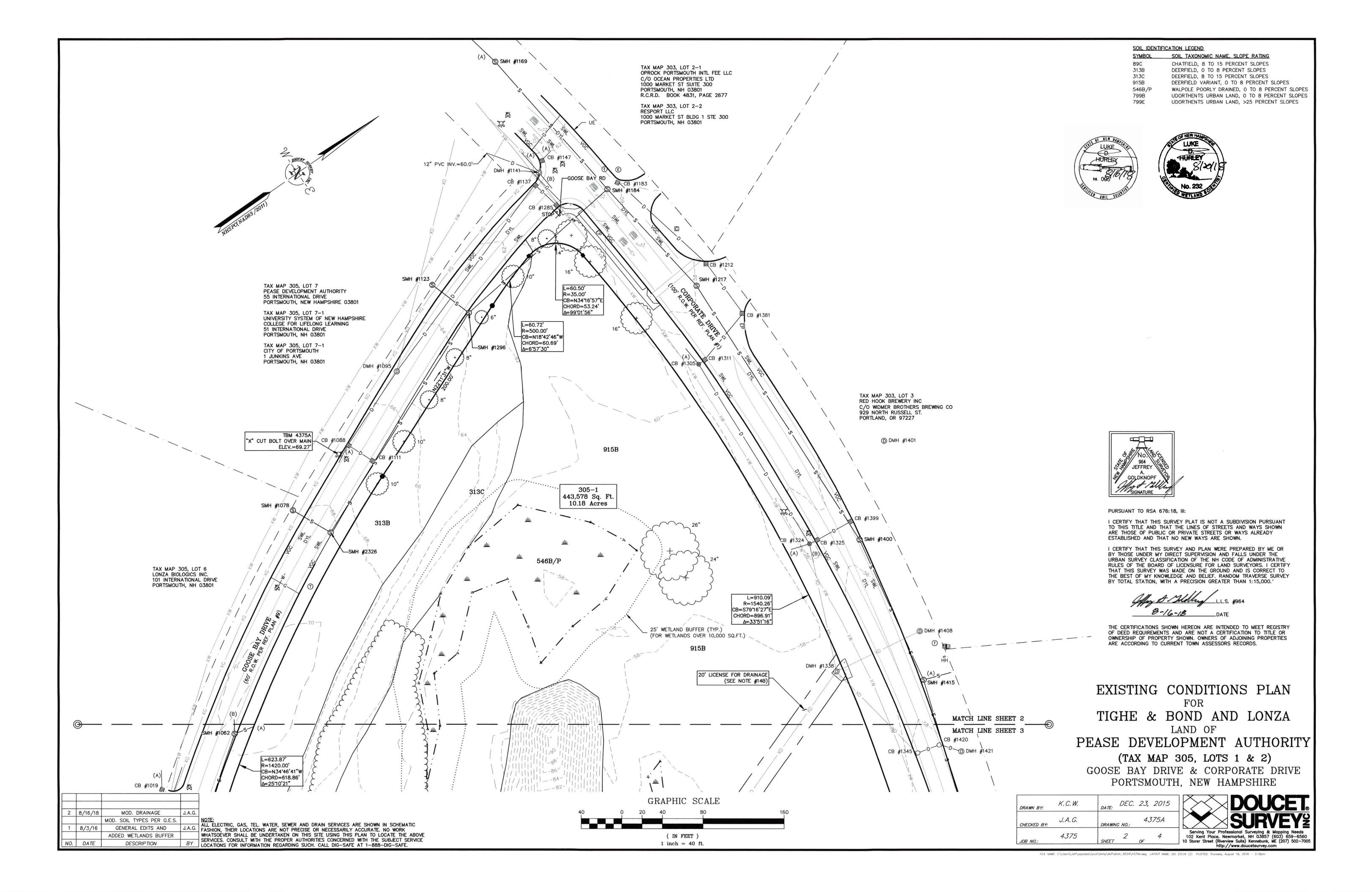

EXISTING CONDITIONS PLAN FOR TIGHE & BOND AND LONZA LAND OF

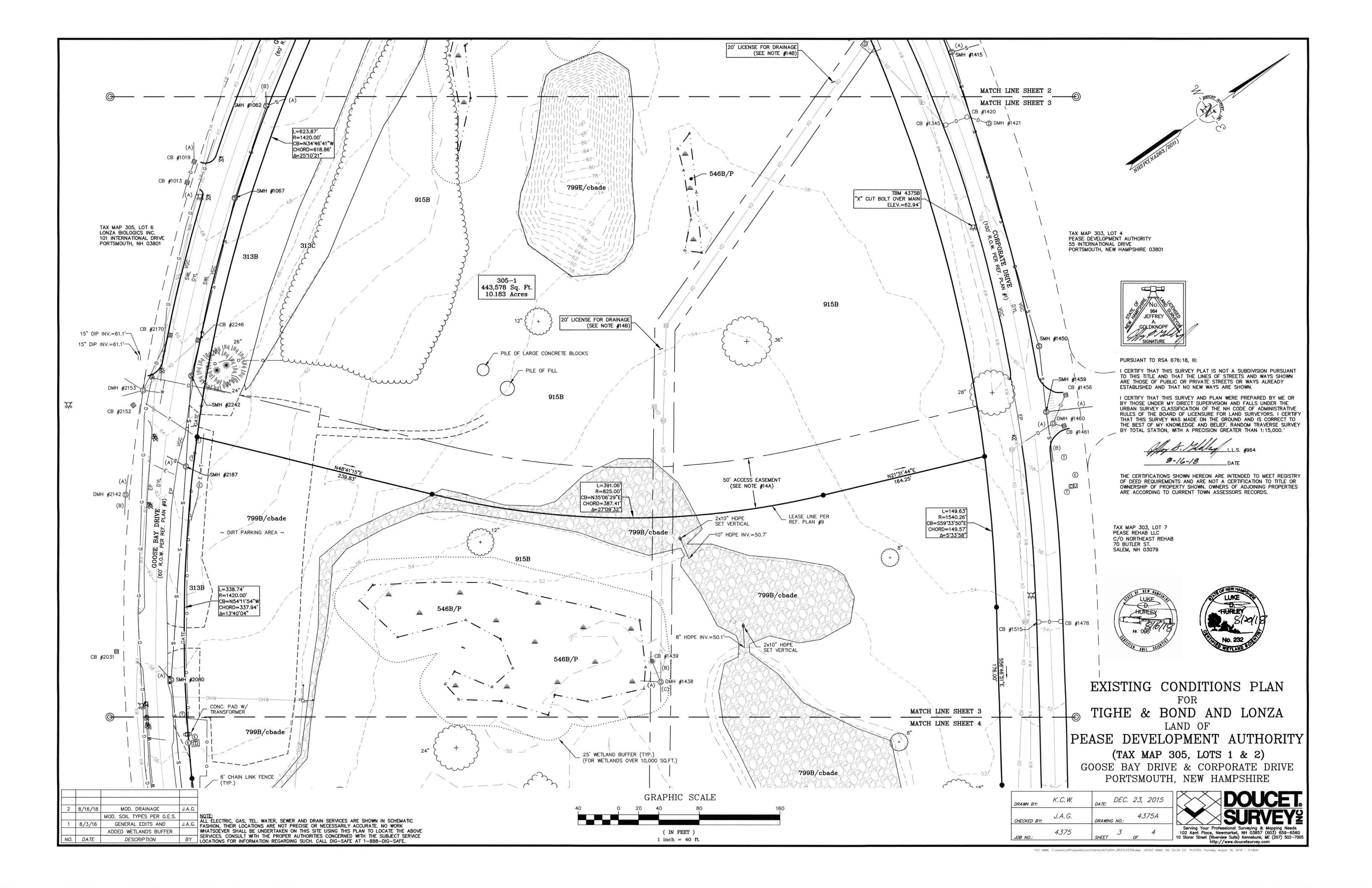
PEASE DEVELOPMENT AUTHORITY (TAX MAP 305, LOTS 1 & 2)

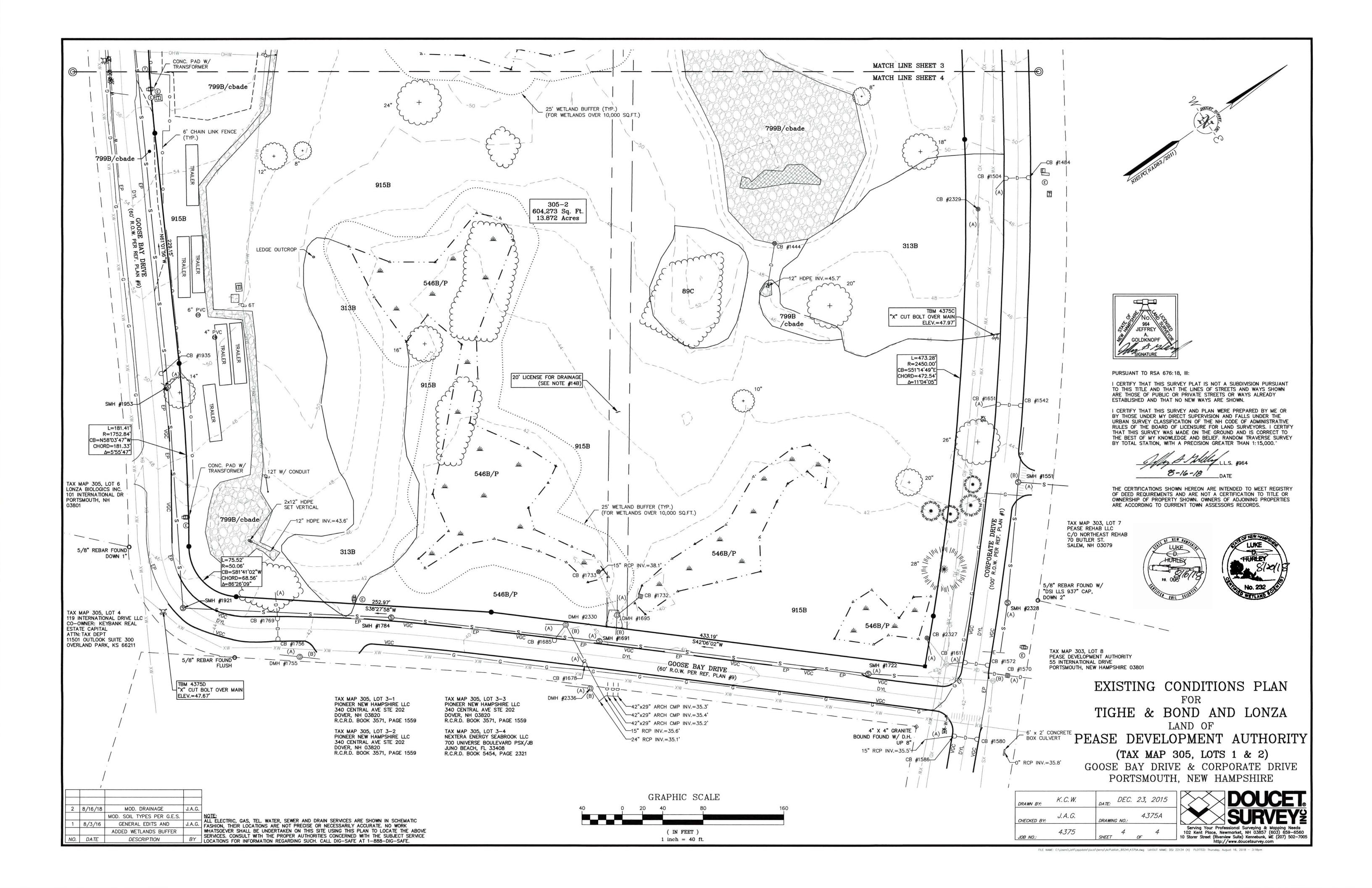
GOOSE BAY DRIVE & CORPORATE DRIVE PORTSMOUTH, NEW HAMPSHIRE

DEC. 23, 2015 DRAWN BY: J. A. G. CHECKED BY:




DESCRIPTION


NO. DATE


ALL ELECTRIC, GAS, TEL. WATER, SEWER AND DRAIN SERVICES ARE SHOWN IN SCHEMATIC J.A.G. FASHION, THEIR LOCATIONS ARE NOT PRECISE OR NECESSARILY ACCURATE. NO WORK WHATSOEVER SHALL BE UNDERTAKEN ON THIS SITE USING THIS PLAN TO LOCATE THE ABOVE SERVICES. CONSULT WITH THE PROPER AUTHORITIES CONCERNED WITH THE SUBJECT SERVICE BY LOCATIONS FOR INFORMATION REGARDING SUCH. CALL DIG-SAFE AT 1-888-DIG-SAFE.

FILE NAME: C:\Users\Jeff\appdata\local\temp\AcPublish_8524\4375A.dwg LAYOUT NAME: DSI 22X34 (1) PLOTTED: Thursday, August 16, 2018 - 3:18pr

NOTES:

REFERENCE:

TAX MAP 305, LOTS 5 & 6 PHYSICAL ADDRESS: 101 INTERNATIONAL DRIVE TAX MAP 305, LOTS 1 & 2

PHYSICAL ADDRESS: 70 CORPORATE DRIVE TAX MAP 305, LOT 7 PHYSICAL ADDRESS: 71 INTERNATIONAL DRIVE

PROPOSED LEASE AREA: TAX MAP 305, LOT 6: 1,889,305 SQ. FT. OR 4

OWNER OF RECORD:

PEASE DEVELOPMENT AUTHORITY 55 INTERNATIONAL DRIVE PORTSMOUTH, NEW HAMPSHIRE 03801 R.C.R.D. BOOK 4227, PAGE 001

4. LESSEE OF RECORD:

TAX MAP 305. LOTS 5 & 6 LONZA BIOLOGICS, INC. 101 INTERNATIONAL DRIVE PORTSMOUTH, NEW HAMPSHIRE 03801 R.C.R.D. BOOK 3015, PAGE 2559 (LEASE EXTENSIONS AND MODIFICATIONS HAVE NOT BEEN RECORDED, BUT HAVE BEEN PROVIDED BY THE LESSEE)

SEE REFERENCE PLAN 10

5. ZONE: AIRPORT, BUSINESS, AND COMMERCIAL (ABC)

DIMENSIONAL REQUIREMENTS:

217,800 sq.ft. OR 5.0 AC. MINIMUM LOT AREA MINIMUM STREET FRONTAGE 200 ft. FRONT YARD SETBACK

SIDE SETBACK REAR SETBACK MINIMUM OPEN SPACE

MAXIMUM STRUCTURE HEIGHT SHALL NOT EXCEED FAA CRITERIA

WETLAND BUFFER

25 ft. (PER PDA REGULATIONS: WETLANDS LESS THAN 1/4 ACRE DO NOT HAVE A BUFFER)

ZONING INFORMATION LISTED HEREON WAS PROVIDED BY TIGHE & BOND. ADDITIONAL REGULATIONS APPLY, AND REFERENCE IS HEREBY MADE TO THE EFFECTIVE ZONING ORDINANCE. THE LAND OWNER IS RESPONSIBLE FOR COMPLYING WITH ALL APPLICABLE MUNICIPAL, STATE, AND FEDERAL REGULATIONS.

- 6. FIELD SURVEY PERFORMED BY B.T. & J.C.M. DURING MARCH 2018 USING A TRIMBLE S6 ROBOTIC TOTAL STATION WITH A TRIMBLE TSC3 DATA COLLECTOR. TRAVERSE ADJUSTMENT BASED ON LEAST SQUARE
- 7. FLOOD HAZARD ZONE: "X", PER FIRM MAP #33015C0260F, MAP REVISED JANUARY 29, 2021.
- 8. HORIZONTAL DATUM BASED ON NH STATE PLANE 2800(NAD83/86) PER REFERENCE PLANS 10, 11, & 12.
- 9. THE INTENT OF THIS PLAN IS TO SHOW THE LOCATION OF BOUNDARIES IN ACCORDANCE WITH AND IN RELATION TO THE CURRENT LEGAL DESCRIPTION, AND IS NOT AN ATTEMPT TO DEFINE UNWRITTEN RIGHTS, DETERMINE THE EXTENT OF OWNERSHIP, OR DEFINE THE LIMITS OF TITLE.
- 10. TAX MAP 305, LOTS 1 & 2 ARE EITHER SUBJECT TO OR IN BENEFIT OF, BUT NOT LIMITED TO, THE FOLLOWING EASEMENTS/RIGHTS OF RECORD:
- 10.A. 50' WIDE ACCESS EASEMENT FOR THE BENEFIT OF LOT 305-2. (SHOWN PER REFERENCE PLAN 9) 10.B. APPROXIMATE LOCATION OF 20' WIDE LICENSE TO THE CITY OF PORTSMOUTH FOR THE PURPOSES OF MAINTAINING A DRAINAGE LINE. (SHOWN PER REFERENCE PLAN 9)
- 11. TAX MAP 305, LOTS 5 & 6 ARE EITHER SUBJECT TO OR IN BENEFIT OF, BUT NOT LIMITED TO, THE
- FOLLOWING EASEMENTS/RIGHTS OF RECORD: 11.A. 15' WIDE DRAINAGE EASEMENT. (SHOWN PER REFERENCE PLAN 10)
- 11.B. DRAINAGE EASEMENT. (SHOWN PER REFERENCE PLAN 10)
- 12. FINAL MONUMENTATION MAY BE DIFFERENT THAN THE PROPOSED MONUMENTATION SHOWN HEREON, DUE TO THE FACT THAT SITE CONDITIONS WILL DICTATE THE ACTUAL LOCATION AND TYPE OF MONUMENTS INSTALLED IN THE FIELD. PLEASE REFER TO EITHER THE "MONUMENTATION LOCATION PLAN" TO BE RECORDED OR CONTACT DOUCET SURVEY, INC. FOR CLARIFICATION OF MONUMENTS SET. (A RECORDED PLAN WILL BE PRODUCED AT THE DISCRETION OF DOUCET SURVEY, INC.).
- 13. IMPROVEMENTS SHOWN HEREON ARE APPROXIMATE.
- 14. REGARDING THE PORTION GOOSE BAY DRIVE TO BECOME PART OF THE PROPOSED LEA AREA: 14.A. THE PEASE DEVELOPMENT AUTHORITY REPORTS THAT THE OWNERSHIP UNDERLYING DADWAYS WITHIN THE TRADEPORT REMAINS VESTED IN THE PEASE DEVELOPMENT AUTHORITY
- 14.B. THE PEASE DEVELOPMENT AUTHORITY REPORTS THAT THERE ARE UNDERLY EASEMENTS ON LANDS IN THEIR OWNERSHIP. THIS MAY INCLUDE, BUT BURIED OF OVERHEAD ELECTRIC, TELECOMMUNICATIONS, GAS, WATER, AND SEWI
- 15. THE APPLICANT WILL BE REQUESTING THE FOLLOWING WAIVER FROM TO BOARD REGARDING SECTION IV; 3; I. CUL-DE-SACS: 15.A. MAXIMUM LENGTH OF CUL-DE-SAC OF 500'

15.B. MINIMUM RADIUS OF CUL-DE-SAC PAVEMENT OF 50'

REFERENCE PLANS:

- 1. "R.O.W. WORKSHEET, CORPORATE DRIVE PREPARED FOR PEASE DEVELOPMENT AUTHORITY" DATED DEC. 21, 1992 BY RICHARD D. BARTLETT & ASSOCIATES, INC. SHEETS 1 AND 2. (NOT RECORDED)
- 2. "PEASE A.F.B. / PORTSMOUTH, N.H. REPAVE BASE STREETS, PORTSMOUTH AVE, ROCKINGHAM AVE." DATED 7 DEC 82 BY STRATETIC AIR COMMAND CIVIL ENGINEERING. SHEET 4 OF 5. (NOT RECORDED)
- 3. "PORTSMOUTH AIR FORCE BASE, PORTSMOUTH, N.H. ROADS AND STORAGE AREA FY-56" DATED DEC 1955 BY WHITMAN & HOWARD ENGINEERS. INDEX PAGE AND SHEETS 2 - 5 OF 11. (NOT RECORDED)
- 4. "PEASE INTERNATIONAL TRADEPORT SUBDIVISION PLAT, INTERNATIONAL DRIVE LOTS BC11-001 & BC11-002, PORTSMOUTH, N.H." DATED FEBRUARY 5, 1993 BY RICHARD D. BARTLETT & ASSOCIATES INC. R.C.R.D. PLAN
- 5. "SUBDIVISION PLAN OF LAND FOR REDHOOK ALE BREWERY, INC. CORPORATE DRIVE, COUNTY OF ROCKINGHAM, PORTSMOUTH, N.H." DATED DECEMBER 10, 1994 BY RICHARD P. MILLETTE AND ASSOCIATES. R.C.R.D. PLAN
- 6. "ALTA/ACSM LAND TITLE SURVEY FOR RESPORT, LLC, ONE INTERNATIONAL DRIVE, COUNTY OF ROCKINGHAM, PORTSMOUTH, N.H." DATED FEBRUARY 27, 1998 BY MILLETTE, SPRAGUE & COLWELL, INC. R.C.R.D. PLAN
- 7. "FRANKLIN PIERCE COLLEGE, PEASE INTERNATIONAL TRADEPORT, 73 CORPORATE DRIVE, PORTSMOUTH, NH" DATED JANUARY 15, 1998 BY RONALD R. BURD. R.C.R.D. PLAN D-26427.
- 8. "SUBDIVISION PLAN FOR LAND LEASED BY PEASE DEVELOPMENT AUTHORITY & KNOWN AS 119 INTERNATIONAL DRIVE LOCATED AT PEASE INTERNATIONAL TRADEPORT, PORTSMOUTH, N.H." DATED MARCH 1, 2000 BY KNIGHT HILL LAND SURVEYING SERVICES, INC. R.C.R.D. PLAN D-28059.
- 9. "SUBDIVISION PLAT PREPARED FOR 80 CORPORATE DRIVE LLC C/O BOULOS PROPERTY MANAGEMENT, LOCATION CORPORATE & GOOSE BAY DRIVES, PEASE INTERNATIONAL TRADEPORT - PORTSMOUTH, NH" DATED APRIL 11, 2000 BY FWS LAND SURVEYING P.L.L.C. R.C.R.D. PLAN D-28447.
- 10. "LEASE LINE REVISION PLAN FOR LONZA BIOLOGICS, INC. 101 INTERNATIONAL DRIVE, PORTSMOUTH, NEW HAMPSHIRE" DATED SEPT. 17, 2001 BY DOUCET SURVEY, INC. R.C.R.D. PLAN D-29538.
- 11. "SUBDIVISION PLAN OF LAND OF PEASE DEVELOPMENT AUTHORITY TO BE LEASED TO NORTHEAST REHABILITATION (A PORTION OF TAX MAP 303, LOT 6) 105 & 121 CORPORATE DRIVE, PEASE TRADEPORT, PORTSMOUTH, NEW HAMPSHIRE" DATED NOV. 5, 2008 BY DOUCET SURVEY, INC. R.C.R.D. PLAN D-35869.
- 12. "CONDOMINIUM SITE & FLOOR PLAN PREPARED FOR PIONEER NEW HAMPSHIRE, LLC, LAND OF PEASE DEVELOPMENT AUTHORITY, TAX MAP PARCEL 305-3 (108, 110, 112 & 114 CORPORATE DRIVE) PORTSMOUTH, NEW HAMPSHIRE" DATED APRIL 12, 2013 BY FIELDSTONE LAND CONSULTANTS, PLLC. SHEET 1 OF 5. R.C.R.D. PLAN D-37765.
- 13. "SUBDIVISION PLAN FOR PEASE DEVELOPMENT AUTHORITY, (TAX MAP 303, LOT 4) 67 CORPORATE DRIVE, PEASE TRADEPORT, PORTSMOUTH NEW HAMPSHIRE" DATED MAY 29, 2009 BY DOUCET SURVEY, INC. (NOT RECORDED)
- 14. "EXISTING CONDITIONS, BUILDING A, 80 CORPORATE DRIVE AND BUILDING B, 70 CORPORATE DRIVE, PORTSMOUTH, NH" DATED 4/14/2000 AND REVISED 6/05/2000 BY OPECHEE CONSTRUCTION CORPORATION.
- 15. "EXISTING CONDITIONS PLAN FOR TIGHE & BOND AND LONZA, LAND OF PEASE DEVELOPMENT AUTHORITY, (TAX MAP 305, LOTS 1 & 2), GOOSE BAY DRIVE & CORPORATE DRIVE, PORTSMOUTH, NEW HAMPSHIRE" DATED DECEMBER 23, 2015 BY DOUCET SURVEY, INC. (NOT RECORDED)
- 16. "119 INTERNATIONAL DRIVE CONDOMINIUM, CONDOMINIUM SITE PLAN, FOR PROPERTY OWNED BY PEASE DEVELOPMENT AUTHORITY, LEASED TO 119 INTERNATIONAL DRIVE, LLC. KNOWN AS PORTSMOUTH TAX MAP 305. LOT 4, PORTSMOUTH, NH" DATED OCT. 10, 2017 BY KNIGHT HILL LAND SURVEYING SERVICES, INC. R.C.R.D.
- 17. "ALTA/NSPS LAND TITLE SURVEY FOR 130 INTERNATIONAL DRIVE, LLC AND PEASE DEVELOPMENT AUTHORITY, 130 INTERNATIONAL DRIVE, PORTSMOUTH, NH" DATED JULY 2017 AND REVISED THROUGH 8/9/17 BY DOUCET
- 18. "ALTA/ACSM LAND TITLE SURVEY FOR 100 INTERNATIONAL DRIVE, LLC, 100 INTERNATIONAL DRIVE, PEASE INTERNATIONAL TRADEPORT, PORTSMOUTH, NH" DATED MARCH 30, 2006 BY DOUCET SURVEY, INC. (NOT
- 19. "CITY OF PORTSMOUTH, NEW HAMPSHIRE, FOR CONSTRUCTION, CORPORATE DRIVE AND GOOSE BAY DRIVE SEWER IMPROVEMENTS" DATED JULY 28, 2017 BY UNDERWOOD ENGINEERS, INC. (NOT RECORDED) 20. "SUBDIVISION PLAN FOR LONZA BIOLOGICS, INC. AND THE PEASE DEVELOPMENT AUTHORITY OF TAX MAP 305,

LOTS 1, 2, 5 & 6 AND GOOSE BAY DRIVE, INTERNATIONAL DRIVE - CORPORATE DRIVE - GOOSE BAY DRIVE.

- PORTSMOUTH, NEW HAMPSHIRE" DATED APRIL 16, 2018 BY DOUCET SURVEY, INC (NOT RECORDED) 21. "APPENDIX VI, MUNICIPAL SERVICES AGREEMENT BETWEEN CITY OF PORTSMOUTH, TOWN OF NEWINGTON AND PEASE DEVELOPMENT AUTHORITY" EFFECTIVE AS OF JULY 1, 1998 (ROADWAY WIDTHS) (NOT RECORDED)
- 22. "THIRD AMENDED SITE/FLOOR PLAN ADDENDUM FOR 75 NEW HAMPSHIRE CONDOMINIUM SHOWING BUILDING 5 -UNIT 6 - LIMITED COMMON AREA" DATED JULY 2019 BY KNIGHT HILL LAND SURVEYING SERVICES, INC. R.C.R.D. PLAN D-41611
- 23. "LEASE LINE DISCONTINUANCE & EXISTING BUILDING UPDATE PLAN, 25, 29 RETAIL CONDOMINIUM" DATED DECEMBER 2018 AND REVISED JULY 20, 2017 BY KNIGHT HILL LAND SURVEYING SERVICES. R.C.R.D. PLAN
- 24. "SUBDIVISION PLAN AT 30 INTERNATIONAL DRIVE AT PEASE INTERNATIONAL TRADEPORT, PORTSMOUTH, NEW HAMPSHIRE" DATED JANUARY 1997 BY CLD CONSULTING ENGINEERS & SURVEYORS R.C.R.D. PLAN D-25370
- 25. "LEASE LINE REVISION FOR BARNPORT, LLC AND PEASE DEVELOPMENT AUTHORITY, 27 INTERNATIONAL DRIVE, PORTSMOUTH, NEW HAMPSHIRE" DATED APRIL 11, 2000 BY DOUCET SURVEY, INC. R.C.R.D. PLAN D-28254

	LINE TABL	E		LINE TABL	E
LINE	BEARING	DISTANCE	LINE	BEARING	DISTANCE
L1	S45'42'46"E	50.48'	L18	N49'42'47"W	102.16'
L2	S34*54'07"W	60.00'	L19	N54'07'45"W	195.64'
L3	S38*27'58"W	58.32'	L20	N59"11'41"W	116.15'
L4	N19'46'25"W	11.01'	L21	N61°40'21"W	179.46'
L5	N83'06'54"W	66.09'	L22	N58°20'21"W	187.76'
L6	N67°48'03"W	196.60'	L23	S34*54'07"W	10.02'
L7	S22°03'02"W	14.87'	L24	N58*20'21*W	186.91
L8	S33*35'17"W	57.08'	L25	N61°40'21"W	179.39'
L9	S42'06'02"W	43.59'	L26	N59'11'41"W	116.81
L10	N55'44'33"W	33.55'	L27	N54"07'45"W	196.47
L11	N67°48'03"W	122.22'	L28	N49'42'47"W	103.08'
L12	N22"11'57"E	10.00'	L29	N43'37'13"W	100.81
L13	N19'52'39"W	313.89	L30	N40°07'36"W	108.68
L14	N27'09'05"W	222.06	L31	N33*51'22"W	176.39'
L15	N33'51'22"W	175.26'	L32	N27*09'05"W	223.29'
L16	N40°07'36"W	107.83	L33	N19*52'39"W	316.47
L17	N43'37'13"W	99.98'	L34	S34*54'07"W	32.65

L17	N43'37'13"W	99.98'	L34	S34*54'07"W 32.6	5'
			CURVE TABL	E	
CURV	E ARC LENGTH	RADIUS	DELTA ANGLE	CHORD BEARING	CHORD LENGTH
C1	152.83'	63.00'	138*59'47"	S61*54'24"W	118.02'
C2	75.52'	50.06'	86°26'09"	S81'41'02"W	68.56'
СЗ	181.41'	1752.84	5'55'47"	N58*03'47"W	181.33'
C4	338.74	1420.00'	13*40'04"	S54"1'54"E	337.94'
C5	623.87'	1420.00'	25"10'21"	S34'46'41"E	618.86'
C6	60.72	500.00	6'57'30"	S18'42'46"E	60.69'
C7	60.50	35.00'	99*01'56"	S34°16'57"W	53.24'
C8	466.96	1540.26'	17'22'14"	N87*30'58"W	465.18'
С9	23.43'	1540.26	0°52'17"	N78'23'43"W	23.43'
C10	300.24	1540.26	11"10'07"	N62*21'55"W	299.77
C11	237.27'	2450.00	5*32'56"	N54°00'23"W	237.18'
C12	153.95'	170.00'	51*53'06"	N7*38'44"E	148.74
C13	117.72'	130.00'	51'53'06"	N7*38'44"E	113.74'
C14	91.22'	130.00'	40"12'15"	N38°23'56"W	89.36'
C15	175.20'	1692.80'	5*55'47"	N58'03'47"W	175.12'
C16	942.18'	1480.00'	36°28'30"	S42°47'41"E	926.35
C17	61.10'	1480.00	2°21'56"	N23°22'29"W	61.10'
C18	115.23'	560.00'	11°47'23"	N16*17'50"W	115.03'
C19	18.12'	3710.06	016'48"	S80°54'45"W	18.12'
C20	10.19'	3710.06	0.09'26"	N81°07'52"E	10.19'
C21	298.54'	3710.06	4'36'38"	N78°05'40"E	298.46'
C22	54.86'	3710.06	0.50,50,	N80'49'24"E	54.86'
C23	68.59'	1540.26'	2*33'06"	N82°31'22"E	68.59'
C24	910.09'	1540.26	33'51'16"	S79"16'27"E	896.91'
C25	149.63'	1540.26	5*33'58"	S59'33'50"E	149.57
C26	473.28'	2450.00'	11'04'05"	S5114'49"E	472.54
C27	24.14'	3710.06	0*22*22"	N80°35′10″E	24.14'

LONZA BIOLOGICS, INC. OF TAX MAP 305 LOTS 1, 2, 5, 6, & 7 AND GOOSE BAY DRIVE INTERNATIONAL DRIVE - CORPORATE DRIVE

GOOSE BAY DRIVE

PORTSMOUTH, NEW HAMPSHIRE

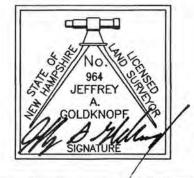
SUBDIVISION PLAN

LAND OF

PEASE DEVELOPMENT AUTHORITY

LEASED TO

ADDED MONUMENTS SET BY NO. DATE


JUNE 21, 2021 DRAWN BY: 6228B HECKED BY: DRAWING NO.: 6228

102 Kent Place, Newmarket, NH 03857 (603) 659-6560

Offices in Bedford & Keene, NH and Kennebunk, ME

http://www.doucetsurvey.com

Serving Your Professional Surveying & Mapping Needs

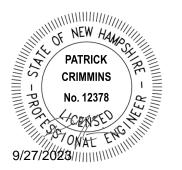
THE CERTIFICATIONS SHOWN HEREON ARE INTENDED TO MEET REGISTRY OF DEED REQUIREMENTS AND ARE NOT A CERTIFICATION TO TITLE OR OWNERSHIP OF PROPERTY SHOWN. OWNERS OF ADJOINING PROPERTIES ARE ACCORDING TO CURRENT TOWN ASSESSORS RECORDS.

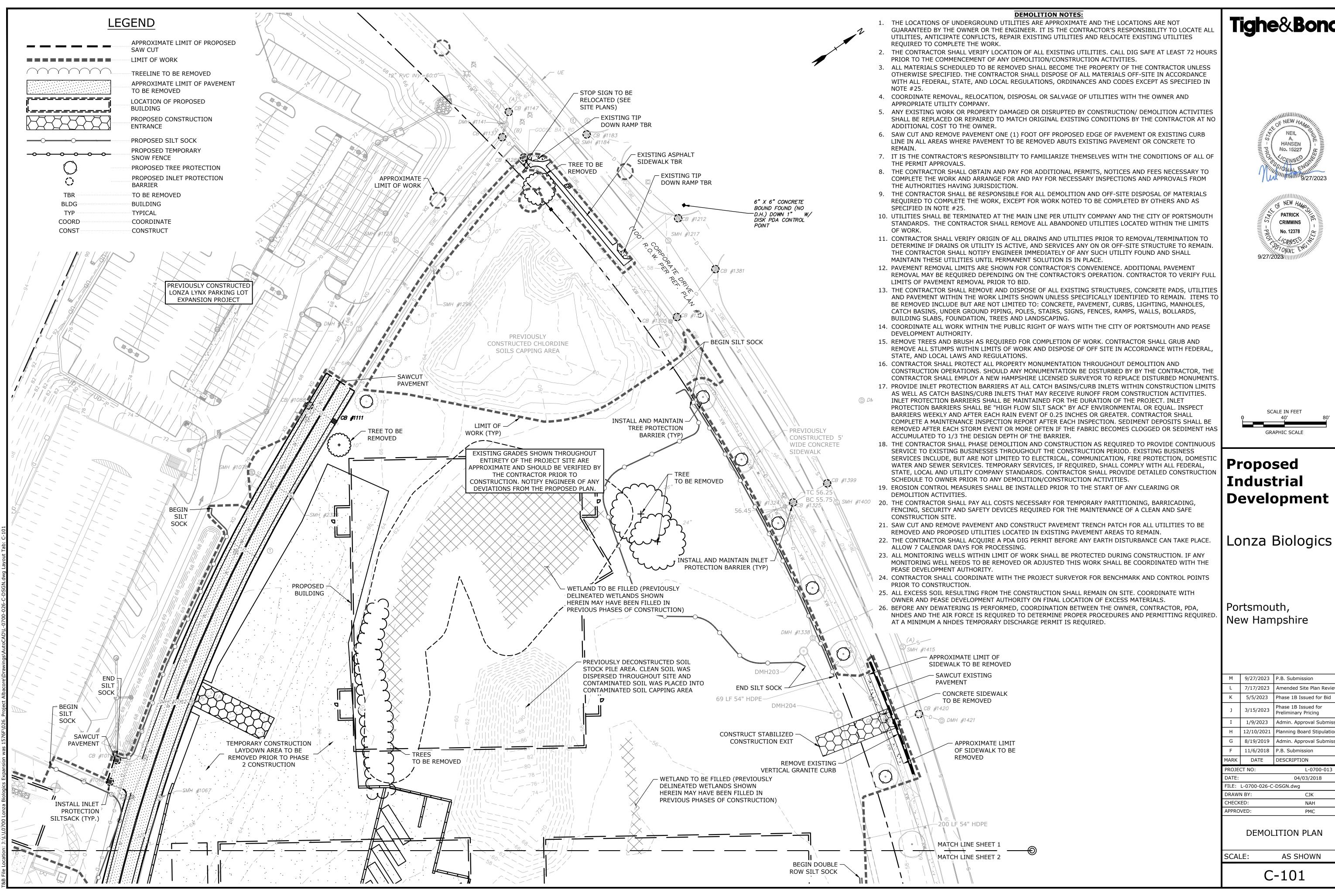
I CERTIFY THAT THIS SURVEY AND PLAN WERE PREPARED BY

ME OR BY THOSE UNDER MY DIRECT SUPERVISION AND FALLS

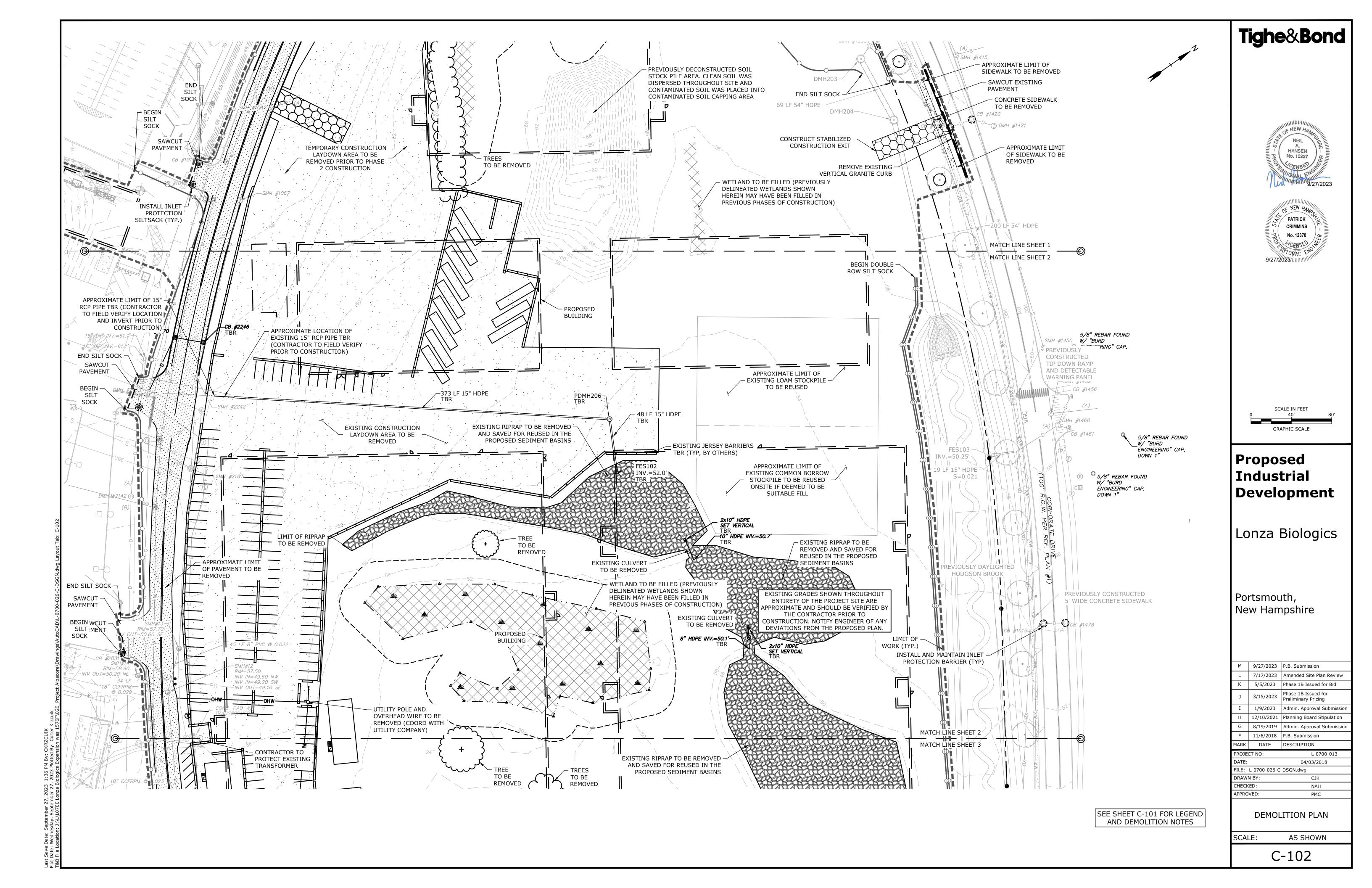
UNDER THE URBAN SURVEY CLASSIFICATION OF THE NH CODE OF ADMINISTRATIVE RULES OF THE BOARD OF LICENSURE FOR LAND SURVEYORS. I CERTIFY THAT THIS SURVEY WAS MADE ON

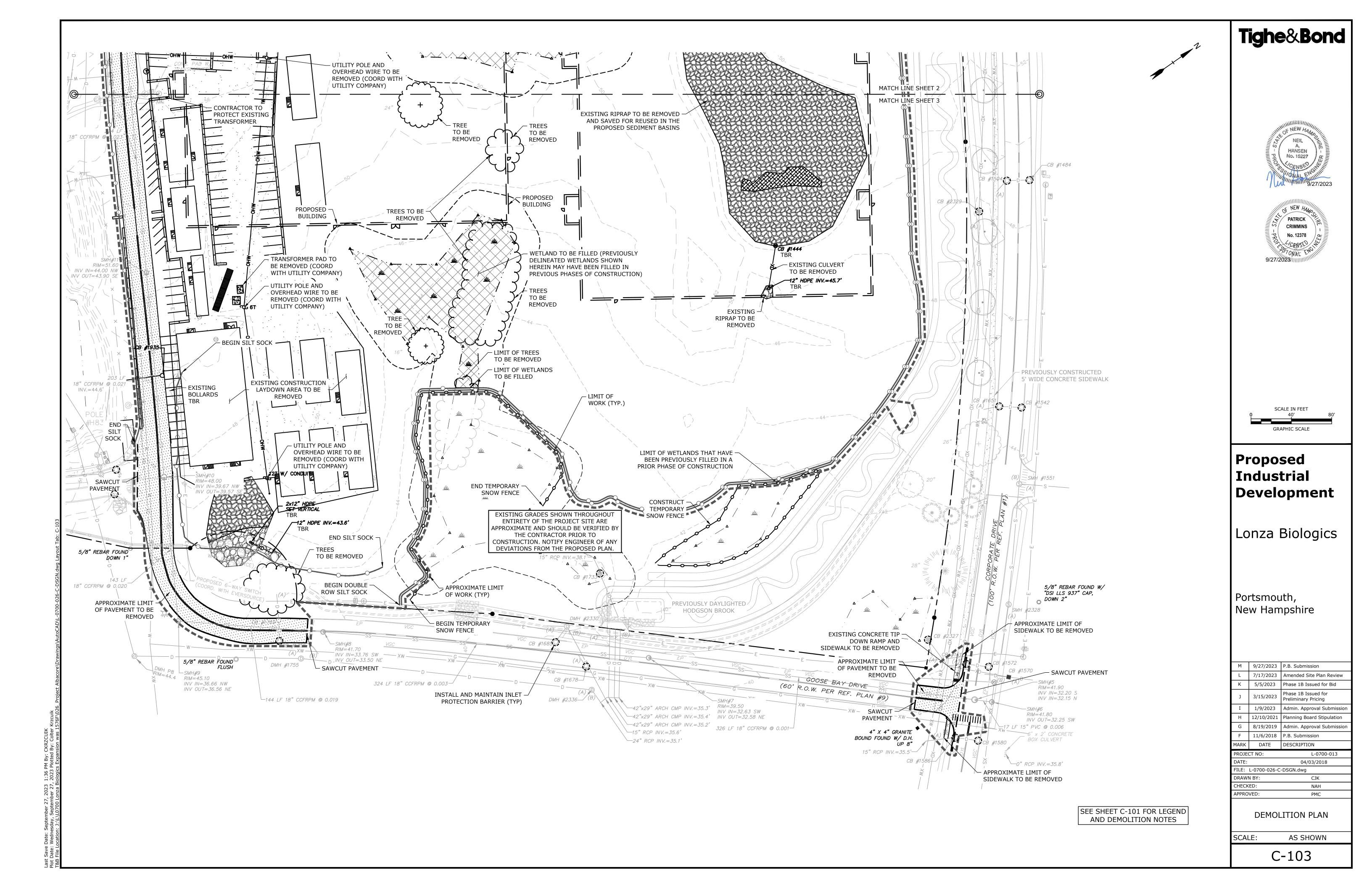
WITH A PRECISION GREATER THAN 1:15,000.

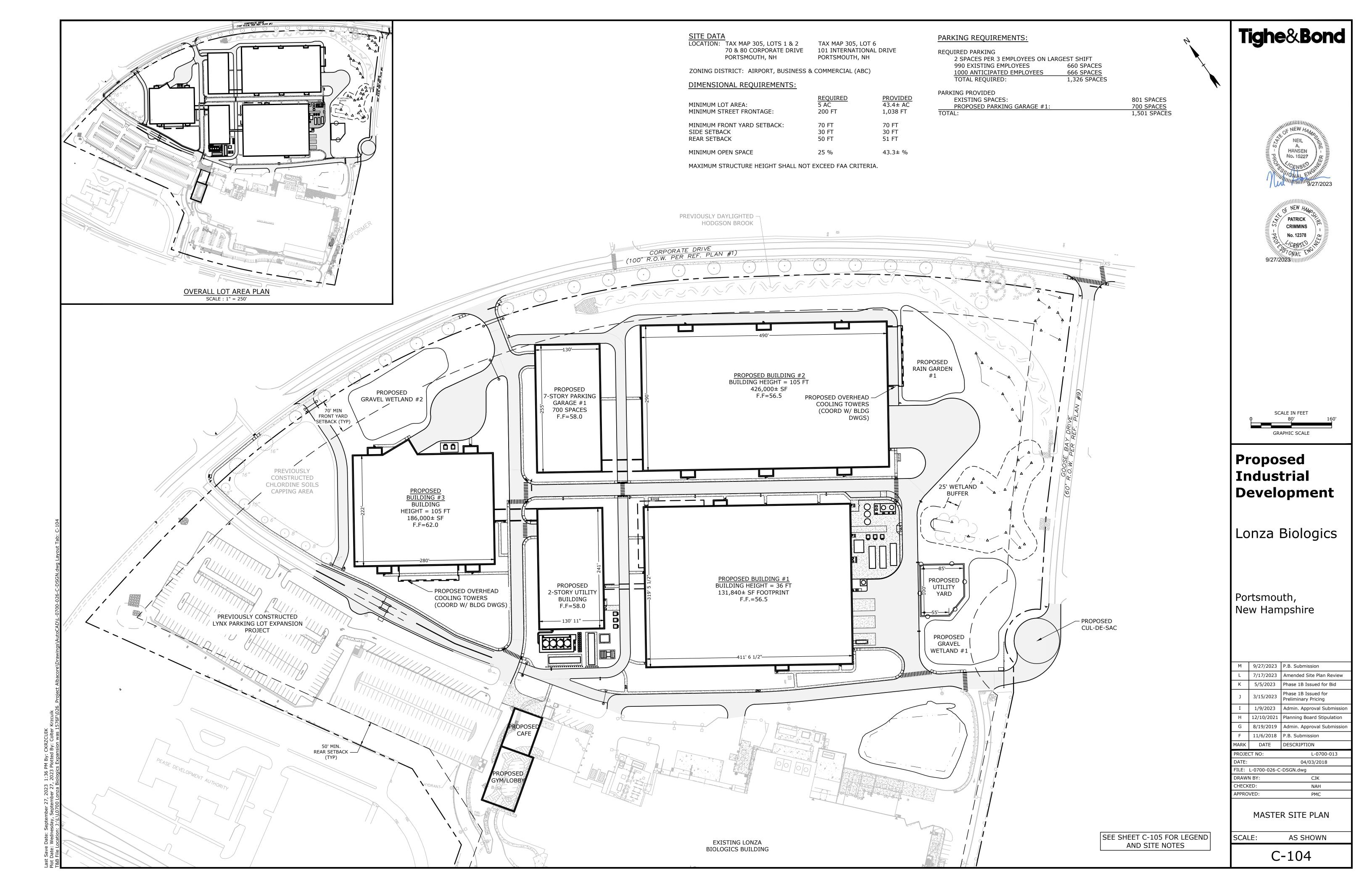

THE GROUND AND IS CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF. RANDOM TRAVERSE SURVEY BY TOTAL STATION,

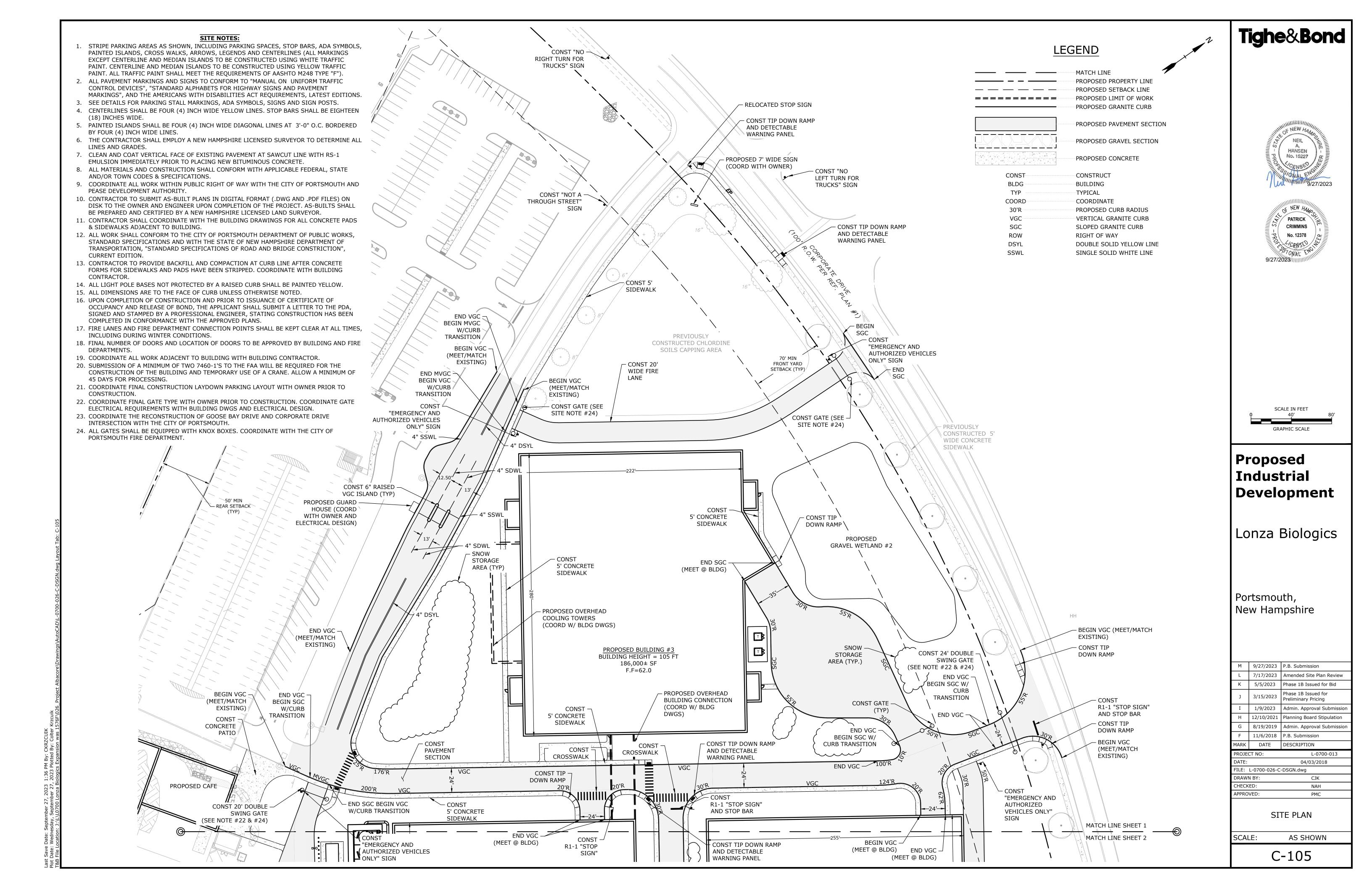

MASTER PLAN SET

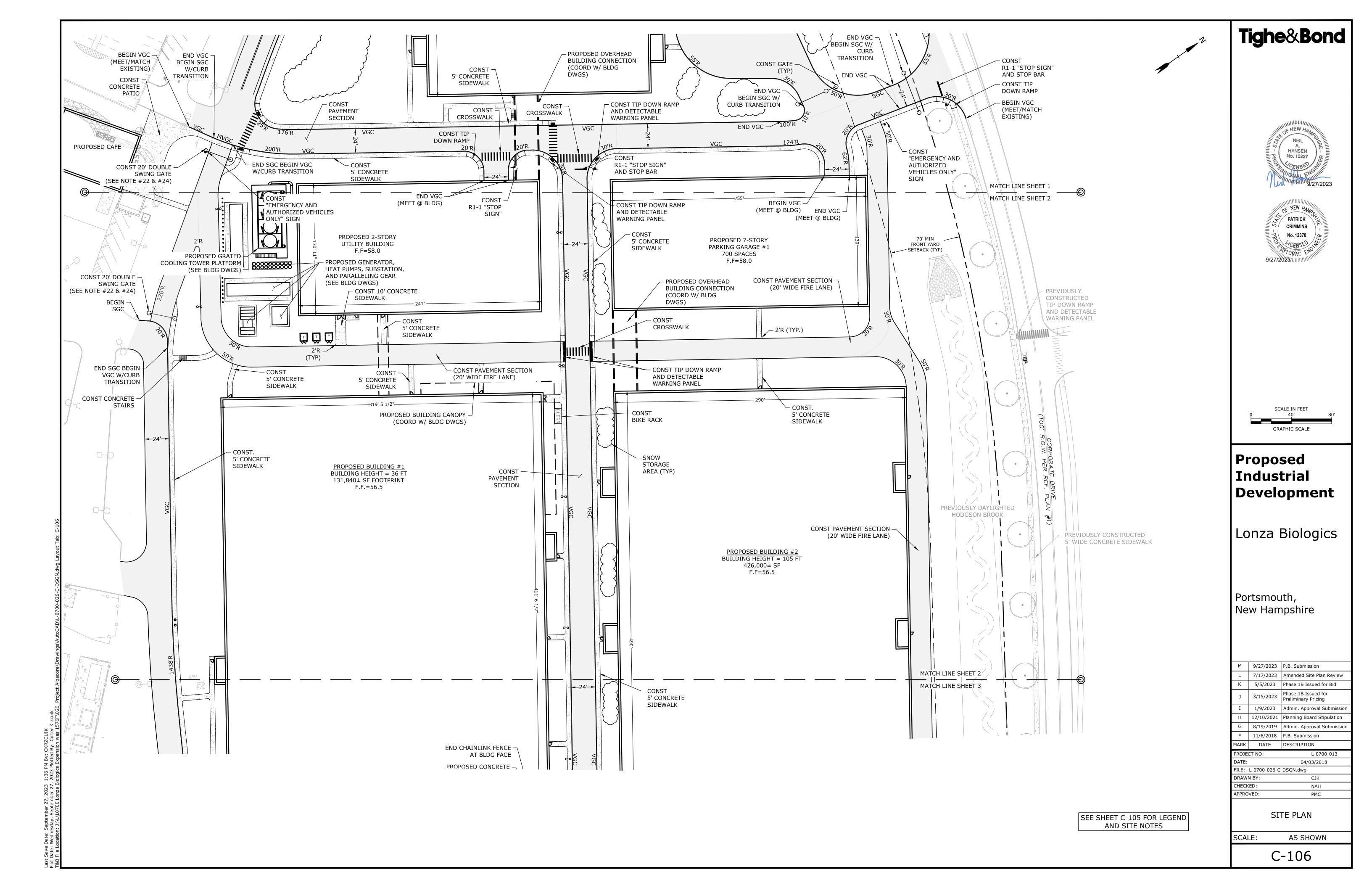
APRIL 3, 2018 REVISED: SEPTEMBER 27, 2023

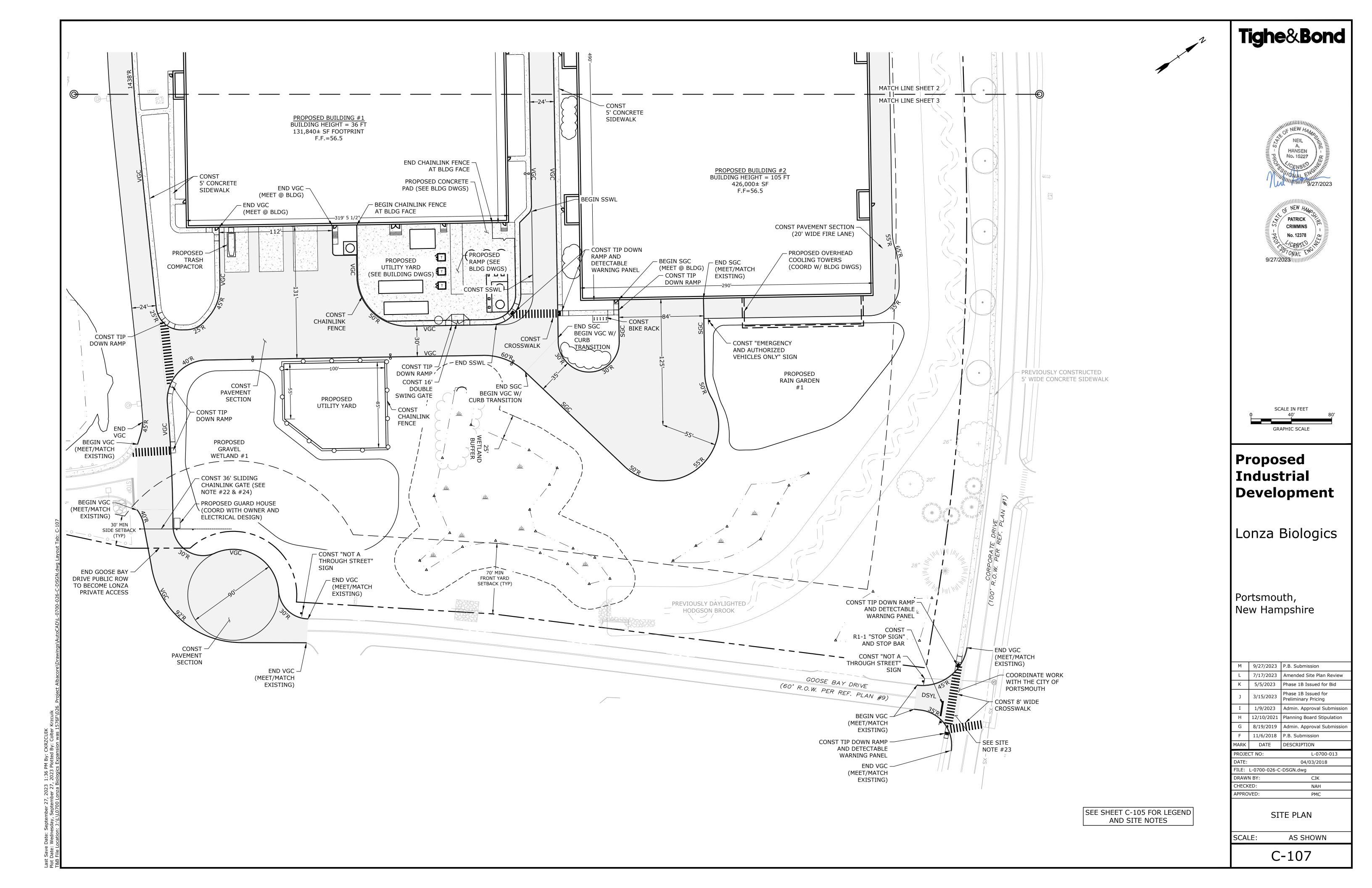

LIST OF DRAWINGS			
SHEET NO.	SHEET TITLE	LAST REVISED	
	MASTER PLAN SET COVER SHEET	9/27/2023	
C-101	DEMOLITION PLAN	9/27/2023	
C-102	DEMOLITION PLAN	9/27/2023	
C-103	DEMOLITION PLAN	9/27/2023	
C-104	OVERALL SITE PLAN	9/27/2023	
C-105	SITE PLAN	9/27/2023	
C-106	SITE PLAN	9/27/2023	
C-107	SITE PLAN	9/27/2023	
C-108	GRADING, DRAINAGE & EROSION CONTROL PLAN	9/27/2023	
C-109	GRADING, DRAINAGE & EROSION CONTROL PLAN	9/27/2023	
C-110	GRADING, DRAINAGE & EROSION CONTROL PLAN	9/27/2023	
C-111	UTILITIES PLAN	9/27/2023	
C-112	UTILITIES PLAN	9/27/2023	
C-113	UTILITIES PLAN	9/27/2023	
C-114	LANDSCAPE PLAN	9/27/2023	
C-115	LANDSCAPE PLAN	9/27/2023	
C-116	LANDSCAPE PLAN	9/27/2023	
C-117	PHOTOMETRIC LIGHTING PLAN	9/27/2023	
C-118	PHOTOMETRIC LIGHTING PLAN	9/27/2023	
C-119	PHOTOMETRIC LIGHTING PLAN	9/27/2023	

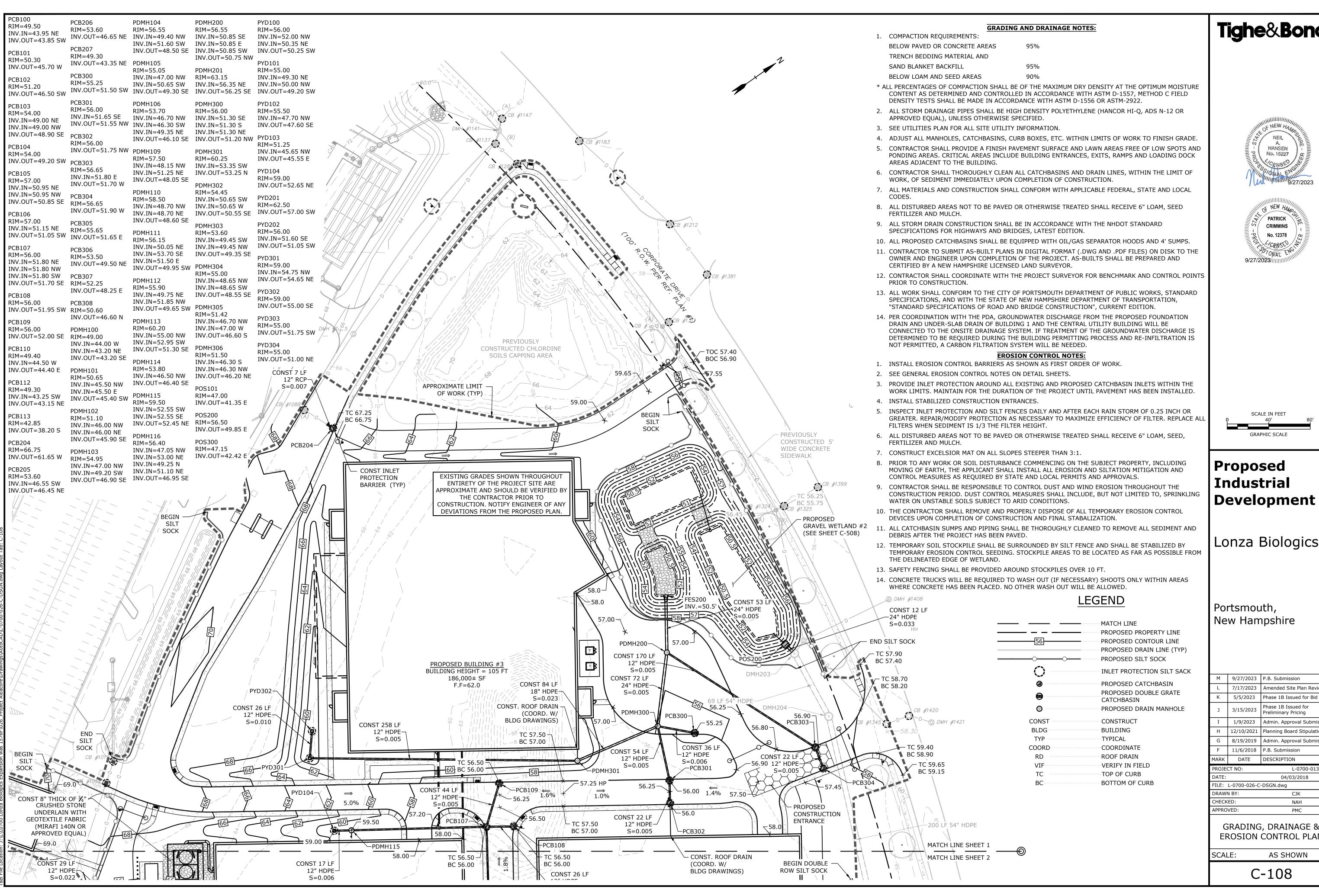


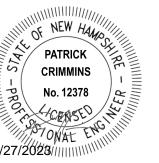


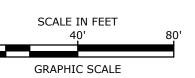



М	9/27/2023	P.B. Submission
L	7/17/2023	Amended Site Plan Review
K	5/5/2023	Phase 1B Issued for Bid
J	3/15/2023	Phase 1B Issued for Preliminary Pricing
I	1/9/2023	Admin. Approval Submission
Ι	12/10/2021	Planning Board Stipulation
G	8/19/2019	Admin. Approval Submission
F	11/6/2018	P.B. Submission
MARK	DATE	DESCRIPTION
DD 0.1ECT NO		1 0700 013

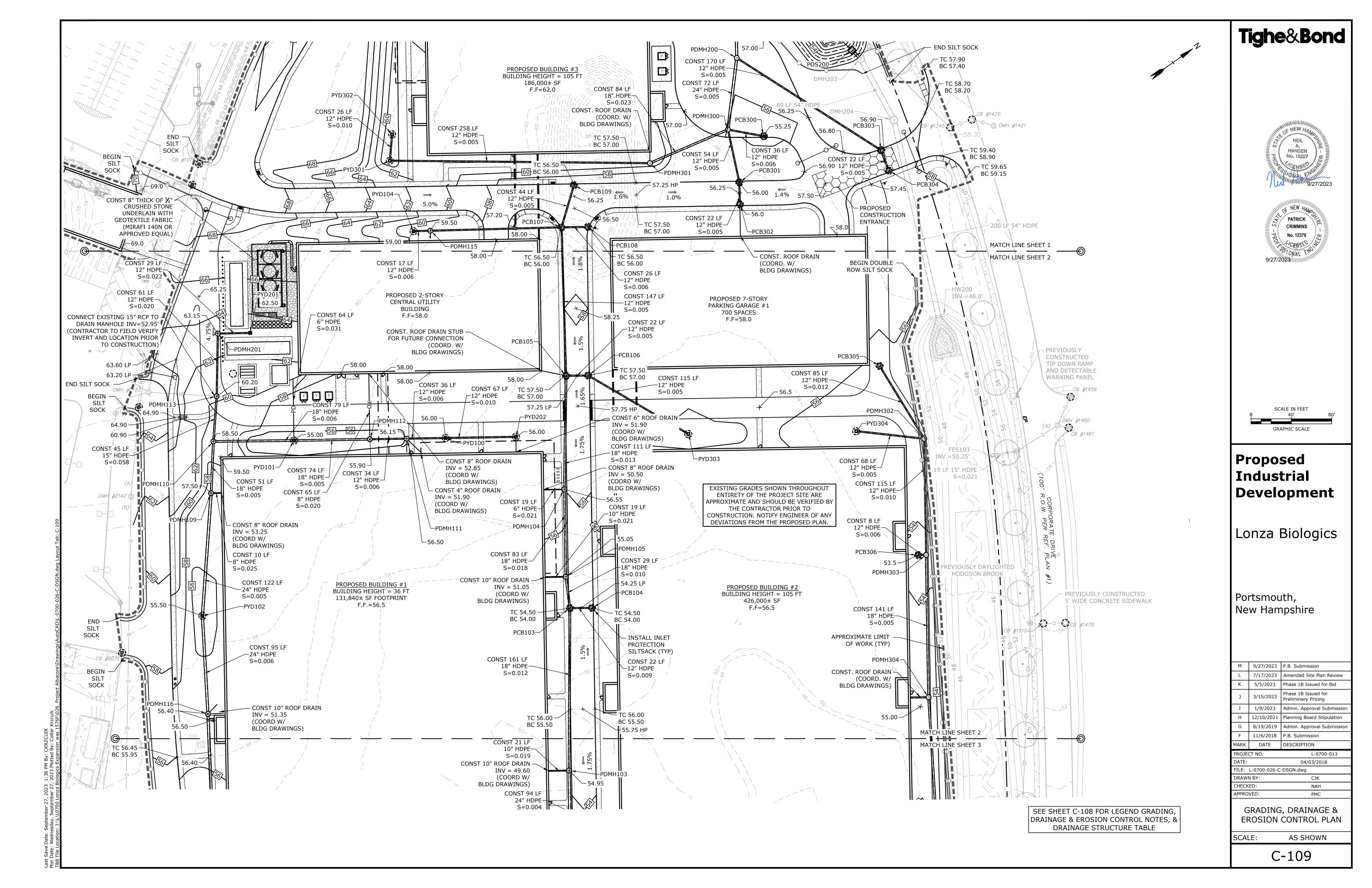


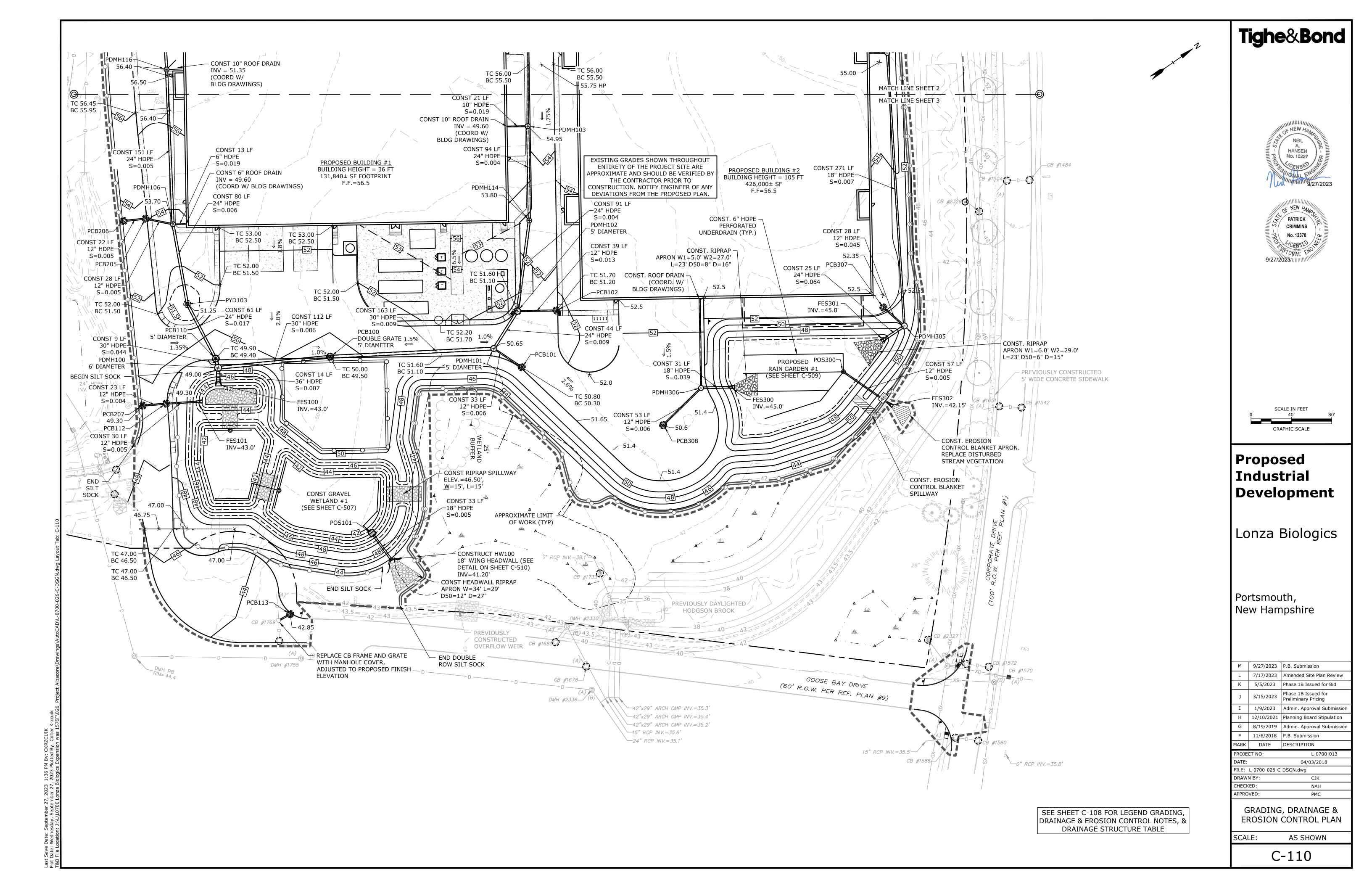


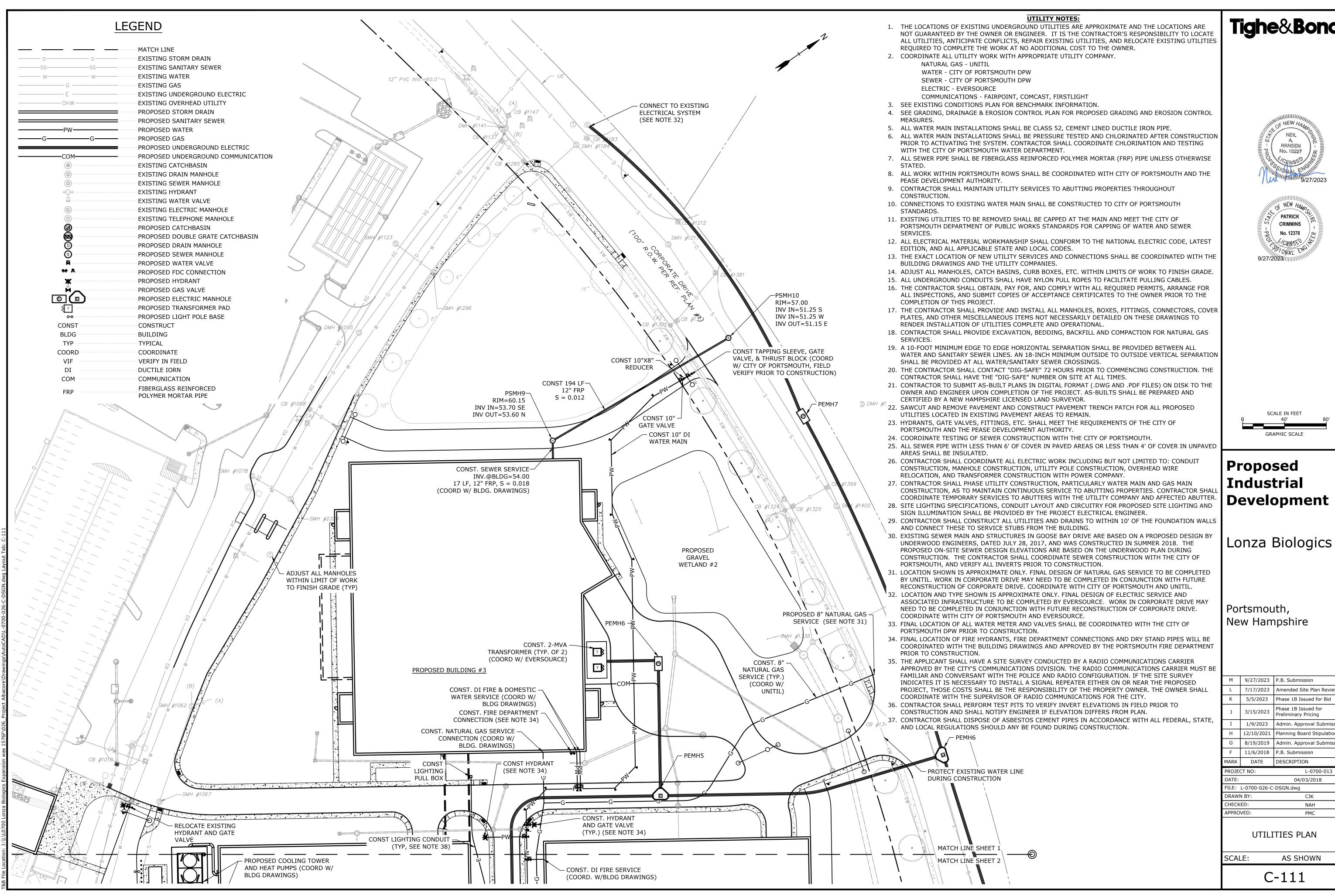




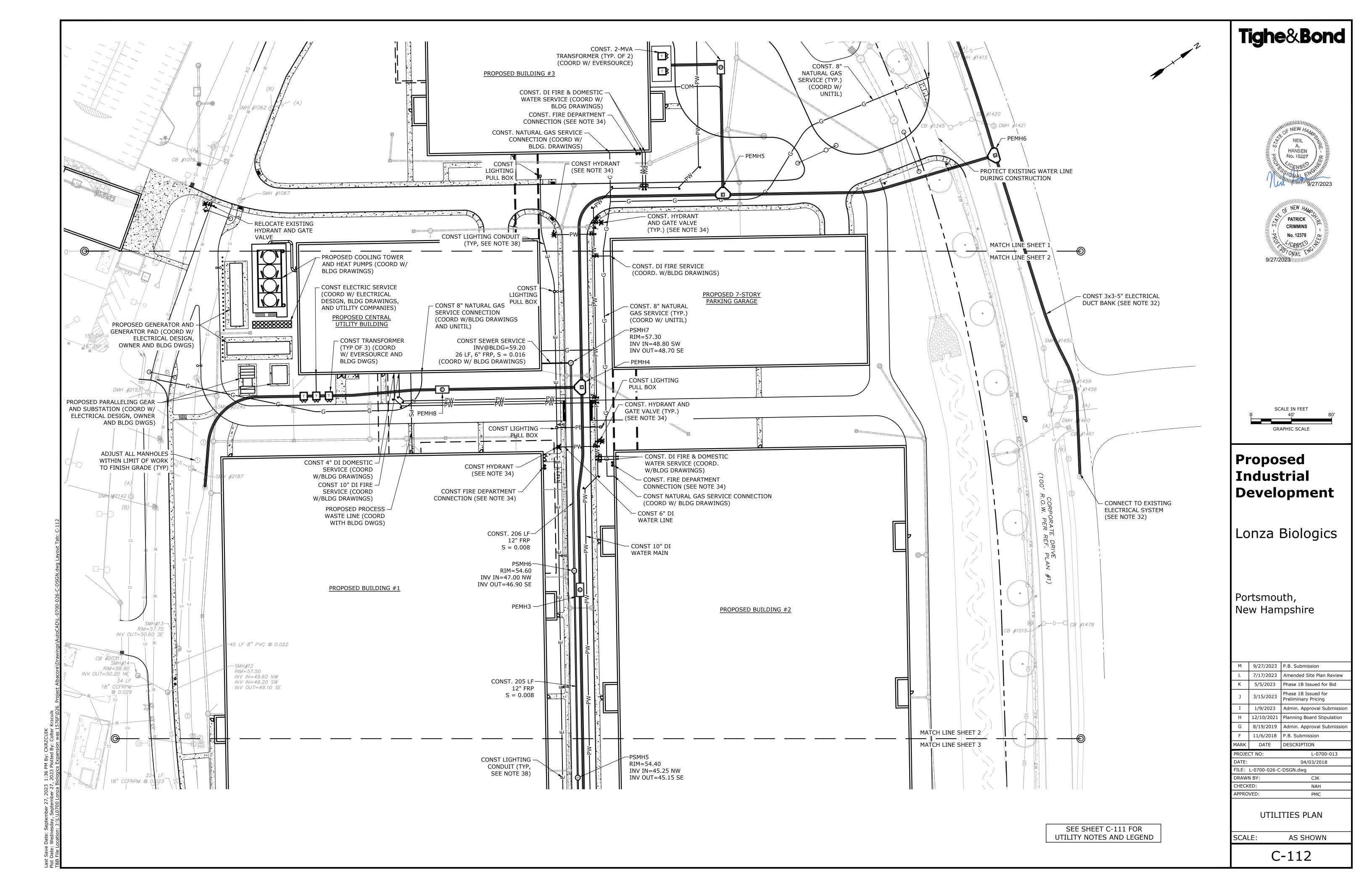
Tighe&Bond

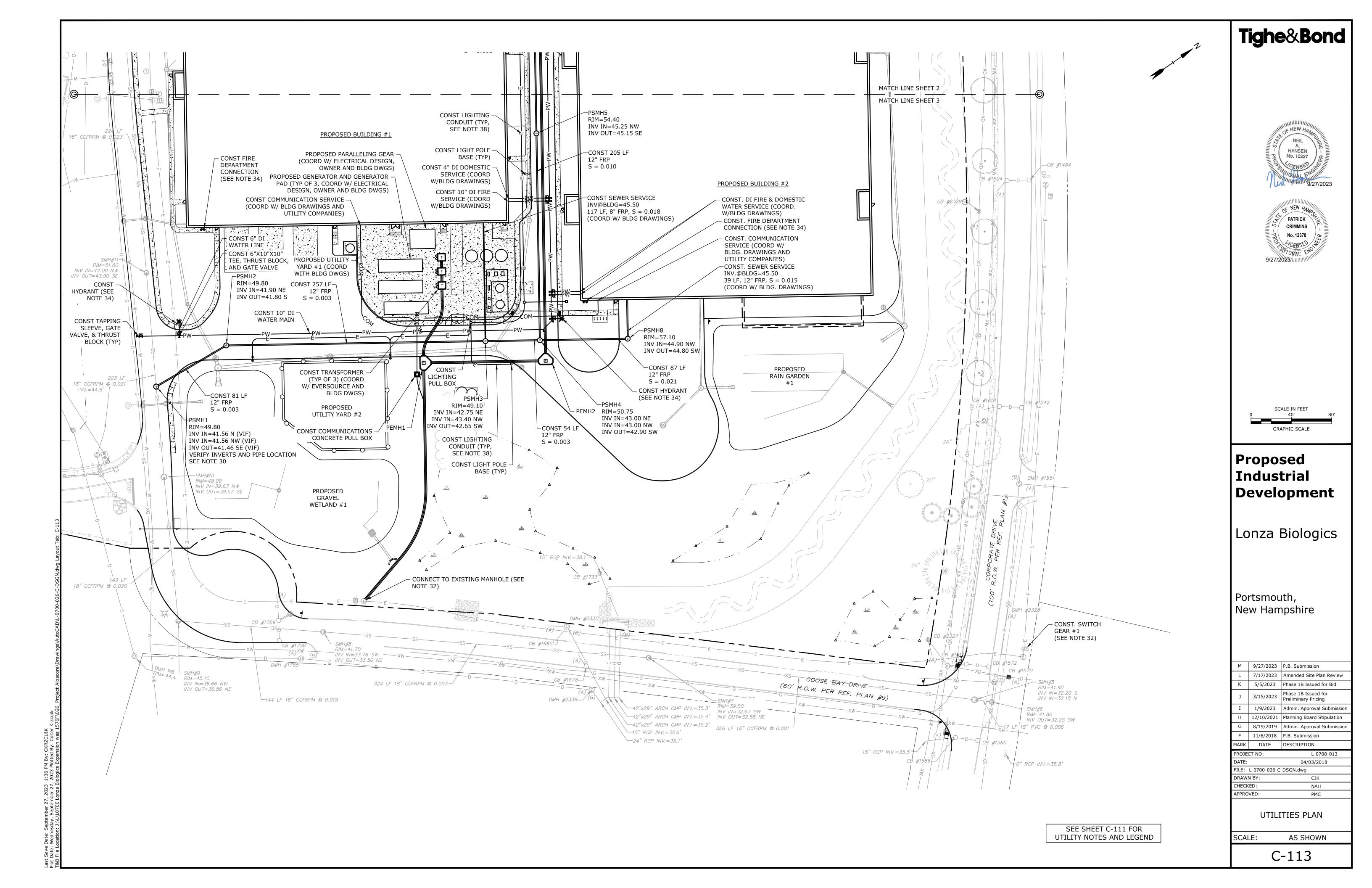


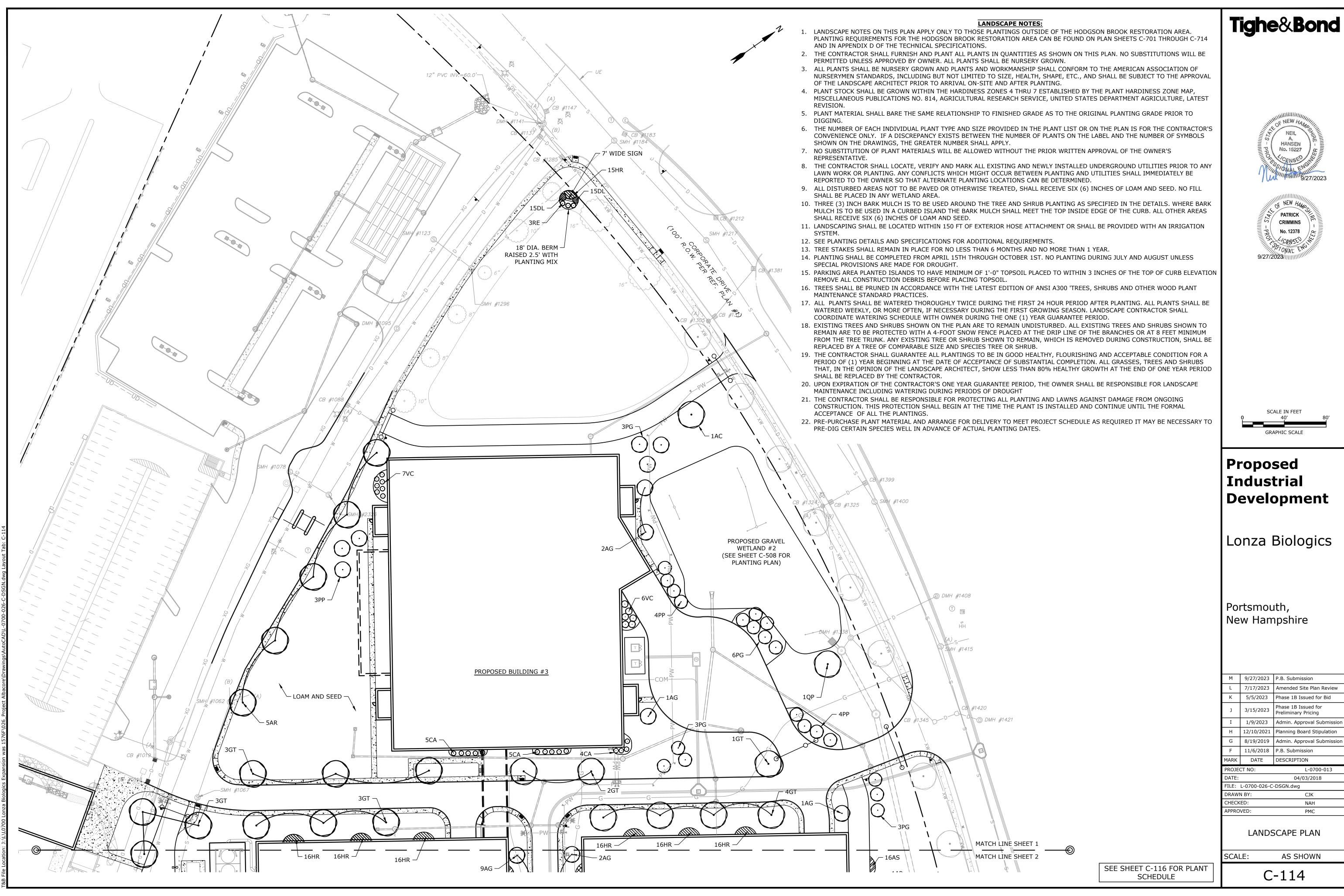


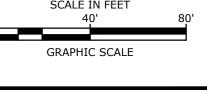

М	9/27/2023	P.B. Submission
L	7/17/2023	Amended Site Plan Review
K	5/5/2023	Phase 1B Issued for Bid
J	3/15/2023	Phase 1B Issued for Preliminary Pricing
I	1/9/2023	Admin. Approval Submission
Н	12/10/2021	Planning Board Stipulation
G	8/19/2019	Admin. Approval Submission
F	11/6/2018	P.B. Submission
ARK	DATE	DESCRIPTION
ROJECT NO:		L-0700-013

04/03/2018

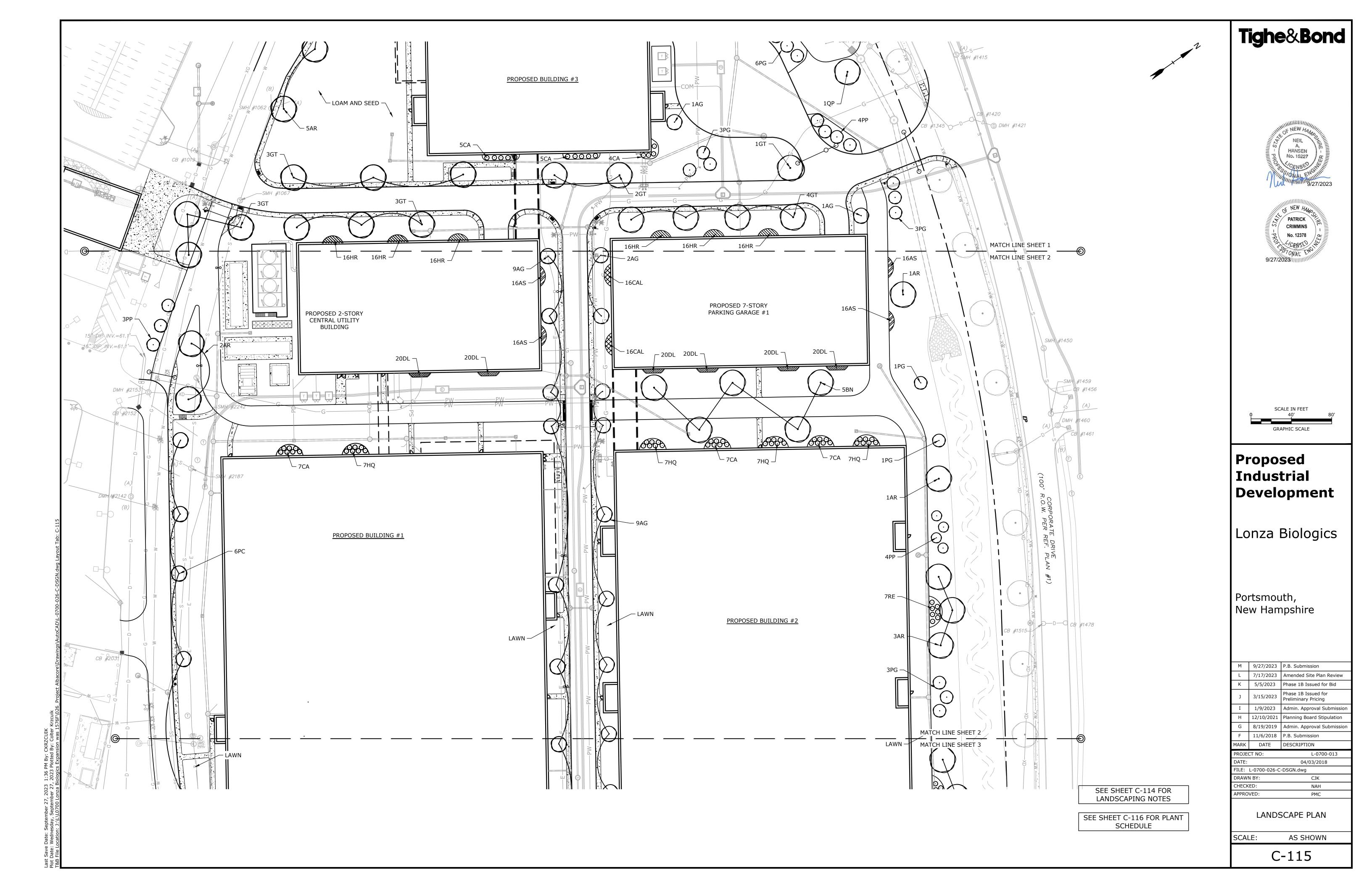

EROSION CONTROL PLAN

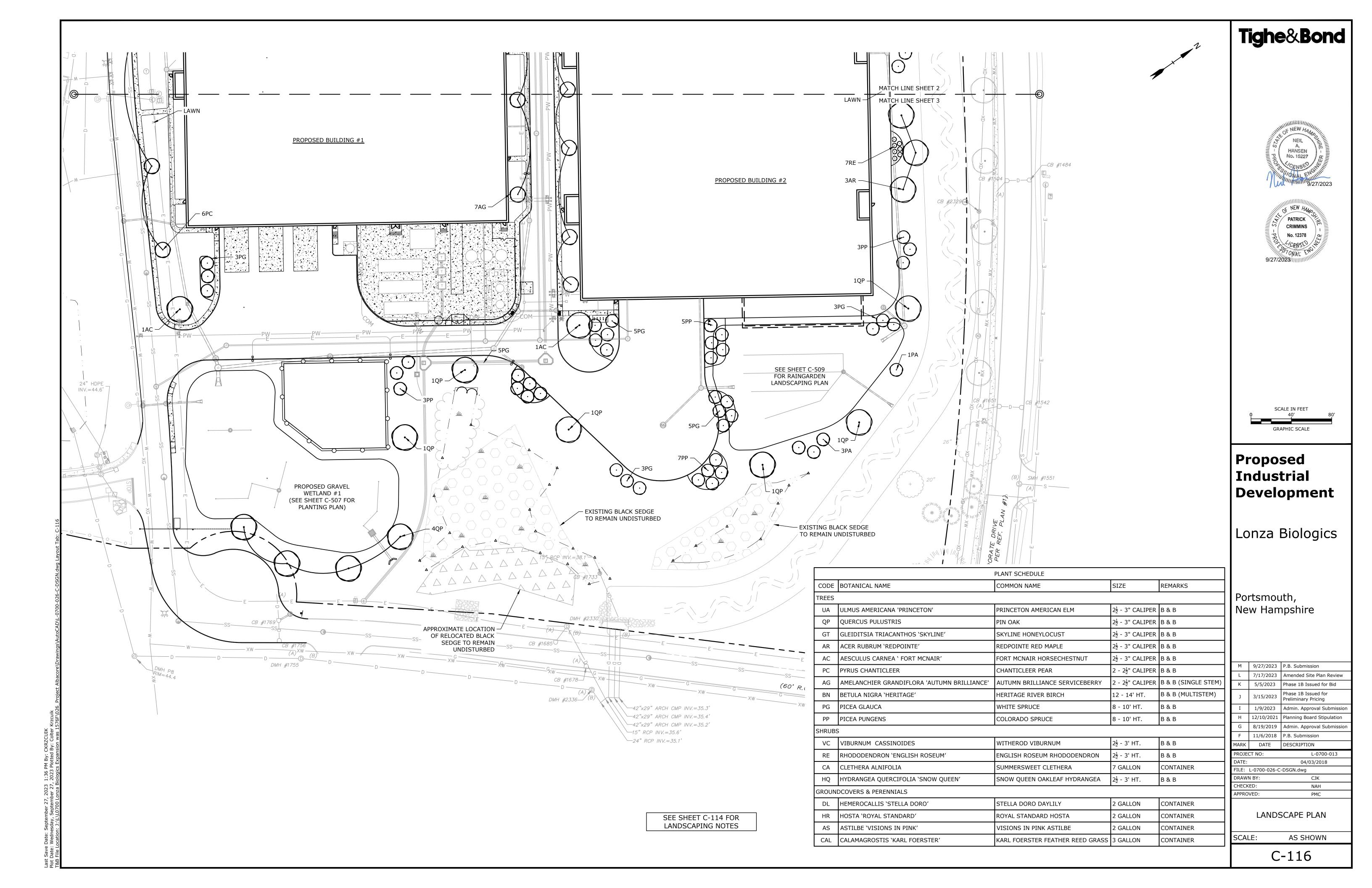


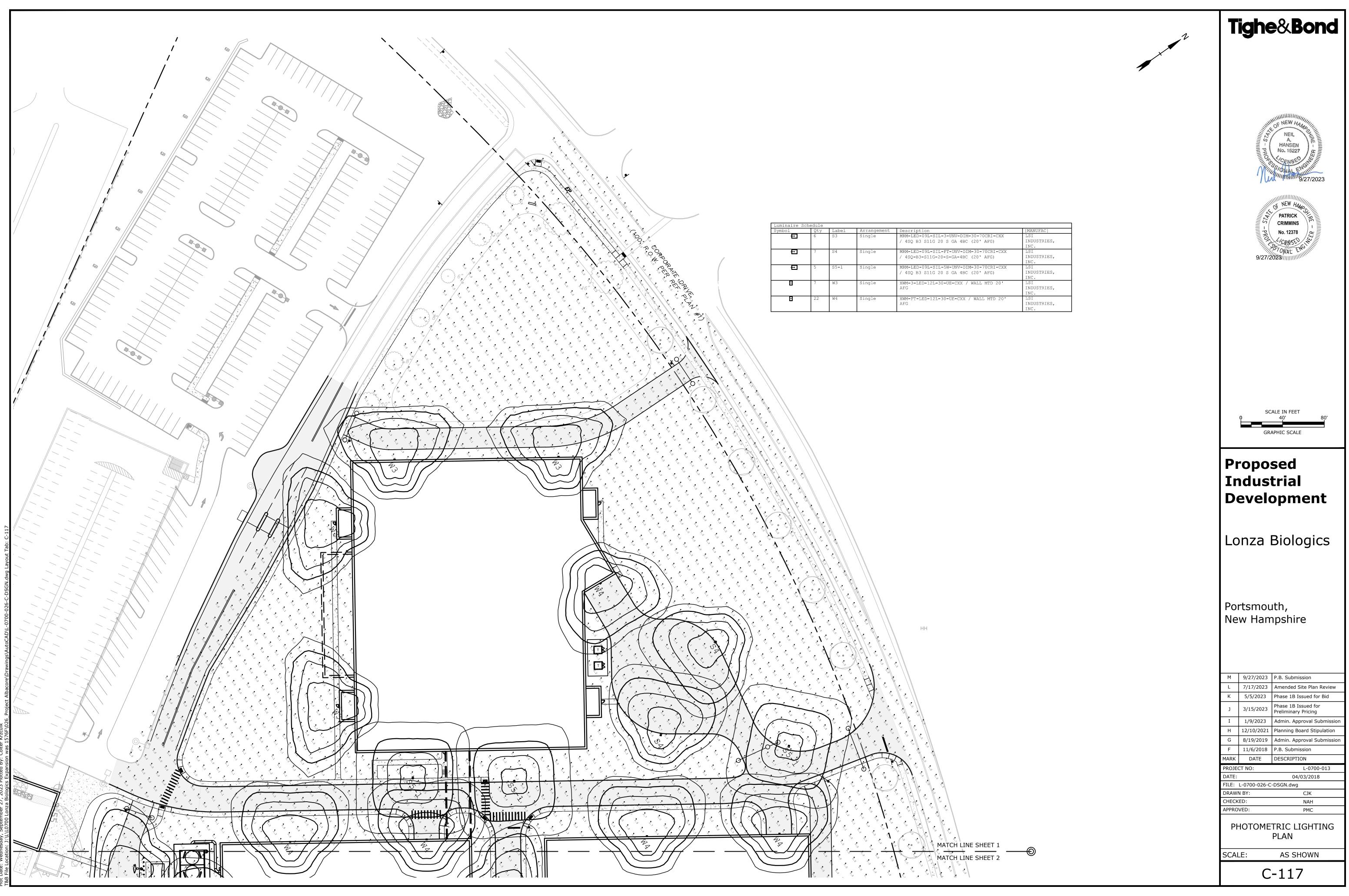


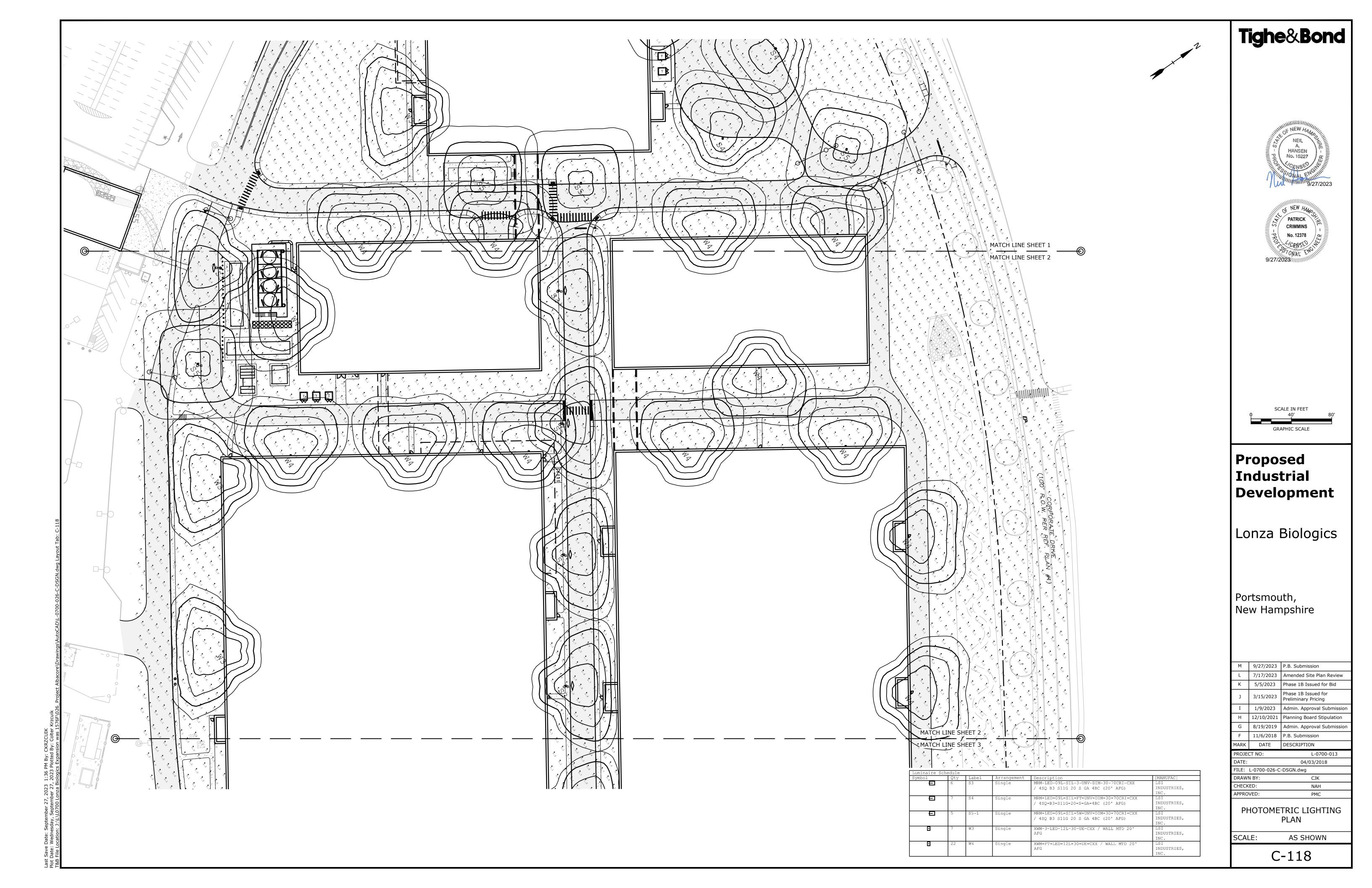


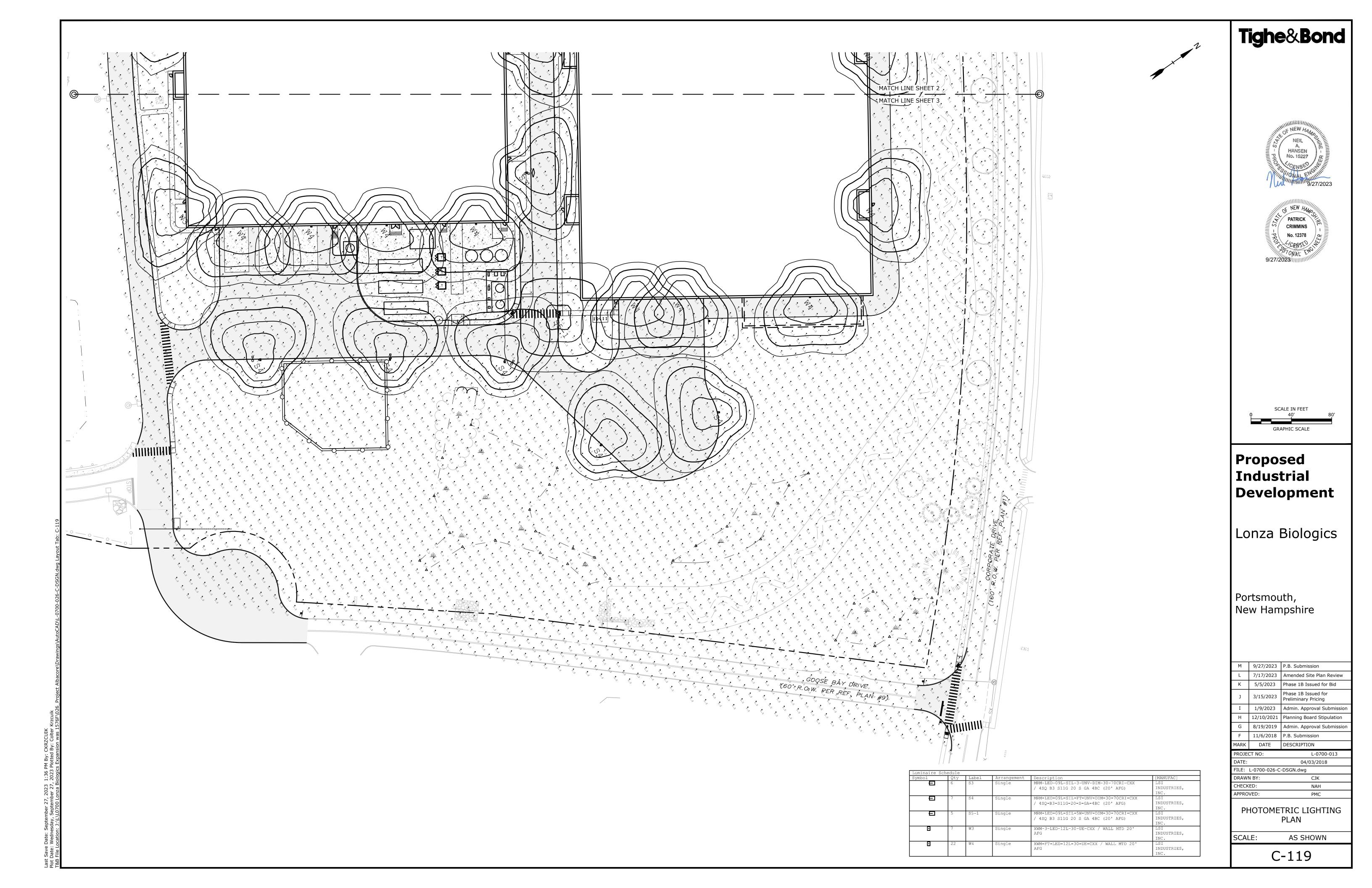
	3/2//2023	1.6. 306(1)35(0)1
L	7/17/2023	Amended Site Plan Review
K	5/5/2023	Phase 1B Issued for Bid
J	3/15/2023	Phase 1B Issued for Preliminary Pricing
I	1/9/2023	Admin. Approval Submission
Τ	12/10/2021	Planning Board Stipulation
G	8/19/2019	Admin. Approval Submission
F	11/6/2018	P.B. Submission
MARK	DATE	DESCRIPTION
PROJECT NO:		L-0700-013







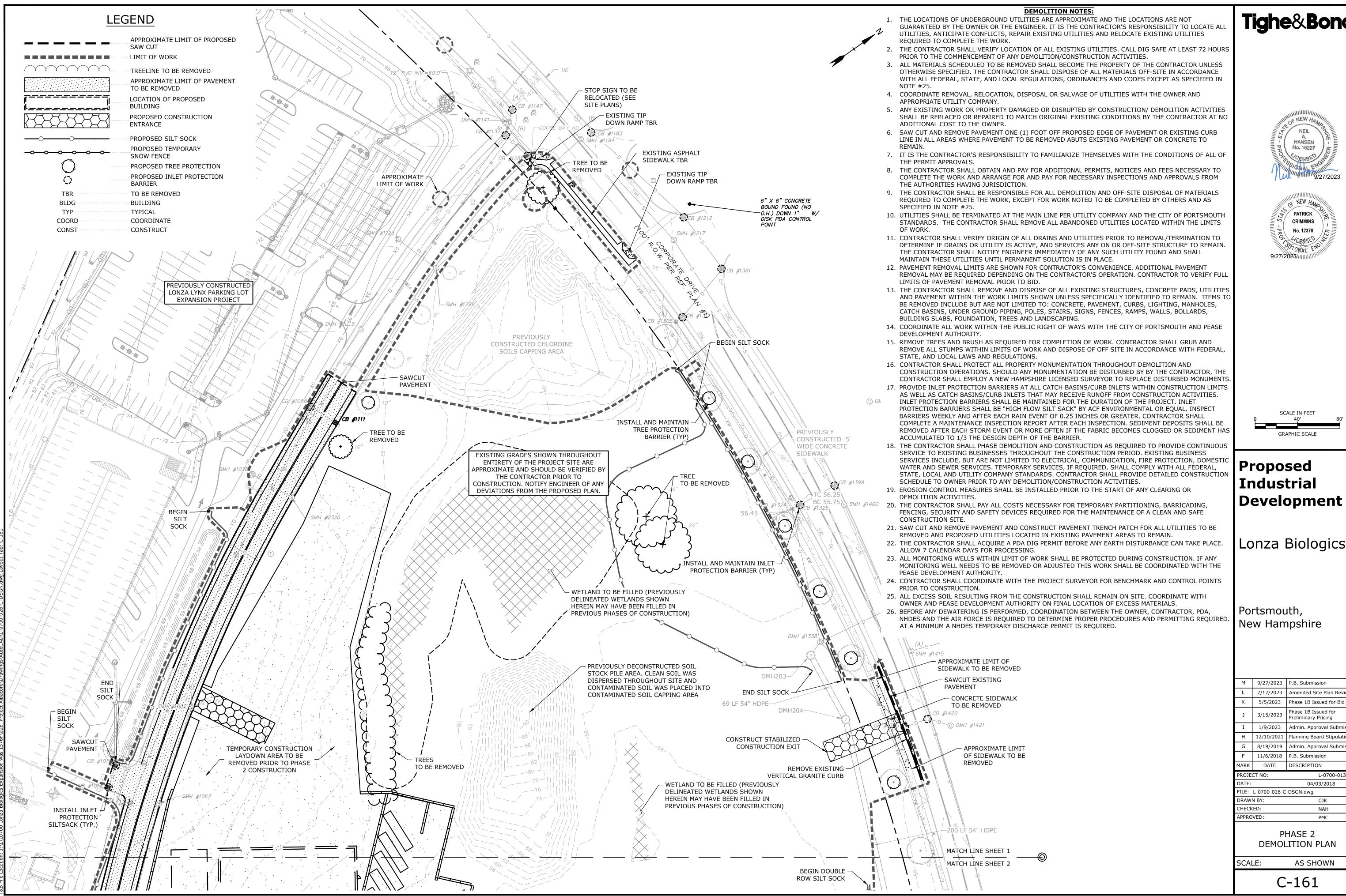

L	7/17/2023	Amended Site Plan Review
K	5/5/2023	Phase 1B Issued for Bid
J	3/15/2023	Phase 1B Issued for Preliminary Pricing
I	1/9/2023	Admin. Approval Submission
Η	12/10/2021	Planning Board Stipulation
G	8/19/2019	Admin. Approval Submission
F	11/6/2018	P.B. Submission
MARK	DATE	DESCRIPTION
DDOJECT NO:		1 0700 012

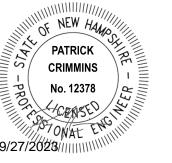


M	9/27/2023	P.B. Submission
L	7/17/2023	Amended Site Plan Review
K	5/5/2023	Phase 1B Issued for Bid
J	3/15/2023	Phase 1B Issued for Preliminary Pricing
I	1/9/2023	Admin. Approval Submission
Н	12/10/2021	Planning Board Stipulation
G	8/19/2019	Admin. Approval Submission
F	11/6/2018	P.B. Submission
MARK	DATE	DESCRIPTION

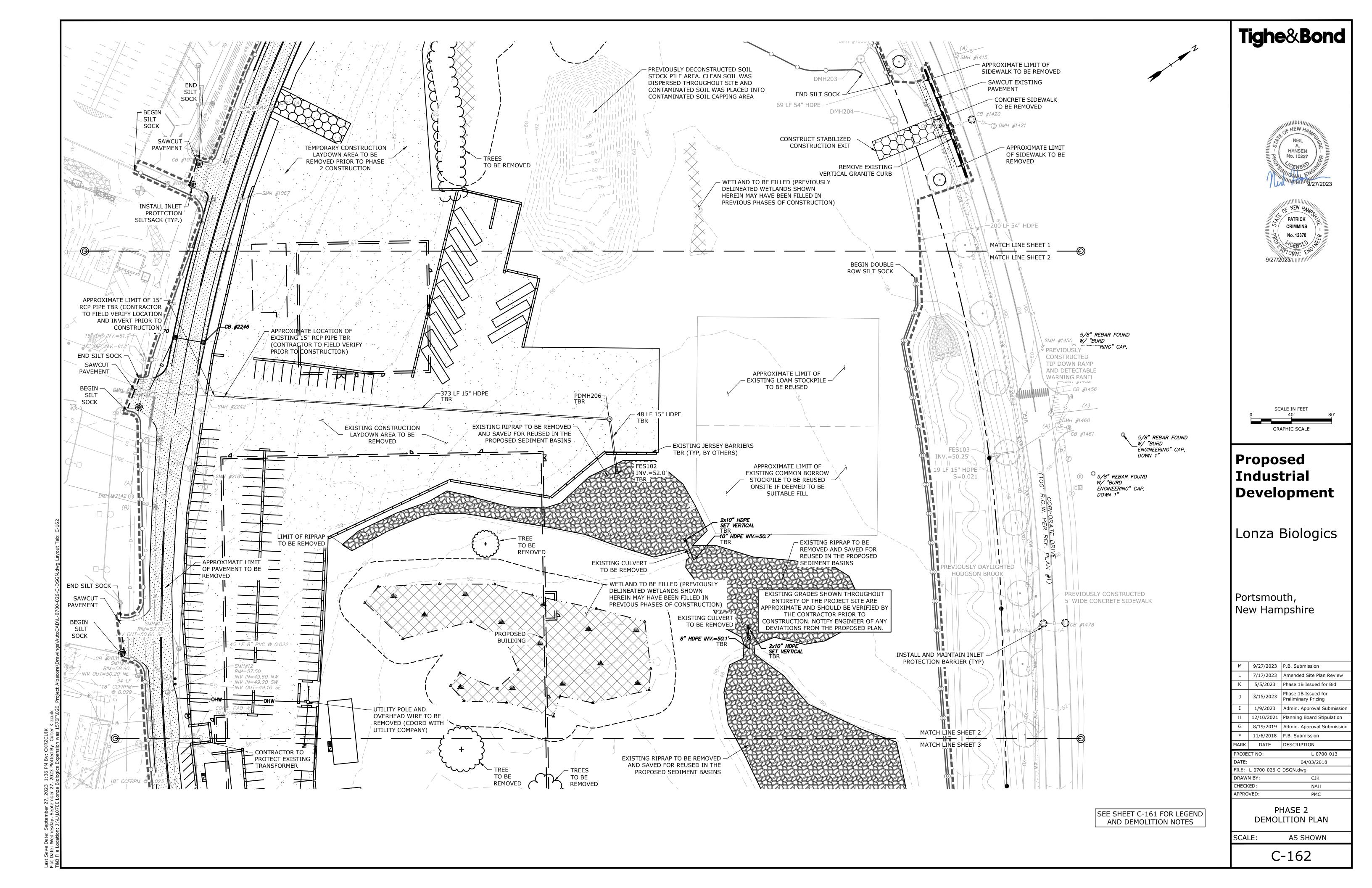


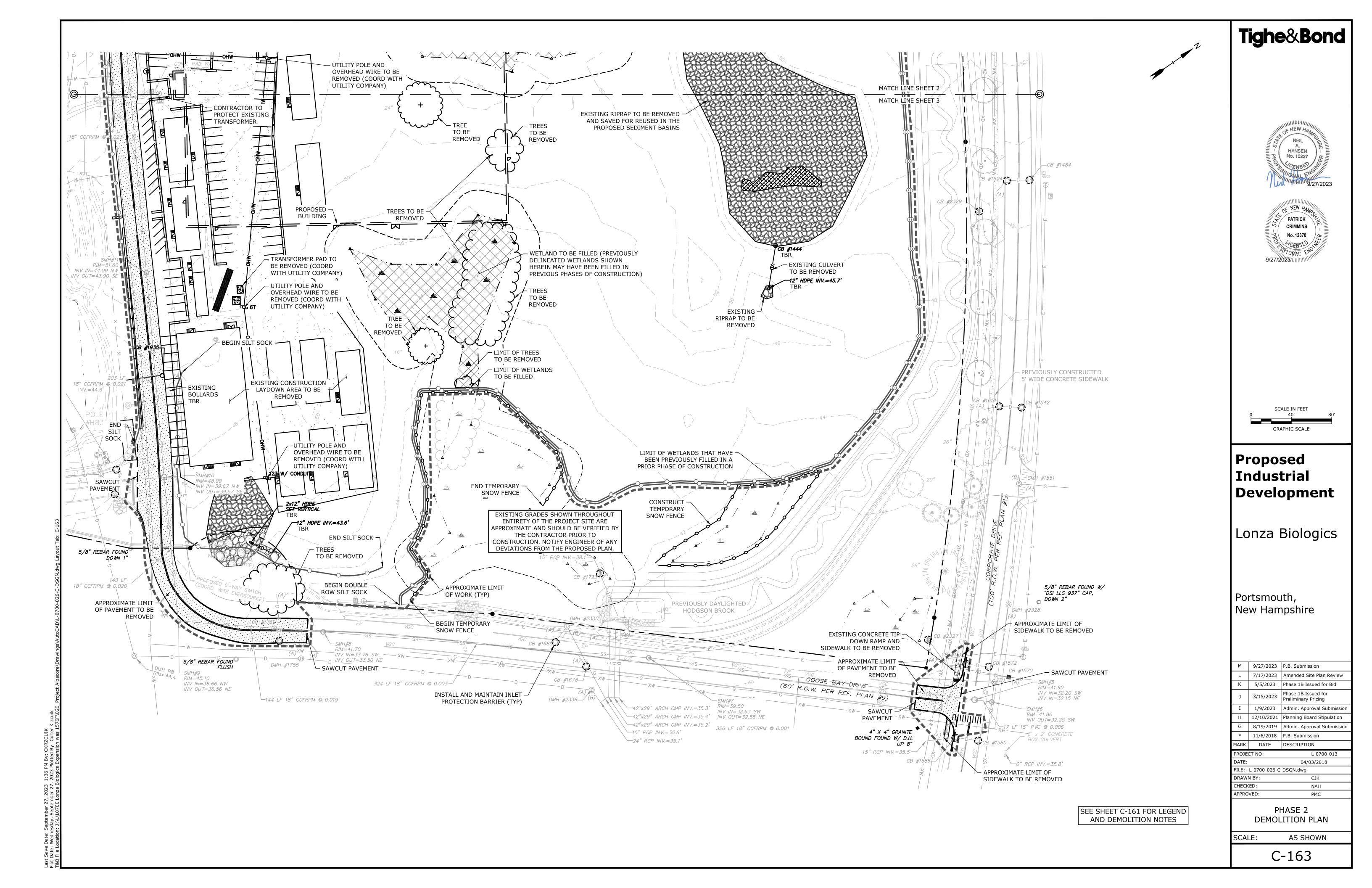
PHASE 2 PLAN SET

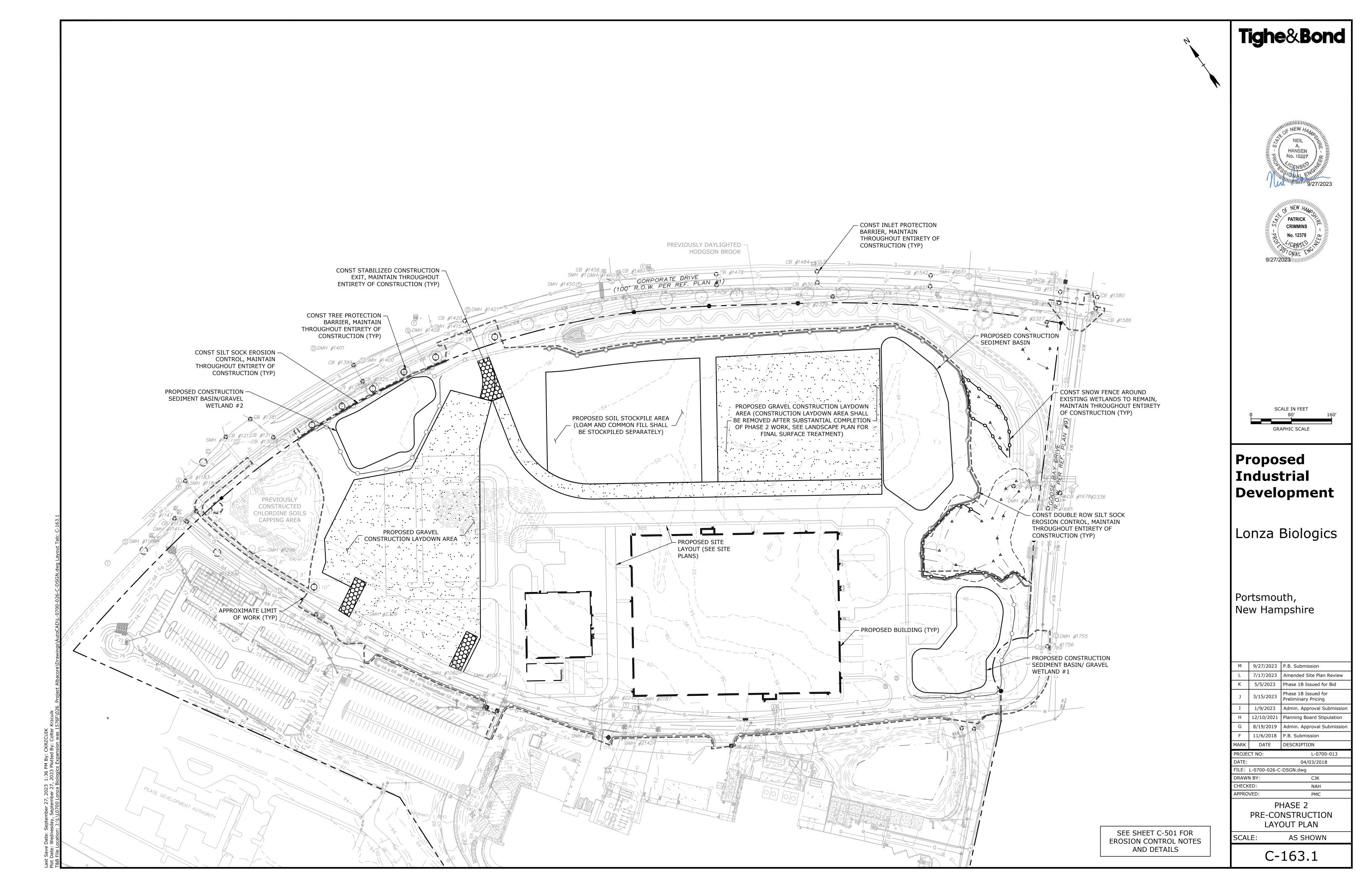

APRIL 3, 2018

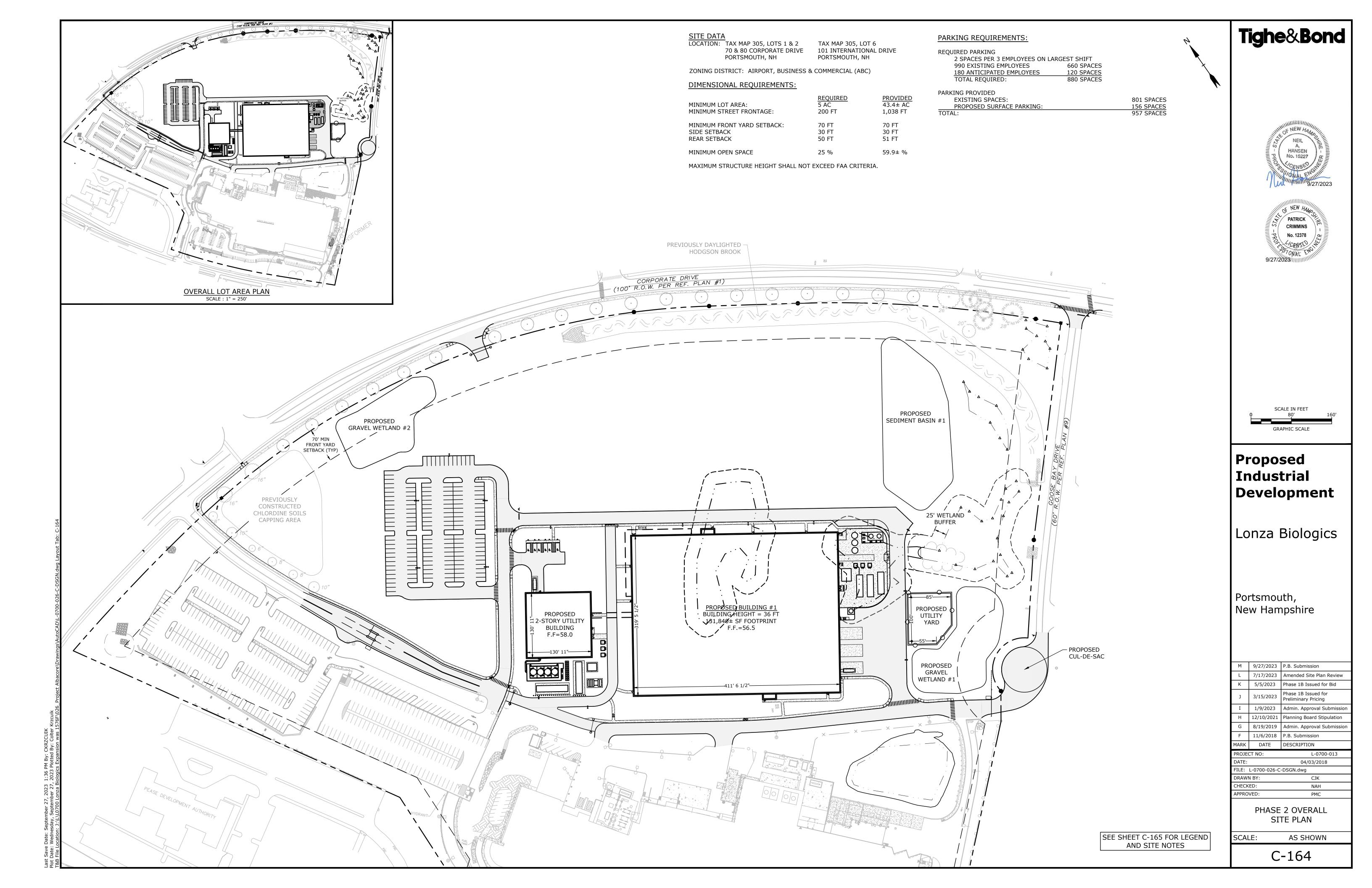

REVISED: SEPTEMBER 27, 2023

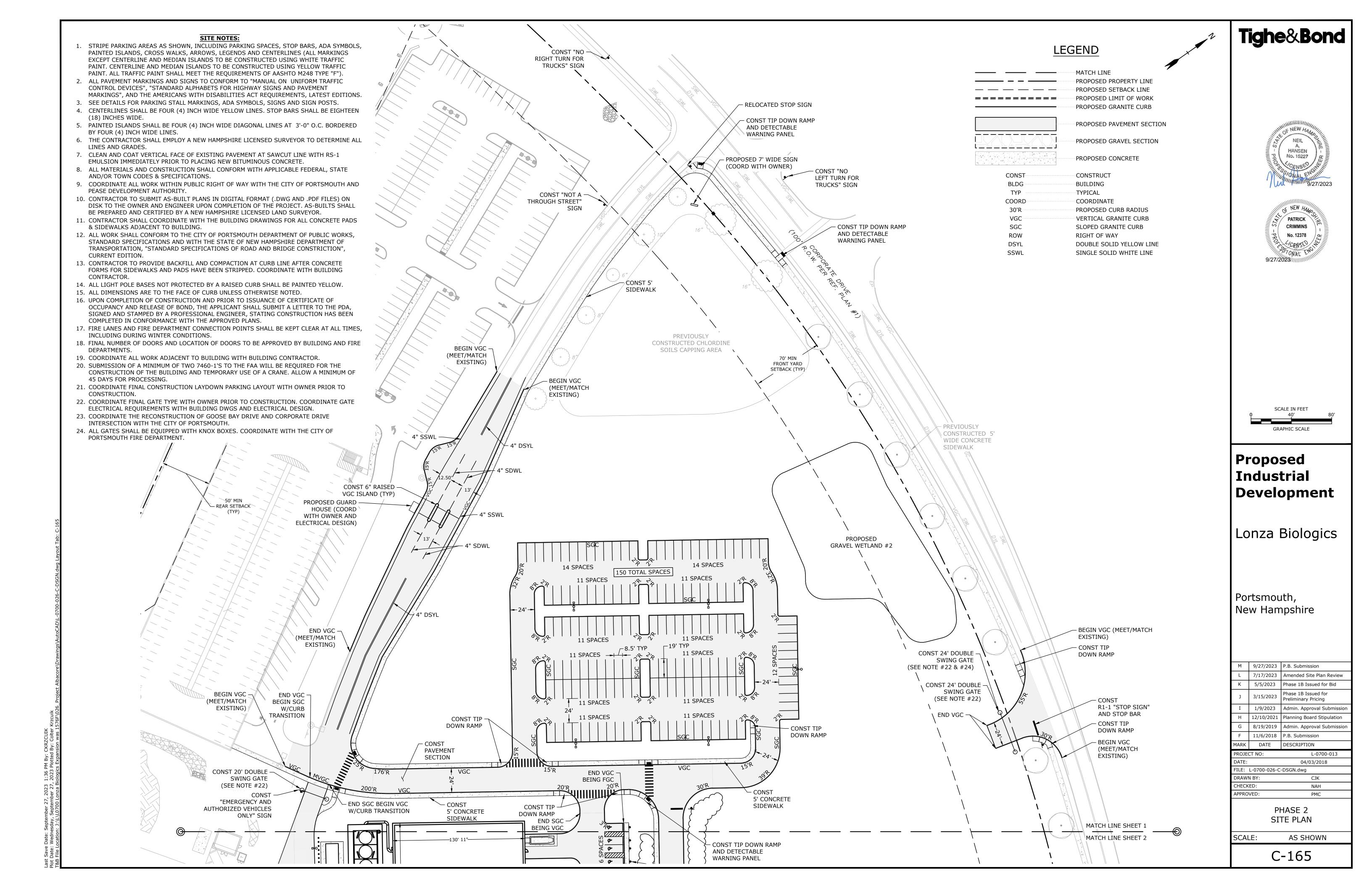
LIST OF DRAWINGS			
SHEET NO.	SHEET TITLE	LAST REVISED	
	PHASE 2 PLAN SET COVER SHEET	9/27/2023	
C-161	PHASE 2 DEMOLITION PLAN	9/27/2023	
C-162	PHASE 2 DEMOLITION PLAN	9/27/2023	
C-163	PHASE 2 DEMOLITION PLAN	9/27/2023	
C-163.1	PHASE 2 PRE-CONSTRUCTION LAYOUT PLAN	9/27/2023	
C-164	PHASE 2 OVERALL SITE PLAN	9/27/2023	
C-165	PHASE 2 SITE PLAN	9/27/2023	
C-166	PHASE 2 SITE PLAN	9/27/2023	
C-167	PHASE 2 SITE PLAN	9/27/2023	
C-168	PHASE 2 GRADING, DRAINAGE & EROSION CONTROL PLAN	9/27/2023	
C-169	PHASE 2 GRADING, DRAINAGE & EROSION CONTROL PLAN	9/27/2023	
C-170	PHASE 2 GRADING, DRAINAGE & EROSION CONTROL PLAN	9/27/2023	
C-171	PHASE 2 UTILITIES PLAN	9/27/2023	
C-172	PHASE 2 UTILITIES PLAN	9/27/2023	
C-173	PHASE 2 UTILITIES PLAN	9/27/2023	
C-174	PHASE 2 LANDSCAPE PLAN	9/27/2023	
C-175	PHASE 2 LANDSCAPE PLAN	9/27/2023	
C-176	PHASE 2 LANDSCAPE PLAN	9/27/2023	
C-177	PHASE 2 PHOTOMETRIC LIGHTING PLAN	9/27/2023	
C-178	PHASE 2 PHOTOMETRIC LIGHTING PLAN	9/27/2023	
C-179	PHASE 2 PHOTOMETRIC LIGHTING PLAN	9/27/2023	
8-046-1-1110	FIRST FLOOR PLAN - CUB	8/24/2023	
8-046-1-2002	BUILDING ELEVATIONS (E-W) - CUB	8/24/2023	
8-046-1-2003	BUILDING ELEVATIONS (N-S) - CUB	9/18/2023	
8-070-1-1110	FIRST FLOOR PLAN - BL1	8/24/2023	
8-070-1-2001	OVERALL BUILDINGS ELEVATIONS	7/12/2023	
8-070-1-2002	BUILDING ELEVATIONS (E-W) - BL1	8/24/2023	
8-070-1-2003	BUILDING ELEVATIONS (N-S) - BL1	8/24/2023	

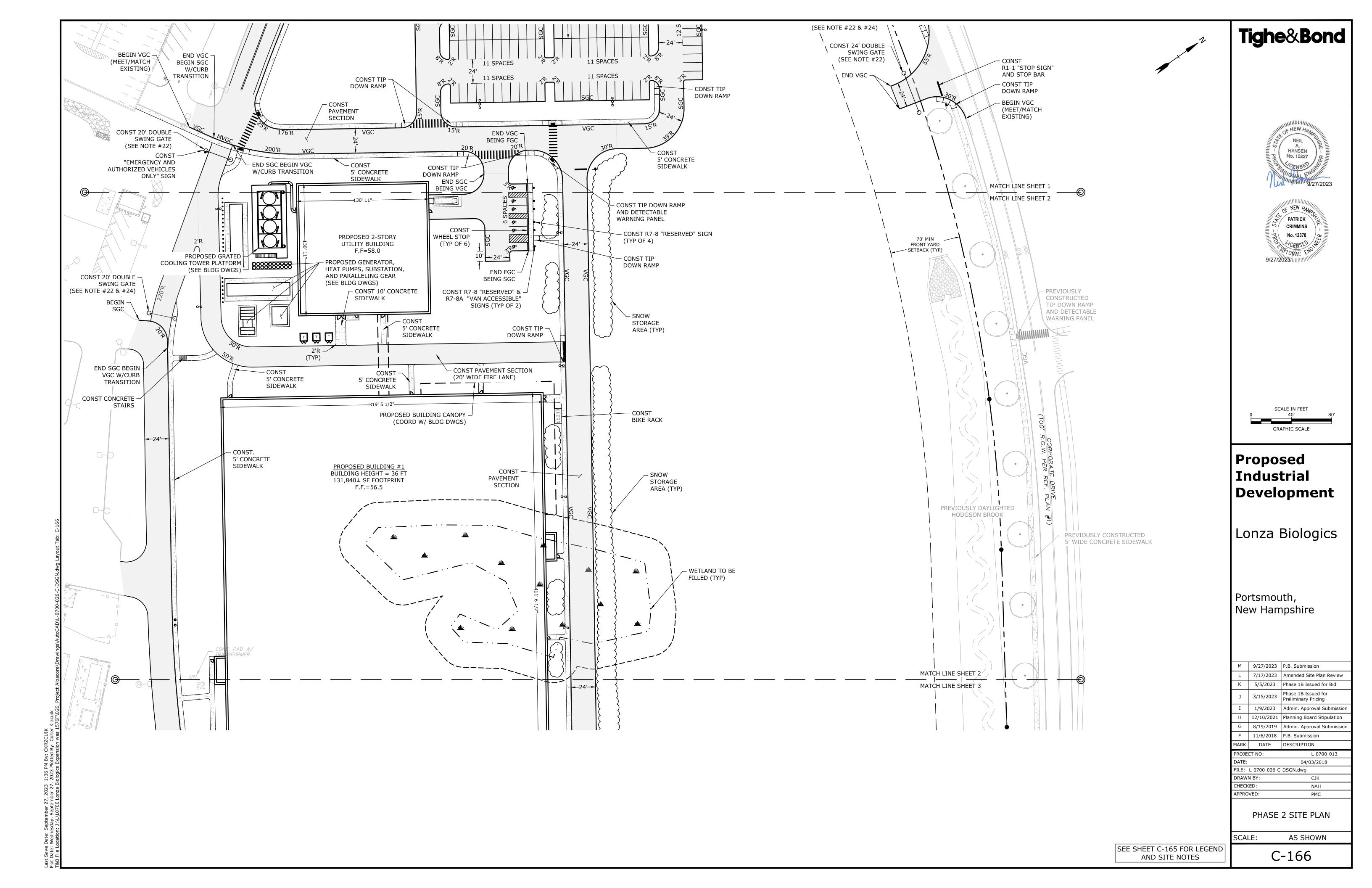


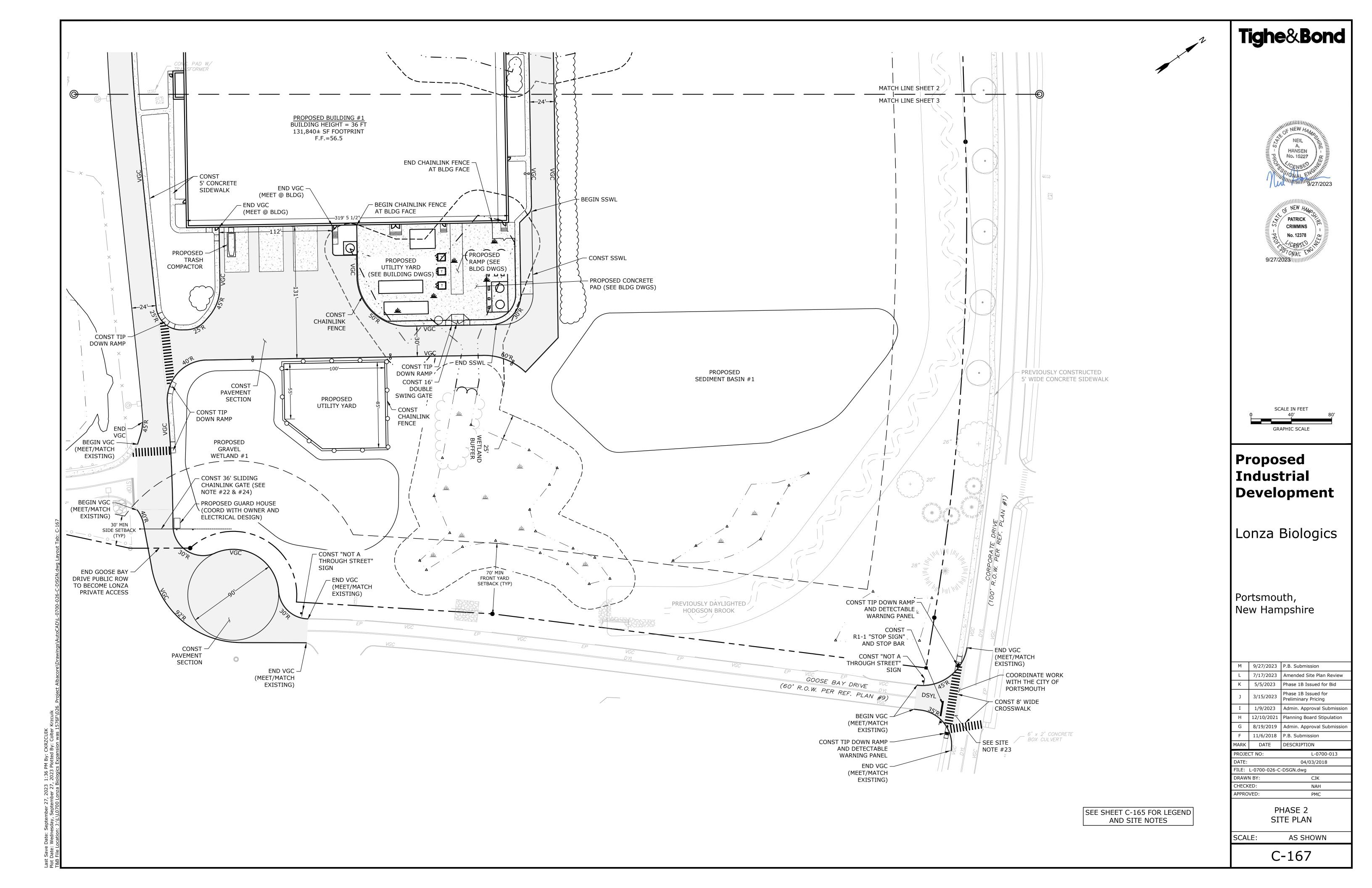


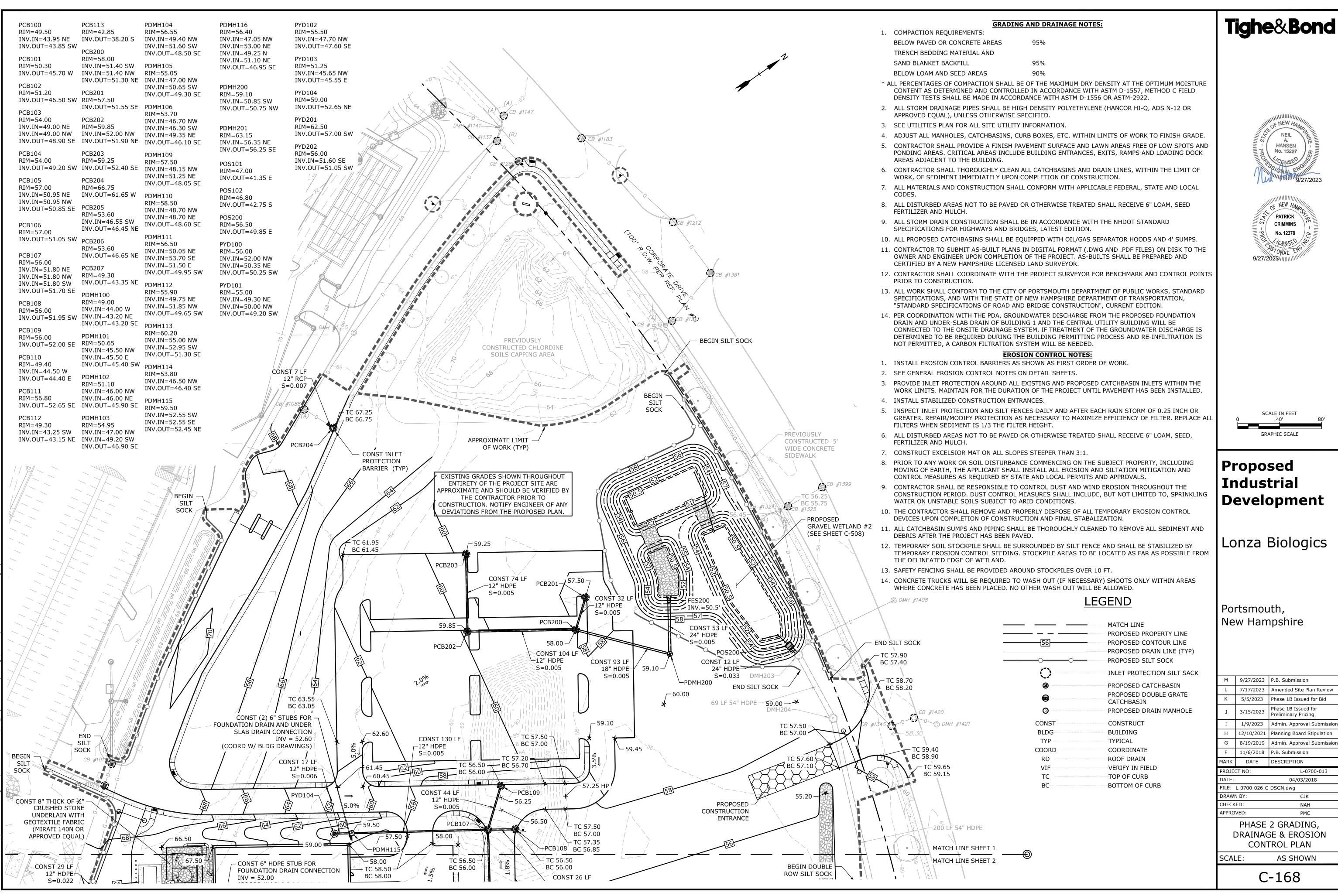


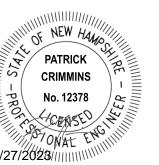


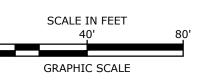

М	9/27/2023	P.B. Submission
L	7/17/2023	Amended Site Plan Review
K	5/5/2023	Phase 1B Issued for Bid
J	3/15/2023	Phase 1B Issued for Preliminary Pricing
I	1/9/2023	Admin. Approval Submission
Н	12/10/2021	Planning Board Stipulation
G	8/19/2019	Admin. Approval Submission
F	11/6/2018	P.B. Submission
MARK	DATE	DESCRIPTION
PROJECT NO:		L-0700-013

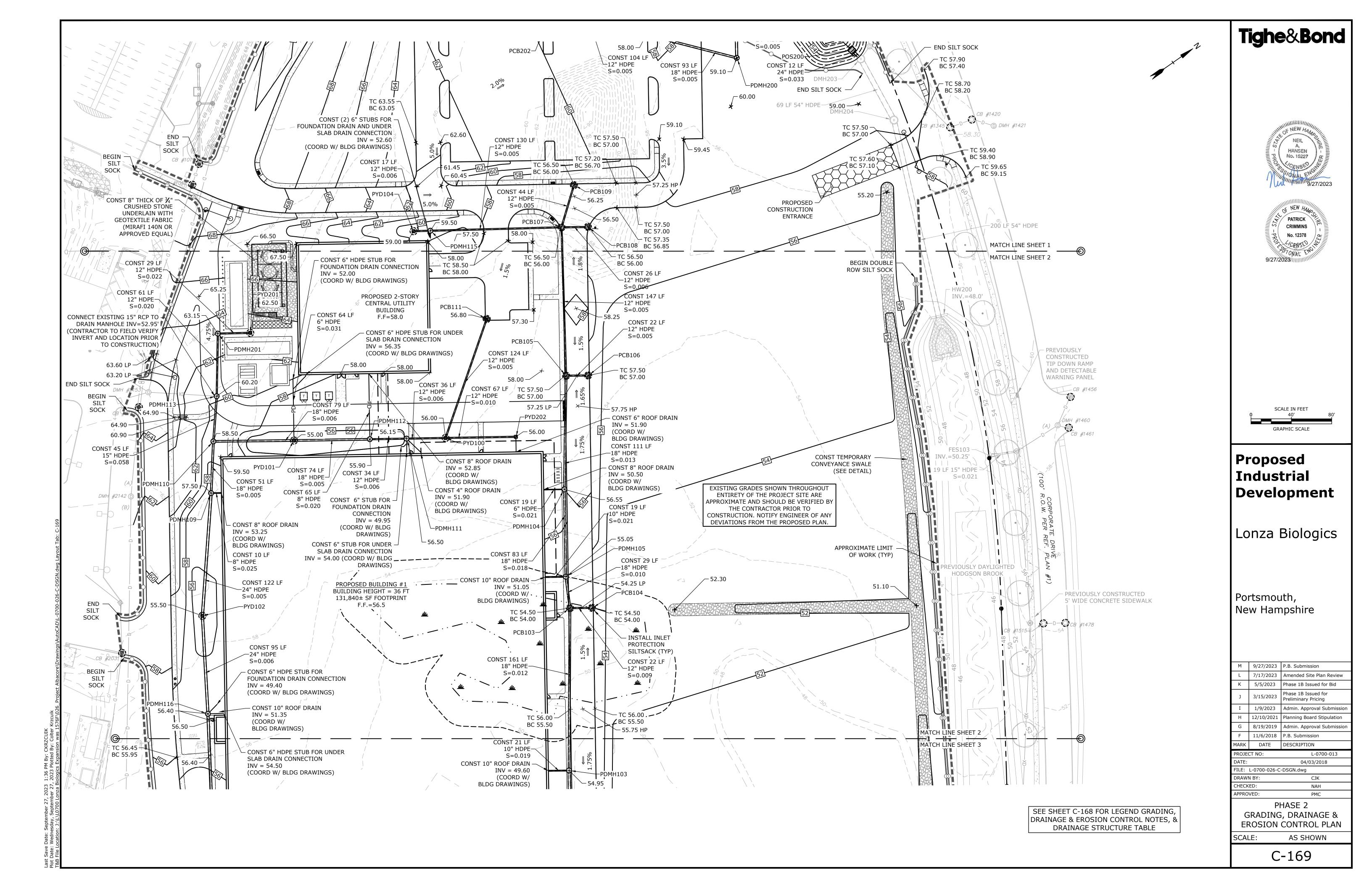


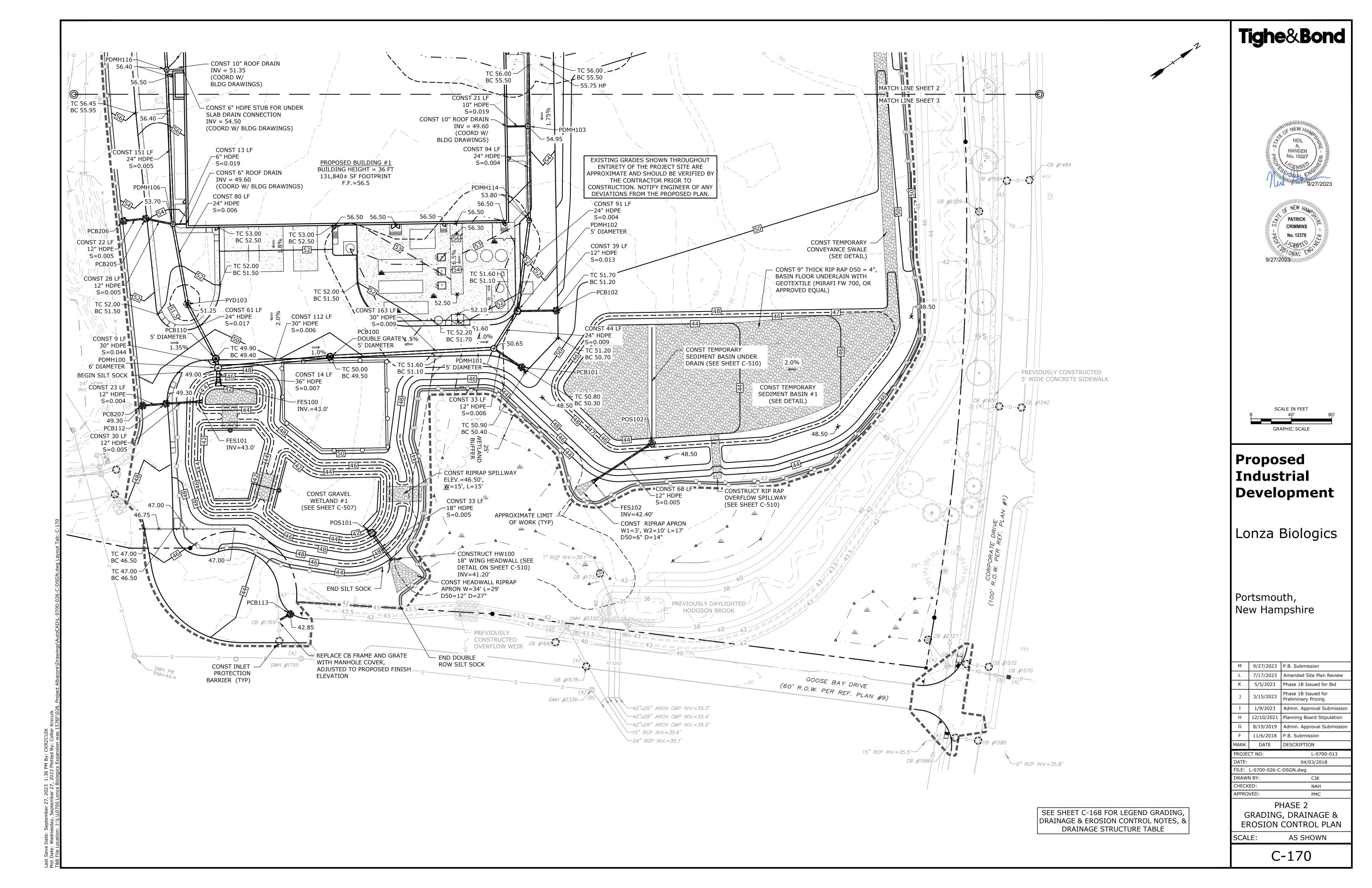


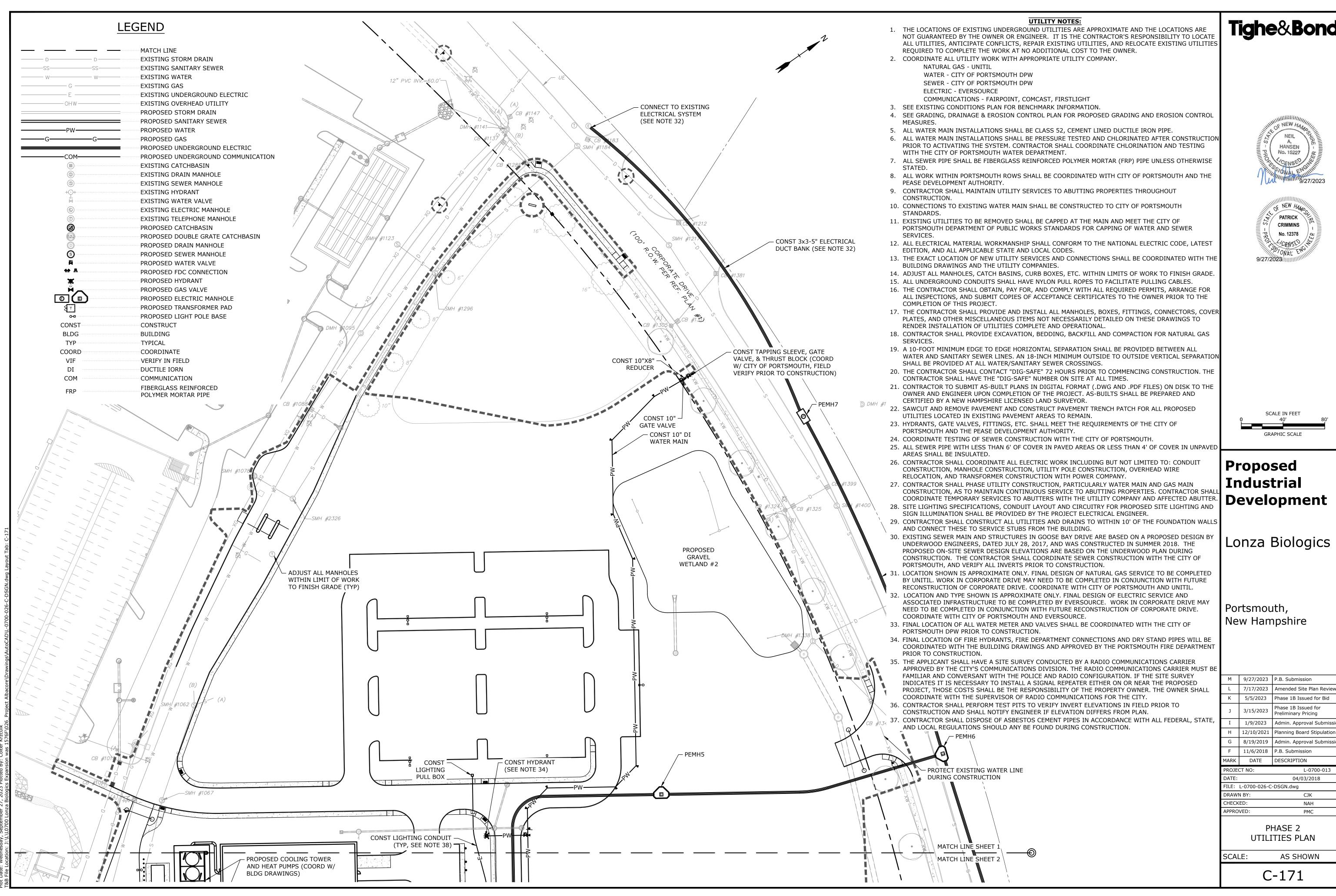


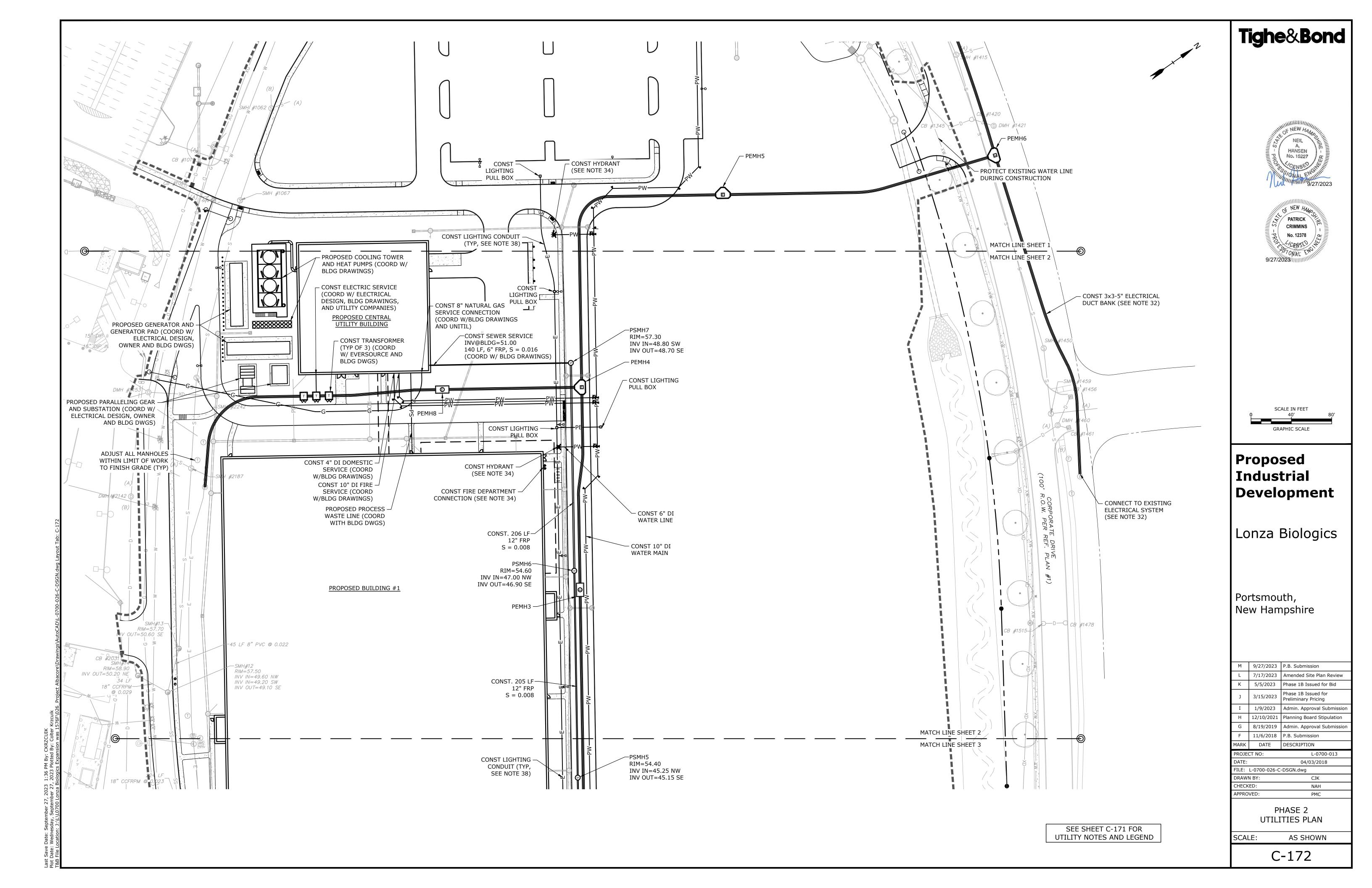


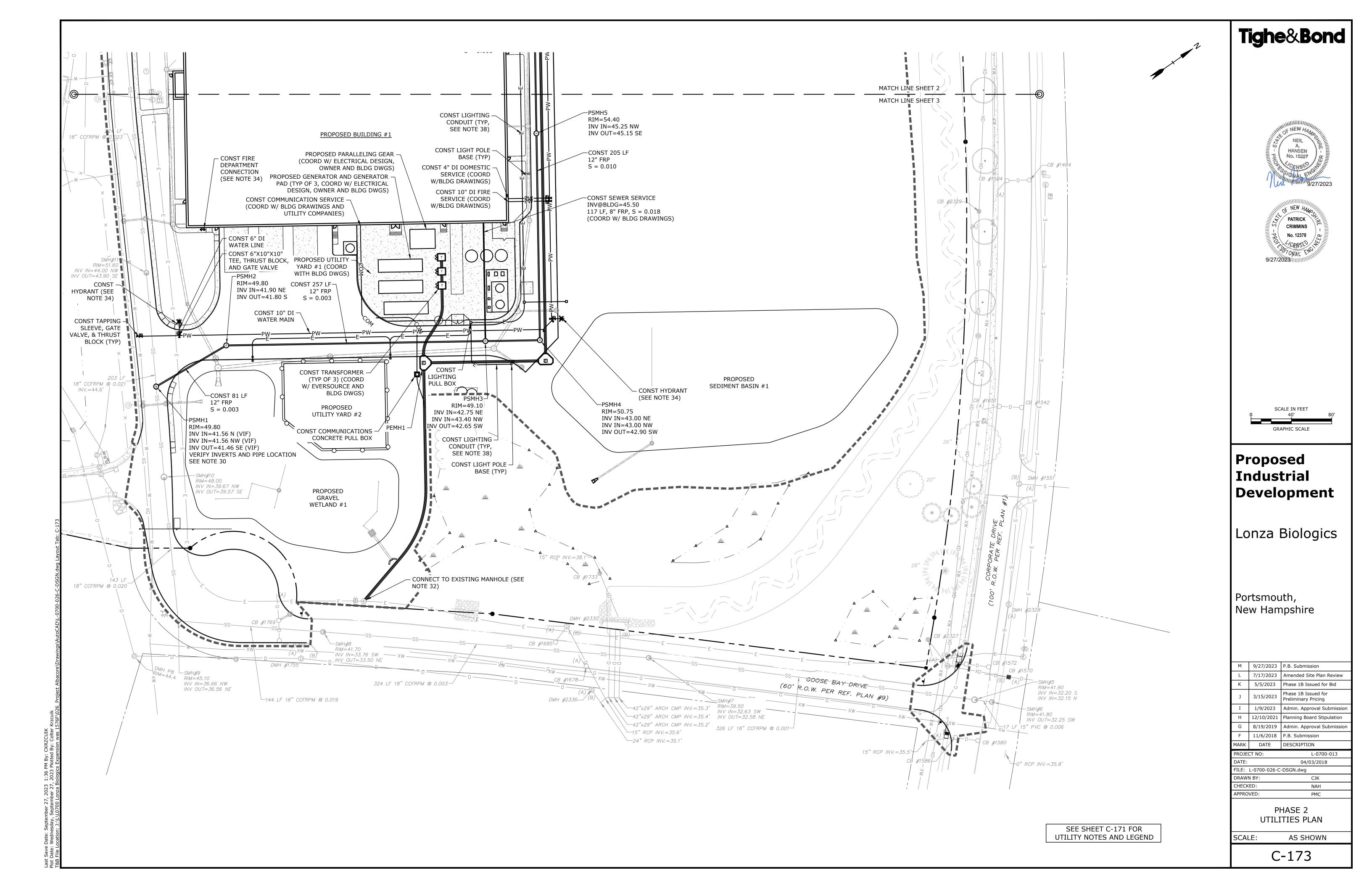


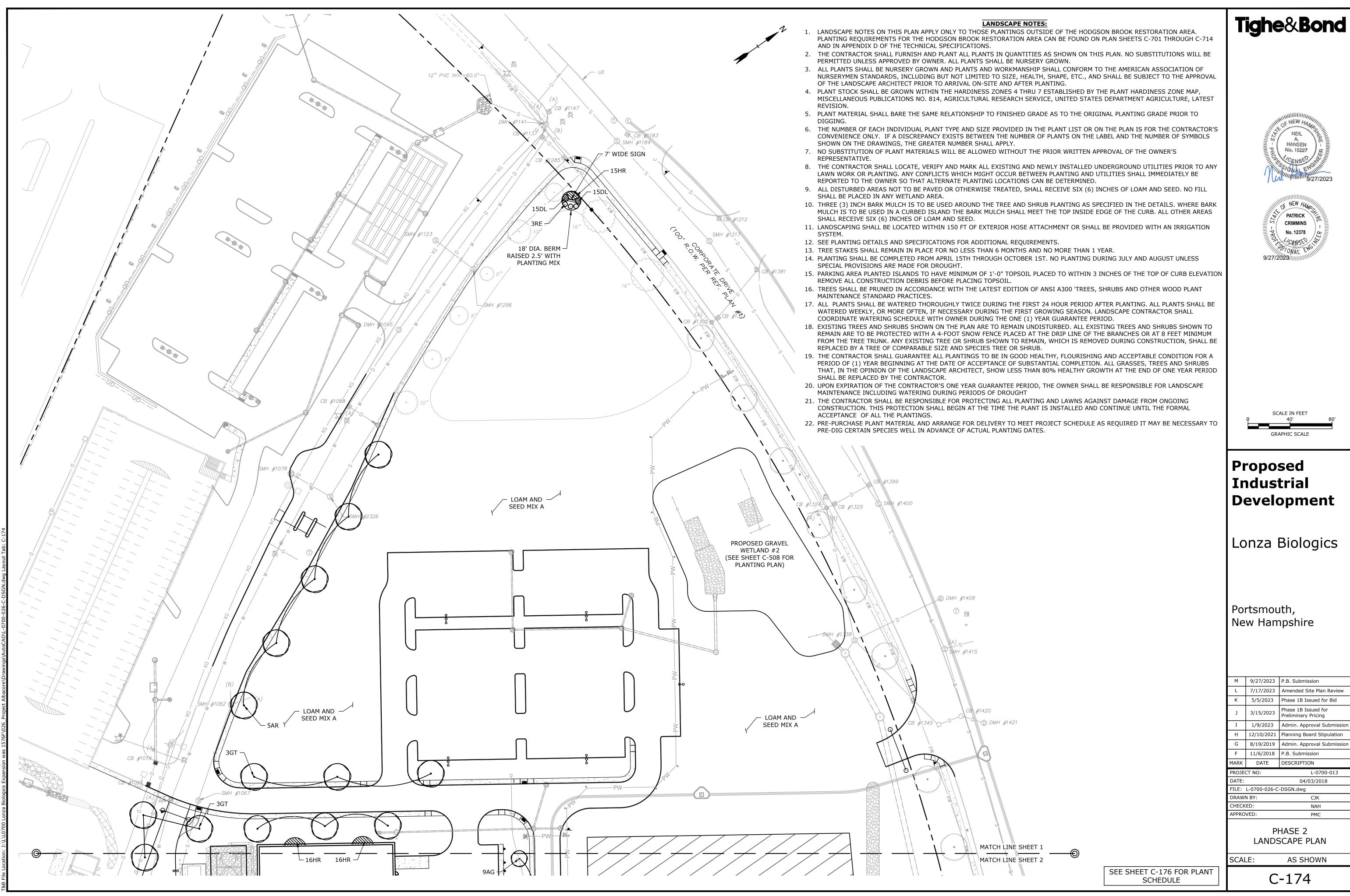


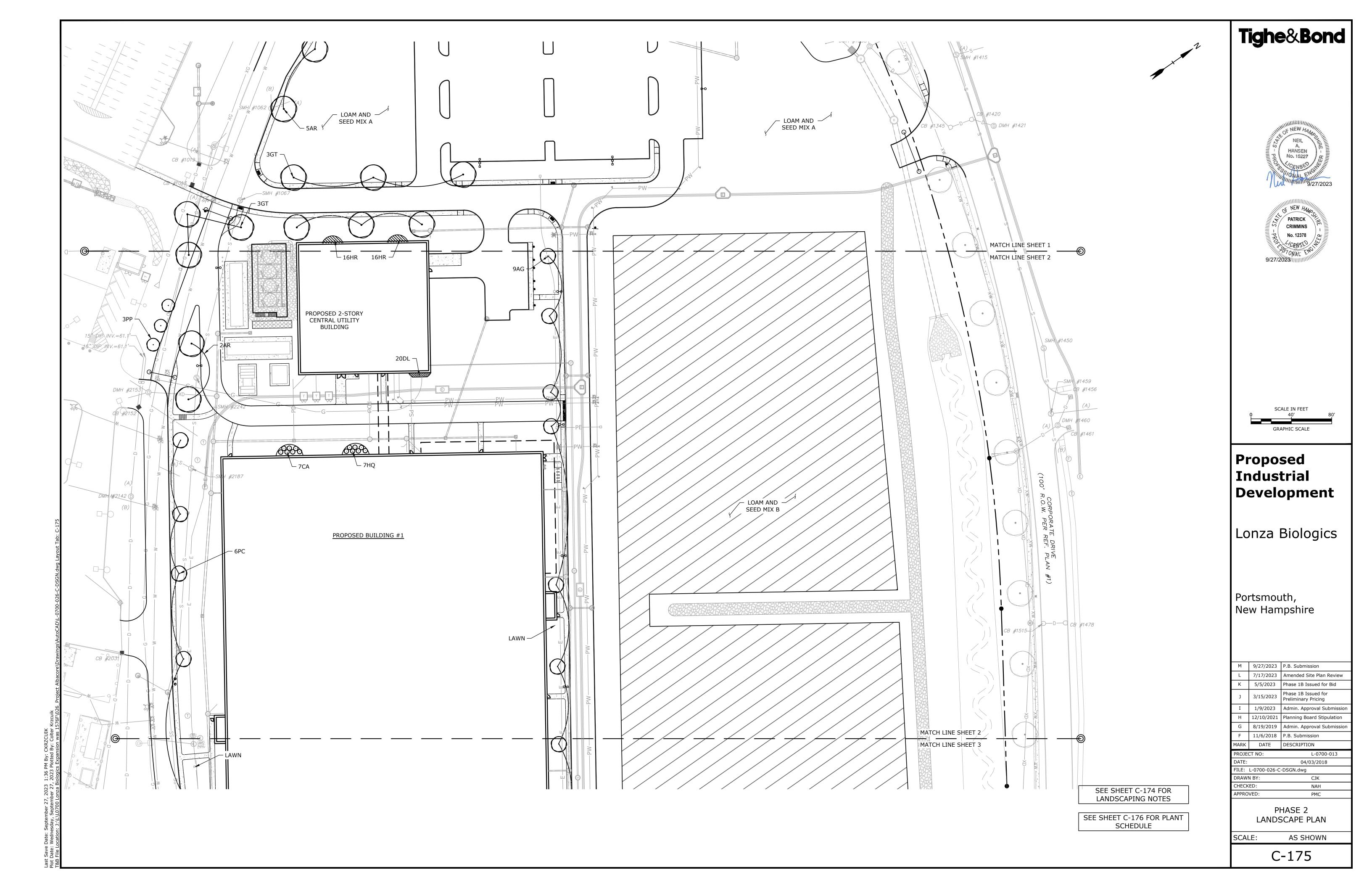


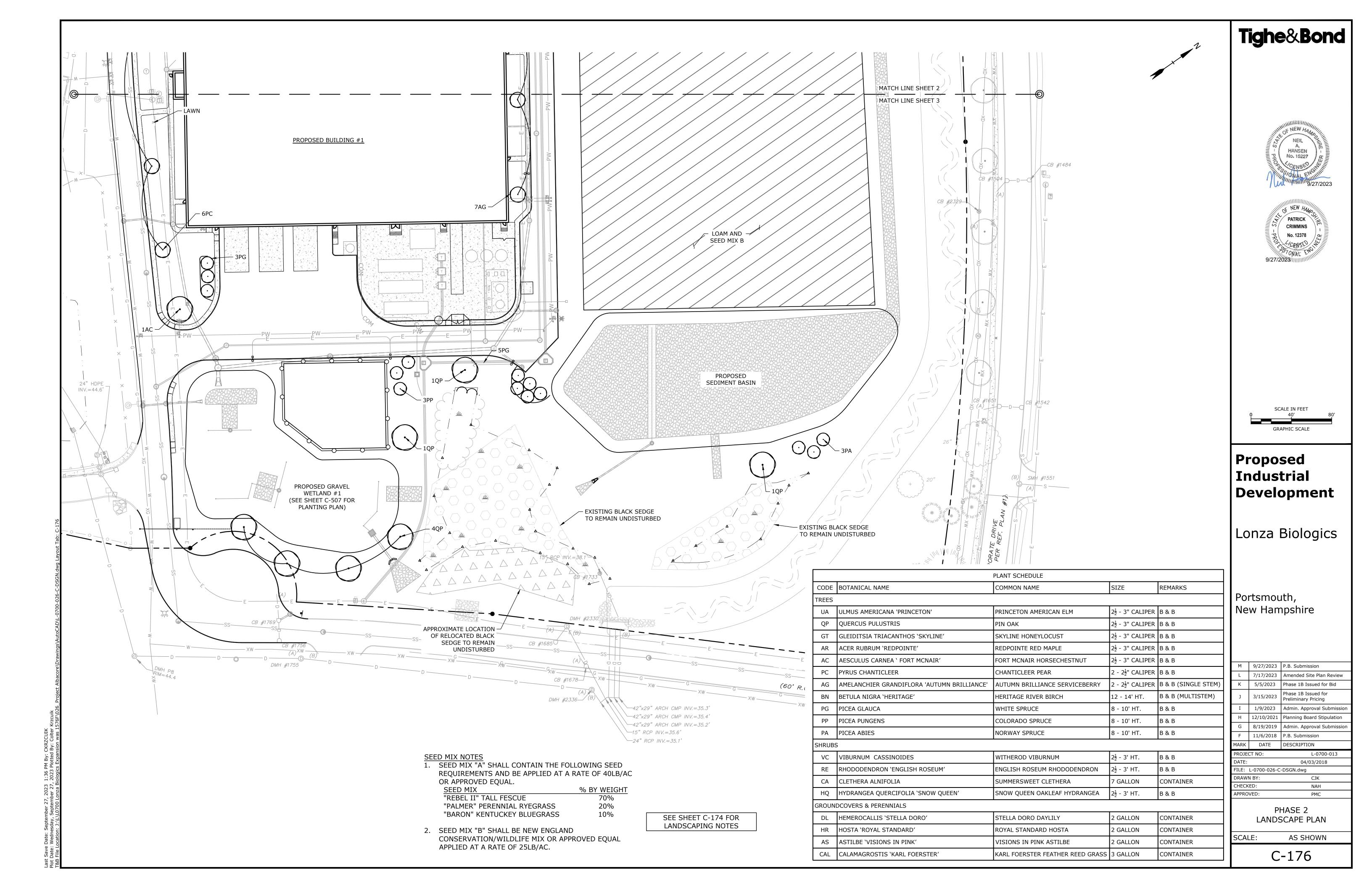


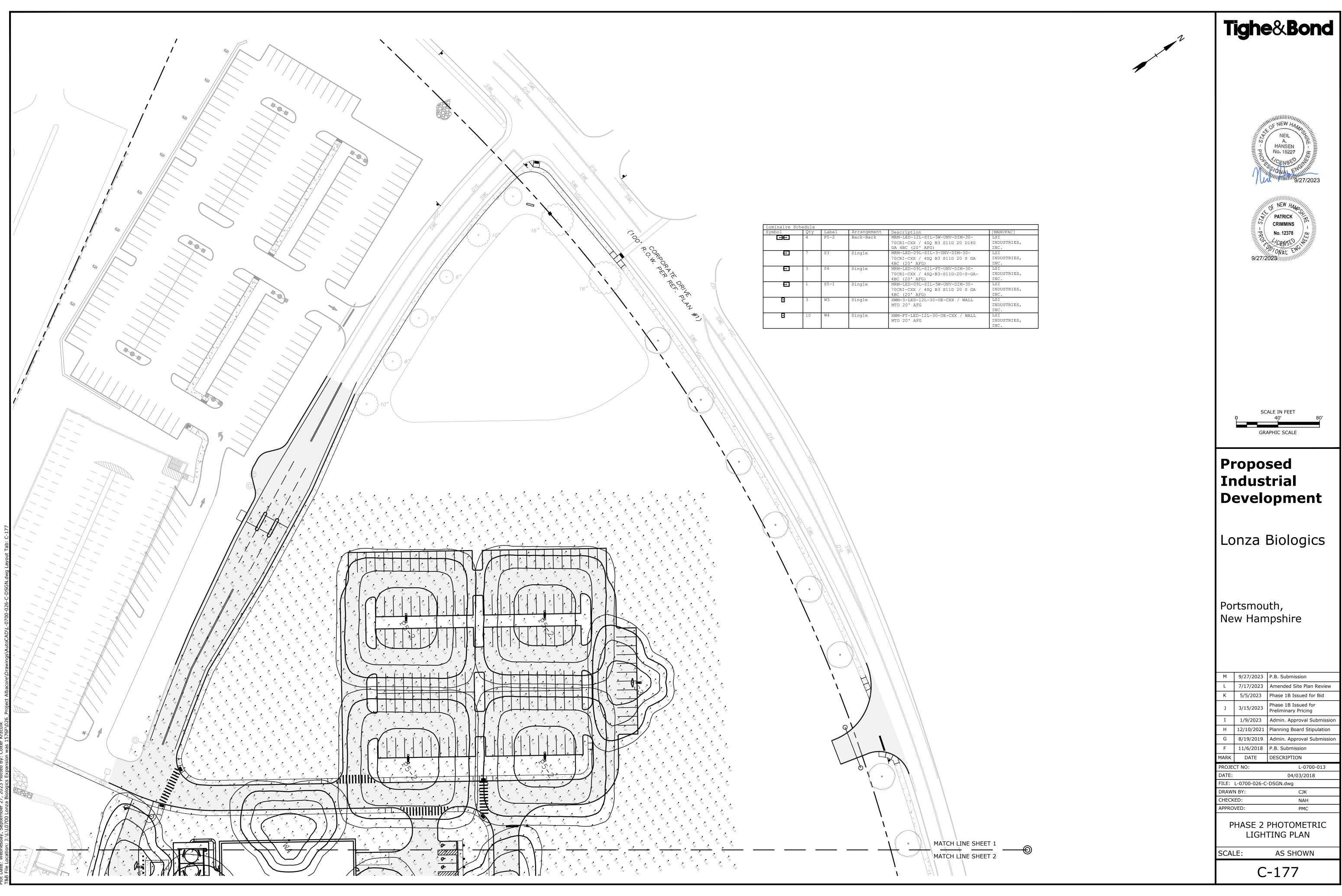

М	9/27/2023	P.B. Submission
L	7/17/2023	Amended Site Plan Review
K	5/5/2023	Phase 1B Issued for Bid
J	3/15/2023	Phase 1B Issued for Preliminary Pricing
I	1/9/2023	Admin. Approval Submission
Н	12/10/2021	Planning Board Stipulation
G	8/19/2019	Admin. Approval Submission
F	11/6/2018	P.B. Submission
ARK	DATE	DESCRIPTION
ROJECT NO:		L-0700-013



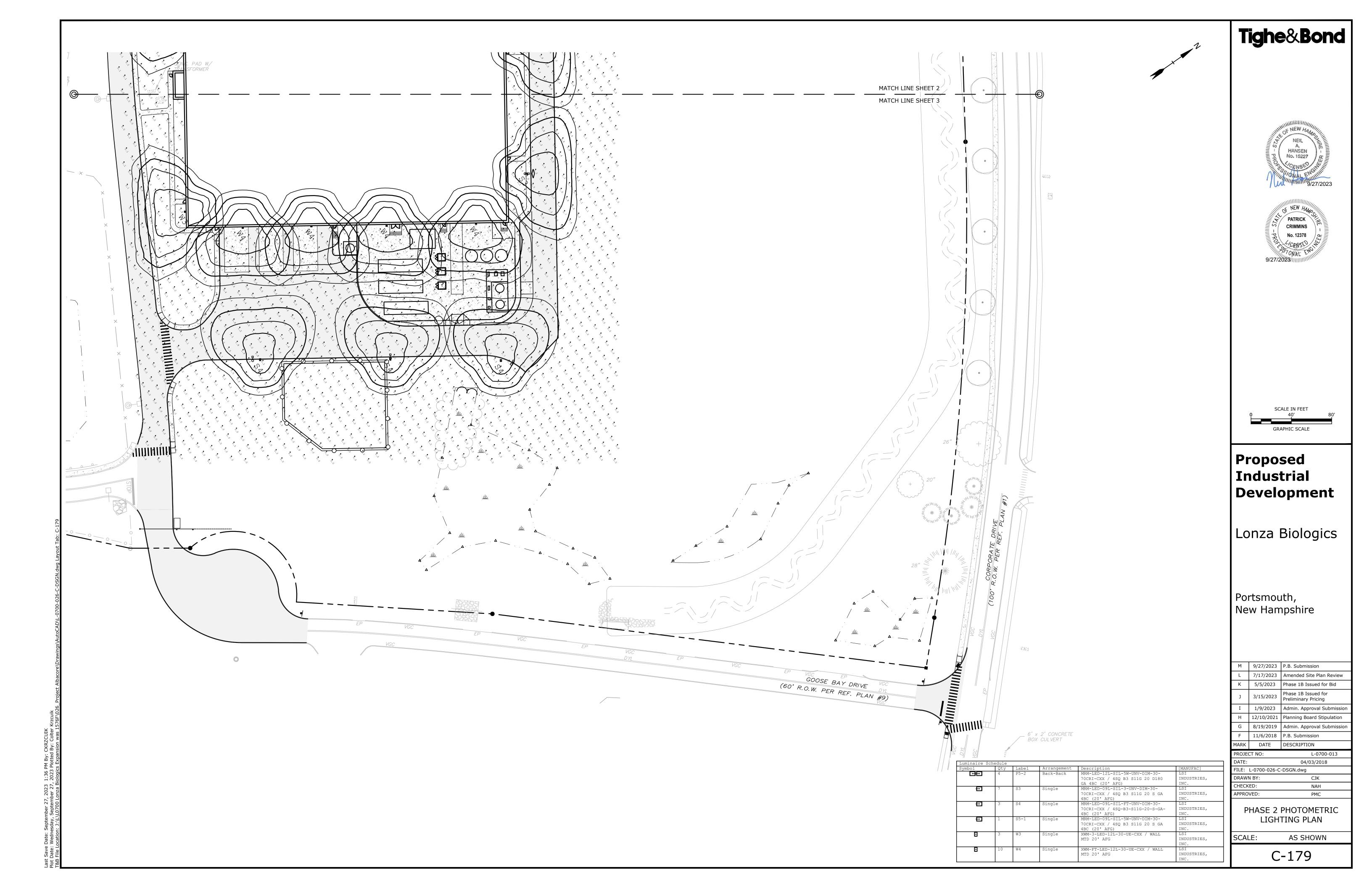


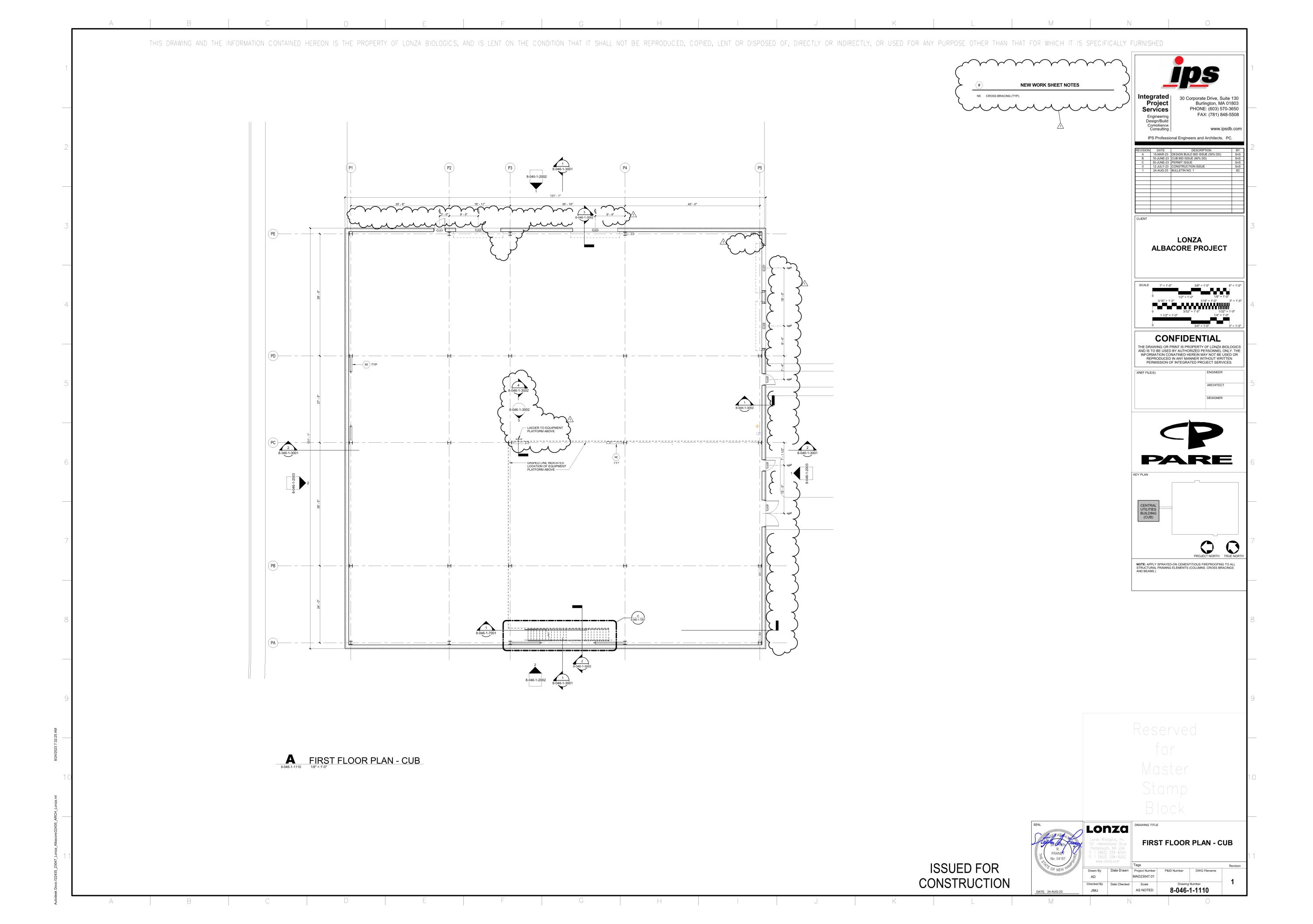

I۲I	9/2//2023	P.B. Submission
L	7/17/2023	Amended Site Plan Review
K	5/5/2023	Phase 1B Issued for Bid
J	3/15/2023	Phase 1B Issued for Preliminary Pricing
I	1/9/2023	Admin. Approval Submission
Н	12/10/2021	Planning Board Stipulation
G	8/19/2019	Admin. Approval Submission
F	11/6/2018	P.B. Submission
ARK	DATE	DESCRIPTION

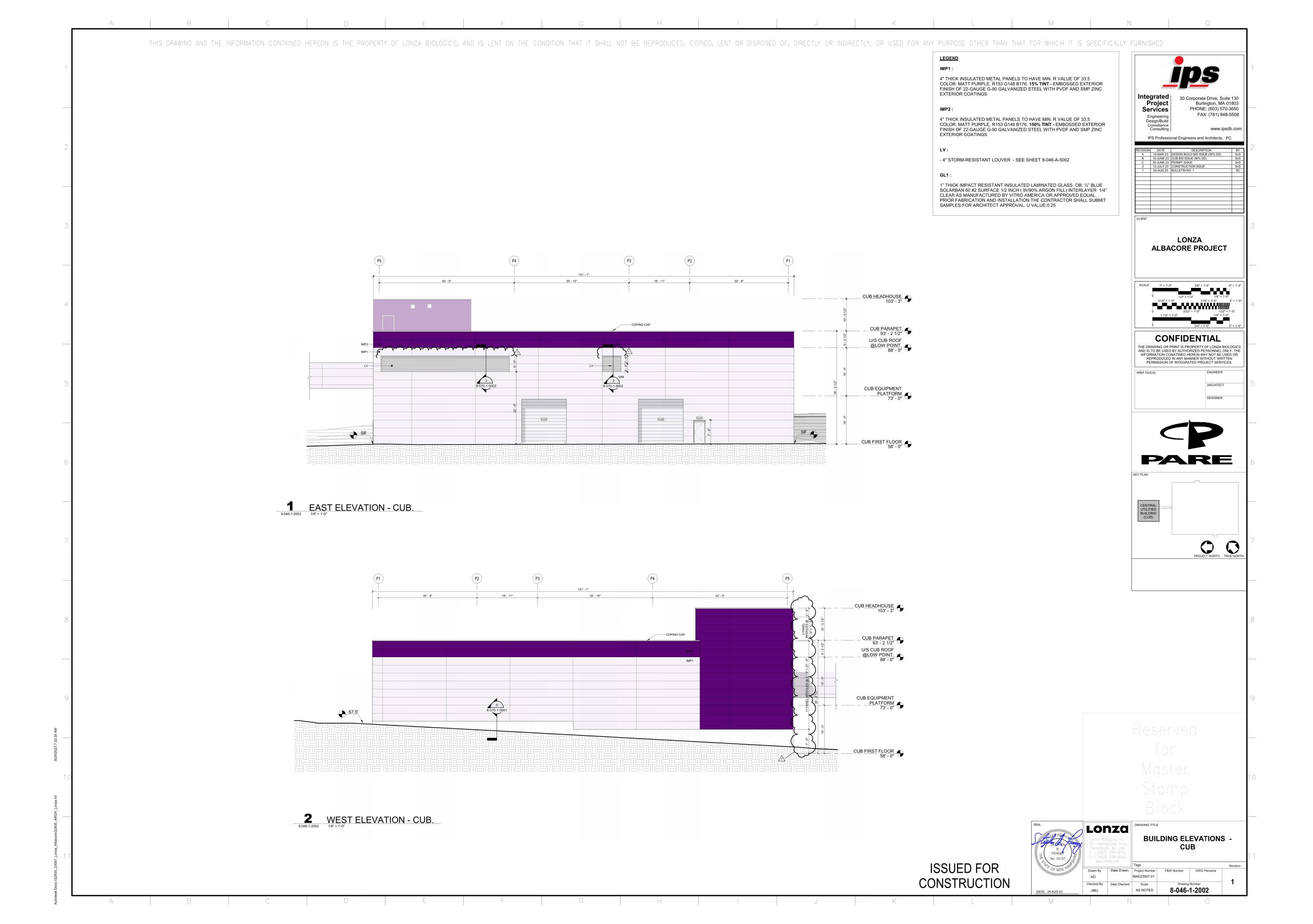


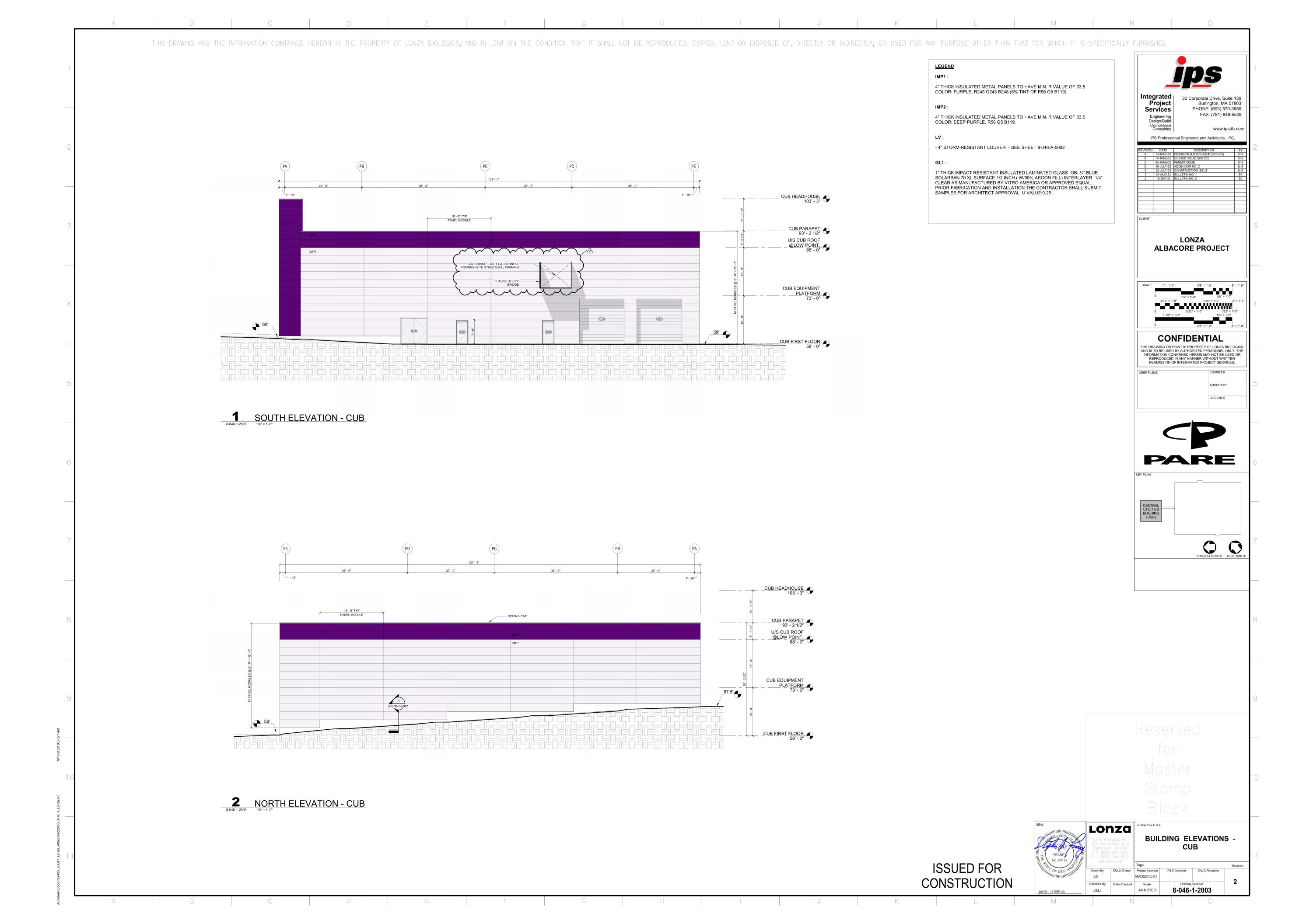


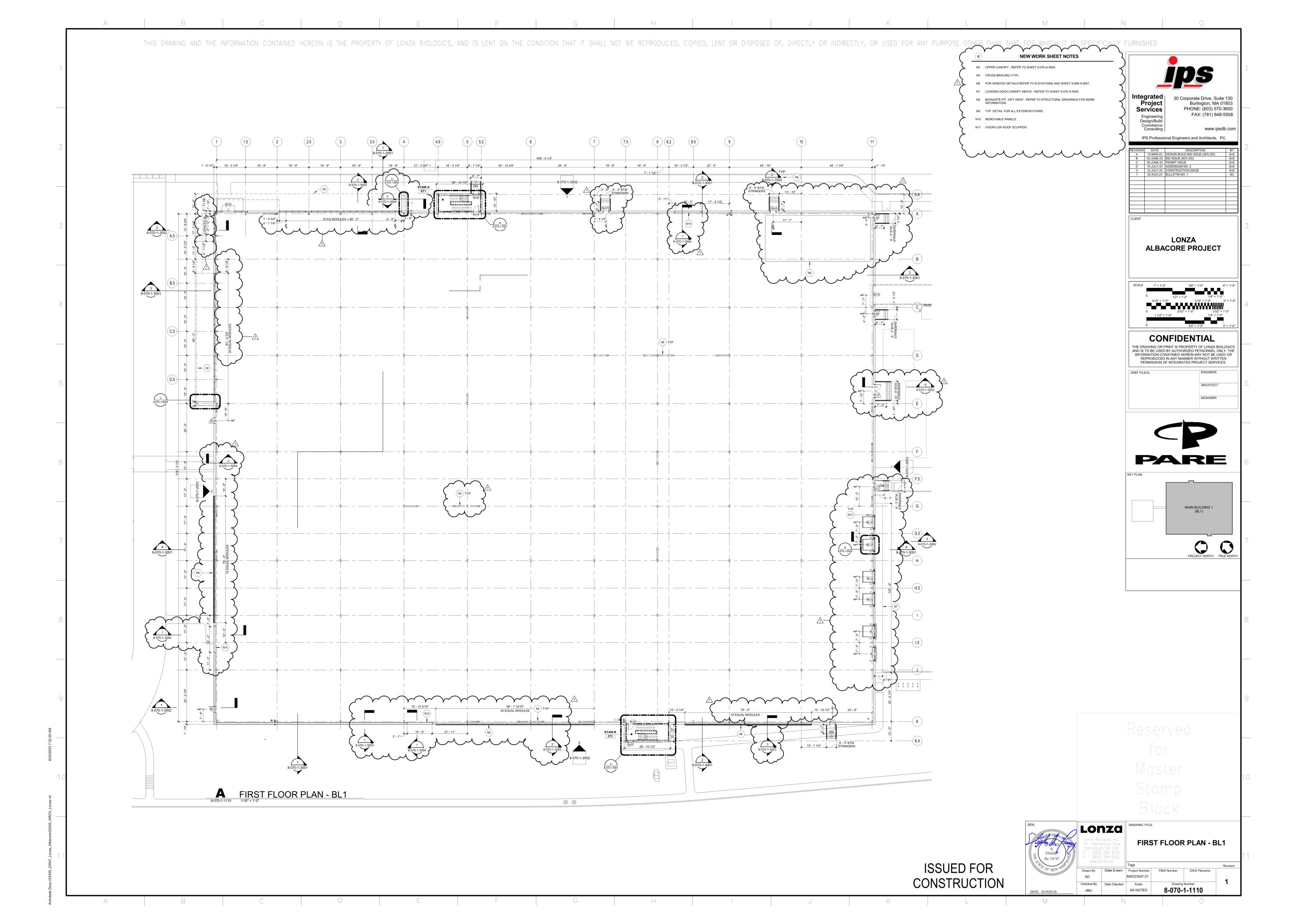
L	7/17/2023	Amended Site Plan Review
K	5/5/2023	Phase 1B Issued for Bid
J	3/15/2023	Phase 1B Issued for Preliminary Pricing
I	1/9/2023	Admin. Approval Submission
Н	12/10/2021	Planning Board Stipulation
G	8/19/2019	Admin. Approval Submission
F	11/6/2018	P.B. Submission
MARK	DATE	DESCRIPTION
DD 0.1E/	CT NO.	1 0700 013

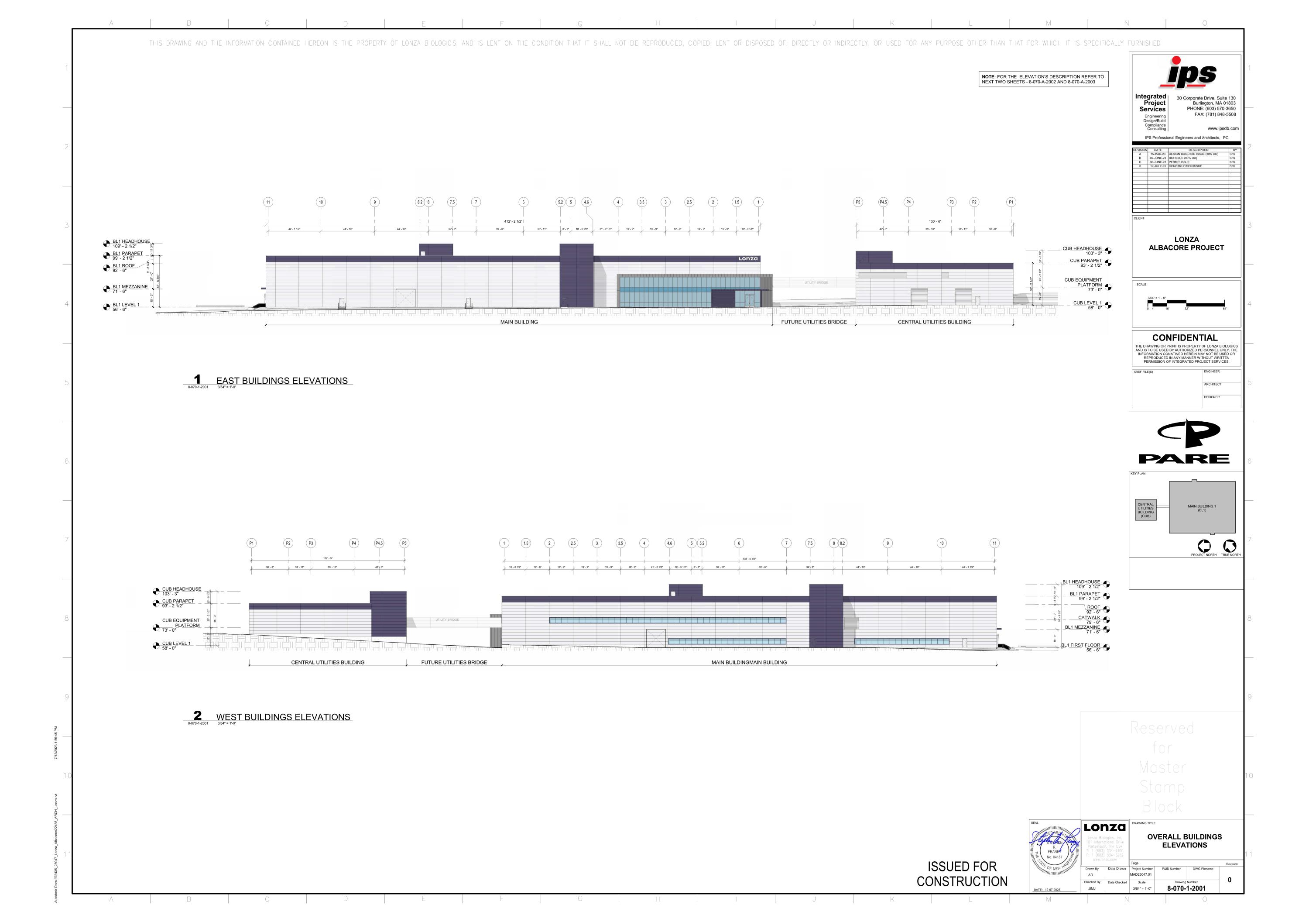


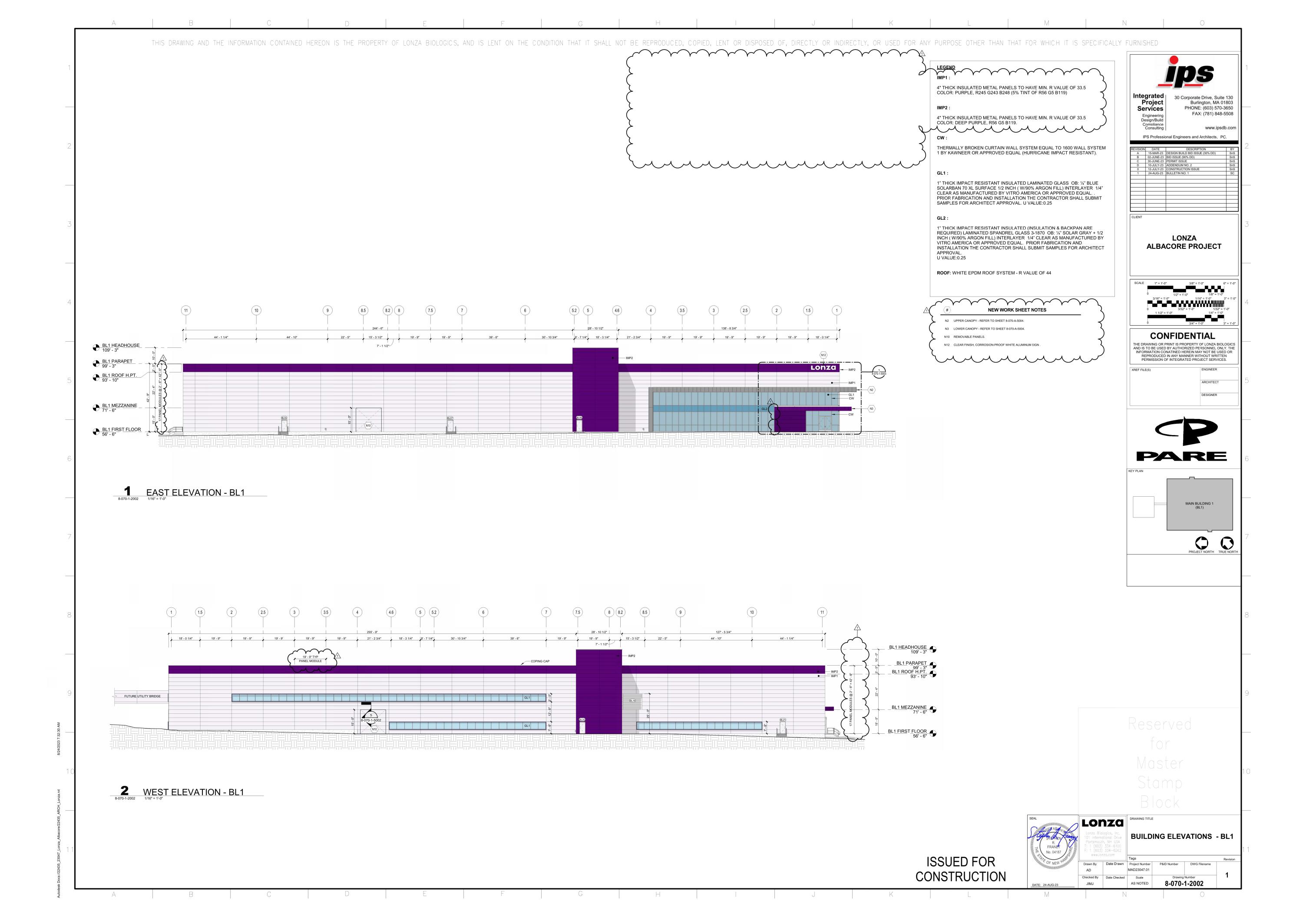


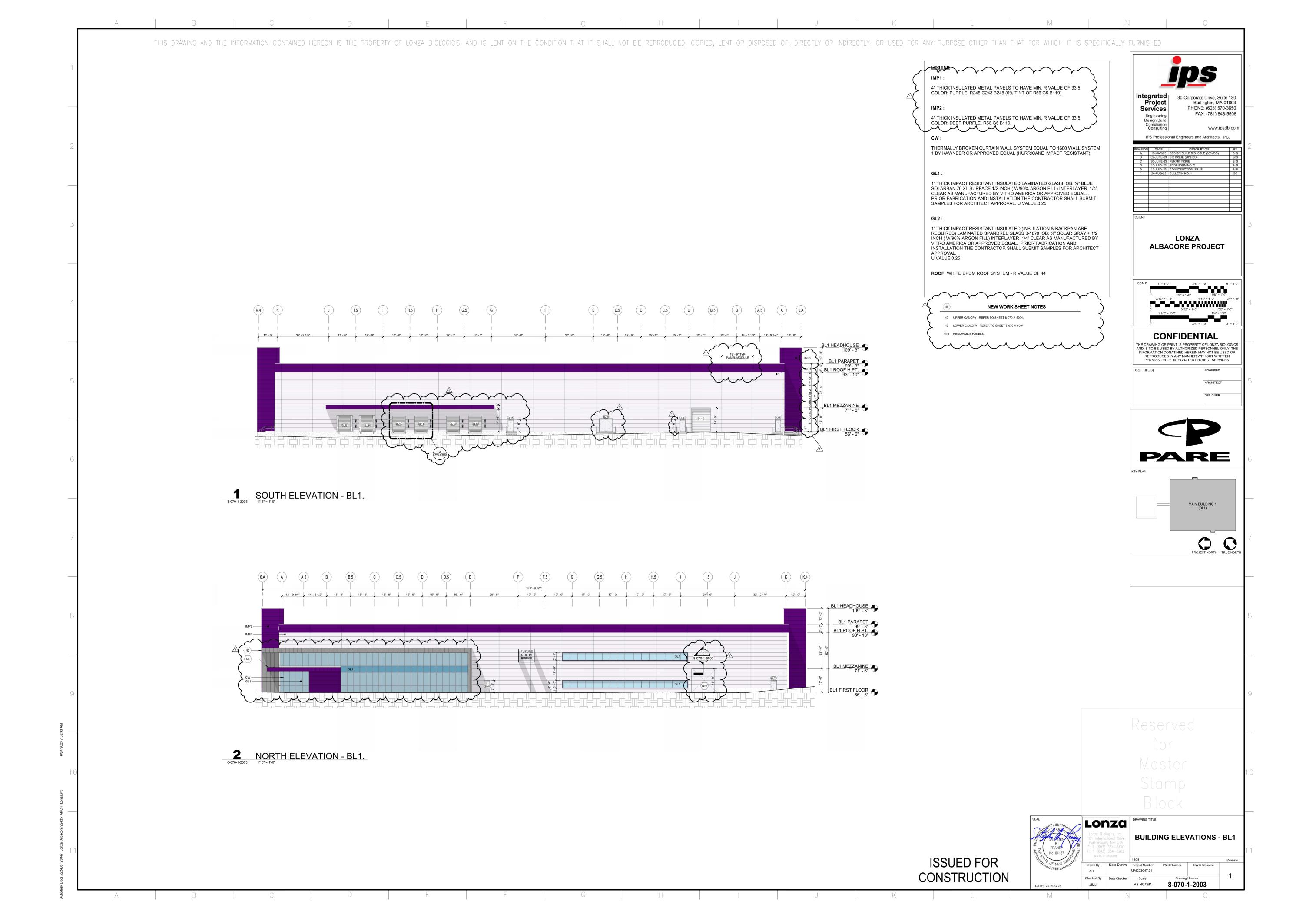


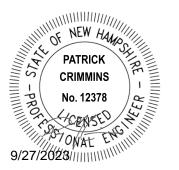

I۲I	9/2//2023	P.B. Submission
L	7/17/2023	Amended Site Plan Review
K	5/5/2023	Phase 1B Issued for Bid
J	3/15/2023	Phase 1B Issued for Preliminary Pricing
I	1/9/2023	Admin. Approval Submission
Η	12/10/2021	Planning Board Stipulation
G	8/19/2019	Admin. Approval Submission
F	11/6/2018	P.B. Submission
MARK	DATE	DESCRIPTION











DETAILS PLAN SET

APRIL 3, 2018 REVISED: SEPTEMBER 27, 2023

LIST OF DRAWINGS			
SHEET NO.	SHEET TITLE	LAST REVISED	
	DETAILS COVER SHEET	9/27/2023	
C-501	EROSION CONTROL NOTES & DETAILS SHEET	9/27/2023	
C-502	DETAILS SHEET	9/27/2023	
C-503	DETAILS SHEET	9/27/2023	
C-504	DETAILS SHEET	9/27/2023	
C-505	DETAILS SHEET	9/27/2023	
C-506	DETAILS SHEET	9/27/2023	
C-507	DETAILS SHEET	9/27/2023	
C-508	DETAILS SHEET	9/27/2023	
C-509	DETAILS SHEET	9/27/2023	
C-510	DETAILS SHEET	9/27/2023	
C-511	DETAILS SHEET	9/27/2023	
C-512	DETAILS SHEET	9/27/2023	

PROJECT LESSOR: PEASE DEVELOPMENT AUTHORITY

55 INTERNATIONAL DRIVE PORTSMOUTH, NH 03801

101 INTERNATIONAL DRIVE PORTSMOUTH, NH 03801 70 & 80 CORPORATE DRIVE PROJECT ADDRESS: PORTSMOUTH, NH 03801

PROJECT LATITUDE: 43°-04'-59.0"N 71°-48'-09.7"W PROJECT LONGITUDE:

PROJECT DESCRIPTION

THE PROJECT CONSISTS OF THE EXPANSION OF LONZA BIOLOGICS, WHICH INCLUDES THE CONSTRUCTION OF 4 PROPOSED BUILDINGS, 1 PARKING GARAGE, AND ASSOCIATED SITE

THE TOTAL AREA TO BE DISTURBED IS APPROXIMATELY 21.3 ACRES.

SOIL CHARACTERISTICS

BASED ON THE HIGH INTENSITY SOIL SURVEY PREPARED BY GOVE ENVIRONMENTAL SERVICES, INC. IN DECEMBER 2015, THE SITE SOILS VARY FROM WELL DRAINED TO VERY POORLY DRAINED AND PRIMARILY CONSIST OF SOMEWHAT POORLY DRAINED SOILS.

NAME OF RECEIVING WATERS

THE STORM WATER RUNOFF WILL ULTIMATELY DISCHARGE INTO HODGSON BROOK

CONSTRUCTION SEQUENCE OF MAJOR ACTIVITIES: CUT AND CLEAR TREES.

- CONSTRUCT TEMPORARY AND PERMANENT SEDIMENT, EROSION AND DETENTION CONTROL FACILITIES. EROSION, SEDIMENT AND DETENTION MEASURES SHALL BE INSTALLED PRIOR TO ANY EARTH MOVING OPERATIONS THAT WILL INFLUENCE STORMWATER RUNOFF SUCH
 - NEW CONSTRUCTION
 - CONTROL OF DUST
 - NEARNESS OF CONSTRUCTION SITE TO RECEIVING WATERS
- CONSTRUCTION DURING LATE WINTER AND EARLY SPRING ALL PERMANENT DITCHES, SWALES, DETENTION, RETENTION AND SEDIMENTATION BASINS TO BE STABILIZED USING THE VEGETATIVE AND NON-STRUCTURAL BMPS PRIOR TO DIRECTING RUNOFF TO THEM.
- CLEAR AND DISPOSE OF DEBRIS
- CONSTRUCT TEMPORARY CULVERTS AND DIVERSION CHANNELS AS REQUIRED
- GRADE AND GRAVEL ROADWAYS AND PARKING AREAS ALL ROADS AND PARKING AREA SHALL BE STABILIZED WITHIN 72 HOURS OF ACHIEVING FINISHED GRADE.
- BEGIN PERMANENT AND TEMPORARY SEEDING AND MULCHING. ALL CUT AND FILL SLOPES
- SHALL BE SEEDED AND MULCHED WITHIN 72 HOURS OF ACHIEVING FINISHED GRADE. DAILY, OR AS REQUIRED, CONSTRUCT TEMPORARY BERMS, DRAINS, DITCHES, PERIMETER
- EROSION CONTROL MEASURES, SEDIMENT TRAPS, ETC., MULCH AND SEED AS REQUIRED. SEDIMENT TRAPS AND/OR BASINS SHALL BE USED AS NECESSARY TO CONTAIN RUNOFF
- UNTIL SOILS ARE STABILIZED. 0. FINISH PAVING ALL ROADWAYS AND PARKING LOTS.
- 11. INSPECT AND MAINTAIN ALL EROSION AND SEDIMENT CONTROL MEASURES.
- COMPLETE PERMANENT SEEDING AND LANDSCAPING.
- 3. REMOVE TRAPPED SEDIMENTS FROM COLLECTOR DEVICES AS APPROPRIATE AND THEN REMOVE TEMPORARY EROSION CONTROL MEASURES.

SPECIAL CONSTRUCTION NOTES:

. THE CONSTRUCTION SEQUENCE MUST LIMIT THE DURATION AND AREA OF DISTURBANCE. THE PROJECT IS TO BE MANAGED IN A MANNER THAT MEETS THE REQUIREMENTS AND

INTENT OF RSA 430:53 AND CHAPTER AGR 3800 RELATIVE TO INVASIVE SPECIES.

- ALL EROSION CONTROL MEASURES AND PRACTICES SHALL CONFORM TO THE "NE HAMPSHIRE STORMWATER MANUAL VOLUME 3: EROSION AND SEDIMENT CONTROLS DURING
- CONSTRUCTION" PREPARED BY THE NHDES. PRIOR TO ANY WORK OR SOIL DISTURBANCE, CONTRACTOR SHALL SUBMIT SHOP
- DRAWINGS FOR EROSION CONTROL MEASURES AS REQUIRED IN THE PROJECT MANUAL. CONTRACTOR SHALL INSTALL TEMPORARY EROSION CONTROL BARRIERS, INCLUDING HAY BALES, SILT FENCES, MULCH BERMS, SILT SACKS AND SILT SOCKS AS SHOWN IN THESE DRAWINGS AS THE FIRST ORDER OF WORK.
- SILT SACK INLET PROTECTION SHALL BE INSTALLED IN ALL EXISTING AND PROPOSED CATCH BASIN INLETS WITHIN THE WORK LIMITS AND BE MAINTAINED FOR THE DURATION OF THE PROJECT.
- PERIMETER CONTROLS INCLUDING SILT FENCES, MULCH BERM, SILT SOCK, AND/OR HAY BALE BARRIERS SHALL BE MAINTAINED FOR THE DURATION OF THE PROJECT UNTIL NON-PAVED AREAS HAVE BEEN STABILIZED.
- THE CONTRACTOR SHALL REMOVE AND PROPERLY DISPOSE OF ALL TEMPORARY EROSION CONTROL DEVICES UPON COMPLETION OF CONSTRUCTION.
- ALL DISTURBED AREAS NOT OTHERWISE BEING TREATED SHALL RECEIVE 6" LOAM, SEED AND FERTILIZER.
- INSPECT ALL INLET PROTECTION AND PERIMETER CONTROLS WEEKLY AND AFTER EACH RAIN STORM OF 0.25 INCH OR GREATER. REPAIR/MODIFY PROTECTION AS NECESSARY TO MAXIMIZE EFFICIENCY OF FILTER. REPLACE ALL FILTERS WHEN SEDIMENT IS 1/3 THE FILTER
- CONSTRUCT EROSION CONTROL BLANKETS ON ALL SLOPES STEEPER THAN 3:1.

- AN AREA SHALL BE CONSIDERED STABLE WHEN ONE OF THE FOLLOWING HAS OCCURRED:
- A. BASE COURSE GRAVELS HAVE BEEN INSTALLED IN AREAS TO BE PAVED: B. A MINIMUM OF 85% VEGETATED GROWTH HAS BEEN ESTABLISHED;
- C. A MINIMUM OF 3" OF NON-EROSIVE MATERIAL SUCH AS STONE OR RIPRAP HAS BEEN
- INSTALLED: D. EROSION CONTROL BLANKETS HAVE BEEN PROPERLY INSTALLED.;
- E. IN AREAS TO BE PAVED, "STABLE" MEANS THAT BASE COURSE GRAVELS MEETING THE REQUIREMENTS OF NHDOT STANDARD FOR ROAD AND BRIDGE CONSTRUCTION, 2016,
- ITEM 304.2 HAVE BEEN INSTALLED. WINTER STABILIZATION PRACTICES:
- A. ALL PROPOSED VEGETATED AREAS THAT DO NOT EXHIBIT A MINIMUM OF 85 PERCENT VEGETATIVE GROWTH BY OCTOBER 15, OR WHICH ARE DISTURBED AFTER OCTOBER 15, SHALL BE STABILIZED BY SEEDING AND INSTALLING EROSION CONTROL BLANKETS ON SLOPES GREATER THAN 3:1, AND SEEDING AND PLACING 3 TO 4 TONS OF MULCH PER ACRE, SECURED WITH ANCHORED NETTING, ELSEWHERE. THE INSTALLATION OF EROSION CONTROL BLANKETS OR MULCH AND NETTING SHALL NOT OCCUR OVER ACCUMULATED SNOW OR ON FROZEN GROUND AND SHALL BE COMPLETED IN ADVANCE OF THAW OR SPRING MELT EVENTS;
- ALL DITCHES OR SWALES WHICH DO NOT EXHIBIT A MINIMUM OF 85 PERCENT VEGETATIVE GROWTH BY OCTOBER 15, OR WHICH ARE DISTURBED AFTER OCTOBER 15, SHALL BE STABILIZED TEMPORARILY WITH STONE OR EROSION CONTROL BLANKETS APPROPRIATE FOR THE DESIGN FLOW CONDITIONS
- AFTER NOVEMBER 15, INCOMPLETE ROAD OR PARKING SURFACES, WHERE WORK HAS STOPPED FOR THE WINTER SEASON, SHALL BE PROTECTED WITH A MINIMUM OF 3 INCHES OF CRUSHED GRAVEL PER NHDOT ITEM 304.3, OR IF CONSTRUCTION IS TO CONTINUE THROUGH THE WINTER SEASON BE CLEARED OF ANY ACCUMULATED SNOW AFTER EACH STORM EVENT;
- STABILIZATION SHALL BE INITIATED ON ALL LOAM STOCKPILES, AND DISTURBED AREAS, WHERE CONSTRUCTION ACTIVITY SHALL NOT OCCUR FOR MORE THAN TWENTY-ONE (21) CALENDAR DAYS BY THE FOURTEENTH (14TH) DAY AFTER CONSTRUCTION ACTIVITY HAS PERMANENTLY OR TEMPORARILY CEASED IN THAT AREA. STABILIZATION MEASURES TO BE **USED INCLUDE:**
- A. TEMPORARY SEEDING; B. MULCHING.

LONZA BIOLOGICS PROJECT OWNER/ APPLICANT:

- 4. ALL AREAS SHALL BE STABILIZED WITHIN 45 DAYS OF INITIAL DISTURBANCE. WHEN CONSTRUCTION ACTIVITY PERMANENTLY OR TEMPORARILY CEASES WITHIN 100 FEET OF NEARBY SURFACE WATERS OR DELINEATED WETLANDS, THE AREA SHALL BE STABILIZED WITHIN SEVEN (7) DAYS OR PRIOR TO A RAIN EVENT. ONCE CONSTRUCTION ACTIVITY CEASES PERMANENTLY IN AN THESE AREAS, SILT FENCES, MULCH BERMS, HAY BALE BARRIERS AND ANY EARTH/DIKES SHALL BE REMOVED ONCE PERMANENT MEASURES ARE
- 6. DURING CONSTRUCTION, RUNOFF WILL BE DIVERTED AROUND THE SITE WITH EARTH DIKES, PIPING OR STABILIZED CHANNELS WHERE POSSIBLE. SHEET RUNOFF FROM THE SITE WILL BE FILTERED THROUGH SILT FENCES, MULCH BERMS, HAY BALE BARRIERS, OR SILT SOCKS. ALL STORM DRAIN BASIN INLETS SHALL BE PROVIDED WITH FLARED END SECTIONS AND TRASH RACKS. THE SITE SHALL BE STABILIZED FOR THE WINTER BY NOVEMBER 15.

- 1. THE CONTRACTOR SHALL BE RESPONSIBLE TO CONTROL DUST THROUGHOUT THE
- 2. DUST CONTROL METHODS SHALL INCLUDE, BUT BE NOT LIMITED TO SPRINKLING WATER ON EXPOSED AREAS, COVERING LOADED DUMP TRUCKS LEAVING THE SITE, AND TEMPORARY
- 3. DUST CONTROL MEASURES SHALL BE UTILIZED SO AS TO PREVENT THE MIGRATION OF DUST FROM THE SITE TO ABUTTING AREAS.

- 1. LOCATE STOCKPILES A MINIMUM OF 50 FEET AWAY FROM CATCH BASINS, SWALES, AND
- 2. ALL STOCKPILES SHOULD BE SURROUNDED WITH TEMPORARY EROSION CONTROL MEASURES PRIOR TO THE ONSET OF PRECIPITATION.
- 3. PERIMETER BARRIERS SHOULD BE MAINTAINED AT ALL TIMES, AND ADJUSTED AS NEEDED TO ACCOMMODATE THE DELIVERY AND REMOVAL OF MATERIALS FROM THE STOCKPILE. THE
- INTEGRITY OF THE BARRIER SHOULD BE INSPECTED AT THE END OF EACH WORKING DAY. 4. PROTECT ALL STOCKPILES FROM STORMWATER RUN-OFF USING TEMPORARY EROSION CONTROL MEASURES SUCH AS BERMS, SILT SOCK, OR OTHER APPROVED PRACTICE TO PREVENT MIGRATION OF MATERIAL BEYOND THE IMMEDIATE CONFINES OF THE STOCKPILES.

OFF SITE VEHICLE TRACKING:

1. THE CONTRACTOR SHALL CONSTRUCT STABILIZED CONSTRUCTION ENTRANCE(S) PRIOR TO ANY EXCAVATION ACTIVITIES.

 TEMPORARY GRASS COVER A. SEEDBED PREPARATION:

- a. APPLY FERTILIZER AT THE RATE OF 600 POUNDS PER ACRE OF 10-10-10. APPLY LIMESTONE (EQUIVALENT TO 50 PERCENT CALCIUM PLUS MAGNESIUM OXIDE) AT A RATE OF THREE (3) TONS PER ACRE;
- a. UTILIZE ANNUAL RYE GRASS AT A RATE OF 40 LBS/ACRE;
- b. WHERE THE SOIL HAS BEEN COMPACTED BY CONSTRUCTION OPERATIONS, LOOSEN SOIL TO A DEPTH OF TWO (2) INCHES BEFORE APPLYING FERTILIZER, LIME AND SEED;
- c. APPLY SEED UNIFORMLY BY HAND, CYCLONE SEEDER, OR HYDROSEEDER (SLURRY INCLUDING SEED AND FERTILIZER). HYDROSEEDINGS, WHICH INCLUDE MULCH, MAY BE LEFT ON SOIL SURFACE. SEEDING RATES MUST BE INCREASED 10% WHEN HYDROSEEDING
- C. MAINTENANCE:
- a. TEMPORARY SEEDING SHALL BE PERIODICALLY INSPECTED. AT A MINIMUM, 95% OF THE SOIL SURFACE SHOULD BE COVERED BY VEGETATION. IF ANY EVIDENCE OF EROSION OR SEDIMENTATION IS APPARENT, REPAIRS SHALL BE MADE AND OTHER TEMPORARY MEASURES USED IN THE INTERIM (MULCH, FILTER BARRIERS, CHECK DAMS, ETC.).
- 2. VEGETATIVE PRACTICE:
- A. FOR PERMANENT MEASURES AND PLANTINGS:
- a. LIMESTONE SHALL BE THOROUGHLY INCORPORATED INTO THE LOAM LAYER AT A RATE OF THREE (3) TONS PER ACRE IN ORDER TO PROVIDE A PH VALUE OF 5.5 TO 6.5;
- b. FERTILIZER SHALL BE SPREAD ON THE TOP LAYER OF LOAM AND WORKED INTO THE SURFACE. FERTILIZER APPLICATION RATE SHALL BE 800 POUNDS PER ACRE OF 10-20-20 FERTILIZER;
- c. SOIL CONDITIONERS AND FERTILIZER SHALL BE APPLIED AT THE RECOMMENDED RATES AND SHALL BE THOROUGHLY WORKED INTO THE LOAM. LOAM SHALL BE RAKED UNTIL THE SURFACE IS FINELY PULVERIZED, SMOOTH AND EVEN, AND THEN COMPACTED TO AN EVEN SURFACE CONFORMING TO THE REQUIRED LINES AND GRADES WITH APPROVED ROLLERS WEIGHING BETWEEN 4-1/2 POUNDS AND 5-1/2 POUNDS PER INCH OF WIDTH;
- d. SEED SHALL BE SOWN AT THE RATE SHOWN BELOW. SOWING SHALL BE DONE ON A CALM, DRY DAY, PREFERABLY BY MACHINE, BUT IF BY HAND, ONLY BY EXPERIENCED WORKMEN. IMMEDIATELY BEFORE SEEDING, THE SOIL SHALL BE LIGHTLY RAKED. ONE HALF THE SEED SHALL BE SOWN IN ONE DIRECTION AND THE OTHER HALF AT RIGHT ANGLES TO THE ORIGINAL DIRECTION. IT SHALL BE LIGHTLY RAKED INTO THE SOIL TO A DEPTH NOT OVER 1/4 INCH AND ROLLED WITH A HAND ROLLER WEIGHING NOT OVER 100 POUNDS PER LINEAR FOOT OF WIDTH;
- e. HAY MULCH SHALL BE APPLIED IMMEDIATELY AFTER SEEDING AS INDICATED ABOVE; f. THE SURFACE SHALL BE WATERED AND KEPT MOIST WITH A FINE SPRAY AS REQUIRED, WITHOUT WASHING AWAY THE SOIL, UNTIL THE GRASS IS WELL ESTABLISHED. ANY AREAS WHICH ARE NOT SATISFACTORILY COVERED WITH GRASS SHALL BE RESEEDED,
- AND ALL NOXIOUS WEEDS REMOVED; g. THE CONTRACTOR SHALL PROTECT AND MAINTAIN THE SEEDED AREAS UNTIL
- ACCEPTED; h. A GRASS SEED MIXTURE CONTAINING THE FOLLOWING SEED REQUIREMENTS SHALL BE APPLIED AT A RATE OF 40 LB/AC OR APPROVED EUOAL: APPLICATION RATE

"REBEL II" TALL FESCUE "PALMER" PERENNIAL RYEGRASS "BARON" KENTUCKEY BLUEGRASS

IN NO CASE SHALL THE WEED CONTENT EXCEED ONE (1) PERCENT BY WEIGHT. ALL SEED SHALL COMPLY WITH STATE AND FEDERAL SEED LAWS. SEEDING SHALL BE DONE NO LATER THAN SEPTEMBER 15. IN NO CASE SHALL SEEDING TAKE PLACE OVER SNOW.

3. DORMANT SEEDING (SEPTEMBER 15 TO FIRST SNOWFALL): A. FOLLOW PERMANENT MEASURES SLOPE, LIME, FERTILIZER AND GRADING

REQUIREMENTS. APPLY SEED MIXTURE AT TWICE THE INDICATED RATE. APPLY MULCH AS INDICATED FOR PERMANENT MEASURES.

CONCRETE WASHOUT AREA:

- THE CONCRETE DELIVERY TRUCKS SHALL, WHENEVER POSSIBLE, USE WASHOUT FACILITIES AT THEIR OWN PLANT OR DISPATCH FACILITY; 2. IF IT IS NECESSARY, SITE CONTRACTOR SHALL DESIGNATE SPECIFIC WASHOUT AREAS AND
- DESIGN FACILITIES TO HANDLE ANTICIPATED WASHOUT WATER; CONTRACTOR SHALL LOCATE WASHOUT AREAS AT LEAST 150 FEET AWAY FROM STORM
- DRAINS, SWALES AND SURFACE WATERS OR DELINEATED WETLANDS; 4. INSPECT WASHOUT FACILITIES DAILY TO DETECT LEAKS OR TEARS AND TO IDENTIFY WHEN MATERIALS NEED TO BE REMOVED.

ALLOWABLE NON-STORMWATER DISCHARGES:

- THE FOLLOWING ARE THE ONLY NON-STORMWATER DISCHARGES ALLOWED. ALL OTHER NON-STORMWATER DISCHARGES ARE PROHIBITED ON SITE:
- A. FIRE-FIGHTING ACTIVITIES; B. FIRE HYDRANT FLUSHING;
- C. WATERS USED TO WASH VEHICLES WHERE DETERGENTS ARE NOT USED;
- D. WATER USED TO CONTROL DUST; E. POTABLE WATER INCLUDING UNCONTAMINATED WATER LINE FLUSHING;
- F. ROUTINE EXTERNAL BUILDING WASH DOWN WHERE DETERGENTS ARE NOT USED; G. PAVEMENT WASH WATERS WHERE DETERGENTS ARE NOT USED;
- H. UNCONTAMINATED AIR CONDITIONING/COMPRESSOR CONDENSATION; I. UNCONTAMINATED GROUND WATER OR SPRING WATER;

J. FOUNDATION OR FOOTING DRAINS WHICH ARE UNCONTAMINATED;

K. LANDSCAPE IRRIGATION.

- A. ALL WASTE MATERIALS SHALL BE COLLECTED AND STORED IN SECURELY LIDDED RECEPTACLES. ALL TRASH AND CONSTRUCTION DEBRIS FROM THE SITE SHALL BE DEPOSITED IN A DUMPSTER;
- B. NO CONSTRUCTION WASTE MATERIALS SHALL BE BURIED ON SITE;
- C. ALL PERSONNEL SHALL BE INSTRUCTED REGARDING THE CORRECT PROCEDURE FOR WASTE DISPOSAL BY THE SUPERINTENDENT.
- HAZARDOUS WASTE:
- A. ALL HAZARDOUS WASTE MATERIALS SHALL BE DISPOSED OF IN THE MANNER SPECIFIED BY LOCAL OR STATE REGULATION OR BY THE MANUFACTURER;
- B. SITE PERSONNEL SHALL BE INSTRUCTED IN THESE PRACTICES BY THE SUPERINTENDENT SANITARY WASTE
- A. ALL SANITARY WASTE SHALL BE COLLECTED FROM THE PORTABLE UNITS A MINIMUM OF ONCE PER WEEK BY A LICENSED SANITARY WASTE MANAGEMENT CONTRACTOR.

- CONTRACTOR SHALL BE FAMILIAR WITH SPILL PREVENTION MEASURES REQUIRED BY LOCAL, STATE AND FEDERAL AGENCIES. AT A MINIMUM, CONTRACTOR SHALL FOLLOW THE BEST MANAGEMENT SPILL PREVENTION PRACTICES OUTLINED BELOW.
- 2. THE FOLLOWING ARE THE MATERIAL MANAGEMENT PRACTICES THAT SHALL BE USED TO REDUCE THE RISK OF SPILLS OR OTHER ACCIDENTAL EXPOSURE OF MATERIALS AND SUBSTANCES DURING CONSTRUCTION TO STORMWATER RUNOFF:
- A. GOOD HOUSEKEEPING THE FOLLOWING GOOD HOUSEKEEPING PRACTICE SHALL BE FOLLOWED ON SITE DURING CONSTRUCTION:
- a. ONLY SUFFICIENT AMOUNTS OF PRODUCTS TO DO THE JOB SHALL BE STORED ON
- b. ALL MATERIALS STORED ON SITE SHALL BE STORED IN A NEAT, ORDERLY MANNER IN THEIR PROPER (ORIGINAL IF POSSIBLE) CONTAINERS AND, IF POSSIBLE, UNDER A ROOF OR OTHER ENCLOSURE;
- c. MANUFACTURER'S RECOMMENDATIONS FOR PROPER USE AND DISPOSAL SHALL BE
- d. THE SITE SUPERINTENDENT SHALL INSPECT DAILY TO ENSURE PROPER USE AND DISPOSAL OF MATERIALS
- e. SUBSTANCES SHALL NOT BE MIXED WITH ONE ANOTHER UNLESS RECOMMENDED BY THE MANUFACTURER; f. WHENEVER POSSIBLE ALL OF A PRODUCT SHALL BE USED UP BEFORE DISPOSING OF
- THE CONTAINER. HAZARDOUS PRODUCTS - THE FOLLOWING PRACTICES SHALL BE USED TO REDUCE THE
- RISKS ASSOCIATED WITH HAZARDOUS MATERIALS: g. PRODUCTS SHALL BE KEPT IN THEIR ORIGINAL CONTAINERS UNLESS THEY ARE NOT
- h. ORIGINAL LABELS AND MATERIAL SAFETY DATA SHALL BE RETAINED FOR IMPORTANT
- PRODUCT INFORMATION;
- i. SURPLUS PRODUCT THAT MUST BE DISPOSED OF SHALL BE DISCARDED ACCORDING TO THE MANUFACTURER'S RECOMMENDED METHODS OF DISPOSAL
- C. PRODUCT SPECIFIC PRACTICES THE FOLLOWING PRODUCT SPECIFIC PRACTICES SHALL BE FOLLOWED ON SITE: a. PETROLEUM PRODUCTS:
- ALL ON SITE VEHICLES SHALL BE MONITORED FOR LEAKS AND RECEIVE REGULAR PREVENTIVE MAINTENANCE TO REDUCE LEAKAGE;
- PETROLEUM PRODUCTS SHALL BE STORED IN TIGHTLY SEALED CONTAINERS WHICH ARE CLEARLY LABELED. ANY ASPHALT BASED SUBSTANCES USED ON SITE SHALL BE APPLIED ACCORDING TO THE MANUFACTURER'S RECOMMENDATIONS
- b. FERTILIZERS: FERTILIZERS USED SHALL BE APPLIED ONLY IN THE MINIMUM AMOUNTS DIRECTED
- BY THE SPECIFICATIONS; ONCE APPLIED FERTILIZER SHALL BE WORKED INTO THE SOIL TO LIMIT EXPOSURE
- TO STORMWATER; STORAGE SHALL BE IN A COVERED SHED OR ENCLOSED TRAILERS. THE CONTENTS OF ANY PARTIALLY USED BAGS OF FERTILIZER SHALL BE TRANSFERRED TO A
- SEALABLE PLASTIC BIN TO AVOID SPILLS. ALL CONTAINERS SHALL BE TIGHTLY SEALED AND STORED WHEN NOT REQUIRED
- EXCESS PAINT SHALL NOT BE DISCHARGED TO THE STORM SEWER SYSTEM EXCESS PAINT SHALL BE DISPOSED OF PROPERLY ACCORDING TO MANUFACTURER'S
- INSTRUCTIONS OR STATE AND LOCAL REGULATIONS. D. SPILL CONTROL PRACTICES - IN ADDITION TO GOOD HOUSEKEEPING AND MATERIAL MANAGEMENT PRACTICES DISCUSSED IN THE PREVIOUS SECTION, THE FOLLOWING
- PRACTICES SHALL BE FOLLOWED FOR SPILL PREVENTION AND CLEANUP: a. MANUFACTURER'S RECOMMENDED METHODS FOR SPILL CLEANUP SHALL BE CLEARLY POSTED AND SITE PERSONNEL SHALL BE MADE AWARE OF THE PROCEDURES AND THE
- LOCATION OF THE INFORMATION AND CLEANUP SUPPLIES; b. MATERIALS AND EQUIPMENT NECESSARY FOR SPILL CLEANUP SHALL BE KEPT IN THE MATERIAL STORAGE AREA ON SITE. EQUIPMENT AND MATERIALS SHALL INCLUDE BUT NOT BE LIMITED TO BROOMS, DUSTPANS, MOPS, RAGS, GLOVES, GOGGLES, KITTY LITTER, SAND, SAWDUST AND PLASTIC OR METAL TRASH CONTAINERS SPECIFICALLY FOR THIS PURPOSE;
- c. ALL SPILLS SHALL BE CLEANED UP IMMEDIATELY AFTER DISCOVERY; d. THE SPILL AREA SHALL BE KEPT WELL VENTILATED AND PERSONNEL SHALL WEAR APPROPRIATE PROTECTIVE CLOTHING TO PREVENT INJURY FROM CONTACT WITH A
- e. SPILLS OF TOXIC OR HAZARDOUS MATERIAL SHALL BE REPORTED TO THE APPROPRIATE LOCAL, STATE OR FEDERAL AGENCIES AS REQUIRED;
- f. THE SITE SUPERINTENDENT RESPONSIBLE FOR DAY-TO-DAY SITE OPERATIONS SHALL BE THE SPILL PREVENTION AND CLEANUP COORDINATOR. E. VEHICLE FUELING AND MAINTENANCE PRACTICE:
- a. CONTRACTOR SHALL MAKE AN EFFORT TO PERFORM EQUIPTMENT/VEHICAL FUELING AND MAINTENANCE AT AN OFF-SITE FACILITY; b. CONTRACTOR SHALL PROVIDE AN ON-SITE FUELING AND MAINTENANCE AREA THAT IS
- CLEAN AND DRY; c. IF POSSIBLE THE CONTRACTOR SHALL KEEP AREA COVERED;
- d. CONTRACTOR SHALL KEEP A SPILL KIT AT THE FUELING AND MAINTENANCE AREA;
- e. CONTRACTOR SHALL REGULARLY INSPECT VEHICLES FOR LEAKS AND DAMAGE; f. CONTRACTOR SHALL USE DRIP PANS, DRIP CLOTHS, OR ABSORBENT PADS WHEN REPLACING SPENT FLUID.

EROSION CONTROL OBSERVATIONS AND MAINTENANCE PRACTICES

HAZARDOUS SUBSTANCE;

THIS PROJECT EXCEEDS ONE (1) ACRE OF DISTURBANCE AND THUS REQUIRES A SWPPP. THE SWPPP SHALL BE PREPARED BY THE CONTRACTOR. THE CONTRACTOR SHALL BE FAMILIAR WITH THE SWPPP AND KEEP AN UPDATED COPY OF THE SWPPP ONSITE AT ALL TIMES.

THE FOLLOWING REPRESENTS THE GENERAL OBSERVATION AND REPORTING PRACTICES THAT SHALL BE FOLLOWED AS PART OF THIS PROJECT: OBSERVATIONS OF THE PROJECT FOR COMPLIANCE WITH THE SWPPP SHALL BE MADE BY

- THE CONTRACTOR AT LEAST ONCE A WEEK OR WITHIN 24 HOURS OF A STORM 0.25 INCHES OR GREATER; 2. AN OBSERVATION REPORT SHALL BE MADE AFTER EACH OBSERVATION AND DISTRIBUTED
- TO THE ENGINEER, THE OWNER, AND THE CONTRACTOR; 3. A REPRESENTATIVE OF THE SITE CONTRACTOR, SHALL BE RESPONSIBLE FOR MAINTENANCE AND REPAIR ACTIVITIES;
- 4. IF A REPAIR IS NECESSARY, IT SHALL BE INITIATED WITHIN 24 HOURS OF REPORT.

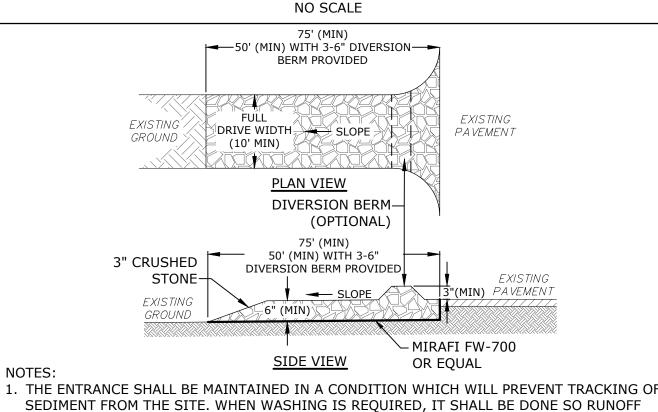
→ FLOW PERFORATED RISER IF DIKE, IF **USING PIPE** NECESSARY, WEIR OR -TO DIVERT EMBANKMENT IF OUTLET USING STONE FLOW INTO EXCAVATION FOR TRAP OUTLET OR PIPE REQUIRED STORAGE OUTLET 3:1 MAX. SLOPE SIDE SLOPES TO BE STABILIZED

PATRICK CRIMMINS No. 12378 CENSED & MAR YONAL Y 9/27/2023/1111

HANSEN

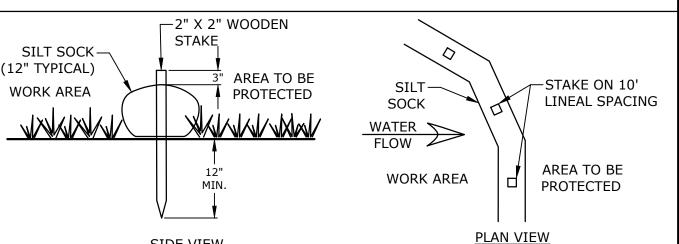
No. 15227

9/27/2023


Tighe&Bond

1. THE TRAP SHALL BE INSTALLED AS CLOSE TO THE DISTURBED AREA AS POSSIBLE. THE MAXIMUM CONTRIBUTING AREA TO A SINGLE TRAP SHALL BE LESS THAN 5 ACRES.

THE MINIMUM VOLUME OF THE TRAP SHALL BE 3,600 CUBIC FEET OF STORAGE FOR EACH


SEDIMENT TRAP

- ACRE OF DRAINAGE AREA. TRAP OUTLET SHALL BE MINIMUM OF ONE FOOT BELOW THE CREST OF THE TRAP.
- TRAP SHALL DISCHARGE TO A STABILIZED AREA. TRAP SHALL BE CLEANED WHEN 50 PERCENT OF THE ORIGINAL VOLUME IS FILLED.
 - MATERIALS REMOVED FROM THE TRAP SHALL BE PROPERLY DISPOSED OF AND STABILIZED.

Proposed Industrial Development

DRAINS INTO AN APPROVED SEDIMENT TRAPPING DEVICE. ALL SEDIMENT SHALL BE Lonza Biologics PREVENTED FROM ENTERING STORM DRAINS, DITCHES, OR WATERWAYS STABILIZED CONSTRUCTION ENTRANCE

NO SCALE

Portsmouth, New Hampshire

M 9/27/2023 P.B. Submission

3/15/2023

K 5/5/2023 Phase 1B Issued for Bid

H | 12/10/2021 | Planning Board Stipulation

G 8/19/2019 Admin. Approval Submiss

F 11/6/2018 P.B. Submission

MARK DATE DESCRIPTION

FILE: L-0700-026-C-DTLS.dwg

PROJECT NO:

RAWN BY:

CHECKED:

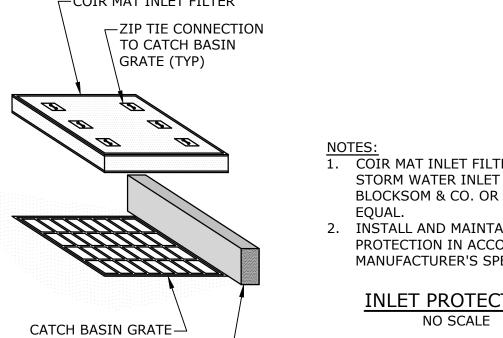
SCALE:

7/17/2023 | Amended Site Plan Review

1/9/2023 Admin. Approval Submission

Phase 1B Issued for

Preliminary Pricing


L-0700-013

04/03/2018

CJK

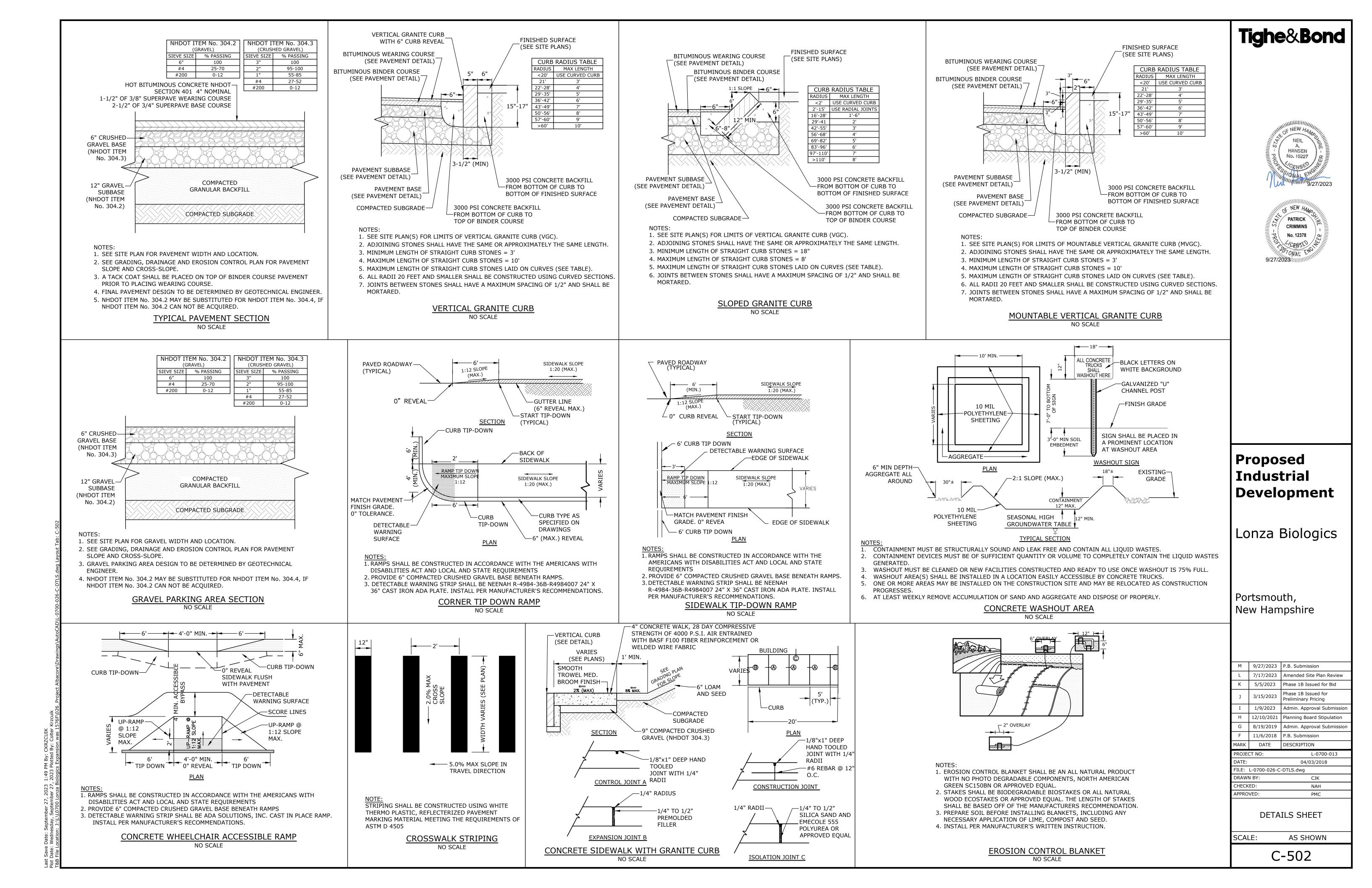
NAH

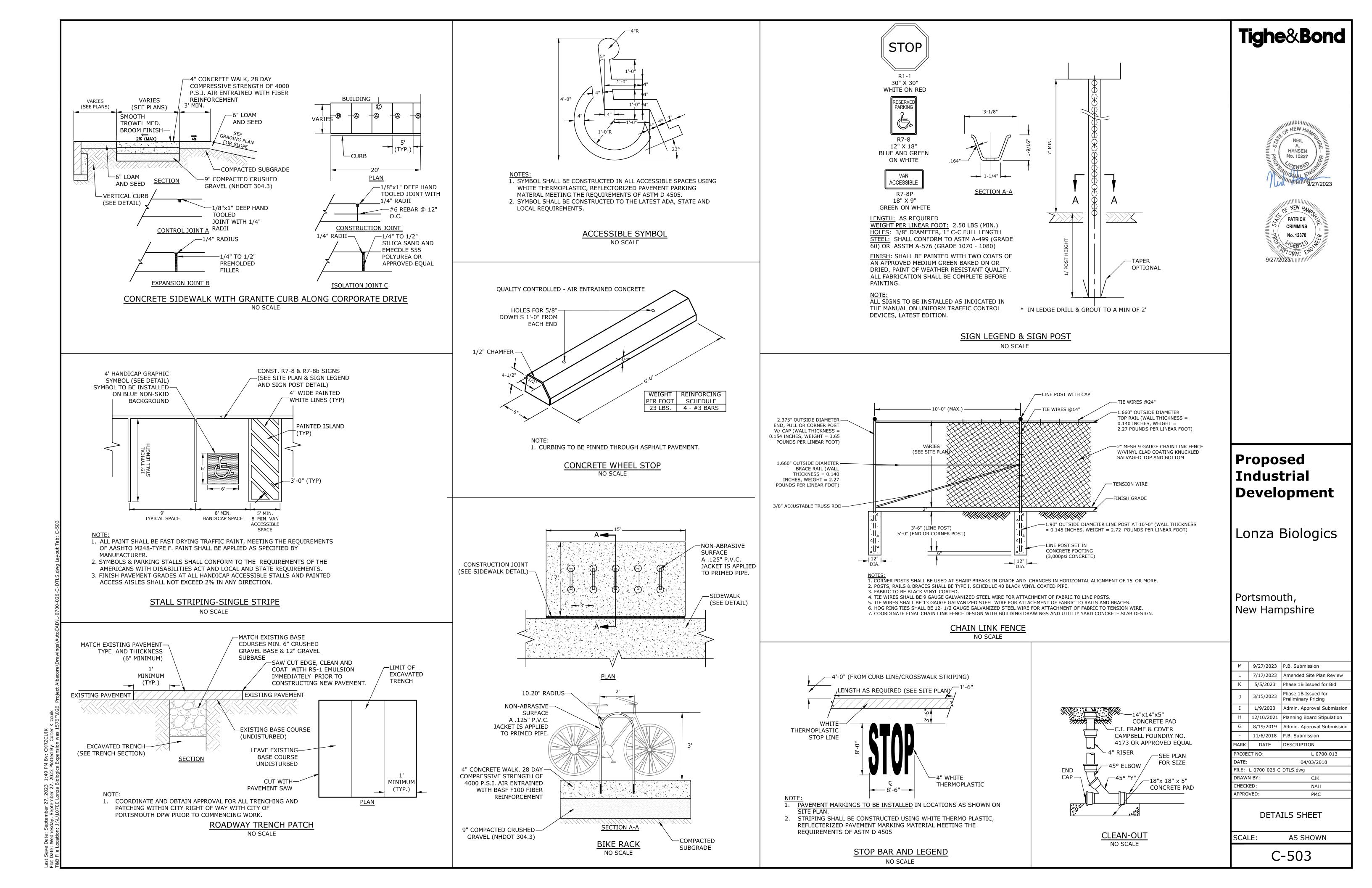
I. SILT SOCK SHALL BE SILT SOXX NATURAL ORIGINAL BY FILTREXX OR APPROVED EQUAL 2. INSTALL SILT SOCK IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS. SILT SOCK

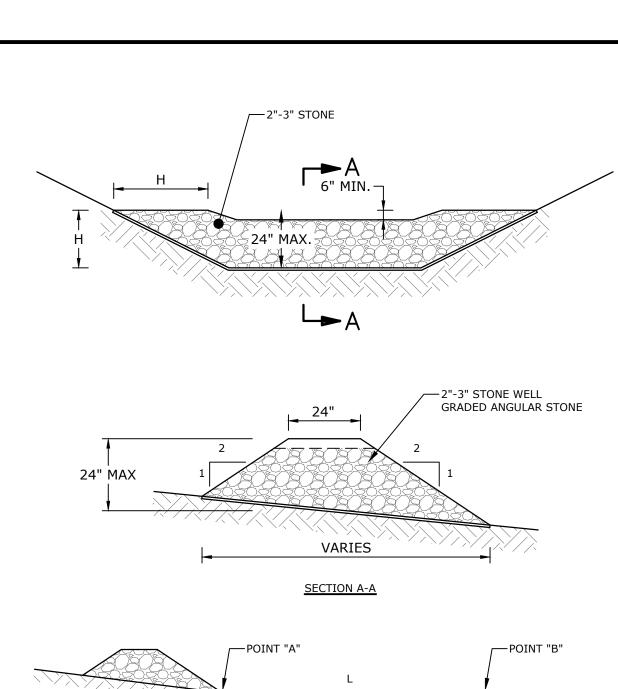
CURB-

(DIMENSIONS VARY)

2. INSTALL AND MAINTAIN INLET PROTECTION IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS.


PPROVED: PMC EROSION CONTROL NOTES &**DETAILS SHEET**


AS SHOWN


C-501

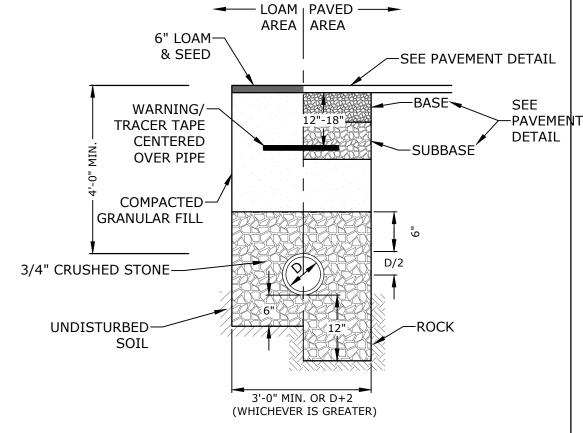
NO SCALE COIR MAT INLET FILTER COIR MAT INLET FILTER SHALL BE STORM WATER INLET FILTER BY BLOCKSOM & CO. OR APPROVED

INLET PROTECTION

L = THE DISTANCE WHERE THE ELEVATION

OF POINT "A" EQUALS THE ELEVATION OF POINT "B"

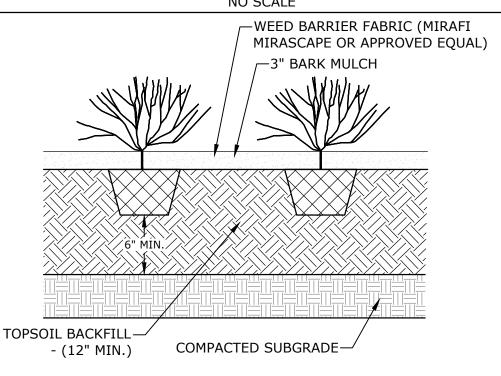
STONE CHECK DAM SPACING


BERM STONE SIZE		
SIEVE DESIGNATION (US CUSTOMARY)	PERCENT BY WEIGHT PASSING SQUARE MESH SIEVES	
12 IN	100	
6 IN	84-100	
3 IN	68-83	
1 IN	42-55	
NO. 4	8-12	

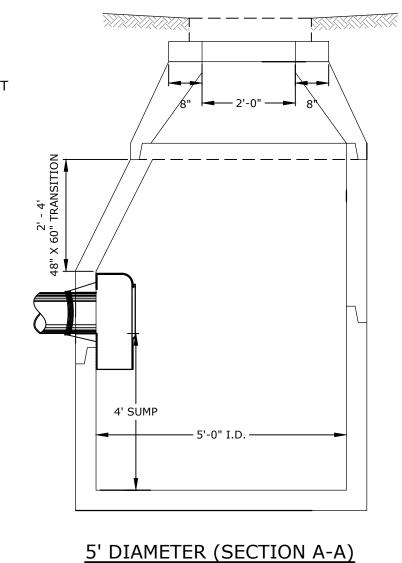
STONE CHECK DAM

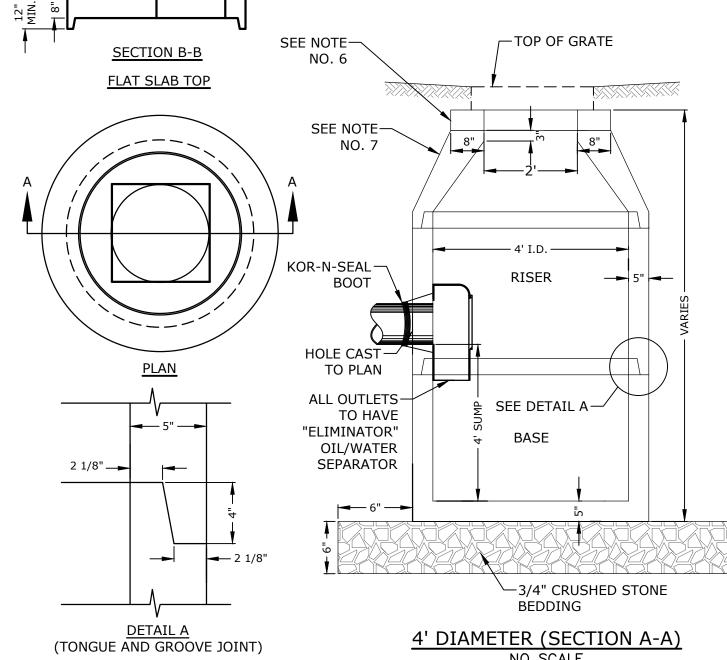
- 1. CHECK DAMS SHOULD BE INSTALLED BEFORE
- RUNOFF IS DIRECTED TO THE SWALE OR DRAINAGE DITCH. 2. THE MAXIMUM CONTRIBUTING DRAINAGE AREA
- TO THE DAM SHOULD BE LESS THAN ONE ACRE. 3. THE CHECK DAM SHOULD NOT BE USED IN A
- FLOWING STREAM. 4. CHECK DAMS SHOWN ON THE DRAWINGS SHALL
- 5. CHECK DAMS INSTALLED AS PART OF TEMPORARY EROSION CONTROL MEASURE SHALL BE REMOVED ONCE THE SWALE OR DITCH HAS BEEN STABILIZED:

BE LEFT IN PLACE PERMANENTLY.


- a. IN TEMPORARY DITCHES AND SWALES, CHECK DAMS SHOULD BE REMOVED AND THE DITCH FILLED IN WHEN IT IS NO LONGER
- b. IN PERMANENT STRUCTURES, CHECK DAMS SHOULD BE REMOVED WHEN PERMANENT LINING HAS BEEN ESTABLISHED. IF THE PERMANENT LINING IS VEGETATION, THEN THE CHECK DAM SHOULD BE RETAINED UNTIL THE GRASS HAS MATURED TO PROTECT THE DITCH OR SWALE. THE AREA BENEATH THE CHECK DAM MUST BE SEEDED AND MULCHED IMMEDIATELY AFTER REMOVAL.

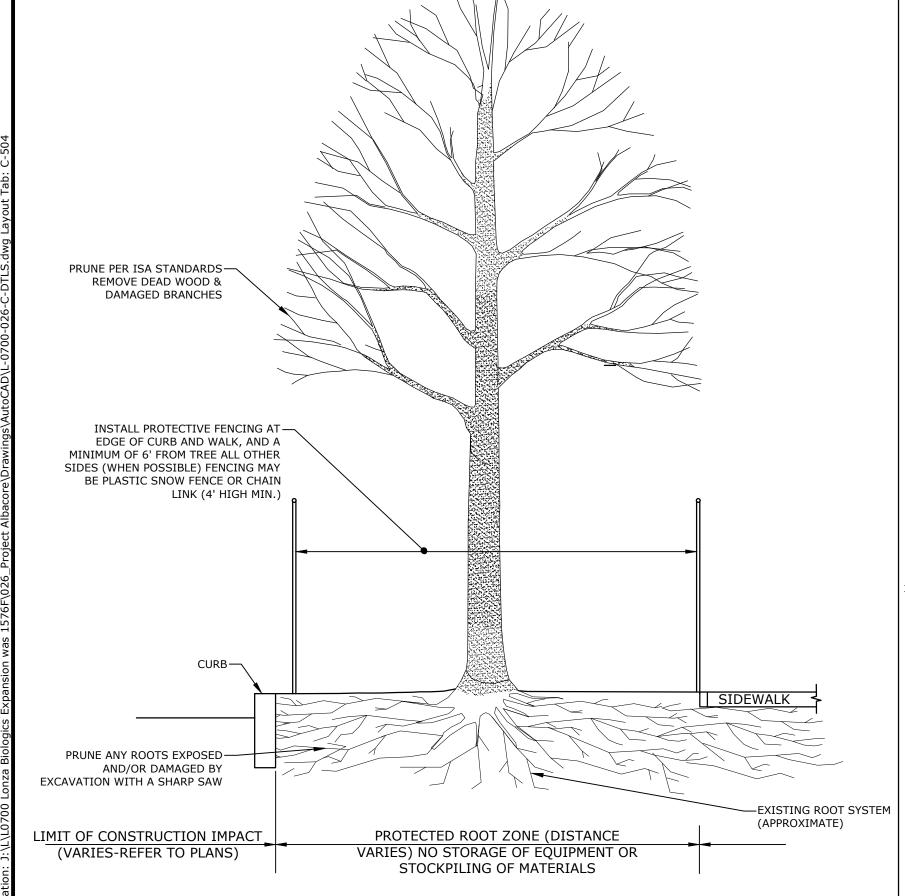
1. CRUSHED STONE BEDDING AND BACKFILL FOR FULL WIDTH OF THE TRENCH FROM 6" BELOW PIPE IN EARTH AND 12" BELOW PIPE IN ROCK UP TO 6" ABOVE TOP OF PIPE.


ALL UTILITIES SHALL BE INSTALLED PER THE INDIVIDUAL UTILITY COMPANY STANDARDS. COORDINATE ALL INSTALLATIONS WITH INDIVIDUAL UTILITY COMPANIES AND THE CITY OF PORTSMOUTH.

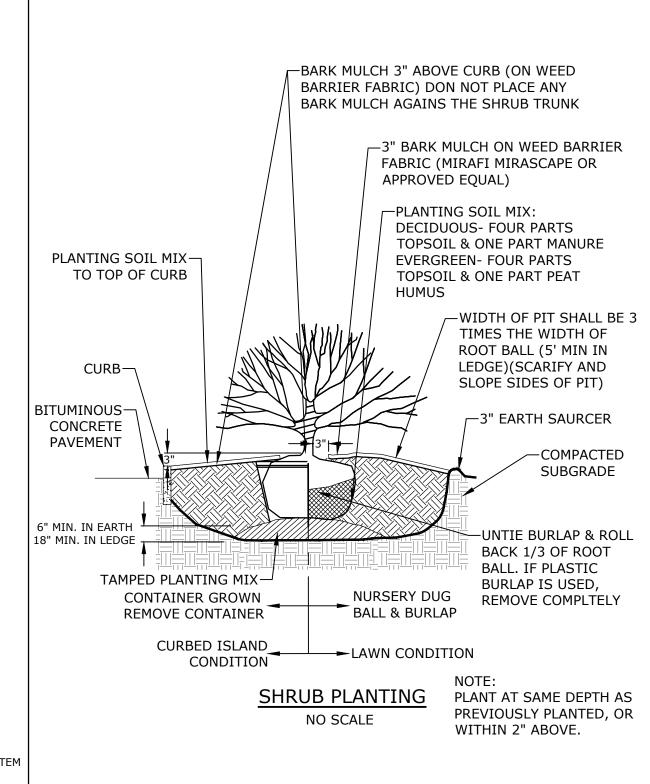

STORM DRAIN TRENCH NO SCALE

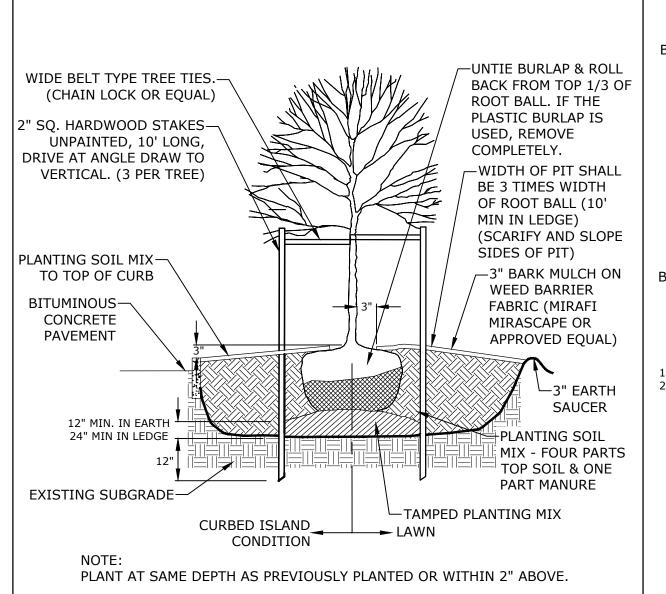
PERENNIAL PLANTING

NO SCALE


Tighe&Bond

- ALL SECTIONS SHALL BE CONCRETE CLASS AA(4000 psi). CIRCUMFERENTIAL REINFORCEMENT SHALL BE 0.12 SQ.IN. PER LINEAR FT. IN ALL SECTIONS AND SHALL BE PLACED IN THE
- 3. THE TONGUE AND GROOVE OF THE JOINT SHALL CONTAIN ONE LINE OF CIRCUMFERENTIAL REINFORCEMENT EQUAL TO 0.12 SQ. IN. PER LINEAR FT.
- RISERS OF 1', 2', 3' & 4' CAN BE USED TO REACH DESIRED DEPTH.
- THE STRUCTURES SHALL BE DESIGNED FOR H20 LOADING.
- FITTING FRAME TO GRADE MAY BE DONE WITH PREFABRICATED ADJUSTMENT RINGS OR CLAY BRICKS (2 COURSES MAX.).
- CONE SECTIONS MAY BE EITHER CONCENTRIC OR ECCENTRIC, OR FLAT SLAB TOPS MAY BE USED WHERE PIPE WOULD
- OTHERWISE ENTER INTO THE CONE SECTION OF THE STRUCTURE AND WHERE PERMITTED. PIPE ELEVATIONS SHOWN ON PLANS SHALL BE FIELD VERIFIED PRIOR TO PRECASTING.
- OUTSIDE EDGES OF PIPES SHALL PROJECT NO MORE THAN 3" BEYOND INSIDE WALL OF STRUCTURE.
- 10. PRECAST SECTIONS SHALL HAVE A TONGUE AND GROOVE JOINT 4" HIGH AT AN 11° ANGLE CENTERED IN THE WIDTH OF THE WALL AND SHALL BE ASSEMBLED USING AN APPROVED FLEXIBLE SEALANT IN JOINTS.
- 11. THE TONGUE AND GROOVE JOINT SHALL BE SEALED WITH ONE STRIP OF BUTYL RUBBER SEALANT.
- 12. "ELIMINATOR" OIL/WATER SEPARATOR SHALL BE INSTALLED TIGHT TO INSIDE OF CATCHBASIN.


CATCH BASIN DETAIL


NO SCALE

TREE PROTECTION FOR EXISTING TREE

NO SCALE

DECIDUOUS TREE PLANTING

NO SCALE

-3" BARK MULCH ON WEED BARRIER FABRIC (MIRAFI BARK MULCH 3" ABOVE-CURB (ON WEED MIRASCAPE OR APPROVED BARRIER FABRIC) DO EQUAL) NOT PLACE ANY BARK MULCH AGAINST TREE -WIDTH OF PIT SHALL TRUNK BE 3 TIMES WIDTH OF ROOT BALL (10' MIN IN LEDGE)(SCARIFY AND SLOPE SIDES OF PIT) PLANTING SOIL MIX--PLANTING SOIL TO TOP OF CURB MIX - FOUR PARTS TOP SOIL & ONE CURB-PART PEAT HUMUS BITUMINOUS-CONCRETE 3" EARTH PAVEMENT SAUCER 12" MIN. IN EARTH 24" MIN. IN LEDGE TAMPED PLANTING MIX EXISTING SUBGRADE— -UNTIE BURLAP & ROLL BACK FROM TOP 1/3 OF ROOT BALL. IF PLASTIC BURLAP IS USED, REMOVE COMPLETELY.

> PLANT AT SAME DEPTH AS PREVIOUSLY PLANTED IN NURSERY, OR WITHIN 2" ABOVE.

CURBED ISLAND CONDITION LAWN CONDITION

EVERGREEN TREE PLANTING NO SCALE

Proposed **Industrial Development**

Lonza Biologics

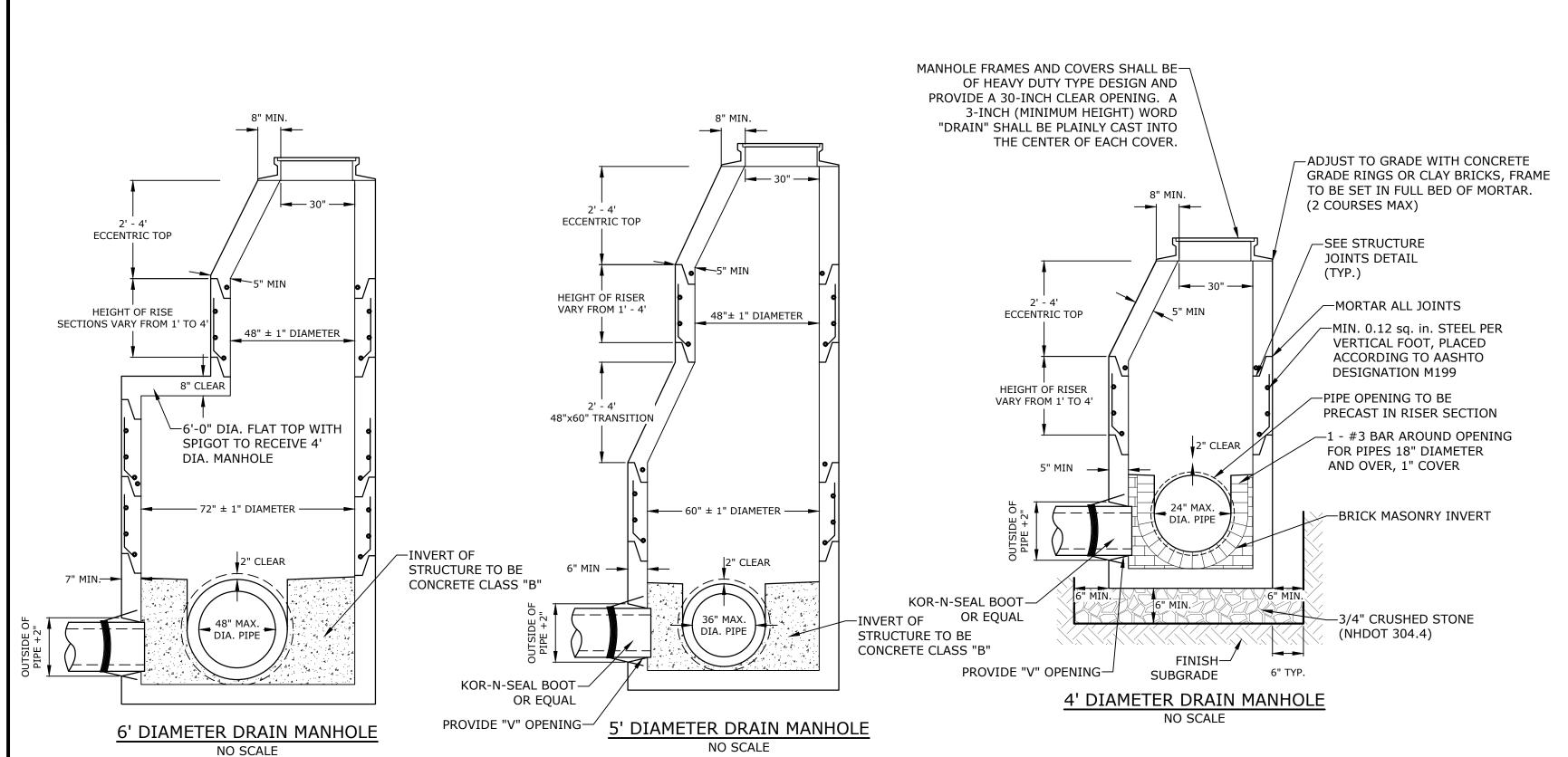
Portsmouth, New Hampshire

М	9/27/2023	P.B. Submission
L	7/17/2023	Amended Site Plan Review
K	5/5/2023	Phase 1B Issued for Bid
J	3/15/2023	Phase 1B Issued for Preliminary Pricing
I	1/9/2023	Admin. Approval Submission
Н	12/10/2021	Planning Board Stipulation
G	8/19/2019	Admin. Approval Submission
F	11/6/2018	P.B. Submission
1ARK	DATE	DESCRIPTION
0015	CT NO.	1 0700 013

PROJECT NO: L-0700-013 04/03/2018 FILE: L-0700-026-C-DTLS.dwg DRAWN BY: CJK

CHECKED:

APPROVED:


DETAILS SHEET

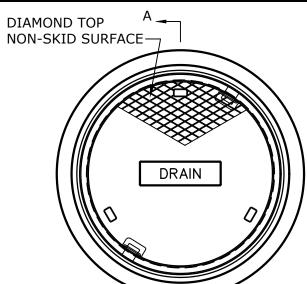
NAH

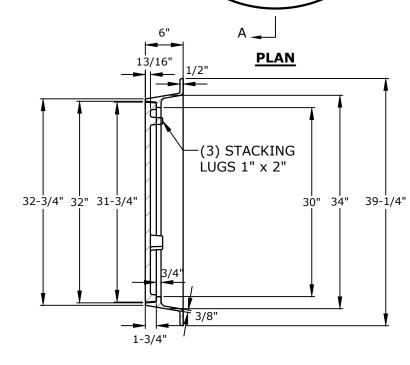
PMC

SCALE: AS SHOWN

C-504

<u>NOTES:</u> 1. ALL SECTIONS SHALL BE 4,000 PSI CONCRETE.

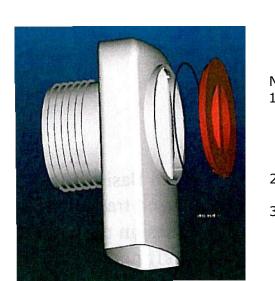

- CIRCUMFERENTIAL REINFORCEMENT SHALL BE 0.12 SQUARE INCHES PER LINEAR
- 3. THE TONGUE AND THE GROOVE OF THE JOINT SHALL CONTAIN ONE LINE OF


FOOT IN ALL SECTIONS AND SHALL BE PLACED IN THE CENTER THIRD OF THE

- CIRCUMFERENTIAL REINFORCEMENT EQUAL TO 0.12 SQUARE INCHES PER LINEAR
- 4. THE STRUCTURES SHALL BE DESIGNED FOR H20 LOADING.
- 5. CONSTRUCT CRUSHED STONE BEDDING AND BACKFILL UNDER (6" MINIMUM THICKNESS) THE TONGUE AND GROOVE JOINT SHALL BE SEALED WITH ONE STRIP OF BUTYL
- RUBBER SEALANT. PIPE ELEVATIONS SHOWN ON PLANS SHALL BE FIELD VERIFIED PRIOR TO
- PRECASTING 8. OUTSIDE EDGES OF PIPES SHALL PROJECT NO MORE THAN 3" BEYOND INSIDE WALL OF STRUCTURE.
- 9. PRECAST SECTIONS SHALL HAVE A TONGUE AND GROOVE JOINT 4" HIGH AT AN 11° ANGLE CENTERED IN THE WIDTH OF THE WALL AND SHALL BE ASSEMBLED
- USING AN APPROVED FLEXIBLE SEALANT IN JOINTS. 10. ALL STRUCTURES WITH MULTIPLE PIPES SHALL HAVE A MINIMUM OF 12" OF INSIDE SURFACE BETWEEN HOLES, NO MORE THAN 75% OF A HORIZNTAL CROSS SECTION SHALL BE HOLES, AND THERE SHALL BE NO HOLES CLOSER THAN 3" TO

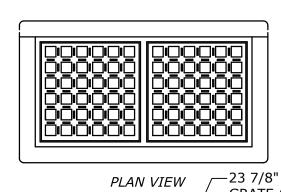
CORE HOLE SIZE				
PIPE SIZE	RCP CORE HOLE DIA.		PLASTIC C	ORE HOLE
INCHES	INCHES	FEET	INCHES	FEET
6			7	0.6
12	18	1.5	18	1.5
15	22	1.8	20	1.7
18	26	2.2	24	2.0
24	34	2.8	32	2.7
30	42	3.5	42	3.5
36	48	4.0	48	4.0

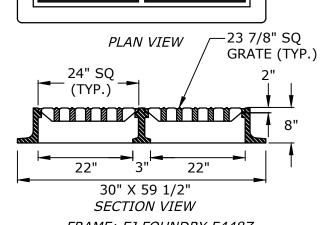
	WALL	FLOOR
DIAMETER	THICKNESS	THICKNESS
	(MIN.)	(MIN.)
4'	5"	6"
5'	6"	8"
6'	7"	8"



SECTION A-A ALL DIMENSIONS ARE NOMINAL.

- 2. FRAMES USING NARROWER DIMENSIONS FOR THICKNESS ARE ALLOWED PROVIDED:
 - A. THE FRAMES MEET OR EXCEED THE SPECIFIED LOAD RATING. B. THE INTERIOR PERIMETER (SEAT AREA) DIMENSIONS OF THE FRAMES REMAIN THE SAME TO ALLOW CONTINUED USE OF EXISTING GRATES/COVERS AS THE EXISTING FRAMES ALLOW, WITHOUT SHIMS OR OTHER MODIFICATIONS OR ACCOMMODATIONS.
- C. ALL OTHER PERTINENT REQUIREMENTS OF THE SPECIFICATIONS ARE MET.
- 3. LABEL TYPE OF MANHOLE WITH 3" HIGH LETTERS IN THE CENTER OF THE COVER.


DRAIN MANHOLE FRAME & COVER NO SCALE



1. ALL CATCH BASIN OUTLETS TO HAVE "ELIMINATOR" OIL AND FLOATING DEBRIS TRAP MANUFACTURED BY KLEANSTREAM (NO EQUAL) INSTALL DEBRIS TRAP TIGHT TO

INSIDE OF STRUCTURE. 3. 1/4" HOLE SHALL BE DRILLED IN TOP OF DEBRIS TRAP

"ELIMINATOR" OIL FLOATING DEBRIS TRAP NO SCALE

FRAME: EJ FOUNDRY 5448Z GRATE: EJ FOUNDRY 5520M5

AT DOUBLE CATCH BASINS

- 1. FRAME AND GRATES SHALL BE EJ FOUNDRY OR APPROVED EQUAL
- 2. MATERIAL SHALL BE CLASS 30B GRAY IRON AND SHALL COMPLY WITH ALTEST ASTM A48.
- 3. FRAME AND GRATES SHALL BE HEAVY DUTY AND RATED FOR H-20
- 4. 3 FLANGE FRAMES TO BE USED WITH CURB INLET.

DOUBLE CATCHBASIN FRAME & GRATE NO SCALE

Proposed **Industrial Development**

Tighe&Bond

HANSEN

PATRICK

CRIMMINS

No. 12378

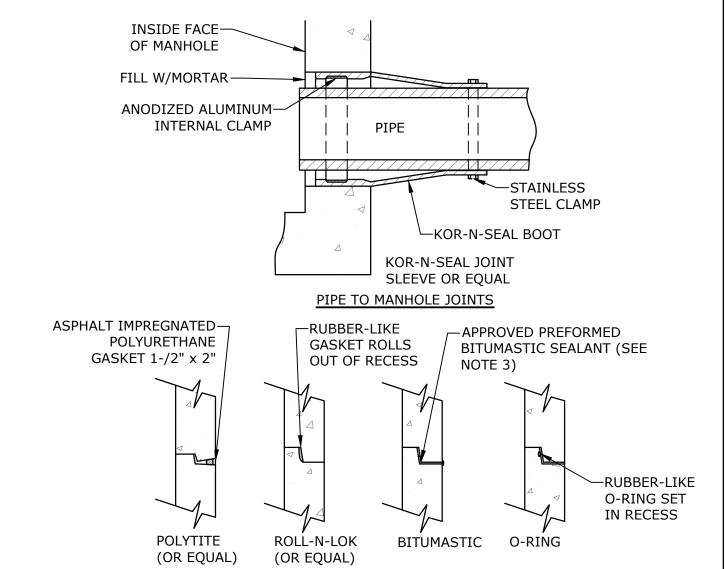
MIN TOWAL Y

9/27/2023//////

Lonza Biologics

Portsmouth, New Hampshire

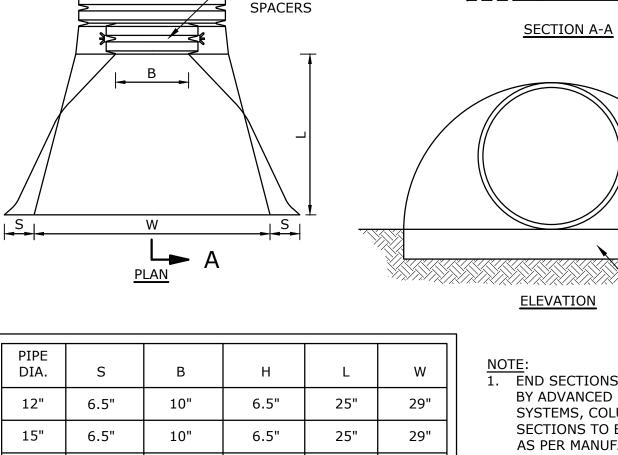
М	9/27/2023	P.B. Submission
L	7/17/2023	Amended Site Plan Review
K	5/5/2023	Phase 1B Issued for Bid
J	3/15/2023	Phase 1B Issued for Preliminary Pricing
I	1/9/2023	Admin. Approval Submission
Н	12/10/2021	Planning Board Stipulation
G	8/19/2019	Admin. Approval Submission
F	11/6/2018	P.B. Submission
		DECORPORTION


MARK DATE DESCRIPTION PROJECT NO: L-0700-013

04/03/2018 FILE: L-0700-026-C-DTLS.dwg DRAWN BY: CJK CHECKED: NAH PPROVED: PMC

DETAILS SHEET

SCALE: **AS SHOWN**


C-505

HORIZONTAL JOINTS NOTES:

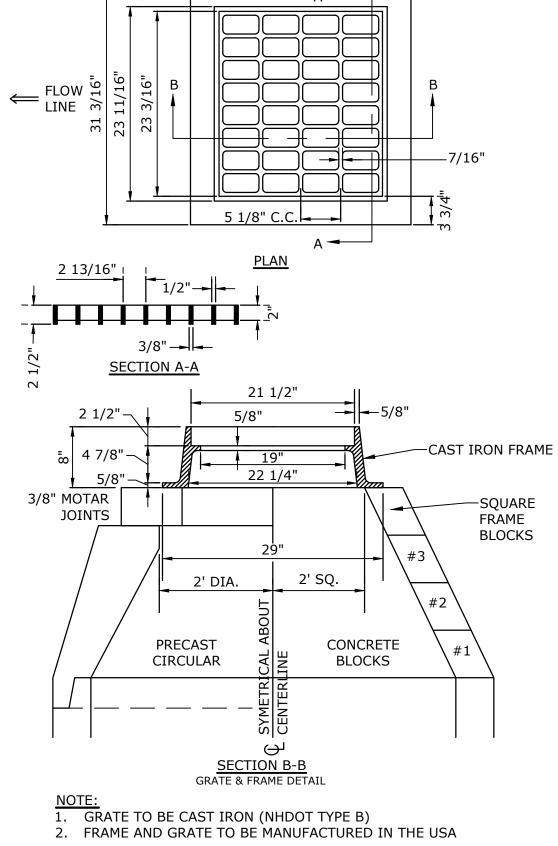
- 1. HORIZONTAL JOINTS BETWEEN THE SECTIONS OF PRECAST CONCRETE BARRELS SHALL BE PER CITY OF PORTSMOUTH DPW STANDARD AND SHALL BE SEALED FOR WATERTIGHTNESS USING A DOUBLE ROW ELASTOMERIC OR MASTIC-LIKE GASKET.
- 2. PIPE TO MANHOLE JOINTS SHALL BE PER CITY OF PORTSMOUTH STANDARD. 3. FOR BITUMASTIC TYPE JOINTS THE AMOUNT OF SEALANT SHALL BE SUFFICIENT TO FILL AT LEAST 75% OF THE JOINT CAVITY.
- 4. ALL GASKETS, SEALANTS, MORTAR, ETC. SHALL BE INSTALLED IN ACCORDANCE WITH
- MANUFACTURERS' WRITTEN INSTRUCTIONS.

MANHOLE JOINTS NO SCALE

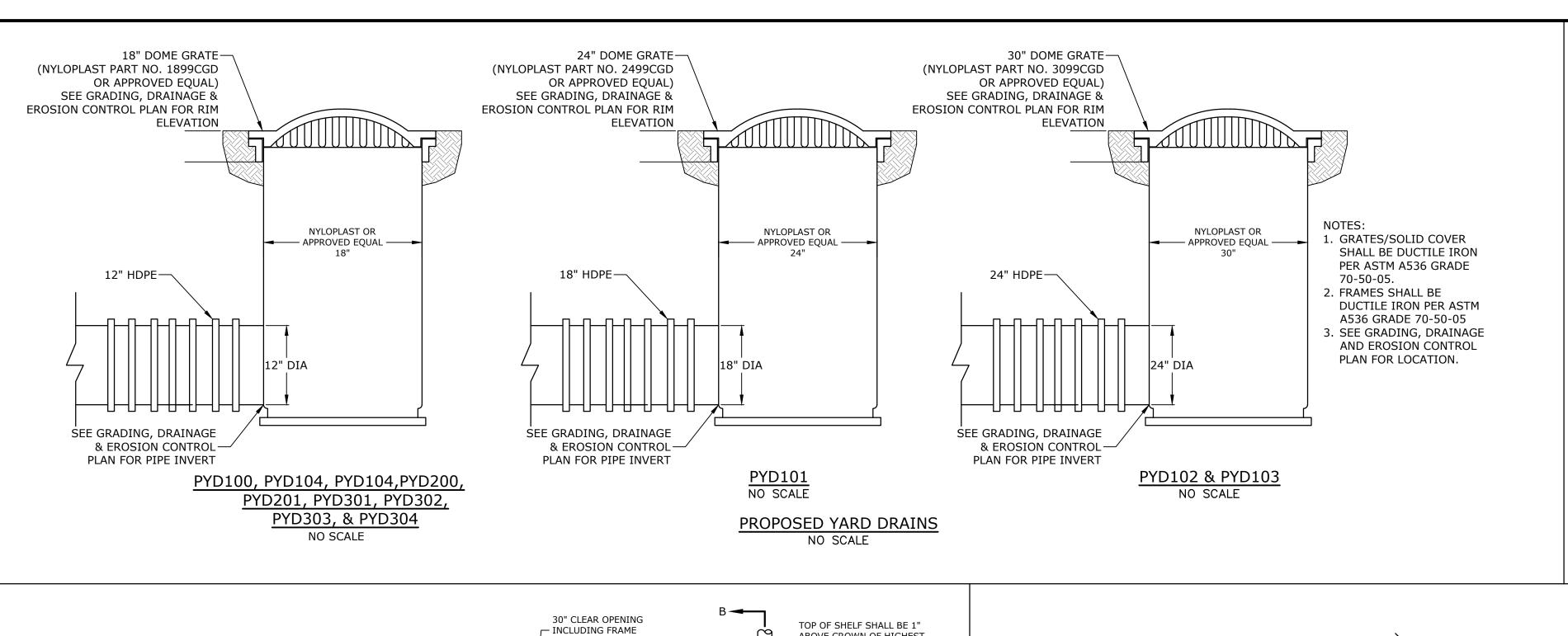
-POLYETHYLENE THREADED

ROD WITH WING NUTS AND

DIA.	S	В	Н	L	W	
12"	6.5"	10"	6.5"	25"	29"	
15"	6.5"	10"	6.5"	25"	29"	
18"	7.5"	15"	6.5"	32"	35"	
24"	7.5"	18"	6.5"	36"	45"	
30"	7.5"	12"	8.6"	58"	63"	
36"	7.5"	25"	8.6"	58"	63"	


END SECTIONS MANUFACTURED BY ADVANCED DRAINAGE SYSTEMS, COLUMBUS, OHIO. END SECTIONS TO BE WELDED TO PIPE AS PER MANUFACTURER'S RECOMMENDATIONS.

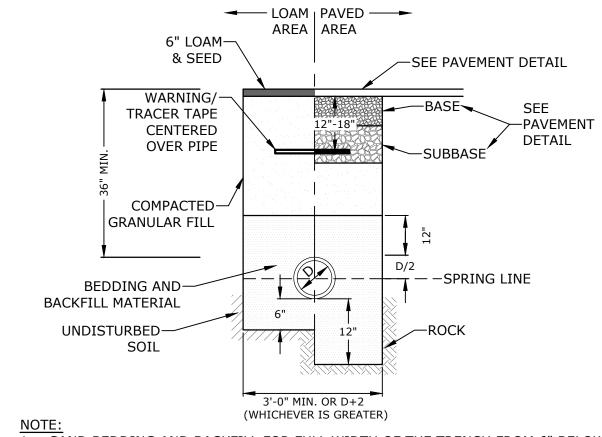
> HDPE END SECTION NO SCALE


TOE PLATE

TOE-

PLATE /

CATCH BASIN FRAME & GRATE NO SCALE

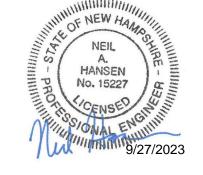

DETAIL

STANDARDS. COORDINATE ALL INSTALLATIONS WITH THE CITY OF

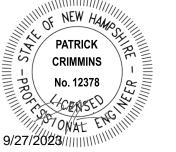
WATER TRENCH

NO SCALE

PORTSMOUTH.


1. SAND BEDDING AND BACKFILL FOR FULL WIDTH OF THE TRENCH FROM 6" BELOW

PIPE IN EARTH AND 12" BELOW PIPE IN ROCK UP TO 12" ABOVE TOP OF PIPE. 2. GAS SHALL BE INSTALLED PER UNITIL STANDARDS. COORDINATE ALL


NO SCALE

GAS TRENCH

INSTALLATIONS WITH UNITIL AND THE CITY OF PORTSMOUTH.

Tighe&Bond

Proposed

Industrial

Development

Lonza Biologics

M 9/27/2023 P.B. Submission

3/15/2023

ROJECT NO:

CHECKED:

7/17/2023 | Amended Site Plan Review

1/9/2023 | Admin. Approval Submissi

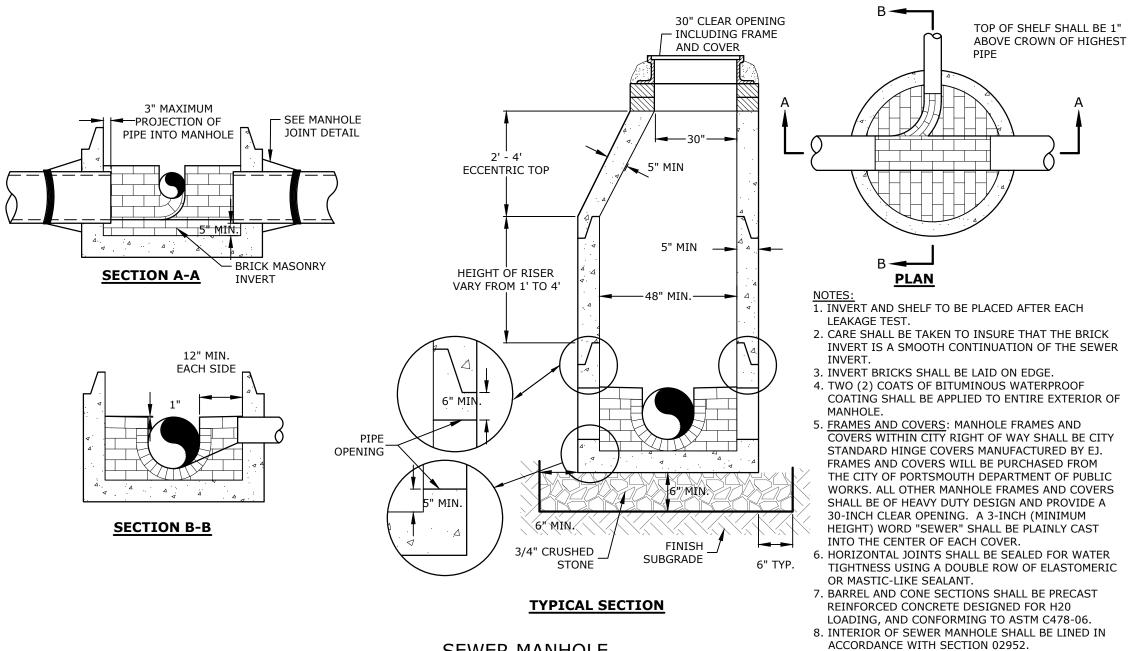
12/10/2021 | Planning Board Stipulation

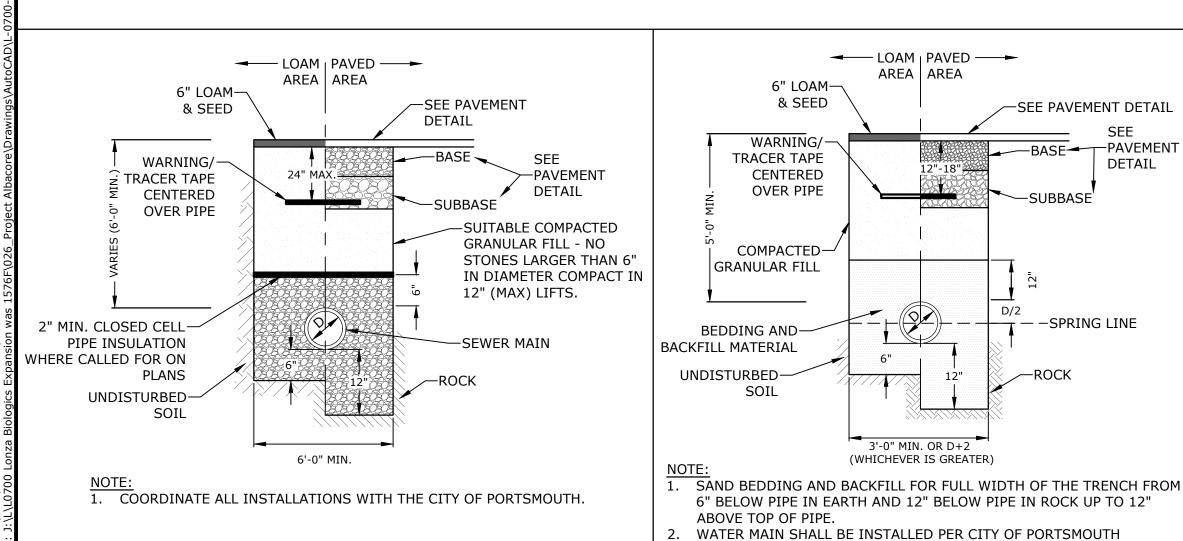
8/19/2019 | Admin. Approval Submiss

DATE DESCRIPTION

Phase 1B Issued for

L-0700-013

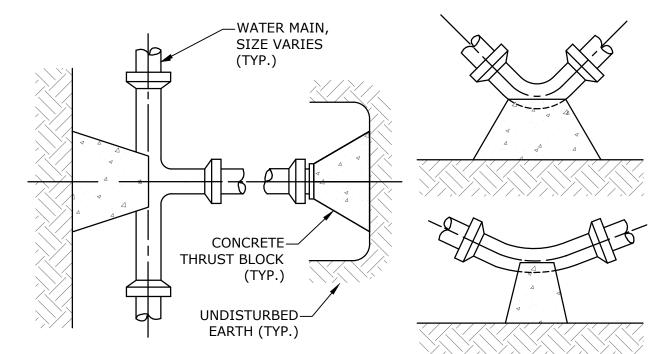

04/03/2018


CJK

NAH

Preliminary Pricing

5/5/2023 Phase 1B Issued for Bid

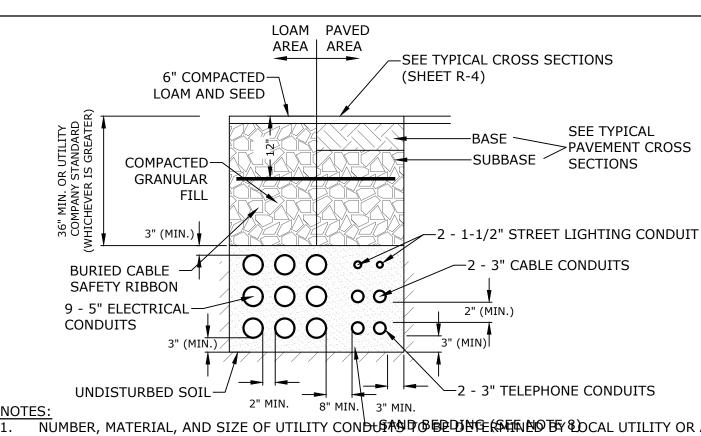


SEWER TRENCH

NO SCALE

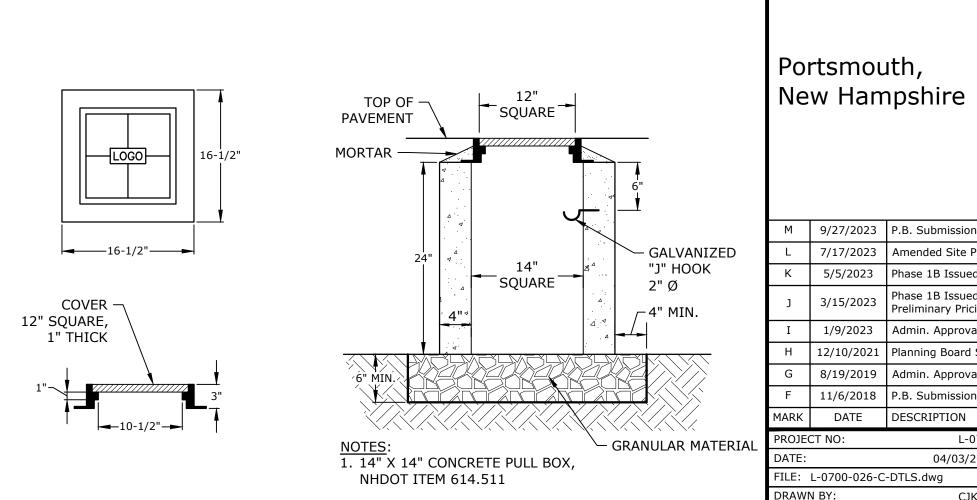
SEWER MANHOLE

NO SCALE



_									
TEST PRESSURE = 200psi	SQUARE FEET OF CONCRETE THRUST BLOCKING BEARING ON UNDISTURBED MATERIAL								
	REACTION TYPE	PIPE SIZE							
		4"	6"	8"	10"	12"			
	A 90°	0.89	2.19	3.82	11.14	17.24			
	B 180°	0.65	1.55	2.78	8.38	12.00			
	C 45°	0.48	1.19	2.12	6.02	9.32			
	D 22-1/2°	0.25	0.60	1.06	3.08	4.74			
-	E 11-1/4°	0.13	0.30	0.54	1.54	2.38			

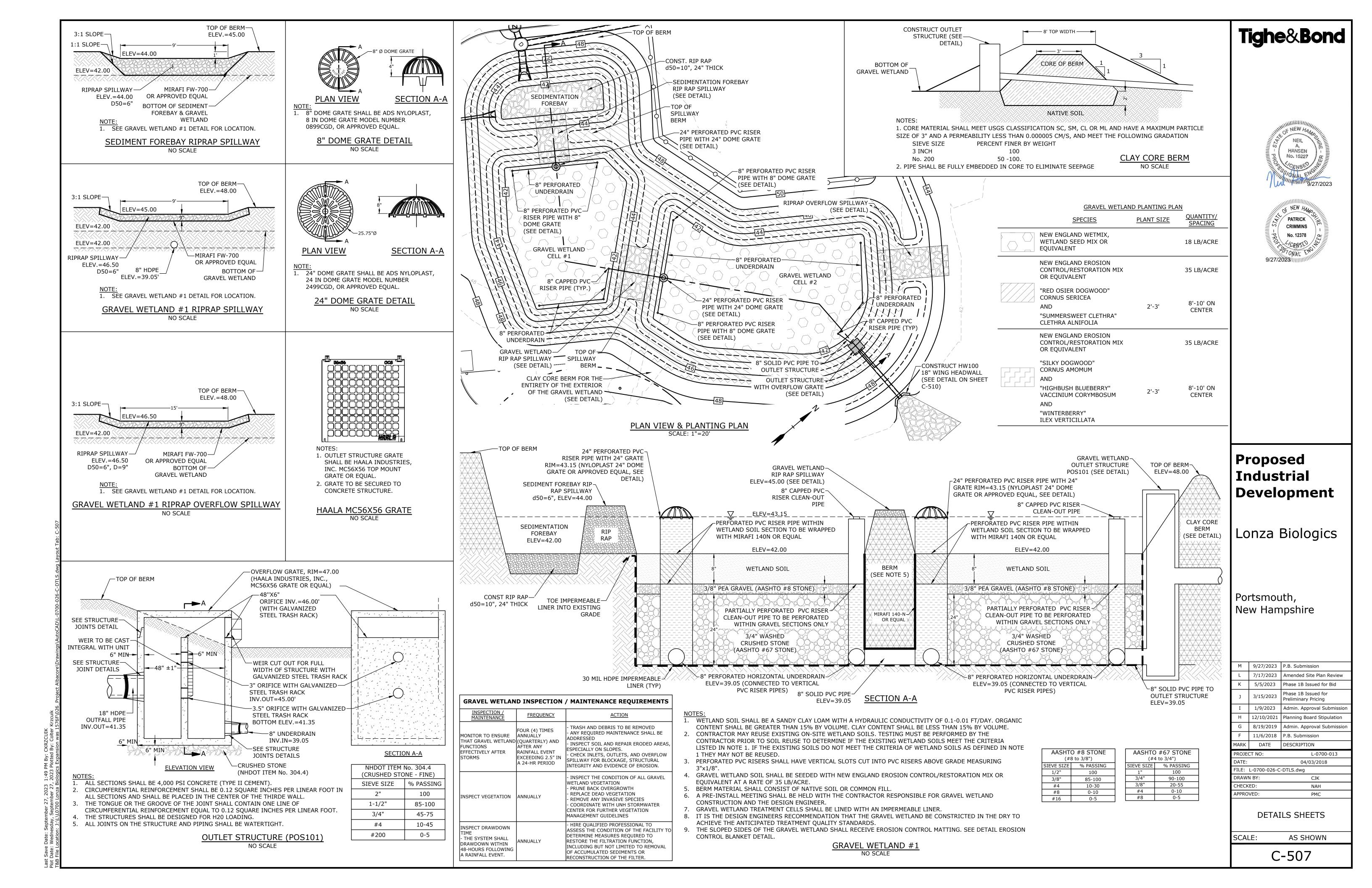
- POUR THRUST BLOCKS AGAINST UNDISTURBED MATERIAL, WHERE TRENCH WALL HAS BEEN DISTURBED, EXCAVATE LOOSE MATERIAL AND EXTEND THRUST BLOCK TO UNDISTURBED MATERIAL. NO JOINTS SHALL BE **COVERED WITH CONCRETE**
- ON BENDS AND TEES, EXTEND THRUST BLOCKS FULL LENGTH OF FITTING. PLACE BOARD IN FRONT OF ALL PLUGS BEFORE POURING THRUST BLOCKS.
- WHERE M.J. PIPE IS USED, M.J. PLUG WITH RETAINER GLAND MAY BE SUBSTITUTED FOR END BLOCKINGS.
- INSTALLATION AND STANDARD DIMENSIONAL REQUIREMENTS SHALL BE WITH TOWN OF EXETER WATER DEPARTMENT STANDARDS.

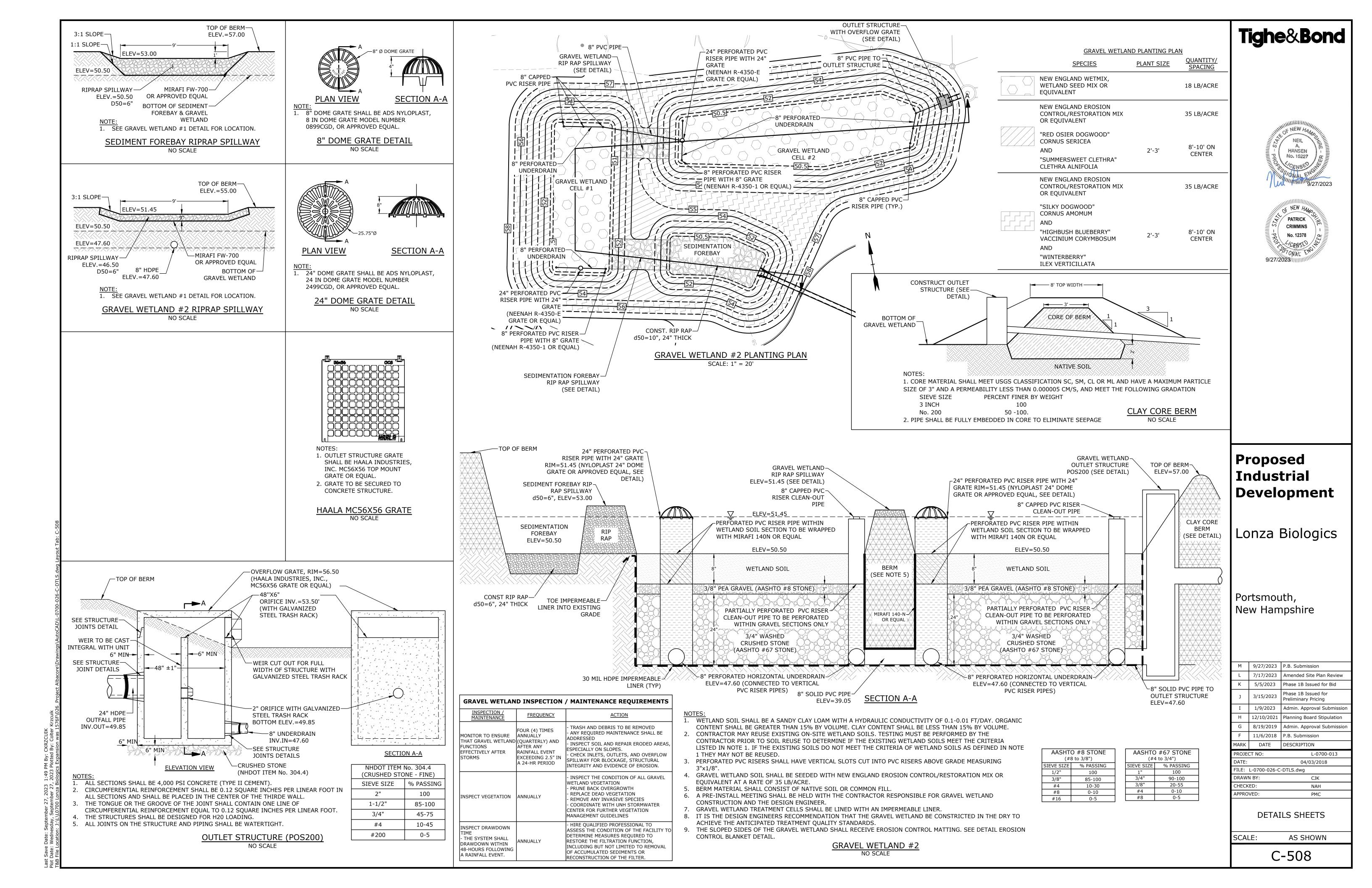

THRUST BLOCKING DETAIL

NO SCALE

- SHOWN ON ELECTRICAL DRAWINGS. CONTRACTOR TO PROVIDE ONE SPARE CONDUIT FOR EACH UTILITY TO BUILDING.
- DIMENSIONS SHOWN REPRESENT OWNERS MINIMUM REQUIREMENTS. ACTUAL DIMENSIONS MAY BE GREATER BASED ON UTILITY COMPANY STANDARDS, BUT SHALL NOT BE LESS THAN THOSE SHOWN. NO CONDUIT RUN SHALL EXCEED 360 DEGREES IN TOTAL BENDS.
- A SUITABLE PULLING STRING, CAPABLE OF 200 POUNDS OF PULL, MUST BE INSTALLED IN THE CONDUIT BEFORE UTILITY COMPANY IS NOTIFIED TO INSTALL CABLE. THE STRING SHOULD BE BLOWN INTO THE CONDUIT AFTER THE RUN IS ASSEMBLED TO AVOID BONDING THE STRING TO THE CONDUIT UTILITY COMPANY MUST BE GIVEN THE OPPORTUNITY TO INSPECT THE CONDUIT PRIOR TO BACKFILL.
- THE CONTRACTOR IS RESPONSIBLE FOR ALL REPAIRS SHOULD THE UTILITY COMPANY BE UNABLE TO INSTALL ITS CABLE IN A SUITABLE MANNER ALL CONDUIT INSTALLATIONS MUST CONFORM TO THE CURRENT EDITION OF THE NATIONAL ELECTRIC
- SAFETY CODE, STATE AND LOCAL CODES AND ORDINANCES, AND, WHERE APPLICABLE, THE NATIONAL
- ALL 90° SWEEPS WILL BE MADE USING RIGID GALVANIZED STEEL. SWEEPS WITH A 36 TO 48 INCH RADIUS.
- SAND BEDDING TO BE REPLACED WITH CONCRETE ENCASEMENT WHERE COVER IS LESS THAN 3 FEET, WHEN LOCATED BELOW PAVEMENT, OR WHERE SHOWN ON THE UTILITIES PLAN. COORDINATE LIMITS OF CONCRETE ENCASEMENT WITH EVERSOURCE.

ELECTRICAL AND COMMUNICATION CONDUIT NO SCALE

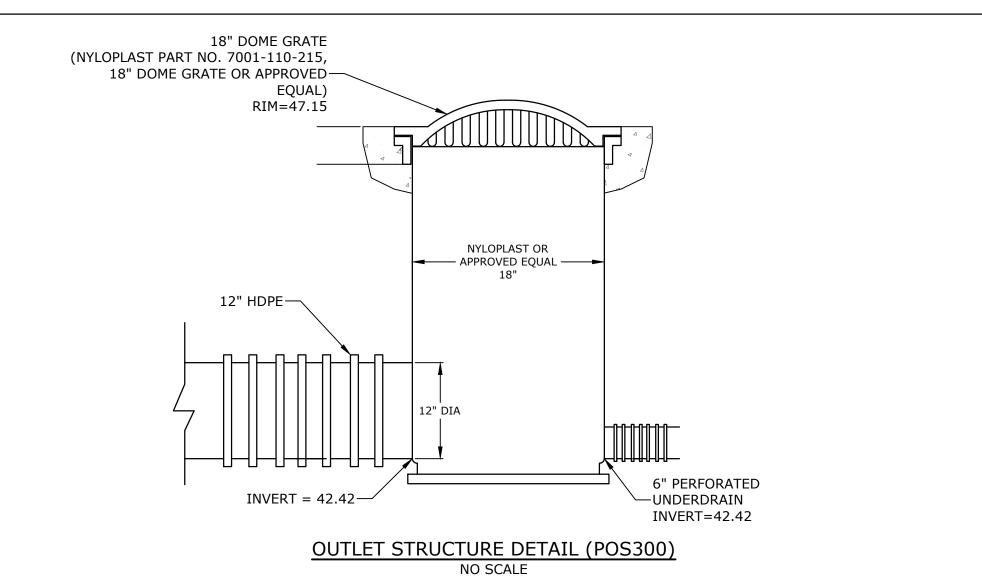


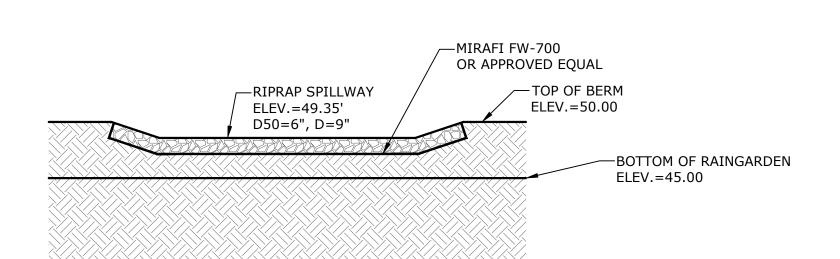

CONCRETE LIGHTING CONDUIT PULL BOX NO SCALE

APPROVED: PMC **DETAILS SHEET**

> SCALE: **AS SHOWN**

> > C-506


NOTES: 1. CORE MATERIAL SHALL MEET USGS CLASSIFICATION SC, SM, CL OR ML AND HAVE A MAXIMUM PARTICLE SIZE OF 3" AND A PERMEABILITY LESS THAN 0.000005 CM/S, AND MEET


SIEVE SIZE PERCENT FINER BY WEIGHT 3 INCH 100

2. PIPE SHALL BE FULLY EMBEDDED IN CORE TO ELIMINATE SEEPAGE

50 -100.

CLAY CORE BERM NO SCALE

NOTE: SEE GRADING, DRAINAGE & EROSION CONTROL PLANS, SHEET C-110, FOR LOCATIONS AND ELEVATIONS. RIPRAP OVERFLOW SPILLWAY

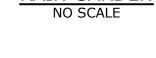
	RAINGARDEN PLANT SCHEDULE				
CODE	BOTANICAL NAME	SIZE	REMARKS		
TREES					
BN	BETULA NIGRA	RIVER BIRCH	12 - 14' HT	B & B (CLUMP)	
AC	AMELANCHIER CANADENSIS	SHADBLOW SERVICEBERRY	6 - 7' HT	B & B (CLUMP)	
SHRUBS	5				
VD	VIBURNUM DENTATUM	ARROWWOOD VIBURNUM	5 GALLON	CONTAINER	
CA	CLETHRA ALNIFOLIA	SUMMERSWEET CLETHERA	5 GALLON	CONTAINER	
PERENN	IALS				
PV	PANICUM VIRGATUM 'SHENANDOAH'	SHENANDOAH SWITCH GRASS	3 GALLON	CONTAINER	
EM	EUPATORIUM MACULATUM	JOE PYE WEED	2 GALLON	CONTAINER	
AI	ASCLEPIAS INCARNATA	MARSH MILKWEED	2 GALLON	CONTAINER	
RG	RUDBECKIA 'GOLDSTURM'	GOLDSTURM BLACKEYED SUSAN	1 GALLON	CONTAINER	
EP	ECHINACEA 'PURPUREA'	PURPLE CONEFLOWER	1 GALLON	CONTAINER	

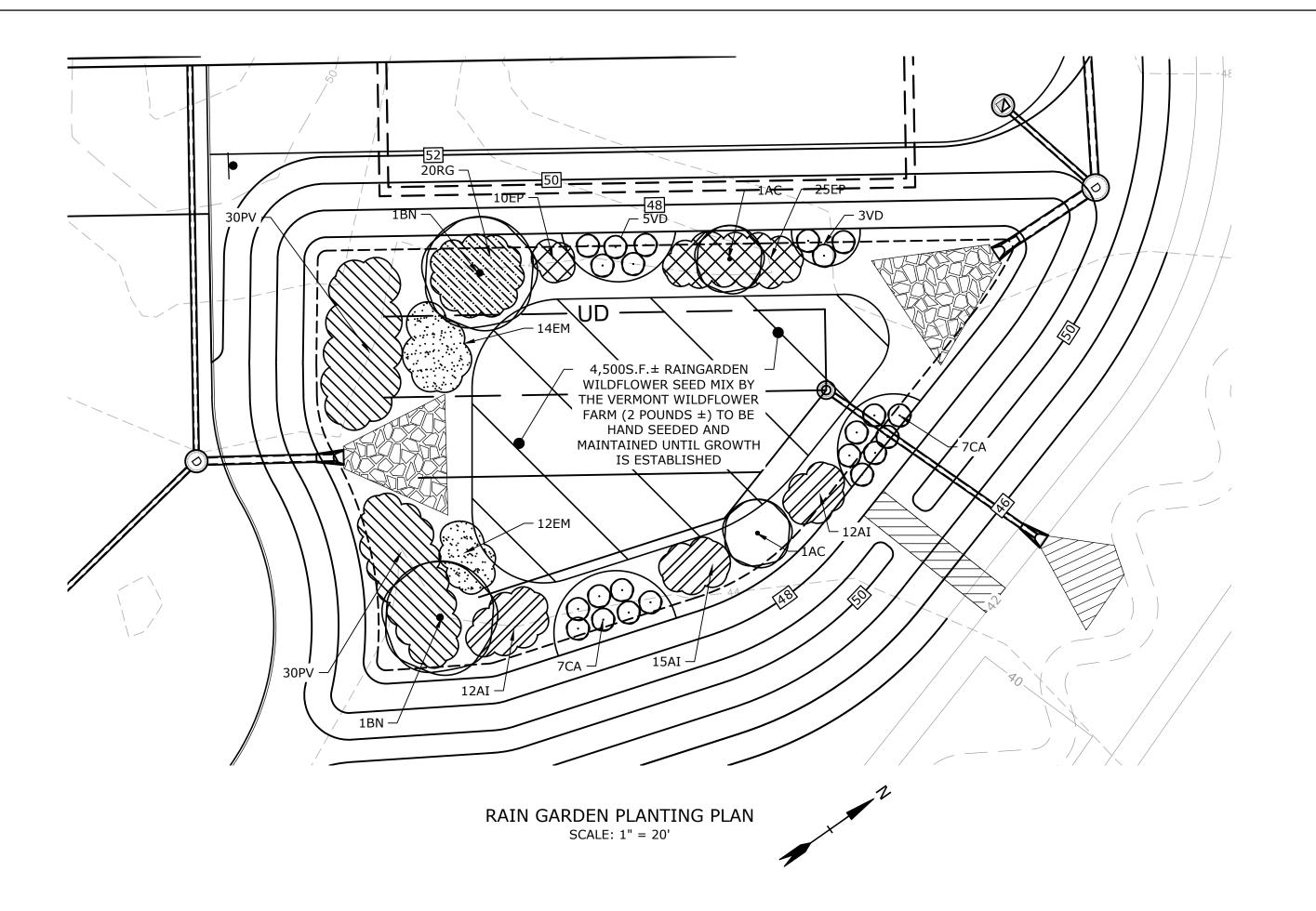
(MIRAFI 140-N OR EQUAL) WIDTH VARIES SEE GRADING, DRAINAGE & EROSION CONTROL PLAN ELEV.=50.00' 3:1 SLOPE(MAX). WQV ELEV.=46.30'▽ 6" PONDING (MIN) ELEV.=45.00' FILTER MEDIA 18"(MIN) (SEE TABLE) ELEV.=43.50' 3/8" PEA GRAVEL AASHTO NO. 57 ELEV.=42.17' NON-WOVEN GEOTEXTILE FABRIC 6" PERFORATED UNDERDRAIN (MIRAFI 140-N OR EQUAL) INV.OUT=42.42'

NON-WOVEN GEOTEXTILE FABRIC

SECTION VIEW

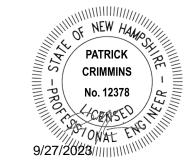
	FILTER MEDIA COMPOSIT	ΓΙΟΝ:	
COMPONENT MATERIAL	PERCENT OF MIXTURE	GRADATI	ON OF MATERIAL
	BY VOLUME	SIEVE NO.	PERCENT PASSING
ASTM C-33 CONCRETE SAND	50-55	SEE N	IOTE #5
LOAMY SAND TOPSOIL	20-30	200	15-25
MODERATELY FINE SHREDDED	20-30	200	5 MAX.
BARK OR WOOD FIBER MULCH			


- NOTES:


 1. RAIN GARDENS SHALL NOT BE PLACED INTO SERVICE UNTIL THE PRACTICE HAS BEEN PLANTED AND ITS CONTRIBUTING AREAS HAVE BEEN FULLY STABILIZED.
- 2. DO NOT TRAFFIC EXPOSED SOIL SURFACES WITH CONSTRUCTION EQUIPMENT. CONTRACTOR SHALL KEEP ALL EXCAVATION EQUIPMENT OUTSIDE OF THE LIMIT OF THE RAIN GARDEN.
- 3. SEE GRADING, DRAINAGE & EROSION CONTROL PLAN FOR LOCATIONS, LAYOUTS, AND ELEVATIONS. 4. THE SAND PORTION OF THE FILTER MEDIA SHALL MEET THE FOLLOWING GRADATION (ASTM C-33):

SIEVE SIZE PERCENT PASSING

3/8"	100
#4	95-100
#8	80-100
#16	50-85
#30	25-60
#50	5-30
#100	0-10


RAIN GARDEN

Tighe&Bond

Proposed Industrial Development

Lonza Biologics

Portsmouth, New Hampshire

М	9/27/2023	P.B. Submission
L	7/17/2023	Amended Site Plan Review
K	5/5/2023	Phase 1B Issued for Bid
J	3/15/2023	Phase 1B Issued for Preliminary Pricing
I	1/9/2023	Admin. Approval Submission
Н	12/10/2021	Planning Board Stipulation
G	8/19/2019	Admin. Approval Submission
F	11/6/2018	P.B. Submission
MARK	DATE	DESCRIPTION
PROJEC	CT NO:	L-0700-013
DATE:		04/03/2018

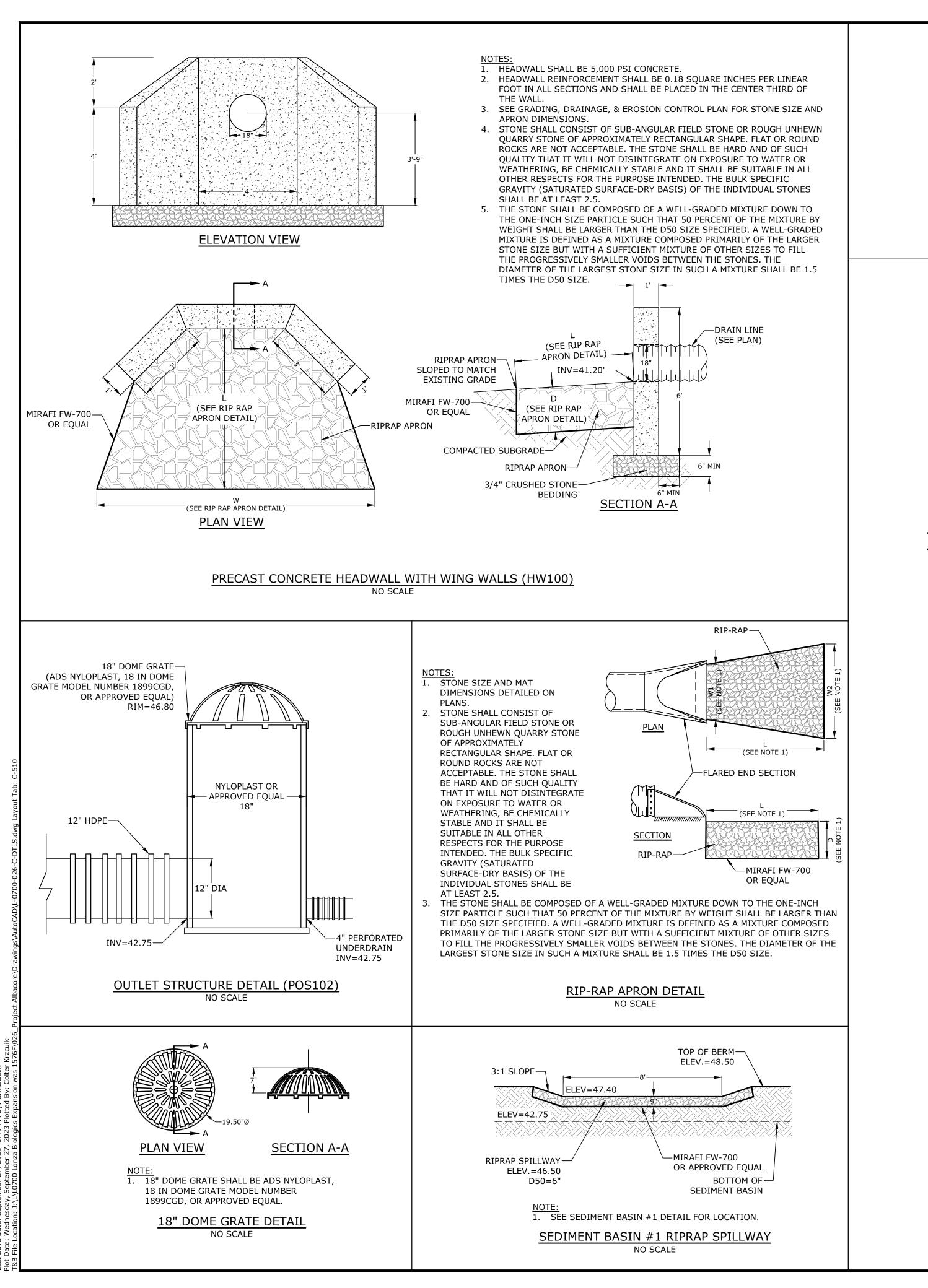
DETAILS SHEETS

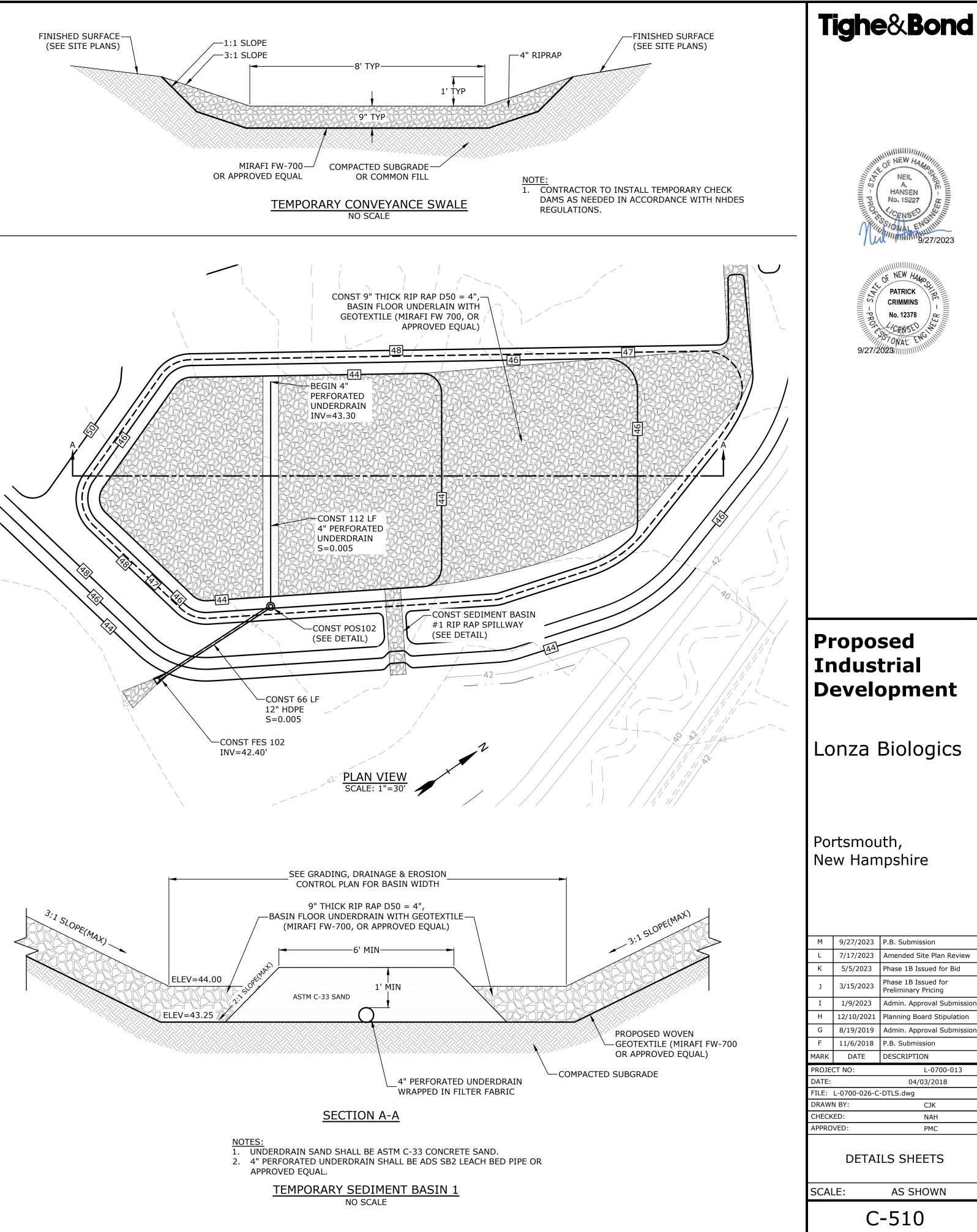
CJK

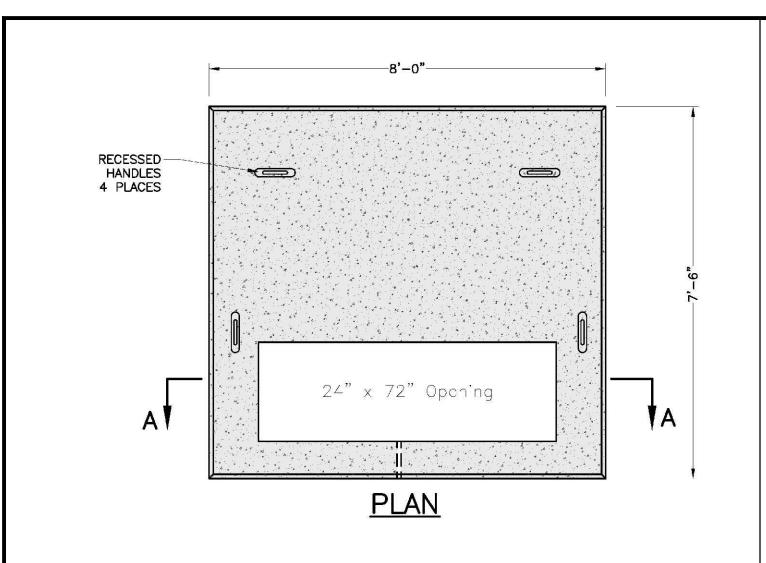
NAH

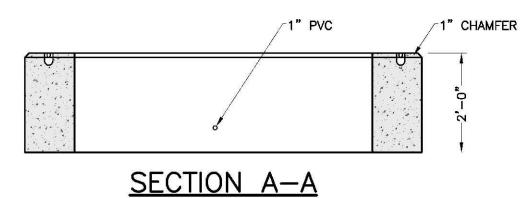
PMC

SCALE: AS SHOWN


FILE: L-0700-026-C-DTLS.dwg


DRAWN BY:


CHECKED:

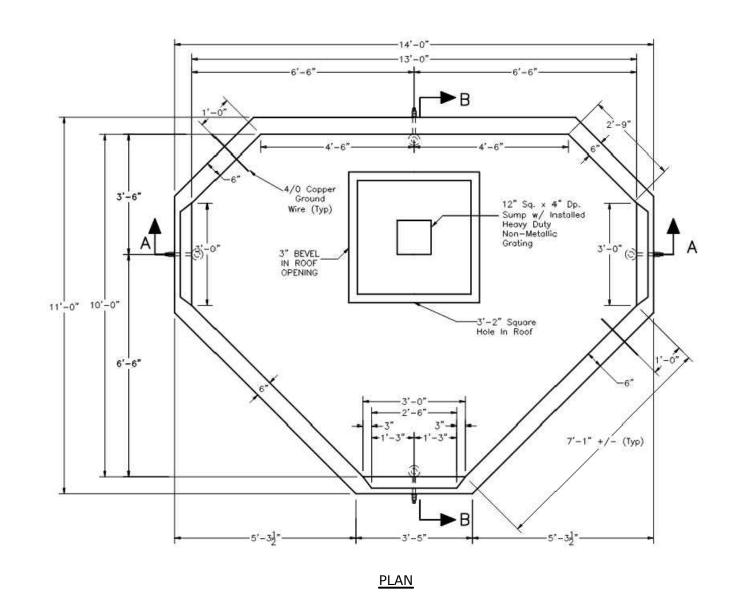

APPROVED:

C-509

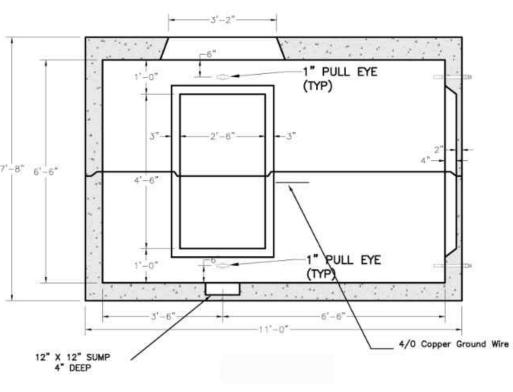
- NOTES:

 1. DIMENSIONS SHOWN REPRESENT TYPICAL REQUIREMENTS. MANHOLE LOCATIONS AND REQUIREMENTS SHALL BE COORDINATED WITH
- EVERSOURCE PRIOR TO CONSTRUCTION 2. CONCRETE MINIMUM STRENGTH - 4,000 PSI @ 28 DAYS
- 3. STEEL REINFORCEMENT ASTM A615, GRADE 60
- 4. PAD MEETS OR EXCEEDS EVERSOURCE SPECIFICATIONS
- 5. TRANSFORMER PAD SHALL BE REVIEWED AND APPROVED BY EVERSOURCE

TRANSFORMER PAD DETAIL


NO SCALE

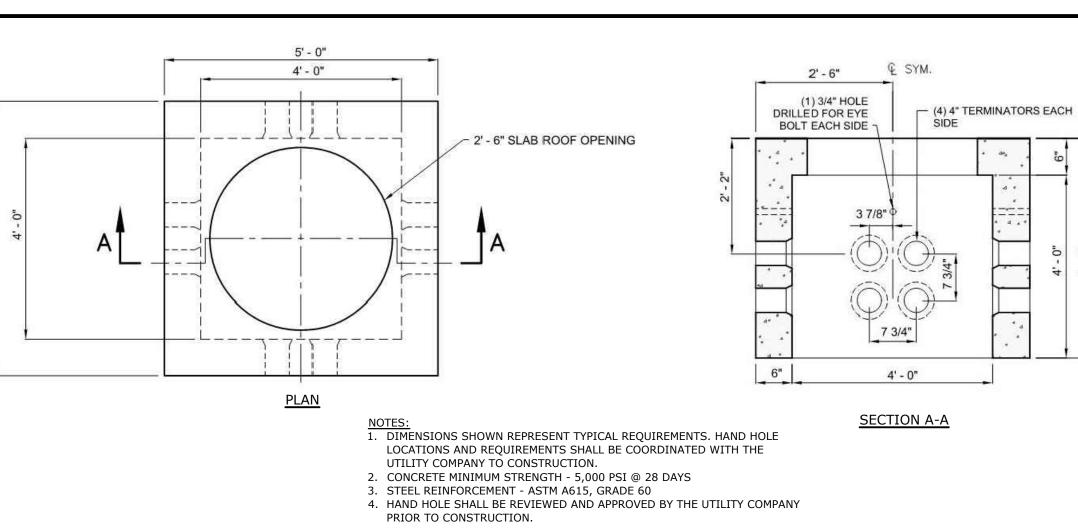
1. THE GROUND GRID SHALL BE SUPPLIED AND INSTALLED BY THE CONTRACTOR AND IS TO BE BURIED AT LEAST 12 INCHES BELOW GRADE. EIGHT FEET OF EXTRA WIRE FOR EACH GROUND GRID LEG SHALL BE LEFT EXPOSED IN THE CABLE COMPARTMENT TO ALLOW FOR THE CONNECTION TO THE TRANSFORMER. THE TWO 8-FOOT GROUND RODS MAY BE EITHER GALVANIZED STEEL OR COPPERWELD AND THEY SHALL BE CONNECTED TO THE GRID WITH NEC APPROVED CONNECTORS.


TYPICAL PAD-MOUNTED EQUIPMENT GROUNDING GRID DETAIL

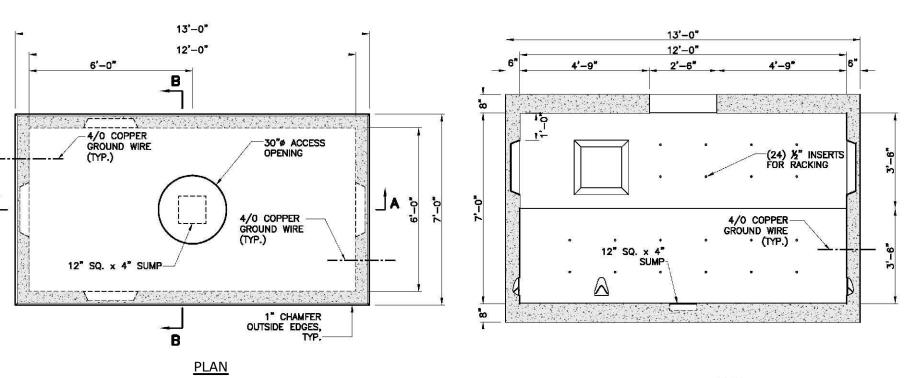
NO SCALE

3'-0" UNISTRUT SUPPLIED BY OTHERS 4/O Copper Ground Wire

SECTION A-A



SECTION B-B


NOTES: 1. DIMENSIONS SHOWN REPRESENT TYPICAL

- REQUIREMENTS. MANHOLE LOCATIONS AND REQUIREMENTS SHALL BE COORDINATED WITH
- EVERSOURCE PRIOR TO CONSTRUCTION 2. CONCRETE MINIMUM STRENGTH - 5,000 PSI @ 28 DAYS
- STEEL REINFORCEMENT ASTM A615, GRADE 60 4. MINIMUM STEEL COVER - 1 INCH
- 5. DESIGN LOADING AASHTO HS20-44 6. EXTERIOR COATING PROVIDED
- 7. ELECTRIC MANHOLE SHALL BE REVIEWED AND APPROVED
- BY EVERSOURCE PRIOR TO CONSTRUCTION.

3-WAY ELECTRIC MANHOLE NO SCALE

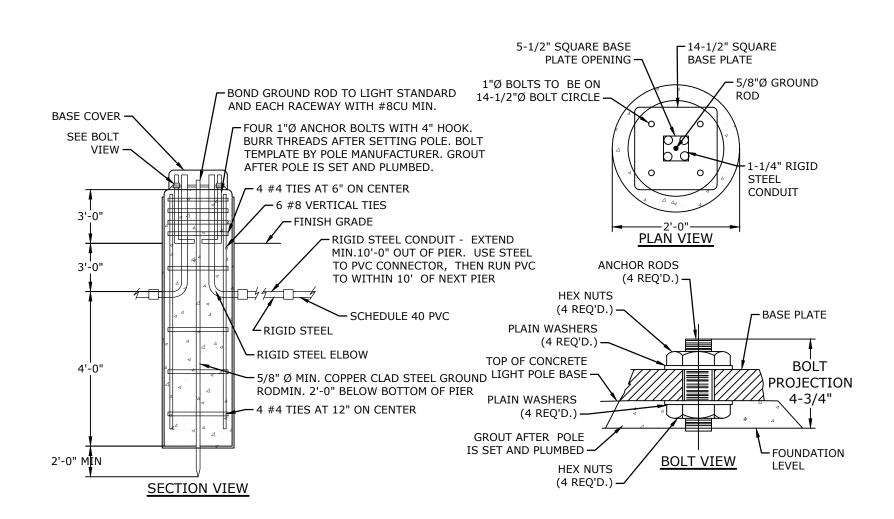
COMMUNICATIONS HAND HOLE DETAIL NO SCALE

- NOTES:

 1. DIMENSIONS SHOWN REPRESENT TYPICAL REQUIREMENTS. MANHOLE LOCATIONS AND REQUIREMENTS SHALL BE COORDINATED WITH
- EVERSOURCE PRIOR TO CONSTRUCTION 2. CONCRETE MINIMUM STRENGTH - 5,000 PSI @ 28 DAYS 3. STEEL REINFORCEMENT - ASTM A615, GRADE 60
- 4. MINIMUM STEEL COVER 1 INCH 5. DESIGN LOADING - AASHTO HS20-44
- 6. EXTERIOR COATING PROVIDED 7. ELECTRIC MANHOLE SHALL BE REVIEWED AND APPROVED BY EVERSOURCE PRIOR TO CONSTRUCTION.

4/0 BARE COPPER_ GROUND WIRE

SECTION B-B


1. PAINT BASE SAFETY YELLOW

ÌSLAND).

(UNLESS PROTECTED BY CURBED

NO SCALE

TYPICAL ELECTRIC MANHOLE

TYPICAL LIGHT POLE BASE NO SCALE

Proposed **Industrial** Development

Tighe&Bond

PATRICK

CRIMMINS No. 12378

1115070WAL -

9/27/2023//////

Lonza Biologics

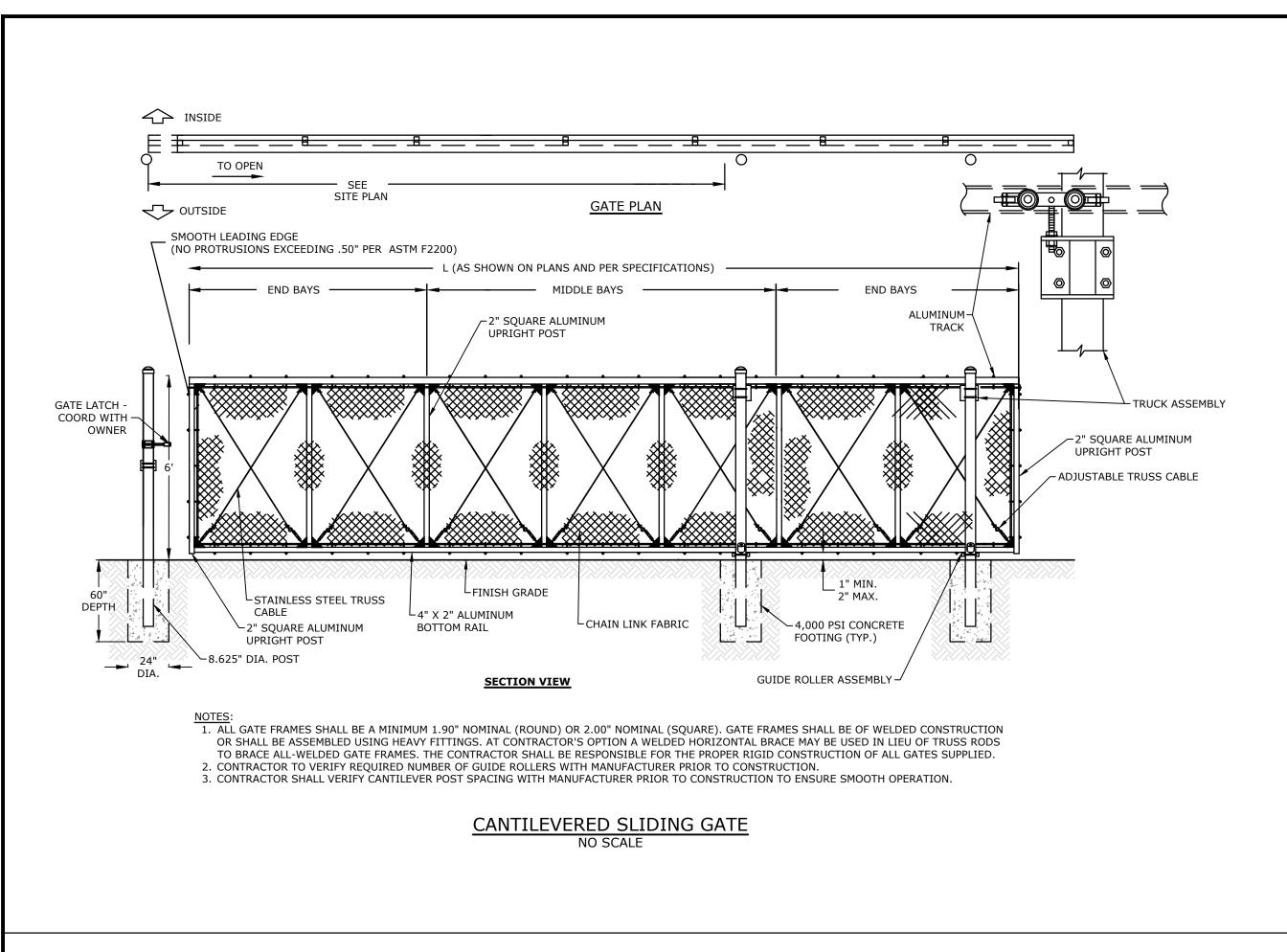
Portsmouth, New Hampshire

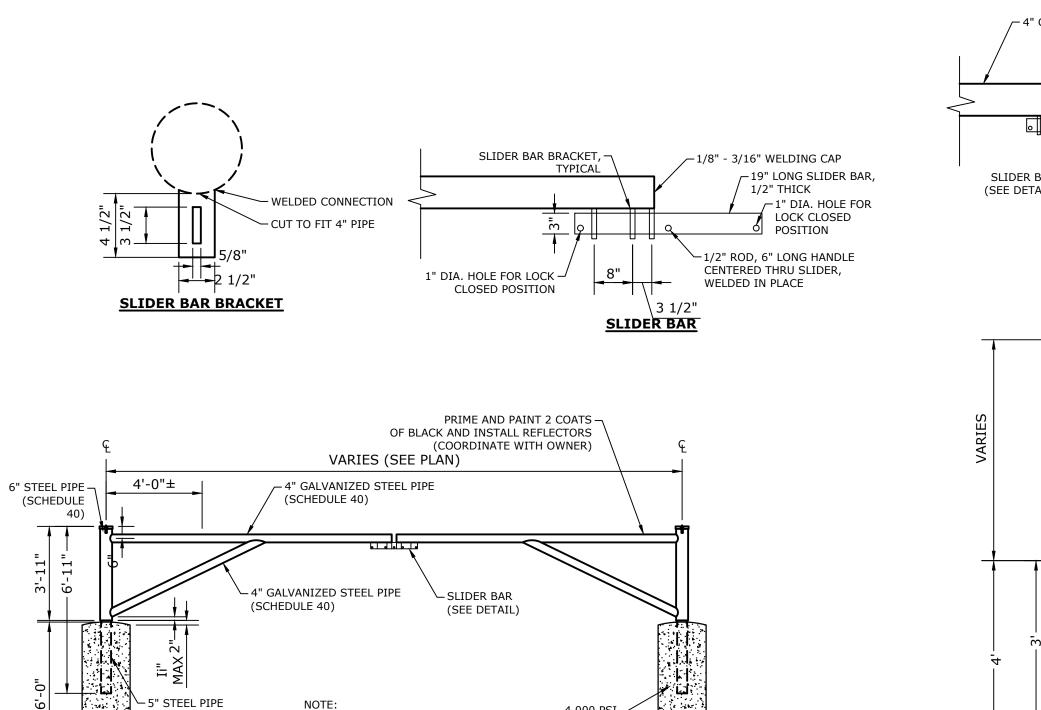
 CONCRETE TO BE CLASS A, 4000 PSI, AIR ENTRAINED STEEL TO BE 60 KSI REFER TO ELECTRICAL PLANS FOR WIRING DETAILS. LIGHT POLE BASE DETAIL FOR BIDDING PURPOSES ONLY. CONTRACTOR SHALL SUBMIT SHOP DRAWINGS FOR APPROVAL, TO INCLUDE PERFORMANCE 	М	9/27/2023	P.B. Submission
	L	7/17/2023	Amended Site Plan Review
	K	5/5/2023	Phase 1B Issued for Bid
	J	3/15/2023	Phase 1B Issued for Preliminary Pricing
	I	1/9/2023	Admin. Approval Submission
SPECIFICATIONS, CALCULATIONS			

CONTRACTOR SHALL SUBMIT SHOP DRAWINGS FOR APPROVAL, TO INCLUDE PERFORMANCE SPECIFICATIONS, CALCULATIONS AND NH LICENSED STRUCTURAL ENGINEER'S STAMP FOR LIGHT POLE FOUNDATION.	J	3/15/2023	Phase 1B Issued for Preliminary Pricing
	I	1/9/2023	Admin. Approval Submission
	Н	12/10/2021	Planning Board Stipulation
	G	8/19/2019	Admin. Approval Submission
	F	11/6/2018	P.B. Submission
	MARK	DATE	DESCRIPTION

ROJECT NO:	L-0700-013		
ATE: 04/03/2018			
ILE: L-0700-026-C-DTLS.dwg			
RAWN BY:	СЈК		
HECKED:	NIALL		

PMC


DETAILS SHEETS


APPROVED:

SCALE: AS SHOWN

C-511

CONCRETE

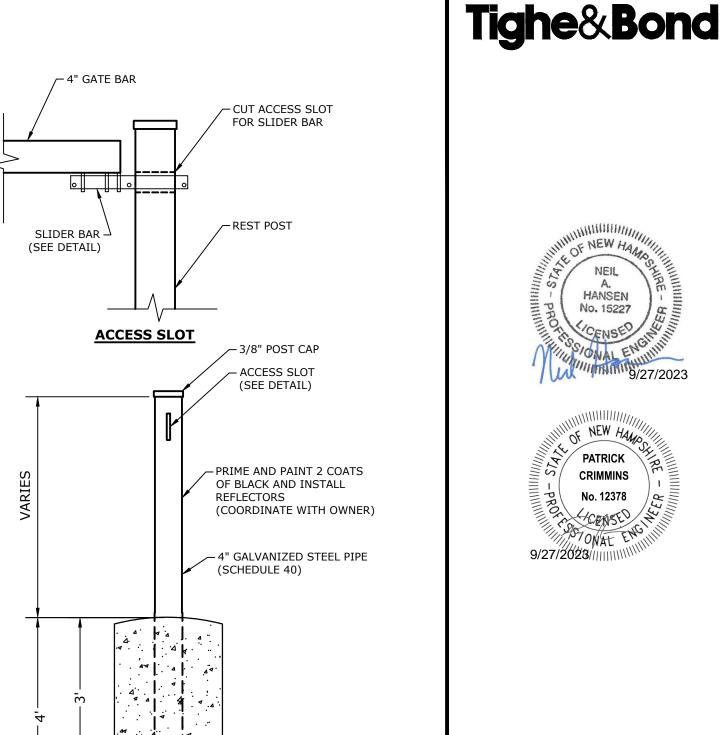
FOOTING (TYP.)

6" COMPACTED

CRUSHED GRAVEL

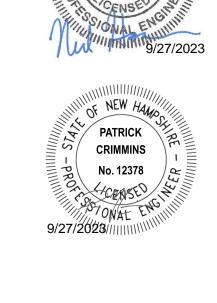
NOTE: ALL WELDS TO BE 3/16" UNLESS NOTED OTHERWISE

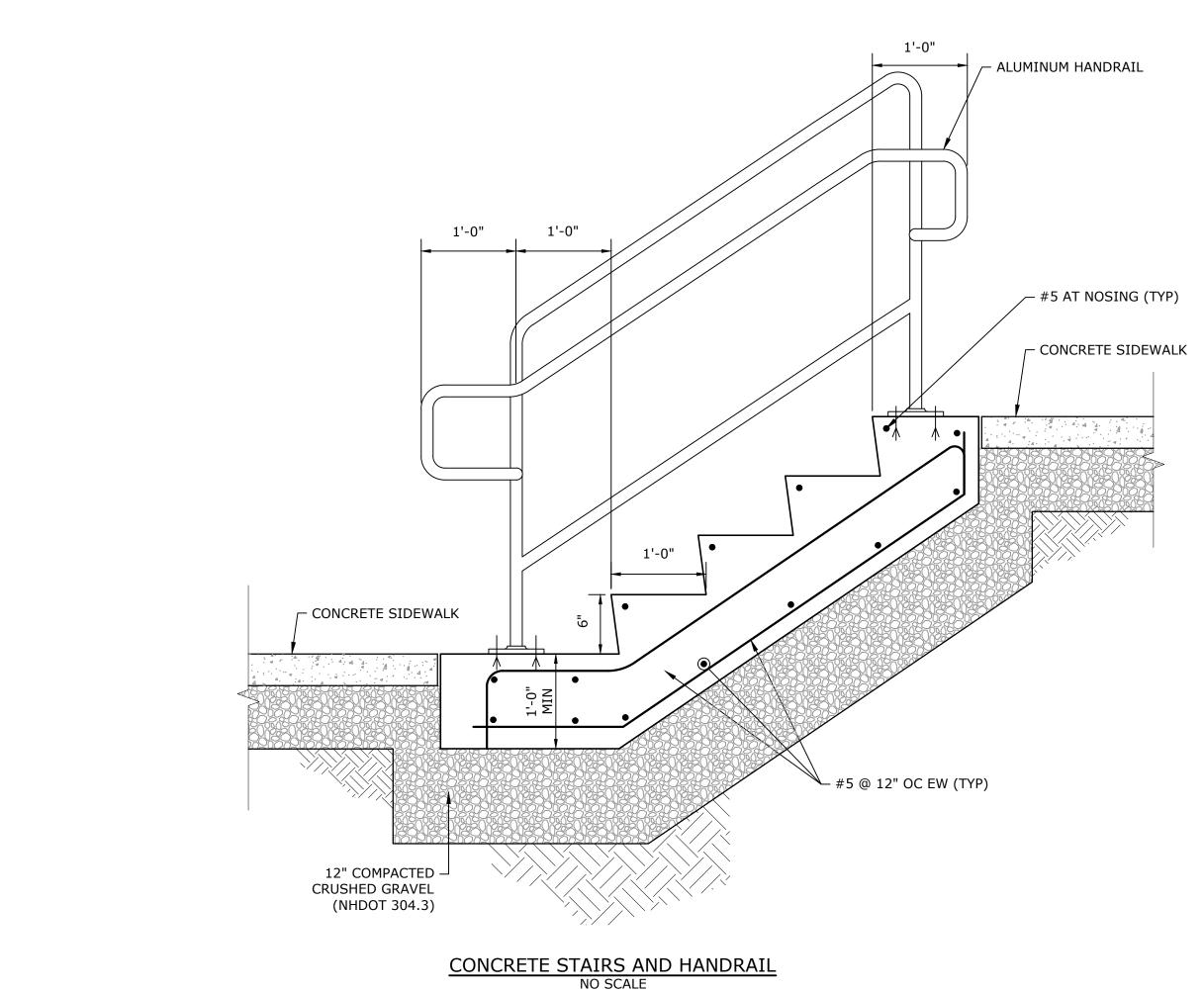
CONTRACTOR SHALL SUPPLY THE OWNER THE NECESSARY AMOUNT OF GATE PARTS

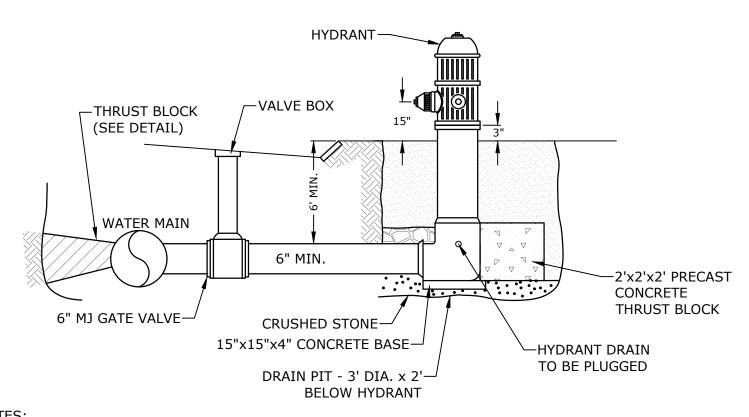

AND ACCESSORIES FOR THE INTENDED PROPER FUNCTIONALITY OF THE GATE AND SLIDER BAR LATCH AS SHOWN ON THE PLANS AT SOLE DISCRETION OF THE OWNER.

(SCHEDULE 40)

CONC. FILLED


6" COMPACTED


CRUSHED GRAVEL



0 0 0 0

REST POST

DOUBLE SWING GATE

NOTES:

1. HYDRANT TO BE KENNEDY TYPE K-81, RIGHT OPEN (NO EQUAL). COORDINATE WITH CITY OF PORTSMOUTH WATER DEPARTMENT AND CITY OF PORTSMOUTH FIRE DEPARTMENT.

COORDINATE WITH CITY STANDARD SPECIFICATIONS AFTER INSTALLATION AND 2. PAINT HYDRANT IN ACCORDANCE WITH CITY STANDARD SPECIFICATIONS AFTER INSTALLATION AND

TESTING.

FIRE HYDRANT NO SCALE

Proposed **Industrial** Development

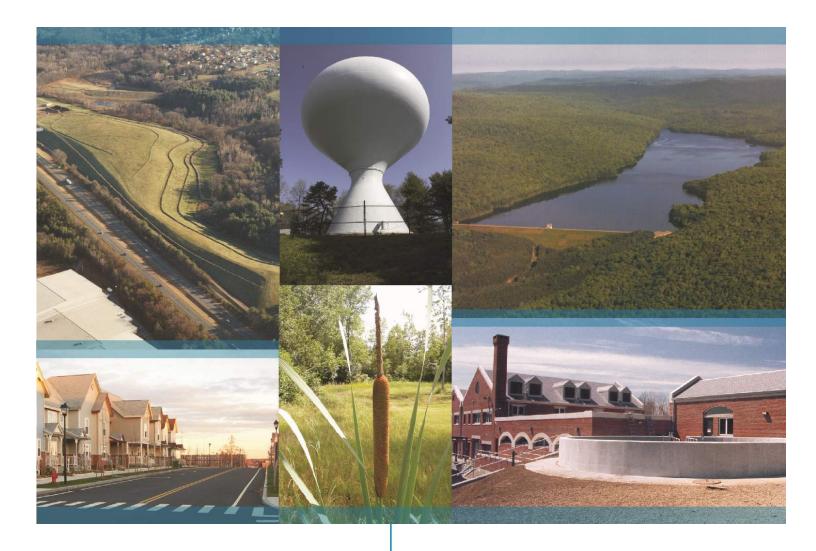
Lonza Biologics

Portsmouth, New Hampshire

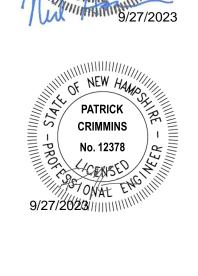
М	9/27/2023	P.B. Submission
L	7/17/2023	Amended Site Plan Review
K	5/5/2023	Phase 1B Issued for Bid
J	3/15/2023	Phase 1B Issued for Preliminary Pricing
I	1/9/2023	Admin. Approval Submission
Н	12/10/2021	Planning Board Stipulation
G	8/19/2019	Admin. Approval Submission
F	11/6/2018	P.B. Submission
MARK	DATE	DESCRIPTION
PROJEC	CT NO:	L-0700-013
DATE:		04/03/2018
FILE:	L-0700-026-C	-DTLS.dwg
DRAWI	N BY:	CIK

DETAILS SHEETS

NAH


PMC

SCALE: AS SHOWN


CHECKED:

APPROVED:

C-512

Iron Parcel Redevelopment 70 & 80 Corporate Drive Portsmouth, New Hampshire

Drainage Analysis

Prepared For:

Lonza Biologics 101 International Drive Portsmouth, New Hampshire

June 18, 2018 Last Revised: September 27, 2023

Section 1 Drainage Analysis	S
-----------------------------	---

1.1	Calculation Methods	1-2
1.2	Pre-Development Conditions	1-3
	1.2.1 Pre-Development Watershed Plan	1-3
	1.2.2 Pre-Development Calculations	
1.3	Post-Development Conditions	
	1.3.1 Master Post-Development Conditions	1-5
	1.3.1.1 Master Post-Development Watershed Plan	1-5
	1.3.1.2 Master Post-Development Calculations	
	1.3.2 Phase 2 Post-Development Conditions	
	1.3.2.1 Phase 2 Post-Development Watershed Plan	
	1.3.2.2 Phase 2 Post-Development Calculations	
	1.3.3 Phase 1B Post-Development Conditions	1-9
	1.3.3.1 Phase 1B Post-Development Watershed Plan	1-9
	1.3.3.2 Phase 1B Post-Development Calculations	
1.4	Peak Rate Comparisons	1-11
1.5	Mitigation Description	1-11
	1.5.1 Mitigation Calculations	1-11
	1.5.2 Pre-Treatment Methods for Protecting Water Quality	1-12
	1.5.3 Treatment Methods for Protecting Water Quality	1-12
<u>endices</u>		
Λ	Civil Plans (Round Senarately)	

App.

Α	Civil P	lans (Bound	Separately)

- Extreme Precipitation Tables В
- С Soils Report and Boring Logs
- D Full Size Watershed Plans
- Ε **BMP Worksheets**
- F Rip Rap Calculations

Section 1 Drainage Analysis

The proposed project is to expand Lonza Biologics facility to support its growing product development services to the pharmaceutical and biologic industries. The project is located on the vacant portion of Lonza's 46-acre parcel, referred to as the Iron Parcel, that once consisted of military housing and streets for Pease Air Force Base. The houses and roads were removed in the mid to late 1990's as part of the Civil Redevelopment Plan for Pease after the closure of the Air Force Base.

The total master plan build-out of the proposed industrial development is depicted in the enclosed Site Plan set. The master plan includes three (3) new buildings totaling approximately 800,000 square feet of gross floor area, a central utility building, and a new parking garage. The project's site improvements consist of drive aisles, sidewalks, fire lanes, utilities, lighting and landscaping. The site improvements will consist of new stormwater management systems that include two (2) gravel wetlands and one (1) rain garden. The project has already received an Alteration of Terrain Permit from the New Hampshire Department of Environmental Services (NHDES) for the stormwater management design.

This master plan will be constructed in phases. Full-buildout will take several years and must be completed in phases as Lonza identifies clients and fits out the buildings to meet their needs. The master plan has been broken out into three phases, Phase 1A, Phase 1B, and Phase 2. Currently, Phase 1A construction is nearing completion, and Phase 1B work broke ground in mid-July 2023. Both Phase 1A and Phase 1B received site plan approvals in 2019, however, the drainage analysis of Phase 1B has been included in this analysis for demonstrative purpose of sizing the temporary Sediment Basins 1 & 2. The following summarizes the work completed during Phase 1A and to be completed during Phase 1B:

Phase 1A

- Construction of the stream
- Removal of the existing culvert
- Construction of the sidewalk and landscaping along Corporate Drive
- Completion of Soils Management Plan

Phase 1B

- Construction of building #1 shell
- Construction site improvements for building #1 such as drive aisles, fire lanes, utilities, lighting, sidewalks and stormwater management including Gravel Wetland #1
- Construction utility building shell
- Temporary gravel area for construction trailers, parking, and laydown in the approximate location of Proposed Building #3
- Intermittent grading between stream and Building #1
- Temporary sedimentation basins at locations of Gravel Wetland #2 and Rain Garden #1

Drainage Analysis 1-1

Accordingly, this drainage analysis is submitted to analyze the Phase 2 and Master plan portions of the project in conjunction with the site plan review permitting of these phases. The stormwater design of the master plan has not changed from the 2019 approvals and the Alteration of Terrain Permit Approvals. Phase 2 of the project includes the internal fitup of Building #1 and Central Utility Building, the construction of a temporary surface parking lot to support the employees of Building #1, the construction of Gravel Wetland #2, and their associated miscellaneous site improvements.

The pre-development conditions analyzed in this analysis are the 2018 pre-construction conditions. These pre-development conditions are the same pre-development conditions that were included in the drainage analysis for the 2018 site review permit application for Phase 1A, Phase 1B, and the Master Plan.

1.1 Calculation Methods

The design storms analyzed in this study are the 2-year, 10-year, 25-year and 50-year 24-hour duration storm events. The pre-development 1-year, 24-hour duration storm was also analyzed for channel protection requirements. The stormwater modeling system, HydroCAD 10.0 was utilized to predict the peak runoff rates from these storm events. The peak discharge rates were determined by analyzing Type III 24-hour storm events. The rainfall data for these storm events was obtained from the data published by the Northeast Regional Climate Center at Cornell University, with an additional 15% added factor of safety as required by Env-Wq 1503.08(I).

24-hr Estimate + 15% YEAR (inches) (inches) 2.65 1 3.05 2 3.20 3.68 10 4.85 5.58 25 6.15 7.07 7.36 8.46 50

TABLE 1.1 - EXTREME PRECIPITATION ESTIMATES (NRCC)

Tailwater conditions in the inlet structure PDMH203 and at the outlet of the existing triple arch culverts into the road side swale on Goose Bay Drive have been included in these calculations to account for any surcharging that may occur due to the tailwater condition. These tailwater elevations were determined by Streamworks, PLLC as part of their overall watershed analysis.

The time of concentration was computed using the TR-55 Method, which provides a means of determining the time for an entire watershed to contribute runoff to a specific location via sheet flows, shallow concentrated flow, and channel flow. Runoff curve numbers were calculated by estimating the coverage areas and then summing the curve number for the coverage area as a percent of the entire watershed.

References:

- 1. HydroCAD Stormwater Modeling System, by HydroCAD Software Solutions LLC, Chocorua, New Hampshire.
- 2. New Hampshire Stormwater Management Manual, Volume 2, Post-Construction Best Management Practices Selection and Design, December 2008.
- 3. "Extreme Precipitation in New York & New England." Extreme Precipitation in New York & New England by Northeast Regional Climate Center (NRCC), 26 June 2012.

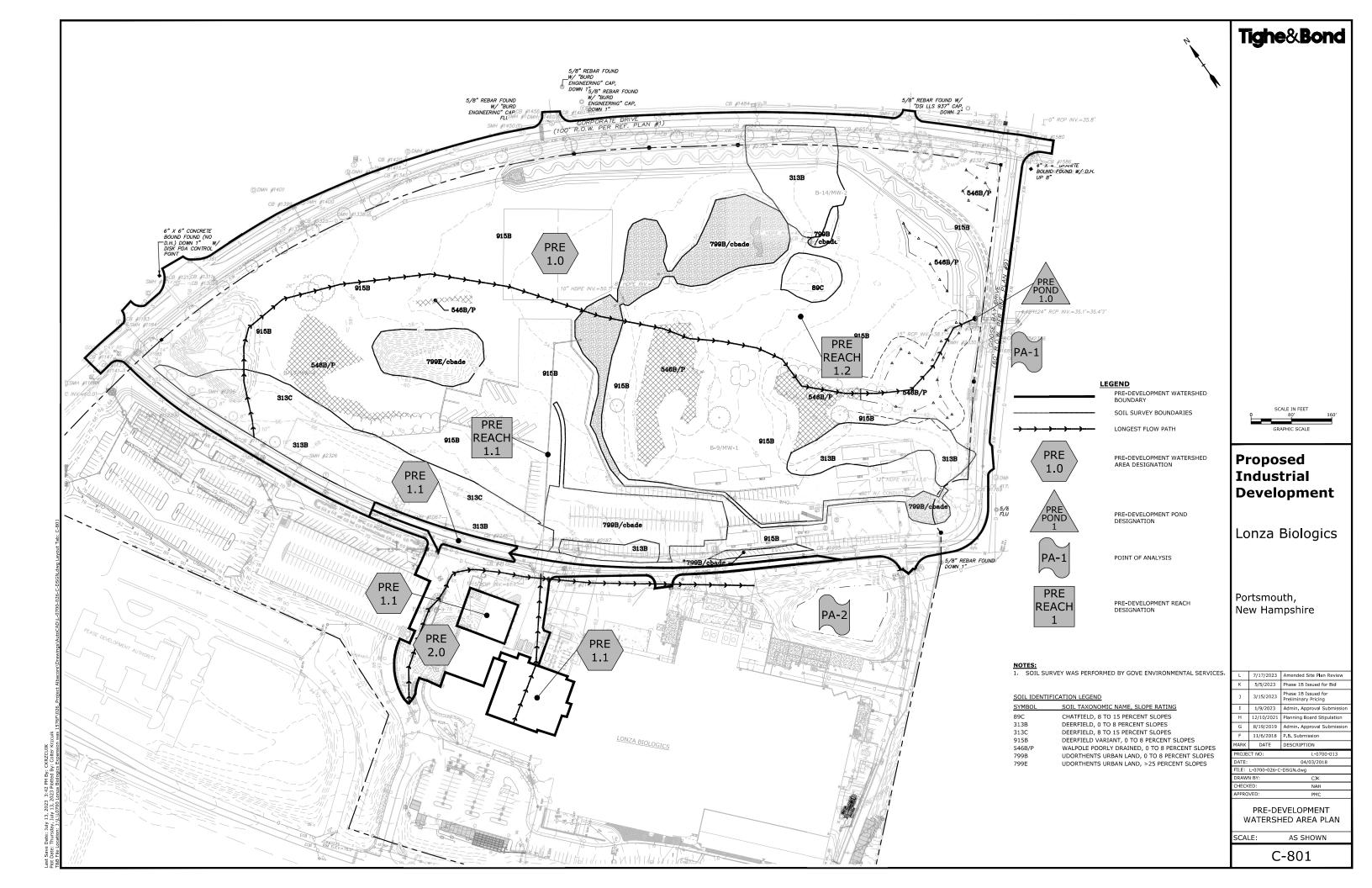
1.2 Pre-Development Conditions

In order to analyze the pre-development condition, the site has been divided into three watershed areas modeled at two points of analysis. These points of analysis and watersheds are depicted on the plan entitled "Pre-Development Watershed Plan", Sheet C-801.

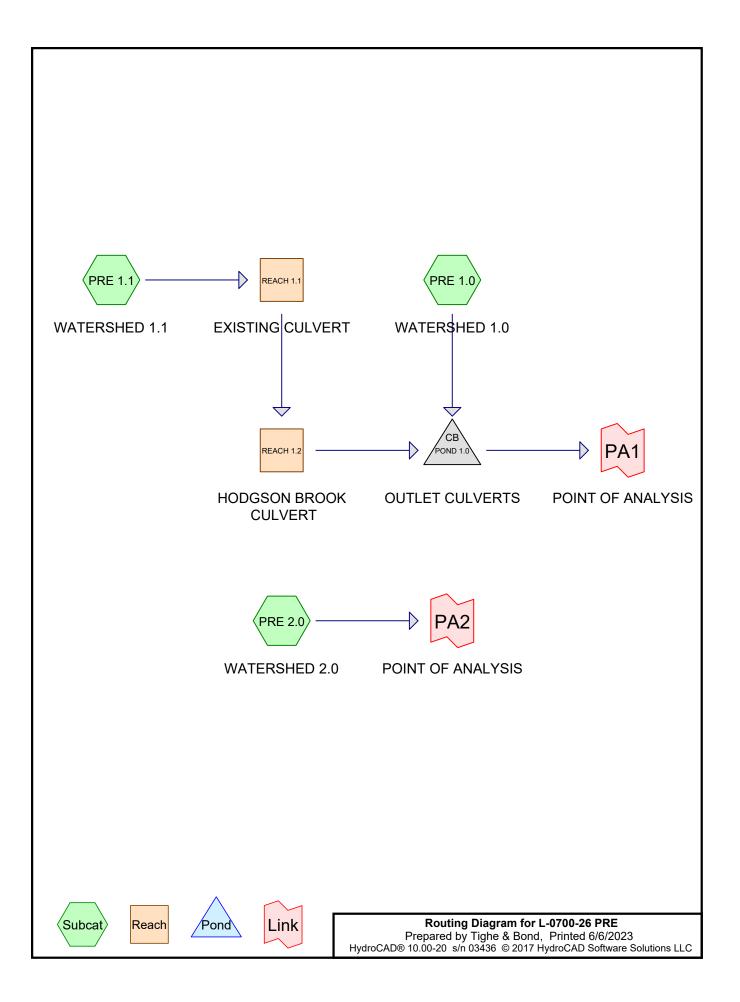
Each of the points of analysis and their contributing watershed areas are described below:

Point of Analysis (PA1)

PRE 1.0 makes up almost the entire area to be developed. This area consists of the entire undeveloped parcel, as well as, a portion of Corporate Drive that drains onto the parcel via a closed drainage system. The pre-development conditions of the watershed was an undeveloped field area that with a portion of the site being used as a temporary construction parking area with associated stormwater management controls near the center of the parcel. Runoff from this area travels southeast via overland flow to Point of Analysis 1 located at the existing Hodgson Brook outlet headwall.


PRE 1.1 includes roof drain runoff from the existing Lonza facility located at 101 International Drive that is connected into the existing Hodgson Brook Culvert. There was also a small portion of Goose Bay Drive that enters this culvert.

The existing tailwater elevations for the road side swale along Goose Bay Drive were determined by Streamworks, PLLC as a part of their overall watershed analysis.


Point of Analysis (PA2)

PRE 2.0 is comprised mostly of runoff from Goose Bay Drive that is located between the undeveloped parcel and the existing Lonza facility. Runoff from this area travels via overland flow to the existing stormwater basin located at the existing Lonza facility. Point of Analysis 2 (PA2) is located at the existing basin.

1.2.1 Pre-Development Watershed Plan

1.2.2 Pre-Development Calculations

Printed 6/6/2023 Page 2

Area Listing (selected nodes)

Area (acres)	CN	Description (subcatchment-numbers)
0.736	74	>75% Grass cover, Good, HSG C (PRE 1.1, PRE 2.0)
2.274	91	Gravel roads, HSG D (PRE 1.0)
3.289	58	Meadow, non-grazed, HSG B (PRE 1.0)
19.420	71	Meadow, non-grazed, HSG C (PRE 1.0)
0.044	78	Meadow, non-grazed, HSG D (PRE 1.0)
3.668	98	Paved parking, HSG C (PRE 1.0, PRE 1.1, PRE 2.0)
0.758	98	Roofs, HSG C (PRE 1.1, PRE 2.0)
0.297	55	Woods, Good, HSG B (PRE 1.0)
1.123	70	Woods, Good, HSG C (PRE 1.0)
31.609	75	TOTAL AREA

Printed 6/6/2023 Page 3

Soil Listing (selected nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
3.586	HSG B	PRE 1.0
25.705	HSG C	PRE 1.0, PRE 1.1, PRE 2.0
2.318	HSG D	PRE 1.0
0.000	Other	
31.609		TOTAL AREA

Page 4

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPRE 1.0: WATERSHED1.0 Runoff Area=1,275,727 sf 9.69% Impervious Runoff Depth>1.35" Flow Length=1,805' Tc=34.4 min CN=74 Runoff=24.04 cfs 3.305 af

SubcatchmentPRE 1.1: WATERSHED1.1 Runoff Area=33,611 sf 90.29% Impervious Runoff Depth>3.22" Flow Length=305' Tc=5.0 min CN=96 Runoff=2.71 cfs 0.207 af

SubcatchmentPRE 2.0: WATERSHED 2.0 Runoff Area=67,564 sf 57.38% Impervious Runoff Depth>2.43" Flow Length=872' Tc=5.0 min CN=88 Runoff=4.41 cfs 0.314 af

Reach REACH 1.1: EXISTING CULVERT Avg. Flow Depth=0.47' Max Vel=6.37 fps Inflow=2.71 cfs 0.207 af 15.0" Round Pipe n=0.012 L=515.0' S=0.0165 '/' Capacity=8.99 cfs Outflow=2.66 cfs 0.207 af

Reach REACH 1.2: HODGSON BROOK Avg. Flow Depth=0.34' Max Vel=4.72 fps Inflow=2.66 cfs 0.207 af 48.0" Round Pipe n=0.012 L=825.0' S=0.0112 '/' Capacity=164.33 cfs Outflow=2.46 cfs 0.207 af

Pond POND 1.0: OUTLET CULVERTSPeak Elev=38.24' Inflow=24.73 cfs 3.511 af 42.0" x 29.0", R=21.5"/66.1" Pipe Arch Culvert x 3.00 n=0.025 L=68.0' S=0.0044 '/' Outflow=24.86 cfs 3.511 af

Link PA1: POINT OF ANALYSIS Inflow=24.86 cfs 3.511 af Primary=24.86 cfs 3.511 af

Link PA2: POINT OF ANALYSIS

Inflow=4.41 cfs 0.314 af
Primary=4.41 cfs 0.314 af

Total Runoff Area = 31.609 ac Runoff Volume = 3.826 af Average Runoff Depth = 1.45" 86.00% Pervious = 27.184 ac 14.00% Impervious = 4.426 ac

Page 5

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPRE 1.0: WATERSHED 1.0 Runoff Area=1,275,727 sf 9.69% Impervious Runoff Depth>2.81" Flow Length=1,805' Tc=34.4 min CN=74 Runoff=51.44 cfs 6.869 af

SubcatchmentPRE 1.1: WATERSHED1.1 Runoff Area=33,611 sf 90.29% Impervious Runoff Depth>5.11" Flow Length=305' Tc=5.0 min CN=96 Runoff=4.19 cfs 0.328 af

SubcatchmentPRE 2.0: WATERSHED 2.0 Runoff Area=67,564 sf 57.38% Impervious Runoff Depth>4.22" Flow Length=872' Tc=5.0 min CN=88 Runoff=7.49 cfs 0.545 af

Reach REACH 1.1: EXISTING CULVERT Avg. Flow Depth=0.59' Max Vel=7.16 fps Inflow=4.19 cfs 0.328 af 15.0" Round Pipe n=0.012 L=515.0' S=0.0165 '/' Capacity=8.99 cfs Outflow=4.12 cfs 0.328 af

Reach REACH 1.2: HODGSON BROOK Avg. Flow Depth=0.42' Max Vel=5.42 fps Inflow=4.12 cfs 0.328 af 48.0" Round Pipe n=0.012 L=825.0' S=0.0112 '/' Capacity=164.33 cfs Outflow=3.88 cfs 0.328 af

Pond POND 1.0: OUTLET CULVERTSPeak Elev=39.02' Inflow=52.53 cfs 7.196 af 42.0" x 29.0", R=21.5"/66.1" Pipe Arch Culvert x 3.00 n=0.025 L=68.0' S=0.0044 '/' Outflow=52.69 cfs 7.195 af

Link PA1: POINT OF ANALYSIS Inflow=52.69 cfs 7.195 af Primary=52.69 cfs 7.195 af

Link PA2: POINT OF ANALYSISInflow=7.49 cfs 0.545 af Primary=7.49 cfs 0.545 af

Total Runoff Area = 31.609 ac Runoff Volume = 7.742 af Average Runoff Depth = 2.94" 86.00% Pervious = 27.184 ac 14.00% Impervious = 4.426 ac

Page 6

Summary for Subcatchment PRE 1.0: WATERSHED 1.0

Runoff 51.44 cfs @ 12.49 hrs, Volume= 6.869 af, Depth> 2.81"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Year Rainfall=5.58"

A	rea (sf)	CN D	escription		
1	43,279	58 N	leadow, no	on-grazed,	HSG B
	12,922	55 V	Voods, Go	od, HSG B	
8	45,939	71 N	leadow, no	on-grazed,	HSG C
1	23,662	98 F	aved park	ing, HSG C	
	48,932	70 V	Voods, Go	od, HSG C	
	1,932			on-grazed,	HSG D
	99,061	91 G	Fravel road	ls, HSG D	
1,2	75,727	74 V	Veighted A	verage	
1,1	52,065	9	0.31% Per	rvious Area	
1	23,662	9	.69% Impe	ervious Area	a
Tc	Length	Slope	•	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.9	100	0.0400	0.24		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.68"
0.1	11	0.0400	1.40		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
1.0	70	0.0290	1.19		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
21.4	1,089	0.0147	0.85		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
1.6	120	0.0330	1.27		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
3.2	368	0.0160	1.90		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
0.2	47	0.0050	4.03	4.95	1 /
					15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31'
					n= 0.012 Concrete pipe, finished
34.4	1,805	Total			

1,805 Total

Summary for Subcatchment PRE 1.1: WATERSHED 1.1

[49] Hint: Tc<2dt may require smaller dt

4.19 cfs @ 12.07 hrs, Volume= Runoff

0.328 af, Depth> 5.11"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Year Rainfall=5.58"

L-0700-26 PRE

Prepared by Tighe & Bond

Printed 6/6/2023

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 7

A	rea (sf)	CN E	escription		
	22,865	98 F	Roofs, HSG	G C	
	3,263	74 >	75% Gras	s cover, Go	ood, HSG C
	7,483	98 F	Paved park	ing, HSG C	
	33,611	96 V	Veighted A	verage	
	3,263	9	.71% Perv	ious Area	
	30,348	9	0.29% Imp	ervious Ar	ea
_		01		0 :	
Tc	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
2.0	100	0.0050	0.85		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 3.68"
1.2	205	0.0200	2.87		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
3.2	305	Total, I	ncreased t	o minimum	Tc = 5.0 min

Summary for Subcatchment PRE 2.0: WATERSHED 2.0

[49] Hint: Tc<2dt may require smaller dt

7.49 cfs @ 12.07 hrs, Volume= 0.545 af, Depth> 4.22" Runoff

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Year Rainfall=5.58"

A	rea (sf)	CN D	escription		
	10,145	98 R	oofs, HSG	G C	
	28,794	74 >	75% Gras	s cover, Go	ood, HSG C
	28,625	98 P	aved park	ing, HSG C	,
	67,564	88 V	Veighted A	verage	
	28,794	4	2.62% Per	vious Area	
	38,770	5	7.38% Imp	pervious Ar	ea
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
0.7	100	0.0650	2.36		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 3.68"
1.5	320	0.0560	3.55		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
0.2	42	0.0050	3.72	4.57	Pipe Channel,
					15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31'
					n= 0.013 Cast iron, coated
1.3	410	0.0050	5.09	16.00	Pipe Channel,
					24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
					n= 0.013 Corrugated PE, smooth interior
3.7	872	Total, li	ncreased t	o minimum	Tc = 5.0 min

Printed 6/6/2023

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 8

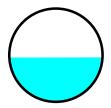
Summary for Reach REACH 1.1: EXISTING CULVERT

[52] Hint: Inlet/Outlet conditions not evaluated

Inflow Area = 0.772 ac, 90.29% Impervious, Inflow Depth > 5.11" for 10 Year event

Inflow = 4.19 cfs @ 12.07 hrs, Volume= 0.328 af

Outflow = 4.12 cfs @ 12.09 hrs, Volume= 0.328 af, Atten= 2%, Lag= 1.2 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Max. Velocity= 7.16 fps, Min. Travel Time= 1.2 min Avg. Velocity = 2.41 fps, Avg. Travel Time= 3.6 min

Peak Storage= 296 cf @ 12.09 hrs Average Depth at Peak Storage= 0.59'

Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 8.99 cfs

15.0" Round Pipe n= 0.012 Concrete pipe, finished Length= 515.0' Slope= 0.0165 '/' Inlet Invert= 53.60'. Outlet Invert= 45.10'

Summary for Reach REACH 1.2: HODGSON BROOK CULVERT

[52] Hint: Inlet/Outlet conditions not evaluated

[61] Hint: Exceeded Reach REACH 1.1 outlet invert by 0.42' @ 12.10 hrs

Inflow Area = 0.772 ac, 90.29% Impervious, Inflow Depth > 5.10" for 10 Year event

Inflow = 4.12 cfs @ 12.09 hrs, Volume= 0.328 af

Outflow = 3.88 cfs @ 12.12 hrs, Volume= 0.328 af, Atten= 6%, Lag= 1.7 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Max. Velocity= 5.42 fps, Min. Travel Time= 2.5 min Avg. Velocity = 1.85 fps, Avg. Travel Time= 7.4 min

Peak Storage= 588 cf @ 12.12 hrs Average Depth at Peak Storage= 0.42'

Bank-Full Depth= 4.00' Flow Area= 12.6 sf, Capacity= 164.33 cfs

48.0" Round Pipe

n= 0.012 Concrete pipe, finished Length= 825.0' Slope= 0.0112 '/'

Inlet Invert= 45.10', Outlet Invert= 35.90'

Page 9

Summary for Pond POND 1.0: OUTLET CULVERTS

[90] Warning: Qout>Qin may require smaller dt or Finer Routing

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=123)

[62] Hint: Exceeded Reach REACH 1.2 OUTLET depth by 2.89' @ 12.55 hrs

Inflow Area = 30.058 ac, 11.76% Impervious, Inflow Depth > 2.87" for 10 Year event

Inflow = 52.53 cfs @ 12.48 hrs, Volume= 7.196 af

Outflow = 52.69 cfs @ 12.47 hrs, Volume= 7.195 af, Atten= 0%, Lag= 0.0 min

Primary = 52.69 cfs @ 12.47 hrs, Volume= 7.195 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Peak Elev= 39.02' @ 12.47 hrs

Flood Elev= 41.00'

<u>Device</u>	Routing	Invert	Outlet Devices
#1	Primary	35.60'	42.0" W x 29.0" H, R=21.5"/66.1" Pipe Arch CMP_Arch_1/2 42x29 X 3.00 L= 68.0' CMP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= 35.60' / 35.30' S= 0.0044 '/' Cc= 0.900
			n= 0.025 Corrugated metal. Flow Area= 6.72 sf

Primary OutFlow Max=52.41 cfs @ 12.47 hrs HW=39.01' TW=38.65' (Dynamic Tailwater) 1=CMP_Arch_1/2 42x29 (Outlet Controls 52.41 cfs @ 2.60 fps)

Summary for Link PA1: POINT OF ANALYSIS

This link takes into account the tailwater condition in roadside swale along Goose Bay Drive which the existing culverts discharge into. These tailwater elevations were determined by Streamworks, PLLC as part of the overall watershed analysis they performed.

[80] Warning: Exceeded Pond POND 1.0 by 3.05' @ 0.00 hrs (92.51 cfs 19.754 af)

Inflow Area = 30.058 ac, 11.76% Impervious, Inflow Depth > 2.87" for 10 Year event

Inflow = 52.69 cfs @ 12.47 hrs, Volume= 7.195 af

Primary = 52.69 cfs @ 12.47 hrs, Volume= 7.195 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

10 Year 2 Point manual elevation table, To= 0.00 hrs, dt= 24.00 hrs, feet = 38.65 38.65

L-0700-26 PRE

Prepared by Tighe & Bond

Printed 6/6/2023

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 10

Summary for Link PA2: POINT OF ANALYSIS

Inflow Area = 1.551 ac, 57.38% Impervious, Inflow Depth > 4.22" for 10 Year event

Inflow = 7.49 cfs @ 12.07 hrs, Volume= 0.545 af

Primary = 7.49 cfs @ 12.07 hrs, Volume= 0.545 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Page 11

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPRE 1.0: WATERSHED 1.0 Runoff Area=1,275,727 sf 9.69% Impervious Runoff Depth>4.08" Flow Length=1,805' Tc=34.4 min CN=74 Runoff=74.64 cfs 9.946 af

SubcatchmentPRE 1.1: WATERSHED1.1 Runoff Area=33,611 sf 90.29% Impervious Runoff Depth>6.59" Flow Length=305' Tc=5.0 min CN=96 Runoff=5.34 cfs 0.424 af

SubcatchmentPRE 2.0: WATERSHED 2.0 Runoff Area=67,564 sf 57.38% Impervious Runoff Depth>5.66" Flow Length=872' Tc=5.0 min CN=88 Runoff=9.90 cfs 0.731 af

Reach REACH 1.1: EXISTING CULVERT Avg. Flow Depth=0.69' Max Vel=7.60 fps Inflow=5.34 cfs 0.424 af 15.0" Round Pipe n=0.012 L=515.0' S=0.0165 '/' Capacity=8.99 cfs Outflow=5.26 cfs 0.423 af

Reach REACH 1.2: HODGSON BROOK Avg. Flow Depth=0.48' Max Vel=5.85 fps Inflow=5.26 cfs 0.423 af 48.0" Round Pipe n=0.012 L=825.0' S=0.0112 '/' Capacity=164.33 cfs Outflow=4.99 cfs 0.423 af

Pond POND 1.0: OUTLET CULVERTSPeak Elev=39.52' Inflow=76.06 cfs 10.369 af 42.0" x 29.0", R=21.5"/66.1" Pipe Arch Culvert x 3.00 n=0.025 L=68.0' S=0.0044 '/' Outflow=76.06 cfs 10.369 af

Link PA1: POINT OF ANALYSIS

Inflow=76.06 cfs 10.369 af
Primary=76.06 cfs 10.369 af

Link PA2: POINT OF ANALYSIS

Inflow=9.90 cfs 0.731 af
Primary=9.90 cfs 0.731 af

Total Runoff Area = 31.609 ac Runoff Volume = 11.102 af Average Runoff Depth = 4.21" 86.00% Pervious = 27.184 ac 14.00% Impervious = 4.426 ac

Page 12

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPRE 1.0: WATERSHED 1.0 Runoff Area=1,275,727 sf 9.69% Impervious Runoff Depth>5.30" Flow Length=1,805' Tc=34.4 min CN=74 Runoff=96.90 cfs 12.947 af

SubcatchmentPRE 1.1: WATERSHED1.1 Runoff Area=33,611 sf 90.29% Impervious Runoff Depth>7.98" Flow Length=305' Tc=5.0 min CN=96 Runoff=6.41 cfs 0.513 af

SubcatchmentPRE 2.0: WATERSHED2.0 Runoff Area=67,564 sf 57.38% Impervious Runoff Depth>7.01" Flow Length=872' Tc=5.0 min CN=88 Runoff=12.13 cfs 0.907 af

Reach REACH 1.1: EXISTING CULVERT Avg. Flow Depth=0.77' Max Vel=7.92 fps Inflow=6.41 cfs 0.513 af 15.0" Round Pipe n=0.012 L=515.0' S=0.0165 '/' Capacity=8.99 cfs Outflow=6.32 cfs 0.513 af

Reach REACH 1.2: HODGSON BROOK Avg. Flow Depth=0.52' Max Vel=6.19 fps Inflow=6.32 cfs 0.513 af 48.0" Round Pipe n=0.012 L=825.0' S=0.0112 '/' Capacity=164.33 cfs Outflow=6.02 cfs 0.512 af

Pond POND 1.0: OUTLET CULVERTSPeak Elev=40.14' Inflow=98.61 cfs 13.459 af 42.0" x 29.0", R=21.5"/66.1" Pipe Arch Culvert x 3.00 n=0.025 L=68.0' S=0.0044 '/' Outflow=98.61 cfs 13.459 af

Link PA1: POINT OF ANALYSIS

Inflow=98.61 cfs 13.459 af
Primary=98.61 cfs 13.459 af

Link PA2: POINT OF ANALYSIS Inflow=12.13 cfs 0.907 af Primary=12.13 cfs 0.907 af

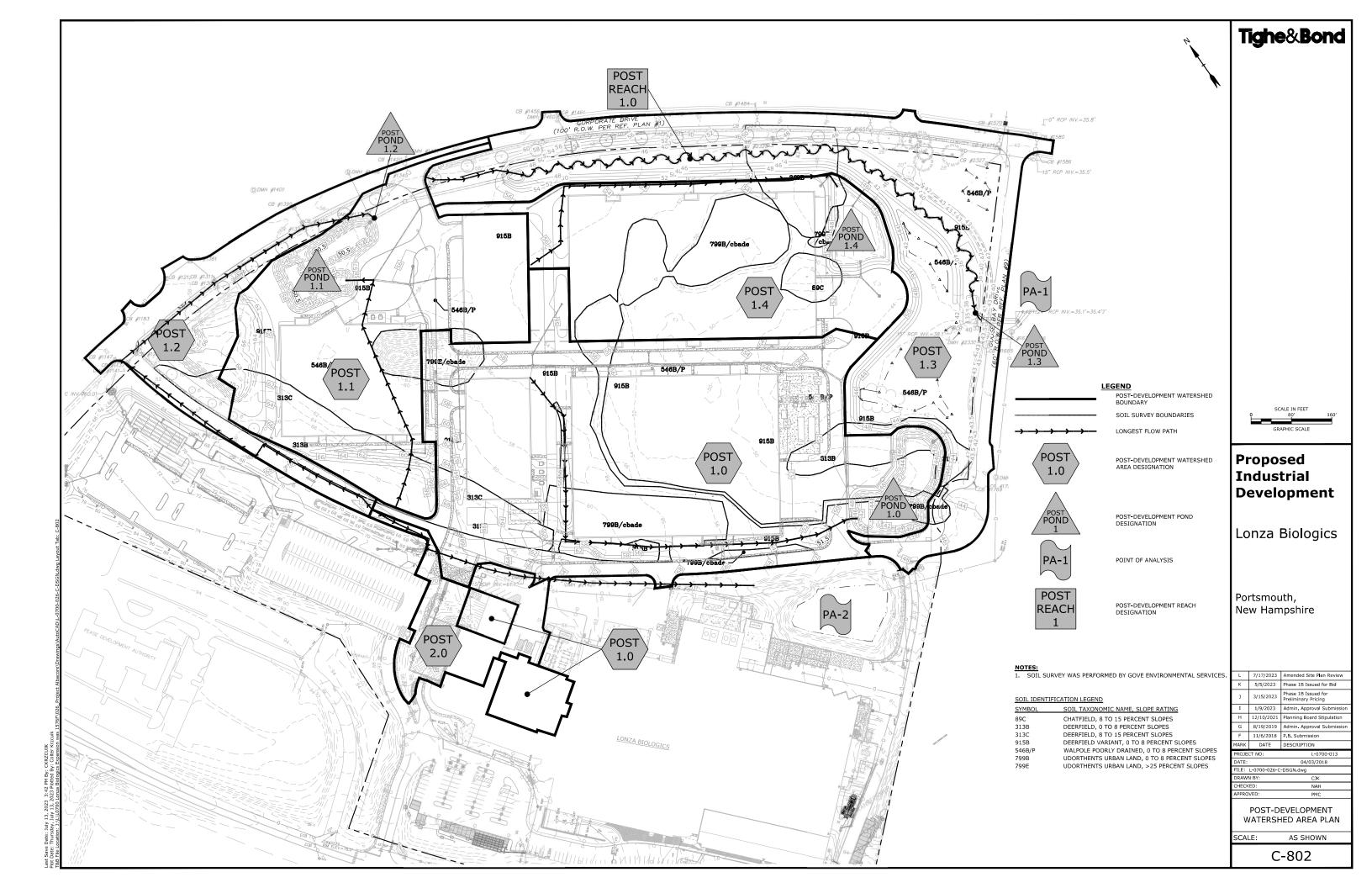
Total Runoff Area = 31.609 ac Runoff Volume = 14.366 af Average Runoff Depth = 5.45" 86.00% Pervious = 27.184 ac 14.00% Impervious = 4.426 ac

1.3 Post-Development Conditions

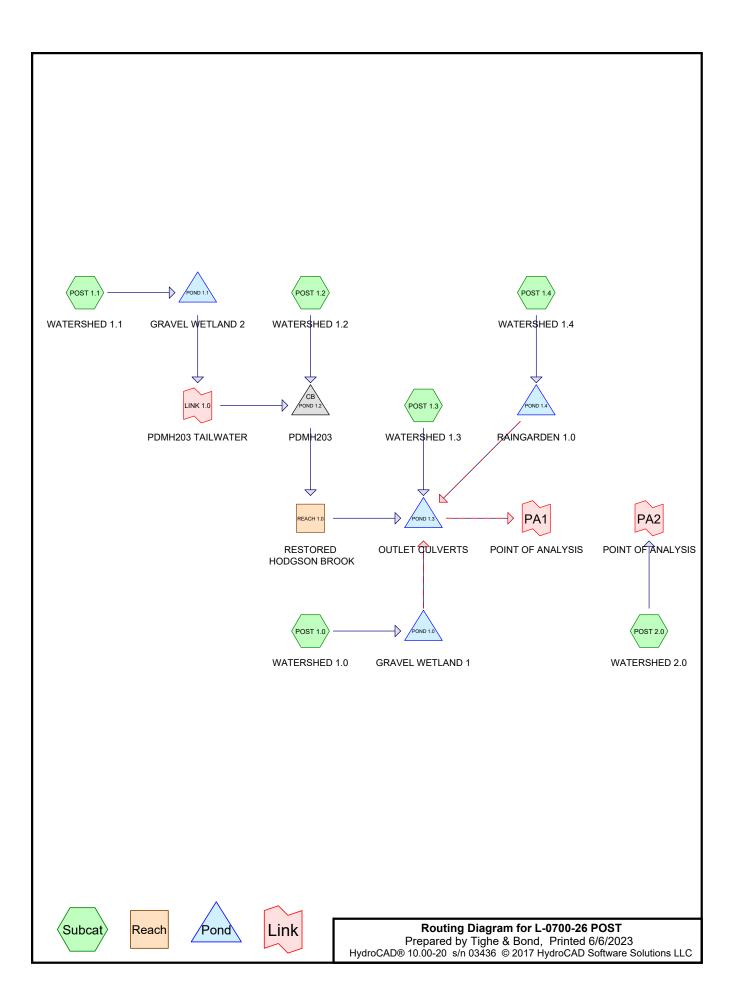
1.3.1 Master Post-Development Conditions

The post-development condition was analyzed by dividing the watersheds into six sub-catchment areas. Stormwater runoff from these sub-catchment areas flow to two gravel wetlands and one rain garden for treatment prior to discharging to the existing Hodgson Brook outlet. Flows from these sub-catchment areas are modeled at the same two points of analysis that were modeled in the pre-development analysis, PA1 and PA2. These points of analysis and sub-catchment areas are depicted on the plan entitled "Post-Development Watershed Plan", Sheet C-802.

Each of the points of analysis and their contributing watershed areas are described below:


Point of Analysis (PA1)

Point of Analysis 1 (PA1) is located at the existing Hodgson Brook outlet headwall. For the purposes of this analysis, the area contributing to Point of Analysis 1 (PA1) has been divided into five sub-catchment areas (see plan C-802). Sub-catchments POST 1.0, POST 1.1, POST 1.2, POST 1.3 and POST 1.4 contribute to this point of analysis and consist of grass, paved parking lots, concrete sidewalks, and roof areas. Runoff generated in these sub-catchment areas is collected via one (1) rain garden and two (2) gravel wetlands which treat and discharge stormwater runoff either to infiltration or to PA1. Runoff from sub-catchments POST 1.0, 1.1 and 1.4 flow via overland flow to the closed drainage then flows via underground piping to one of the gravel wetlands or rain garden. Flows from sub-catchment POST 1.2 flows via overland flow to the Hodgson Brook restoration area (REACH 1.0) then flows via the brook until reach PA1. Runoff from POND 1.1 also flows via REACH 1.0 to PA1. LINK 1.0 has been added to the calculations between gravel wetland 2 (POND 1.1) and PDMH203 (POND 1.2) to account for the tailwater elevation in PDMH203 caused by the Hodgson Brook inflow to PDMH203. Tailwater elevations at the road side swale on Goose Bay Drive (PA1) have also been included in these calculations to account for any surcharging that may occur due to the tailwater condition. These tailwater elevations were determined by Streamworks, PLLC as part of their overall watershed analysis. Runoff from sub-catchment area POST 1.3 flows via overland flow to PA1. PA1 is shown on the Post-Development Watershed Plan (C-802).


Point of Analysis (PA2)

POST 2.0 is comprised mostly of runoff from Goose Bay Drive that is located between the undeveloped parcel and the existing Lonza facility. Runoff from this area travels via overland flow to the existing stormwater basin located at the existing Lonza facility. Point of Analysis 2 (PA2) is located at the existing basin.

1.3.1.1 Master Post-Development Watershed Plan

1.3.1.2 Master Post-Development Calculations

Printed 6/6/2023 Page 2

Area Listing (all nodes)

Area	CN	Description
 (acres)		(subcatchment-numbers)
1.776	61	>75% Grass cover, Good, HSG B (POST 1.0, POST 1.1, POST 1.2, POST 1.3,
		POST 1.4)
6.801	74	>75% Grass cover, Good, HSG C (POST 1.0, POST 1.1, POST 1.2, POST 1.3,
		POST 1.4, POST 2.0)
0.436	80	>75% Grass cover, Good, HSG D (POST 1.0, POST 1.3, POST 1.4)
0.323	58	Meadow, non-grazed, HSG B (POST 1.3)
3.143	71	Meadow, non-grazed, HSG C (POST 1.3)
0.799	98	Paved parking, HSG B (POST 1.0, POST 1.1, POST 1.2, POST 1.3, POST 1.4)
7.546	98	Paved parking, HSG C (POST 1.0, POST 1.1, POST 1.2, POST 1.3, POST 1.4,
		POST 2.0)
0.146	98	Paved parking, HSG D (POST 1.0, POST 1.3, POST 1.4)
0.688	98	Roofs, HSG B (POST 1.0, POST 1.1, POST 1.4)
8.166	98	Roofs, HSG C (POST 1.0, POST 1.1, POST 1.4, POST 2.0)
1.737	98	Roofs, HSG D (POST 1.0, POST 1.4)
0.049	76	Woods/grass comb., Fair, HSG C (POST 1.3)
31.609	87	TOTAL AREA

L-0700-26 POST

Prepared by Tighe & Bond HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Printed 6/6/2023 Page 3

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
3.586	HSG B	POST 1.0, POST 1.1, POST 1.2, POST 1.3, POST 1.4
25.705	HSG C	POST 1.0, POST 1.1, POST 1.2, POST 1.3, POST 1.4, POST 2.0
2.318	HSG D	POST 1.0, POST 1.3, POST 1.4
0.000	Other	
31.609		TOTAL AREA

Printed 6/6/2023

Page 4

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPOST 1.0: WATERSHED Runoff Area=462,599 sf 72.19% Impervious Runoff Depth>2.71" Flow Length=933' Tc=11.4 min CN=91 Runoff=27.46 cfs 2.396 af

SubcatchmentPOST 1.1: WATERSHED Runoff Area=242,496 sf 58.73% Impervious Runoff Depth>2.25" Flow Length=750' Tc=10.3 min CN=86 Runoff=12.60 cfs 1.046 af

SubcatchmentPOST 1.2: WATERSHED Runoff Area=101,204 sf 62.15% Impervious Runoff Depth>2.43" Flow Length=1,191' Tc=6.4 min CN=88 Runoff=6.37 cfs 0.471 af

SubcatchmentPOST 1.3: WATERSHED Runoff Area=306,549 sf 22.64% Impervious Runoff Depth>1.55" Flow Length=1,525' Tc=45.9 min CN=77 Runoff=5.81 cfs 0.908 af

SubcatchmentPOST 1.4: WATERSHED Runoff Area=214,764 sf 85.05% Impervious Runoff Depth>3.01" Flow Length=717' Tc=7.5 min CN=94 Runoff=15.51 cfs 1.236 af

SubcatchmentPOST 2.0: WATERSHED 2.0 Runoff Area=49,290 sf 80.99% Impervious Runoff Depth>2.91" Flow Length=758' Tc=5.0 min CN=93 Runoff=3.72 cfs 0.274 af

Reach REACH 1.0: RESTOREDAvg. Flow Depth=0.60' Max Vel=2.03 fps Inflow=6.37 cfs 0.617 af n=0.040 L=1,309.0' S=0.0092 '/' Capacity=2,720.29 cfs Outflow=4.54 cfs 0.608 af

Pond POND 1.0: GRAVEL WETLAND 1 Peak Elev=46.16' Storage=70,734 cf Inflow=27.46 cfs 2.396 af Primary=1.57 cfs 1.041 af Secondary=0.00 cfs 0.000 af Outflow=1.57 cfs 1.041 af

Pond POND 1.1: GRAVEL WETLAND 2 Peak Elev=53.90' Storage=39,230 cf Inflow=12.60 cfs 1.046 af Outflow=0.40 cfs 0.146 af

Pond POND 1.2: PDMH203 Peak Elev=50.33' Inflow=6.37 cfs 0.617 af 48.0" Round Culvert n=0.013 L=269.0' S=0.0050 '/' Outflow=6.37 cfs 0.617 af

Pond POND 1.3: OUTLET CULVERTS Peak Elev=38.16' Storage=8,984 cf Inflow=9.25 cfs 3.255 af Primary=9.41 cfs 3.050 af Secondary=0.00 cfs 0.000 af Outflow=9.41 cfs 3.050 af

Pond POND 1.4: RAINGARDEN1.0 Peak Elev=47.27' Storage=34,235 cf Inflow=15.51 cfs 1.236 af Primary=1.31 cfs 0.699 af Secondary=0.00 cfs 0.000 af Outflow=1.31 cfs 0.699 af

Link LINK 1.0: PDMH203 TAILWATER Inflow=0.40 cfs 0.146 af Primary=0.40 cfs 0.146 af

Link PA1: POINT OF ANALYSIS

Inflow=9.41 cfs 3.050 af
Primary=9.41 cfs 3.050 af

Link PA2: POINT OF ANALYSIS

Inflow=3.72 cfs 0.274 af
Primary=3.72 cfs 0.274 af

Total Runoff Area = 31.609 ac Runoff Volume = 6.331 af Average Runoff Depth = 2.40" 39.63% Pervious = 12.527 ac 60.37% Impervious = 19.083 ac

Printed 6/6/2023

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 5

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPOST 1.0: WATERSHED Runoff Area=462,599 sf 72.19% Impervious Runoff Depth>4.54" Flow Length=933' Tc=11.4 min CN=91 Runoff=44.88 cfs 4.017 af

SubcatchmentPOST 1.1: WATERSHED Runoff Area=242,496 sf 58.73% Impervious Runoff Depth>4.01" Flow Length=750' Tc=10.3 min CN=86 Runoff=22.02 cfs 1.858 af

SubcatchmentPOST 1.2: WATERSHED Runoff Area=101,204 sf 62.15% Impervious Runoff Depth>4.22" Flow Length=1,191' Tc=6.4 min CN=88 Runoff=10.81 cfs 0.817 af

SubcatchmentPOST 1.3: WATERSHED Runoff Area=306,549 sf 22.64% Impervious Runoff Depth>3.09" Flow Length=1,525' Tc=45.9 min CN=77 Runoff=11.76 cfs 1.810 af

SubcatchmentPOST 1.4: WATERSHED Runoff Area=214,764 sf 85.05% Impervious Runoff Depth>4.88" Flow Length=717' Tc=7.5 min CN=94 Runoff=24.45 cfs 2.004 af

SubcatchmentPOST 2.0: WATERSHED 2.0 Runoff Area=49,290 sf 80.99% Impervious Runoff Depth>4.77" Flow Length=758' Tc=5.0 min CN=93 Runoff=5.94 cfs 0.449 af

Reach REACH 1.0: RESTORED Avg. Flow Depth=0.81' Max Vel=2.20 fps Inflow=10.81 cfs 1.367 af n=0.040 L=1,309.0' S=0.0092 '/' Capacity=2,720.29 cfs Outflow=6.07 cfs 1.355 af

Pond POND 1.0: GRAVEL WETLAND 1 Peak Elev=46.94' Storage=86,832 cf Inflow=44.88 cfs 4.017 af Primary=7.09 cfs 2.106 af Secondary=11.63 cfs 0.435 af Outflow=18.72 cfs 2.541 af

Pond POND 1.1: GRAVEL WETLAND 2 Peak Elev=55.08' Storage=57,197 cf Inflow=22.02 cfs 1.858 af Outflow=1.76 cfs 0.550 af

Pond POND 1.2: PDMH203 Peak Elev=50.65' Inflow=10.81 cfs 1.367 af 48.0" Round Culvert n=0.013 L=269.0' S=0.0050 '/' Outflow=10.81 cfs 1.367 af

Pond POND 1.3: OUTLET CULVERTS Peak Elev=38.86' Storage=14,364 cf Inflow=40.12 cfs 7.107 af Primary=39.92 cfs 6.819 af Secondary=0.00 cfs 0.000 af Outflow=39.92 cfs 6.819 af

Pond POND 1.4: RAINGARDEN1.0 Peak Elev=48.07' Storage=45,635 cf Inflow=24.45 cfs 2.004 af Primary=6.60 cfs 1.401 af Secondary=0.00 cfs 0.000 af Outflow=6.60 cfs 1.401 af

Link LINK 1.0: PDMH203 TAILWATER

Inflow=1.76 cfs 0.550 af
Primary=1.76 cfs 0.550 af

Link PA1: POINT OF ANALYSIS

Inflow=39.92 cfs 6.819 af
Primary=39.92 cfs 6.819 af

Link PA2: POINT OF ANALYSISInflow=5.94 cfs 0.449 af Primary=5.94 cfs 0.449 af

Total Runoff Area = 31.609 ac Runoff Volume = 10.955 af Average Runoff Depth = 4.16" 39.63% Pervious = 12.527 ac 60.37% Impervious = 19.083 ac HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 6

Summary for Subcatchment POST 1.0: WATERSHED 1.0

Runoff = 44.88 cfs @ 12.15 hrs, Volume= 4.017 af, Depth> 4.54"

 Aı	rea (sf)	CN Description								
	5,235		98 Roofs, HSG B							
	22,410		61 >75% Grass cover, Good, HSG B							
	19,146		98 Paved parking, HSG B							
	57,967 90,117		98 Roofs, HSG C 74 >75% Grass cover, Good, HSG C							
	14,873		74 >75% Grass cover, Good, HSG C98 Paved parking, HSG C							
	31,357		loofs, HSC		,					
	16,138				ood, HSG D					
	5,356			ing, HSG D						
4	62,599	91 V	Veighted A	verage						
	28,665			rvious Area						
3	33,934	7:	2.19% lmp	pervious Ar	ea					
Tc	Length	Slope	Velocity	Capacity	Description					
 (min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
7.7	70	0.0150	0.15		Sheet Flow,					
					Grass: Short n= 0.150 P2= 3.68"					
0.2	32	0.0200	2.87		Shallow Concentrated Flow,					
0.4	40	0.0000	0.40		Paved Kv= 20.3 fps					
0.1	19	0.0200	0.0200 2.12		Shallow Concentrated Flow,					
0.8	162	0.0050	0.0050 3.21 2.52		Grassed Waterway Kv= 15.0 fps Pipe Channel,					
0.0	102	0.0000	3.21 2.52		12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'					
					n= 0.013 Corrugated PE, smooth interior					
0.4	84	0.0050	3.21	2.52	Pipe Channel,					
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'					
					n= 0.013					
0.5	113	0.0050	3.72	4.57						
					15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31'					
1.2	200	0.0050	4.20	7.43	n= 0.013 Pipe Channel,					
1.2	299	0.0000	4.20	7.43	18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'					
					n= 0.013					
0.4	94	0.0050	4.20	7.43						
					18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'					
					n= 0.013					
0.1	46	0.0240	11.16	35.05	Pipe Channel,					
					24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'					
0.0	E	0.0000	7 16	0.00	n= 0.013					
0.0	5	0.0800	7.16	0.98	Pipe Channel, 5.0" Round Area= 0.1 sf Perim= 1.3' r= 0.10'					
					n= 0.013					
0.0	9	0.0110	9.90	69.95	Pipe Channel,					
					•					

Prepared by Tighe & Bond

Printed 6/6/2023

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 7

36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75'

n = 0.013

11.4 933 Total

Summary for Subcatchment POST 1.1: WATERSHED 1.1

Runoff = 22.02 cfs @ 12.14 hrs, Volume= 1.858 af, Depth> 4.01"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Year Rainfall=5.58"

	Aı	rea (sf)	CN Description								
		13,692	98 F	98 Roofs, HSG B							
		32,710	61 >	61 >75% Grass cover, Good, HSG B							
		2,729		· · · · · · · · · · · · · · · · · · ·							
		88,019		Roofs, HSG							
		67,375				ood, HSG C					
		37,971	98 F	Paved park	ing, HSG C						
		42,496	86 V	Veighted A	verage						
		00,085			vious Area						
	1	42,411	5	68.73% lmp	pervious Ar	ea					
	_		01								
1	Tc	Length	Slope		Capacity	Description					
	<u>nin)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	7.1	100	0.0380	0.24		Sheet Flow,					
	4.0	400	0.0045	0.05		Grass: Short n= 0.150 P2= 3.68"					
	1.2	163	0.0245	2.35		Shallow Concentrated Flow,					
	1.5	283	0.0050	3.21	2.52	Grassed Waterway Kv= 15.0 fps Pipe Channel,					
	1.5	203	0.0030	3.21	2.52	12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'					
						n= 0.013					
	0.1	81	0.0240	9.21	16.27	Pipe Channel,					
	0	0.	0.0210	0.21	10.21	18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'					
						n= 0.013					
	0.4	123	0.0050	5.09	16.00						
						24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'					
						n= 0.013					
1	0.3	750	Total								

Summary for Subcatchment POST 1.2: WATERSHED 1.2

Runoff = 10.81 cfs @ 12.09 hrs, Volume= 0.817 af, Depth> 4.22"

Prepared by Tighe & Bond

Printed 6/6/2023

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 8

 Α	rea (sf)	CN Description								
	6,874	61 >	61 >75% Grass cover, Good, HSG B							
4,785 98 Paved parking, HSG B										
	31,436	74 >	75% Gras	s cover, Go	ood, HSG C					
	58,109	98 P	aved park	ing, HSG C						
1	01,204	88 V	/eighted A	verage						
	38,310	3	7.85% Per	vious Area						
	62,894	6	2.15% Imp	ervious Ar	ea					
т.	1 41-	Ola a	\	0	Description					
Tc	Length	Slope		Capacity	Description					
 (<u>min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	01 (5)					
1.5	100	0.0100	1.12		Sheet Flow,					
4.0	450	0.0450	0.40		Smooth surfaces n= 0.011 P2= 3.68"					
1.0	153	0.0150	2.49		Shallow Concentrated Flow,					
1.6	343	0.0050	3.47	2.73	Paved Kv= 20.3 fps Pipe Channel,					
1.0	343	0.0050	3.47	2.13	12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'					
					n= 0.012 Concrete pipe, finished					
0.1	13	0.0050	3.72	4.57						
0.1	10	0.0000	0.12	4.57	15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31'					
					n= 0.013 Corrugated PE, smooth interior					
1.8	453	0.0050	4.20	7.43	-					
	.00	0.0000	0		18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'					
					n= 0.013 Corrugated PE, smooth interior					
0.4	129	0.0050	5.91	29.00	Pipe Channel,					
			30.0" Round Area= 4.9 sf Perim= 7.9' r= 0.63'							
					n= 0.013 Corrugated PE, smooth interior					
6.4	1,191	Total			-					

Summary for Subcatchment POST 1.3: WATERSHED 1.3

Runoff = 11.76 cfs @ 12.63 hrs, Volume= 1.810 af, Depth> 3.09"

Area (sf)	CN	Description
11,450	61	>75% Grass cover, Good, HSG B
14,068	58	Meadow, non-grazed, HSG B
908	98	Paved parking, HSG B
70,956	74	>75% Grass cover, Good, HSG C
136,905	71	Meadow, non-grazed, HSG C
2,120	76	Woods/grass comb., Fair, HSG C
68,005	98	Paved parking, HSG C
1,638	80	>75% Grass cover, Good, HSG D
499	98	Paved parking, HSG D
306,549	77	Weighted Average
237,137		77.36% Pervious Area
69,412		22.64% Impervious Area

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 9

 Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
10.9	100	0.0130	0.15		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.68"
1.1	52	0.0130	0.80		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
0.1	27	0.2720	7.82		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
33.8	1,346	0.0090	0.66		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
45.9	1.525	Total			·

Summary for Subcatchment POST 1.4: WATERSHED 1.4

Runoff = 24.45 cfs @ 12.10 hrs, Volume= 2.004 af, Depth> 4.88"

	A	rea (sf)	CN	CN Description						
		11,051	98	Roofs, HSG B						
		3,902	61	· · · · · · · · · · · · · · · · · · ·						
		7,241		Paved park	ing, HSG B	}				
		86,748		Roofs, HSG						
		26,995				ood, HSG C				
		32,822		Paved park						
		44,300		Roofs, HSG						
		1,206				ood, HSG D				
		499		Paved park)				
		14,764		Weighted A	0					
		32,103		14.95% Pei						
	1	82,661		35.05% Imp	pervious Ar	ea				
	т.	1 41-	Clara.	\/_l:	0	Description				
	Tc	Length	Slope		Capacity	Description				
_	(min)	(feet)	(ft/ft)		(cfs)	OL (E)				
	4.9	.9 40 0.0150 0.14			Sheet Flow, Grass: Short n= 0.150 P2= 3.68"					
	0.3	53	0.0200	2.87						
	0.3	53	0.0200	2.07		Shallow Concentrated Flow, Paved Kv= 20.3 fps				
	0.3	65	0.0050	3.21	2.52	· · · · · · · · · · · · · · · · · · ·				
	0.5	03	0.0030	3.21	2.52	12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'				
						n= 0.013 Corrugated PE, smooth interior				
	0.4	115	0.0100	4.54	3.56					
	0.4	110	0.0100	4.04	0.00	12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'				
						n= 0.013				
	0.7	140	0.0050	3.21	2.52					
	0		0.0000	0.2 .	2.02	12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'				
						n= 0.013				
	0.9	275	0.0070	4.97	8.79					
		-				18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'				
						n= 0.013				

Prepared by Tighe & Bond

Printed 6/6/2023

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 10

0.0	29 0.0550	13.94	24.63	Pipe Channel, 18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38' n= 0.013

7.5 717 Total

Summary for Subcatchment POST 2.0: WATERSHED 2.0

[49] Hint: Tc<2dt may require smaller dt

Runoff = 5.94 cfs @ 12.07 hrs, Volume=

0.449 af, Depth> 4.77"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Year Rainfall=5.58"

A	rea (sf)	CN D	escription						
	22,995		,						
	9,368		74 >75% Grass cover, Good, HSG C						
	16,927		•	ing, HSG C	;				
	49,290		Veighted A						
	9,368			vious Area					
	39,922	8	0.99% Imp	pervious Ar	ea				
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description				
1.2	100	0.0164	1.36	(013)	Sheet Flow,				
1.2	100	0.0104	1.50		Smooth surfaces n= 0.011 P2= 3.68"				
0.3	48	0.0164	2.60		Shallow Concentrated Flow,				
0.0	10	0.0101	2.00		Paved Kv= 20.3 fps				
0.3	130	0.0140	7.03	12.43	·				
					18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'				
					n= 0.013				
0.5	70	0.0250	2.37		Shallow Concentrated Flow,				
					Grassed Waterway Kv= 15.0 fps				
1.3	410	0.0050	5.09	16.00	Pipe Channel,				
					24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'				
					n= 0.013				
3.6	758	Total li	ncreased t	o minimum	$T_{\rm C} = 5.0 \text{min}$				

3.6 758 Total, Increased to minimum Tc = 5.0 min

Summary for Reach REACH 1.0: RESTORED HODGSON BROOK

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=2)

Inflow Area = 7.890 ac, 59.73% Impervious, Inflow Depth > 2.08" for 10 Year event

Inflow = 10.81 cfs @ 12.09 hrs, Volume= 1.367 af

Outflow = 6.07 cfs @ 12.81 hrs, Volume= 1.355 af, Atten= 44%, Lag= 42.9 min

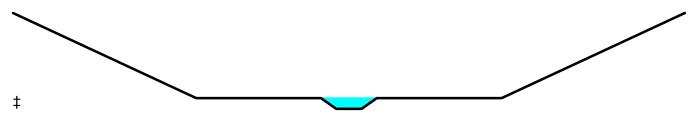
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.20 fps, Min. Travel Time= 9.9 min Avg. Velocity = 1.04 fps, Avg. Travel Time= 21.0 min

Prepared by Tighe & Bond

Printed 6/6/2023

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC


Page 11

Peak Storage= 6,364 cf @ 12.27 hrs Average Depth at Peak Storage= 0.81'

Bank-Full Depth= 6.75' Flow Area= 291.0 sf, Capacity= 2,720.29 cfs

Custom cross-section, Length= 1,309.0' Slope= 0.0092 '/' (101 Elevation Intervals) Constant n= 0.040 Winding stream, pools & shoals

Inlet Invert= 48.00', Outlet Invert= 36.00'

Offset	Elevation	Chan.Depth
(feet)	(feet)	(feet)
0.00	12.00	0.00
18.00	6.00	6.00
30.25	6.00	6.00
31.75	5.25	6.75
34.25	5.25	6.75
35.75	6.00	6.00
48.00	6.00	6.00
66 00	12 00	0.00

Depth	End Area	Perim.	Storage	Discharge
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cfs)
0.00	0.0	2.5	0	0.00
0.75	3.0	30.4	3,927	2.28
6.75	291.0	68.3	380,919	2,720.29

Summary for Pond POND 1.0: GRAVEL WETLAND 1

[95] Warning: Outlet Device #4 rise exceeded

Inflow Area = 10.620 ac, 72.19% Impervious, Inflow Depth > 4.54" for 10 Year event

44.88 cfs @ 12.15 hrs, Volume= Inflow 4.017 af

2.541 af, Atten= 58%, Lag= 18.0 min 18.72 cfs @ 12.45 hrs, Volume= Outflow

Primary 7.09 cfs @ 12.45 hrs, Volume= 2.106 af Secondary = 11.63 cfs @ 12.45 hrs, Volume= 0.435 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 46.94' @ 12.45 hrs Surf.Area= 21.544 sf Storage= 86.832 cf

Flood Elev= 48.00' Surf.Area= 23,557 sf Storage= 110,845 cf

Plug-Flow detention time= 216.6 min calculated for 2.536 af (63% of inflow) Center-of-Mass det. time= 118.8 min (906.1 - 787.3)

Volume

Prepared by Tighe & Bond

Invert

Printed 6/6/2023

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Avail.Storage Storage Description

Page 12

l .				
3.5" Vert. Orifice/Grate C= 0.600				
3.0" Vert. Orifice/Grate C= 0.600				
3.0' long x 0.50' rise Sharp-Crested Rectangular Weir2 End Contraction(s) 4.0' Crest Height				
4.0" x 4.0" Horiz. Orifice/Grate X 106.00 C= 0.600 Limited to weir flow at low heads				
:				
ir				
f				

Primary OutFlow Max=7.09 cfs @ 12.45 hrs HW=46.93' TW=38.85' (Dynamic Tailwater)

-1=Culvert (Passes 7.09 cfs of 18.71 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 0.75 cfs @ 11.23 fps)

-3=Orifice/Grate (Orifice Controls 0.32 cfs @ 6.48 fps)

-4=Sharp-Crested Rectangular Weir (Orifice Controls 6.02 cfs @ 4.15 fps)

-5=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=11.59 cfs @ 12.45 hrs HW=46.93' TW=38.85' (Dynamic Tailwater) 6=Broad-Crested Rectangular Weir (Weir Controls 11.59 cfs @ 1.78 fps)

Summary for Pond POND 1.1: GRAVEL WETLAND 2

Inflow Area = 5.567 ac, 58.73% Impervious, Inflow Depth > 4.01" for 10 Year event

Inflow 22.02 cfs @ 12.14 hrs, Volume= 1.858 af

Outflow 1.76 cfs @ 13.65 hrs, Volume= 0.550 af, Atten= 92%, Lag= 90.5 min

1.76 cfs @ 13.65 hrs, Volume= Primary 0.550 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 55.08' @ 13.65 hrs Surf.Area= 16,909 sf Storage= 57,197 cf Flood Elev= 57.00' Surf.Area= 21,643 sf Storage= 94,743 cf

Volume

#3

#4

Device 1

Device 1

Prepared by Tighe & Bond

Invert

Printed 6/6/2023

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 13

Plug-Flow detention time= 357.2 min calculated for 0.550 af (30% of inflow) Center-of-Mass det. time= 218.3 min (1,021.7 - 803.4)

Avail.Storage Storage Description

				J				
#1 47.		55' 1	17,304 cf	Custom Stage	Data (Prismatic)Lis	ted below (Recalc)		
Elevation		Surf.Area	Voids	Inc.Store	Cum.Store			
(fee	et)	(sq-ft)	(%)	(cubic-feet)	(cubic-feet)			
47.5	55	6,269	0.0	0	0			
49.8	85	6,269	30.0	4,326	4,326			
50.5	50	6,269	45.0	1,834	6,159			
51.0	00	7,199	100.0	3,367	9,526			
52.0	00	9,187	100.0	8,193	17,719			
53.0	00	11,345	100.0	10,266	27,985			
54.0	00	13,814	100.0	12,580	40,565			
55.0	00	16,645	100.0	15,230	55,794			
56.0	00	19,805	100.0	18,225	74,019			
58.0	00	23,480	100.0	43,285	117,304			
Device Routing		In	vert Ou	ıtlet Devices				
#1	Primary	49	9.85' 24 .	.0" Round Culve	rt			
	•		L=	12.0' CPP, squa	re edge headwall, K	(e= 0.500		
			Inle	Inlet / Outlet Invert= 49.85' / 49.45' S= 0.0333 '/' Cc= 0.90				
			n=	0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf				
				2.0" Vert. Orifice/Grate C= 0.600				

Primary OutFlow Max=1.76 cfs @ 13.65 hrs HW=55.08' TW=55.07' (Dynamic Tailwater)

2 End Contraction(s)

-1=Culvert (Inlet Controls 1.76 cfs @ 0.56 fps)

-2=Orifice/Grate (Passes < 0.01 cfs potential flow)

-3=Sharp-Crested Rectangular Weir (Passes < 3.33 cfs potential flow)

-4=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond POND 1.2: PDMH203

53.50' 4.0' long x 2.00' rise Sharp-Crested Rectangular Weir

56.50' 4.0" x 4.0" Horiz. Orifice/Grate X 106.00 C= 0.600

Limited to weir flow at low heads

Inflow Area = 7.890 ac, 59.73% Impervious, Inflow Depth > 2.08" for 10 Year event

Inflow = 10.81 cfs @ 12.09 hrs, Volume= 1.367 af

Outflow = 10.81 cfs @ 12.09 hrs, Volume= 1.367 af, Atten= 0%, Lag= 0.0 min

Primary = 10.81 cfs @ 12.09 hrs, Volume= 1.367 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Peak Elev= 50.65' @ 12.09 hrs

Flood Elev= 57.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	49.35'	48.0" Round Culvert L= 269.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 49.35' / 48.00' S= 0.0050 '/' Cc= 0.900

Volume

Invert

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 14

n= 0.013 Corrugated PE, smooth interior, Flow Area= 12.57 sf

Primary OutFlow Max=10.64 cfs @ 12.09 hrs HW=50.64' TW=48.75' (Dynamic Tailwater) 1=Culvert (Inlet Controls 10.64 cfs @ 3.05 fps)

Summary for Pond POND 1.3: OUTLET CULVERTS

[62] Hint: Exceeded Reach REACH 1.0 OUTLET depth by 2.50' @ 23.95 hrs

Inflow Area = 30.478 ac, 59.60% Impervious, Inflow Depth > 2.80" for 10 Year event
Inflow = 40.12 cfs @ 12.47 hrs, Volume= 7.107 af
Outflow = 39.92 cfs @ 12.50 hrs, Volume= 6.819 af, Atten= 0%, Lag= 1.8 min
Primary = 39.92 cfs @ 12.50 hrs, Volume= 6.819 af
Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 38.86' @ 12.50 hrs Surf.Area= 9,266 sf Storage= 14,364 cf Flood Elev= 43.50' Surf.Area= 95,977 sf Storage= 236,017 cf

Plug-Flow detention time= 32.3 min calculated for 6.819 af (96% of inflow) Center-of-Mass det. time= 11.6 min (905.1 - 893.5)

Avail.Storage Storage Description

#1	35.00' 236	5,017 cf Custom	Stage Data (Pris	smatic)Listed below (Recalc)
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
35.00	960	0	0	
36.00	1,428	1,194	1,194	
38.00	5,418	6,846	8,040	
40.00	14,354	19,772	27,812	
42.00	66,884	81,238	109,050	
43.00	92,707	79,796	188,846	
43.50	95,977	47,171	236,017	

Device	Routing	Invert	Outlet Devices
#1	Primary	35.60'	42.0" W x 29.0" H, R=21.5"/66.1" Pipe Arch CMP_Arch_1/2 42x29 X 3.00
	·		L= 68.0' CMP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 35.60' / 35.30' S= 0.0044 '/' Cc= 0.900
			n= 0.025 Corrugated metal, Flow Area= 6.72 sf
#2	Secondary	43.00'	143.1 deg x 18.0' long x 0.50' rise Sharp-Crested Vee/Trap Weir Cv= 2.47 (C= 3.09)
			CV- 2.47 (C- 3.09)

Primary OutFlow Max=39.88 cfs @ 12.50 hrs HW=38.86' TW=38.65' (Dynamic Tailwater) **1=CMP_Arch_1/2 42x29** (Outlet Controls 39.88 cfs @ 1.98 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=35.00' TW=38.65' (Dynamic Tailwater) 2=Sharp-Crested Vee/Trap Weir (Controls 0.00 cfs)

Printed 6/6/2023

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 15

Summary for Pond POND 1.4: RAINGARDEN 1.0

Inflow Area = 4.930 ac, 85.05% Impervious, Inflow Depth > 4.88" for 10 Year event

Inflow 24.45 cfs @ 12.10 hrs, Volume= 2.004 af

6.60 cfs @ 12.48 hrs, Volume= Outflow 1.401 af, Atten= 73%, Lag= 22.2 min

Primary 6.60 cfs @ 12.48 hrs, Volume= 1.401 af Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 48.07' @ 12.48 hrs Surf.Area= 14,774 sf Storage= 45,635 cf

Flood Elev= 50.00' Surf.Area= 17,790 sf Storage= 77,050 cf

Plug-Flow detention time= 233.7 min calculated for 1.398 af (70% of inflow)

Center-of-Mass det. time= 143.1 min (914.3 - 771.2)

Volume	Invert /	Avail.Storage	Storage Descrip	Storage Description			
#1	42.17'	77,050 cf	Custom Stage	Data (Prismatic)Listed I	pelow (Recalc)		
Elevation (feet)	Surf.Ar (sq		Inc.Store (cubic-feet)	Cum.Store (cubic-feet)			
42.17 43.50 45.00	10,4 10,4 10,4	18 40.0	0 5,542	5,542			
46.00 48.00	10,4 11,7 14,6	45 100.0	1,563 11,082 26,409	7,105 18,187 44,596			
50.00	17,7		32,454	77,050			
Device Ro	outing	Invert Ou	tlet Devices				

Device	Routing	Invert	Outlet Devices
#1	Primary	42.42'	12.0" Round Culvert
			L= 48.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 42.42' / 42.20' S= 0.0046 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	42.42'	6.0" Vert. Orifice/Grate C= 0.600
#3	Device 2	45.00'	10.000 in/hr Exfiltration over Surface area above 45.00'
			Excluded Surface area = 10,418 sf
#4	Device 1	47.15'	13.2" x 13.2" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#5	Secondary	49.35'	7.0' long x 8.9' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50 4.00 4.50 5.00 5.50
			Coef. (English) 2.46 2.55 2.70 2.69 2.68 2.68 2.67 2.64 2.64
			2.64 2.65 2.64 2.65 2.65 2.66 2.67 2.69

Primary OutFlow Max=6.59 cfs @ 12.48 hrs HW=48.07' TW=38.86' (Dynamic Tailwater)

-1=Culvert (Passes 6.59 cfs of 6.77 cfs potential flow)

-2=Orifice/Grate (Passes 1.01 cfs of 2.20 cfs potential flow)
-3=Exfiltration (Exfiltration Controls 1.01 cfs)

-4=Orifice/Grate (Orifice Controls 5.58 cfs @ 4.62 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=42.17' TW=35.00' (Dynamic Tailwater) 5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Printed 6/6/2023

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 16

Summary for Link LINK 1.0: PDMH203 TAILWATER

This link takes into account the tailwater condition in PDMH203 which the outlet of gravel wetland 2 connects. The purpose of this is to determine the effects of any surcharging caused by the tailwater of Hodgson Brook entering the structure. These tailwater elevations were determined by Streamworks, PLLC as part of the overall watershed analysis they performed.

[80] Warning: Exceeded Pond POND 1.1 by 7.52' @ 0.00 hrs (23.95 cfs 25.099 af)

Inflow Area = 5.567 ac, 58.73% Impervious, Inflow Depth > 1.19" for 10 Year event

Inflow = 1.76 cfs @ 13.65 hrs, Volume= 0.550 af

Primary = 1.76 cfs @ 13.65 hrs, Volume= 0.550 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

10 Year 25 Point manual elevation table, To= 0.00 hrs, dt= 1.00 hrs, feet =

55.07	55.07	55.07	55.07	55.07	55.07	55.07	55.07	55.07
55.07	55.07	55.07	55.07	55.07	55.07	55.07	55.07	55.07
55.07	55.07	55.07	55.07	55.07	55.07	55.07		

Summary for Link PA1: POINT OF ANALYSIS

This link takes into account the tailwater condition in roadside swale along Goose Bay Drive which the existing culverts discharge into. These tailwater elevations were determined by Streamworks, PLLC as part of the overall watershed analysis they performed.

[80] Warning: Exceeded Pond POND 1.3 by 3.65' @ 0.00 hrs (92.51 cfs 86.028 af)

Inflow Area = 30.478 ac, 59.60% Impervious, Inflow Depth > 2.69" for 10 Year event

Inflow = 39.92 cfs @ 12.50 hrs, Volume= 6.819 af

Primary = 39.92 cfs @ 12.50 hrs, Volume= 6.819 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

10 Year 2 Point manual elevation table, To= 0.00 hrs, dt= 24.00 hrs, feet = 38.65 38.65

Summary for Link PA2: POINT OF ANALYSIS

Inflow Area = 1.132 ac, 80.99% Impervious, Inflow Depth > 4.77" for 10 Year event

Inflow = 5.94 cfs @ 12.07 hrs, Volume= 0.449 af

Primary = 5.94 cfs @ 12.07 hrs, Volume= 0.449 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 17

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPOST 1.0: WATERSHED Runoff Area=462,599 sf 72.19% Impervious Runoff Depth>6.00" Flow Length=933' Tc=11.4 min CN=91 Runoff=58.40 cfs 5.309 af

SubcatchmentPOST 1.1: WATERSHED Runoff Area=242,496 sf 58.73% Impervious Runoff Depth>5.43" Flow Length=750' Tc=10.3 min CN=86 Runoff=29.42 cfs 2.517 af

SubcatchmentPOST 1.2: WATERSHED Runoff Area=101,204 sf 62.15% Impervious Runoff Depth>5.66" Flow Length=1,191' Tc=6.4 min CN=88 Runoff=14.27 cfs 1.095 af

SubcatchmentPOST 1.3: WATERSHED Runoff Area=306,549 sf 22.64% Impervious Runoff Depth>4.39" Flow Length=1,525' Tc=45.9 min CN=77 Runoff=16.72 cfs 2.574 af

SubcatchmentPOST 1.4: WATERSHED Runoff Area=214,764 sf 85.05% Impervious Runoff Depth>6.35" Flow Length=717' Tc=7.5 min CN=94 Runoff=31.40 cfs 2.610 af

SubcatchmentPOST 2.0: WATERSHED 2.0 Runoff Area=49,290 sf 80.99% Impervious Runoff Depth>6.24" Flow Length=758' Tc=5.0 min CN=93 Runoff=7.66 cfs 0.588 af

Reach REACH 1.0: RESTORED Avg. Flow Depth=0.86' Max Vel=2.20 fps Inflow=14.27 cfs 2.076 af n=0.040 L=1,309.0' S=0.0092 '/' Capacity=2,720.29 cfs Outflow=7.67 cfs 2.061 af

Pond POND 1.0: GRAVEL WETLAND 1 Peak Elev=47.21' Storage=92,932 cf Inflow=58.40 cfs 5.309 af Primary=19.23 cfs 2.787 af Secondary=24.16 cfs 0.988 af Outflow=43.41 cfs 3.776 af

Pond POND 1.1: GRAVEL WETLAND 2 Peak Elev=55.71' Storage=68,356 cf Inflow=29.42 cfs 2.517 af Outflow=4.20 cfs 0.981 af

Pond POND 1.2: PDMH203 Peak Elev=50.86' Inflow=14.27 cfs 2.076 af 48.0" Round Culvert n=0.013 L=269.0' S=0.0050 '/' Outflow=14.27 cfs 2.076 af

Pond POND 1.3: OUTLET CULVERTS

Peak Elev=39.33' Storage=19,198 cf Inflow=67.56 cfs 10.378 af

Primary=66.14 cfs 10.071 af Secondary=0.00 cfs 0.000 af Outflow=66.14 cfs 10.071 af

Pond POND 1.4: RAINGARDEN1.0 Peak Elev=48.89' Storage=58,248 cf Inflow=31.40 cfs 2.610 af Primary=7.29 cfs 1.966 af Secondary=0.00 cfs 0.000 af Outflow=7.29 cfs 1.966 af

Link LINK 1.0: PDMH203 TAILWATER Inflow=4.20 cfs 0.981 af Primary=4.20 cfs 0.981 af

Link PA1: POINT OF ANALYSIS

Inflow=66.14 cfs 10.071 af
Primary=66.14 cfs 10.071 af

Link PA2: POINT OF ANALYSISInflow=7.66 cfs 0.588 af Primary=7.66 cfs 0.588 af

Total Runoff Area = 31.609 ac Runoff Volume = 14.693 af Average Runoff Depth = 5.58" 39.63% Pervious = 12.527 ac 60.37% Impervious = 19.083 ac

Printed 6/6/2023

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 18

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPOST 1.0: WATERSHED Runoff Area=462,599 sf 72.19% Impervious Runoff Depth>7.37" Flow Length=933' Tc=11.4 min CN=91 Runoff=70.91 cfs 6.521 af

SubcatchmentPOST 1.1: WATERSHED Runoff Area=242,496 sf 58.73% Impervious Runoff Depth>6.77" Flow Length=750' Tc=10.3 min CN=86 Runoff=36.28 cfs 3.140 af

SubcatchmentPOST 1.2: WATERSHED Runoff Area=101,204 sf 62.15% Impervious Runoff Depth>7.01" Flow Length=1,191' Tc=6.4 min CN=88 Runoff=17.48 cfs 1.358 af

SubcatchmentPOST 1.3: WATERSHED Runoff Area=306,549 sf 22.64% Impervious Runoff Depth>5.65" Flow Length=1,525' Tc=45.9 min CN=77 Runoff=21.42 cfs 3.313 af

SubcatchmentPOST 1.4: WATERSHED Runoff Area=214,764 sf 85.05% Impervious Runoff Depth>7.73" Flow Length=717' Tc=7.5 min CN=94 Runoff=37.84 cfs 3.177 af

SubcatchmentPOST 2.0: WATERSHED 2.0 Runoff Area=49,290 sf 80.99% Impervious Runoff Depth>7.62" Flow Length=758' Tc=5.0 min CN=93 Runoff=9.25 cfs 0.718 af

Reach REACH 1.0: RESTORED Avg. Flow Depth=0.90' Max Vel=2.19 fps Inflow=17.48 cfs 2.679 af n=0.040 L=1,309.0' S=0.0092 '/' Capacity=2,720.29 cfs Outflow=10.33 cfs 2.662 af

Pond POND 1.0: GRAVEL WETLAND 1 Peak Elev=47.48' Storage=98,793 cf Inflow=70.91 cfs 6.521 af Primary=19.73 cfs 3.345 af Secondary=38.14 cfs 1.616 af Outflow=57.87 cfs 4.961 af

Pond POND 1.1: GRAVEL WETLAND 2 Peak Elev=56.45' Storage=83,107 cf Inflow=36.28 cfs 3.140 af Outflow=6.58 cfs 1.321 af

Pond POND 1.2: PDMH203 Peak Elev=51.03' Inflow=17.48 cfs 2.679 af 48.0" Round Culvert n=0.013 L=269.0' S=0.0050 '/' Outflow=17.48 cfs 2.679 af

Pond POND 1.3: OUTLET CULVERTS Peak Elev=39.77' Storage=24,643 cf Inflow=87.04 cfs 13.437 af Primary=83.35 cfs 13.109 af Secondary=0.00 cfs 0.000 af Outflow=83.35 cfs 13.109 af

Pond POND 1.4: RAINGARDEN1.0 Peak Elev=49.56' Storage=69,290 cf Inflow=37.84 cfs 3.177 af Primary=7.69 cfs 2.462 af Secondary=1.60 cfs 0.039 af Outflow=9.29 cfs 2.500 af

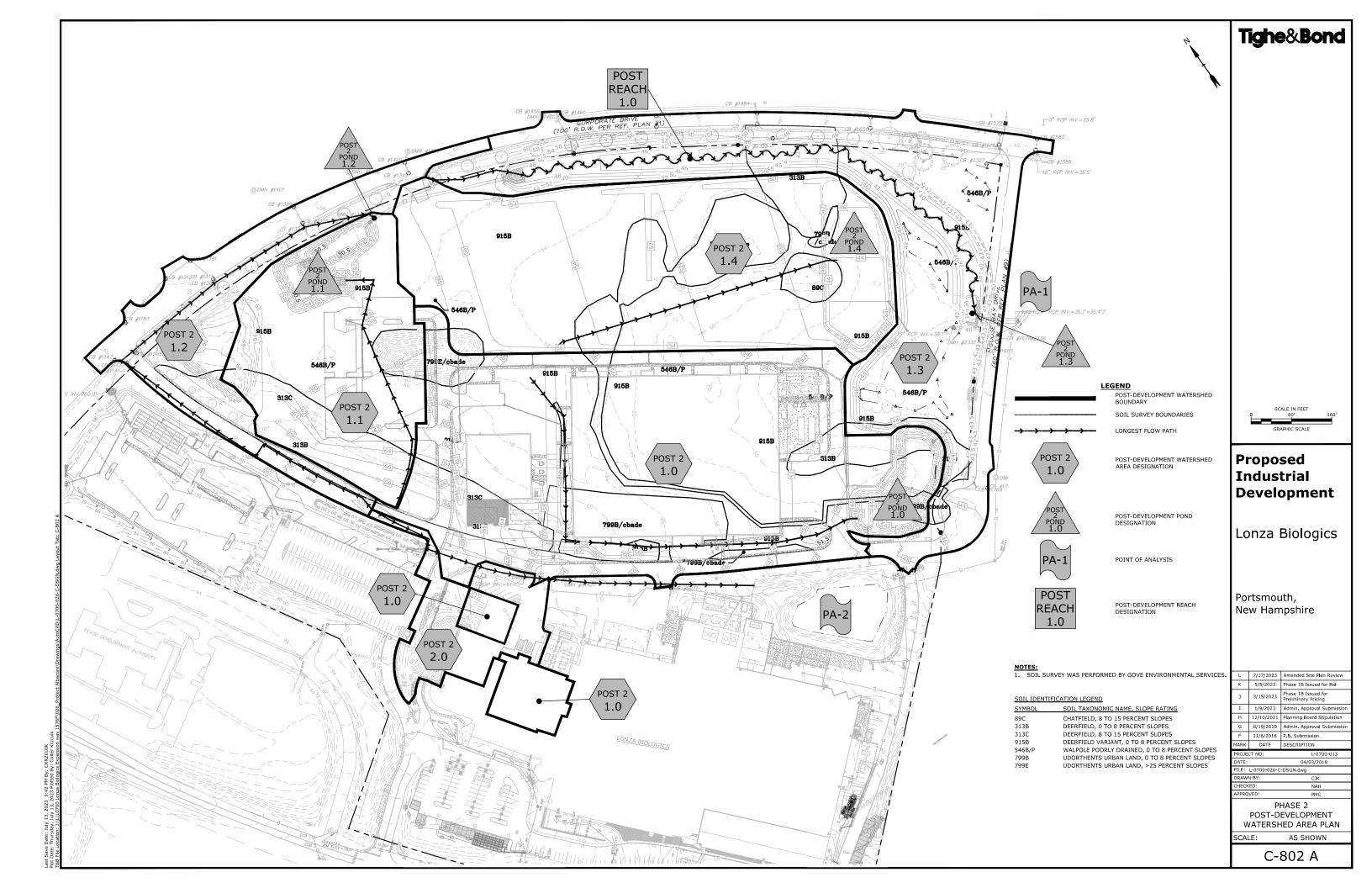
Link LINK 1.0: PDMH203 TAILWATER

Inflow=6.58 cfs 1.321 af
Primary=6.58 cfs 1.321 af

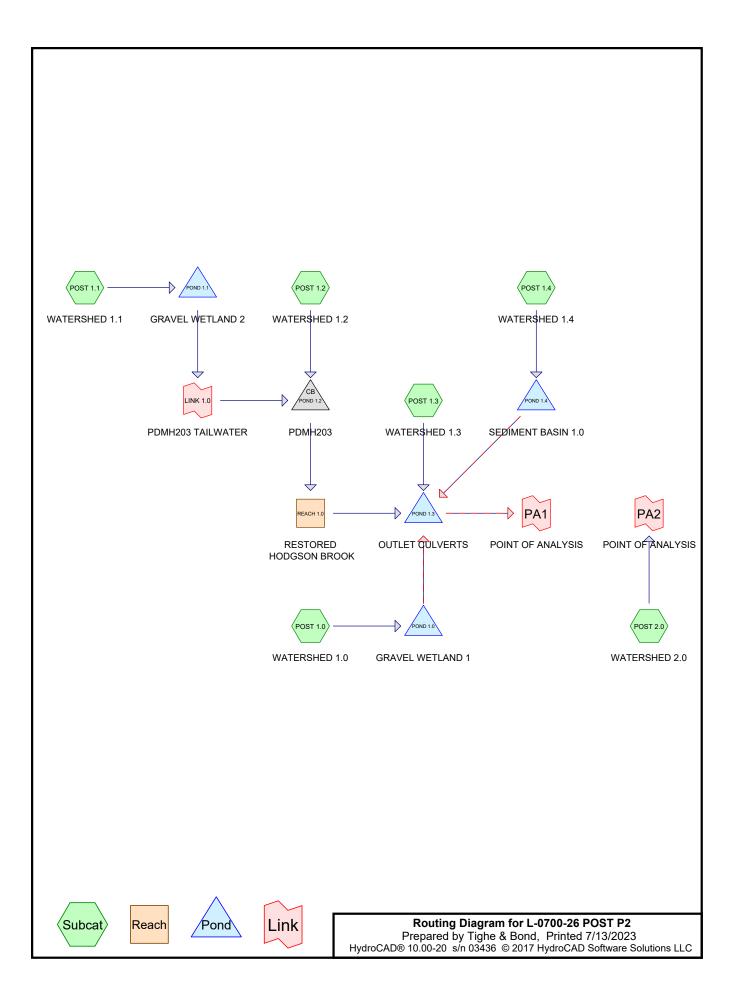
Link PA1: POINT OF ANALYSIS

Inflow=83.35 cfs 13.109 af
Primary=83.35 cfs 13.109 af

Link PA2: POINT OF ANALYSIS


Inflow=9.25 cfs 0.718 af
Primary=9.25 cfs 0.718 af

Total Runoff Area = 31.609 ac Runoff Volume = 18.227 af Average Runoff Depth = 6.92" 39.63% Pervious = 12.527 ac 60.37% Impervious = 19.083 ac


1.3.2 Phase 2 Post-Development Conditions

Phase 2 includes the fit up of Building #1's shell, central utility building, surface parking lot, temporary gravel construction laydown area, as well as the associated site improvement including drive aisles, utilities, lighting and sidewalks. The Phase 2 post-development condition was analyzed by dividing the watersheds into six sub-catchment areas. Stormwater runoff from these sub-catchment areas flow to either one of the two gravel wetlands, temporary sediment basin or the reconstructed Hodgson Brook prior to discharging to the existing Hodgson Brook outlet. Flows from these sub-catchment areas are modeled at the same two points of analysis that were modeled in the pre-development analysis, PA1 and PA2. These points of analysis and sub-catchment areas are depicted on the plan entitled "Phase 2 Post-Development Watershed Plan", Sheet C-802 A.

1.3.2.1 Phase 2 Post-Development Watershed Plan

1.3.2.2 Phase 2 Post-Development Calculations

Area Listing (all nodes)

	Area cres)	CN	Description (subcatchment-numbers)
2	312	61	>75% Grass cover, Good, HSG B (POST 1.0, POST 1.1, POST 1.2, POST 1.3, POST 1.4)
13	.558	74	>75% Grass cover, Good, HSG C (POST 1.0, POST 1.1, POST 1.2, POST 1.3, POST 1.4, POST 2.0)
1	.467	80	>75% Grass cover, Good, HSG D (POST 1.0, POST 1.3, POST 1.4)
0	.514	58	Meadow, non-grazed, HSG B (POST 1.3)
1	.662	71	Meadow, non-grazed, HSG C (POST 1.3)
0	.639	98	Paved parking, HSG B (POST 1.0, POST 1.1, POST 1.2, POST 1.3)
6	5.959	98	Paved parking, HSG C (POST 1.0, POST 1.1, POST 1.2, POST 1.3, POST 1.4, POST 2.0)
0	.137	98	Paved parking, HSG D (POST 1.0, POST 1.3)
0	.120	98	Roofs, HSG B (POST 1.0)
3	5.526	98	Roofs, HSG C (POST 1.0, POST 2.0)
0	.714	98	Roofs, HSG D (POST 1.0)
31	1.609	82	TOTAL AREA

Prepared by Tighe & Bond HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Printed 7/13/2023 Page 3

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
3.586	HSG B	POST 1.0, POST 1.1, POST 1.2, POST 1.3, POST 1.4
25.705	HSG C	POST 1.0, POST 1.1, POST 1.2, POST 1.3, POST 1.4, POST 2.0
2.318	HSG D	POST 1.0, POST 1.3, POST 1.4
0.000	Other	
31.609		TOTAL AREA

Printed 7/13/2023

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 4

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPOST 1.0: WATERSHED Runoff Area=440,332 sf 71.42% Impervious Runoff Depth>2.61" Flow Length=933' Tc=11.4 min CN=90 Runoff=25.38 cfs 2.201 af

SubcatchmentPOST 1.1: WATERSHED Runoff Area=157,428 sf 30.68% Impervious Runoff Depth>1.63" Flow Length=464' Tc=8.3 min CN=78 Runoff=6.25 cfs 0.492 af

SubcatchmentPOST 1.2: WATERSHED Runoff Area=113,979 sf 58.28% Impervious Runoff Depth>2.34" Flow Length=1,191' Tc=6.4 min CN=87 Runoff=6.94 cfs 0.511 af

SubcatchmentPOST 1.3: WATERSHED Runoff Area=300,100 sf 23.27% Impervious Runoff Depth>1.62" Flow Length=1,525' Tc=45.9 min CN=78 Runoff=5.96 cfs 0.929 af

SubcatchmentPOST 1.4: WATERSHED1.4 Runoff Area=315,727 sf 0.42% Impervious Runoff Depth>1.36" Flow Length=585' Tc=13.5 min CN=74 Runoff=8.76 cfs 0.822 af

SubcatchmentPOST 2.0: WATERSHED 2.0 Runoff Area = 49,336 sf 53.76% Impervious Runoff Depth > 2.34" Flow Length = 758' Tc = 5.0 min CN = 87 Runoff = 3.10 cfs 0.221 af

Reach REACH 1.0: RESTOREDAvg. Flow Depth=0.63' Max Vel=2.08 fps Inflow=6.94 cfs 0.511 af n=0.040 L=1,309.0' S=0.0092 '/' Capacity=2,720.29 cfs Outflow=4.97 cfs 0.507 af

Pond POND 1.0: GRAVEL WETLAND 1 Peak Elev=46.02' Storage=67,987 cf Inflow=25.38 cfs 2.201 af Primary=0.96 cfs 0.874 af Secondary=0.00 cfs 0.000 af Outflow=0.96 cfs 0.874 af

Pond POND 1.1: GRAVEL WETLAND 2 Peak Elev=52.38' Storage=21,415 cf Inflow=6.25 cfs 0.492 af Outflow=0.00 cfs 0.000 af

Pond POND 1.2: PDMH203 Peak Elev=50.38' Inflow=6.94 cfs 0.511 af 48.0" Round Culvert n=0.013 L=269.0' S=0.0050 '/' Outflow=6.94 cfs 0.511 af

Pond POND 1.3: OUTLET CULVERTS Peak Elev=38.16' Storage=8,981 cf Inflow=9.25 cfs 3.060 af Primary=9.25 cfs 2.856 af Secondary=0.00 cfs 0.000 af Outflow=9.25 cfs 2.856 af

Pond POND 1.4: SEDIMENT BASIN 1.0 Peak Elev=44.62' Storage=21,007 cf Inflow=8.76 cfs 0.822 af Primary=0.51 cfs 0.751 af Secondary=0.00 cfs 0.000 af Outflow=0.51 cfs 0.751 af

Link LINK 1.0: PDMH203 TAILWATER Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af

Link PA1: POINT OF ANALYSIS

Inflow=9.25 cfs 2.856 af
Primary=9.25 cfs 2.856 af

Link PA2: POINT OF ANALYSIS

Inflow=3.10 cfs 0.221 af
Primary=3.10 cfs 0.221 af

Total Runoff Area = 31.609 ac Runoff Volume = 5.176 af Average Runoff Depth = 1.96" 61.73% Pervious = 19.513 ac 38.27% Impervious = 12.096 ac

Printed 7/13/2023

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 5

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPOST 1.0: WATERSHED Runoff Area=440,332 sf 71.42% Impervious Runoff Depth>4.43" Flow Length=933' Tc=11.4 min CN=90 Runoff=42.01 cfs 3.732 af

SubcatchmentPOST 1.1: WATERSHED Runoff Area=157,428 sf 30.68% Impervious Runoff Depth>3.21" Flow Length=464' Tc=8.3 min CN=78 Runoff=12.40 cfs 0.966 af

SubcatchmentPOST 1.2: WATERSHED Runoff Area=113,979 sf 58.28% Impervious Runoff Depth>4.11" Flow Length=1,191' Tc=6.4 min CN=87 Runoff=11.94 cfs 0.897 af

SubcatchmentPOST 1.3: WATERSHED Runoff Area=300,100 sf 23.27% Impervious Runoff Depth>3.18" Flow Length=1,525' Tc=45.9 min CN=78 Runoff=11.87 cfs 1.826 af

SubcatchmentPOST 1.4: WATERSHED 1.4 Runoff Area=315,727 sf 0.42% Impervious Runoff Depth>2.83" Flow Length=585' Tc=13.5 min CN=74 Runoff=18.77 cfs 1.708 af

SubcatchmentPOST 2.0: WATERSHED 2.0 Runoff Area = 49,336 sf 53.76% Impervious Runoff Depth > 4.11" Flow Length = 758' Tc = 5.0 min CN = 87 Runoff = 5.36 cfs 0.388 af

Reach REACH 1.0: RESTORED Avg. Flow Depth=0.82' Max Vel=2.20 fps Inflow=11.94 cfs 0.897 af n=0.040 L=1,309.0' S=0.0092 '/' Capacity=2,720.29 cfs Outflow=6.12 cfs 0.891 af

Pond POND 1.0: GRAVELWETLAND 1 Peak Elev=46.78' Storage=83,438 cf Inflow=42.01 cfs 3.732 af Primary=9.22 cfs 2.105 af Secondary=5.86 cfs 0.170 af Outflow=15.08 cfs 2.275 af

Pond POND 1.1: GRAVEL WETLAND 2 Peak Elev=54.11' Storage=42,049 cf Inflow=12.40 cfs 0.966 af Outflow=0.00 cfs 0.000 af

Pond POND 1.2: PDMH203 Peak Elev=50.72' Inflow=11.94 cfs 0.897 af 48.0" Round Culvert n=0.013 L=269.0' S=0.0050 '/' Outflow=11.94 cfs 0.897 af

Pond POND 1.3: OUTLET CULVERTS

Peak Elev=38.77' Storage=13,560 cf Inflow=31.34 cfs 5.942 af

Primary=31.22 cfs 5.655 af Secondary=0.00 cfs 0.000 af Outflow=31.22 cfs 5.655 af

Pond POND 1.4: SEDIMENT BASIN 1.0 Peak Elev=45.79' Storage=50,580 cf Inflow=18.77 cfs 1.708 af Primary=0.68 cfs 0.950 af Secondary=0.00 cfs 0.000 af Outflow=0.68 cfs 0.950 af

Link LINK 1.0: PDMH203 TAILWATER Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af

Link PA1: POINT OF ANALYSIS

Inflow=31.22 cfs 5.655 af

Primary=31.22 cfs 5.655 af

Link PA2: POINT OF ANALYSIS

Inflow=5.36 cfs 0.388 af
Primary=5.36 cfs 0.388 af

Total Runoff Area = 31.609 ac Runoff Volume = 9.517 af Average Runoff Depth = 3.61" 61.73% Pervious = 19.513 ac 38.27% Impervious = 12.096 ac

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Printed 7/13/2023 Page 6

Summary for Subcatchment POST 1.0: WATERSHED 1.0

Runoff = 42.01 cfs @ 12.16 hrs, Volume= 3.732 af, Depth> 4.43"

A	rea (sf)	CN D	escription					
	5,235							
	29,148		, ,					
	18,966		1 0,					
	43,455 82,022		,		ood, HSG C			
	10,236			ing, HSG C				
	31,119		loofs, HSC		,			
	14,671				ood, HSG D			
	5,480			ing, HSG D				
	40,332		Veighted A					
	25,841			rvious Area				
3	314,491	7	1.42% Imp	pervious Ar	ea			
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	'			
7.7	70	0.0150	0.15		Sheet Flow,			
					Grass: Short n= 0.150 P2= 3.68"			
0.2	32	0.0200	2.87		Shallow Concentrated Flow,			
0.1	19	0.0200	2.12		Paved Kv= 20.3 fps Shallow Concentrated Flow,			
0.1	19	0.0200	2.12		Grassed Waterway Kv= 15.0 fps			
0.8	162	0.0050	3.21	2.52				
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'			
					n= 0.013 Corrugated PE, smooth interior			
0.4	84	0.0050	3.21	2.52				
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'			
0.5	113	0.0050	3.72	4.57	n= 0.013 Pipe Channel,			
0.5	110	0.0000	5.12	4.51	15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31'			
					n= 0.013			
1.2	299	0.0050	4.20	7.43	Pipe Channel,			
					18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'			
					n= 0.013			
0.4	94	0.0050	4.20	7.43	Pipe Channel,			
					18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38' n= 0.013			
0.1	46	0.0240	11.16	35.05	Pipe Channel,			
0.1	70	0.0240	11.10	00.00	24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'			
					n= 0.013			
0.0	5	0.0800	7.16	0.98	Pipe Channel,			
					5.0" Round Area= 0.1 sf Perim= 1.3' r= 0.10'			
0.0	•	0.0440	0.00	60.05	n= 0.013			
0.0	9	0.0110	9.90	69.95	Pipe Channel,			

Prepared by Tighe & Bond

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Printed 7/13/2023

Page 7

36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75'

n= 0.013

11.4 933 Total

Summary for Subcatchment POST 1.1: WATERSHED 1.1

Runoff = 12.40 cfs @ 12.12 hrs, Volume= 0.966 af, Depth> 3.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Year Rainfall=5.58"

	Α	rea (sf)	CN E	escription		
	36,403 61 >75% Grass cover, Goo					ood, HSG B
		3,210	98 F	aved park	ing, HSG E	3
		72,719	74 >	75% Gras	s cover, Go	ood, HSG C
_		45,096	98 F	aved park	ing, HSG C	
	1	57,428	78 V	Veighted A	verage	
	1	09,122	6	9.32% Per	vious Area	l
		48,306	3	0.68% Imp	ervious Ar	ea
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	5.8	100	0.0625	0.29		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.68"
	2.2	312	0.0220	2.39		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.3	33	0.0150	1.84		Shallow Concentrated Flow,
						Grassed Waterway Kv= 15.0 fps
	0.0	19	0.3300	8.62		Shallow Concentrated Flow,
_						Grassed Waterway Kv= 15.0 fps
	8.3	464	Total			

Summary for Subcatchment POST 1.2: WATERSHED 1.2

Runoff = 11.94 cfs @ 12.09 hrs, Volume= 0.897 af, Depth> 4.11"

Area	a (sf)	CN	Description
g	9,848	61	>75% Grass cover, Good, HSG B
4	1,784	98	Paved parking, HSG B
37	7,701	74	>75% Grass cover, Good, HSG C
61	1,646	98	Paved parking, HSG C
113	3,979	87	Weighted Average
47	7,549		41.72% Pervious Area
66	3,430		58.28% Impervious Area

Prepared by Tighe & Bond

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Printed 7/13/2023 Page 8

	Tc	Length	Slope	Velocity (ft/sec)	Capacity	Description
_	(min)	(feet)	(ft/ft)	(II/Sec)	(cfs)	
	1.5	100	0.0100	1.12		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.68"
	1.0	153	0.0150	2.49		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	1.6	343	0.0050	3.47	2.73	Pipe Channel,
						12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
						n= 0.012 Concrete pipe, finished
	0.1	13	0.0050	3.72	4.57	Pipe Channel,
						15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31'
						n= 0.013 Corrugated PE, smooth interior
	1.8	453	0.0050	4.20	7.43	Pipe Channel,
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
						n= 0.013 Corrugated PE, smooth interior
	0.4	129	0.0050	5.91	29.00	Pipe Channel,
						30.0" Round Area= 4.9 sf Perim= 7.9' r= 0.63'
						n= 0.013 Corrugated PE, smooth interior
_	6.4	1 191	Total			·

Summary for Subcatchment POST 1.3: WATERSHED 1.3

Runoff = 11.87 cfs @ 12.63 hrs, Volume= 1.826 af, Depth> 3.18"

A	rea (sf)	CN E	escription							
	1,830	61 >	61 >75% Grass cover, Good, HSG B							
	22,404	58 N	leadow, no	HSG B						
	896	98 F	aved park	ing, HSG B	3					
1	31,991				ood, HSG C					
	68,446			ing, HSG C						
	72,396			on-grazed,						
	1,638				ood, HSG D					
	499	98 F	aved park	ing, HSG D)					
	300,100		Veighted A							
	230,259		-	vious Area						
	69,841	2	3.27% lmp	ervious Ar	ea					
-	1	01	V/-1	0	December 1999					
Tc	Length	Slope	Velocity	Capacity	Description					
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)						
10.9	100	0.0130	0.15		Sheet Flow,					
4.4	50	0.0400	0.00		Grass: Short n= 0.150 P2= 3.68"					
1.1	52	0.0130	0.80		Shallow Concentrated Flow,					
0.4	07	0.0700	7.00		Short Grass Pasture Kv= 7.0 fps					
0.1	27	0.2720	7.82		Shallow Concentrated Flow,					
22.0	1 246	0.0000	0.66		Grassed Waterway Kv= 15.0 fps					
33.8	1,346	0.0090	0.66		Shallow Concentrated Flow,					
45.0	4 505	T.4.1			Short Grass Pasture Kv= 7.0 fps					
45.9	1,525	Total								

Printed 7/13/2023

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 9

Summary for Subcatchment POST 1.4: WATERSHED 1.4

Runoff = 18.77 cfs @ 12.19 hrs, Volume= 1.708 af, Depth> 2.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Year Rainfall=5.58"

A	rea (sf)	CN E	CN Description						
	23,477	61 >	75% Gras	s cover, Go	ood, HSG B				
2	43,330	74 >	75% Gras	s cover, Go	ood, HSG C				
	1,334	98 F	Paved park	ing, HSG C					
	47,586	80 >	·75% Gras	s cover, Go	ood, HSG D				
	0	96 (Gravel surfa	ace, HSG [)				
3	15,727	74 V	Veighted A	verage					
3	14,393	9	9.58% Pei	vious Area					
	1,334	0	.42% Impe	ervious Are	a				
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
8.4	100	0.0245	0.20		Sheet Flow,				
					Grass: Short n= 0.150 P2= 3.68"				
5.1	465	0.0103	1.52		Shallow Concentrated Flow,				
					Grassed Waterway Kv= 15.0 fps				
0.0	20	0.3300	8.62		Shallow Concentrated Flow,				
					Grassed Waterway Kv= 15.0 fps				
13.5	585	Total							

Summary for Subcatchment POST 2.0: WATERSHED 2.0

[49] Hint: Tc<2dt may require smaller dt

Runoff = 5.36 cfs @ 12.07 hrs, Volume= 0.388 af, Depth> 4.11"

 Area (sf)	CN	Description				
10,145	98	Roofs, HSG C				
22,815	74	>75% Grass cover, Good, HSG C				
 16,376	98	Paved parking, HSG C				
49,336	87	Weighted Average				
22,815		46.24% Pervious Area				
26,521		53.76% Impervious Area				

Prepared by Tighe & Bond

Printed 7/13/2023

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 10

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	1.2	100	0.0164	1.36	, ,	Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.68"
	0.3	48	0.0164	2.60		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	0.3	130	0.0140	7.03	12.43	Pipe Channel,
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
						n= 0.013
	0.5	70	0.0250	2.37		Shallow Concentrated Flow,
						Grassed Waterway Kv= 15.0 fps
	1.3	410	0.0050	5.09	16.00	Pipe Channel,
						24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
						n= 0.013
	3.6	758	Total I	ncreased t	o minimum	Tc = 5.0 min

758 Total, Increased to minimum Tc = 5.0 min

Summary for Reach REACH 1.0: RESTORED HODGSON BROOK

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=2)

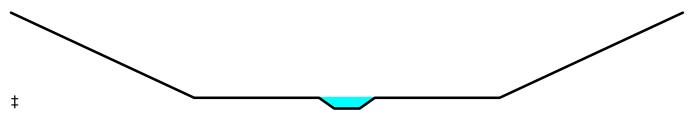
Inflow Area = 6.231 ac, 42.27% Impervious, Inflow Depth > 1.73" for 10 Year event

Inflow = 11.94 cfs @ 12.09 hrs, Volume= 0.897 af

Outflow = 6.12 cfs @ 12.86 hrs, Volume= 0.891 af, Atten= 49%, Lag= 45.9 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.20 fps, Min. Travel Time= 9.9 min Avg. Velocity = 0.85 fps, Avg. Travel Time= 25.6 min


Peak Storage= 6,846 cf @ 12.27 hrs Average Depth at Peak Storage= 0.82'

Bank-Full Depth= 6.75' Flow Area= 291.0 sf, Capacity= 2,720.29 cfs

Custom cross-section, Length= 1,309.0' Slope= 0.0092 '/' (101 Elevation Intervals)

Constant n= 0.040 Winding stream, pools & shoals

Inlet Invert= 48.00', Outlet Invert= 36.00'

Prepared by Tighe & Bond

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 11

Offset	Elevation	Chan.Depth
(feet)	(feet)	(feet)
0.00	12.00	0.00
18.00	6.00	6.00
30.25	6.00	6.00
31.75	5.25	6.75
34.25	5.25	6.75
35.75	6.00	6.00
48.00	6.00	6.00
66.00	12.00	0.00

Depth	End Area	Perim.	Storage	Discharge
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cfs)
0.00	0.0	2.5	0	0.00
0.75	3.0	30.4	3,927	2.28
6.75	291.0	68.3	380,919	2,720.29

Summary for Pond POND 1.0: GRAVEL WETLAND 1

[95] Warning: Outlet Device #4 rise exceeded

10.109 ac, 71.42% Impervious, Inflow Depth > 4.43" for 10 Year event Inflow Area =

Inflow 42.01 cfs @ 12.16 hrs, Volume= 3.732 af

2.275 af, Atten= 64%, Lag= 20.8 min Outflow 15.08 cfs @ 12.50 hrs, Volume=

9.22 cfs @ 12.50 hrs, Volume= 2.105 af Primary 5.86 cfs @ 12.50 hrs, Volume= 0.170 af Secondary =

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 46.78' @ 12.50 hrs Surf.Area= 21,240 sf Storage= 83,438 cf Flood Elev= 48.00' Surf.Area= 23,557 sf Storage= 110,845 cf

Plug-Flow detention time= 226.3 min calculated for 2.275 af (61% of inflow)

Center-of-Mass det. time= 125.2 min (916.2 - 791.0)

Volume	Invert	Avail.	.Storage	Storage Descrip	otion	
#1	39.05'	11	0,845 cf	Custom Stage	Data (Prismatic)Listed below (Recalc)
Elevation	Curf /	roo	Voida	Ina Stara	Cum Storo	
Elevation	Surf. <i>F</i>		Voids	Inc.Store	Cum.Store	
(feet)	(s	q-ft)	(%)	(cubic-feet)	(cubic-feet)	
39.05	9,	855	0.0	0	0	
41.35	9,	855	30.0	6,800	6,800	
42.00	9,	855	45.0	2,883	9,683	
43.00	11,	943	100.0	10,899	20,582	
44.00	14,	202	100.0	13,073	33,654	
45.00	16,	891	100.0	15,547	49,201	
46.00	19,	752	100.0	18,322	67,522	
47.00	21,	668	100.0	20,710	88,232	
48.00	23,	557	100.0	22,613	110,845	

Prepared by Tighe & Bond

Printed 7/13/2023

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 12

Device	Routing	Invert	Outlet Devices
#1	Primary	41.35'	18.0" Round Culvert
	-		L= 30.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 41.35' / 41.20' S= 0.0050 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf
#2	Device 1	41.35'	3.5" Vert. Orifice/Grate C= 0.600
#3	Device 1	45.00'	3.0" Vert. Orifice/Grate C= 0.600
#4	Device 1	46.00'	4.0' long x 0.50' rise Sharp-Crested Rectangular Weir
			2 End Contraction(s) 0.5' Crest Height
#5	Device 1	47.00'	4.0" x 4.0" Horiz. Orifice/Grate X 106.00 C= 0.600
			Limited to weir flow at low heads
#6	Secondary	46.50'	15.0' long x 15.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=9.22 cfs @ 12.50 hrs HW=46.78' TW=38.77' (Dynamic Tailwater)

_1=Culvert (Passes 9.22 cfs of 18.40 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.74 cfs @ 11.06 fps)

—3=Orifice/Grate (Orifice Controls 0.30 cfs @ 6.19 fps)

-4=Sharp-Crested Rectangular Weir (Orifice Controls 8.17 cfs @ 4.19 fps)

-5=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=5.85 cfs @ 12.50 hrs HW=46.78' TW=38.77' (Dynamic Tailwater) 6=Broad-Crested Rectangular Weir (Weir Controls 5.85 cfs @ 1.41 fps)

Summary for Pond POND 1.1: GRAVEL WETLAND 2

Inflow Area = 3.614 ac, 30.68% Impervious, Inflow Depth > 3.21" for 10 Year event

Inflow = 12.40 cfs @ 12.12 hrs, Volume= 0.966 af

Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 100%, Lag= 0.0 min

Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 54.11' @ 24.00 hrs Surf.Area= 14,115 sf Storage= 42,049 cf

Flood Elev= 57.00' Surf.Area= 21,643 sf Storage= 94,743 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow)

Center-of-Mass det. time= (not calculated: no outflow)

Volume	Invert	Avail.Storage	Storage Description
#1	47.55'	117,304 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Prepared by Tighe & Bond

Printed 7/13/2023

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 13

Elevation	Surf.Area	Voids	Inc.Store	Cum.Store
(feet)	(sq-ft)	(%)	(cubic-feet)	(cubic-feet)
47.55	6,269	0.0	0	0
49.85	6,269	30.0	4,326	4,326
50.50	6,269	45.0	1,834	6,159
51.00	7,199	100.0	3,367	9,526
52.00	9,187	100.0	8,193	17,719
53.00	11,345	100.0	10,266	27,985
54.00	13,814	100.0	12,580	40,565
55.00	16,645	100.0	15,230	55,794
56.00	19,805	100.0	18,225	74,019
58.00	23,480	100.0	43,285	117,304

Device	Routing	Invert	Outlet Devices
#1	Primary	49.85'	24.0" Round Culvert
	•		L= 12.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 49.85' / 49.45' S= 0.0333 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf
#2	Device 1	49.85'	2.0" Vert. Orifice/Grate C= 0.600
#3	Device 1	53.50'	4.0' long x 2.00' rise Sharp-Crested Rectangular Weir
			2 End Contraction(s)
#4	Device 1	56.50'	4.0" x 4.0" Horiz. Orifice/Grate X 106.00 C= 0.600
			I imited to weir flow at low heads

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=47.55' TW=55.07' (Dynamic Tailwater)

-1=Culvert (Controls 0.00 cfs)

2=Orifice/Grate (Controls 0.00 cfs)

-3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

-4=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond POND 1.2: PDMH203

Inflow Area = 6.231 ac, 42.27% Impervious, Inflow Depth > 1.73" for 10 Year event

Inflow = 11.94 cfs @ 12.09 hrs, Volume= 0.897 af

Outflow = 11.94 cfs @ 12.09 hrs, Volume= 0.897 af, Atten= 0%, Lag= 0.0 min

Primary = 11.94 cfs @ 12.09 hrs, Volume= 0.897 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Peak Elev= 50.72' @ 12.09 hrs

Flood Elev= 57.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	49.35'	48.0" Round Culvert
			L= 269.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 49.35' / 48.00' S= 0.0050 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 12.57 sf

Primary OutFlow Max=11.76 cfs @ 12.09 hrs HW=50.71' TW=48.76' (Dynamic Tailwater) 1=Culvert (Inlet Controls 11.76 cfs @ 3.13 fps)

Printed 7/13/2023

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 14

Summary for Pond POND 1.3: OUTLET CULVERTS

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=12) [62] Hint: Exceeded Reach REACH 1.0 OUTLET depth by 2.58' @ 23.95 hrs

Inflow Area = 30.477 ac, 37.69% Impervious, Inflow Depth > 2.34" for 10 Year event

Inflow = 31.34 cfs @ 12.51 hrs, Volume= 5.942 af

Outflow = 31.22 cfs @ 12.53 hrs, Volume= 5.655 af, Atten= 0%, Lag= 1.3 min

Primary = 31.22 cfs @ 12.53 hrs, Volume= 5.655 af Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 38.77' @ 12.53 hrs Surf.Area= 8,870 sf Storage= 13.560 cf

Flood Elev= 43.50' Surf.Area= 95,977 sf Storage= 236,017 cf

Plug-Flow detention time= 56.2 min calculated for 5.642 af (95% of inflow)

Center-of-Mass det. time= 29.8 min (900.3 - 870.4)

Volume	Invert	Avail.Storage	Storage Description
#1	35.00'	236,017 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
35.00	960	0	0
36.00	1,428	1,194	1,194
38.00	5,418	6,846	8,040
40.00	14,354	19,772	27,812
42.00	66,884	81,238	109,050
43.00	92,707	79,796	188,846
43.50	95,977	47,171	236,017

Device	Routing	Invert	Outlet Devices
#1	Primary	35.60'	42.0" W x 29.0" H, R=21.5"/66.1" Pipe Arch CMP_Arch_1/2 42x29 X 3.00
	·		L= 68.0' CMP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 35.60' / 35.30' S= 0.0044 '/' Cc= 0.900
			n= 0.025 Corrugated metal, Flow Area= 6.72 sf
#2	Secondary	43.00'	143.1 deg x 18.0' long x 0.50' rise Sharp-Crested Vee/Trap Weir
	•		Cv = 2.47 (C = 3.09)

Primary OutFlow Max=31.11 cfs @ 12.53 hrs HW=38.77' TW=38.65' (Dynamic Tailwater) 1=CMP Arch 1/2 42x29 (Outlet Controls 31.11 cfs @ 1.55 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=35.04' TW=38.65' (Dynamic Tailwater) 2=Sharp-Crested Vee/Trap Weir (Controls 0.00 cfs)

Volume

48.00

Prepared by Tighe & Bond

Printed 7/13/2023

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 15

Summary for Pond POND 1.4: SEDIMENT BASIN 1.0

Inflow Area = 7.248 ac, 0.42% Impervious, Inflow Depth > 2.83" for 10 Year event Inflow = 18.77 cfs @ 12.19 hrs, Volume= 1.708 af

Outflow = 0.68 cfs @ 17.24 hrs, Volume= 0.950 af, Atten= 96%, Lag= 303.1 min

Primary = 0.68 cfs @ 17.24 hrs, Volume= 0.950 af Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Starting Elev= 44.15' Surf.Area= 18,132 sf Storage= 11,702 cf

Peak Elev= 45.79' @ 17.24 hrs Surf.Area= 29,244 sf Storage= 50,580 cf (38,878 cf above start)

Flood Elev= 48.50' Surf.Area= 38,802 sf Storage= 127,441 cf (115,739 cf above start)

Avail.Storage Storage Description

37,341

Plug-Flow detention time= 356.9 min calculated for 0.681 af (40% of inflow)

Center-of-Mass det. time= 9.2 min (846.8 - 837.5)

38,802

Invert

#1	43.00' 127	7,441 cf Custom	Stage Data (Pr	ismatic)Listed below (Recalc)
Elevation	Surf.Area	Inc.Store	Cum.Store	
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	
43.00	1,000	0	0	
44.00	17,117	9,059	9,059	
46.00	30,657	47,774	56,833	
47.00	35,879	33,268	90,101	

127,441

Device	Routing	Invert	Outlet Devices
#1	Primary	42.75'	12.0" Round Culvert L= 66.0' Ke= 0.500
	•		Inlet / Outlet Invert= 42.75' / 42.40' S= 0.0053 '/' Cc= 0.900
			n= 0.013, Flow Area= 0.79 sf
#2	Device 1	43.00'	4.0" Vert. Orifice/Grate C= 0.600
#3	Device 1	46.80'	10.0" x 17.5" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#4	Secondary	47.40'	Custom Weir/Orifice, Cv= 2.62 (C= 3.28)
			Head (feet) 0.00 1.10
			Width (feet) 8.00 14.60

Primary OutFlow Max=0.68 cfs @ 17.24 hrs HW=45.79' TW=38.65' (Dynamic Tailwater)

-1=Culvert (Passes 0.68 cfs of 5.16 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.68 cfs @ 7.80 fps)

-3=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=44.15' TW=35.04' (Dynamic Tailwater) 4=Custom Weir/Orifice (Controls 0.00 cfs)

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Printed 7/13/2023

Page 16

Summary for Link LINK 1.0: PDMH203 TAILWATER

This link takes into account the tailwater condition in PDMH203 which the outlet of gravel wetland 2 connects. The purpose of this is to determine the effects of any surcharging caused by the tailwater of Hodgson Brook entering the structure. These tailwater elevations were determined by Streamworks, PLLC as part of the overall watershed analysis they performed.

[80] Warning: Exceeded Pond POND 1.1 by 7.52' @ 0.00 hrs (23.95 cfs 41.618 af)

Inflow Area = 3.614 ac, 30.68% Impervious, Inflow Depth = 0.00" for 10 Year event

Inflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

10 Year 25 Point manual elevation table, To= 0.00 hrs, dt= 1.00 hrs, feet =

55.07	55.07	55.07	55.07	55.07	55.07	55.07	55.07	55.07
55.07	55.07	55.07	55.07	55.07	55.07	55.07	55.07	55.07
55 07	55 07	55 07	55 07	55 07	55 07	55 07		

Summary for Link PA1: POINT OF ANALYSIS

This link takes into account the tailwater condition in roadside swale along Goose Bay Drive which the existing culverts discharge into. These tailwater elevations were determined by Streamworks, PLLC as part of the overall watershed analysis they performed.

[80] Warning: Exceeded Pond POND 1.3 by 3.61' @ 0.00 hrs (92.51 cfs 60.023 af)

Inflow Area = 30.477 ac, 37.69% Impervious, Inflow Depth > 2.23" for 10 Year event

Inflow = 31.22 cfs @ 12.53 hrs, Volume= 5.655 af

Primary = 31.22 cfs @ 12.53 hrs, Volume= 5.655 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

10 Year 2 Point manual elevation table, To= 0.00 hrs, dt= 24.00 hrs, feet = 38.65 38.65

Summary for Link PA2: POINT OF ANALYSIS

Inflow Area = 1.133 ac, 53.76% Impervious, Inflow Depth > 4.11" for 10 Year event

Inflow = 5.36 cfs @ 12.07 hrs, Volume= 0.388 af

Primary = 5.36 cfs @ 12.07 hrs, Volume= 0.388 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Printed 7/13/2023

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 17

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPOST 1.0: WATERSHED Runoff Area=440,332 sf 71.42% Impervious Runoff Depth>5.88" Flow Length=933' Tc=11.4 min CN=90 Runoff=54.93 cfs 4.956 af

SubcatchmentPOST 1.1: WATERSHED Runoff Area=157,428 sf 30.68% Impervious Runoff Depth>4.53" Flow Length=464' Tc=8.3 min CN=78 Runoff=17.44 cfs 1.365 af

SubcatchmentPOST 1.2: WATERSHED Runoff Area=113,979 sf 58.28% Impervious Runoff Depth>5.54" Flow Length=1,191' Tc=6.4 min CN=87 Runoff=15.85 cfs 1.209 af

SubcatchmentPOST 1.3: WATERSHED Runoff Area=300,100 sf 23.27% Impervious Runoff Depth>4.50" Flow Length=1,525' Tc=45.9 min CN=78 Runoff=16.75 cfs 2.583 af

SubcatchmentPOST 1.4: WATERSHED 1.4 Runoff Area=315,727 sf 0.42% Impervious Runoff Depth>4.09" Flow Length=585' Tc=13.5 min CN=74 Runoff=27.23 cfs 2.472 af

SubcatchmentPOST 2.0: WATERSHED 2.0 Runoff Area = 49,336 sf 53.76% Impervious Runoff Depth > 5.54" Flow Length = 758' Tc = 5.0 min CN = 87 Runoff = 7.12 cfs 0.523 af

Reach REACH 1.0: RESTOREDAvg. Flow Depth=0.87' Max Vel=2.22 fps Inflow=15.85 cfs 1.209 af n=0.040 L=1,309.0' S=0.0092 '/' Capacity=2,720.29 cfs Outflow=8.65 cfs 1.202 af

Pond POND 1.0: GRAVEL WETLAND 1 Peak Elev=47.10' Storage=90,424 cf Inflow=54.93 cfs 4.956 af Primary=19.03 cfs 2.766 af Secondary=18.86 cfs 0.671 af Outflow=37.88 cfs 3.437 af

Pond POND 1.1: GRAVEL WETLAND 2 Peak Elev=55.22' Storage=59,446 cf Inflow=17.44 cfs 1.365 af Outflow=0.00 cfs 0.000 af

Pond POND 1.2: PDMH203 Peak Elev=50.94' Inflow=15.85 cfs 1.209 af 48.0" Round Culvert n=0.013 L=269.0' S=0.0050 '/' Outflow=15.85 cfs 1.209 af

Pond POND 1.3: OUTLET CULVERTS

Peak Elev=39.17' Storage=17,433 cf Inflow=57.33 cfs 8.292 af

Primary=56.26 cfs 7.985 af Secondary=0.00 cfs 0.000 af Outflow=56.26 cfs 7.985 af

Pond POND 1.4: SEDIMENT BASIN 1.0 Peak Elev=46.65' Storage=77,792 cf Inflow=27.23 cfs 2.472 af Primary=0.78 cfs 1.070 af Secondary=0.00 cfs 0.000 af Outflow=0.78 cfs 1.070 af

Link LINK 1.0: PDMH203 TAILWATER Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af

Link PA1: POINT OF ANALYSIS

Inflow=56.26 cfs 7.985 af
Primary=56.26 cfs 7.985 af

Link PA2: POINT OF ANALYSIS

Inflow=7.12 cfs 0.523 af
Primary=7.12 cfs 0.523 af

Total Runoff Area = 31.609 ac Runoff Volume = 13.108 af Average Runoff Depth = 4.98" 61.73% Pervious = 19.513 ac 38.27% Impervious = 12.096 ac Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPOST 1.0: WATERSHED Runoff Area=440,332 sf 71.42% Impervious Runoff Depth>7.25" Flow Length=933' Tc=11.4 min CN=90 Runoff=66.89 cfs 6.105 af

SubcatchmentPOST 1.1: WATERSHED Runoff Area=157,428 sf 30.68% Impervious Runoff Depth>5.81" Flow Length=464' Tc=8.3 min CN=78 Runoff=22.21 cfs 1.750 af

SubcatchmentPOST 1.2: WATERSHED Runoff Area=113,979 sf 58.28% Impervious Runoff Depth>6.89" Flow Length=1,191' Tc=6.4 min CN=87 Runoff=19.47 cfs 1.503 af

SubcatchmentPOST 1.3: WATERSHED Runoff Area=300,100 sf 23.27% Impervious Runoff Depth>5.77" Flow Length=1,525' Tc=45.9 min CN=78 Runoff=21.37 cfs 3.312 af

SubcatchmentPOST 1.4: WATERSHED 1.4 Runoff Area=315,727 sf 0.42% Impervious Runoff Depth>5.33" Flow Length=585' Tc=13.5 min CN=74 Runoff=35.32 cfs 3.218 af

SubcatchmentPOST 2.0: WATERSHED 2.0 Runoff Area = 49,336 sf 53.76% Impervious Runoff Depth > 6.89" Flow Length = 758' Tc = 5.0 min CN = 87 Runoff = 8.76 cfs 0.651 af

Reach REACH 1.0: RESTORED Avg. Flow Depth=0.92' Max Vel=2.24 fps Inflow=19.47 cfs 1.503 af n=0.040 L=1,309.0' S=0.0092 '/' Capacity=2,720.29 cfs Outflow=11.76 cfs 1.495 af

Pond POND 1.0: GRAVELWETLAND 1 Peak Elev=47.39' Storage=96,897 cf Inflow=66.89 cfs 6.105 af Primary=19.58 cfs 3.347 af Secondary=33.37 cfs 1.209 af Outflow=52.94 cfs 4.556 af

Pond POND 1.1: GRAVEL WETLAND 2 Peak Elev=56.11' Storage=76,209 cf Inflow=22.21 cfs 1.750 af Outflow=0.00 cfs 0.000 af

Pond POND 1.2: PDMH203 Peak Elev=51.13' Inflow=19.47 cfs 1.503 af 48.0" Round Culvert n=0.013 L=269.0' S=0.0050 '/' Outflow=19.47 cfs 1.503 af

Pond POND 1.3: OUTLET CULVERTS

Peak Elev=39.58' Storage=22,150 cf Inflow=76.91 cfs 10.982 af

Primary=74.09 cfs 10.655 af Secondary=0.00 cfs 0.000 af Outflow=74.09 cfs 10.655 af

Pond POND 1.4: SEDIMENT BASIN 1.0 Peak Elev=47.02' Storage=90,878 cf Inflow=35.32 cfs 3.218 af Primary=2.39 cfs 1.619 af Secondary=0.00 cfs 0.000 af Outflow=2.39 cfs 1.619 af

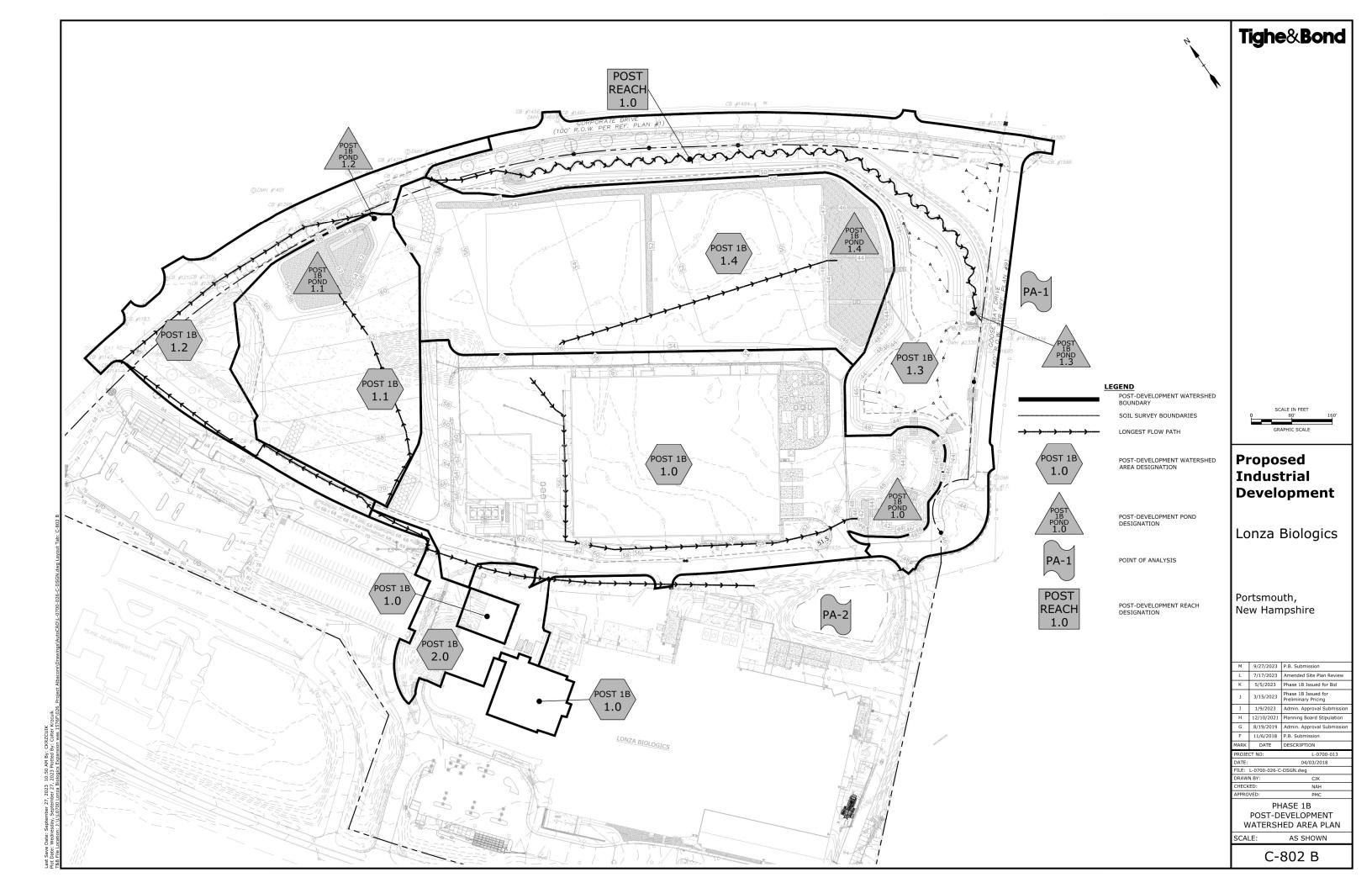
Link LINK 1.0: PDMH203 TAILWATER

Inflow=0.00 cfs 0.000 af
Primary=0.00 cfs 0.000 af

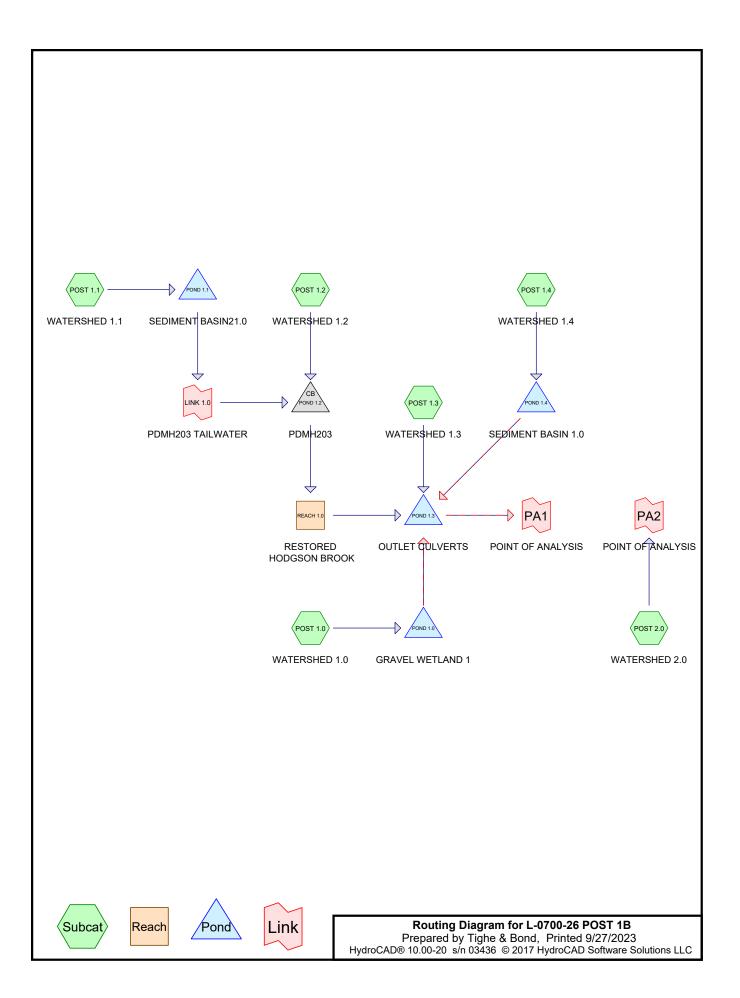
Link PA1: POINT OF ANALYSIS

Inflow=74.09 cfs 10.655 af
Primary=74.09 cfs 10.655 af

Link PA2: POINT OF ANALYSIS


Inflow=8.76 cfs 0.651 af
Primary=8.76 cfs 0.651 af

Total Runoff Area = 31.609 ac Runoff Volume = 16.539 af Average Runoff Depth = 6.28" 61.73% Pervious = 19.513 ac 38.27% Impervious = 12.096 ac


1.3.3 Phase 1B Post-Development Conditions

Phase 1B is currently under construction and is includes the construction of the shells of Building 1 and the central utility building, temporary gravel construction laydown area, as well as the associated site improvement including drive aisles, utilities, lighting and sidewalks. Phase 1B also includes the construction of two (2) temporary sediment basins as well as Gravel Wetland #1. Phase 1B post-development condition was analyzed by dividing the watersheds into six sub-catchment areas. Stormwater runoff from these sub-catchment areas flow to either one of the two temporary sediment basin, gravel wetland, or the reconstructed Hodgson Brook prior to discharging to the existing Hodgson Brook outlet. Flows from these sub-catchment areas are modeled at the same two points of analysis that were modeled in the pre-development analysis, PA1 and PA2. These points of analysis and sub-catchment areas are depicted on the plan entitled "Phase 1B Post-Development Watershed Plan", Sheet C-802 B.

1.3.3.1 Phase 1B Post-Development Watershed Plan

1.3.3.2 Phase 1B Post-Development Calculations

Printed 9/27/2023 Page 2

Area Listing (all nodes)

Area	CN	Description	
(acres)		(subcatchment-numbers)	
1.282	61	>75% Grass cover, Good, HSG B (POST 1.0, POST 1.1, POST 1.2, POST 1.3)	
8.331	74	>75% Grass cover, Good, HSG C (POST 1.0, POST 1.1, POST 1.2, POST 1.3,	
		POST 2.0)	
0.403	80	>75% Grass cover, Good, HSG D (POST 1.0, POST 1.3)	
1.703	96	Gravel surface, HSG B (POST 1.1, POST 1.4)	
7.437	96	Gravel surface, HSG C (POST 1.1, POST 1.4)	
1.056	96	Gravel surface, HSG D (POST 1.4)	
0.504	71	Meadow, non-grazed, HSG C (POST 1.3)	
0.440	98	Paved parking, HSG B (POST 1.0, POST 1.3)	
5.365	98	Paved parking, HSG C (POST 1.0, POST 1.2, POST 1.3, POST 2.0)	
0.132	98	Paved parking, HSG D (POST 1.0, POST 1.3)	
0.161	98	Roofs, HSG B (POST 1.0)	
4.068	98	Roofs, HSG C (POST 1.0, POST 2.0)	
0.727	98	Roofs, HSG D (POST 1.0)	
31.609	89	TOTAL AREA	

Prepared by Tighe & Bond HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
3.586	HSG B	POST 1.0, POST 1.1, POST 1.2, POST 1.3, POST 1.4
25.705	HSG C	POST 1.0, POST 1.1, POST 1.2, POST 1.3, POST 1.4, POST 2.0
2.318	HSG D	POST 1.0, POST 1.3, POST 1.4
0.000	Other	
31.609		TOTAL AREA

Printed 9/27/2023

Page 3

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 4

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment POST 1.0: WATERSHED Runoff Area=436,500 sf 73.49% Impervious Runoff Depth>2.71" Flow Length=933' Tc=11.4 min CN=91 Runoff=25.91 cfs 2.261 af

Subcatchment POST 1.1: WATERSHED 1.1 Runoff Area = 169,765 sf 0.00% Impervious Runoff Depth > 2.52" Flow Length=464' Tc=8.3 min CN=89 Runoff=10.39 cfs 0.819 af

SubcatchmentPOST 1.2: WATERSHED 1.2 Runoff Area = 87,646 sf 68.04% Impervious Runoff Depth > 2.61" Flow Length=1,191' Tc=6.4 min CN=90 Runoff=5.88 cfs 0.438 af

Runoff Area=311,579 sf 22.08% Impervious Runoff Depth>1.62" SubcatchmentPOST 1.3: WATERSHED Flow Length=1,525' Tc=45.9 min CN=78 Runoff=6.19 cfs 0.964 af

SubcatchmentPOST 1.4: WATERSHED 1.4 Runoff Area = 321,295 sf 0.00% Impervious Runoff Depth>3.22" Flow Length=585' Tc=13.5 min CN=96 Runoff=20.19 cfs 1.978 af

SubcatchmentPOST 2.0: WATERSHED 2.0 Runoff Area = 50,117 sf 50.42% Impervious Runoff Depth > 2.26" Flow Length=758' Tc=5.0 min CN=86 Runoff=3.04 cfs 0.216 af

Avg. Flow Depth=0.59' Max Vel=2.01 fps Inflow=6.13 cfs 0.893 af Reach REACH 1.0: RESTORED n=0.040 L=1,309.0' S=0.0092 '/' Capacity=2,720.29 cfs Outflow=4.37 cfs 0.879 af

Pond POND 1.0: GRAVEL WETLAND 1 Peak Elev=46.08' Storage=69,171 cf Inflow=25.91 cfs 2.261 af Primary=1.15 cfs 0.924 af Secondary=0.00 cfs 0.000 af Outflow=1.15 cfs 0.924 af

Pond POND 1.1: SEDIMENT BASIN21.0 Peak Elev=55.32' Storage=24,357 cf Inflow=10.39 cfs 0.819 af Outflow=0.50 cfs 0.454 af

Pond POND 1.2: PDMH203 Peak Elev=50.28' Inflow=6.13 cfs 0.893 af 54.0" Round Culvert n=0.013 L=269.0' S=0.0050 '/' Outflow=6.13 cfs 0.893 af

Pond POND 1.3: OUTLET CULVERTS Peak Elev=38.16' Storage=8,990 cf Inflow=9.74 cfs 3.827 af Primary=9.74 cfs 3.622 af Secondary=0.00 cfs 0.000 af Outflow=9.74 cfs 3.622 af

Pond POND 1.4: SEDIMENT BASIN 1.0 Peak Elev=46.13' Storage=60,724 cf Inflow=20.19 cfs 1.978 af Primary=0.72 cfs 1.059 af Secondary=0.00 cfs 0.000 af Outflow=0.72 cfs 1.059 af

Link LINK 1.0: PDMH203 TAILWATER Inflow=0.50 cfs 0.454 af Primary=0.50 cfs 0.454 af

Link PA1: POINT OF ANALYSIS Inflow=9.74 cfs 3.622 af Primary=9.74 cfs 3.622 af

Inflow=3.04 cfs 0.216 af Link PA2: POINT OF ANALYSIS Primary=3.04 cfs 0.216 af

> Total Runoff Area = 31.609 ac Runoff Volume = 6.676 af Average Runoff Depth = 2.53" 65.54% Pervious = 20.717 ac 34.46% Impervious = 10.892 ac

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 5

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment POST 1.0: WATERSHED Runoff Area=436,500 sf 73.49% Impervious Runoff Depth>4.54" Flow Length=933' Tc=11.4 min CN=91 Runoff=42.35 cfs 3.791 af

SubcatchmentPOST 1.1: WATERSHED 1.1 Runoff Area=169,765 sf 0.00% Impervious Runoff Depth>4.32" Flow Length=464' Tc=8.3 min CN=89 Runoff=17.43 cfs 1.405 af

SubcatchmentPOST 1.2: WATERSHED 1.2 Runoff Area = 87,646 sf 68.04% Impervious Runoff Depth > 4.43" Flow Length=1,191' Tc=6.4 min CN=90 Runoff=9.71 cfs 0.743 af

Runoff Area=311,579 sf 22.08% Impervious Runoff Depth>3.18" SubcatchmentPOST 1.3: WATERSHED Flow Length=1,525' Tc=45.9 min CN=78 Runoff=12.32 cfs 1.896 af

SubcatchmentPOST 1.4: WATERSHED 1.4 Runoff Area = 321,295 sf 0.00% Impervious Runoff Depth > 5.10" Flow Length=585' Tc=13.5 min CN=96 Runoff=31.26 cfs 3.135 af

SubcatchmentPOST 2.0: WATERSHED 2.0 Runoff Area = 50,117 sf 50.42% Impervious Runoff Depth > 4.01" Flow Length=758' Tc=5.0 min CN=86 Runoff=5.34 cfs 0.384 af

Avg. Flow Depth=0.79' Max Vel=2.23 fps Inflow=9.88 cfs 1.234 af Reach REACH 1.0: RESTORED n=0.040 L=1,309.0' S=0.0092 '/' Capacity=2,720.29 cfs Outflow=6.44 cfs 1.219 af

Pond POND 1.0: GRAVEL WETLAND 1 Peak Elev=46.86' Storage=85,206 cf Inflow=42.35 cfs 3.791 af Primary=6.71 cfs 2.014 af Secondary=8.72 cfs 0.316 af Outflow=15.43 cfs 2.329 af

Pond POND 1.1: SEDIMENT BASIN21.0 Peak Elev=56.53' Storage=46,294 cf Inflow=17.43 cfs 1.405 af Outflow=0.61 cfs 0.491 af

Peak Elev=50.54' Inflow=9.88 cfs 1.234 af Pond POND 1.2: PDMH203 54.0" Round Culvert n=0.013 L=269.0' S=0.0050 '/' Outflow=9.88 cfs 1.234 af

Pond POND 1.3: OUTLET CULVERTS Peak Elev=38.79' Storage=13,754 cf Inflow=33.80 cfs 7.286 af Primary=33.69 cfs 6.999 af Secondary=0.00 cfs 0.000 af Outflow=33.69 cfs 6.999 af

Pond POND 1.4: SEDIMENT BASIN 1.0 Peak Elev=46.78' Storage=82,212 cf Inflow=31.26 cfs 3.135 af Primary=0.80 cfs 1.163 af Secondary=4.13 cfs 0.679 af Outflow=4.92 cfs 1.842 af

Link LINK 1.0: PDMH203 TAILWATER Inflow=0.61 cfs 0.491 af Primary=0.61 cfs 0.491 af

Link PA1: POINT OF ANALYSIS Inflow=33.69 cfs 6.999 af Primary=33.69 cfs 6.999 af

Inflow=5.34 cfs 0.384 af Link PA2: POINT OF ANALYSIS Primary=5.34 cfs 0.384 af

> Total Runoff Area = 31.609 ac Runoff Volume = 11.354 af Average Runoff Depth = 4.31" 65.54% Pervious = 20.717 ac 34.46% Impervious = 10.892 ac

Printed 9/27/2023

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 6

Summary for Subcatchment POST 1.0: WATERSHED 1.0

Runoff = 42.35 cfs @ 12.15 hrs, Volume= 3.791 af, Depth> 4.54"

A	rea (sf)	CN D	escription		
	7,015	98 R	oofs, HSG	βB	
	21,062				ood, HSG B
	18,252			ing, HSG B	
	56,340		oofs, HSG		
	78,742				pod, HSG C
	02,238			ing, HSG C	;
	31,671		oofs, HSG		
	15,928				ood, HSG D
	5,252			ing, HSG D)
	36,500		/eighted A		
	15,732			vious Area	
3	20,768	7.	3.49% IM	ervious Ar	ea
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	'
7.7	70	0.0150	0.15		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.68"
0.2	32	0.0200	2.87		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
0.1	19	0.0200	2.12		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
0.8	162	0.0050	3.21	2.52	Pipe Channel,
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
0.4	0.4	0.0050	0.04	0.50	n= 0.013 Corrugated PE, smooth interior
0.4	84	0.0050	3.21	2.52	
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25' n= 0.013
0.5	112	0.0050	3.72	4.57	
0.5	113	0.0030	3.12	4.57	15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31'
					n= 0.013
1.2	299	0.0050	4.20	7.43	
		0.000	•		18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
					n= 0.013
0.4	94	0.0050	4.20	7.43	
					18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
					n= 0.013
0.1	46	0.0240	11.16	35.05	Pipe Channel,
					24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
					n= 0.013
0.0	5	0.0800	7.16	0.98	
					5.0" Round Area= 0.1 sf Perim= 1.3' r= 0.10'
0.0	^	0.0440	0.00	00.05	n= 0.013
0.0	9	0.0110	9.90	69.95	Pipe Channel,

Prepared by Tighe & Bond

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Printed 9/27/2023 Page 7

36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75'

n = 0.013

11.4 933 Total

Summary for Subcatchment POST 1.1: WATERSHED 1.1

Runoff = 17.43 cfs @ 12.11 hrs, Volume= 1.405 af, Depth> 4.32"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Year Rainfall=5.58"

_	Α	rea (sf)	CN I	Description			
	42,748 96 Gravel surface, HSG B						
		6,173	61	>75% Gras	s cover, Go	ood, HSG B	
		80,105		Gravel surfa	,		
_		40,739	74	>75% Gras	s cover, Go	ood, HSG C	
	1	69,765		Weighted A			
	1	69,765	•	100.00% P	ervious Are	a	
	_						
	Tc	Length	Slope		Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	5.8	100	0.0625	0.29		Sheet Flow,	
						Grass: Short n= 0.150 P2= 3.68"	
	2.2	312	0.0220	2.39		Shallow Concentrated Flow,	
						Unpaved Kv= 16.1 fps	
	0.3	33	0.0150	1.84		Shallow Concentrated Flow,	
						Grassed Waterway Kv= 15.0 fps	
	0.0	19	0.3300	8.62		Shallow Concentrated Flow,	
_						Grassed Waterway Kv= 15.0 fps	
	8.3	464	Total				

Summary for Subcatchment POST 1.2: WATERSHED 1.2

Runoff = 9.71 cfs @ 12.09 hrs, Volume= 0.743 af, Depth> 4.43"

 Area (sf)	CN	Description		
3,104	61	>75% Grass cover, Good, HSG B		
0	98	Paved parking, HSG B		
24,907	74	>75% Grass cover, Good, HSG C		
 59,635	98	Paved parking, HSG C		
87,646	90	Weighted Average		
28,011		31.96% Pervious Area		
59,635		68.04% Impervious Area		

Prepared by Tighe & Bond

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Printed 9/27/2023 Page 8

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	1.5	100	0.0100	1.12	, ,	Sheet Flow,
		.00	0.0.00			Smooth surfaces n= 0.011 P2= 3.68"
	1.0	153	0.0150	2.49		Shallow Concentrated Flow,
		.00	0.0.00	20		Paved Kv= 20.3 fps
	1.6	343	0.0050	3.47	2.73	·
		0.0	0.0000	0	2 0	12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
						n= 0.012 Concrete pipe, finished
	0.1	13	0.0050	3.72	4.57	Pipe Channel,
						15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31'
						n= 0.013 Corrugated PE, smooth interior
	1.8	453	0.0050	4.20	7.43	· · · · · · · · · · · · · · · · · · ·
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
						n= 0.013 Corrugated PE, smooth interior
	0.4	129	0.0050	5.91	29.00	Pipe Channel,
						30.0" Round Area= 4.9 sf Perim= 7.9' r= 0.63'
						n= 0.013 Corrugated PE, smooth interior
_	6.4	1.191	Total			· · · · · · · · · · · · · · · · · · ·

Summary for Subcatchment POST 1.3: WATERSHED 1.3

Runoff = 12.32 cfs @ 12.63 hrs, Volume= 1.896 af, Depth> 3.18"

_	Α	rea (sf)	CN D	escription						
		25,523	61 >	, ,						
		903	98 P	aved park	ing, HSG E	3				
	1	93,641	74 >	75% Gras	s cover, Go	ood, HSG C				
		67,403	98 P	aved park	ing, HSG C					
		21,971	71 N	leadow, no	on-grazed,	HSG C				
		1,639			,	ood, HSG D				
499 98 Paved parking, HSG D)				
	3	11,579		Veighted A						
		42,774		77.92% Pervious Area						
		68,805	2	22.08% Impervious Area						
	_		01			B				
	Tc	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.9	100	0.0130	0.15		Sheet Flow,				
			0.0400	0.00		Grass: Short n= 0.150 P2= 3.68"				
	1.1	52	0.0130	0.80		Shallow Concentrated Flow,				
	0.4	07	0.0700	7.00		Short Grass Pasture Kv= 7.0 fps				
	0.1	27	0.2720	7.82		Shallow Concentrated Flow,				
	22.0	1 246	0.0000	0.00		Grassed Waterway Kv= 15.0 fps				
	33.8	1,346	0.0090	0.66		Shallow Concentrated Flow,				
_	45.0	4.505	T.4.1			Short Grass Pasture Kv= 7.0 fps				
	45.9	1,525	Total							

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 9

Summary for Subcatchment POST 1.4: WATERSHED 1.4

Runoff = 31.26 cfs @ 12.18 hrs, Volume= 3.135 af, Depth> 5.10"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Year Rainfall=5.58"

_	A	rea (sf)	CN I	Description		
		31,421	96	Gravel surfa	3	
	2	43,870	96	Gravel surfa	ace, HSG (
_		46,004	96	Gravel surfa	ace, HSG [)
	3	21,295	96	Neighted A	verage	
	3	21,295		100.00% P	ervious Are	a
	Tc	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	8.4	100	0.0245	0.20		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.68"
	5.1	465	0.0103	1.52		Shallow Concentrated Flow,
						Grassed Waterway Kv= 15.0 fps
	0.0	20	0.3300	8.62		Shallow Concentrated Flow,
_						Grassed Waterway Kv= 15.0 fps
	13.5	585	Total			

Summary for Subcatchment POST 2.0: WATERSHED 2.0

[49] Hint: Tc<2dt may require smaller dt

Runoff = 5.34 cfs @ 12.07 hrs, Volume= 0.384 af, Depth> 4.01"

Area (sf)	CN	Description			
20,850	98	Roofs, HSG C			
24,850	74	>75% Grass cover, Good, HSG C			
4,417	98	Paved parking, HSG C			
50,117	86	Weighted Average			
24,850		49.58% Pervious Area			
25,267		50.42% Impervious Area			

Prepared by Tighe & Bond

Printed 9/27/2023

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 10

T (mir	c Length		Velocity (ft/sec)	Capacity (cfs)	Description
1.	2 100	0.0164	1.36		Sheet Flow,
0.	3 48	0.0164	2.60		Smooth surfaces n= 0.011 P2= 3.68" Shallow Concentrated Flow, Paved Kv= 20.3 fps
0.	3 130	0.0140	7.03	12.43	Pipe Channel,
					18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38' n= 0.013
0.	5 70	0.0250	2.37		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
1.	3 410	0.0050	5.09	16.00	Pipe Channel,
					24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50' n= 0.013
3.	6 758	3 Total, I	ncreased t	o minimum	Tc = 5.0 min

Summary for Reach REACH 1.0: RESTORED HODGSON BROOK

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=2)

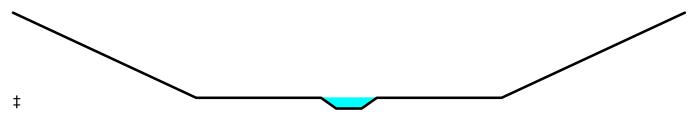
Inflow Area = 5.909 ac, 23.17% Impervious, Inflow Depth > 2.51" for 10 Year event

Inflow = 9.88 cfs @ 12.10 hrs, Volume= 1.234 af

Outflow = 6.44 cfs @ 12.09 hrs, Volume= 1.219 af, Atten= 35%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.23 fps, Min. Travel Time= 9.8 min Avg. Velocity = 1.00 fps, Avg. Travel Time= 21.7 min


Peak Storage= 5,663 cf @ 12.33 hrs Average Depth at Peak Storage= 0.79'

Bank-Full Depth= 6.75' Flow Area= 291.0 sf, Capacity= 2,720.29 cfs

Custom cross-section, Length= 1,309.0' Slope= 0.0092 '/' (101 Elevation Intervals)

Constant n= 0.040 Winding stream, pools & shoals

Inlet Invert= 48.00', Outlet Invert= 36.00'

Prepared by Tighe & Bond

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 11

Offset	Elevation	Chan.Depth
(feet)	(feet)	(feet)
0.00	12.00	0.00
18.00	6.00	6.00
30.25	6.00	6.00
31.75	5.25	6.75
34.25	5.25	6.75
35.75	6.00	6.00
48.00	6.00	6.00
66.00	12.00	0.00

Depth	End Area	Perim.	Storage	Discharge
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cfs)
0.00	0.0	2.5	0	0.00
0.75	3.0	30.4	3,927	2.28
6.75	291.0	68.3	380,919	2,720.29
			000,0.0	

Summary for Pond POND 1.0: GRAVEL WETLAND 1

[95] Warning: Outlet Device #4 rise exceeded

10.021 ac, 73.49% Impervious, Inflow Depth > 4.54" for 10 Year event Inflow Area =

Inflow 42.35 cfs @ 12.15 hrs, Volume= 3.791 af

Outflow 15.43 cfs @ 12.50 hrs, Volume= 2.329 af, Atten= 64%, Lag= 20.5 min

6.71 cfs @ 12.50 hrs, Volume= 2.014 af Primary 8.72 cfs @ 12.50 hrs, Volume= Secondary = 0.316 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 46.86' @ 12.50 hrs Surf.Area= 21,399 sf Storage= 85,206 cf

Flood Elev= 48.00' Surf.Area= 23,557 sf Storage= 110,845 cf

Plug-Flow detention time= 228.0 min calculated for 2.325 af (61% of inflow)

Avail Storage Storage Description

Center-of-Mass det. time= 128.3 min (915.6 - 787.3)

Invert

Volume

volume	invert Avail.Storage		Storage Descrip	uon	
#1	39.05'	110,845 cf	Custom Stage	Data (Prismatic)Listed be	low (Recalc)
Elevation (feet)	Surf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
39.05	9,855		Ó	0	
41.35	9,855		6,800	6,800	
42.00	9,855	45.0	2,883	9,683	
43.00	11,943	100.0	10,899	20,582	
44.00	14,202	100.0	13,073	33,654	
45.00	16,891	100.0	15,547	49,201	
46.00	19,752	100.0	18,322	67,522	
47.00	21,668	100.0	20,710	88,232	
48.00	23,557	100.0	22,613	110,845	

Prepared by Tighe & Bond

Printed 9/27/2023

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 12

Device	Routing	Invert	Outlet Devices
#1	Primary	41.35'	18.0" Round Culvert
	•		L= 30.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 41.35' / 41.20' S= 0.0050 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf
#2	Device 1	41.35'	3.5" Vert. Orifice/Grate C= 0.600
#3	Device 1	45.00'	3.0" Vert. Orifice/Grate C= 0.600
#4	Device 1	46.00'	3.0' long x 0.50' rise Sharp-Crested Rectangular Weir
			2 End Contraction(s) 4.0' Crest Height
#5	Device 1	47.00'	4.0" x 4.0" Horiz. Orifice/Grate X 106.00 C= 0.600
			Limited to weir flow at low heads
#6	Secondary	46.50'	15.0' long x 15.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=6.71 cfs @ 12.50 hrs HW=46.86' TW=38.78' (Dynamic Tailwater)

1=Culvert (Passes 6.71 cfs of 18.56 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 0.75 cfs @ 11.15 fps)

-3=Orifice/Grate (Orifice Controls 0.31 cfs @ 6.34 fps)

-4=Sharp-Crested Rectangular Weir (Orifice Controls 5.65 cfs @ 3.90 fps)

-5=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=8.69 cfs @ 12.50 hrs HW=46.86' TW=38.78' (Dynamic Tailwater) 6=Broad-Crested Rectangular Weir (Weir Controls 8.69 cfs @ 1.61 fps)

Summary for Pond POND 1.1: SEDIMENT BASIN21.0

3.897 ac, 0.00% Impervious, Inflow Depth > 4.32" for 10 Year event Inflow Area =

17.43 cfs @ 12.11 hrs, Volume= 1.405 af Inflow =

0.61 cfs @ 15.87 hrs, Volume= 0.61 cfs @ 15.87 hrs, Volume= Outflow = 0.491 af, Atten= 97%, Lag= 225.6 min

Primary = 0.491 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Starting Elev= 52.20' Surf.Area= 4,580 sf Storage= 898 cf

Peak Elev= 56.53' @ 15.87 hrs Surf.Area= 19,981 sf Storage= 46,294 cf (45,396 cf above start)

Flood Elev= 58.50' Surf.Area= 23,331 sf Storage= 88,825 cf (87,927 cf above start)

Plug-Flow detention time= 441.0 min calculated for 0.469 af (33% of inflow)

Center-of-Mass det. time= 289.1 min (1,081.2 - 792.0)

Volume	Invert <i>F</i>	Avail.Storage	Storage	e Description		
#1	52.00'	88,825 cf	Custor	n Stage Data (Prisr	natic)Listed below (F	Recalc)
Elevation	Surf.Ar	ea Ind	c.Store	Cum.Store		
(feet)	(sq-	ft) (cub	ic-feet)	(cubic-feet)		
52.00	4,4	02	0	0		
54.00	6,1	83	10,585	10,585		
56.00	19,0	79	25,262	35,847		
58.00	22,4	53	41,532	77,379		
58.50	23,3	31	11,446	88,825		

Prepared by Tighe & Bond

Printed 9/27/2023

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 13

Device	Routing	Invert	Outlet Devices
#1	Primary	50.35'	12.0" Round Culvert L= 27.0' Ke= 0.500
			Inlet / Outlet Invert= 50.35' / 49.45' S= 0.0333 '/' Cc= 0.900
			n= 0.013, Flow Area= 0.79 sf
#2	Device 1	56.50'	10.0" x 17.5" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#3	Primary	52.00'	4.0" Vert. Orifice/Grate C= 0.600

Primary OutFlow Max=0.61 cfs @ 15.87 hrs HW=56.53' TW=55.07' (Dynamic Tailwater)

1=Culvert (Passes 0.10 cfs of 4.58 cfs potential flow)

2=Orifice/Grate (Weir Controls 0.10 cfs @ 0.61 fps)

-3=Orifice/Grate (Orifice Controls 0.51 cfs @ 5.83 fps)

Summary for Pond POND 1.2: PDMH203

Inflow Area = 5.909 ac, 23.17% Impervious, Inflow Depth > 2.51" for 10 Year event

Inflow = 9.88 cfs @ 12.10 hrs, Volume= 1.234 af

Outflow = 9.88 cfs @ 12.10 hrs, Volume= 1.234 af, Atten= 0%, Lag= 0.0 min

Primary = 9.88 cfs @ 12.10 hrs, Volume= 1.234 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Peak Elev= 50.54' @ 12.10 hrs

Flood Elev= 57.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	49.35'	54.0" Round Culvert
	-		L= 269.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 49.35' / 48.00' S= 0.0050 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 15.90 sf

Primary OutFlow Max=9.77 cfs @ 12.10 hrs HW=50.53' TW=48.71' (Dynamic Tailwater) 1=Culvert (Inlet Controls 9.77 cfs @ 2.92 fps)

Summary for Pond POND 1.3: OUTLET CULVERTS

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=14)

[62] Hint: Exceeded Reach REACH 1.0 OUTLET depth by 2.56' @ 8.65 hrs

Inflow Area = 30.459 ac, 33.86% Impervious, Inflow Depth > 2.87" for 10 Year event

Inflow = 33.80 cfs @ 12.56 hrs, Volume= 7.286 af

Outflow = 33.69 cfs @ 12.58 hrs, Volume= 6.999 af, Atten= 0%, Lag= 1.4 min

Primary = 33.69 cfs @ 12.58 hrs, Volume= 6.999 af Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 38.79' @ 12.58 hrs Surf.Area= 8.967 sf Storage= 13.754 cf

Flood Elev= 43.50' Surf.Area= 95,977 sf Storage= 236,017 cf

Plug-Flow detention time= 46.7 min calculated for 6.998 af (96% of inflow) Center-of-Mass det. time= 25.3 min (906.0 - 880.7)

Prepared by Tighe & Bond

Printed 9/27/2023

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 14

<u>Volume</u>	Invert	Avail.Sto	rage Storage [Description			
#1	35.00'	236,0	17 cf Custom	Stage Data (Pri	smatic)Listed below	w (Recalc)	
Elevation	on S	urf.Area	Inc.Store	Cum.Store			
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)			
35.0	00	960	0	0			
36.0	00	1,428	1,194	1,194			
38.0	00	5,418	6,846	8,040			
40.0	00	14,354	19,772	27,812			
42.0	00	66,884	81,238	109,050			
43.0	00	92,707	79,796	188,846			
43.5	50	95,977	47,171	236,017			
Device	Routing	Invert	Outlet Devices	3			
#1	Primary	35.60'	42.0" W x 29.0	0" H, R=21.5"/6	6.1" Pipe Arch CN	/IP_Arch_1/2	42x29 X 3.00
			L= 68.0' CMF	^o , square edge h	eadwall, Ke= 0.500	0	
			Inlet / Outlet In	vert= 35.60' / 35	5.30' S= 0.0044 '/'	Cc = 0.900	
				•	low Area= 6.72 sf		
#2	Secondary	43.00'	143.1 deg x 1 8 Cv= 2.47 (C= 3	•	rise Sharp-Creste	ed Vee/Trap V	/ eir
Primary OutFlow Max=33.59 cfs @ 12.58 hrs HW=38.79' TW=38.65' (Dynamic Tailwater)							

1=CMP_Arch_1/2 42x29 (Outlet Controls 33.59 cfs @ 1.67 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=35.04' TW=38.65' (Dynamic Tailwater) 2=Sharp-Crested Vee/Trap Weir (Controls 0.00 cfs)

Summary for Pond POND 1.4: SEDIMENT BASIN 1.0

Inflow Area =	7.376 ac,	0.00% Impervious, I	nflow Depth > 5.10" for 10 Year event
Inflow =	31.26 cfs @	12.18 hrs, Volume=	3.135 af
Outflow =	4.92 cfs @	12.81 hrs, Volume=	1.842 af, Atten= 84%, Lag= 38.1 min
Primary =	0.80 cfs @	12.81 hrs, Volume=	1.163 af
Secondary =	4.13 cfs @	12.81 hrs, Volume=	0.679 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Starting Elev= 44.15' Surf.Area= 18,132 sf Storage= 11,702 cf Peak Elev= 46.78' @ 12.81 hrs Surf.Area= 34,712 sf Storage= 82,212 cf (70,510 cf above start) Flood Elev= 48.50' Surf.Area= 38,802 sf Storage= 127,441 cf (115,739 cf above start)

Plug-Flow detention time= 297.1 min calculated for 1.570 af (50% of inflow) Center-of-Mass det. time= 75.8 min (841.4 - 765.6)

Volume	Invert	Avail.Storage	Storage Description
#1	43.00'	127,441 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Prepared by Tighe & Bond

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Printed 9/27/2023 Page 15

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
43.00	1,000	0	0
44.00	17,117	9,059	9,059
46.00	30,657	47,774	56,833
47.00	35,879	33,268	90,101
48.00	38,802	37,341	127,441

Device	Routing	Invert	Outlet Devices
#1	Primary	42.75'	12.0" Round Culvert L= 66.0' Ke= 0.500
	•		Inlet / Outlet Invert= 42.75' / 42.40' S= 0.0053 '/' Cc= 0.900
			n= 0.013, Flow Area= 0.79 sf
#2	Device 1	43.00'	4.0" Vert. Orifice/Grate C= 0.600
#3	Device 1	46.80'	10.0" x 17.5" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#4	Secondary	46.50'	Custom Weir/Orifice, Cv= 2.62 (C= 3.28)
			Head (feet) 0.00 2.00
			Width (feet) 8.00 20.00

Primary OutFlow Max=0.80 cfs @ 12.81 hrs HW=46.78' TW=38.75' (Dynamic Tailwater)

1=Culvert (Passes 0.80 cfs of 6.13 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.80 cfs @ 9.15 fps)

-3=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=4.12 cfs @ 12.81 hrs HW=46.78' TW=38.75' (Dynamic Tailwater) 4=Custom Weir/Orifice (Weir Controls 4.12 cfs @ 1.69 fps)

Summary for Link LINK 1.0: PDMH203 TAILWATER

This link takes into account the tailwater condition in PDMH203 which the outlet of gravel wetland 2 connects. The purpose of this is to determine the effects of any surcharging caused by the tailwater of Hodgson Brook entering the structure. These tailwater elevations were determined by Streamworks, PLLC as part of the overall watershed analysis they performed. These findings are discussed in the seperate memo prepared by Streamworks, PLLC.

[80] Warning: Exceeded Pond POND 1.1 by 2.87' @ 0.00 hrs (0.71 cfs 0.656 af)

Inflow Area = 3.897 ac, 0.00% Impervious, Inflow Depth > 1.51" for 10 Year event

Inflow = 0.61 cfs @ 15.87 hrs, Volume= 0.491 af

Primary = 0.61 cfs @ 15.87 hrs, Volume= 0.491 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

10 Year 25 P	oint manual	elevation	table, To=	0.00 hrs,	dt = 1.00 hrs,	feet =		
55.07	55.07	55.07	55.07	55.07	55.07	55.07	55.07	55.07
55.07	55.07	55.07	55.07	55.07	55.07	55.07	55.07	55.07
55.07	55.07	55.07	55.07	55.07	55.07	55.07		

Prepared by Tighe & Bond

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Page 16

Summary for Link PA1: POINT OF ANALYSIS

This link takes into account the tailwater condition in roadside swale along Goose Bay Drive which the existing culverts discharge into. These tailwater elevations were determined by Streamworks, PLLC as part of the overall watershed analysis they performed. These findings are discussed in the seperate memo prepared by Streamworks, PLLC.

[80] Warning: Exceeded Pond POND 1.3 by 3.61' @ 0.00 hrs (92.51 cfs 55.001 af)

Inflow Area = 30.459 ac, 33.86% Impervious, Inflow Depth > 2.76" for 10 Year event

Inflow = 33.69 cfs @ 12.58 hrs, Volume= 6.999 af

Primary = 33.69 cfs @ 12.58 hrs, Volume= 6.999 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

10 Year 2 Point manual elevation table, To= 0.00 hrs, dt= 24.00 hrs, feet =

38.65 38.65

Summary for Link PA2: POINT OF ANALYSIS

Inflow Area = 1.151 ac, 50.42% Impervious, Inflow Depth > 4.01" for 10 Year event

Inflow = 5.34 cfs @ 12.07 hrs, Volume= 0.384 af

Primary = 5.34 cfs @ 12.07 hrs, Volume= 0.384 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Page 17

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPOST 1.0: WATERSHED Runoff Area=436,500 sf 73.49% Impervious Runoff Depth>6.00" Flow Length=933' Tc=11.4 min CN=91 Runoff=55.10 cfs 5.009 af

SubcatchmentPOST 1.1: WATERSHED 1.1 Runoff Area=169,765 sf 0.00% Impervious Runoff Depth>5.77" Flow Length=464' Tc=8.3 min CN=89 Runoff=22.90 cfs 1.874 af

SubcatchmentPOST 1.2: WATERSHED 1.2 Runoff Area = 87,646 sf 68.04% Impervious Runoff Depth > 5.89" Flow Length = 1,191' Tc = 6.4 min CN = 90 Runoff = 12.69 cfs 0.987 af

SubcatchmentPOST 1.3: WATERSHED Runoff Area=311,579 sf 22.08% Impervious Runoff Depth>4.50" Flow Length=1,525' Tc=45.9 min CN=78 Runoff=17.39 cfs 2.682 af

SubcatchmentPOST 1.4: WATERSHED 1.4 Runoff Area=321,295 sf 0.00% Impervious Runoff Depth>6.58" Flow Length=585' Tc=13.5 min CN=96 Runoff=39.87 cfs 4.046 af

SubcatchmentPOST 2.0: WATERSHED 2.0 Runoff Area = 50,117 sf 50.42% Impervious Runoff Depth > 5.43" Flow Length = 758' Tc = 5.0 min CN = 86 Runoff = 7.13 cfs 0.521 af

Reach REACH 1.0: RESTORED Avg. Flow Depth=0.83' Max Vel=2.25 fps Inflow=12.86 cfs 1.860 af n=0.040 L=1,309.0' S=0.0092 '/' Capacity=2,720.29 cfs Outflow=6.61 cfs 1.845 af

Pond POND 1.0: GRAVEL WETLAND 1 Peak Elev=47.16' Storage=91,694 cf Inflow=55.10 cfs 5.009 af Primary=19.11 cfs 2.623 af Secondary=21.50 cfs 0.864 af Outflow=41.78 cfs 3.488 af

Pond POND 1.1: SEDIMENT BASIN21.0 Peak Elev=56.80' Storage=51,566 cf Inflow=22.90 cfs 1.874 af Outflow=2.87 cfs 0.873 af

Pond POND 1.2: PDMH203 Peak Elev=50.72' Inflow=12.86 cfs 1.860 af 54.0" Round Culvert n=0.013 L=269.0' S=0.0050 '/' Outflow=12.86 cfs 1.860 af

Pond POND 1.3: OUTLET CULVERTS

Peak Elev=39.31' Storage=18,991 cf Inflow=67.85 cfs 10.710 af

Primary=65.09 cfs 10.403 af Secondary=0.00 cfs 0.000 af Outflow=65.09 cfs 10.403 af

Pond POND 1.4: SEDIMENT BASIN 1.0 Peak Elev=47.07' Storage=92,522 cf Inflow=39.87 cfs 4.046 af Primary=2.90 cfs 1.275 af Secondary=13.10 cfs 1.420 af Outflow=16.00 cfs 2.696 af

Link LINK 1.0: PDMH203 TAILWATER Inflow=2.87 cfs 0.873 af Primary=2.87 cfs 0.873 af

Link PA1: POINT OF ANALYSIS

Inflow=65.09 cfs 10.403 af
Primary=65.09 cfs 10.403 af

Link PA2: POINT OF ANALYSIS

Inflow=7.13 cfs 0.521 af
Primary=7.13 cfs 0.521 af

Total Runoff Area = 31.609 ac Runoff Volume = 15.118 af Average Runoff Depth = 5.74" 65.54% Pervious = 20.717 ac 34.46% Impervious = 10.892 ac

Printed 9/27/2023

Page 18

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPOST 1.0: WATERSHED Runoff Area=436,500 sf 73.49% Impervious Runoff Depth>7.37" Flow Length=933' Tc=11.4 min CN=91 Runoff=66.91 cfs 6.153 af

SubcatchmentPOST 1.1: WATERSHED 1.1 Runoff Area=169,765 sf 0.00% Impervious Runoff Depth>7.13" Flow Length=464' Tc=8.3 min CN=89 Runoff=27.97 cfs 2.316 af

SubcatchmentPOST 1.2: WATERSHED1.2 Runoff Area=87,646 sf 68.04% Impervious Runoff Depth>7.25" Flow Length=1,191' Tc=6.4 min CN=90 Runoff=15.44 cfs 1.216 af

SubcatchmentPOST 1.3: WATERSHED Runoff Area=311,579 sf 22.08% Impervious Runoff Depth>5.77" Flow Length=1,525' Tc=45.9 min CN=78 Runoff=22.18 cfs 3.439 af

SubcatchmentPOST 1.4: WATERSHED 1.4 Runoff Area=321,295 sf 0.00% Impervious Runoff Depth>7.97" Flow Length=585' Tc=13.5 min CN=96 Runoff=47.87 cfs 4.897 af

SubcatchmentPOST 2.0: WATERSHED 2.0 Runoff Area=50,117 sf 50.42% Impervious Runoff Depth>6.77" Flow Length=758' Tc=5.0 min CN=86 Runoff=8.79 cfs 0.650 af

Reach REACH 1.0: RESTORED Avg. Flow Depth=0.89' Max Vel=2.22 fps Inflow=15.50 cfs 2.490 af n=0.040 L=1,309.0' S=0.0092 '/' Capacity=2,720.29 cfs Outflow=9.65 cfs 2.475 af

Pond POND 1.0: GRAVEL WETLAND 1 Peak Elev=47.41' Storage=97,358 cf Inflow=66.91 cfs 6.153 af Primary=19.61 cfs 3.173 af Secondary=34.51 cfs 1.427 af Outflow=54.13 cfs 4.600 af

Pond POND 1.1: SEDIMENT BASIN21.0 Peak Elev=57.24' Storage=60,879 cf Inflow=27.97 cfs 2.316 af Outflow=4.17 cfs 1.273 af

Pond POND 1.2: PDMH203 Peak Elev=50.86' Inflow=15.50 cfs 2.490 af 54.0" Round Culvert n=0.013 L=269.0' S=0.0050 '/' Outflow=15.50 cfs 2.490 af

Pond POND 1.3: OUTLET CULVERTS Peak Elev=40.06' Storage=28,728 cf Inflow=100.24 cfs 14.026 af Primary=95.55 cfs 13.698 af Secondary=0.00 cfs 0.000 af Outflow=95.55 cfs 13.698 af

Pond POND 1.4: SEDIMENT BASIN 1.0 Peak Elev=47.28' Storage=100,085 cf Inflow=47.87 cfs 4.897 af Primary=4.89 cfs 1.415 af Secondary=22.04 cfs 2.096 af Outflow=26.93 cfs 3.511 af

Link LINK 1.0: PDMH203 TAILWATER Inflow=4.17 cfs 1.273 af Primary=4.17 cfs 1.273 af

Link PA1: POINT OF ANALYSIS Inflow=95.55 cfs 13.698 af Primary=95.55 cfs 13.698 af

Link PA2: POINT OF ANALYSIS Inflow=8.79 cfs 0.650 af

Primary=8.79 cfs 0.650 af

1.4 Peak Rate Comparisons

The following table summarizes and compares the pre- and post-development peak runoff rates for the 2-year, 10-year, 25-year and 50-year storm events at each point of analysis. The pre-development 1-year storm event is also included for channel protection requirements.

Table 1.	Table 1.4.1 - Peak Flow Rate Comparison							
Point of Analysis	Phase	Pre 1-Year Storm (cfs)	Pre/ Post 2-Year Storm (cfs)	Pre/ Post 10-Year Storm (cfs)	Pre/ Post 25-Year Storm (cfs)	Pre/ Post 50-Year Storm (cfs)		
	1B	16.58	24.86/ 9.74	52.70/ 33.69	76.06/ 65.09	98.56/ 95.55		
PA1	2	16.58	24.86/ 9.25	52.70/ 31.22	76.06/ 56.26	98.56/ 74.09		
	Master	16.58	24.89/ 9.41	52.70/ 39.92	76.06/ 66.14	98.56/ 83.35		
	1B	3.38	4.41/ 3.04	7.49/ 5.34	9.90/ 7.13	12.13/ 8.79		
PA2	2	3.38	4.41/ 3.10	7.49/ 5.36	9.90/ 7.12	12.13/ 8.76		
	Master	3.38	4.41/ 3.72	7.49/ 5.94	9.90/ 7.66	12.13/ 9.25		

The Peak Runoff Control Requirements of Env-Wq 1507.06 are required to be met for the point of analysis. As shown in Table 1.4 the Post-Development flows are decreased from the Pre-Development flows for PA1 and PA2.

1.5 Mitigation Description

1.5.1 Mitigation Calculations

The proposed project area has been evaluated to treat the required water quality flow (WQF) per the requirements of Env-Wq 1500. These calculations have been provided in Appendix E of this report. The water quality volumes (WQV) have been provided below outlets.

1.5.2 Pre-Treatment Methods for Protecting Water Quality

Pre-treatment for the two (2) proposed gravel wetlands is provided by a sediment forebay. Pre-treatment for the raingarden consists of deep sump catchbasins.

Table 1.5 – Pollutant Removal Efficiencies										
ВМР	Total Suspended Solids	Total Nitrogen	Total Phosphorus							
Sediment Forebay ¹	TBA	ТВА	ТВА							
Deep Sump Catch Basin w/Hood ¹	15%	85%	5%							

^{1.} Pollutant removal efficiencies from NH Stormwater Manual Volume 2, Appendix B.

1.5.3 Treatment Methods for Protecting Water Quality

Treatment for the increased impervious area comes from one rain gardens/bio-retention basins and two gravel wetlands.

The BMP Worksheets for each treatment practice have been included in Appendix E of this report.

	Table 1.6 - Pollutant Removal Efficiencies											
ВМР	Total Suspended Solids	Total Nitrogen	Total Phosphorus									
Rain Garden/Bio- Retention Basin ¹	90%	65%	65%									
Gravel Wetland ¹	95%	85%	64%									

^{1.} Pollutant removal efficiencies from NH Stormwater Manual Volume 2, Appendix B.

APPENDIX A (Bound Separately)

APPENDIX B

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Smoothing Yes

State New Hampshire

Location

Longitude 70.802 degrees West **Latitude** 43.085 degrees North

Elevation 0 feet

Date/Time Tue, 06 Feb 2018 11:48:23 -0500

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.26	0.40	0.50	0.65	0.81	1.04	1yr	0.70	0.98	1.21	1.56	2.02	2.65	2.91	1yr	2.35	2.79	3.20	3.92	4.52	1yr
2yr	0.32	0.49	0.62	0.81	1.02	1.30	2yr	0.88	1.18	1.51	1.93	2.48	3.20	3.55	2yr	2.83	3.42	3.92	4.66	5.30	2yr
5yr	0.37	0.58	0.72	0.97	1.24	1.60	5yr	1.07	1.46	1.88	2.42	3.13	4.05	4.56	5yr	3.59	4.38	5.01	5.91	6.67	5yr
10yr	0.41	0.64	0.81	1.11	1.44	1.87	10yr	1.24	1.71	2.21	2.87	3.73	4.85	5.50	10yr	4.29	5.29	6.04	7.07	7.94	10yr
25yr	0.47	0.75	0.96	1.32	1.75	2.31	25yr	1.51	2.12	2.75	3.60	4.71	6.15	7.06	25yr	5.44	6.79	7.74	8.97	10.01	25yr
50yr	0.53	0.85	1.09	1.52	2.04	2.72	50yr	1.76	2.50	3.25	4.28	5.62	7.36	8.54	50yr	6.51	8.21	9.34	10.75	11.93	50yr
100yr	0.60	0.96	1.24	1.75	2.38	3.20	100yr	2.05	2.95	3.84	5.09	6.71	8.82	10.33	100yr	7.80	9.93	11.28	12.88	14.23	100yr
200yr	0.66	1.08	1.40	2.01	2.78	3.78	200yr	2.40	3.47	4.55	6.06	8.02	10.57	12.49	200yr	9.35	12.01	13.62	15.45	16.97	200yr
500yr	0.78	1.29	1.68	2.43	3.41	4.68	500yr	2.94	4.32	5.67	7.61	10.13	13.43	16.07	500yr	11.89	15.46	17.47	19.64	21.43	500yr

Lower Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.23	0.36	0.44	0.59	0.73	0.89	1yr	0.63	0.87	0.92	1.31	1.66	2.23	2.50	1yr	1.97	2.41	2.83	3.17	3.88	1yr
2yr	0.31	0.49	0.60	0.81	1.00	1.19	2yr	0.86	1.16	1.36	1.82	2.34	3.05	3.44	2yr	2.70	3.31	3.81	4.53	5.05	2yr
5yr	0.35	0.54	0.67	0.92	1.17	1.40	5yr	1.01	1.37	1.61	2.13	2.74	3.78	4.18	5yr	3.34	4.02	4.69	5.51	6.22	5yr
10yr	0.38	0.59	0.73	1.02	1.32	1.60	10yr	1.14	1.56	1.81	2.41	3.08	4.36	4.86	10yr	3.86	4.67	5.42	6.39	7.18	10yr
25yr	0.44	0.67	0.83	1.18	1.56	1.90	25yr	1.34	1.86	2.10	2.78	3.57	4.69	5.90	25yr	4.15	5.67	6.63	7.78	8.67	25yr
50yr	0.48	0.73	0.91	1.31	1.76	2.17	50yr	1.52	2.12	2.35	3.11	3.98	5.30	6.82	50yr	4.69	6.56	7.71	9.02	10.00	50yr
100yr	0.53	0.81	1.01	1.46	2.01	2.47	100yr	1.73	2.42	2.63	3.46	4.41	5.95	7.88	100yr	5.27	7.58	8.97	10.48	11.53	100yr
200yr	0.59	0.89	1.13	1.63	2.28	2.82	200yr	1.96	2.76	2.93	3.85	4.88	6.67	9.10	200yr	5.90	8.75	10.43	12.19	13.33	200yr
500yr	0.69	1.02	1.31	1.91	2.71	3.37	500yr	2.34	3.30	3.40	4.41	5.58	7.75	11.02	500yr	6.86	10.59	12.73	14.91	16.12	500yr

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.28	0.44	0.53	0.72	0.88	1.08	1yr	0.76	1.06	1.25	1.75	2.21	2.99	3.13	1yr	2.65	3.01	3.57	4.36	5.02	1yr
2yr	0.33	0.52	0.63	0.86	1.06	1.26	2yr	0.91	1.23	1.48	1.96	2.51	3.41	3.68	2yr	3.02	3.53	4.06	4.81	5.61	2yr
5yr	0.40	0.61	0.76	1.04	1.33	1.61	5yr	1.15	1.57	1.88	2.53	3.24	4.32	4.92	5yr	3.82	4.73	5.34	6.33	7.11	5yr
10yr	0.46	0.71	0.88	1.23	1.59	1.96	10yr	1.38	1.92	2.27	3.09	3.93	5.31	6.15	10yr	4.70	5.91	6.74	7.78	8.68	10yr
25yr	0.57	0.87	1.08	1.54	2.02	2.54	25yr	1.74	2.48	2.93	4.04	5.09	7.73	8.25	25yr	6.84	7.94	9.02	10.25	11.33	25yr
50yr	0.66	1.01	1.25	1.80	2.42	3.09	50yr	2.09	3.02	3.56	4.96	6.23	9.67	10.34	50yr	8.56	9.94	11.25	12.61	13.86	50yr
100yr	0.77	1.17	1.47	2.12	2.91	3.75	100yr	2.51	3.67	4.33	6.10	7.63	12.09	12.94	100yr	10.70	12.45	14.03	15.54	16.96	100yr
200yr	0.90	1.36	1.72	2.50	3.48	4.57	200yr	3.00	4.47	5.28	7.50	9.34	15.15	16.23	200yr	13.41	15.60	17.53	19.14	20.77	200yr
500yr	1.12	1.66	2.14	3.11	4.42	5.91	500yr	3.81	5.78	6.84	9.88	12.24	20.44	21.88	500yr	18.09	21.04	23.53	25.23	27.17	500yr

С	oastal and Great Bay Regio	n Precipitation Increase
	24-hr Storm Event (in.)	24-hr Storm Event + 15% (in.)
1 Year	2.65	3.05
2 Year	3.20	3.68
10 Year	4.85	5.58
25 Year	6.15	7.07
50 Year	7.36	8.46
100 Year	8.82	10.14

APPENDIX C

Project/Site Information

Proposed Industrial Development 101 International Drive Portsmouth, NH

 Test Pit No.
 TP-1

 Page No.
 1 of 1

 File No.
 L-0700-013

 Checked By:
 D. Brogan

T&B Rep.	M. Trovato	Contractor	New England Boring Contractors			S	Date	03/21/18
		Operator	Ben Cross				Ground Elev.	± 48'
Weather	30 Degrees - Cloudy	Make	Kubota	Model	KX080		Time Started	7:50
		Capacity	0.3 yd^3	Reach	15.1	ft.	Time Completed	9:05

Depth0	Soil Description	Sample No.	PID Reading (ppm)	Excav. Effort	Boulder Count/ Class	Note No.
	Dark brown fine to coarse SAND and fine to coarse GRAVEL, little Silt (FILL) 0.5'		0.0	D	5- 10%/A	1
1'	Brown, fine to coarse SAND and fine to coarse GRAVEL, some Silt, trace Brick, Wood, Clay Pipe (FILL)	S-1		E	5- 10%/A	
3'—		3-1		E	5- 10%/A	
	3.5'			E	5- 10%/A	
5'	Grayish-brown, fine to coarse SAND and SILT, with thin seems of Silty Clay (FILL)	S-2	0.0	E	5%/A	
6'	6'			E	5%/A	
7'—	Grayish-brown, fine to medium SAND, some Silty Clay, some fine to coarse			E	5%/A	
8'-	Gravel	S-3		М	5%/A	
9'—	8.5'		0.0	М	5%/A	2
	Bottom of exploration at 8.5 feet due to bedrock refusal					
10'						
11'						
12'						
13'						
14'						
15'						
16'						

Notes:

- 1) Frost layer observed to be approximately 6-inches thick.
- 2) Groundwater observed to infiltrate test pit at approximately 8.5 feet.

Ī	Test Pit Plan	Boulder Class Letter Size Range	Proportion Used	s	Abbreviations F = Fine	(X) Encountered		
	3'	Designation Classification A 6" - 17" B 18" - 36"	TRACE (TR.)	0 - 10%	M = Medium C = Coarse	() Not Enco	ountered Depth	
	13'	C 36" +	LITTLE (LI.)	10 - 20%	V = Very F/M = Fine to medium F/C = Fine to coarse	Time to Reading	to Ground-	
		<u>Excavation Effort</u> EEasy	SOME (SO.)	20 - 35%	GR = Gray BN = Brown	(Hours)	water	
ľ	Volume =cu. yd.	MModerate DDifficult	AND	35 - 50%	YEL = Yellow	0.25	8.5'	

J:\L\L0700 Lonza Biologics Expansion was 1576F\013 Iron Parcel Redevelopment\Geo-Environmental\Explorations\[Test Pit Logs.xls]TP-1

Test Pit Plan

Project/Site Information

Proposed Industrial Development 101 International Drive Portsmouth, NH

 Test Pit No.
 TP-6

 Page No.
 1 of 1

 File No.
 L-0700-013

 Checked By:
 D. Brogan

GROUNDWATER

Elapsed Time to

Reading

(Hours)

0.25

(X) Encountered () Not Encountered

Depth

Ground-

5'

water

Abbreviations

W = Wedulii C = Coarse V = Very F/M = Fine to medium F/C = Fine to coarse GR = Gray BN = Brown

F = Fine

 $M = \stackrel{\cdot}{Medium}$

YEL = Yellow

36 Degrees - Cloudy	Operator Make Capacity Soil Descrip	Ben Cross Kubota 0.3 yd ³	Model Reach	KX080 15.1		Ground Ele Time Start	ted	13	44' 3:55
	Capacity								
		0.3 yd ³	Reach	1 - 1		-			
	Soil Descrip			15.1	ft.	Time Com	pleted	14	: 35
		otion			Sample No.	PID Reading	Excav.	Boulder Count/	Note
						(ppm)	Effort	Class	No.
			rse Grave	el, trace			E	5%/A	
				2'				5%/A-B	
							E	5%/A	
Light gray, Si	ty CLAY, trace	WOOD (FILL)					E	5%/A	
				5'			E	5%/A	
Light gray Silty (LAV trace fine	to coarso Cra	wol				E	5%/A	1
Light gray, Sitty C	LAT, trace fine	to coarse Gra	ivei				E	0%	
				7.5'			E	0%	
Bottom of exploration	n at 7.5 feet due	e to bedrock i	refusal						
-									
dwater observed to infiltrate test pit si	dewalls at approx	imately 5 feet b	oelow grad	e.					
	Light gray, Sil	Light gray, Silty CLAY, trace to Light gray, Silty CLAY, trace fine Bottom of exploration at 7.5 feet due	Light gray, Silty CLAY, trace Wood (FILL) Light gray, Silty CLAY, trace fine to coarse Gra Bottom of exploration at 7.5 feet due to bedrock in the second	Light gray, Silty CLAY, trace Wood (FILL) Light gray, Silty CLAY, trace fine to coarse Gravel Bottom of exploration at 7.5 feet due to bedrock refusal	Light gray, Silty CLAY, trace Wood (FILL) 5' Light gray, Silty CLAY, trace fine to coarse Gravel 7.5'	Light gray, Silty CLAY, trace Wood (FILL) 5' Light gray, Silty CLAY, trace fine to coarse Gravel 7.5' Bottom of exploration at 7.5 feet due to bedrock refusal	Dark brown, fine to coarse SAND and SILT, little fine to coarse Gravel, trace Brick, Wood (FILL) 2' Light gray, Silty CLAY, trace Wood (FILL) 5' Light gray, Silty CLAY, trace fine to coarse Gravel 7.5' Bottom of exploration at 7.5 feet due to bedrock refusal	Dark brown, fine to coarse SAND and SILT, little fine to coarse Gravel, trace Brick, Wood (FILL) 2' E Light gray, Silty CLAY, trace Wood (FILL) 5' E Light gray, Silty CLAY, trace fine to coarse Gravel E 8 E E E E E E E E E E E	Dark brown, fine to coarse SAND and SILT, little fine to coarse Gravel, trace Brick, Wood (FILL) 2' E 5%/A-B E 5%/A-B E 5%/A-B E 5%/A Light gray, Silty CLAY, trace Wood (FILL) 5' E 5%/A E 5%/A E 5%/A E 5%/A E 5%/A E 0% Bottom of exploration at 7.5 feet due to bedrock refusal

Proportions Used

0 - 10%

10 - 20%

20 - 35%

35 - 50%

TRACE (TR.)

LITTLE (LI.)

SOME (SO.)

J:\L\L0700 Lonza Biologics Expansion was 1576F\013 Iron Parcel Redevelopment\Geo-Environmental\Explorations\[Test Pit Logs.xls]TP-6

Boulder Class

Excavation Effort
E----Easy
M----Moderate

D-----Difficult

Letter

Designation

A B C Size Range

Classification 6" - 17" 18" - 36" 36" +

Project/Site Information

Proposed Industrial Development 101 International Drive Portsmouth, NH

TP-17 Test Pit No. Page No. 1 of 1 File No. L-0700-013 Checked By: D. Brogan

T&B Rep.	. M. Trovato		Contractor	New Englan	d Boring	Contract	ors	Date			23/18
			Operator	Ben Cross				Ground Ele			: 57'
Weather	36 Degrees	s - Sunny	Make	Kubota	Model	KX080		Time Start			9:10
			Capacity	0.3 yd ³	Reach	15.1	ft.	Time Com	pleted	1(0:00
Depth			Soil Descrip	otion			Sample No.	PID Reading (ppm)	Excav. Effort	Boulder Count/ Class	Note No.
0 —	Brown, fine to coal		ne fine to coars be, Trash (FILL)		ne Silt, tra	ce Clay		0.0	E	5%/A	
1'						2'			Е	5%/A	
_ 2' _ 3'		Gray, fine to	medium SANE	and SILT		2.8'	S-1	0.0	Е	5%/A	
— 4'—									E	0%	1
		G	ray, Silty CLAY				S-2		E	0%	
— 6'—	/ F								E	0%	
— 7'—						6.5'			E	5%/A	
, — 8'—								0.0	E	0%	
9' _ _	Gra	ayish-brown, fi	ine to medium	SAND and SII	_T		S-3		E	0%	
101									Е	0%	
10' — 11' —						11'			Е	0%	
		Bottom of	f exploration at	11 feet							
— 13' —											
— 14' —										 	
— 15' —											
											
Notes:											
	metal pipe encountere	ed at approximat	elv 3 feet helow (grade running r	ernendicul	ar with te	st nit				
.,	otal pipo olioo a litoro	а ат аррголина	ery o reer below	g. aao , a g p	or portarou.	a to	ot piti				
	Test Pit Plan	Letter Designation	er Class Size Range Classification	Propi U TRACE (TR.)	ortions sed	10%	F = Fine M = Med	bbreviations	()	DUNDWATER Encountered Not Encounte	I
	12'	A B C	6" - 17" 18" - 36" 36" +	LITTLE (LI.)	10 -	20%	F/C = Fir	ne to medium ne to coarse	Elapse Time t Readii	to ng	Depth to Ground-
Maluma a		E	ation Effort Easy IModerate	SOME (SO.)	20 -	35%	GR = Gra		(Hour	"	water

E----Easy M-----Moderate

D-----Difficult

AND

35 - 50%

YEL = Yellow

Project/Site Information

Proposed Industrial Development 101 International Drive Portsmouth, NH

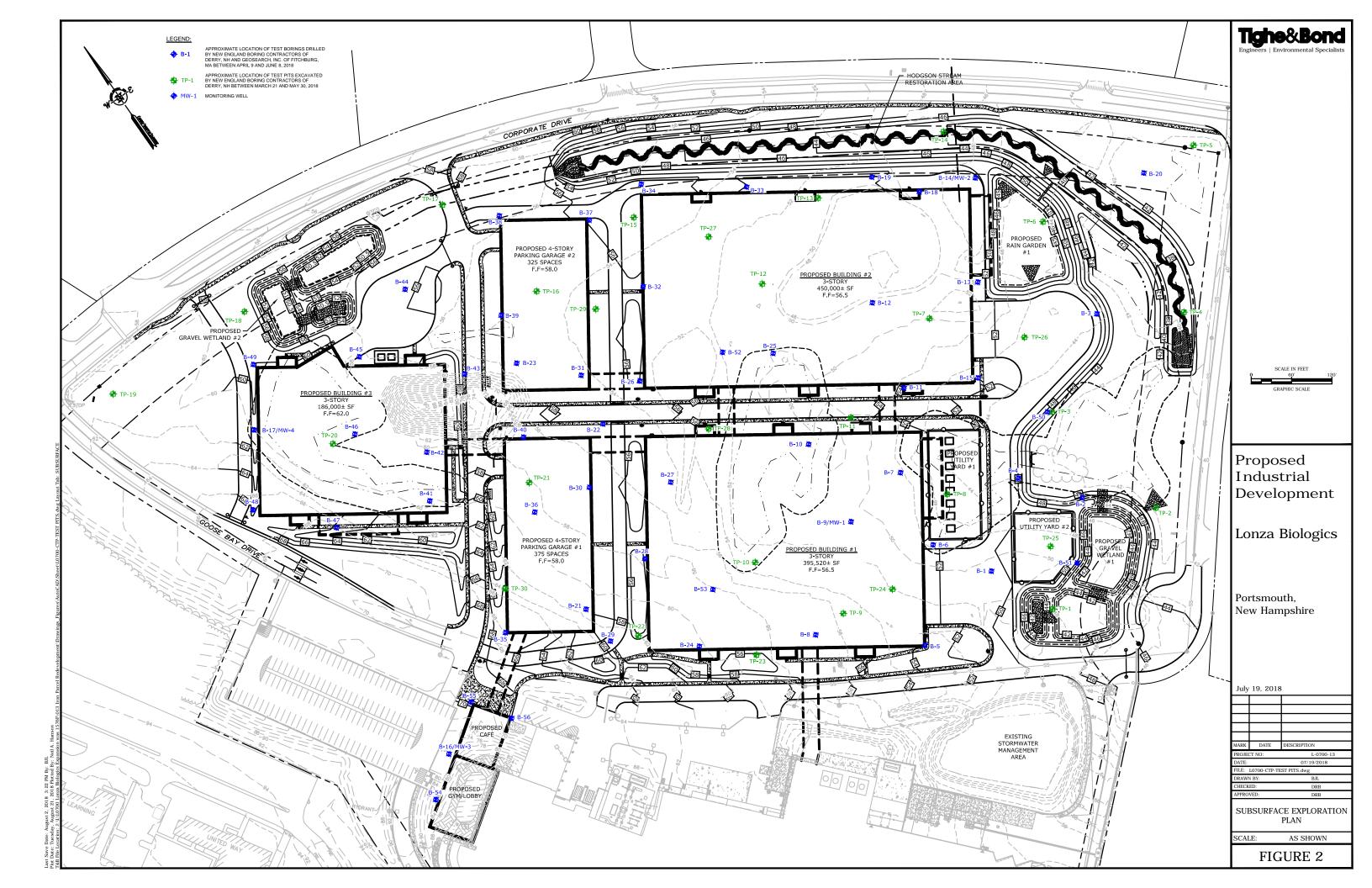
 Test Pit No.
 TP-18

 Page No.
 1 of 1

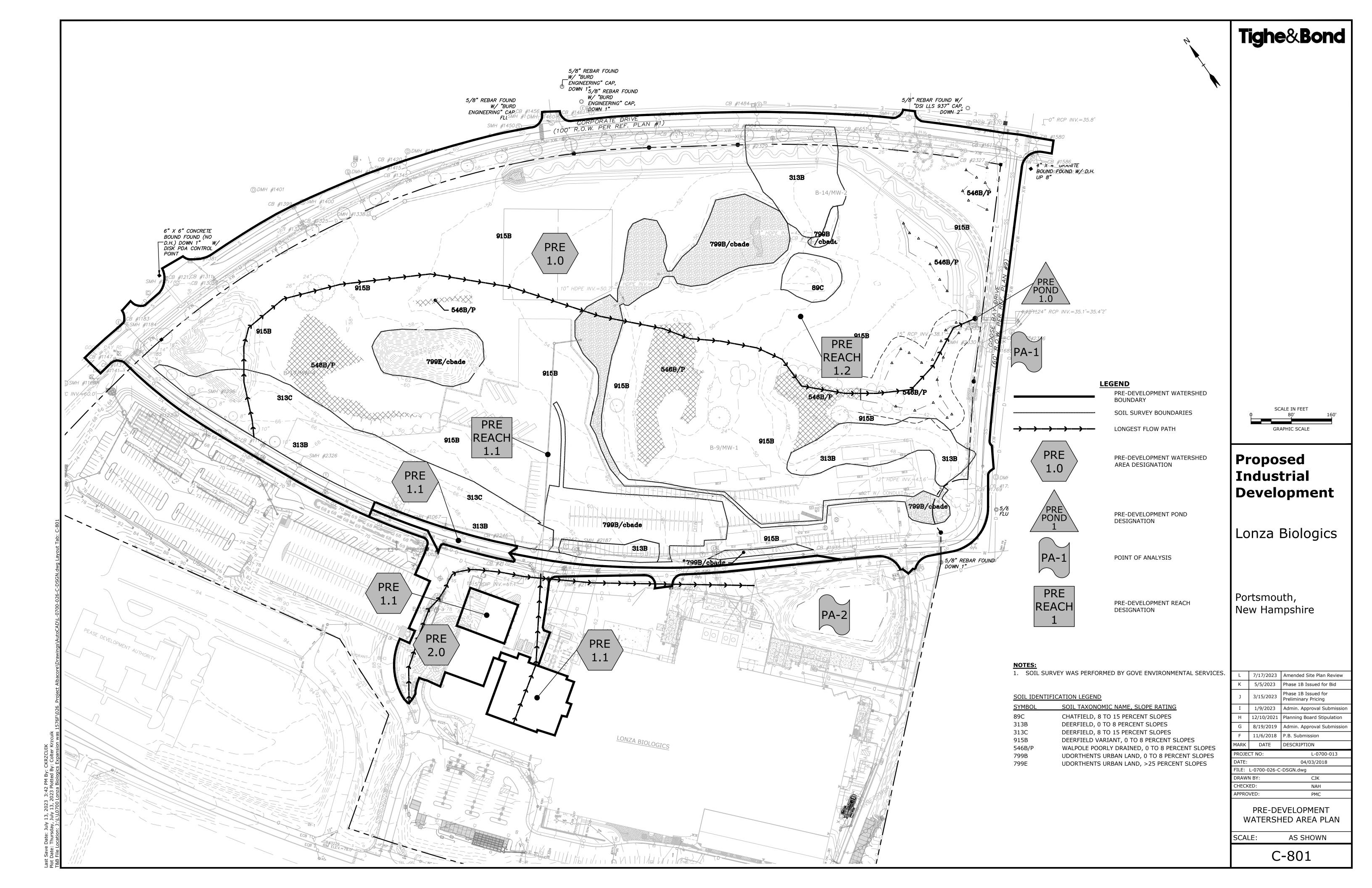
 File No.
 L-0700-013

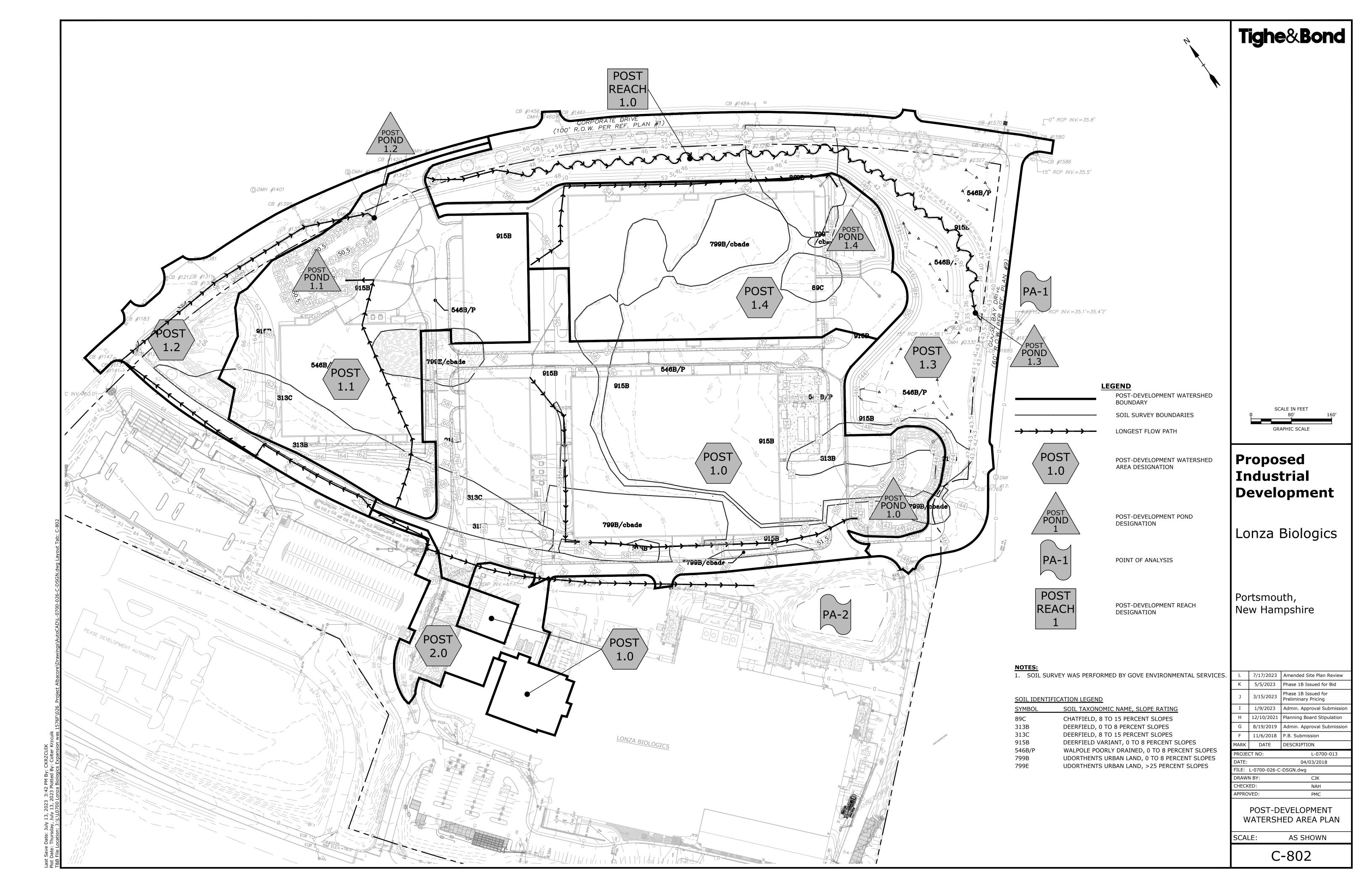
 Checked By:
 D. Brogan

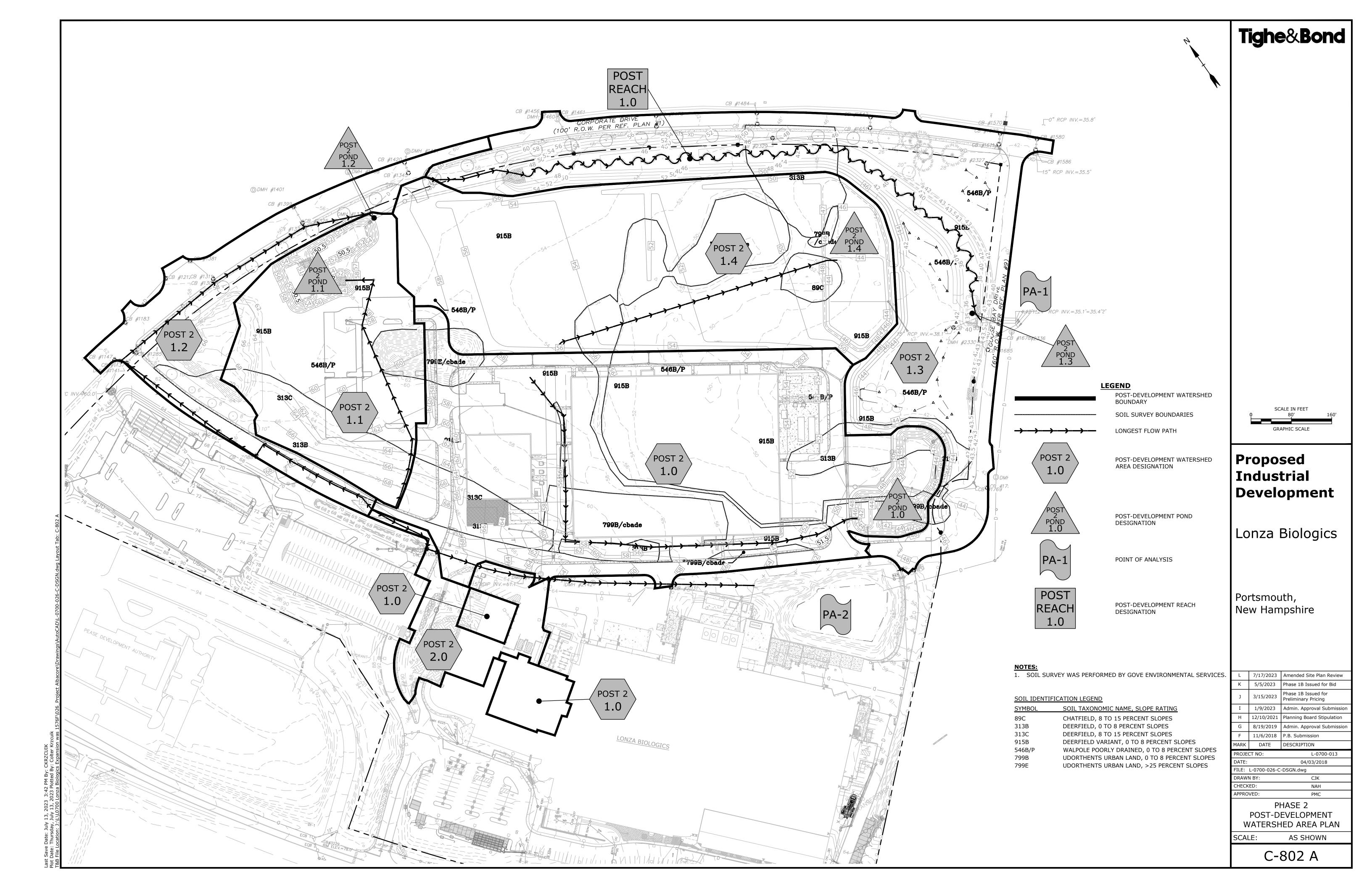
&B Rep.	M. Trovato	Contractor	New Englar	New England Boring Contractors			Date		03/2	03/23/18	
		Operator	Ben Cross				Ground El	ev.	±	59'	
Veather	38 Degrees - Sunny	Make	Kubota	Model	KX080		Time Star	ted	10):10	
		Capacity	0.3 yd ³	Reach	15.1	ft.	Time Com	pleted	11	l:15	
Depth		Soil Descrip	otion	-		Sample	PID		Boulder		

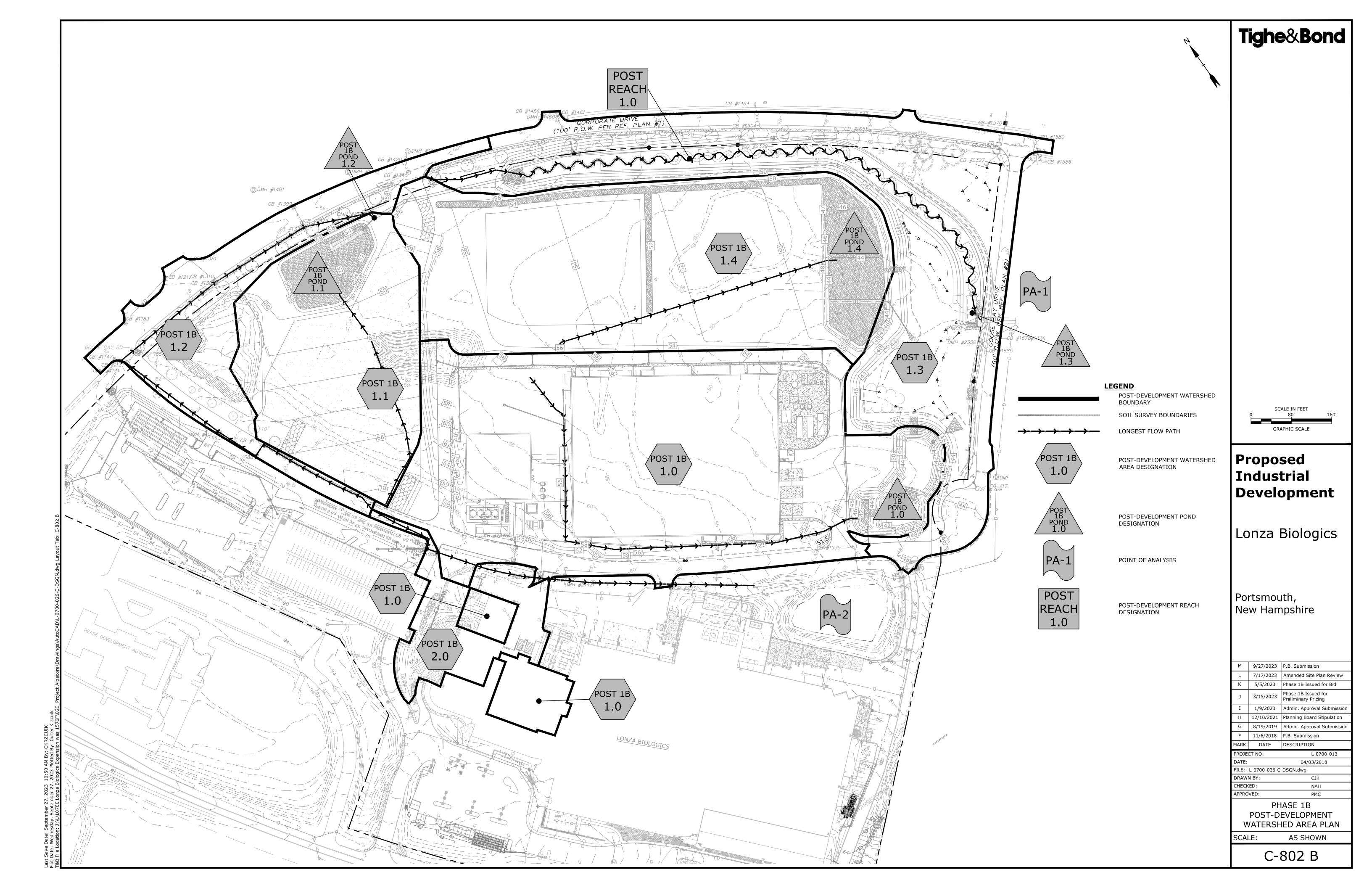

Depth	Soil Description	Sample	PID		Boulder	
		No.	Reading	Excav.	Count/	Note
			(ppm)	Effort	Class	No.
<u> </u>	Brown, fine to coarse SAND and fine to coarse GRAVEL, some Silt, trace		N 1 /		5-	
	Trash, Clay Pipe, Brick (FILL)			Е	10%/A	
L 1, —						
1	1.5'			Е	5-	1
_ 2:	Light brown, fine to coarse SAND, some Silt, little fine to coarse Gravel, trace				10%/A	-
2.				_	100//4	
	Brick (FILL)			Е	10%/A	
 3' 	3.5'					
	3.0			Е	10%/A	
4'-					10	
				Е	10-	
					15%/A	
3	Brown, fine to coarse SAND, some Silt, little fine to coarse Gravel (FILL)	S-1		Е	10-	
		5-1		E	15%/A	
6'						
				E	10%/A	
— 7' —	7.41					
	7.4'			Е	10%/A	
- 8' -						
0		S-2		Е	10%/A	
	Link harring for the course CAND course for the course Course Hittle City			L	10 767 A	
9	Light brown, fine to coarse SAND, some fine to coarse Gravel, little Silt			_		
				E	10%/A	
— _{10'} —						
10				Ε	10%/A	
11'-	11'					
11	WEATHERED ROCK			M	10%/A	2
121	Bottom of exploration at 11.4 feet			171	107074	
12'	Dottom of exploration at 11.4 feet					
13'						
— 14' —						
15'						
1.5						
16'						

Notes:


- 1) Metal pipe encountered at approximately 1 foot below grade.
- 2) Groundwater observed to infiltrate test pit at approximately 11 feet below grade.


Test Pit Plan	Boulder Class Letter Size Range	Proportions Used		Abbreviations F = Fine	GROUNDWA	
3'	Designation Classification A 6" - 17" B 18" - 36"	TRACE (TR.)	0 - 10%	M = Medium C = Coarse	() Not Enco	ountered Depth
13'	C 36" +	LITTLE (LI.)	10 - 20%	V = Very F/M = Fine to medium F/C = Fine to coarse	Time to Reading	to Ground-
	<u>Excavation Effort</u> EEasy	SOME (SO.)	20 - 35%	GR = Gray BN = Brown	(Hours)	water
Volume =cu. yd.	MModerate DDifficult	AND	35 - 50%	YEL = Yellow	0.25	11'


J:\L\L0700 Lonza Biologics Expansion was 1576F\013 Iron Parcel Redevelopment\Geo-Environmental\Explorations\[Test_Pit Logs.xls]TP-18



APPENDIX D

APPENDIX E

GRAVEL WETLAND DESIGN CRITERIA (Env-Wq 1508.05)

Type/Node Name: Gravel Wetland 1 (POND 1.0)

Enter the node name in the drainage analysis if applicable.

	Zitter the node name in the dramage analysis in approache.	
10.62 ac	A = Area draining to the practice	
7.66 ac	A _I = Impervious area draining to the practice	
0.72 decimal	I = Percent impervious area draining to the practice, in decimal form	
0.70 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
7.43 ac-in	WQV= 1" x Rv x A	
26,953 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
2,695 cf	10% x WQV (check calc for sediment forebay)	
12,129 cf	45% x WQV (check calc for gravel wetland treatment bay volume)	
3,205 cf	V _{SED} = Sediment forebay volume	≥ 10%WQV
14,269 cf	V _{TB1} = Volume of treatment bay 1 ¹	≥ 45%WQV
20,912 cf	V_{TB2} = Volume of treatment bay 2 1	≥ 45%WQV
0.62 cfs	$2Q_{avg} = 2* WQV / 24 hrs * (1hr / 3600 sec)^2$	
44.23 ft	E_{WQV} = Elevation of WQV (attach stage-storage table)	
0.53 cfs	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table)	< 2Q _{avg}
28.25 hours	T_{ED} = Drawdown time of extended detention = 2WQV/ Q_{WQV}	<u>></u> 24-hrs
3.00 :1	Pond side slopes	<u>></u> 3:1
39.50 ft	Elevation of SHWT	
37.50 ft	SHWT - 2 feet	
41.35 ft	Epp = Elevation of the permanent pool (elevation of lowest orifice) ³	≤ E _{SHWT} - 2 ft
85.00 ft	Length of the flow path between the inlet and outlet in each cell	<u>></u> 15 ft
	What mechanism is proposed to prevent the outlet structure from clog	ging (applicable for
Trash Rack	orifices/weirs with a dimension of ≤ 6 ")?	
47.48 ft	Peak elevation of the 50-year storm event (E_{50})	
48.00 ft	Berm elevation of the pond	
YES	$E_{50} \le$ the berm elevation?	← yes
Qualified profession	nal that developed the planting plan	
Name, Profession	n:	
1 Volume stored abo	ove the wetland soil and below the high flow by-pass	

1. Volume stored above the wetland soil and below the high flow by-pass.

Designer's Notes:

NHDES Alteration of Terrain Last Revised: May 2020

^{2.} To ensure orifice is sized so that WQV is released at a relatively stable rate.

^{3. 4&}quot; to 8" below the wetland soil. If lowest orifice is higher than (SHWT - 2 feet), and saturated hydraulic conductivity (Ksat) is greater than 0.015 in/hr, the system must be lined.

Prepared by Tighe & Bond HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond POND 1.0: GRAVEL WETLAND 1

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
39.05	9,855	0	44.25	14,874	37,289
39.15	9,855	296	44.35	15,143	38,789
39.25	9,855	591	44.45	15,412	40,317
39.35	9,855	887	44.55	15,681	41,872
39.45	9,855	1,183	44.65	15,950	43,453
39.55	9,855	1,478	44.75	16,219	45,062
39.65	9,855	1,774	44.85	16,488	46,697
39.75	9,855	2,070	44.95	16,757	48,359
39.85	9,855	2,365	45.05	17,034	50,049
39.95	9,855	2,661	45.15 45.25	17,320	51,766
40.05	9,855	2,957	45.25	17,606	53,513
40.15 40.25	9,855 9,855	3,252 3,548	45.35 45.45	17,892 18,178	55,288 57,001
40.35	9,855 9,855	3,843	45.45 45.55	18,465	57,091 58,923
40.45	9,855 9,855	4,139	45.65 45.65	18,751	60,784
40.55	9,855	4,435	45.75	19,037	62,673
40.65	9,855	4,730	45.85	19,323	64,591
40.75	9,855	5,026	45.95	19,609	66,538
40.85	9,855	5,322	46.05	19,848	68,512
40.95	9,855	5,617	46.15	20,039	70,506
41.05	9,855	5,913	46.25	20,231	72,520
41.15	9,855	6,209	46.35	20,423	74,553
41.25	9,855	6,504	46.45	20,614	76,604
41.35	9,855	6,800	46.55	20,806	78,675
41.45	9,855	7,243	46.65	20,997	80,766
41.55	9,855	7,687	46.75	21,189	82,875
41.65	9,855	8,130	46.85	21,381	85,003
41.75	9,855	8,574	46.95	21,572	87,151
41.85	9,855	9,017	47.05	21,762	89,318
41.95	9,855	9,461	47.15	21,951	91,503
42.05	9,959	10,178	47.25	22,140	93,708
42.15	10,168	11,184	47.35	22,329	95,932
42.25	10,377	12,212	47.45	22,518	98,174
42.35	10,586 10,795	13,260	47.55 47.65	22,707 22,896	100,435
42.45 42.55	11,003	14,329 15,419	47.65 47.75	23,085	102,715 105,014
42.65	11,212	16,529	47.75 47.85	23,274	103,014
42.75	11,421	17,661	47.95	23,463	109,669
42.85	11,630	18,814	47.00	20,400	100,000
42.95	11,839	19,987			
43.05	12,056	21,182			
43.15	12,282	22,398			
43.25	12,508	23,638			
43.35	12,734	24,900			
43.45	12,960	26,185			
43.55	13,185	27,492			
43.65	13,411	28,822			
43.75	13,637	30,174			
43.85	13,863	31,549			
43.95	14,089	32,947			
44.05	14,336	34,367			
44.15	14,605	35,815			

44.15

0.52

0.52

0.00

Prepared by Tighe & Bond HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Stage-Discharge for Pond POND 1.0: GRAVEL WETLAND 1

Elevation	Discharge	Primary	Secondary	Elevation	Discharge	Primary	Secondary
(feet)	(cfs)	(cfs)	(cfs)	(feet)	(cfs)	(cfs)	(cfs)
39.05	0.00	0.00	0.00	44.25	0.53	0.53	0.00
39.15	0.00	0.00	0.00	44.35	0.54	0.54	0.00
39.25	0.00	0.00	0.00	44.45	0.55	0.55	0.00
39.35	0.00	0.00	0.00	44.55	0.56	0.56	0.00
39.45	0.00	0.00	0.00	44.65	0.57	0.57	0.00
39.55	0.00	0.00	0.00	44.75	0.58	0.58	0.00
39.65	0.00	0.00	0.00	44.85	0.59	0.59	0.00
39.75	0.00	0.00	0.00	44.95	0.60	0.60	0.00
39.85	0.00	0.00	0.00	45.05	0.61	0.61	0.00
39.95	0.00	0.00	0.00	45.15	0.66	0.66	0.00
40.05	0.00	0.00	0.00	45.25	0.71	0.71	0.00
40.15	0.00	0.00	0.00	45.35	0.74	0.74	0.00
40.25	0.00	0.00	0.00	45.45	0.77	0.77	0.00
40.35	0.00	0.00	0.00	45.55	0.80	0.80	0.00
40.45	0.00	0.00	0.00	45.65	0.83	0.83	0.00
40.55	0.00	0.00	0.00	45.75	0.85	0.85	0.00
40.65	0.00	0.00	0.00	45.85	0.87	0.87	0.00
40.75	0.00	0.00	0.00	45.95	0.89	0.89	0.00
40.85	0.00	0.00	0.00	46.05	1.02	1.02	0.00
40.95	0.00	0.00	0.00	46.15	1.50	1.50	0.00
41.05	0.00	0.00	0.00	46.25	2.17	2.17	0.00
41.15	0.00	0.00	0.00	46.35	2.98	2.98	0.00
41.25	0.00	0.00	0.00	46.45	3.90	3.90	0.00
41.35	0.00	0.00	0.00	46.55	5.28	4.83	0.45
41.45	0.02	0.02	0.00	46.65	7.86	5.53	2.34
41.55	0.07	0.07	0.00	46.75	11.16	6.13	5.03
41.65	0.13	0.13	0.00	46.85	15.04	6.66	8.37
41.75 41.85	0.16 0.19	0.16 0.19	0.00 0.00	46.95 47.05	19.39 29.31	7.16 12.79	12.23 16.52
41.05	0.19	0.19	0.00	47.05	40.23	19.12	21.11
42.05	0.22	0.22	0.00	47.15	45.18	19.12	25.87
42.05	0.24	0.24	0.00	47.35	50.50	19.50	31.00
42.15	0.28	0.28	0.00	47.45	56.24	19.68	36.56
42.35	0.20	0.20	0.00	47.55	62.35	19.86	42.49
42.45	0.31	0.31	0.00	47.65	68.84	20.05	48.79
42.55	0.33	0.33	0.00	47.75	75.57	20.23	55.34
42.65	0.35	0.35	0.00	47.85	82.52	20.40	62.11
42.75	0.36	0.36	0.00	47.95	89.66	20.58	69.08
42.85	0.37	0.37	0.00	17.00	00.00	20.00	00.00
42.95	0.39	0.39	0.00				
43.05	0.40	0.40	0.00				
43.15	0.41	0.41	0.00				
43.25	0.43	0.43	0.00				
43.35	0.44	0.44	0.00				
43.45	0.45	0.45	0.00				
43.55	0.46	0.46	0.00				
43.65	0.47	0.47	0.00				
43.75	0.48	0.48	0.00				
43.85	0.49	0.49	0.00				
43.95	0.50	0.50	0.00				
44.05	0.51	0.51	0.00				

GRAVEL WETLAND DESIGN CRITERIA (Env-Wq 1508.05)

Type/Node Name: Gravel Wetland 2 (POND 1.1)

Enter the node name in the drainage analysis if applicable.

	Enter the node name in the drainage analysis it applicable.	
5.57 ac	A = Area draining to the practice	
3.27 ac	A _I = Impervious area draining to the practice	
0.59 decima	I = Percent impervious area draining to the practice, in decimal form	
0.58 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
3.22 ac-in	WQV= 1" x Rv x A	
11,694 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
1,169 cf	10% x WQV (check calc for sediment forebay)	
5,262 cf	45% x WQV (check calc for gravel wetland treatment bay volume)	
3,510 cf	V _{SED} = Sediment forebay volume	<u>></u> 10%WQV
11,448 cf	V _{TB1} = Volume of treatment bay 1 ¹	≥ 45%WQV
17,112 cf	V _{TB2} = Volume of treatment bay 2 ¹	> 45%WQV
0.27 cfs	2Q _{avg} = 2* WQV / 24 hrs * (1hr / 3600 sec) ²	
52.03 ft	E _{WQV} = Elevation of WQV (attach stage-storage table)	
0.13 cfs	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table)	< 2Q _{avg}
49.97 hours	T_{ED} = Drawdown time of extended detention = $2WQV/Q_{WQV}$	<u>></u> 24-hrs
3.00 :1	Pond side slopes	<u>></u> 3:1
46.00 ft	Elevation of SHWT	
44.00 ft	SHWT - 2 feet	
49.85 ft	Epp = Elevation of the permanent pool (elevation of lowest orifice) ³	≤ E _{SHWT} - 2 ft
105.00 ft	Length of the flow path between the inlet and outlet in each cell	≥ 15 ft
	What mechanism is proposed to prevent the outlet structure from clog	ging (applicable for
Trash Rack	orifices/weirs with a dimension of ≤ 6 ")?	
56.45 ft	Peak elevation of the 50-year storm event (E ₅₀)	
57.00 ft	Berm elevation of the pond	
YES	$E_{50} \le$ the berm elevation?	← yes
Qualified profession	onal that developed the planting plan	
Name, Profession	ո։	
1. Volume stored ah	ove the wetland soil and below the high flow by-pass	

1. Volume stored above the wetland soil and below the high flow by-pass.

Designer's Notes:		

NHDES Alteration of Terrain Last Revised: May 2020

^{2.} To ensure orifice is sized so that WQV is released at a relatively stable rate.

^{3. 4&}quot; to 8" below the wetland soil. If lowest orifice is higher than (SHWT - 2 feet), and saturated hydraulic conductivity (Ksat) is greater than 0.015 in/hr, the system must be lined.

Prepared by Tighe & Bond HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond POND 1.1: GRAVEL WETLAND 2

Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)
47.55	6,269	0	55.35	17,751	61,814
47.70	6,269	282	55.50	18,225	64,512
47.85	6,269	564	55.65	18,699	67,281
			55.80		
48.00	6,269	846		19,173	70,121
48.15	6,269	1,128	55.95	19,647	73,033
48.30	6,269	1,411	56.10	19,989	76,009
48.45	6,269	1,693	56.25	20,264	79,028
48.60	6,269	1,975	56.40	20,540	82,088
48.75	6,269	2,257	56.55	20,816	85,190
48.90	6,269	2,539	56.70	21,091	88,333
49.05	6,269	2,821	56.85	21,367	91,517
49.20	6,269	3,103	57.00	21,643	94,743
49.35	6,269	3,385	57.15	21,918	98,010
49.50	6,269	3,667	57.30	22,194	101,318
49.65	6,269	3,949	57.45	22,469	104,668
49.80	6,269	4,232	57.60	22,745	108,059
49.95	6,269	4,608	57.75	23,021	111,492
50.10	6,269	5,031	57.90	23,296	114,965
50.25	6,269	5,454			
50.40	6,269	5,877			
50.55	6,362	6,475			
50.70	6,641	7,450			
50.85	6,920	8,467			
51.00	7,199	9,526			
51.15	7,497	10,629			
51.30	7,795	11,775			
51.45	8,094	12,967			
51.60	8,392	14,204			
51.75	8,690	15,485			
51.90	8,988	16,811			
52.05	9,295	18,181			
52.20	9,619	19,600			
52.35	9,942	21,067			
52.50	10,266	22,583			
52.65	10,590	24,147			
52.80	10,913	25,759			
52.95	11,237	27,421			
53.10	11,592	29,132			
53.25	11,962	30,899			
53.40	12,333	32,721			
53.55	12,703	34,598			
53.70	13,073	36,532			
53.85	13,444	38,520			
54.00	13,814	40,565			
54.15	14,239	42,669			
54.30	14,663	44,836			
54.45	15,088	47,068			
54.60	15,513	49,363			
54.75	15,937	51,722			
54.90	16,362	54,144			
55.05	16,803	56,630			
55.20	17,277	59,186			

Prepared by Tighe & Bond HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Stage-Discharge for Pond POND 1.1: GRAVEL WETLAND 2

Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)
47.55	0.00	50.67	0.04	53.79	2.20	56.91	37.24
47.61	0.00	50.73	0.04	53.85	2.85	56.97	37.42
47.67	0.00	50.79	0.05	53.91	3.56	57.03	37.60
47.73	0.00	50.85	0.06	53.97	4.31	57.09	37.79
47.79	0.00	50.91	0.06	54.03	5.11	57.15	37.97
47.85	0.00	50.97	0.07	54.09	5.95	57.21	38.15
47.91	0.00	51.03	0.07	54.15	6.83	57.27	38.33
47.97	0.00	51.09	0.08	54.21	7.75	57.33	38.51
48.03	0.00	51.15	0.08	54.27	8.70	57.39	38.68
48.09	0.00	51.21	0.09	54.33	9.68	57.45	38.86
48.15	0.00	51.27	0.09	54.39	10.70	57.51	39.04
48.21	0.00	51.33	0.09	54.45	11.74	57.57	39.21
48.27	0.00	51.39	0.10	54.51	12.82	57.63	39.39
48.33	0.00	51.45	0.10	54.57	13.91	57.69	39.56
48.39	0.00	51.51	0.10	54.63	15.04	57.75	39.73
48.45	0.00	51.57	0.11	54.69	16.18	57.81	39.91
48.51	0.00	51.63	0.11	54.75	17.35	57.87	40.08
48.57	0.00	51.69	0.11	54.81	18.54	57.93	40.25
48.63	0.00	51.75	0.12	54.87	19.76	57.99	40.42
48.69	0.00	51.81	0.12	54.93	20.99		
48.75	0.00	51.87	0.12	54.99	22.24		
48.81	0.00	51.93	0.12	55.05	23.51		
48.87	0.00	51.99	0.13	55.11 55.17	24.79		
48.93 48.99	0.00 0.00	52.05 52.11	0.13 0.13	55.17 55.23	26.10 27.42		
46.99 49.05	0.00	52.11 52.17	0.13	55.25 55.29	28.75		
49.11	0.00	52.17	0.13	55.35	30.10		
49.17	0.00	52.29	0.14	55.41	31.46		
49.23	0.00	52.35	0.14	55.47	32.51		
49.29	0.00	52.41	0.14	55.53	32.72		
49.35	0.00	52.47	0.15	55.59	32.93		
49.41	0.00	52.53	0.15	55.65	33.14		
49.47	0.00	52.59	0.15	55.71	33.35		
49.53	0.00	52.65	0.15	55.77	33.55		
49.59	0.00	52.71	0.15	55.83	33.76		
49.65	0.00	52.77	0.16	55.89	33.96		
49.71	0.00	52.83	0.16	55.95	34.16		
49.77	0.00	52.89	0.16	56.01	34.36		
49.83	0.00	52.95	0.16	56.07	34.56		
49.89	0.00	53.01	0.16	56.13	34.76		
49.95	0.00	53.07	0.17	56.19	34.96		
50.01	0.00	53.13	0.17	56.25	35.15		
50.07	0.00	53.19	0.17	56.31	35.35		
50.13	0.00	53.25	0.17	56.37	35.54		
50.19 50.25	0.00	53.31	0.17	56.43	35.73		
50.25 50.31	0.00 0.00	53.37 53.43	0.18 0.18	56.49 56.55	35.92 36.11		
50.37	0.00	53.49	0.18	56.61	36.30		
50.43	0.00	53.55	0.13	56.67	36.49		
50.49	0.00	53.61	0.66	56.73	36.68		
50.55	0.00	53.67	1.09	56.79	36.87		
50.61	0.03	53.73	1.61	56.85	37.05		

FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.07)

Type/Node Name: Rain Garden 1.0 (POND 1.4)

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable.

	_	Check if you reviewed the restrictions on unlined systems outlined in Env-Wq 1508.0	7(a).
4.93	_	A = Area draining to the practice	
4.19		A _I = Impervious area draining to the practice	
	decimal	I = Percent impervious area draining to the practice, in decimal form	
	unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
	ac-in	WQV= 1" x Rv x A	
14,584	_	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
3,646	_	25% x WQV (check calc for sediment forebay volume)	
10,938		75% x WQV (check calc for surface sand filter volume)	
Deep	Sump	Method of Pretreatment? (not required for clean or roof runoff)	
	cf	V _{SED} = Sediment forebay volume, if used for pretreatment	<u>></u> 25%WQV
Calculate ti	me to drair	n if system IS NOT underdrained:	
10,418	sf	A _{SA} = Surface area of the practice	
0.30	iph	Ksat _{DESIGN} = Design infiltration rate ¹	
	=	If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	
Yes	Yes/No	(Use the calculations below)	
56.0	hours	$T_{DRAIN} = Drain time = V / (A_{SA} * I_{DESIGN})$	< 72-hrs
Calculate ti	me to drain	n if system IS underdrained:	
46.31	ft	E _{WQV} = Elevation of WQV (attach stage-storage table)	
0.41	cfs	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table)	
19.76	hours	T _{DRAIN} = Drain time = 2WQV/Q _{WQV}	≤ 72-hrs
43.50	feet	E _{FC} = Elevation of the bottom of the filter course material ²	
42.42	feet	E_{UD} = Invert elevation of the underdrain (UD), if applicable	
39.00	feet	E _{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p	it)
36.50	feet	E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test	pit)
1.08	feet	$D_{FC \text{ to UD}}$ = Depth to UD from the bottom of the filter course	<u>≥</u> 1'
7.00	feet	$D_{FC \text{ to ROCK}}$ = Depth to bedrock from the bottom of the filter course	<u>≥</u> 1'
4.50	feet	$D_{FC \text{ to SHWT}}$ = Depth to SHWT from the bottom of the filter course	<u>></u> 1'
49.56	ft	Peak elevation of the 50-year storm event (infiltration can be used in analysis)	
50.00	ft	Elevation of the top of the practice	
YES		50 peak elevation \leq Elevation of the top of the practice	← yes
If a surface	sand filter	or underground sand filter is proposed:	
YES	ac	Drainage Area check.	< 10 ac
	cf	V = Volume of storage ³ (attach a stage-storage table)	<u>></u> 75%WQV
	inches	D _{FC} = Filter course thickness	18", or 24" if within GPA
Sheet	- : :	Note what sheet in the plan set contains the filter course specification.	
	Yes/No	Access grate provided?	← yes

If a biorete	ntion area	is proposed:	
YES	ac	Drainage Area no larger than 5 ac?	← yes
25,499	cf	V = Volume of storage ³ (attach a stage-storage table)	<u>></u> WQV
18.0	inches	D _{FC} = Filter course thickness	18", or 24" if within GPA
Sheet	C-509	Note what sheet in the plan set contains the filter course specification	
3.0	_:1	Pond side slopes	<u>> 3</u> :1
Sheet	C-509	Note what sheet in the plan set contains the planting plans and surface cover	
If porous p	avement is	proposed:	
		Type of pavement proposed (Concrete? Asphalt? Pavers? Etc.)	
	acres	A _{SA} = Surface area of the pervious pavement	
	:1	Ratio of the contributing area to the pervious surface area	≤ 5:1
	inches	D _{FC} = Filter course thickness	12", or 18" if within GPA
Sheet	-	Note what sheet in the plan set contains the filter course spec.	mod. 304.1 (see spec)

- 1. Rate of the limiting layer (either the filter course or the underlying soil). Ksat_{design} includes factor of safey. See Env-Wq 1504.14 for guidance on determining the infiltration rate.
- 2. See lines 34, 40 and 48 for required depths of filter media.
- 3. Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet stucture, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.

Designer's Notes:		

Last Revised: January 2019

Prepared by Tighe & Bond HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond POND 1.4: RAINGARDEN 1.0

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
42.17	10,418	0	47.37	13,745	35,647
42.27	10,418	417	47.47	13,890	37,029
42.37	10,418	833	47.57	14,036	38,425
42.47	10,418	1,250	47.67	14,182	39,836
42.57	10,418	1,667	47.77	14,328	41,261
42.67	10,418	2,084	47.87	14,474	42,702
42.77	10,418	2,500	47.97	14,620	44,156
42.87	10,418	2,917	48.07	14,773	45,626
42.97	10,418	3,334	48.17	14,930	47,111
43.07	10,418	3,750	48.27	15,086	48,612
43.17	10,418	4,167	48.37	15,242	50,128
43.27	10,418	4,584	48.47	15,399	51,660
43.37	10,418	5,001	48.57	15,555	53,208
43.47	10,418	5,417	48.67	15,711	54,771
43.57	10,418	5,615	48.77	15,868	56,350
43.67	10,418	5,719	48.87	16,024	57,945
43.77	10,418	5,824	48.97	16,180	59,555
43.87	10,418	5,928	49.07	16,336	61,181
43.97	10,418	6,032	49.17	16,493	62,822
44.07	10,418	6,136	49.27	16,649	64,479
44.17	10,418	6,240	49.37	16,805	66,152
44.27	10,418	6,345	49.47	16,962	67,840
44.37	10,418	6,449	49.57	17,118	69,544 71,264
44.47 44.57	10,418	6,553	49.67	17,274	71,264
	10,418	6,657	49.77	17,431	72,999 74,750
44.67 44.77	10,418 10,418	6,761 6,865	49.87 49.97	17,587 17,743	74,750 76,517
44.87	10,418	6,970	49.91	17,743	70,517
44.97	10,418	7,074			
45.07	10,511	7,838			
45.17	10,644	8,895			
45.27	10,776	9,966			
45.37	10,909	11,051			
45.47	11,042	12,148			
45.57	11,174	13,259			
45.67	11,307	14,383			
45.77	11,440	15,520			
45.87	11,572	16,671			
45.97	11,705	17,835			
46.07	11,847	19,012			
46.17	11,993	20,204			
46.27	12,139	21,411			
46.37	12,285	22,632			
46.47	12,431	23,868			
46.57	12,577	25,118			
46.67 46.77	12,723	26,383			
46.77	12,869	27,663			
46.87 46.97	13,015 13,161	28,957 30,266			
46.97 47.07	13,101	30,266 31,589			
47.07 47.17	13,453	32,927			
47.17	13,599	34,280			
11.41	10,000	5-7,200			

Secondary (cfs) 0.00 0.05 0.72 1.78 3.19 4.89 6.93 9.22

HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Stage-Discharge for Pond POND 1.4: RAINGARDEN 1.0

			·	•		
Elevation	Discharge	Primary	Secondary	Elevation	Discharge	Primary
(feet)	(cfs)	(cfs)	(cfs)	(feet)	(cfs)	(cfs)
42.17	0.00	0.00	0.00	47.37	2.25	2.25
42.27	0.00	0.00	0.00	47.47	3.41	3.41
42.37	0.00	0.00	0.00	47.57 47.67	4.61 5.07	4.61
42.47 42.57	0.00 0.00	0.00	0.00 0.00	47.67	5.07	5.07
42.57 42.67	0.00	0.00 0.00	0.00	47.77 47.87	5.49 5.88	5.49 5.88
42.77	0.00	0.00	0.00	47.87	6.25	6.25
42.77	0.00	0.00	0.00	48.07	6.60	6.60
42.97	0.00	0.00	0.00	48.17	6.84	6.84
43.07	0.00	0.00	0.00	48.27	6.91	6.91
43.17	0.00	0.00	0.00	48.37	6.97	6.97
43.27	0.00	0.00	0.00	48.47	7.03	7.03
43.37	0.00	0.00	0.00	48.57	7.10	7.10
43.47	0.00	0.00	0.00	48.67	7.16	7.16
43.57	0.00	0.00	0.00	48.77	7.22	7.22
43.67	0.00	0.00	0.00	48.87	7.28	7.28
43.77	0.00	0.00	0.00	48.97	7.34	7.34
43.87	0.00	0.00	0.00	49.07	7.40	7.40
43.97	0.00	0.00	0.00	49.17	7.46	7.46
44.07	0.00	0.00	0.00	49.27	7.52	7.52
44.17	0.00	0.00	0.00	49.37	7.63	7.58
44.27	0.00	0.00	0.00	49.47	8.36	7.64
44.37	0.00	0.00	0.00	49.57	9.48	7.70
44.47	0.00	0.00	0.00	49.67	10.94	7.76
44.57	0.00	0.00	0.00	49.77	12.70	7.81
44.67	0.00	0.00	0.00	49.87	14.80	7.87
44.77	0.00	0.00	0.00	49.97	17.15	7.93
44.87	0.00	0.00	0.00			
44.97	0.00	0.00	0.00			
45.07	0.02	0.02	0.00			
45.17	0.05	0.05	0.00			
45.27	0.08	0.08	0.00			
45.37	0.11	0.11	0.00			
45.47	0.14	0.14	0.00			
45.57	0.18	0.18	0.00			
45.67	0.21	0.21	0.00			
45.77 45.97	0.24	0.24	0.00			
45.87 45.97	0.27	0.27	0.00			
46.07	0.30 0.33	0.30 0.33	0.00 0.00			
46.07	0.36	0.36	0.00			
46.17	0.40	0.40	0.00			
46.37	0.43	0.40	0.00			
46.47	0.47	0.47	0.00			
46.57	0.50	0.50	0.00			
46.67	0.53	0.53	0.00			
46.77	0.57	0.57	0.00			
46.87	0.60	0.60	0.00			
46.97	0.63	0.63	0.00			
47.07	0.67	0.67	0.00			
47.17	0.74	0.74	0.00			
47.27	1.33	1.33	0.00			
				i e		

APPENDIX F

Engineers | Environmental Specialists

Project: Lonza Biologics Location: Portsmouth, NH T&B #: L-0700-026

Calculations By: CJK Checked By: NAH Date: 6/5/2023

APRON DESIGN

Terms:	HW100	
length of apron (ft.) discharge from pipe (cfs) pipe dia. or channel width (ft.) tailwater depth (ft.) width of apron (at outlet)(ft) width of apron (downstream)(ft) median stone diameter (ft.)	L _a Q Do T _w W1 W2 d ₅₀	(25 YR STORM EVENT)

Equations Used:		
Length of Apron (L _a)		70
when Tw < .5*Do L _a =	1.8(Q) Do^(3/2)	+ 7Do
when Tw >= .5*Do L _a =	<u>3(Q)</u> Do^(3/2)	+ 7Do
Width of Apron (W1)	, , ,	
W1=	3Do	
Width of Apron (W2) when Tw < .5*Do W2=	3Do + La	
WHEN TW V.5 BO W2-	3D0 + La	
when Tw >= .5*Do W2=	3Do + 0.4La	
Median Diameter d ₅₀ =	0.02 * Q^(1.3)	
	(Tw * Do)	
<u>Input</u> :		
Q (cfs)	19.23	cfs
Do (ft.)		
T _w (ft.)		ft
Output		
Width of Apron (W1)		ft.
Width of Apron (W2)		
Length of Apron (L _a) Median Diameter		-
Riprap min. depth		

Engineers | Environmental Specialists

Project: Lonza Biologics Location: Portsmouth, NH T&B #: L-0700-026

Calculations By: CJK Checked By: NAH Date: 6/5/2023

APRON DESIGN

Terms:	FES300	
length of apron (ft.) discharge from pipe (cfs) pipe dia. or channel width (ft.) tailwater depth (ft.) width of apron (at outlet)(ft) width of apron (downstream)(ft) median stone diameter (ft.)	L _a Q Do T _w W1 W2 d ₅₀	(25 YR STORM EVENT)

Equations Used:		
Equations osed.		
Length of Apron (L_a) when Tw < .5*Do L_a =		+ 7Do
when Tw >= .5*Do L _a =	<u>3(Q)</u> Do^(3/2)	+ 7Do
Width of Apron (W1)	, , ,	
W1=	3Do	
Width of Apron (W2) when Tw < .5*Do W2=	3Do + La	
when Tw >= .5*Do W2=	3Do + 0.4La	
Median Diameter d ₅₀ =	0.02 * Q^(1.3) (Tw * Do)	
Input:		
Q (cfs)	12.67	cfs
Do (ft.)	1.50	
T _w (ft.)	0.60	
	0.00	
Output:		
<u>Output.</u>		
Width of Apron (W1)	5	ft.
Width of Apron (W2)	27	
Length of Apron (L _a)	23	
Median Diameter	0.60	
Riprap min. depth	1.36	

Engineers | Environmental Specialists

Project: Lonza Biologics Location: Portsmouth, NH T&B #: L-0700-026

Calculations By: CJK Checked By: NAH Date: 6/5/2023

APRON DESIGN

Terms:	FES301	
length of apron (ft.) discharge from pipe (cfs) pipe dia. or channel width (ft.) tailwater depth (ft.) width of apron (at outlet)(ft) width of apron (downstream)(ft) median stone diameter (ft.)	L _a Q Do T _w W1 W2 d ₅₀	(25 YR STORM EVENT)

Equations Used:		
Equations oseu.		
Length of Apron (L _a)		
	1.0(0)	+ 7Do
when Tw $< .5*Do$ $L_a=$	1.8(Q)	+ 700
	Do^(3/2)	
han T F*Da I	2(2)	. 70-
when Tw \geq .5*Do L_a =	3(Q)	+ 7Do
Marith of Asses (Mara)	Do^(3/2)	
Width of Apron (W1)		
W1=	3Do	
Width of Apron (W2)		
when Tw < .5*Do W2=	3Do + La	
when Tw >= .5*Do W2=	3Do + 0.4La	
Median Diameter d ₅₀ =	0.02 * Q^(1.3)	
	(Tw * Do)	
Innut		
Input:		
0 (-5-)	12.54	- C-
Q (cfs)	13.54 cfs	
Do (ft.)	2.00 ft	
T _w (ft.)	0.80	ft
Output:		
		6.
Width of Apron (W1)	6 ft.	
Width of Apron (W2)	29 ft.	
Length of Apron (L _a)	23	
Median Diameter	0.50	
Riprap min. depth	1.13	ft.

Iron Parcel Redevelopment 70 & 80 Corporate Drive Portsmouth, New Hampshire

Operations & Maintenance Manual

Prepared For:

Lonza Biologics 101 International Drive Portsmouth, New Hampshire

June 18, 2018

Last Revised: July 17, 2023

Section 1	Long-Term Operation & Maintenance Plan	
1.1	Contact/Responsible Party	1-1
1.2	Maintenance Items	
1.3	Overall Site Operation & Maintenance Schedule	1-2
	1.3.1 Disposal Requirements	1-6
1.4	Snow & Ice Management for Standard Asphalt and Walkways	1-7
Section 2	Chloride Management Plan	
2.1	Background Information	2-1
2.2	Operational Guidelines – Chloride Management	2-1
	2.2.1 Winter Operator Certification Requirements	2-1
	2.2.2 Improved Weather Monitoring	2-1
	2.2.3 Equipment Calibration Requirements	2-2
	2.2.4 Increased Mechanical Removal Capabilities	2-2
2.3	Salt Usage Evaluation and Monitoring	2-3
2.4	Summary	2-3
Section 3	Invasive Species	
Section 4	Annual Updates and Log Requirements	

Section 1 Long-Term Operation & Maintenance Plan

It is the intent of this Operation and Maintenance Plan to identify the areas of this site that need special attention and consideration, as well as implementing a plan to assure routine maintenance. By identifying the areas of concern as well as implementing a frequent and routine maintenance schedule the site will maintain a high quality stormwater runoff.

1.1 Contact/Responsible Party

Lonza Biologics 101 International Drive Portsmouth, NH 03801

(Note: The contact information for the Contact/Responsible Party shall be kept current. If ownership changes, the Operation and Maintenance Plan must be transferred to the new party.)

1.2 Maintenance Items

Maintenance of the following items shall be recorded:

- Litter/Debris Removal
- Landscaping
- Catchbasin Cleaning
- Pavement Sweeping
- Gravel Wetland Maintenance
- Rain Garden Maintenance
- Stream Maintenance

The following maintenance items and schedule represent the minimum action required. Periodic site inspections shall be conducted, and all measures must be maintained in effective operating condition. The following items shall be observed during site inspection and maintenance:

- Inspect vegetated areas, particularly slopes and embankments for areas of erosion. Replant and restore as necessary
- Inspect catch basins for sediment buildup
- Inspect site for trash and debris

1.3 Overall Site Operation & Maintenance Schedule

Overall Site Operation and Maint	tenance Schedule	
Maintenance Item	Frequency of Maintenance	Operation
Litter/Debris Removal	Weekly	Management
 Trash and debris to be removed including long the full length of the stream. 	ŕ	Company
Pavement Sweeping	Annually	Parking Lot
- Sweep impervious areas to remove sand and litter.		Sweeper
Sediment Forebay	Periodically	Management
 Trash and debris to be removed including at check dam. 	(At least two (2) times annually)	Company
- Embankment to be mowed.	,,	
 Any required maintenance shall be addressed. 		
 Inspect sediment accumulation and clean as needed. 		
Gravel wetland	Periodically	Management
 Trash and debris to be removed including at outlet structure. 	(At least two (2) times annually)	Company
- Embankment to be mowed.		
- Any required maintenance shall be addressed.		
Rain Gardens/Infiltration Basin	Two (2) times annually and	Management
- Trash and debris to be removed.	after any rainfall event	Company
- Any required maintenance shall be addressed.	exceeding 2.5" in a 24-hr period	
Rip Rap Aprons	Annually	Management
- Trash and debris to be removed.	,	Company
- Any required maintenance shall be addressed.		
Catch Basin (CB) Cleaning	Annually	Vacuum Truck
- CB to be cleaned of solids and oils.	,	

Landscaping		Maintained as required	and	Management
- Landscaped islands to b	е	mulched each Spring		Company
maintained and mulched.				

Sediment Forebay Insp	pection/Maintenan	ce Requirements
Inspection/ Maintenance	Frequency	Action
Monitor Sediment Accumulation	Annually	- Install and maintain a staff gage or other measuring devise, to indicate depth of sediment accumulation and level at which clean-out is required
Visual inspection	Annually	Remove trash and debris as neededRemove any woody vegetationInspect and repair embankmentsInspect check dam
Mowing	Periodically (At least two (2) times annually)	- Embankments shall be mowed

Gravel Wetland Inspec	tion/Maintenance Requ	irements
Inspection/ Maintenance	Frequency	Action
Inspect inlets and outlets to ensure good condition and no evidence of deterioration. Check to see if high-flow bypass is functioning.	Annually, more frequently in the first year of operation	Repair or replace any damaged structural parts, inlets and outlets. Clear or remove debris or restrictions.
Check for internal erosion, evidence of short circuiting, and animal burrows.	Annually, more frequently in the first year of operation	Soil erosion from short-circuiting or animal boroughs should be repaired when they occur.
Monitor to ensure that Gravel Wetland functions effectively after storms	Four (4) times annually (quarterly) and after any rainfall event exceeding 2.5" in a 24-hr period	- Trash and debris to be removed - Any required maintenance shall be addressed

Inspect Vegetation Cut and remove	Annually Once every 3 years	 Inspect the condition of all gravel wetland vegetation Vegetation should cover >75% of the system and should be reseeded and cared for as needed. Prune back overgrowth Replace dead vegetation Remove any invasive species Coordinate with UNH Stormwater Center for further vegetation management guidelines The vegetation should be cut
vegetation from the Gravel Wetland System and forebay in order to maintain nitrogen removal performance.	Office every 5 years	and removed from the system to prevent nitrogen from cycling back into the system.
Inspect Drawdown Time - The system shall drawdown between 24 and 48-hours following a rainfall event.	Annually, more frequently in the first year of operation	- Hire qualified professional to assess the condition of the facility to determine measures required to restore the filtration function, including but not limited to removal of accumulated sediments or reconstruction of the filter.

Additional Gravel Wetland Operation and Maintenance Requirements:

- **1st Year Post-Construction:** Inspection frequency shall be after every storm in the first year following construction.
- Inspect to be certain system drains within 24 48 hours (within the design period, but also not so quickly as to minimize stormwater treatment).
- Watering plants as necessary during the first growing season.
- Re-vegetating poorly established areas as necessary.
- Treating diseased vegetation as necessary.
- Inspect soil and repair eroded areas, especially on slopes, at a minimum quarterly.
- Check inlets, outlets, and overflow spillway for blockage, structural integrity and evidence of erosion.

Cleaning Criteria for Gravel Wetland Treatment Cells: Sediment shall be removed from the gravel wetland surface when it accumulates to a depth of several inches (>10 cm) across the wetland surface. Materials shall be removed with rakes rather than heavy construction equipment to avoid compaction of the gravel wetland surface. Heavy equipment may be used if the equipment is located outside the gravel wetland, while a backhoe shovel reaches inside the gravel wetland to remove sediment. Removed sediments shall be dewatered (if necessary) and disposed of in accordance with all local, state and federal requirements. Removal of vegetation within the gravel wetland shall occur every three (3) growing seasons, or the end of the summer of the third year. This is to prevent decay and release of nutrients from accumulated biomass.

Rain Garden Inspection/	Maintenance Require	ments
Inspection/	Frequency	Action
Maintenance		
Monitor to ensure that Rain Gardens function effectively after storms	Two (2) times annually and after any rainfall event exceeding 2.5" in a 24-hr period	- Trash and debris to be removed - Any required maintenance shall be addressed
Inspect Vegetation	Annually	 Inspect the condition of all Rain Garden vegetation Prune back overgrowth Replace dead vegetation Remove any invasive species
Inspect Drawdown Time - The system shall drawdown within 48- hours following a rainfall event.	Annually	- Assess the condition of the facility to determine measures required to restore the filtration function, including but not limited to removal of accumulated sediments or reconstruction of the filter.

Rip Rap Inspection/Main	tenance Requiremer	its
Inspection/ Maintenance	Frequency	Action
Visual Inspection	Annually	Visually inspect for damage and deterioration Repair damages immediately

Stream Inspection/Main	tenance Requiremen	ts
Inspection/ Maintenance	Frequency	Action
Visual Inspection	Annually	Visually inspect for damage and deterioration Repair damages immediately
Litter/Debris Removal - Trash and debris to be removed including long	Weekly	Management Company

gth of the

Stream Restoration Operation and Maintenance Requirements:

Stream restoration operation and maintenance requirements are detailed in the Stream Restoration report prepared by Streamworks PLLC, and in the NHDES Hodgson Brook Watershed Management Plan.

1.3.1 Disposal Requirements

Disposal of debris, trash, sediment and other waste material should be done at suitable disposal/recycling sites and in compliance with all applicable local, state and federal waste regulations.

1.4 Snow & Ice Management for Standard Asphalt and Walkways

Snow storage areas shall be located such that no direct untreated discharges are possible to receiving waters from the storage site (snow storage areas have been shown on the Site Plan). Salt storage areas shall be covered or located such that no direct untreated discharges are possible to receiving waters from the storage site. Salt and sand shall be used to the minimum extent practical (refer to the attached for de-icing application rate guideline from the New Hampshire Stormwater Management Manual, Volume 2,).

Deicing Application Rate Guidelines

24' of pavement (typcial two-lane road)

These rates are not fixed values, but rather the middle of a range to be selected and adjusted by an agency according to its local conditions and experience.

					Pounds per tw	o-lane mile	
Pavement Temp. (°F) ar Trend (↑↓)		Weather Condition	Maintenance Actions	Salt Prewetted / Pretreated with Salt Brine	Salt Prewetted / Pretreated with Other Blends	Dry Salt*	Winter Sand (abrasives)
> 30°	.	Snow	Plow, treat intersections only	80	70	100*	Not recommended
230 1	· F	Freezing Rain	Apply Chemical	80 - 160	70 - 140	100 - 200*	Not recommended
30° 、	. 1	Snow	Plow and apply chemical	80 - 160	70 - 140	100 - 200*	Not recommended
30 (* F	Freezing Rain	Apply Chemical	150 - 200	130 - 180	180 - 240*	Not recommended
25° - 30°	↑	Snow	Plow and apply chemical	120 - 160	100 - 140	150 - 200*	Not recommended
	` F	Freezing Rain	Apply Chemical	150 - 200	130 - 180	180 - 240*	Not recommended
25° - 30° 、	١٠	Snow	Plow and apply chemical	120 - 160	100 - 140	150 - 200*	Not recommended
Fr	Freezing Rain	Apply Chemical	160 - 240	140 - 210	200 - 300*	400	
20° - 25°	↑ F	Snow or Freezing Rain	Plow and apply chemical	160 - 240	140 - 210	200 - 300*	400
20° - 25°		Snow	Plow and apply chemical	200 - 280	175 - 250	250 - 350*	Not recommended
20 - 25		Freezing Rain	Apply Chemical	240 - 320	210 - 280	300 - 400*	400
15° - 20°	. l'	Snow	Plow and apply chemical	200 - 280	175 - 250	250 - 350*	Not recommended
25 20	. F	Freezing Rain	Apply Chemical	240 - 320	210 - 280	300 - 400*	400
15° - 20° 、	↓ F	Snow or Freezing Rain	Plow and apply chemical	240 - 320	210 - 280	300 - 400*	500 for freezing rain
0°-15° ↑	` ↓	Snow	Plow, treat with blends, sand hazardous areas	Not recommended	300 - 400	Not recommended	500 - 750 spot treatment as needed
< 0°	5	Snow	Plow, treat with blends, sand hazardous areas	Not recommended	400 - 600**	Not recommended	500 - 750 spot treatment as needed

^{*} Dry salt is not recommended. It is likely to blow off the road before it melts ice.

^{**} A blend of 6 - 8 gal/ton MgCl₂ or CaCl₂ added to NaCl can melt ice as low as -10°.

	Aı	nti-icing Route Data	a Form		
Truck Station:					
Date:					
Air Temperature	Pavement Temperature	Relative Humidity	Dew Point	Sky	
Reason for applying:	J				
Route:					
Chemical:					
Application Time:					
Application Amount:					
Observation (first day	·):				
Observation (after ev	ent):				
Observation (before r	next application):				
Name:					

Section 2 Chloride Management Plan

Winter Operational Guidelines

The following Chloride Management Plan is for the Lonza Biologics – Iron Parcel Redevelopment in Portsmouth, New Hampshire. The Plan includes operational guidelines including: winter operator certification requirements, weather monitoring, equipment calibration requirements, mechanical removal, and salt usage evaluation and monitoring. Due to the evolving nature of chloride management efforts, the Chlorides Management Plan will be reviewed annually, in advance of the winter season, to reflect the current management standards.

2.1 Background Information

The Lonza Biologics – Iron Parcel Redevelopment located within the Upper Hodgson Brook Watershed in Newington and Portsmouth, New Hampshire. The Upper Hodgson Brook is identified as a chloride-impaired waterbody.

2.2 Operational Guidelines - Chloride Management

All Lonza Biologics private contractors engaged at the Lonza Biologics premises for the purposes of winter operational snow removal and surface maintenance, are responsible for assisting in meeting compliance for the following protocols. Lonza Biologics private contractors are expected to minimize the effects of the use of de-icing, anti-icing and pretreatment materials by adhering to the strict guidelines outlined below.

The Lonza Biologics winter operational de-icing, anti-icing and pretreatment materials will adhere to the following protocols:

2.2.1 Winter Operator Certification Requirements

All private contractors engaged at the Lonza Biologics premises for the purpose of winter operational snow removal and surface maintenance must be current UNHT2 Green SnowPro Certified operators or equivalent and will use only preapproved methods for spreading abrasives on private roadways and parking lots. All private contractors engaged at the Lonza Biologics premises for the purpose of winter operational snow removal and surface maintenance shall provide to Lonza Biologics management two copies of the annual UNHT2 Green SnowPro certificate or equivalent for each operator utilized on the Lonza Biologics premises. The annual UNHT2 Green SnowPro certificate or equivalent for each operator will be available on file in the Lonza Biologics Facilities Management office and be present in the vehicle/carrier at all times.

2.2.2 Improved Weather Monitoring

Lonza Biologics will coordinate weather information for use by winter maintenance contractors. This information in conjunction with site specific air/ground surface temperature monitoring will ensure that private contractors engaged at the Lonza Biologics premises for the purpose of winter operational snow removal and surface maintenance will make more informed decisions as to when and to what extent de-icing, anti-icing and pretreatment materials are applied to private roadways, sidewalks, and parking lots.

2.2.3 Equipment Calibration Requirements

All equipment utilized on the Lonza Biologics premises for the purpose of winter operational snow removal and surface maintenance will conform to the following calibration requirements.

2.2.3.1 Annual Calibration Requirements

All private contractors engaged at the Lonza Biologics premises for the purpose of winter operational snow removal and surface maintenance shall provide two copies of the annual calibration report for each piece of equipment utilized on the Lonza Biologics premises. Each calibration report shall include the vehicle/carrier VIN number and the serial numbers for each component including, but not limited to, spreader control units, salt aggregate spreader equipment, brining/pre-wetting equipment, ground speed orientation unit, and air/ground surface temperature monitor. Annual calibration reports will be available on file in the Lonza Biologics Facilities Management office and be present in the vehicle/carrier at all times.

Prior to each use, each vehicle/carrier operator will perform a systems check to verify that unit settings remain within the guidelines established by the Lonza Biologics Management Team in order to accurately dispense material. All private contractors engaged at the Lonza Biologics premises for the purpose of winter operational snow removal and surface maintenance will be subject to spot inspections by members of the Lonza Biologics Management Team to ensure that each vehicle/carrier is operating in a manner consistent with the guidelines set herein or State and Municipal regulations. All units will be recalibrated, and the updated calibration reports will be provided each time repairs or maintenance procedures affect the hydraulic system of the vehicle/carrier.

2.2.4 Increased Mechanical Removal Capabilities

All private contractors engaged at the Lonza Biologics premises will endeavor to use mechanical removal means on a more frequent basis for roadways, parking lots and sidewalks. Dedicating more manpower and equipment to increase snow removal frequencies prevents the buildup of snow and the corresponding need for de-icing, anti-icing and pretreatment materials. Shortened maintenance routes, with shorter service intervals, will be used to stay ahead of snowfall. Minimized snow and ice packing will reduce the need for abrasives, salt aggregates, and/or brining solution to restore surfaces back to bare surface states after winter precipitation events.

After storm events the Lonza Biologics management team will be responsible for having the streets swept to recapture un-melted de-icing materials, when practical.

2.3 Salt Usage Evaluation and Monitoring

All private contractors engaged at the Lonza Biologics premises for the purpose of winter operational snow removal and surface maintenance shall provide two copies of a storm report, which includes detailed information regarding treatment areas and the use of de-icing, anti- icing and pretreatment materials applied for the removal of snow and surface maintenance on the Lonza Biologics premises. Lonza Biologics will maintain copies of Summary Documents, including copies of the Storm Reports, operator certifications, equipment used for roadway and sidewalk winter maintenance, calibration reports and amount of de-icing materials used.

2.4 Summary

The above-described methodologies are incorporated into the Lonza Biologics Operational Manual and are to be used to qualify and retain all private contractors engaged at the Lonza Biologics premises for the purpose of winter operational snow removal and surface maintenance. This section of the Manual, is intended to be an adaptive management document that is modified as required based on experience gained from past practices and technological advancements that reflect chloride BMP standards. All Lonza Biologics employees directly involved with winter operational activities are required to review this document and the current standard Best Management Practices published by the UNH Technology Transfer (T2) program annually. All Lonza Biologics employees directly involved with winter operational activities, and all private contractors engaged at the Lonza Biologics premises for the purposes of winter operational snow removal and surface maintenance, must be current UNHT2 Green SnowPro Certified operators or equivalent and undergo the necessary requirements to maintain this certification annually.

Section 3 Invasive Species

With respect to a particular ecosystem, any species, including its seeds, eggs, spores, or other biological material capable of propagating that species, that is not native to that ecosystem is classified as an invasive species. Refer to the following fact sheet prepared by the University of New Hampshire Cooperative Extension entitled Methods for Disposing Non-Native Invasive Plants for recommended methods to dispose of invasive plant species.

UNIVERSITY of NEW HAMPSHIRE Methods for Disposing OOPERATIVE EXTENSION

Non-Native Invasive Plants

Prepared by the Invasives Species Outreach Group, volunteers interested in helping people control invasive plants. Assistance provided by the Piscataquog Land Conservancy and the NH Invasives Species Committee. Edited by Karen Bennett, Extension Forestry Professor and Specialist.

Tatarian honeysuckle

Lonicera tatarica USDA-NRCS PLANTS Database / Britton, N.L., and A. Brown. 1913. An illustrated flora of the northern United States, Canada and the British Possessions. Vol. 3: 282.

Non-native invasive plants crowd out natives in natural and managed landscapes. They cost taxpayers billions of dollars each year from lost agricultural and forest crops, decreased biodiversity, impacts to natural resources and the environment, and the cost to control and eradicate them.

Invasive plants grow well even in less than desirable conditions such as sandy soils along roadsides, shaded wooded areas, and in wetlands. In ideal conditions, they grow and spread even faster. There are many ways to remove these nonnative invasives, but once removed, care is needed to dispose the removed plant material so the plants don't grow where disposed.

Knowing how a particular plant reproduces indicates its method of spread and helps determine

the appropriate disposal method. Most are spread by seed and are dispersed by wind, water, animals, or people. Some reproduce by vegetative means from pieces of stems or roots forming new plants. Others spread through both seed and vegetative means.

Because movement and disposal of viable plant parts is restricted (see NH Regulations), viable invasive parts can't be brought to most transfer stations in the state. Check with your transfer station to see if there is an approved, designated area for invasives disposal. This fact sheet gives recommendations for rendering plant parts nonviable.

Control of invasives is beyond the scope of this fact sheet. For information about control visit www.nhinvasives.org or contact your UNH Cooperative Extension office.

New Hampshire Regulations

Prohibited invasive species shall only be disposed of in a manner that renders them nonliving and nonviable. (Agr. 3802.04)

No person shall collect, transport, import, export, move, buy, sell, distribute, propagate or transplant any living and viable portion of any plant species, which includes all of their cultivars and varieties, listed in Table 3800.1 of the New Hampshire prohibited invasive species list. (Agr 3802.01)

How and When to Dispose of Invasives?

To prevent seed from spreading remove invasive plants before seeds are set (produced). Some plants continue to grow, flower and set seed even after pulling or cutting. Seeds can remain viable in the ground for many years. If the plant has flowers or seeds, place the flowers and seeds in a heavy plastic bag "head first" at the weeding site and transport to the disposal site. The following are general descriptions of disposal methods. See the chart for recommendations by species.

Burning: Large woody branches and trunks can be used as firewood or burned in piles. For outside burning, a written fire permit from the local forest fire warden is required unless the ground is covered in snow. Brush larger than 5 inches in diameter can't be burned. Invasive plants with easily airborne seeds like black swallow-wort with mature seed pods (indicated by their brown color) shouldn't be burned as the seeds may disperse by the hot air created by the fire.

Bagging (solarization): Use this technique with softertissue plants. Use heavy black or clear plastic bags (contractor grade), making sure that no parts of the plants poke through. Allow the bags to sit in the sun for several weeks and on dark pavement for the best effect.

Japanese knotweed
Polygonum cuspidatum
USDA-NRCS PLANTS Database /
Britton, N.L., and A. Brown. 1913. An
illustrated flora of the northern United
States, Canada and the British
Possessions Vol. 1: 676

Tarping and Drying: Pile material on a sheet of plastic and cover with a tarp, fastening the tarp to the ground and monitoring it for escapes. Let the material dry for several weeks, or until it is clearly nonviable.

Chipping: Use this method for woody plants that don't reproduce vegetatively.

Burying: This is risky, but can be done with watchful diligence. Lay thick plastic in a deep pit before placing the cut up plant material in the hole. Place the material away from the edge of the plastic before covering it with more heavy plastic. Eliminate as much air as possible and toss in soil to weight down the material in the pit. Note that the top of the buried material should be at least three feet underground. Japanese knotweed should be at least 5 feet underground!

Drowning: Fill a large barrel with water and place soft-tissue plants in the water. Check after a few weeks and look for rotted plant material (roots, stems, leaves, flowers). Well-rotted plant material may be composted. A word of caution- seeds may still be viable after using this method. Do this before seeds are set. This method isn't used often. Be prepared for an awful stink!

Composting: Invasive plants can take root in compost. Don't compost any invasives unless you know there is no viable (living) plant material left. Use one of the above techniques (bagging, tarping, drying, chipping, or drowning) to render the plants nonviable before composting. Closely examine the plant before composting and avoid composting seeds.

Suggested Disposal Methods for Non-Native Invasive Plants

This table provides information concerning the disposal of removed invasive plant material. If the infestation is treated with herbicide and left in place, these guidelines don't apply. Don't bring invasives to a local transfer station, unless there is a designated area for their disposal, or they have been rendered non-viable. This listing includes wetland and upland plants from the New Hampshire Prohibited Invasive Species List. The disposal of aquatic plants isn't addressed.

Woody Plants	Method of Reproducing	Methods of Disposal
Norway maple (Acer platanoides) European barberry (Berberis vulgaris) Japanese barberry (Berberis thunbergii) autumn olive (Elaeagnus umbellata) burning bush (Euonymus alatus) Morrow's honeysuckle (Lonicera morrowii) Tatarian honeysuckle (Lonicera tatarica) showy bush honeysuckle (Lonicera x bella) common buckthorn (Rhamnus cathartica) glossy buckthorn (Frangula alnus)	Fruit and Seeds	Prior to fruit/seed ripening Seedlings and small plants Pull or cut and leave on site with roots exposed. No special care needed. Larger plants Use as firewood. Make a brush pile. Chip. Burn. After fruit/seed is ripe Don't remove from site. Burn. Make a covered brush pile. Chip once all fruit has dropped from branches. Leave resulting chips on site and monitor.
oriental bittersweet (Celastrus orbiculatus) multiflora rose (Rosa multiflora)	Fruits, Seeds, Plant Fragments	Prior to fruit/seed ripening Seedlings and small plants Pull or cut and leave on site with roots exposed. No special care needed. Larger plants Make a brush pile. Burn. After fruit/seed is ripe Don't remove from site. Burn. Make a covered brush pile. Chip – only after material has fully dried (1 year) and all fruit has dropped from branches. Leave resulting chips on site and monitor.

Non-Woody Plants	Method of Reproducing	Methods of Disposal
garlic mustard (Alliaria petiolata) spotted knapweed (Centaurea maculosa) Sap of related knapweed can cause skin irritation and tumors. Wear gloves when handling. black swallow-wort (Cynanchum nigrum) May cause skin rash. Wear gloves and long sleeves when handling. pale swallow-wort (Cynanchum rossicum) giant hogweed (Heracleum mantegazzianum) Can cause major skin rash. Wear gloves and long sleeves when handling. dame's rocket (Hesperis matronalis) perennial pepperweed (Lepidium latifolium) purple loosestrife (Lythrum salicaria) Japanese stilt grass (Microstegium vimineum) mile-a-minute weed (Polygonum perfoliatum)	Fruits and Seeds	Prior to flowering Depends on scale of infestation Small infestation Pull or cut plant and leave on site with roots exposed. Large infestation Pull or cut plant and pile. (You can pile onto or cover with plastic sheeting). Monitor. Remove any re-sprouting material. During and following flowering Do nothing until the following year or remove flowering heads and bag and let rot. Small infestation Pull or cut plant and leave on site with roots exposed. Large infestation Pull or cut plant and pile remaining material. (You can pile onto plastic or cover with plastic sheeting). Monitor. Remove any re-sprouting material.
common reed (Phragmites australis) Japanese knotweed (Polygonum cuspidatum) Bohemian knotweed (Polygonum x bohemicum)	Fruits, Seeds, Plant Fragments Primary means of spread in these species is by plant parts. Although all care should be given to preventing the dispersal of seed during control activities, the presence of seed doesn't materially influence disposal activities.	Small infestation Bag all plant material and let rot. Never pile and use resulting material as compost. Burn. Large infestation Remove material to unsuitable habitat (dry, hot and sunny or dry and shaded location) and scatter or pile. Monitor and remove any sprouting material. Pile, let dry, and burn.

Managing Invasive Plants Methods of Control by Christopher Mattrick

They're out there. The problem of invasive plants is as close as your own backyard.

Maybe a favorite dogwood tree is struggling in the clutches of an Oriental bittersweet vine. Clawlike canes of multiflora rose are scratching at the side of your house. That handsome burning bush you planted few years ago has become a whole clump in practically no time ... but what happened to the azalea that used to grow right next to it?

If you think controlling or managing invasive plants on your property is a daunting task, you're not alone. Though this topic is getting lots of attention from federal, state, and local government agencies, as well as the media, the basic question for most homeowners is simply, "How do I get rid of the invasive plants in my own landscape?" Fortunately, the best place to begin to tackle this complex issue is in our own backyards and on local conservation lands. We hope the information provided here will help you take back your yard. We won't kid you—there's some work involved, but the payoff in beauty, wildlife habitat, and peace of mind makes it all worthwhile.

PLAN OF ATTACK

Three broad categories cover most invasive plant control: mechanical, chemical, and biological. Mechanical control means physically removing plants from the environment

Spraying chemicals to control invasive plants.

through cutting or pulling. Chemical control uses herbicides to kill plants and inhibit regrowth. Techniques and chemicals used will vary depending on the species. Biological controls use plant diseases or insect predators, typically from the targeted species' home range. Several techniques may be effective in controlling a single species, but there is usually one preferred method—the one that is most resource efficient with minimal impact on non-target species and the environment.

MECHANICAL CONTROL METHODS

Mechanical treatments are usually the first ones to look at when evaluating an invasive plant removal project. These procedures do not require special licensing or introduce chemicals into the environment. They do require permits in some situations, such as wetland zones. [See sidebar on page 23.] Mechanical removal is highly labor intensive and creates a significant amount of site disturbance, which can lead to rapid reinvasion if not handled properly.

Pulling and digging

Many herbaceous plants and some woody species (up to about one inch in diameter), if present in limited quantities, can be pulled out or dug up. It's important to remove as much of the root system as possible; even a small portion can restart the infestation. Pull plants by hand or use a digging fork, as shovels can shear off portions of the root

system, allowing for regrowth. To remove larger woody stems (up to about three inches in diameter), use a Weed WrenchTM, Root Jack, or Root Talon. These tools, available from several manufacturers, are designed to remove the aboveground portion of the plant as well as the entire root system. It's easiest to undertake this type of control in the spring or early summer when soils are moist and plants come out more easily.

Using tools to remove woody stems.

Volunteers hand pulling invasive plants.

Suffocation

Try suffocating small seedlings and herbaceous plants. Place double or triple layers of thick UV-stabilized plastic sheeting, either clear or black (personally I like clear), over the infestation and secure the plastic with stakes or weights. Make sure the plastic extends at least five feet past the edge of infestation on all sides. Leave the plastic in place for at least two years. This technique will kill everything beneath the plastic—invasive and non-invasive plants alike. Once the plastic is removed, sow a cover crop such as annual rye to prevent new invasions.

Cutting or mowing

This technique is best suited for locations you can visit and treat often. To be effective, you will need to mow or cut infested areas three or four times a year for up to five years. The goal is to interrupt the plant's ability to photosynthesize by removing as much leafy material as possible. Cut the plants at ground level and remove all resulting debris from the site. With this treatment, the infestation may actually appear to get worse at first, so you will need to be as persistent as the invasive plants themselves. Each time you cut the plants back, the root system gets slightly larger, but must also rely on its energy reserves to push up new growth. Eventually, you will exhaust these reserves and the plants will die. This may take many years, so you have to remain committed to this process once you start; otherwise the treatment can backfire, making the problem worse.

CHEMICAL CONTROL METHODS

Herbicides are among the most effective and resource-efficient tools to treat invasive species. Most of the commonly known invasive plants can be treated using only two herbicides—glyphosate (the active ingredient in Roundup™ and Rodeo™) and triclopyr (the active ingredient in Brush-B-Gone™ and Garlon™). Glyphosate is non-selective, meaning it kills everything it contacts. Triclopyr is selective and does not injure monocots (grasses, orchids, lilies, etc.). Please read labels and follow directions precisely for both environmental and personal safety. These are relatively benign herbicides, but improperly used they can still cause both short- and long-term health and environmental problems. Special aquatic formulations are required when working in wetland zones. You are required to have a stateissued pesticide applicator license when applying these chemicals on land you do not own. To learn more about the pesticide regulations in your state, visit or call your state's pesticide control division, usually part of the state's Department of Agriculture. In wetland areas, additional permits are usually required by the Wetlands Protection Act. [See sidebar on page 23.]

Foliar applications

When problems are on a small scale, this type of treatment is usually applied with a backpack sprayer or even a small handheld spray bottle. It is an excellent way to treat large monocultures of herbaceous plants, or to spot-treat individual plants that are difficult to remove mechanically, such as goutweed, swallowwort, or purple loosestrife. It is also an effective treatment for some woody species, such as Japanese barberry, multiflora rose, Japanese honeysuckle, and Oriental bittersweet that grow in dense masses or large numbers over many acres. The herbicide mixture should contain no more than five percent of the active ingredient, but it is important to follow the instructions on the product label. This treatment is most effective when the plants are actively growing, ideally when they are flowering or beginning to form fruit. It has been shown that plants are often more susceptible to this type of treatment if the existing stems are cut off and the regrowth is treated. This is especially true for Japanese knotweed. The target plants should be thoroughly wetted with the herbicide on a day when there is no rain in the forecast for the next 24 to 48 hours.

Cut stem treatments

There are several different types of cut stem treatments, but here we will review only the one most commonly used. All treatments of this type require a higher concentration of the active ingredient than is used in foliar applications. A 25 to 35 percent solution of the active ingredient should be used for cut stem treatments, but read and follow all label instructions. In most cases, the appropriate herbicide is glyphosate, except for Oriental bittersweet, on which triclopyr should be used. This treatment can be used on all woody stems, as well as phragmites and Japanese knotweed.

For woody stems, treatments are most effective when applied in the late summer and autumn—between late August and November. Stems should be cut close to the ground, but not so close that you will lose track of them. Apply herbicide directly to the cut surface as soon as possible after cutting. Delaying the application will reduce the effectiveness of the treatment. The herbicide can be applied with a sponge, paintbrush, or spray bottle.

Cut stem treatment tools.

For phragmites and Japanese knotweed, treatment is the same, but the timing and equipment are different. Plants should be treated anytime from mid-July through September, but the hottest, most humid days of the summer are best

for this method. Cut the stems halfway between two leaf nodes at a comfortable height. Inject (or squirt) herbicide into the exposed hollow stem. All stems in an infestation should be treated. A wash bottle is the most effective application tool, but you can also use an eyedropper, spray bottle, or one of the recently developed high-tech injection systems.

It is helpful to mix a dye in with the herbicide solution. The dye will stain the treated surface and mark the areas that have been treated, preventing unnecessary reapplication. You can buy a specially formulated herbicide dye, or use food coloring or laundry dye.

There is not enough space in this article to describe all the possible ways to control invasive plants. You can find other treatments, along with more details on the above-described methods, and species-specific recommendations on The Nature Conservancy Web site (tncweeds.ucdavis.edu). An upcoming posting on the Invasive Plant Atlas of New England (www.ipane.org) and the New England Wild Flower Society (www.newfs.org) Web sites will also provide further details.

Hollow stem injection tools.

Biological controls—still on the horizon

Biological controls are moving into the forefront of control methodology, but currently the only widely available and applied biocontrol relates to purple loosestrife. More information on purple loosestrife and other biological control projects can be found at www.invasiveplants.net.

DISPOSAL OF INVASIVE PLANTS

Proper disposal of removed invasive plant material is critical to the control process. Leftover plant material can cause new infestations or reinfest the existing project area. There are many appropriate ways to dispose of invasive plant debris. I've listed them here in order of preference.

- **1. Burn it**—Make a brush pile and burn the material following local safety regulations and restrictions, or haul it to your town's landfill and place it in their burn pile.
- **2. Pile it**—Make a pile of the woody debris. This technique will provide shelter for wildlife as well.
- **3.** Compost it—Place all your herbaceous invasive plant debris in a pile and process as compost. Watch the pile closely for resprouts and remove as necessary. Do not use the resulting compost in your garden. The pile is for invasive plants only.

Injecting herbicide into the hollow stem of phragmites.

4. Dry it/cook it—Place woody debris out on your driveway or any asphalt surface and let it dry out for a month. Place herbaceous material in a doubled-up black trash bag and let it cook in the sun for one month. At the end of the month, the material should be non-viable and you can dump it or dispose of it with the trash. The method assumes there is no viable seed mixed in with the removed material.

Care should be taken in the disposal of all invasive plants, but several species need extra attention. These are the ones that have the ability to sprout vigorously from plant fragments and should ideally be burned or dried prior to disposal: Oriental bittersweet, multiflora rose, Japanese honeysuckle, phragmites, and Japanese knotweed.

Christopher Mattrick is the former Senior Conservation Programs Manager for New England Wild Flower Society, where he managed conservation volunteer and invasive and rare plant management programs. Today, Chris and his family work and play in the White Mountains of New Hampshire, where he is the Forest Botanist and Invasive Species Coordinator for the White Mountain National Forest.

Controlling Invasive Plants in Wetlands

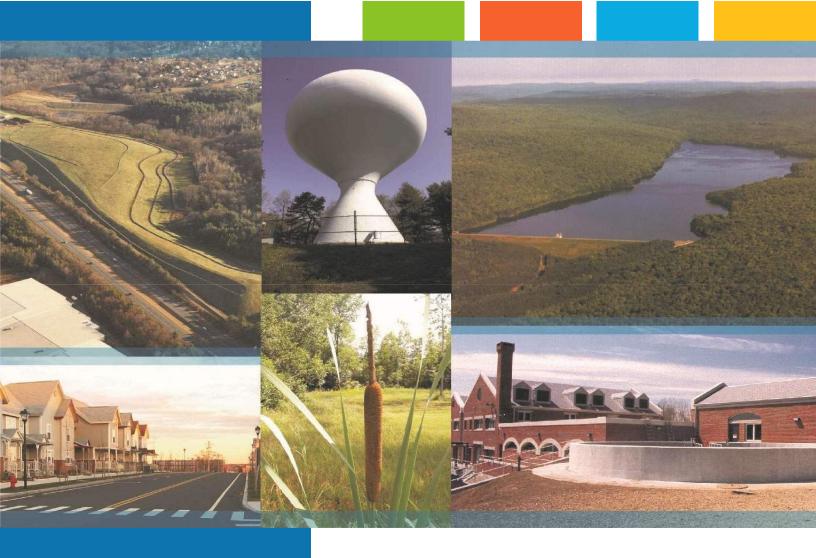
Special concerns; special precautions

Control of invasive plants in or around wetlands or bodies of water requires a unique set of considerations. Removal projects in wetland zones can be legal and effective if handled appropriately. In many cases, herbicides may be the least disruptive tools with which to remove invasive plants. You will need a state-issued pesticide license to apply herbicide on someone else's property, but all projects in wetland or aquatic systems fall under the jurisdiction of the Wetlands Protection Act and therefore require a permit. Yes, even hand-pulling that colony of glossy buckthorn plants from your own swampland requires a permit. Getting a permit for legal removal is fairly painless if you plan your project carefully.

- 1. Investigate and understand the required permits and learn how to obtain them. The entity charged with the enforcement of the Wetlands Protection Act varies from state to state. For more information in your state, contact:
 - ME: Department of Environmental Protection www.state.me.us/dep/blwq/docstand/nrpapage.htm
 - **NH:** Department of Environmental Services www.des.state.nh.us/wetlands/
 - VT: Department of Environmental Conservation www.anr.state.vt.us/dec/waterq/permits/htm/pm_cud.htm
 - MA: Consult your local town conservation commission
 - **RI:** Department of Environmental Management www.dem.ri.gov/programs/benviron/water/permits/fresh/index.htm
 - CT: Consult your local town Inland Wetland and Conservation Commission

- 2. Consult an individual or organization with experience in this area. Firsthand experience in conducting projects in wetland zones and navigating the permitting process is priceless. Most states have wetland scientist societies whose members are experienced in working in wetlands and navigating the regulations affecting them. A simple Web search will reveal the contact point for these societies. Additionally, most environmental consulting firms and some nonprofit organizations have skills in this area.
- 3. Develop a well-written and thorough project plan. You are more likely to be successful in obtaining a permit for your project if you submit a project plan along with your permit application. The plan should include the reasons for the project, your objectives in completing the project, how you plan to reach those objectives, and how you will monitor the outcome.
- 4. Ensure that the herbicides you plan to use are approved for aquatic use. Experts consider most herbicides harmful to water quality or aquatic organisms, but rate some formulations as safe for aquatic use. Do the research and select an approved herbicide, and then closely follow the instructions on the label.
- 5. If you are unsure—research, study, and most of all, ask for help. Follow the rules. The damage caused to aquatic systems by the use of an inappropriate herbicide or the misapplication of an appropriate herbicide not only damages the environment, but also may reduce public support for safe, well-planned projects.

Section 4 Annual Updates and Log Requirements


The Owner and/or Contact/Responsible Party shall review this Operation and Maintenance Plan once per year for its effectiveness and adjust the plan and deed as necessary.

A log of all preventative and corrective measures for the stormwater system shall be kept on-site and be made available upon request by any public entity with administrative, health environmental or safety authority over the site including NHDES.

Copies of the Stormwater Maintenance report shall be submitted to the Pease Development Authority on an annual basis.

	Stormwater Management Report							
Project Name	Project Name		Lonza – Iron Parcel					
BMP Description	Date of Inspection	Inspector	BMP Installed and Operating Properly?	Cleaning / Corrective Action Needed	Date of Cleaning / Repair	Performed By		
			□Yes □No					
			□Yes □No					
			□Yes □No					
			□Yes □No					
			□Yes □No					
			□Yes □No					
			□Yes □No					
			□Yes □No					
			□Yes □No					
			□Yes □No					
			□Yes □No					
			□Yes □No					

J:\L\L0700 Lonza Biologics Expansion was 1576F\026_Project Albacore\Report_Evaluations\Applications\City of Portsmouth\20230616 TAC Submission\0&M\L-0700-026_0&M Manual.docx

Lonza Biologics Industrial Development

TRAFFIC IMPACT ASSESSMENT

Lonza Biologics

June 1, 2023 Last Revised: July 17, 2023

Tighe&Bond

Section 1 Introduction

2.1	Roadways	2-1
	2.1.1 Corporate Drive	2-1
	2.1.2 Goose Bay Drive	2-1
	2.1.3 International Drive	2-1
	2.1.4 Pease Boulevard	2-2
	2.1.5 Grafton Road	2-2
	2.1.6 Route 33 (Greenland Road)	2-2
2.2	Study Area Intersections	2-3
	2.2.1 Gosling Road at US Route 4 Northbound Ramps	2-3
	2.2.2 Pease Boulevard at US Route 4 Southbound Ramps	2-3
	2.2.3 Pease Boulevard at International Drive	2-3
	2.2.4 International Drive at Corporate Drive and Manchester Square	2-4
	2.2.5 Corporate Drive at Goose Bay Drive (West JCT)	2-4
	2.2.6 Corporate Drive at Redhook Way	2-4
	2.2.7 Corporate Drive at Goose Bay Drive (East JCT)	2-4
	2.2.8 New Hampshire Avenue and Corporate Drive at Durham Street International Drive	
	2.2.9 Corporate Drive at Grafton Road	2-5
	2.2.10 Grafton Road at I-95 Southbound Off-Ramp	2-5
	2.2.11 Grafton Road at Route 33 (Greenland Road)	2-5
	2.2.12 Minor Driveway Intersections	2-5
2.3	Traffic Volumes	2-6
2.4	Capacity and Queue Analyses - Existing Conditions	2-7
2.5	Collision History	2-9
2.6	Public Transportation	2-10
Section 3	No Build Conditions	
3.1	Traffic Growth	3-1
3.2	Planned Roadway Improvements	3-1
3.3	Capacity and Queue Analyses - No-Build Conditions	3-2
Section 4	Proposed Conditions	
4.1	Site Access	4-1
4.2	Multi-Modal Accommodations	4-1
4.3	Trip Generation	4-1
4.4	Arrival and Departure Distribution	4-3
4.5	Goose Bay Drive Realignment	4-3

Table of Contents Tighe&Bond

Section 5 Build Conditions

5.1 Capacity and Queue Analyses – Build Conditions5-1

Section 6 Conclusions & Recommendations

Section 7 Additional Tables

Section 8 Figures

Appendix

- A. Traffic Count Data
- B. NHDOT Historical Traffic Volumes, Seasonal Adjustment Factors & Historical Growth Rates
- C. Traffic Volume Adjustment Calculation
- D. Background Development Traffic Volumes
- E. Reassigned Traffic Volumes
- F. Collision History Summary
- G. Capacity Analysis Methodology
- H. Capacity Analysis Worksheets
- I. Site Development Plan
- J. Traffic Control Signal Plans
- K. COAST Bus Schedule & Map
- L. Lonza Employee Residential Zip Code Based Trip Distribution Analysis

Section 1 Introduction

This Traffic Impact Assessment (TIA) evaluates the potential traffic impact of the proposed Lonza Biologics industrial development, located along Corporate Drive and Goose Bay Drive within the Pease International Tradeport in Portsmouth, NH. The TIA is based in part on the previous Lonza Biologics Proposed Industrial Development Traffic Evaluation, dated April 3, 2018, completed by Tighe & Bond. This updated TIA addresses the City of Portsmouth Planning Department Site Plan Application Conditions of Approval, dated January 18, 2019, to expand the Traffic Analysis study area as stated in Condition 2.10 for subsequent phases of development for the Lonza site. This revised TIA has been prepared in accordance with NHDOT and industry standards. The Project Site is bounded by Corporate Drive to the north, and Goose Bay Drive to the west, south and east. The site is surrounded by industrial, manufacturing, medical, and office land uses, consistent with the Tradeport as a whole. The Site location is shown in Figure 1.

The existing Lonza facility currently includes 900,000+/- square feet (SF) of building space including manufacturing, research and development, office, and ancillary services with 780+/- parking spaces. The Applicant plans to construct three buildings totaling approximately 800,000+/- square foot (SF) of industrial space with 700 additional parking spaces contained in one garage. The proposed buildings will be located on currently vacant land on the north side of Goose Bay Drive. Primary access to the site will be provided via a new driveway on Goose Bay Drive opposite the existing parking garage entrance. A new curb cut is also proposed on Corporate Drive, approximately 400 feet east of Redhook Way; however, this driveway will be gated in the near-term, but is expected to be used for deliveries to the proposed Building 3 once the full build-out is complete. Roadway improvements as part of the project include the closure of Goose Bay Drive to through traffic approximately 125 feet southwest of the Corporate Center driveway, and conversion of a portion of Goose Bay Drive from a public road to be merged with the Lonza parcel. The proposed Site Plan Layout is enclosed in Appendix I. Proposed Building 1 is expected to be complete and occupied in 2025; however, for the purposes of this study, the full build-out of the site is assumed to be in 2025.

Based on the analyses conducted herein, it is the professional opinion of Tighe & Bond that while the adjustment of collected volumes to an assumed pre-pandemic condition and the addition of background growth on a 12-year horizon to the 2035 design year results in undesirable LOS at some area intersections, the traffic expected to be generated by the proposed industrial development has a negligible effect on traffic operations within the study area.

Section 2 Existing Conditions

The Project Site is bounded by Corporate Drive to north and east, and Goose Bay Drive to the south and west. The following sections describe the roadways and intersections included within the study area.

2.1 Roadways

2.1.1 Corporate Drive

Corporate Drive is a local road maintained by the City of Portsmouth. The roadway runs between International Drive and loops back around to Durham Street/ International Drive to the south. The roadway is generally 28 feet wide with a two-lane cross section and narrow shoulders. Beginning at the intersection with International Drive, the roadway cross section is four lanes with westbound dedicated left, through, and right lanes, and a single eastbound travel lane. An eastbound left-turn lane is provided at Redhook Way. Narrow 2-foot striped shoulders are present between International Drive and approximately 500 feet east of Redhook Way. The shoulders to the east of this section are not striped, providing a wide approximately 14-foot travel lane. The roadway transitions to a three-lane cross section in the vicinity of Grafton Road where an eastbound dedicated left-turn lane and westbound dedicated right-turn lane are provided.

A 5-foot sidewalk is provided on both sides of the roadway between International Drive and Redhook Way. Sidewalk is provided along at least one side of the roadway except for a short 350-foot gap between Redhook Way and the Wentworth-Douglas Hospital Outpatient Center driveway and a second 300-foot gap between Ashland Road and the 273 Corporate Drive north driveway. The posted speed limit on Corporate Drive is 35 mph.

2.1.2 Goose Bay Drive

Goose Bay Drive is a local road maintained by the City of Portsmouth. The roadway intersects International Drive 180 feet west of Redhook Way at the west end and 775 feet west of Rye Street at the east end. One travel lane is provided in each direction along the entire roadway. No sidewalks are provided except for a short 200-foot section along the south side of the roadway along the Lonza property. There is no posted speed on the roadway.

2.1.3 International Drive

International Drive is a major collector road and is maintained by the City of Portsmouth. The roadway runs north to south between Pease Boulevard and New Hampshire Avenue/ Corporate Drive. A two-lane cross section is provided between New Hampshire Avenue/ Corporate Drive and Manchester Square/ Corporate Drive. At the intersection with Manchester Square/ Corporate Drive, the roadway opens to a four-lane cross section with northbound dedicated left turn lane, through lane, and shared through/ right lane and a single southbound travel lane. A five-lane cross section (three northbound, two southbound) is provided north of Corporate Drive approaching Pease Boulevard. The posted speed is 35 mph in both directions.

Sidewalk is provided on both sides of the roadway between Pease Boulevard and Corporate Drive and the west side of the roadway only between Corporate Drive and New Hampshire Avenue.

2.1.4 Pease Boulevard

Pease Boulevard is classified as an urban major collector and is maintained by the City of Portsmouth. The roadway is located north of the site location and runs primarily in the east-west direction connecting US Route 4 On/Off Ramps to the east and Pease Air National Guard Base to the west. Between Arboretum Drive/New Hampshire Avenue and International Drive, the Pease Boulevard cross section varies. Pease Boulevard at Arboretum/New Hampshire Avenue starts as a three-lane roadway (two westbound, one eastbound) with 11-foot travel lanes and narrow shoulders. The single eastbound travel lane widens to two lanes approaching International Drive, with two 11-foot travel lanes in each direction and narrow shoulders, a dedicated eastbound left turn lane, and two westbound left turn lanes. Pease Boulevard widens to a five-lane section eastbound with four 11-foot wide through lanes and a right-turn lane to the US Route 4 southbound onramp, with the four travel lanes aligning with two left turn lanes and two through lanes at the US Route 4 northbound ramps. Four 11-foot travel lanes are also carried westbound under the US Route 4 overpass, with two left turn lanes to the southbound on-ramp and two through lanes. The roadway continues west of US Route 4 as Gosling Road.

A five-foot sidewalk is provided on both sides of Pease Boulevard between Arboretum Drive/New Hampshire Avenue and International Drive, with a 10-foot buffered multi-use path provided on the north side of the roadway between International Drive and the US Route 4 southbound off-ramp. A 6-foot sidewalk is provided on the north side of Pease Boulevard between the US Route 4 ramps. The speed limit is posted at 35 mph in both directions.

2.1.5 Grafton Road

Grafton Road is classified as an urban major collector and maintained by the City of Portsmouth. The roadway runs in a northeast to southwest alignment connecting Corporate Drive to the northeast and Route 33 (Greenland Road) to the southwest. Grafton Road is typically a two-lane roadway with 12-foot travel lanes, widening to provide a two-lane approach with separate left and right turn lanes at its northeastern termini at Corporate Drive and its southern termini at Route 33. Shoulder lane widths vary along the roadway. Narrow shoulder widths are found near the Aviation Avenue intersection which gradually increases to 3-foot shoulders on the west side of the roadway and 5-foot shoulder on the east side of the roadway. Near Pease Golf Course Driveway/Park & Ride Driveway, the shoulder lane width increases to 10 feet on the east side of the roadway. Between Pease Golf Course Driveway/Park & Ride Driveway and Route 33, the shoulder width on both sides of the roadway is 10 feet which reduces to 3 feet on the west side of the roadway with no marked shoulder on the east at Route 33 intersection. A 10-foot buffered multi-use path is provided on the northwest side of the roadway. The speed limit is posted at 35 mph in both directions.

2.1.6 Route 33 (Greenland Road)

Route 33 (Greenland Road) is classified as an urban minor arterial and maintained by the State of New Hampshire. The roadway runs primarily in the east to west direction connecting Route 151 (Portsmouth Avenue) and the Town of Greenland to the west of the study area and US Route 1 (Lafayette Road) to the east of the study area. Between the I-

95 Southbound ramps and Grafton Road, Route 33 is a four-lane divided roadway with 11-foot travel lanes and 8-foot-wide shoulders on both sides of the roadway. Route 33 continues as an undivided four-lane roadway east of Grafton Road, with 11-foot travel lanes and 8-foot shoulders. Shoulder widths are narrower were dedicated turn lanes are provided at Grafton Road and at the I-95 Northbound ramps. No pedestrian accommodations are provided east of Grafton Road, with a speed limit of 35 mph.

2.2 Study Area Intersections

2.2.1 Gosling Road at US Route 4 Northbound Ramps

Gosling Road intersects the US Route 4 Northbound Ramps to the east of the US Route 4 (Spaulding Turnpike) overpass at a signalized intersection, with the Northbound off-ramp approaching from the south and the Northbound on-ramp departing to the north. The Gosling Road eastbound approach provides four lanes, with two left-turn lanes and two through travel lanes. The Gosling Road westbound approach consists of three lanes, with two through lanes and one shared through/right-turn lane. The left-most westbound through lane aligns with a left-turn lane at the downstream southbound ramp intersection. The northbound off-ramp approach provides four lanes, with two left-turn lanes and two right-turn lanes. Left turn movements from Gosling Road eastbound and from the northbound off-ramp are controlled with exclusive signal phases. The northbound on-ramp provides two lanes departing the intersection. As previously described, a sidewalk is provided on the north side of Gosling Road through the intersection, with a crosswalk across the northbound on-ramp. A concurrent pedestrian traffic signal phase is provided for this crosswalk. Marked edge lines are provided on all approaches with a 1-to-2-foot offset from the curb or edge of roadway.

2.2.2 Pease Boulevard at US Route 4 Southbound Ramps

Pease Boulevard intersects the US Route 4 Southbound Ramps to the west of the US Route 4 (Spaulding Turnpike) overpass at a signalized intersection, with the Southbound off-ramp approaching from the north and the Southbound on-ramp departing to the south. The Pease Boulevard westbound approach provides four lanes, with two left-turn lanes and two through travel lanes. The Pease Boulevard eastbound approach consists of five lanes, with four through lanes and one exclusive right-turn lane. The two left-most eastbound through lanes align with the left-turn lanes at the downstream northbound ramp intersection. The southbound off-ramp approach provides four lanes, with two left-turn lanes and two right-turn lanes. Left turn movements from Pease Boulevard westbound and from the southbound off-ramp are controlled with exclusive signal phases. The southbound on-ramp provides two lanes departing the intersection. As previously described, a sidewalk is provided on the north side of Pease Boulevard through the intersection, with a crosswalk across the southbound off-ramp. A concurrent pedestrian traffic signal phase is provided for this crosswalk. Marked edge lines are provided on all approaches with a 1-to-2-foot offset from the curb or edge of roadway.

2.2.3 Pease Boulevard at International Drive

International Drive intersects Pease Boulevard from the north and south to form a 4-way, signalized intersection. Pease Boulevard is median divided, with the eastbound approach providing an exclusive left-turn lane and two through travel lanes, while the westbound approach provides two left-turn lanes and two through lanes. The north leg of International Drive is median divided and provides a wide, unmarked southbound approach, which is of adequate width to accommodate two vehicles side-by-side.

International Drive northbound provides one shared left/through lane and two channelized right turn lanes under signal control. Sidewalks are provided on both sides of Pease Boulevard west of the intersection, on both sides of International Drive to the south, on the west side of International Drive to the north, and on the north side of Pease Boulevard to the east. Crosswalks are provided across all four approaches and across the channelized northbound right-turn lanes, and concurrent pedestrian traffic signal phases are provided. Marked edge lines are provided on Pease Boulevard, with a 1-to-2-foot offset from the curb or edge of roadway. Variable width shoulders are provided on International Drive south of the intersection, ranging from 2 to 8 feet.

2.2.4 International Drive at Corporate Drive and Manchester Square

Corporate Drive and Manchester Square intersect International Drive from the east and west, respectively to form a 4-way unsignalized intersection under all-way stop control. The northbound approach provides a dedicated left-turn lane, through lane, and shared through/ right lane while the southbound approach provides dedicated left-turn, through, and right-turn lane. The westbound approach provides a dedicated left-turn, through, and right-turn lane, while the eastbound approach provides a dedicated left-turn lane and through/ right lane. Edge lines are present on the north, east, and west legs of the intersection. Crosswalks are provided across all four legs of the intersection.

2.2.5 Corporate Drive at Goose Bay Drive (West JCT)

Goose Bay Drive intersects Corporate Drive from the south to form a 3-way, T-intersection. Goose Bay Drive provides a single general purpose travel lane. A single dedicated eastbound left-turn from Corporate Drive begins west of Goose Bay Drive, which provides access to the Residence Inn just east of the intersection and to Cisco Brewers via Red Hook Way. Edge lines are provided on all approaches. A crosswalk is provided across Goose Bay Drive.

2.2.6 Corporate Drive at Redhook Way

Redhook Way intersects Corporate Drive from the north to form a 3-way, T-intersection. A dedicated left-turn lane and through lane are provided on the eastbound approach while a single general-purpose lane is provided on the westbound and southbound approaches. A crosswalk is provided on the west leg of the intersection. Edge lines are provided on the east and west approaches.

2.2.7 Corporate Drive at Goose Bay Drive (East JCT)

Goose Bay Drive intersects Corporate Drive from the west to form a 3-way, T-intersection. A single general-purpose travel lane is provided on all approaches. There are no marked shoulders on the intersection approaches. A crosswalk is provided across the south leg of the intersection, which provides connection between sidewalk segments on the east side of Corporate Drive north of the intersection and on the west side of Corporate Drive south of the intersection.

2.2.8 New Hampshire Avenue and Corporate Drive at Durham Street and International Drive

New Hampshire Avenue and Corporate Drive form the north and south legs, respectively, of a 4-way unsignalized intersection, with Durham Street approaching from the west and International Drive approaching from the east under stop control. All approaches provide single general-purpose lanes, with no marked shoulders. Sidewalks are provided on the north side of Durham Street and International Drive, on the east side of New Hampshire

Avenue, and on both sides of Corporate Drive. Crosswalks are provided across the north and west legs of the intersection.

2.2.9 Corporate Drive at Grafton Road

Grafton Road intersects Corporate Drive from the southwest under stop control at a 3-way, T-intersection. Corporate Drive southbound provides a through travel lane and a right-turn lane, while Corporate Drive northbound provides a left-turn lane and a through lane. Grafton Road widens at its approach to Corporate Drive to provide separate left and right turn lanes. No shoulders or edge lines are present. Sidewalks are provided on the south side of Grafton Road and on the east side of Corporate Drive, with a crosswalk across the south leg of the intersection.

2.2.10 Grafton Road at I-95 Southbound Off-Ramp

I-95 Southbound Exit 3A includes a direct off-ramp to Grafton Road. Grafton Road is median divided in the vicinity of the off-ramp, prohibiting left turns to Grafton Road southbound. The ramp provides a single-lane approach under stop control, while Grafton Road provides a single lane northbound through the intersection.

2.2.11 Grafton Road at Route 33 (Greenland Road)

Grafton Road intersects Route 33 (Greenland Road) from the north to form a 3-way, T-type, signalized intersection. Grafton Road southbound has a two-lane approach with exclusive left and right turn lanes. Route 33 eastbound provides an exclusive left-turn lane and two through lanes, while the westbound approach provides two through lanes and a right-turn lane. The north and west legs of the intersection are median divided. The multiuse path along the west side of Grafton Road continues adjacent to the intersection, turning towards the west and continuing on the north side of Route 33; however, no connection to the intersection is provided and no crosswalks or other pedestrian accommodations are provided. A narrow 2-foot shoulder is provided on the Grafton Road approach, with 7-to-10-foot shoulders provided on Route 33.

2.2.12 Minor Driveway Intersections

There are six additional intersections at minor driveways that are included in the study area:

- International Drive at Pease Development Authority Driveway (south location)
- International Drive at Lonza Biologics Driveway (north location)
- International Drive at Lonza Biologics Driveway (south location)
- Goose Bay Drive at Lonza Biologics Parking Garage Entrance
- Goose Bay Drive at Lonza Biologics Driveway (south location)
- Goose Bay Drive at Corporate Center Driveway

Each of these intersections provides a single general-purpose lane on all approaches. No crosswalks are provided except for the International Drive at Lonza Biologics driveway which provides a crosswalk on the north leg of the intersection.

2.3 Traffic Volumes

Turning movement counts (TMC) were collected at the study area intersections on both February 17, 2022 and March 7, 2023 during the weekday morning (7:00 AM to 9:00 AM) and weekday afternoon peak periods (4:00 PM to 6:00 PM). Automatic traffic recorder (ATR) data was collected on Pease Boulevard, just west of the US Route 4 southbound ramps during a 48-hour period from Tuesday thru Wednesday in March 2023. The ATR location was strategically chosen to align with the NHDOT Count Station (LOC ID 82379024) to serve as a basis for comparison of existing traffic volumes to recent NHDOT traffic volumes and to traffic counts collected in 2022 to determine if adjustments to traffic volumes should be made. The historical traffic volumes on Pease Boulevard at this location are presented below in Table 1 below.

TABLE 1Pease Boulevard Historical Traffic Volumes

		Peak Hour Tra	affic Volumes	
Year	AADT	AM Peak	PM Peak	Source
2015	21,000	2,160	2,272	NHDOT (October) ¹
2016	21,420	Not Av	railable	NHDOT Growth Estimate ²
2017	21,848	Not Av	railable	NHDOT Growth Estimate ²
2018	20,100	1,835	2,052	NHDOT July ³
2019	20,341	Not Av	railable	NHDOT Growth Estimate ²
2020	17,168	Not Av	railable	NHDOT Growth Estimate ²
2021	15,807	1,212	1,558	NHDOT (August)
2022	17,175	1,211	1,428	Tighe & Bond February 2022 ATR ⁴
2023	18,485	1,551	1,783	Tighe & Bond March 2023 ATR ⁴

¹Peak Hour Traffic Volumes Adjusted based on 2017 Seasonal Adjustment Factor to Peak

The variance in volumes over time, and specifically the decrease in volume between 2019 and 2022, represent the impact of the COVID-19 pandemic on work schedules and commuting patterns. Traffic volume trends nation- and region-wide confirm that traffic volumes have generally returned to pre-pandemic levels in 2023; however, current NHDOT guidance requests that 2022 and 2023 traffic volumes should be adjusted upward to assume a return to 2019 pre-pandemic volumes. This likely represents a conversative analysis but cannot be adequately confirmed as such until multiple years of data can confirm current trends in post-pandemic traffic volumes.

Based on a review of the collected traffic volumes and comparison to the 2019 traffic volumes, it was determined the 2022 existing peak hour traffic volumes should be adjusted by a factor of 53% during the weekday morning peak period, and 45% during the weekday afternoon peak period and the 2023 existing peak hour traffic volumes should be adjusted by a factor of 37% during the weekday morning peak period, and 16% during the weekday afternoon peak period. These adjustment factors were determined by reviewing the historical NHDOT traffic volume data during the peak hour time periods and comparing it to the 2022 and 2023 peak hour volumes. Because the 2019, 2022, and

²Based on NHDOT Yearly Growth Rates

³Peak Hour Traffic Volumes Adjusted based on 2018 Seasonal Adjustment Factor to Peak

⁴Total Daily Traffic and Peak Hour Traffic Volumes Adjusted based on 2019 Seasonal Adjustment Factor to Peak

2023 peak hour time periods do not align due to changes in travel patterns, the higher peak hour traffic volume for each year was used as a basis for comparison. NHDOT seasonal adjustment factors were applied to both the historical volumes and existing traffic volumes per NHDOT guidelines.

While the application of these adjustment factors aligns with NHDOT guidance on review and adjustment of post-pandemic traffic volumes, it should be understood that application of adjustment factors based on ATR data from Pease Boulevard across all turning movements within the study area may artificially inflate turning movements and overstate calculated operational delay and resultant capacity analysis results.

The raw TMC and ATR data are provided in Appendix A. The NHDOT historical traffic volumes on Pease Boulevard, seasonal adjustment factors, and historical growth rates are enclosed in Appendix B. The Traffic Volume Adjustment Factor calculation is provided in Appendix C. Adjusted 2023 Existing Peak Hour Traffic Volumes are provided in Figure 2.

2.4 Capacity and Queue Analyses - Existing Conditions

Capacity and queue analyses were performed for the study intersections for the 2023 Existing Conditions during the weekday morning and weekday afternoon peak hours. Analyses were conducted using Trafficware Synchro Studio 11 software, which conducts the analysis based on Highway Capacity Manual (HCM) methodology. Consistent with NHDOT guidelines, analyses for signalized intersections were conducted using methods of the 2000 HCM, while analysis for unsignalized intersections utilized the HCM 6th Edition methodology. The analysis results are categorized in terms of Level of Service (LOS), which describes the qualitative intersection operational conditions based on the calculated average delay per vehicle. A summary of the HCM capacity analysis methodology and a detailed definition of LOS is provided in Appendix G. The queue analysis results are summarized based upon the length of vehicle queueing on an intersection approach. For unsignalized intersections, queues are quantified for 95th percentile (design queues). For signalized intersections, queues are quantified by 95th percentile (design) and 50th percentile (average) queues. Tables 4 and 5 in Section 7 summarize the capacity and queue analyses results, respectively. Capacity analysis worksheets with full inputs, settings, and results are provided in Appendix H.

As shown in Table 4, the conservative application of COVID adjustment factors to represent a pre-pandemic condition creates an assumed pre-pandemic Existing condition which predicts notable operational delay throughout the study area. While many intersections and individual intersection approaches operate at LOS D or better during the peak hours, the following predict unfavorable and failing operations:

Pease Boulevard at International Drive:

o The intersection operates at overall LOS F with failing operations on the northbound right turn movement during the weekday afternoon peak hour.

Pease Boulevard at US Route 4 Southbound Ramps:

- The intersection operates at overall LOS F during the weekday morning peak hour with failing operations on the southbound right turn movement.
- The westbound left movement operates at LOS E during the weekday afternoon peak hour.

• Pease Boulevard at US Route 4 Northbound Ramps:

- The intersection operates at overall LOS E, with failing operations on the northbound left turn movement during the weekday morning peak hour.
- o Predicted 95th percentile queues exceed the available storage on the northbound left movement during the weekday morning peak hour.

• Route 33 (Greenland Road) at Grafton Road:

- The intersection operates at overall LOS F during the weekday morning peak and afternoon peak hours.
- The eastbound left and through movements operate at LOS F during the weekday morning peak hour.
- The eastbound left, westbound through, and southbound right movements operate at LOS F during the weekday afternoon peak hour.
- Predicted 95th percentile queues exceed the available storage on the eastbound left movement during the weekday morning peak hour.

• Corporate Drive at International Drive:

- The intersection operates at overall LOS F during the weekday morning peak and afternoon peak hours.
- The southbound left and through movements operate at LOS F during the weekday morning peak hour.
- The westbound right and northbound through movements operate at LOS F during the weekday afternoon peak hour.
- Predicted 95th percentile queues exceed the available storage on the southbound left movement during the weekday morning peak hour and westbound right movement during the weekday afternoon peak hour.

New Hampshire Avenue/Corporate Drive at International Drive/Durham Street:

 The stop-controlled International Drive approach operates at LOS F during the weekday morning and weekday afternoon peak hours.

Corporate Drive at Goose Bay Drive (West):

 The northbound movement operates at LOS F during the weekday afternoon peak hour.

• Corporate Drive at Grafton Road:

 The eastbound left movement on Grafton Road operates at LOS F during the weekday morning and weekday afternoon peak hours.

Grafton Road at I-95 Southbound Off-ramp:

The ramp approach operates at LOS F during the weekday morning peak hour.

2.5 Collision History

Collision data was collected from police reports from the City of Portsmouth Police Department for the most recent three-year period between January 2020 and December 2022 for the study area intersections. Table 2 on the following page provides a summary of the collisions within the study area. Appendix F includes detailed collision summaries for each of the study intersections.

As shown in Table 2, there were 42 motor vehicle collisions reported in the study area during the three-year period analyzed. Collisions occurred most frequently at the intersections of Corporate Drive at International Drive and Gosling Road at US Route 4 Northbound ramps. Both intersections experienced 11 collisions, accounting for about half of the reported total. The intersection of Pease Boulevard at US Route 4 Southbound ramps experienced the third highest number of collisions with 7, or about 17% of the reported total. The New Hampshire Avenue at International Drive intersection experienced 6 collisions, equating to approximately 14% of the total. The intersection of Route 33 (Greenland Road) at Grafton Road experienced 5 collisions, or 12% of the reported total. Finally, the intersections of Pease Boulevard at International Drive and Corporate Drive at Grafton Road each experienced one collision. The remaining study intersections did not have any reported collisions based on data provided by the City of Portsmouth.

TABLE 2Study Area Collision History Summary

	2019	2020	2021	Total	Percent
Corporate Drive at International Drive	7	2	2	11	26.2%
Gosling Road at US Route 4 NB Ramps	0	3	8	11	26.2%
Pease Boulevard at US Route 4 SB Ramps	3	3	1	7	16.7%
New Hampshire Avenue at International Drive	3	1	2	6	14.3%
Route 33 (Greenland Road) at Graton Road	1	2	2	5	11.9%
Pease Boulevard at International Drive	0	0	1	1	2.4%
Corporate Drive at Grafton Road	1	0	0	1	2.4%
TOTAL	15	11	16	42	100%

More detailed collision history summary data is provided in Appendix F. The most frequent types of collision were angle and rear-end, accounting for about 45% and 31% of the total collisions within the study area, respectively. The next most frequent collision type was sideswipe – same direction, which made up about 14% of the total collisions. The remaining collisions were fixed object, overturn/ rollover, or unknown, each of which accounting for less than 3% of the total collisions.

About 76% of collisions occurred on weekdays, spread throughout the day, with the remaining 24% occurring on weekends. Eight out of the 42 reported collisions in the study area occurred when the weather was clear, one occurred in snowy conditions, and the weather was unknown for the remaining 33 collisions. Similarly, eight of the 42 reported collisions occurred when the road surface was dry, one with snow on the roadway, and an unknown road surface condition for the remaining 33 collisions.

The collision data indicates no reported fatalities. One reported serious injury was reported for an angle collision at the intersection of New Hampshire Avenue at International Drive. The remaining 41 collisions resulted in minor injuries or property damage only. There were no pedestrian or cyclist collisions reported in the three-year period.

2.6 Public Transportation

The Cooperative Alliance for Seacoast Transportation (COAST) provides transit service within the study area. Bus Route 42 is the primary bus route in the study area with stops along Corporate Drive, including at the intersection of Corporate Drive at Redhook Way which is the closest existing stop to the site. Bus Route 42 also has stops along Grafton Road to the Portsmouth Transportation Center/Park & Ride and provides service to downtown Portsmouth. The route operates from 6:43AM to 6:34PM Monday through Friday. Bus Route 40 also operates in the study area with a bus stop at the Portsmouth Transportation Center and provides access to downtown Portsmouth. The route operates from 7:24 AM to 7:46 PM Monday through Friday. Bus Route 42 and 40 map and schedule are included in Appendix K.

Section 3 No Build Conditions

The No-Build Condition represents the projection of traffic volumes and operating conditions without the anticipated additional site generated traffic. Consistent with NHDOT guidelines, the study area is analyzed for an Opening Year (2025) and Design Year (2035). This section describes the growth and development considerations included in the 2025 and 2035 No-Build traffic volumes.

3.1 Traffic Growth

To develop the traffic volumes for the 2025 and 2035 No-Build Conditions, the 2023 Existing traffic volumes were grown by one percent per year to represent the general growth of traffic on the study area roadways. This growth rate is consistent with the average growth rate in NHDOT Region E - Southeast, the region in which Portsmouth is located. Background NHDOT growth data is included in Appendix B.

NHDOT and the Pease Development Authority (PDA) were contacted about other planned/approved developments in the area that may add new traffic to the study area prior to 2025. The following developments were identified:

- Pease Surface Transportation Master Plan: Traffic volumes for the full occupancy of existing buildings and projects that are planned or under construction are included in the 2025 and 2035 No-Build Condition.
- 100 New Hampshire Avenue: Traffic volumes for the approximately 209,750 square foot advanced manufacturing facility in the Pease Tradeport area are included in the 2025 and 2035 No-Build Conditions.

Traffic volumes for these projects were obtained from record studies and assigned to the study area intersections in the No-Build Conditions. Data for background development projects are included in Appendix D. It is assumed that other smaller developments or small vacancies in existing developments are captured by the background traffic growth rate.

The 2025 and 2035 No-Build traffic volumes for the weekday morning and weekday evening peak hours are shown in Figures 3 and 4, respectively.

3.2 Planned Roadway Improvements

Information obtained by NHDOT was used to identify roadway improvement projects in the area that may affect future traffic operations. A traffic signal project is proposed at the intersection of International Drive at Corporate Drive/ Manchester Square as identified in the NHDOT Ten-Year Plan (NHDOT Project No. 42612) and was considered when developing the 2035 No-Build Conditions analysis. The project is partially funded with preliminary design scheduled for 2027 and construction currently scheduled for 2030. The improvement was included in the 2035 No-Build and 2035 Build Conditions analyses.

3.3 Capacity and Queue Analyses - No-Build Conditions

Capacity and queue analyses were conducted for the 2025 and 2035 No-Build Conditions traffic volumes for both peak periods using the methodology described in Section 2.4. Tables 4 and 5 in Section 7 summarize the capacity and queue results, respectively. Capacity analysis worksheets with full inputs, settings, and results are provided in Appendix H.

The increase in expected future traffic based on the one percent per year compounded growth rate and the site-specific development added to the future No-Build Conditions result in some degradation of operations when compared to existing conditions. As described in Section 3.2, the proposed traffic signal at the intersection of International Drive at Corporate Drive/ Manchester Square is included in the 2035 No-Build Condition. In the 2025 No-Build Condition, most overall intersections and individual intersection approaches operate a similar LOS to the Existing Condition, which includes adjustment to an assumed pre-pandemic traffic level. The 2035 No-Build Condition includes some additional degradation of LOS based on the addition of ten years of compounded annual growth. The following identifies intersections and approaches which predict a degradation of LOS or increased delay exceeding available storage between the 2022 Existing and 2025 No-Build Condition, and/or between the 2025 and 2035 No-Build Condition:

• Pease Boulevard at US Route 4 Southbound Ramps:

- The intersection continues to operate at overall LOS F during the weekday morning peak hour with failing operations on the southbound right movement. Both 50th and 95th percentile queues also exceed available storage in the 2035 weekday morning peak hour.
- The westbound left movement degrades to LOS F in the 2035 weekday afternoon peak hour. The southbound left movement degrades to LOS E in the 2035 weekday morning peak hour.

Pease Boulevard at US Route 4 Northbound Ramps:

- The intersection continues to operate at overall LOS E in the 2025 No-Build Condition but degrades to LOS F in the 2035 No-Build Condition during the weekday morning peak hour.
- In the 2035 No-build Condition, the eastbound left turn movement degrades to LOS E during the weekday afternoon peak hour.
- The northbound left movement experiences design queues that exceed available storage in both No-Build years during the weekday morning peak hour.

Route 33 (Greenland Road) at Grafton Road:

- The intersection continues to operate at LOS F during the weekday morning and weekday afternoon peak hours.
- The eastbound through movement degrades to LOS E in the 2025 No-Build Condition and to LOS F in the 2035 No-Build Condition during the weekday afternoon peak hour.
- The southbound left turn movement design queues exceed available storage in 2035 during the weekday afternoon peak hour.

• Corporate Drive at International Drive:

- The intersection continues to operate at overall LOS F in the 2025 No-Build Condition during the weekday morning peak and afternoon peak hours.
- Overall intersection operations improve to LOS B and LOS C during the weekday morning and weekday afternoon peak hours, respectively, in the 2035 No-Build Condition following the proposed signalization of the intersection.

Corporate Drive at Lonza North Driveway:

 The Lonza North driveway approach degrades to LOS F in the 2035 No-Build Condition during the weekday afternoon peak hour.

New Hampshire Avenue/Corporate Drive at International Drive/Durham Street:

 The stop-controlled Durham Street approach degrades to LOS E during the weekday morning peak hour and to LOS F during the weekday afternoon peak hour in the 2035 No-Build Condition.

• Corporate Drive at Grafton Road:

 The eastbound left movement continues to operate at LOS F in the 2025 and 2035 No-Build Condition during both peak periods. 95th percentile queues are estimated to continue to exceed available storage as well in 2025 and 2035.

Grafton Road at I-95 Southbound Off-Ramp:

 The westbound right turn movement continues to operate at LOS F in both No-Build years during the weekday morning peak hour.

Section 4 Proposed Conditions

The proposed 800,000+/- SF industrial facility will include approximately 700 parking spaces located in one proposed garage. The proposed development is expected to be complete and occupied in 2025. The Site Layout Plan is presented in Appendix I.

4.1 Site Access

Access to the Site will be provided via one full access, unsignalized driveway on Goose Bay Drive. The proposed driveway is located directly opposite the one-way existing Lonza garage entrance. All employees will utilize this driveway on Goose Bay Drive to access the site. A gated driveway is proposed on Corporate Drive, east of Redhook Way. This driveway will only be utilized for occasional deliveries to Building 3 following completion of the full build-out.

Based on the reconfiguration of Goose Bay Drive as shown in the proposed Site Layout Plan, intersection sight distance was not reviewed. There will be no conflicting through traffic with vehicles exiting the proposed driveway due to the roadway reconfiguration.

4.2 Multi-Modal Accommodations

Multi-modal access is provided in the general vicinity of the proposed development. Site improvements include a sidewalk along the eastern side of the Goose Bay Drive and a sidewalk along the southern side of Corporate Drive between the two Goose Bay Drive intersections. Improvements also include a crosswalk across Corporate Drive at the Wentworth Douglass driveway and on Goose Bay Drive at Corporate Drive to provide a continuous sidewalk network on the southern side of Corporate Drive. Additionally, internal sidewalks and crosswalks are proposed on site to accommodate pedestrians. Existing sidewalks adjacent to the site connect to a multi-use path along Grafton Road and Route 33 (Greenland Road). These facilities may encourage cycling and walking to the development.

In addition, the previously mentioned COAST bus stop is located at the intersection of Corporate Drive at Redhook Way with bus connection at the Portsmouth Transportation Center to downtown Portsmouth. The proposed sidewalk infrastructure coupled with the existing infrastructure in place create a robust pedestrian network in the Tradeport Area.

4.3 Trip Generation

Site generated traffic volumes were estimated using site-specific data based on existing facility operating characteristics and the proposed development program. Because the existing facility is currently operating on a hybrid schedule, turning movement counts collected in 2018 were used as a basis for the existing trip generation estimate.

The proposed site generated traffic volumes were calculated based on both the number of proposed full-time employees and the proposed building size. The 2018 turning movement counts serve as the basis for each estimate. The existing 1,139 full-time employees and the proposed 1,020 employees serve as a basis for the estimate based on the number of

employees. The existing building size of 898,000 square feet, and the proposed building size of 800,000 square feet serve as the basis for the estimate based on building size. Trip generation is based on the peak hour of the generator (site). Table 3 summarizes the trip generation estimates.

TABLE 3Site-Generated Traffic Summary

Peak Hour)		
Enter	Exit	Total
154	76	230
15	160	175
20		
20 FTE Employees		
Enter	Exit	Total
138	68	206
13	144	157
0.000 SF Building		
Enter	Exit	Total
137	68	205
13	144	157
	15 20 FTE Employees Enter 138 13 0,000 SF Building Enter 137	Enter Exit 154 76 15 160 20 FTE Employees Enter Exit 138 68 13 144 0,000 SF Building Enter Exit 137 68

Based on employees, the project is projected to generate 206 trips during the weekday morning peak hour (138 entering, 68 exiting) and 157 trips during the weekday afternoon peak hour (13 entering, 144 exiting). Based on building size, the project is expected to generate 205 trips during the weekday morning peak hour (137 entering, 68 exiting) and 157 vehicles (13 entering, 144 exiting) during the weekday afternoon peak hour. It was determined to use the higher number of trips based on proposed employees in order to present a conservative estimate of predicted trips.

As noted previously, Lonza is currently working under a hybrid work policy, currently averaging approximately 50% of employees working in the office on a typical day. However, for the purposes of this TIA, no trip reduction credit was taken for future employees working from home. Therefore, the trip generation estimate including all full-time employees is considered conservative and assumes a return to in-person work for all employees. As noted above, trip generation is based on the peak hour of the generator and applied to the peak hour of the study area network, which also results in a conservative approach.

While the nearby COAST bus stop and sidewalk facilities in the area may provide additional options for employees to travel to the proposed development, no credit was taken for mode share trips.

4.4 Arrival and Departure Distribution

The distribution of the proposed site generated traffic entering and exiting the Site was applied to the roadway network based on zip code data for current Lonza employees' place of residence.

Arrival and departure distribution patterns are shown in Figure 5, and are as follows:

- 40% Northwest to/from US Route 4
- 25% South to/from I-95
 - 15% via Route 33
 - 10% via US Route 4
- 10% Northeast to/from I-95 (via Route 33)
- 10% West (Local) to/from Route 33
- 5% East to/from Pease Boulevard/Gosling Road
- 5% East (Local) to/from Route 33
- 5% (Local)to/ from US Route 1 / US Route 1 Bypass (via US Route 4)

Figure 6 shows the proposed site generated traffic distributed to the study area roadways for the weekday morning and afternoon peak hours. Trip distribution based on employee zip code is included in Appendix L.

4.5 Goose Bay Drive Realignment

A portion of Goose Bay Drive is proposed to be reconfigured as part of the project. Approximately 1,700 feet of the roadway beginning at the west end of Goose Bay Drive at the intersection with Corporate Drive will be converted to a private driveway for the Lonza site. Employee-only access gates will be installed along the private roadway. The portion of Goose Bay Drive running north to south to the east of the Lonza development will remain a public road, maintaining access to Corporate Center at Pease. A gate is proposed at the southern extent of Goose Bay Drive, approximately 150 feet south of the Corporate Center driveway to restrict through traffic. A cul-de-sac is proposed at the southern extent of Goose Bay Drive to provide vehicles with a means to turn around if necessary. Existing traffic volumes on Goose Bay Drive were reassigned and incorporated into the 2025 and 2035 Build Conditions traffic volumes and analyses. The reassigned Goose Bay Drive traffic volumes are shown in Appendix E.

Section 5 Build Conditions

The anticipated site generated traffic volumes associated with the proposed development were added to the 2025 and 2035 No-Build Conditions traffic volumes to develop the 2025 and 2035 Build Conditions traffic volumes, which are presented in Figure 7 and 8, respectively, for the weekday morning and afternoon peaks.

5.1 Capacity and Queue Analyses – Build Conditions

Capacity and queue analyses were conducted for the 2025 and 2035 Build Conditions for the peak hours using the methodology described in Section 2.4. Tables 4 and 5 in Section 7 summarize the capacity and queue results, respectively. Capacity analysis worksheets with full inputs, settings, and results are provided in Appendix H.

Many of the study area intersections and individual intersection approaches continue to operate at acceptable LOS D or better during the peak hours in the 2025 and 2035 Build Conditions. Study area intersections that were identified in Section 2.4 and 3.3 to operate at LOS E or LOS F in the No-Build Conditions continue to operate at the same LOS under Build Conditions, except for the following:

• Pease Boulevard at International Drive:

- The intersection continues to operate at overall LOS F with failing operations on the northbound right turn movement during the weekday afternoon peak hour.
- The westbound left movement degrades to LOS E in the 2035 Build Condition during the weekday morning peak hour.

• Pease Boulevard at US Route 4 Northbound Ramps:

- The eastbound left movement degrades to LOS E in the 2025 Build Condition and to LOS F in the 2035 Build Condition during the weekday afternoon peak hour.
- 95th percentile queues exceed available storage on the eastbound left and through movements in the 2035 Build Condition during the weekday afternoon peak hour.

• Corporate Drive at Goose Bay Drive (West):

- The Goose Bay Drive northbound approach degrades to LOS F in the 2025 and 2035 Build Condition during the weekday morning peak hour. The northbound approach continues to operate at LOS F in the 2025 and 2035 Build Conditions.
- o 95th percentile queues exceed available storage on the northbound approach in the 2025 and 2035 Build Condition during the weekday afternoon peak hour.

A review of calculated queue lengths in Table 5 reveals that the majority of queues are unchanged between the No-Build and Build Conditions for both 2025 and 2035 or increase by approximately 1-2 car lengths or fewer. However, the following increases in queues were noted:

- The westbound left movement at the intersection of Pease Boulevard at International Drive experiences an increase in predicted 95th percentile queues of two and five car lengths in 2025 and 2035, respectively, during the weekday morning peak hour.
- The northbound right movement at the intersection of Pease Boulevard at International Drive sees an increase in predicted 95th percentile queues of approximately three car lengths in the 2025 and 2035 Build Condition during the afternoon peak hour. This movement does experience failing operations.
- Large increases in queues in 2025 and 2035 are projected on the Goose Bay Drive (West) northbound approach at the intersection with Corporate Drive due to the increase in site traffic exiting the site during the weekday afternoon peak hour.
- Large increases in design queues are estimated on the southbound left movement from International Drive to Corporate Drive during the weekday morning peak period and westbound right movement from Corporate Drive to International Drive in the 2025 Build Condition, however the queueing deficiency is mitigated with the proposed traffic signal in 2035.

Section 6 Conclusions & Recommendations

- 1. Lonza Biologics proposes to construct a 800,000+/- square foot industrial development within three buildings on portions of the vacant lot between Goose Bay Drive and Corporate Drive in the Pease Tradeport area in Portsmouth, NH. The development will provide approximately 700 parking spaces in one proposed parking garage to accommodate employee parking. The first phase of the proposed development is expected to be complete and occupied by 2025.
- 2. Employee access to the Site will be provided via one full access, unsignalized driveway opposite the existing Lonza parking garage entrance. Access will be controlled with proposed gates on the existing Goose Bay Drive in advance of the proposed site driveway. A proposed driveway on Corporate Drive will be restricted with a gate and be accessed for infrequent deliveries to Building 3 following completion of later project phases.
- 3. The proposed land use for the project site is industrial, which will support current biotech and pharmaceutical uses for Lonza. Site-specific data including traffic counts, existing and proposed number of employees, and existing and proposed building area were used as a basis for the estimate. The estimate assumed all employees are working on site. This likely represents a conservative estimate as Lonza is currently operating under a hybrid policy, averaging approximately 50% of employees in the facility each day.
- 4. Based on the trip generation estimate, the project is expected to generate 206 trips during the weekday morning peak hour (138 entering, 68 exiting) and 157 trips during the weekday afternoon peak hour (13 entering, 144 exiting). Trip generation is estimated based on the peak hour of the generator (site) and applied to the peak hour of the study area network, also representing a conservative approach.
- 5. The project proposes internal and adjacent roadway sidewalk connections, creating and promoting connections to a robust existing sidewalk network along study area roadways.
- 6. Vehicle collision history, compiled from local police and historic reports, do not indicate a significant or notable pattern of collisions in the study area.
- 7. Consistent with NHDOT guidelines, existing traffic volumes have been adjusted based on a comparison between 2022, 2023 and 2019 data to represent a pre-pandemic condition. Application of adjustment factors based on ATR data from Pease Boulevard across all turning movements within the study area may artificially inflate turning movements and overstate calculated operational delay and resultant capacity analysis results. Existing traffic volumes adjusted to an assumed pre-pandemic condition predict notable operational delay throughout the study area.
- 8. The capacity analyses show that the study area intersections will continue to operate at the same LOS under Build Conditions as in No-Build Conditions for both the 2025 opening year and 2035 design year, with the following exceptions:

- a. The westbound left and northbound right movements at the intersection of Pease Boulevard at International Drive degrade from LOS D to LOS E in the weekday morning peak hour between the 2035 No-Build and Build Condition.
- b. The eastbound left movement at the intersection of Pease Boulevard at US Route 4 Northbound Ramps degrades from LOS D to LOS E in the 2025 Build Condition and from LOS E to LOS F in the 2035 Build Condition during the weekday afternoon peak hour.
- c. The Goose Bay Drive northbound approach Corporate Drive at Goose Bay Drive (West) degrades to LOS F in the 2025 and 2035 Build Condition during the weekday morning peak hour.
- 9. Based on the results of the foregoing analysis, it is the professional opinion of Tighe & Bond that while the adjustment of collected volumes to an assumed pre-pandemic condition and the addition of background growth on a 12-year horizon to the 2035 design year results in undesirable LOS at some area intersections, the addition of site-generated traffic is expected to have a negligible effect on traffic operations within the study area.

Section 7 Additional Tables

TABLE 4Intersection Operation Summary - Capacity

Series Province Provi				\	Weekday Morning Peak H	lour			lour				
Total Paris Possesson Annual International Prints 18			Existing	No Build	Build	No Build	Build	Existing	No Build	Build	No Build		
Greyal C. 1.0 68. C. 224 68. C. 245 68. C. 2	Traffic Signal - Pease E	Boulevar	d at International D	rive									
PRINGE CASCAPT FITT C 34.6 0.27 0 33.8 0.26 0 7 50.0 0.78 0 10 35.			C 21.9 0.83	C 22.4 0.83									
MISSE C 312 0.55 C 324 0.50 C 324	Pease Boulevard	EBTR	C 34.6 0.22	D 35.9 0.26	D 39.0 0.28	D 39.7 0.30	D 40.2 0.31	C 23.9 0.62	C 24.4 0.65	C 24.4 0.65	C 26.8 0.68	C 27.0 0.68	
September 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	International Drive	NBLT	C 31.2 0.05	C 32.4 0.06	C 33.6 0.05	C 33.4 0.06	C 33.0 0.05	B 15.0 0.03	B 15.8 0.03	B 15.9 0.03	B 18.7 0.04	B 18.9 0.04	
The Series of Series 1		SB	C 31.2 0.04	C 32.3 0.04	C 33.5 0.04	C 33.3 0.04	C 32.9 0.04	B 15.9 0.18	B 16.7 0.19	B 16.9 0.19	B 20.0 0.23	C 20.2 0.23	
PRIT C 24.3 0.16 C 24.3 0.17 C 24.6 0.19 C		Boulevar			E 111 E 1 EQ	E 136 / 176	E 1525 197	C 33 6 0 00	C 3/13 0.03	C 35.0 0.02	D 306 102	D 41.5 1.02	
Well C 25.8 0.27 C 277 0.27 C 275 0.27 C 275 0.27 C 286 0.31 C 284 0.31 F 5.0 0.50 F 5.3 0.02 F 5.3	Overall	EBT			C 24.4 0.19	C 24.4 0.21	C 24.5 0.23	C 28.6 0.62	C 29.5 0.66	C 30.2 0.69	C 31.3 0.73	C 32.4 0.77	
USROUGH \$50 PU OF \$50 PU \$457 0.88	Pease Boulevard	WBL	C 26.8 0.27	C 27.7 0.27	C 27.5 0.27	C 28.6 0.31	C 28.4 0.31	E 61.0 0.90	E 62.6 0.92	E 62.0 0.92	F 80.3 1.02	F 81.1 1.02	
Overall E		SBL	D 45.7 0.86	D 48.2 0.88	D 48.5 0.89	E 66.0 0.99	E 66.7 0.99	D 35.1 0.52	D 35.2 0.52	D 35.2 0.52	D 35.8 0.57	D 35.7 0.57	
Fig.	Traffic Signal - Pease E	Boulevar	d at US Route 4 NB	On/Off Ramps									
Rese Bookevard RET D 41,5 0.72 D 41,2 0.73 D 41,0 0.73 D 41,0 0.74 D 41,9 0.81 D 41,0 0.81 C 20,1 0.79 C 20,0 0.33 C 21,0 0.84 C 31,0 0.35 D 43,0 0.35			E 57.9 1.13	E 61.2 1.16									
Remus Repus Page 1, 20 9 0, 17 C 30, 6 1, 9 C 31, 7 0, 26 C 32, 0 0, 26 C 32, 0 0, 23 C 32, 0 0, 24		EBT	D 41.5 0.72	D 41.2 0.73	D 40.1 0.74	D 41.9 0.81	D 41.0 0.81	C 20.1 0.79	C 20.9 0.83	C 21.2 0.84	C 27.5 0.92	C 28.5 0.93	
Overall F 148,3 2.66 F 154,2 2.56 F 150,7 2.69 F 236,5 2.00 F 236,5 2.09 F 153,2 2.78 F 168,7 2.32 F 177,2 2.33 F 225,7 2.77 F 757,5 757,7 757,5 757											C 32.7 0.32 C 32.1 0.26		
Greenland Road (State Bit F 648,9 2.36 F 715.5 2.51 F 752.7 2.60 F 932.5 3.00 F 976.2 3.09 F 622.7 2.28 F 643,3 2.32 F 666.2 2.33 F 75.2 3.57 F 755.2 2.57 Road Sal	Traffic Signal - Greenla	and Road	(Route 33) at Graf	ton Road									
GreenlandRoad (State Est F 90.8 1.16 F 107.1 1.20 F 108.7 1.20 F 107.4 1.20 F 107.4 1.20 F 107.4 1.20 F 107.4 1.20 F 107.5 C 23.0 73 C 23.0 C 23.0 73 C 23.0			F 148.3 2.36	F 164.2 2.51									
Route 33) WBT C 23.0 0.73 C 23.4 0.75 C 23.4 0.75 C 23.4 0.75 C 26.7 0.83 C 26.7 0.83 F 142.5 1.25 F 153.3 1.28 F 153.3 1.28 F 123.0 1.41 F 212.0 1.41 WBR B 13.0 0.35 B 18.5 0.39 B 18.8 0.40 B 19.1 0.42 B 19.4 0.44 B 15.5 0.14 B 15.6 0.15 B 15.6 0.15 B 15.8 0.17 B 15.	Greenland Road (State				F 108.7 1.20								
Second S		WBT	C 23.0 0.73	C 23.4 0.75	C 23.4 0.75	C 26.7 0.83	C 26.7 0.83	F 142.5 1.25	F 153.3 1.28	F 153.3 1.28	F 212.0 1.41	F 212.0 1.41	
Composite	Grafton Road			C 21.9 0.54 B 18.5 0.16									
EBI		ate Drive	at International D			P 10.6 0.03	6 344 0.05				6 24.0 0.04	6 310 003	
Corporate Drive File	Overall	FBI											
WBT		EBTR				C 31.5 0.31	D 39.4 0.36				B 12.8 0.02	B 12.1 0.02	
WBR	Corporate Drive												
NB													
NBTR													
SBT											C 29.9 0.77		
Unsignalized AWSC - Corporate Drive at International Drive Verall F 15.4 1.45 F 124.5 I.49 F 197.2 I.82	International Drive												
F 115.4 1.45 F 124.5 1.49 F 197.2 1.82 F 95.7 1.35 F 104.3 1.39 F 164.8 1.70													
EBL B 14,7 0,23 B 14,8 0,24 C 15,6 0,25 C 20,9 0,46 C 21,5 0,48 C 22,4 0,50		Corporate			F 197 2 1 82			F 957 135	F 1043 139	F 164 8 1 70			
Corporate Drive WBL B 12.9 0.05 B 12.9 0.05 B 12.9 0.05 B 13.3 0.05 B 12.1 0.03 B 12.1 0.03 B 12.2 0.03	Overan	EBL								1 20110 2170			
WBT B 12.5 0.04 B 12.6 0.05 B 12.9 0.05 B 12.1 0.08 B 12.2 0.08 B 12.3 0.03 B 12.3 0.03 B 13.0 0.03 B 12.7 0.05 B 12.8 0.05 B 12.8 0.05 B 13.4 0.05													
WRR B 13.8 0.22 B 14.0 0.23 C 17.1 0.39 F 204.0 1.35 F 223.1 1.39 F 351.9 1.70	Corporate Drive												
NBL B 12.2 0.03 B 12.3 0.03 B 13.0 0.03 B 12.7 0.05 B 12.8 0.05 B 13.4 0.05								D 12.11 0.00					
NBT B 13.5 0.20 B 13.6 0.20 B 14.1 0.28 C 15.1 0.30 C 20.2 0.54 C 20.8 0.56 C 22.0 0.59													
International Drive NBTR B 1.3,9 0,27 B 1.4,1 0,28 C 15.1 0,30 C 20.2 0.54 C 20.8 0.56 C 22.0 0.59													
SBL F 240.8 1.45 F 258.4 1.49 F 412.7 1.82	International Drive		B 13.9 0.27	B 14.1 0.28				C 20.2 0.54					
Unsignalized TWSC - Corporate Drive at Goose Bay Drive (West) Corporate Drive at Goose Bay Drive (West) Corporate Drive WB A 9.8 0.04 A 9.9 0.04 B 11.0 0.14 B 10.8 0.05 B 12.3 0.17 A 7.4 0.00 A 7.4 0.00 A 7.4 0.01 A 7.7 0.00 A 7.7 0.0 Goose Bay Drive (West) NB C 20.3 0.11 C 20.8 0.11 F 58.6 0.73 D 27.4 0.16 F 139.4 1.02 F 50.2 0.91 F 56.2 0.94 F 347.8 1.71 F 200.5 1.34 F 637.8 2. Unsignalized TWSC - Corporate Drive at Redhook Way Corporate Drive EBL A 7.5 0.01 A 7.5 0.01 A 7.6 0.01 A 7.5 0.02 A 7.6 0.02 A 8.9 0.01 A 8.9 0.01 A 9.0 0.01 A 9.1 0.01 A 9.2 0.1	international brive	SBT	F 74.5 1.04	F 83.3 1.07	F 107.1 1.11			C 16.3 0.27	C 16.6 0.28	C 17.4 0.30			
Corportate Drive WB A 9.8 0.04 A 9.9 0.04 B 11.0 0.14 B 10.8 0.05 B 12.3 0.17 A 7.4 0.00 A 7.4 0.00 A 7.4 0.01 A 7.7 0.00 A 7.7 0.0 Goose Bay Drive (West) NB C 20.3 0.11 C 20.8 0.11 F 58.6 0.73 D 27.4 0.16 F 139.4 1.02 F 50.2 0.91 F 56.2 0.94 F 347.8 1.71 F 200.5 1.34 F 637.8 2.1 Unsignalized TWSC - Corporate Drive at Redhook Way Corporate Drive EBL A 7.5 0.01 A 7.5 0.01 A 7.6 0.01 A 7.5 0.02 A 7.6 0.02 A 8.9 0.01 A 8.9 0.01 A 9.0 0.01 A 9.1 0.01 A 9.2 0.0					в 11./ 0.31			в 14.8 U.24	C 15.1 0.25	L 15.9 U.27			
Goose Bay Drive (West) NB C 20.3 0.11 C 20.8 0.11 F 58.6 0.73 D 27.4 0.16 F 139.4 1.02 F 50.2 0.91 F 56.2 0.94 F 347.8 1.71 F 200.5 1.34 F 637.8 2 Unsignalized TWSC - Corporate Drive at Redhook Way Corporate Drive					B 11 0 0 14	B 10.8 0.05	B 12 3 0 17	A 74 000	A 7.4 0.00	A 7.4 0.01	A 7.7 0.00	A 7.7 0.01	
Corportate Drive EBL A 7.5 0.01 A 7.5 0.01 A 7.6 0.01 A 7.5 0.02 A 7.6 0.02 A 8.9 0.01 A 8.9 0.01 A 9.0 0.01 A 9.1 0.01 A 9.2 0.00 A													
					Δ 76 0.01	Δ 75 0.02	Δ 76 0.02	Δ 80 001	Δ 80 001	Δ 90 001	Δ 91 001	A 9.2 0.01	
	Redhook Way	SB		A 7.5 0.01 A 9.2 0.01	A 7.6 0.01 A 9.5 0.02	A 7.5 0.02 A 9.3 0.02			B 11.7 0.06		B 12.4 0.08		

TABLE 4 (CONTINUED)

Intersection Operation Summary - Capacity

			Weekday Morning Peak Hour																			We	ekday A	fterno	on Peak	Hour						
	Lane		202				2025 Buil			2025 Build			2035 No Bui			2035 Build			2023			2025 No Bui			2025 Build			2035 No Bui			2035 Build	
	Use	LOS	Existi Delay		L			V/C	LOS	Delay	V/C	LOS	Delay		LOS	Delay		LOS	Existing Delay	-		Delay		LOS	Delay		LOS	No Bui		LOS	Delay	
Unsignalized TWSC - C Corportate Drive	VB WB	A A	7.7	0.01	Drive		t) 7.7	0.01	Α	7.8	0.00	Α	8.0	0.01	Α	8.1	0.00	A	7.4	0.00	A	7.4	0.01	A	0.0	0.00	Α	7.6	0.01	A	0.0	0.00
Goose Bay Drive (East)	NB	В	11.2				11.3	0.09	Α	0.0	0.00	В	12.5	0.10	A	0.0	0.00	A	9.9	0.04	В	10.0	0.05	В	11.4	0.03	В	11.2		В	12.9	0.04
Unsignalized TWSC - 0	ioose R	av Dri	ve at C	ornorate	e Cent	er Dri	vewa	v																								
Corporate Center Drivey	/ WB	A	0.0	0.00		A	0.0	0.00	Α	0.0	0.00	Α	0.0	0.00	Α	0.0	0.00	А	8.5	0.02	Α	8.5	0.02	Α	0.0	0.00	Α	8.5	0.02	Α	0.0	0.00
Goose Bay Drive (East)	SB	Α	7.3	0.01		A	7.3	0.01	Α	0.0	0.00	Α	7.3	0.01	A	0.0	0.00	A	0.0	0.00	A	0.0	0.00	A	0.0	0.00	A_	0.0	0.00	A_	0.0	0.00
Unsignalized TWSC - 0	Goose B	ay Dri	ve at L	onza Sou	uth Dr	ivewa	v																									
Lonza South Driveway	EB	Α	9.6	0.02			9.7	0.02	Α	9.3	0.01	Α	9.7	0.02	Α	9.3	0.02	Α	8.7	0.01	Α	8.7	0.01	Α	8.6	0.01	Α	8.7	0.01	Α	8.6	0.01
Goose Bay Drive (West)	NB	A	0.0	0.00		A	0.0	0.00	A	0.0	0.00	Α_	0.0	0.00	Α	0.0	0.00	Α	0.0	0.00	Α	0.0	0.00	Α	0.0	0.00	A	0.0	0.00	A	0.0	0.00
Unsignalized TWSC - 0		ay Dri	ve at L	onza Par	rking (Garag	e Dri																									
Proposed Site Driveway	WB					-			Α	8.8	0.07				Α	8.8	0.07							В	13.7	0.27				В	14.6	0.29
Goose Bay Drive	NB SB	A 	8.1	0.01			8.1	0.01	A A	8.1 7.5	0.01 0.10	A 	8.2	0.01	A A	8.2 7.5	0.01 0.10	A 	0.0	0.00	A 	0.0	0.00	A A	0.0 8.4	0.00	A 	0.0	0.00	A A	0.0 8.6	0.00
Unsignalized TWSC - 0	ornoral	o Dri	vo at Gr	anita St	ato Dr	ivous																										
Granite State Driveway	WB	В	13.4				13.6	0.03	В	13.6	0.03	С	16.0	0.04	С	16.0	0.04	С	15.9	0.03	С	16.1	0.03	С	16.1	0.03	С	19.0	0.05	С	19.0	0.05
International Drive	SB	Α	7.7	0.01		Α	7.7	0.01	Α	7.7	0.01	Α	7.9	0.01	A	7.9	0.01	A	9.1	0.01	A	9.2	0.01	A	9.2	0.01	Α	9.5	0.01	A	9.5	0.01
Unsignalized TWSC - 0	Corporat	e Dri	ve at Lo	nza Nor	rth Dri	veway	v																									
Lonza North Driveway	WB	В	12.7				12.8	0.08	В	12.8	0.08	В	14.8	0.10	В	14.8	0.10	D	26.7	0.63	D	28.6	0.66	D	28.6	0.66	F		0.84	F	50.6	
International Drive	SB	Α	7.6	0.02	-	A	7.6	0.02	A	7.6	0.02	A	7.8	0.02	A	7.8	0.02	A	8.9	0.02	A	9.0	0.02	A	9.0	0.02	A	9.3	0.02	A	9.3	0.02
Unsignalized TWSC - 0	Corporat	e Dri	ve at Lo	nza Sou	ıth Dri	vewa	v																									
Lonza South Driveway	WB	Α	9.3	0.01			9.4	0.01	Α	9.4	0.01	Α	9.8	0.01	Α	9.8	0.01	В	11.6	0.03	В	11.7	0.03		11.7	0.03	В			В	12.4	0.04
International Drive	SB	A	7.6	0.01		A	7.6	0.01	A	7.6	0.01	A	7.8	0.01	Α	7.8	0.01	Α	0.0	0.00	A	0.0	0.00	A	0.0	0.00	A	0.0	0.00	A	0.0	0.00
Unsignalized TWSC - I																																
Durham Street	EB	D	27.1				32.5	0.16	D	32.5	0.16	E	41.2		E	41.2		D	28.2		E	37.3	0.47		37.3	0.47	F		0.61	F	54.1	
International Drive	WB NB	F	62.5				05.3	0.92	F	105.3		F	223.7	1.25	F	223.7	1.25	F	323.0		F	506.9	2.00	F	506.9		F	820.1		F	820.1	2.68
Corporate Drive New Hampshire Avenue	SB	A	0.0 9.7	0.00			0.0 L0.1	0.00 0.04	A B	0.0	0.00 0.04	A B	0.0 10.6	0.00	A B	0.0 10.6	0.00 0.05	Α	8.4 8.2	0.00	A	8.6 8.3	0.00	A	8.6 8.3	0.00	Α	8.8 8.4	0.00	A	8.8 8.4	0.00
								0.04		10.1	0.04		10.0	0.05		10.0	0.05		0.2	0.00		0.5	0.00		0.5	0.00		0.4	0.00		0.4	0.00
Unsignalized TWSC - 0	Corporat EBL	e Dri	ve at Gr 107.9		oad	F 1	58.2	1.29	F	216.0	1.42		236.0	1.47	F	304.4	1.62	F	150.6	1.19	E	242.2	1.42	E	461.3	1.90	E	473.3	1.94	F	815.9	2.68
Grafton Road	EBR	В	107.9				10.7	0.38	В	11.2	0.42	В	11.2	0.42	В	11.7	0.47	A	8.7	0.08	A	8.7	0.08	A	8.8	0.09	A	8.8	0.09	A	8.8	0.10
Corporate Drive	NBL	A	8.0	0.05			8.1	0.06	A	8.2	0.08	A	8.2	0.06	A	8.3	0.09	В	12.2	0.34	B	13.2	0.38	В	14.3	0.46	ć	15.1	0.45	ĉ	16.9	0.54
Unsignalized - Grafto I-95 SB Off-ramp	n Road a	at I-9		2.13		FΩ	59 4	2.72	F	974.6	2.96	F	1366.0	3.81	F	1552	4.10	В	13.1	0.15	В	13.7	0.18	В	13.8	0.18	В	14.8	0.21	В	14.9	0.21
1 23 30 OII-Tallip	WD		332.3	2.13		. 0	J J . T	2.12		3/4.0	2.30		1300.0	J.01		1332	7.10		13.1	0.13		13./	0.10		13.0	0.10		17.0	0.21		17.2	U.Z.I

TABLE 5Intersection Operation Summary - Queues (In Feet)

						Wee	kday Mor	ning Peak	Hour			Weekday Afternoon Peak Hour											
	Lane			023 sting)25 Build)25 iild		35 Build)35 iild		123 Sting)25 Build)25 uild		35 Build		35 iild	
	Use	Storage	50 th	95 th	50 th	95 th	50 th	95 th	50 th	95 th	50 th	95 th	50 th	95 th									
Traffic Signal - Pease	Bouleva	rd at Intern	ational Dr	rive																			
<u>-</u>	EBL EBT	290 >1000	2 31	9 56	2 37	9 64	2 38	9 64	2 43	9 69	2 43	9 69	0 87	0 135	0 101	0 153	0 102	0 154	0 123	0 188	0 124	0 190	
Pease Boulevard	WBL	690	304	391	320	409	397	464	488	549	576	672	53	93	56	98	58	101	96	155	98	158	
	WBT	>1000	70 7	271	80 7	303	90	303	107	343	107	343	17	31	20	35	20	35	22	36	22	36	
International Drive	NBT NBR	840 530	/ 92	25 143	98	25 147	7 118	25 173	9 134	27 192	9 155	27 242	4 404	18 623	4 433	19 664	4 489	18 732	5 578	22 876	5 641	22 955	
	SBT	>1000	6	16	6	17	7	17	7	18	7	18	24	46	26	49	26	49	33	62	33	62	
Traffic Signal - Pease	Bouleva	rd at US Rou	ıte 4 SB C	On/Off Ra	mps																		
	EBT EBR	>1000	41	52	45	55 20	50	61	56	67	61	72	204	225 173	220 74	242 190	236	258 243	252	274 308	269	291	
Pease Boulevard	WBL	530 370	0 63	29 67	0 65	29 67	0 65	30 65	0 75	31 70	0 75	32 67	63 261	173 356	74 267	361	113 267	243 352	154 303	308 359	203 303	420 358	
UC D 1 - 4 CD O / OK	WBT	370	332	307	341	310	357	314	391	324	407	328	51	94	57	95	58	95	77	94	78	95	
US Route 4 SB On/ Off Ramps	SBL SBR	520 520	242 478	248 455	248 529	253 501	248 597	253 560	282 685	284 638	282 744	284 688	124 0	172 27	126 0	175 28	126 0	175 28	142 0	194 29	142 0	194 30	
- '																							
Traffic Signal - Pease	Bouleva EBL	375	28	On/Off Ra 32	mps 29	34	36	42	33	40	39	47	243	293	258	314	282	351	290	365	326	414	
Pease Boulevard	EBT	375	285	336	294	341	295	341	334	355	334	357	111	127	115	131	112	141	126	190	124	443	
US Route 4 NB On/ Off	WBT NBL	460 360	70 387	106 404	77 401	116 416	79 432	117 444	93 499	135 505	95 530	138 532	294 65	355 99	308 66	371 101	308 67	371 102	358 74	464 111	359 75	464 111	
Ramps	NBR	360	0	18	0	17	5	23	18	36	23	42	0	47	0	47	0	47	0	49	0	49	
Traffic Signal - Green	and Pos	d (Poute 33) at Graft	on Poad																			
	EBL	400	422	632	440	643	454	656	516	705	529	717	205	334	211	341	211	341	239	373	240	374	
Greenland Road (State Route 33)	EBT WBT	>1000 >1000	526 123	671 179	552 126	689 183	553 126	689 183	668 144	785 235	670 144	785 235	391 327	497 443	405 337	512 455	405 337	512 455	484 396	591 516	484 396	591 516	
Route 33)	WBR	275	0	62	0	64	0	65	0	67	0	69	0	40	0	42	0	42	0	44	0	44	
Grafton Road	SBL SBR	300 1000	61 0	83 24	67 0	90 25	68 1	92 26	72 4	99 29	73 10	100 36	138 397	256 572	159 438	296 614	163 470	303 648	180 517	336 696	184 549	342 730	
-	SDR	1000	- 0	24	- 0	23	1	20	4	29	10	36	397	3/2	430	014	470	040	317	090	349	/30	
Traffic Signal - Corpor	rate Driv	e at Interna	tional Dri	ive 					47	97	60	97							59	94	59	94	
	EBTR	>1000							36	82	47	82							2	13	2	13	
Corporate Drive	WBL	175							9	30	12	30							4	11	4	11	
	WBT WBR	525 675							8 0	28 32	11 0	28 36							10 211	22 251	10 308	22 349	
	NBL	175							5	22	6	22							7	26	8	26	
International Drive	NBTR SBL	>1000 850							54 265	106 363	70 434	106 538							171 47	275 110	204 64	275 132	
	SBT	850							128	186	134	186							49	107	61	107	
-	SBR	250							0	9	0	9							0	31	0	31	
Unsignalized AWSC -			nternatio																				
	EBL EBR	300 >1000		23 20		23 23		 23						55 5		57 5		57 5					
Corporate Drive	WBL	175		3		3		3						3		3		3					
	WBT WBR	525 675		3 20		3 20		3 40						5 735		5 785		5 1165					
	NBL	175		3		3		3						3		3		3					
	NBT	>1000 175		18 25		18 25		18 28						270		285 68		280 70					
International Drive	NBTR SBL	850		928		982		28 1443						65 15		15		70 20					
	SBT	850		400		433		497						23		25		25					
	SBR	250		30		30		33						20		23		20					

TABLE 5 (CONTINUED)

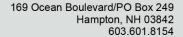
Intersection Operation Summary - Queues (In Feet)

						Weel	kday Mor	ning Peak	Hour			Weekday Afternoon Peak Hour											
		Available Storage		023 sting 95 th		25 Build 95 th		025 uild 95 th)35 Build 95 th	035 uild 95 th		023 sting 95 th		125 Build 95 th		025 uild 95 th)35 Build 95 th		035 uild 95 th		
Unsignalized TWSC - 0	Cornora	to Drive at G	ooso Pav	Drive (W	oct)																		
Corportate Drive	WB	120		3		3		13		5	 15		0		0		0		0		0		
Goose Bay Drive (West)	NB	685		8		10		118		15	 195		260		283		1258		598		1738		
Unsignalized TWSC - 0	Corpora	te Drive at R	edhook W	/ay																			
Corportate Drive	EB	120		0		0		0		0	 0		0		0		0		0		0		
Redhook Way	SB	320		0		0		0		3	 3		5		5		5		8		8		
Unsignalized TWSC - 0																							
Corportate Drive	WB	360		0		0		0		0	 0		0		0		0		0		0		
Goose Bay Drive (East)	NB	580		5		8		0		8	 0		3		3		3		5		3		
Unsignalized TWSC - Corporate Center Drivew		ay Drive at 0	Corporate	Center D	riveway	0		0		0	 0		0		3		0		3		0		
Goose Bay Drive (East)	SB	580		0		0		0		0	 0		0		0		0		0		0		
Unsignalized TWSC - 0	Goose B	av Drive at L	onza Sou	th Drivew	vav																		
Lonza South Driveway	EB	200		0		0		0		3	 3		0		0		0		0		0		
Goose Bay Drive (West)	NB	250		0		0		0		0	 0		0		0		0		0		0		
Unsignalized TWSC - 0			onza Parl	king Gara	ge Drivew	ay/ Prop	osed Site																
Proposed Site Driveway		300		0				5			 5						28				30		
Goose Bay Drive	NB SB	200 675		0		0 		0 8		0 0	 0 8		0 0		0 0		0 0		0 0		0 0		
Unsignalized TWSC - (Cornora	te Drive at G	ranite Sta	te Drivey	way																		
Granite State Driveway	WB	340		3		3		3		3	 3		3		3		3		3		3		
International Drive	SB	470		0		0		0		0	 0		0		0		0		0		0		
Unsignalized TWSC - 0	Corpora	te Drive at L	onza Nort	h Drivew	ay																		
Lonza North Driveway	WB	200		5		5		5		8	 8		105		115		115		193		193		
Corporate Drive	SB	85		3		3		3		3	 3		3		3		3		3		3		
Unsignalized TWSC - C	Corpora WB	te Drive at L		th Drivew	ay	0		0		0	0		3		3		3		3				
Lonza South Driveway International Drive	SB	400		0		0		0		0	 0		0		0		0		0		3 0		
Unsignalized TWSC - No.	New Hai	mpshire Ave 860	nue/ Corp	orate Dri	ive at Inte	rnational 15	Drive/ D	Ourham St 15	reet	20	 20		43		55		55		83		83		
International Drive	WB	>1000		123		168		168		255	 20 255		43 585		718		55 718		932		932		
Corporate Drive	NB	920		0		0		0		0	 0		0		0		0		0		0		
New Hampshire Avenue		>1000		3		3		3		3	 3		Ö		Ö		0		Ö		Ö		
Unsignalized TWSC - 0	Corpora	te Drive at G	rafton Ro	ad																			
Grafton Road	EBL EBR	220 220		668 43		898 45		1070 53		1223 53	 1403 63		393 8		538 8		715 8		785 8		955 8		
Corporate Drive	NBL	>1000		43 5		43 5		8		5	 8		38		45		60		60		83		
Unsignalized TWSC - 0	Grafton	Road at T-05	SR Off P	amn																			
I-95 SB Off Ramp	WB	>1000		545		685		710		838	 853		13		18		18		20		20		

Section 8 Figures

 $\frac{\texttt{LONZA BIOLOGICS INDUSTRIAL DEVELOPMENT}}{\texttt{PORTSMOUTH, NH}}$

SITE LOCATION MAP



May 19, 2023-9:48am Plotted By: MStoutz Tighe & Bond, Inc. J:\L\L0700 Lonza Biologics Expansion was 1576F\026_Project Albacore\Drawings\AutoCAD\Figures\L0700-026 Site Location Map.dwg

was 1576F\026 Project Albacore\Drawings\AutoCAD\Figures\L0700-026 Traffic Volume Figures.dwg 2023-10:34am Plotted By: RCase Bond, Inc. J:\L\L0700 Lonza Biologics Expansion

was 1576F\026 Project Albacore\Drawings\AutoCAD\Figures\L0700-026 Traffic Volume Figures.dwg 2023-10:34am Plotted By: RCase Bond, Inc. J:\L\L0700 Lonza Biologics Expansion

October 3, 2023

Peter M. Stith, AICP
Planning Manager
City of Portsmouth
Planning & Sustainability Department
1 Junkins Avenue
Portsmouth, NH 03801

Ref. T1399

Re: Proposed Lonza Biologics Expansion

Traffic Engineering Peer Review

Dear Mr. Stith:

On behalf of the City of Portsmouth, TEC, Inc. (TEC) has reviewed documents as part of the traffic engineering peer review for the proposed expansion of the Lonza Biologics, Inc. ("the Applicant") manufacturing campus along Corporate Drive in Portsmouth ("the Project"). The Project consists of constructing approximately 800,000 square feet of gross floor area supporting manufacturing, utility, and office space needs; and a new parking structure on a mainly undeveloped parcel as part of the Applicant's master plan. A portion of the Project was previously permitted and approved by the Planning Board in January 2019 with several conditions. The proposed expansion proposal includes one new full-access driveway that will utilize the former Goose Bay Drive right-of-way. The following documents were considered as part of our review:

- Transportation Impact Assessment Lonza Biologics; prepared by Tighe & Bond, dated July 17, 2023;
- Site Plans Proposed Industrial Development 70 & 80 Corporate Drive, Portsmouth, NH; prepared by Tighe & Bond, dated July 17, 2023; and
- Other project related correspondence.

TEC completed a review of the Applicant's documents on behalf of the City of Portsmouth and provides the following transportation-related comments that we compiled during our review.

Traffic Impact Assessment

- 1. The Traffic Impact and Access Study (TIAS) prepared by Tighe & Bond (T&B) included the intersections that provide key access to the Project site and following supplemental intersections within the study area as requested by the Planning Board in Condition 2.11:
 - Gosling Road/ Spaulding Turnpike Intersection
 - International Drive/Corporate Drive/Manchester Square Intersection
 - International Drive/Pease Blvd Intersection
 - New Hampshire Ave/International Dr./Corporate Dr./Durham St. Intersection
 - Corporate Drive/Grafton Drive Intersection
 - NH 33/ Grafton Drive Intersection

TEC concurs with the Applicant's expanded study area. No response required.

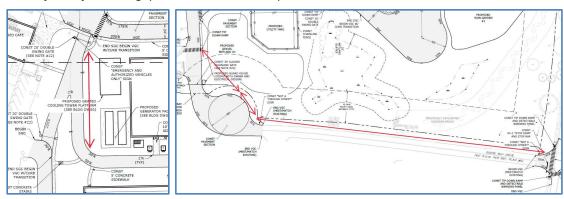
Proposed Lonza Biologics Expansion Traffic Engineering Peer Review October 3, 2023 Page 2 of 5

- 2. Traffic volume counts, including Turning Movement Counts (TMCs) and Automatic Traffic Recorder (ATR) data, were conducted at the study area intersections in February 2022 and March 2023. The recorded volumes for both periods were found to be below the peak monthly conditions based on historical traffic-volume data obtained from NHDOT records, and therefore T&B applied an appropriate adjustment factor. The data was also further adjusted to reflect a COVID adjustment factor of 16% to 53% based on current NHDOT protocols. We believe these adjustments will result in a *highly conservative* assessment of the future No-Build scenario (without the influence of the trips associated with the Project). *No response required*.
- 3. The weekday morning and weekday evening peak "commuter" hours were studied to determine the project's overall effect on the roadway. TEC concurs that these selected time periods are appropriate as the peak hours of the industrial development typically overlap with the peak hours of the adjacent street system. We understand that the Applicant currently manages their employee shift times to avoid the actual peak traffic hours. *No response required*.
- 4. The TIA presents motor vehicle crash data for each study area intersection. The crash data indicates the number, type, and severity of crashes at the study area intersections between 2019 and 2021 obtained from the City of Portsmouth Police Department. The TIA summarizes the general crash statistics. Given the influence of the pandemic, the data from 2020 and 2021 may not provide the most accurate data given the depressed traffic volumes during that time. However, given the data compiled for 2019, TEC concurs with the crash analysis methodology and findings based on the compiled data. *No response required*.
- 5. The background growth rate of 1.0 percent per year was applied to the 2022/2023 existing volumes to generate the 2025 and 2035 future year volumes per NHDOT guidelines. The traffic projections also included estimated trips associated with other remaining development parcels in the Pease Development Authority (PDA) master plan, including 100 New Hampshire Avenue. Given the COVID adjustments noted in Comment #2, the ambient traffic growth and other background trips, TEC believes the traffic projections are highly conservative. *No response required.*
- 6. The Project's trip generation calculations for the proposed expansion of 800,000 square feet were based on the estimated 1,020 new employees and a prorated relationship to the traffic that was generated by the 1,139 existing employees as of 2018. This estimate of new trips may be based on the older data for the Lonza site during a time when they had a predominant in-person work environment. The T&B trip projections however fall well below the calculations based on the ITE Trip Generation Manual, 11th Edition, Land Use Codes (LUCs) 110 (General Light Industrial) and 140 (Manufacturing) when using floor area as the independent variable. This may be the result of the Applicant's proactive management of the employee shift times. If the shift times overlap with the actual peak hours for the adjacent street system, the Applicant's traffic impacts will be greater. The Planning Board should consider a condition of approval that mandates that the Applicant maintains shift times that do not overlap with the documented morning and evening peak hours for Corporate Drive and International Drive unless otherwise approved by the Board after considering updated traffic data and trip generation information. TEC further recommends that the Board request a daily traffic count for the proposed site access point to better understand the hourly distribution of traffic over the course of several weekdays.

Proposed Lonza Biologics Expansion Traffic Engineering Peer Review October 3, 2023 Page 3 of 5

- 7. The TIA included a distribution analysis for the new trips that was based on the zip code data for the current Lonza employees' place of residence. Given the significant number of new employees, TEC recommends that the Applicant perform a supplemental sensitivity analysis using U.S. Census data and limited travel time runs to confirm the percentage of traffic that is expected to use each gateway to the Pease Tradeport.
- 8. The Build traffic volumes were grown to 2025 and 2035 to cover an opening year and 10-year planning horizon from time of data collection (2022/2023). TEC concurs with this methodology as these scenarios align with NHDOT Transportation Impact Assessment (TIA) Guidelines. *No response required*.
- 9. Although the projections may be conservative, TEC generally concurs with the results of the capacity and queue analysis provided as part of the TIA utilizing Highway Capacity Manual (HCM) 6th Edition methodology for the study area intersections. The 2035 Build condition shows some concerning levels of service with high delays for certain traffic movements that are acutely related to the commuter traffic into Pease Tradeport in the morning and departing in the late afternoon and evening peak hours.
- 10. The Applicant should provide a queue analysis for the proposed driveway gate system to ensure that entering traffic will not queue onto Corporate Drive.
- 11. The TIA documents substantial delays for the exiting employee traffic during the evening peak hour within the single departure lane. The Applicant should consider separate left-and right-turn lanes at the driveway intersection with Corporate Drive.
- 12. TEC recommends that the Applicant coordinate with PDA to perform supplemental all-way stop control (AWSC) and traffic signal warrant analysis for the following intersections:
 - a. Corporate Drive at Grafton Road
 - b. International Drive at New Hampshire Avenue / Durham Street
 - c. International Drive / Corporate Drive (for the 2025 Opening Build condition)
- 13. The TIA states that the intersection of International Drive / Corporate Drive is programmed for NHDOT funding for intersection reconstruction and signalization within the State's 10-year plan. Depending on the actual timing of the project, the Applicant should coordinate with PDA and consider measures for the temporary signalization of this intersection. This should be closely coordinated with a potential condition of approval related to the Applicant's responsibility to provide updated traffic data following the occupancy of Building 1 (and other subsequent buildings) and assess the actual delays and queuing for this key gateway intersection.
- 14. The intersection of Greenland Road (Route 33) / Grafton Road, a State-controlled intersection, is currently overcapacity for different traffic movements during the peak hours. Although TEC does not believe that direct physical mitigation is warranted for the Applicant at this intersection, the City and PDA should work with NHDOT to identify long-range improvements to add capacity to this intersection.
- 15. Based on the results of the capacity and warrant analyses listed above, the Applicant should coordinate with PDA and other applicants within Pease Tradeport to develop a fair-share cost assessment for mitigation measures based on the number of new trips.
- 16. Corporate Drive currently accommodates an exclusive left-turn lane for the Residence Inn and Redhook Way that traverses the opening for Goose Bay Drive (site driveway). The

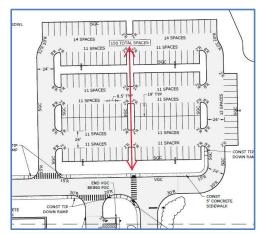
Proposed Lonza Biologics Expansion Traffic Engineering Peer Review October 3, 2023 Page 4 of 5



Applicant should review the potential for lane use changes within Corporate Drive that may consider an exclusive left-turn lane for Lonza's entering traffic. Any planned improvements should consider an enhanced pedestrian crossing between the Lonza site and the existing COAST bus stop on the opposite side of Corporate Drive in the vicinity of Redhook Way, including a new bus shelter to provide additional accommodations for existing and future transit riders.

- 17. The TIA does not include any parking occupancy data for the existing Lonza site and does not provide an analysis of the proposed parking supply in relation to the projected number of employees in Phase 2 and the Site Master Plan. The supply may indeed be appropriate based on the number of employees on each shift but should be confirmed with a reasonable level of parking analysis in relation to the zoning requirements.
- 18. The Applicant should coordinate with the City, PDA, and COAST to review the current ridership along Bus Route 42 related to the Lonza facility and identify opportunities for coordinated service schedules and potential bus route changes for Route 13 (Dover) and Route 14 (Rochester) to further reduce single-occupancy vehicle trips for several PDA employers.

Site Plans


- 19. The site plan currently depicts enclosed truck and trailer staging for deliveries. The Applicant should confirm that they do not require any exterior trailer parking as none is currently shown. TEC recommends that the Board considers a condition that prohibits exterior trailer storage in areas that are not specifically identified on the plan.
- 20. One trash compactor is located near the southerly corner of Building #1. The Applicant should confirm that they do not need additional exterior dumpsters for each building and confirm the truck circulation for any newly proposed locations.
- 21. The plans should include additional details for the signs and striping for the gated access points to the site. This may include additional roadway striping at the end of the Goose Bay Drive cul de sac to delineate the transition to the proposed private way.
- 22. TEC recommends the construction of additional sections of on-site sidewalks within the Phase 2 area to provide a sidewalk circuit for employees that desire to walk during breaks without unnecessarily traversing the busier on-site driveway aisles. This may include a new sidewalk along the northwesterly edge of Goose Bay Drive to connect to the recently constructed sidewalk along Corporate Drive and another segment south of the proposed 3-story utility building (shown in red below).

Proposed Lonza Biologics Expansion Traffic Engineering Peer Review October 3, 2023 Page 5 of 5

- 23. Pedestrian warning signs should be provided at the major on-site crosswalks that would cross the major routes to and from the existing and proposed parking structures. The crosswalk widths should be noted on the plans and in the construction details.
- 24. The 150-stall surface parking for Phase 2 should include a defined sidewalk connection from the outlying parking aisle to the currently proposed sidewalk. This could be considered within a wider landscape island in the middle of the parking lot as shown below.

25. One proposed bike rack is depicted near the southerly corner of Building #2 in the Site Master Plan. The Applicant should consider additional bike racks at the major entrances to the proposed buildings, such as Building #1 in Phase 2, and covered bicycle parking on the ground floor of the proposed 700-stall parking structure in the site master plan.

Please do not hesitate to contact me if you have any questions concerning our peer review at 603-601-8154. Thank you for your consideration.

Sincerely, TEC, Inc.

"The Engineering Corporation"

Kevin R. Dandrade, P.E., PTOE

Principal

APPENDIX A

Traffic Count Data

Project #: 1202_5_TB BTD#: Location 1 Location: Portsmouth, NH Pease Blvd Street 1: Street 2: International Drive Count Date: 3/7/2023 Day of Week: Tuesday Cloudy, 35°F Weather:

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

		Internation Northle	onal Drive bound				onal Drive bound				e Blvd oound				e Blvd bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	35	0	0	0	0	0	0	14	0	0	117	54	7
7:15 AM	0	0	1	29	0	1	0	0	0	0	9	1	1	150	76	8
7:30 AM	0	2	0	34	0	1	0	0	0	0	8	1	0	170	80	16
7:45 AM	0	1	0	40	0	0	1	0	0	1	14	0	0	235	110	14
8:00 AM	0	2	1	35	0	1	0	1	0	1	15	1	0	167	90	26
8:15 AM	0	0	2	44	0	1	0	0	0	0	14	2	0	168	90	26
8:30 AM	0	0	1	39	0	0	0	0	0	0	20	1	0	124	73	12
8:45 AM	0	1	0	55	0	3	0	1	0	3	14	0	0	114	83	9

		Internation	onal Drive			Internation	onal Drive			Peas	e Blvd			Peas	e Blvd	
		North	bound			South	bound			Eastl	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	4	0	246	0	9	0	0	0	0	90	0	0	49	32	2
4:15 PM	0	0	0	227	0	9	0	0	0	0	76	1	0	56	32	2
4:30 PM	0	2	2	242	0	14	2	1	0	0	82	1	0	56	28	4
4:45 PM	0	2	0	180	0	10	0	1	0	0	65	0	0	54	28	10
5:00 PM	0	1	0	225	0	24	0	2	0	0	107	3	0	40	25	1
5:15 PM	0	1	0	146	0	19	0	1	0	0	83	4	0	24	29	2
5:30 PM	0	0	0	104	0	13	0	2	0	0	45	0	1	28	25	2
5:45 PM	0	0	0	90	0	16	0	0	0	0	31	3	1	25	16	6

AM PEAK HOUR		Internation	nal Drive			Internation	nal Drive			Pease	e Blvd			Pease	e Blvd	
7:30 AM		North	bound			South	bound			Easth	ound			Westl	oound	
to	U-Turn	Turn Left Thru Right				Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:30 AM	0					3	1	1	0	2	51	4	0	740	370	82
PHF		0.	88			0.	63			0.	84			0.	83	
HV %	0.0%	0.0%	0.0%	5.9%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	2.0%	0.0%	0.0%	0.9%	1.1%	0.0%

PM PEAK HOUR	1	Internation	onal Drive			Internation	nal Drive			Pease	e Blvd			Pease	e Blvd	
4:00 PM		North	bound			South	bound			Easth	ound			Westl	bound	
to	U-Turn					Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	0 8 2 895				42	2	2	0	0	313	2	0	215	120	18
PHF		0.91				0.	68			0.	88			0.	96	
HV~%	0.0%	0.0%	0.0%	0.6%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.6%	0.0%	0.0%	1.9%	0.0%	0.0%

Project #: 1202_5_TB BTD#: Location 1 Location: Portsmouth, NH Pease Blvd Street 1: Street 2: International Drive Count Date: 3/7/2023 Day of Week: Tuesday Cloudy, 35°F Weather:

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

								,		•						
		Internation	nal Drive			Internation	nal Drive			Peas	e Blvd			Peas	e Blvd	
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
7:15 AM	0	0	0	2	0	0	0	0	0	0	0	0	0	3	1	0
7:30 AM	0	0	0	6	0	0	0	0	0	0	1	0	0	1	3	0
7:45 AM	0	0	0	1	0	0	0	0	0	0	0	0	0	3	0	0
8:00 AM	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0
8:15 AM	0	0	0	1	0	0	0	0	0	0	0	0	0	2	1	0
8:30 AM	0	0	0	1	0	0	0	0	0	0	1	0	0	2	1	0
8:45 AM	0	0	0	4	0	0	0	0	0	0	1	0	0	5	1	0

		Internation	onal Drive			Internation	onal Drive			Pease	e Blvd			Peas	e Blvd	
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0
4:15 PM	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	1	0	0	0	0	0	0	1	0	0	3	0	0
4:45 PM	0	0	0	2	0	0	0	0	0	0	0	0	0	1	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0
5:15 PM	0	0	0	1	0	0	0	0	0	0	1	1	0	0	0	0
5:30 PM	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR		Internation	nal Drive			Internation	nal Drive			Pease	e Blvd			Pease	e Blvd	
7:15 AM		North	bound			South	bound			Easth	oound			Westl	oound	
to	U-Turn					Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:15 AM	0	0 0 0 10				0	0	0	0	0	1	0	0	8	4	0
PHF		0.42				0.	00			0.	25			0.	75	

Ī	PM PEAK HOUR		Internation	nal Drive			Internation	nal Drive			Pease	Blvd			Pease	e Blvd	
	4:30 PM		North	bound			South	bound			Easth	ound			Westl	oound	
	to	U-Turn					Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
	5:30 PM	0	0	0	4	0	0	0	0	0	0	4	1	0	4	0	0
	PHF		0.50				0.	00			0.	63			0.	33	

Project #: 1202_5_TB BTD#: Location 1 Portsmouth, NH Location: Street 1: Pease Blvd Street 2: International Drive 3/7/2023 Count Date: Day of Week: Tuesday Weather: Cloudy, 35°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

	International Drive Northbound					Internation	onal Drive			Peas	e Blvd			Peas	e Blvd	
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

		Internation	nal Drive			Internation	nal Drive			Pease	e Blvd			Pease	e Blvd	
		Northl	bound			South	bound			Easth	oound			West	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR ¹ 7:30 AM		Internation Northl	nal Drive bound				onal Drive bound				e Blvd bound				e Blvd bound	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ĺ	PM PEAK HOUR ¹		Internation	nal Drive			Internation	nal Drive			Pease	e Blvd			Pease	e Blvd	
	4:00 PM		Northl	bound			South	bound			Easth	ound			Westl	oound	
	to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
	5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

¹ NOTE: Peak hour summaries here correspond to peak hours identified for passenger cars and heavy vehicles combined.

Project #: 856_010_TB
BTD #: Location 6
Location: Portsmouth, NH
Street 1: Newington Street

Street 2: Route 4 Southbound On/Off-Ramps

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

	Rout		ound On-R bound	amp	Rou		ound Off-R bound	amp			on Street oound				on Street bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	38	0	91	0	0	41	21	0	15	81	0
7:15 AM	0	0	0	0	0	65	0	86	0	0	23	16	0	16	105	0
7:30 AM	0	0	0	0	0	73	0	104	0	0	17	16	1	22	113	0
7:45 AM	0	0	0	0	0	96	0	152	0	0	34	19	1	17	175	0
8:00 AM	0	0	0	0	0	61	0	94	0	0	47	15	1	21	121	0
8:15 AM	0	0	0	0	0	71	0	94	0	0	38	13	0	22	126	0
8:30 AM	0	0	0	0	0	59	0	77	0	0	43	21	0	18	121	0
8:45 AM	0	0	0	0	0	64	0	72	0	0	47	16	0	35	119	0

	Rou	te 4 Southb	ound On-R	amp	Rou	te 4 Southb	ound Off-R	amp		Newingto	on Street			Newingto	on Street	
		North	bound			South	bound			Easth	oound			Westl	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	66	0	14	0	0	129	89	2	81	63	0
4:15 PM	0	0	0	0	0	55	0	21	0	0	151	74	0	90	54	0
4:30 PM	0	0	0	0	0	57	0	27	0	0	162	73	0	99	68	0
4:45 PM	0	0	0	0	0	50	1	21	0	0	133	96	3	92	77	0
5:00 PM	0	0	0	0	0	59	0	11	0	0	187	99	0	103	62	0
5:15 PM	0	0	0	0	0	64	0	23	0	0	119	57	0	88	52	0
5:30 PM	0	0	0	0	0	55	0	16	0	0	96	67	1	94	39	0
5:45 PM	0	0	0	0	0	49	0	25	1	0	79	55	0	74	50	0

AM PEAK HOUR	Rou	te 4 Southb	ound On-R	amp	Rou	te 4 Southb	ound Off-R	amp		Newingto	on Street			Newingto	on Street	
7:30 AM		North	bound			South	bound			Easth	oound			Westl	oound	
to	U-Turn	-Turn Left Thru Right				Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:30 AM	0					301	0	444	0	0	136	63	3	82	535	0
PHF		0.00				0.	75			0.	80			0.	80	
HV%	0.0%					1.0%	0.0%	1.4%	0.0%	0.0%	2.2%	9.5%	0.0%	12.2%	1.3%	0.0%

PM PEAK HOUR	Rou	te 4 Southb	ound On-R	amp	Rou	te 4 Southb	ound Off-R	amp		Newingto	on Street			Newingto	on Street	
4:15 PM		North	oound			South	bound			Easth	ound			Westl	oound	
to	U-Turn					Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:15 PM	0					221	1	80	0	0	633	342	3	384	261	0
PHF		0.	00			0.	90			0.	85			0.	94	
HV~%	0.0%	0.00 0.0% 0.0% 0.0%				0.0%	0.0%	1.3%	0.0%	0.0%	0.5%	0.6%	0.0%	0.8%	1.1%	0.0%

Project #: 856_010_TB
BTD #: Location 6
Location: Portsmouth, NH
Street 1: Newington Street

Street 2: Route 4 Southbound On/Off-Ramps

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

	Rou	te 4 Southb	ound On-R	amp	Rou	ite 4 Southb	ound Off-R	amp		Newingt	on Street			Newingt	on Street	
		North	bound	-		South	bound			Eastl	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	1	0	0	0	0	1	1	0	2	2	0
7:15 AM	0	0	0	0	0	1	0	0	0	0	1	0	0	1	1	0
7:30 AM	0	0	0	0	0	0	0	3	0	0	0	3	0	6	3	0
7:45 AM	0	0	0	0	0	2	0	3	0	0	2	2	0	1	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	1	1	0	2	4	0
8:15 AM	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0
8:30 AM	0	0	0	0	0	2	0	1	0	0	2	0	0	3	2	0
8:45 AM	0	0	0	0	0	0	0	1	0	0	5	2	0	2	3	0

	Rou	te 4 Southb	ound On-R	amp	Rou	te 4 Southb	ound Off-R	amp		Newingto	on Street			Newingto	on Street	
		North	bound			South	bound			Easth	oound			Westl	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	1	0	3	1	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0
4:30 PM	0	0	0	0	0	0	0	1	0	0	2	0	0	0	1	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0

AM PEAK HOUR	Rou	te 4 Southb	ound On-R	amp	Rou	te 4 Southb	ound Off-R	amp		Newingto	on Street			Newingto	on Street	
7:15 AM		Northbound				South	bound			Easth	oound			West	oound	
to	U-Turn					Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:15 AM	0	0 0 0 0				3	0	6	0	0	4	6	0	10	8	0
PHF		0.00				0.	45			0.	63			0.9	50	

ſ	PM PEAK HOUR	Rou	te 4 Southb	ound On-R	amp	Rou	te 4 Southb	ound Off-R	amp		Newingto	on Street			Newingto	on Street	
	4:00 PM		Northbound				South	bound			Easth	ound			Westl	oound	
	to	U-Turn					Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
	5:00 PM	0 0 0 0				0	0	0	1	0	0	2	3	0	5	3	0
	PHF		0.00				0.	25			0.	63			0.	50	

Project #: 856_010_TB
BTD #: Location 6
Location: Portsmouth, NH
Street 1: Newington Street

Street 2: Route 4 Southbound On/Off-Ramps

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

	Rou		ound On-R bound	amp	Rou		ound Off-R bound	amp			on Street oound				on Street bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
7:00 AM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
8:15 AM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Rou	te 4 Southb	ound On-R	amp	Rou	te 4 Southb	ound Off-R	amp		Newingt	on Street			Newingto	on Street	
		North	bound			South	bound			Easth	oound			Westl	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR ¹ 7:30 AM	Rou	te 4 Southb North	ound On-R	amp	Rou	te 4 Southb South	ound Off-R bound	amp		U	on Street			U	on Street bound	
to	Left Thru Right PED			PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
8:30 AM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	3

PM PEAK HOUR ¹	Rou	te 4 Southb	ound On-R	amp	Rou	te 4 Southb	ound Off-R	amp		Newingto	on Street			Newingto	on Street	
4:15 PM		Northbound				South	bound			Eastb	ound			Westl	bound	
to	Left					Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
5:15 PM	0	Left Thru Right PED 0 0 0 0				0	0	0	0	0	0	0	0	0	0	0

NOTE: Peak hour summaries here correspond to peak hours identified for passenger cars and heavy vehicles combined.

Project #: 856_010_TB
BTD #: Location 7
Location: Portsmouth, NH
Street 1: Newington Street

Street 2: Route 4 Northbound On/Off-Ramps

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

	Rout		ound Off-Ra	amp	Rou	te 4 Northb South	ound On-R bound	amp			on Street oound				on Street bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	68	0	38	0	0	0	0	0	24	56	0	0	0	27	10
7:15 AM	0	76	0	47	0	0	0	0	0	17	72	0	0	0	46	9
7:30 AM	0	71	0	47	0	0	0	0	0	4	85	0	0	0	70	12
7:45 AM	0	130	0	66	0	0	0	0	0	18	111	0	0	0	59	14
8:00 AM	0	94	0	53	0	0	0	0	0	16	91	0	0	0	48	9
8:15 AM	0	98	0	39	0	0	0	0	0	12	97	0	0	0	47	10
8:30 AM	0	94	0	41	0	0	0	0	0	15	87	0	0	0	52	9
8:45 AM	0	85	0	55	0	0	0	0	0	16	95	0	0	0	64	13

	Rou	ite 4 Northb	ound Off-R	amp	Rou	ite 4 Northb	ound On-Ra	amp		Newingto	on Street			Newingto	on Street	
		North	bound			South	bound			Easth	oound			Westl	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	29	0	86	0	0	0	0	0	79	118	0	0	0	111	51
4:15 PM	0	28	1	94	0	0	0	0	0	89	117	0	0	0	122	51
4:30 PM	0	30	0	89	0	0	0	0	0	89	120	0	0	0	140	72
4:45 PM	0	36	0	94	0	0	0	0	0	91	108	0	0	0	130	44
5:00 PM	0	36	0	80	0	0	0	0	0	116	130	0	0	0	135	66
5:15 PM	0	24	0	94	0	0	0	0	0	72	108	0	0	0	117	63
5:30 PM	0	16	0	92	0	0	0	0	0	57	91	0	0	0	114	57
5:45 PM	0	24	0	73	0	0	0	0	0	45	80	0	0	0	100	52

AM PEAK HOUR	Rou	ite 4 Northb	ound Off-Ra	amp	Rou	te 4 Northb	ound On-Ra	amp		Newingto	on Street			Newingto	on Street	
7:45 AM		North	bound			South	bound			Easth	oound			Westl	oound	
to	U-Turn	· · · · · · · · · · · · · · · · · · ·				Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:45 AM	0					0	0	0	0	61	386	0	0	0	206	42
PHF		0.	78			0.	00			0.	87			0.	85	
HV%	0.0%					0.0%	0.0%	0.0%	0.0%	4.9%	1.6%	0.0%	0.0%	0.0%	2.4%	4.8%

PM PEAK HOUR	Rou	te 4 Northb	ound Off-Ra	amp	Rou	ite 4 Northb	ound On-Ra	amp		Newingto	on Street			Newingto	on Street	
4:15 PM		North	bound			South	bound			Easth	ound			Westl	bound	
to	U-Turn					Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:15 PM	0	0 130 1 357				0	0	0	0	385	475	0	0	0	527	233
PHF		0.	94			0.	00			0.	87			0.	90	
HV~%	0.0%	0.94 0.0% 1.5% 0.0% 1.1%				0.0%	0.0%	0.0%	0.0%	0.3%	0.4%	0.0%	0.0%	0.0%	0.8%	0.0%

Project #: 856_010_TB
BTD #: Location 7
Location: Portsmouth, NH
Street 1: Newington Street

Street 2: Route 4 Northbound On/Off-Ramps

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

	Rout	te 4 Northb Northl	ound Off-Ra	amp	Rou	ite 4 Northb South	ound On-R bound	amp			on Street oound				on Street bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	2	0	5	0	0	0	0	0	0	1	0	0	0	2	0
7:15 AM	0	1	0	7	0	0	0	0	0	2	1	0	0	0	1	1
7:30 AM	0	3	0	1	0	0	0	0	0	0	0	0	0	0	8	0
7:45 AM	0	2	0	4	0	0	0	0	0	2	2	0	0	0	0	2
8:00 AM	0	5	0	1	0	0	0	0	0	0	1	0	0	0	2	0
8:15 AM	0	0	0	1	0	0	0	0	0	0	1	0	0	0	1	0
8:30 AM	0	3	0	1	0	0	0	0	0	1	2	0	0	0	2	0
8:45 AM	0	3	0	2	0	0	0	0	0	1	5	0	0	0	3	0

	Rou	ite 4 Northb	ound Off-R	amp	Rou	ite 4 Northb	ound On-R	amp		Newingto	on Street			Newingto	on Street	
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	1	0	0	0	0	0	0	0	0	0	0	0	0	3	0
4:15 PM	0	0	0	3	0	0	0	0	0	0	0	0	0	0	1	0
4:30 PM	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	0
4:45 PM	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0
5:00 PM	0	1	0	1	0	0	0	0	0	0	1	0	0	0	1	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
5:30 PM	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	1	0	0	0	0	0	1	0	0	0	0	1	0

AM PEAK HOUR	Rou	te 4 Northb	ound Off-Ra	amp	Rou	te 4 Northb	ound On-R	amp		Newingto	on Street			Newingto	n Street	
7:00 AM		North	bound			South	bound			Easth	ound			Westh	ound	
to	U-Turn					Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:00 AM	0	8	0	17	0	0	0	0	0	4	4	0	0	0	11	3
PHF		0.78				0.	00			0.	50			0.4	44	

Γ	PM PEAK HOUR	Rou	te 4 Northb	ound Off-Ra	amp	Rou	ite 4 Northb	ound On-Ra	amp		Newingto	on Street			Newingto	on Street	
	4:00 PM		North	bound			South	bound			Easth	ound			Westl	oound	
	to	U-Turn					Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
	5:00 PM	0 2 0 3				0	0	0	0	0	1	1	0	0	0	6	0
	PHF		0.42				0.	00			0.	25			0.	50	

Project #: 856_010_TB
BTD #: Location 7
Location: Portsmouth, NH
Street 1: Newington Street

Street 2: Route 4 Northbound On/Off-Ramps

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

	Rou	ite 4 Northb	ound Off-R	amp	Rou	ite 4 Northb	ound On-R	amp		Newingto	on Street			Newingto	on Street	
		North	bound			South	bound				oound			Westl	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
7:00 AM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0

	Rou	te 4 Northb	ound Off-Ra	amp	Rou	ite 4 Northb	ound On-R	amp		Newingt	on Street			Newingto	on Street	
		North	bound			South	bound			Easth	oound			Westl	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR ¹ 7:45 AM	Rou	ite 4 Northb North	ound Off-Rabound	amp	Rou		ound On-R bound	amp		J	on Street			U	on Street bound	
to	Left Thru Right PED			PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
8:45 AM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0

P	PM PEAK HOUR ¹	Rou	te 4 Northb	ound Off-Ra	amp	Rou	ite 4 Northb	ound On-R	amp		Newingto	on Street			Newingto	on Street	
	4:15 PM		North	bound			South	bound			Easth	oound			Westl	oound	
	to	Left	Loft Thru Dight DED				Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
	5:15 PM	0	Left Thru Right PED 0 0 0 0				0	0	0	0	0	0	0	0	0	0	0

NOTE: Peak hour summaries here correspond to peak hours identified for passenger cars and heavy vehicles combined.

Project #: 856_010_TB
BTD #: Location 12
Location: Portsmouth, NH
Street 1: Grafton Road

Street 2: Greenland Road (Route 33)

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

						Grafto	n Road		Gr	eenland Ro	ad (Route 3	33)	Gr	reenland Ro	oad (Route :	33)
		North	bound			South	bound			Eastl	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	8	0	25	0	52	142	0	0	0	67	26
7:15 AM	0	0	0	0	0	19	0	12	0	53	222	0	0	0	82	39
7:30 AM	0	0	0	0	0	12	0	19	0	68	305	0	0	0	90	70
7:45 AM	0	0	0	0	0	18	0	19	0	128	292	0	0	0	82	99
8:00 AM	0	0	0	0	0	20	0	36	0	74	269	0	0	0	117	59
8:15 AM	0	0	0	0	0	28	0	19	0	67	236	0	0	0	108	69
8:30 AM	0	0	0	0	0	14	0	25	0	80	209	0	0	0	97	57
8:45 AM	0	0	0	0	0	15	0	29	0	73	204	0	0	0	84	64

						Grafto	n Road		Gr	eenland Ro	ad (Route 3	33)	Gr	eenland Ro	ad (Route 3	33)
		North	bound			South	bound			Easth	oound			West	oound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	63	0	122	0	32	247	0	0	0	207	43
4:15 PM	0	0	0	0	0	36	0	102	0	37	225	0	0	0	154	37
4:30 PM	0	0	0	0	0	60	0	123	0	45	265	0	0	0	179	33
4:45 PM	0	0	0	0	0	50	0	104	0	46	207	0	0	0	178	22
5:00 PM	0	0	0	0	0	58	0	140	0	34	237	0	0	0	205	18
5:15 PM	0	0	0	0	0	51	0	104	0	23	238	0	0	0	173	26
5:30 PM	0	0	0	0	0	39	0	103	0	31	185	0	0	0	145	23
5:45 PM	0	0	0	0	0	25	0	63	0	29	216	0	0	0	117	27

AM PEAK HOUR						Grafto	n Road		Gr	eenland Ro	ad (Route 3	33)	Gr	eenland Ro	ad (Route 3	33)
7:30 AM		North	bound			South	bound			Easth	oound			Westl	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:30 AM	0	0	0	0	0	78	0	93	0	337	1102	0	0	0	397	297
PHF		0.00				0.	76			0.	86			0.	96	
HV~%	0.0%	0.0%	0.0%	0.0%	0.0%	5.1%	0.0%	5.4%	0.0%	0.3%	4.1%	0.0%	0.0%	0.0%	8.3%	1.7%

PM PEAK HOUR						Grafto	n Road		Gı	eenland Ro	ad (Route 3	33)	Gr	eenland Ro	ad (Route 3	33)
4:30 PM		North	bound			South	bound			Easth	ound			Westl	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:30 PM	0	0	0	0	0	219	0	471	0	148	947	0	0	0	735	99
PHF		0.	00			0.	87			0.	88			0.	93	
HV~%	0.0%	0.0%	0.0%	0.0%	0.0%	1.4%	0.0%	1.3%	0.0%	0.7%	2.1%	0.0%	0.0%	0.0%	2.4%	2.0%

Project #: 856_010_TB
BTD #: Location 12
Location: Portsmouth, NH
Street 1: Grafton Road

Street 2: Greenland Road (Route 33)

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

						Grafto	n Road		Gr	eenland Ro	ad (Route 3	33)	Gı	reenland Ro	ad (Route	33)
		Northl	oound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	0	0	4	0	0	7	0	0	0	6	1
7:15 AM	0	0	0	0	0	2	0	0	0	1	4	0	0	0	6	4
7:30 AM	0	0	0	0	0	1	0	2	0	0	13	0	0	0	4	1
7:45 AM	0	0	0	0	0	1	0	1	0	1	12	0	0	0	10	0
8:00 AM	0	0	0	0	0	0	0	2	0	0	8	0	0	0	8	1
8:15 AM	0	0	0	0	0	2	0	0	0	0	12	0	0	0	11	3
8:30 AM	0	0	0	0	0	0	0	1	0	2	14	0	0	0	5	3
8:45 AM	0	0	0	0	0	0	0	1	0	1	9	0	0	0	9	2

						Grafto	n Road		Gı	reenland Ro	oad (Route	33)	Gr	eenland Ro	oad (Route	33)
		North	bound			South	bound			Eastl	bound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	0	0	1	0	0	6	0	0	0	12	0
4:15 PM	0	0	0	0	0	2	0	0	0	0	6	0	0	0	2	2
4:30 PM	0	0	0	0	0	1	0	3	0	1	5	0	0	0	5	0
4:45 PM	0	0	0	0	0	0	0	1	0	0	3	0	0	0	4	1
5:00 PM	0	0	0	0	0	0	0	2	0	0	7	0	0	0	4	0
5:15 PM	0	0	0	0	0	2	0	0	0	0	5	0	0	0	5	1
5:30 PM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	9	1
5:45 PM	0	0	0	0	0	0	0	2	0	0	5	0	0	0	2	2

ſ	AM PEAK HOUR						Grafto	n Road		Gr	eenland Ro	ad (Route 3	33)	Gr	eenland Ro	ad (Route 3	33)
	7:45 AM		North	bound			South	bound			Easth	oound			Westl	oound	
	to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
	8:45 AM	0	0	0	0	0	3	0	4	0	3	46	0	0	0	34	7
_	PHF		0.00				0.	88			0.	77			0.	73	

PM PEAK HOUR						Grafto	n Road		Gr	eenland Ro	ad (Route 3	33)	Gr	eenland Ro	ad (Route 3	33)
4:00 PM		North	bound			South	bound			Easth	oound			Westl	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	0	0	0	0	3	0	5	0	1	20	0	0	0	23	3
PHF		0.	00			0.	50			0.	88			0.	54	

Project #: 856_010_TB
BTD #: Location 12
Location: Portsmouth, NH
Street 1: Grafton Road

Street 2: Greenland Road (Route 33)

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

		North	bound				n Road bound		Gı	reenland Ro Eastl	oad (Route 3	33)	Gı		oad (Route : bound	33)
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

						Grafto	n Road		Gr	eenland Ro	ad (Route 3	33)	Gr	eenland Ro	ad (Route 3	33)
		North	bound			South	bound			Eastb	oound			Westl	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR ¹						Grafto	n Road		Gr	eenland Ro	ad (Route 3	33)	Gr	eenland Ro	ad (Route 3	33)
7:30 AM		North	bound			South	bound			Easth	oound			West	bound	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PM PEAK HOUR ¹						Grafto	n Road		Gr	eenland Ro	ad (Route 3	33)	Gr	eenland Ro	ad (Route 3	33)
4:30 PM		North	bound			South	bound			Easth	oound			West	oound	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

NOTE: Peak hour summaries here correspond to peak hours identified for passenger cars and heavy vehicles combined.

Project #: 1202_5_TB
BTD #: Location 2
Location: Portsmouth, NH
Street 1: International Drive

Street 2: Corporate Drive/Manchester Square

Count Date: 3/7/2023
Day of Week: Tuesday
Weather: Cloudy, 35°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

			onal Drive				onal Drive				er Square				ate Drive	
		North					bound				ound				bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	1	23	9	0	64	52	9	0	2	1	2	0	2	1	11
7:15 AM	0	2	13	6	0	83	50	11	0	1	2	3	0	4	1	7
7:30 AM	0	1	9	8	0	84	58	17	0	12	12	5	0	3	1	10
7:45 AM	0	0	17	11	0	120	89	25	0	7	7	3	0	3	2	12
8:00 AM	0	0	18	14	0	81	57	22	0	15	3	3	0	1	3	7
8:15 AM	0	4	19	5	0	64	75	21	0	9	4	8	0	2	2	16
8:30 AM	0	2	13	4	0	54	43	15	0	11	7	5	0	1	2	17
8:45 AM	0	3	12	7	0	52	44	11	0	9	3	4	0	2	4	35

			onal Drive bound				onal Drive bound				ter Square bound				ate Drive bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	4	106	0	0	8	13	18	0	23	3	5	0	1	5	107
4:15 PM	0	3	90	2	0	17	14	16	0	22	0	4	0	2	5	119
4:30 PM	0	1	121	0	0	12	17	16	0	35	0	0	0	2	6	88
4:45 PM	0	3	99	3	0	8	22	14	0	23	0	2	0	2	2	50
5:00 PM	0	4	133	1	0	7	13	7	0	29	0	0	0	0	1	62
5:15 PM	0	2	82	0	0	3	9	4	0	13	1	1	0	1	2	49
5:30 PM	0	0	53	3	0	9	9	0	0	5	0	0	0	3	1	41
5:45 PM	0	1	44	0	0	4	15	0	0	12	0	0	0	1	3	24

AM PEAK HOUR	1	Internation	nal Drive			Internation	nal Drive			Manchest	er Square			Corpora	te Drive	
7:30 AM		North	bound			South	bound			Easth	ound			Westl	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:30 AM	0	5	63	38	0	349	279	85	0	43	26	19	0	9	8	45
PHF		0.	83			0.	76			0.	76			0.	78	
HV~%	0.0%	0.83 0.0% 0.0% 2.6%				1.7%	0.0%	0.0%	0.0%	0.0%	3.8%	5.3%	0.0%	0.0%	12.5%	17.8%

PM PEAK HOUR 4:00 PM			onal Drive bound				nal Drive bound				er Square bound				ate Drive bound	
to	U-Turn	· · · · · · · · · · · · · · · · · · ·				Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	11	416	5	0	45	66	64	0	103	3	11	0	7	18	364
PHF	0.89					0.	93			0.	84			0.	77	
HV~%	0.0%					4.4%	3.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	5.6%	0.8%

Project #: 1202_5_TB
BTD #: Location 2
Location: Portsmouth, NH
Street 1: International Drive

Street 2: Corporate Drive/Manchester Square

Count Date: 3/7/2023
Day of Week: Tuesday
Weather: Cloudy, 35°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

		Internation North	onal Drive bound				onal Drive bound				er Square oound				ate Drive bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	2	0	0	0	0	0	0	0	0	1	1
7:30 AM	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	5
7:45 AM	0	0	0	1	0	3	0	0	0	0	0	0	0	0	0	1
8:00 AM	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
8:15 AM	0	0	0	0	0	1	0	0	0	0	1	1	0	0	1	1
8:30 AM	0	0	0	0	0	3	0	0	0	0	0	1	0	0	1	1
8:45 AM	0	0	1	1	0	4	1	1	0	0	0	0	0	0	0	3

		Internation	nal Drive			Internation	nal Drive			Manchest	er Square			Corpora	te Drive	
		North	bound			South	bound			Easth	oound			Westl	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
4:15 PM	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1
4:30 PM	0	0	1	0	0	2	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	2	0	0	0	1	0	0	0	0	0	0	0	0	1
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
5:30 PM	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR		Internation	nal Drive			Internation	nal Drive			Manchest	er Square			Corpora	te Drive	
8:00 AM		North	bound			South	bound			Easth	oound			Westh	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	0	1	1	0	9	1	1	0	0	1	2	0	0	2	6
PHF		0.	25			0.	46			0.	38			0.0	67	

ſ	PM PEAK HOUR		Internation	nal Drive			Internation	onal Drive			Manchest	er Square			Corpora	ate Drive	
	4:00 PM		North	bound			South	bound			Easth	ound			Westl	bound	
	to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
	5:00 PM	0	0	3	0	0	2	2	0	0	0	0	0	0	0	1	3
	PHF		0.	38			0.	50			0.	00			0.	50	

Project #: 1202_5_TB
BTD #: Location 2
Location: Portsmouth, NH
Street 1: International Drive

Street 2: Corporate Drive/Manchester Square

Count Date: 3/7/2023
Day of Week: Tuesday
Weather: Cloudy, 35°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

		Internation	onal Drive			Internation	onal Drive			Manchest	ter Square			Corpora	ate Drive	
		North	bound			South	bound			Easth	oound			Westl	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
7:00 AM	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

		Internation	nal Drive			Internation	nal Drive			Manchest	er Square			Corpora	te Drive	
		North	bound			South	bound			Easth	oound			Westl	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0		1	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR ¹ 7:30 AM			onal Drive bound				onal Drive bound				er Square bound				ate Drive bound	
to	Left					Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PM PEAK HOUR	1	Internation	nal Drive			Internation	onal Drive			Manchest	ter Square			Corpora	te Drive	
4:00 PM		North	bound			South	bound			Easth	oound			West	oound	
to	Left					Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

¹ NOTE: Peak hour summaries here correspond to peak hours identified for passenger cars and heavy vehicles combined.

Project #: 1202_5_TB
BTD #: Location 3
Location: Portsmouth, NH
Street 1: Corporate Drive
Street 2: Goose Bay Drive (West)

Count Date: 3/7/2023
Day of Week: Tuesday
Weather: Cloudy, 35°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

	G	Goose Bay I	Drive (West)						Corpora	ate Drive			Corpora	ate Drive	
		North	bound			South	bound			Eastl	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	4	0	0	0	0	0	0	0	0	43	31	0	2	10	0
7:15 AM	0	3	0	0	0	0	0	0	0	0	63	27	0	4	9	0
7:30 AM	0	4	0	0	0	0	0	0	0	0	67	37	0	2	10	0
7:45 AM	0	2	0	0	0	0	0	0	0	0	82	57	0	5	15	0
8:00 AM	0	2	0	0	0	0	0	0	0	0	63	35	0	3	9	0
8:15 AM	0	3	0	1	0	0	0	0	0	0	49	24	0	3	17	0
8:30 AM	0	1	0	1	0	0	0	0	0	0	47	18	0	2	19	0
8:45 AM	0	15	0	0	0	0	0	0	0	0	43	19	0	0	26	0

		Goose Bay	Drive (West	t)						Corpora	ate Drive			Corpora	ite Drive	
		North	bound			South	bound			Easth	oound			West	oound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	25	0	0	0	0	0	0	0	0	10	1	0	1	89	0
4:15 PM	0	80	0	4	0	0	0	0	0	0	18	1	0	0	46	0
4:30 PM	0	16	0	2	0	0	0	0	0	0	11	1	0	0	80	0
4:45 PM	0	6	0	1	0	0	0	0	0	0	8	3	0	0	48	0
5:00 PM	0	3	0	0	0	0	0	0	0	0	7	1	0	1	58	0
5:15 PM	0	9	0	0	0	0	0	0	0	0	3	0	0	0	45	0
5:30 PM	0	2	0	0	0	0	0	0	0	0	8	5	0	0	43	0
5:45 PM	0	6	0	0	0	0	0	0	0	0	1	3	0	1	22	0

Ī	AM PEAK HOUR		Goose Bay I	Orive (West)						Corpora	te Drive			Corpora	ite Drive	
	7:15 AM		North	oound			South	bound			Easth	ound			Westl	oound	
	to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
	8:15 AM	0	11	0	0	0	0	0	0	0	0	275	156	0	14	43	0
	PHF		0.0	69			0.	00			0.	78			0.	71	
	HV %	0.0%	36.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.4%	4.5%	0.0%	0.0%	11.6%	0.0%

PM PEAK HOUR		Goose Bay	Drive (West	:)						Corpora	te Drive			Corpora	te Drive	
4:00 PM		North	bound			South	bound			Easth	ound			Westl	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	0 127 0 7				0	0	0	0	0	47	6	0	1	263	0
PHF		0.	40			0.	00			0.	70			0.	73	
HV~%	0.0%	0.40 .0% 0.0% 0.0% 0.0%				0.0%	0.0%	0.0%	0.0%	0.0%	4.3%	0.0%	0.0%	0.0%	1.5%	0.0%

Project #: 1202_5_TB
BTD #: Location 3
Location: Portsmouth, NH
Street 1: Corporate Drive
Street 2: Goose Bay Drive (West)

Count Date: 3/7/2023
Day of Week: Tuesday
Weather: Cloudy, 35°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

	G	Goose Bay I	Drive (West	:)						Corpora	ate Drive			Corpora	ate Drive	
		North	bound			South	bound				oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	1	1	0	0	2	0
7:30 AM	0	2	0	0	0	0	0	0	0	0	0	1	0	0	3	0
7:45 AM	0	1	0	0	0	0	0	0	0	0	0	4	0	0	0	0
8:00 AM	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0
8:15 AM	0	1	0	0	0	0	0	0	0	0	1	0	0	0	1	0
8:30 AM	0	1	0	1	0	0	0	0	0	0	0	2	0	0	0	0
8:45 AM	0	3	0	0	0	0	0	0	0	0	2	3	0	0	0	0

	(3oose Bay	Drive (West	:)						Corpora	ite Drive			Corpora	te Drive	
		North	bound			South	bound			Easth	ound			Westl	oound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR		Soose Bay	Drive (West)						Corpora	te Drive			Corpora	te Drive	
7:15 AM		North	bound			South	bound			Easth	oound			Westh	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:15 AM	0	0 4 0 0				0	0	0	0	0	1	7	0	0	5	0
PHF		0.50				0.	00			0.	50			0.4	42	

Ī	PM PEAK HOUR	G	Soose Bay	Drive (West	t)						Corpora	te Drive			Corpora	te Drive	
	4:00 PM		North	bound			South	bound			Easth	ound			Westl	oound	
	to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
	5:00 PM	0	0 0 0 0 0				0	0	0	0	0	2	0	0	0	4	0
	PHF		0.00				0.	00			0.	25			0.	50	

Project #: 1202_5_TB
BTD #: Location 3
Location: Portsmouth, NH
Street 1: Corporate Drive
Street 2: Goose Bay Drive (West)

Count Date: 3/7/2023
Day of Week: Tuesday
Weather: Cloudy, 35°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

	(Goose Bay North		t)		South	bound				nte Drive Dound				ite Drive bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	(Goose Bay	Drive (West	t)						Corpora	ate Drive			Corpora	ite Drive	
		North	bound			South	bound			Eastl	oound			Westl	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR ¹	(Goose Bay	,	t)						Corpora	te Drive				ate Drive	
7:15 AM		North	bound			South	bound			Eastb	oound			West	bound	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

PM PEAK HOUR ¹	(Goose Bay	Drive (West	t)						Corpora	ate Drive			Corpora	ite Drive	
4:00 PM		North	bound			South	bound			Easth	oound			Westl	bound	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

¹ NOTE: Peak hour summaries here correspond to peak hours identified for passenger cars and heavy vehicles combined.

Project #: 1202_5_TB BTD#: Location 4 Location: Portsmouth, NH Corporate Drive Street 1: Redhook Way Street 2: Count Date: 3/7/2023 Day of Week: Tuesday Cloudy, 35°F Weather:

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

						Redho	ok Way			Corpora	ite Drive			Corpora	ate Drive	
		Northl	oound			South	bound			Easth	oound				bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	0	0	2	0	1	42	0	1	0	8	2
7:15 AM	0	0	0	0	0	0	0	0	0	4	59	0	0	0	12	0
7:30 AM	0	0	0	0	0	0	0	2	0	3	66	0	0	0	11	1
7:45 AM	0	0	0	0	0	0	0	2	0	2	79	0	1	0	18	0
8:00 AM	0	0	0	0	0	0	0	0	0	2	61	0	0	0	11	0
8:15 AM	0	0	0	0	0	1	0	1	0	3	48	0	0	0	19	2
8:30 AM	0	0	0	0	0	0	0	0	0	0	49	0	0	0	22	0
8:45 AM	0	0	0	0	0	1	0	1	0	5	38	0	0	0	25	0

		North	bound				ok Way bound				ate Drive cound				ate Drive bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	0	0	7	0	2	7	0	0	0	84	0
4:15 PM	0	0	0	0	0	0	0	0	0	1	21	0	0	0	46	1
4:30 PM	0	0	0	0	0	1	0	1	0	2	12	0	0	0	79	1
4:45 PM	0	0	0	0	0	0	0	1	1	0	9	0	0	0	47	0
5:00 PM	0	0	0	0	0	0	0	2	1	0	7	0	0	0	57	0
5:15 PM	0	0	0	0	0	0	0	6	0	1	3	0	0	0	39	0
5:30 PM	0	0	0	0	0	0	0	1	0	0	8	0	0	0	43	0
5:45 PM	0	0	0	0	0	0	0	3	0	0	1	0	0	0	20	0

AM PEAK HOUR 7:15 AM		North	bound				ok Way bound			•	ite Drive bound				ate Drive bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:15 AM	0	0	0	0	0	0	0	4	0	11	265	0	1	0	52	1
PHF		0.	00			0.	50			0.	85			0.	71	
HV~%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	25.0%	0.0%	0.0%	0.4%	0.0%	0.0%	0.0%	7.7%	0.0%

PM PEAK HOUR						Redho	,				te Drive			•	te Drive	
4:00 PM		North	bound			South	bound			Eastb	ound			Westl	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	0	0	0	0	1	0	9	1	5	49	0	0	0	256	2
PHF		0.	00			0.	36			0.0	63			0.	77	
HV%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	11.1%	0.0%	40.0%	0.0%	0.0%	0.0%	0.0%	1.2%	0.0%

Project #: 1202_5_TB BTD#: Location 4 Location: Portsmouth, NH Corporate Drive Street 1: Redhook Way Street 2: Count Date: 3/7/2023 Day of Week: Tuesday Cloudy, 35°F Weather:

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

							ok Way				ate Drive				ate Drive	
		North	bound			South	bound			Eastl	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
7:15 AM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	2	0
7:30 AM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	2	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	2	0	0	0	1	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0

							ok Way				ate Drive				ate Drive	
		North	bound			South	bound			Eastl	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0
4:30 PM	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR						Redho	ok Way			Corpora	te Drive			Corpora	te Drive	
8:00 AM		North	bound			South	bound			Eastl	oound			Westl	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	0	0	0	0	0	0	0	0	1	5	0	0	0	2	0
PHF		0.	00			0.	00			0.	75			0.	50	

PM PEAK HOUR						Redho	ok Way			Corpora	te Drive			Corpora	te Drive	
4:00 PM		North	bound			South	bound			Easth	ound			Westl	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	0	0	0	0	0	0	1	0	2	0	0	0	0	3	0
PHF		0.	00			0.	25			0.	25			0.	38	

Project #: 1202_5_TB BTD#: Location 4 Portsmouth, NH Location: Street 1: Corporate Drive Street 2: Redhook Way 3/7/2023 Count Date: Day of Week: Tuesday Weather: Cloudy, 35°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

						Redho	ok Way			Corpora	te Drive			Corpora	ite Drive	
		North	bound			South	bound			Easth	oound			Westl	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

						Redho	ok Way			Corpora	ite Drive			Corpora	ate Drive	
		North	bound			South	bound			Eastb	oound			West	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
4:00 PM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0

AM PEAK HOUR ¹							ok Way			Corpora	te Drive			1	ate Drive	
7:15 AM		Northl	oound			South	bound			Eastb	oound			Westl	bound	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

P	PM PEAK HOUR ¹						Redho	ok Way			Corpora	te Drive			Corpora	te Drive	
	4:00 PM		Northl	bound			South	bound			Easth	ound			Westl	oound	
	to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
	5:00 PM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0

¹ NOTE: Peak hour summaries here correspond to peak hours identified for passenger cars and heavy vehicles combined.

Matthew Stoutz, PE, PTOE, RSP1

Project #: 1202_5_TB
BTD #: Location 5
Location: Portsmouth, NH
Street 1: Corporate Drive
Street 2: Goose Bay Drive (East)

Count Date: 3/7/2023
Day of Week: Tuesday
Weather: Clouds & Sun, 40°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

		•	te Drive				ate Drive		(Drive (East))				
		Northl	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	1	12	0	0	0	17	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	13	0	0	0	30	2	0	3	0	2	0	0	0	0
7:30 AM	0	1	18	0	0	0	37	1	0	1	0	1	0	0	0	0
7:45 AM	0	3	18	0	0	0	37	1	0	0	0	0	0	0	0	0
8:00 AM	0	0	16	0	0	0	37	0	0	1	0	0	0	0	0	0
8:15 AM	0	3	16	0	0	0	26	4	0	0	0	1	0	0	0	0
8:30 AM	0	0	22	0	0	0	22	0	0	1	0	0	0	0	0	0
8:45 AM	0	0	16	0	0	0	20	0	0	0	0	2	0	0	0	0

		Corpora	ate Drive			Corpora	ate Drive			Goose Bay	Drive (East)				
		North	bound			South	bound				oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	1	44	0	0	0	11	0	0	3	0	2	0	0	0	0
4:15 PM	0	0	29	0	0	0	11	0	0	2	0	4	0	0	0	0
4:30 PM	0	1	41	0	0	0	17	1	0	3	0	2	0	0	0	0
4:45 PM	0	1	28	0	0	0	16	0	0	1	0	0	0	0	0	0
5:00 PM	0	0	30	0	0	0	9	0	0	2	0	2	0	0	0	0
5:15 PM	0	0	21	0	0	0	7	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	24	0	0	0	10	0	0	2	0	0	0	0	0	0
5:45 PM	0	0	13	0	0	0	2	0	0	0	0	0	0	0	0	0

AN	7:15 AM		North	ite Drive bound- V	/B			te Drive bound E	В	1	Goose Bay Eastl	Drive (East	NB		Westl	bound	
	to	U-Turn	Turn Left Thru Right				Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
	8:15 AM	0	4	65	0	0	0	141	4	0	5	0	3	0	0	0	0
	PHF		0.	82			0.	95			0.4	40			0.	00	
	HV %	0.0%	0.0%	4.6%	0.0%	0.0%	0.0%	0.7%	0.0%	0.0%	20.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%

PM PEAK HOUR 4:00 PM		North	ate Drive bound- V	٧B			te Drive bound E	В	(Goose Bay East k	Drive (East	NB		Westl	bound	
to	U-Turn	Turn Left Thru Right				Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	3	142	0	0	0	55	1	0	9	0	8	0	0	0	0
PHF		0.	81			0.	78			0.	71			0.	00	
HV~%	0.0%	0.0%	1.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	11.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%

Project #: 1202_5_TB
BTD #: Location 5
Location: Portsmouth, NH
Street 1: Corporate Drive
Street 2: Goose Bay Drive (East)

Count Date: 3/7/2023
Day of Week: Tuesday
Weather: Clouds & Sun, 40°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

		Corpora	ite Drive			Corpora	ate Drive			Goose Bay	Drive (East))				
		North	bound			South	bound				oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	2	0	0	0	1	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	2	0	0	0	0	1	0	0	0	0

		Corpora	ate Drive			Corpora	ate Drive		(Goose Bay	Drive (East)				
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0
4:15 PM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR		Corpora	te Drive			Corpora	te Drive			Goose Bay	Drive (East)				
7:00 AM		North	bound			South	bound			Easth	oound			Westh	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:00 AM	0	0	4	0	0	0	1	0	0	1	0	0	0	0	0	0
PHF		0.	50			0.	25			0.	25			0.0	00	

PM PEAK HOUR		Corpora	te Drive			Corpora	te Drive		(Goose Bay	Drive (East)				
4:00 PM		North	oound			South	bound			Eastb	oound			Westl	oound	
to	U-Turn					Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	0	2	0	0	0	0	0	0	1	0	0	0	0	0	0
PHF		0.	50			0.	00			0.	25			0.	00	

Project #: 1202_5_TB
BTD #: Location 5
Location: Portsmouth, NH
Street 1: Corporate Drive
Street 2: Goose Bay Drive (East)

Count Date: 3/7/2023
Day of Week: Tuesday
Weather: Clouds & Sun, 40°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

		Corporate Drive Northbound				Corpora	ate Drive			Goose Bay	Drive (East)				
		North	bound			South	bound				oound			West	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

		Corpora	te Drive			Corpora	ate Drive			Goose Bay	Drive (East)				
		North	bound			South	bound			Easth	oound			Westl	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR ¹		Corpora	te Drive			Corpora	ate Drive			Goose Bay	Drive (East)				
7:15 AM		Northl	bound			South	bound			Easth	oound			Westl	bound	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PM PEAR	K HOUR ¹		Corpora	ite Drive			Corpora	ate Drive			Goose Bay	Drive (East)				
4:00	PM		North	bound			South	bound			Easth	oound			Westl	bound	
to	О	Left					Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
5:00	PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

NOTE: Peak hour summaries here correspond to peak hours identified for passenger cars and heavy vehicles combined.

Project #: 1202_5_TB
BTD #: Location 6
Location: Portsmouth, NH
Street 1: Goose Bay Drive
Street 2: Corporate Center Driveway

Count Date: 3/7/2023
Day of Week: Tuesday
Weather: Cloudy, 35°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

	Co	orporate Ce	nter Drivew	ay						Goose E	Bay Drive			Goose E	Bay Drive	
		North	bound			South	bound			Eastl	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	5	3	0	2	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	2	2	0	1	1	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	1	0	1	3	0
8:00 AM	0	0	0	0	0	0	0	0	1	0	1	2	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	1	0	0	6	1	0
8:30 AM	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0

	Co	orporate Ce	nter Drivew	ay						Goose B	Bay Drive			Goose B	Bay Drive	
		North	bound			South	bound			Easth	ound			Westl	oound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	1	0	2	0	0	0	0	0	0	3	0	0	0	1	0
4:15 PM	0	0	0	2	0	0	0	0	0	0	4	0	0	0	0	0
4:30 PM	0	0	0	3	0	0	0	0	0	0	2	0	0	0	2	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	0
5:00 PM	0	0	0	2	0	0	0	0	0	0	2	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR 7:15 AM	Co	orporate Ce North	nter Drivew oound	ay WB		South	bound			Goose E Eastl	Bay Drive N	В		14/004		SB
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:15 AM	0	0	0	0	0	0	0	0	1	0	8	8	0	4	4	0
PHF		0.	00			0.	00			0.	53			0.	50	
HV %	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	12.5%	0.0%	0.0%	0.0%	0.0%	0.0%

PM PEAK HOUR 4:00 PM	Co	orporate Ce North	nter Drivew bound	^{ay} WB		South	bound			Goose E Eastk	ay Drive N	В		Most		SB
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	1	0	7	0	0	0	0	0	0	10	1	0	0	4	0
PHF		0.	67			0.	00			0.	69			0.	50	
HV~%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	10.0%	0.0%	0.0%	0.0%	0.0%	0.0%

Project #: 1202_5_TB
BTD #: Location 6
Location: Portsmouth, NH
Street 1: Goose Bay Drive
Street 2: Corporate Center Driveway

Count Date: 3/7/2023
Day of Week: Tuesday
Weather: Cloudy, 35°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

	Co	orporate Ce	nter Drivew	ay						Goose E	Bay Drive			Goose E	Bay Drive	
		North	bound			South	bound			Eastl	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Co	orporate Ce	nter Drivew	ay						Goose E	Bay Drive			Goose E	Bay Drive	
		North	bound			South	bound			Eastl	oound			West	oound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR	Co	orporate Ce	nter Drivew	ay						Goose E	Bay Drive			Goose B	Bay Drive	
7:00 AM		North	bound			South	bound			Easth	oound			Westh	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:00 AM	0	0 0 0 0				0	0	0	0	0	1	0	0	0	0	0
PHF		0.00				0.	00			0.	25			0.0	00	

Ī	PM PEAK HOUR	Co	rporate Ce	nter Drivew	ay						Goose B	Bay Drive			Goose E	Bay Drive	
	4:00 PM		North	bound			South	bound			Easth	oound			Westl	bound	
	to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
	5:00 PM	0	0 0 0 0 0				0	0	0	0	0	1	0	0	0	0	0
	PHF		0.	00			0.	00			0.	25			0.	00	

Project #: 1202_5_TB
BTD #: Location 6
Location: Portsmouth, NH
Street 1: Goose Bay Drive
Street 2: Corporate Center Driveway

Count Date: 3/7/2023
Day of Week: Tuesday
Weather: Cloudy, 35°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

	Co		nter Drivew	ay							Bay Drive				Bay Drive	
		North	bound			South	bound			Easth	oound			Westl	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

	Co	orporate Ce	nter Drivew	ay						Goose E	Bay Drive			Goose E	Bay Drive	
		North	bound			South	bound			Eastl	oound			Westl	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR ¹	Co	orporate Ce	nter Drivew	ay						Goose E	Bay Drive			Goose B	Bay Drive	
7:15 AM		Northl	bound			South	bound			Easth	oound			West	bound	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	40

PM PEAK HOUR ¹	Co	orporate Ce	nter Drivew	ay						Goose E	Bay Drive			Goose B	ay Drive	
4:00 PM		North	bound			South	bound			Easth	oound			West	oound	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	19

NOTE: Peak hour summaries here correspond to peak hours identified for passenger cars and heavy vehicles combined.

Project #: 1202_5_TB
BTD #: Location 7
Location: Portsmouth, NH
Street 1: Goose Bay Drive

Street 2: Lonza Biologics Driveway (South)

Count Date: 3/7/2023
Day of Week: Tuesday
Weather: Clouds & Sun, 40°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

		Goose B	ay Drive			Goose E	Bay Drive		Lonza	a Biologics	Driveway (S	outh)				
		North	oound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	8	0	0	1	0	0	0	0	0	0
7:30 AM	0	0	1	0	0	0	4	2	0	0	0	0	0	0	0	0
7:45 AM	0	0	3	0	0	0	2	0	0	2	0	0	0	0	0	0
8:00 AM	0	0	1	0	0	0	3	3	0	1	0	0	0	0	0	0
8:15 AM	0	0	0	0	1	0	0	1	0	2	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0

		Goose E	Bay Drive			Goose E	Bay Drive		Lonza	a Biologics	Driveway (S	South)				
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	2	0	0	0	2	0	0	2	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	2	0	0	0	2	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	1	0	0	0	2	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Al	M PEAK HOUR 7:15 AM		Goose E North	Bay Drive <mark>V</mark>	٧B			Bay Drive E	В	Lonza	a Biologics I Eastk	ound 1			Westl	oound	
	to	U-Turn					Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
	8:15 AM	0	0 0 5 0				0	17	5	0	4	0	0	0	0	0	0
	PHF		0.	42			0.	69			0.	50			0.	00	
	HV%	0.0%	0.42 0.0% 0.0% 0.0%				0.0%	5.9%	80.0%	0.0%	75.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%

PM PEAK 4:00 F			North	Bay Drive bound \	/B			Bay Drive bound	В	Lonza	•	Driveway (S			Westl	oound	
to		U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 F	PM	0	0	5	0	0	0	10	0	0	2	0	0	0	0	0	0
PHF	F		0.	63			0.	63			0.	25			0.	00	
HV %	%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	10.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%

Project #: 1202_5_TB
BTD #: Location 7
Location: Portsmouth, NH
Street 1: Goose Bay Drive

Street 2: Lonza Biologics Driveway (South)

Count Date: 3/7/2023
Day of Week: Tuesday
Weather: Clouds & Sun, 40°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

		Goose B	ay Drive			Goose E	Bay Drive		Lonza	a Biologics	Driveway (S	outh)				
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	3	0	1	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0

		Goose E	Bay Drive			Goose B	Bay Drive		Lonza	a Biologics	Driveway (S	South)				
		North	bound			South	bound			Easth	oound			Westl	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ĺ	AM PEAK HOUR		Goose E	Bay Drive			Goose B	ay Drive		Lonza	a Biologics	Driveway (S	South)				
	7:15 AM		North	bound			South	bound			Easth	oound			Westh	oound	
	to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
	8:15 AM	0	0	0	0	0	0	1	4	0	3	0	0	0	0	0	0
	PHF		0.00				0.	42			0.	75			0.0	00	

PM PEAK HOUR	1	Goose E	Bay Drive			Goose E	Bay Drive		Lonza	a Biologics I	Oriveway (S	South)				
4:00 PM		North	bound			South	bound			Easth	ound			Westl	bound	
to	U-Turn					Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	0 0 0 0				0	1	0	0	0	0	0	0	0	0	0
PHF		0.00				0.	25			0.	00			0.	00	

Project #: 1202_5_TB
BTD #: Location 7
Location: Portsmouth, NH
Street 1: Goose Bay Drive

Street 2: Lonza Biologics Driveway (South)

Count Date: 3/7/2023
Day of Week: Tuesday
Weather: Clouds & Sun, 40°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

	Goose Bay Drive Northbound					Goose E	Bay Drive		Lonz	a Biologics	Driveway (S	South)				
		North	bound			South	bound				oound			West	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	1	0	0	0	2	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	1	0	0	0	3	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	3	0	0	0	4	0	0	0	0

		Goose E	Bay Drive			Goose E	Bay Drive		Lonza	a Biologics	Driveway (S	South)				
		North	bound			South	bound			Eastl	oound			Westl	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
4:00 PM	0	0	0	0	0	0	0	2	0	0	0	3	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR ¹		Goose E	Bay Drive			Goose E	Bay Drive		Lonza	a Biologics	Driveway (S	South)				
7:15 AM		North	bound			South	bound			Easth	oound			Westl	bound	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
8:15 AM	0	0	0	0	0	0	0	7	0	0	0	5	0	0	0	0

PM I	PEAK HOUR ¹		Goose E	Bay Drive			Goose E	Bay Drive		Lonza	a Biologics	Driveway (S	outh)				
	4:00 PM		North	bound			South	bound			Easth	oound			Westl	bound	
	to	Left	Northbound Left Thru Right PED				Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
	5:00 PM	0	0	0	0	0	0	0	3	0	0	0	3	0	0	0	0

NOTE: Peak hour summaries here correspond to peak hours identified for passenger cars and heavy vehicles combined.

Project #: 1202_5_TB
BTD #: Location 8
Location: Portsmouth, NH
Street 1: Goose Bay Drive

Street 2: Lonza Parking Garage Entrance Dr

Count Date: 3/7/2023
Day of Week: Tuesday
Weather: Clouds & Sun, 40°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

		Goose E	Bay Drive			Goose E	Bay Drive		Lonza Pa	rking Garag	ge Entrance	Driveway				
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	1	5	0	0	0	8	23	0	0	0	0	0	0	0	0
7:15 AM	0	1	3	0	0	0	7	23	0	0	0	0	0	0	0	0
7:30 AM	0	0	2	0	0	0	7	32	0	0	0	0	0	0	0	0
7:45 AM	0	1	3	0	0	0	11	50	0	0	0	0	0	0	0	0
8:00 AM	0	1	3	0	0	0	8	31	0	0	0	0	0	0	0	0
8:15 AM	0	0	4	0	0	0	3	24	0	0	0	0	0	0	0	0
8:30 AM	0	0	2	0	0	0	5	15	0	0	0	0	0	0	0	0
8:45 AM	0	1	14	0	0	0	5	14	0	0	0	0	0	0	0	0

		Goose E	Bay Drive			Goose E	Bay Drive		Lonza Pa	rking Garaç	ge Entrance	Driveway				
		North	bound			South	bound			Eastl	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	24	0	0	0	1	1	0	0	0	0	0	0	0	0
4:15 PM	0	0	84	0	0	0	2	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	17	0	0	0	0	1	0	0	0	0	0	0	0	0
4:45 PM	0	0	7	0	0	0	1	2	0	0	0	0	0	0	0	0
5:00 PM	0	0	3	0	0	0	2	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	1	2	0	0	0	2	3	0	0	0	0	0	0	0	0
5:45 PM	0	0	6	0	0	0	0	4	0	0	0	0	0	0	0	0

AM PEAK HOUR		Goose E	Bay Drive			Goose B	ay Drive		Lonza Pa	rking Garag	je Entrance	Driveway				
7:15 AM		North	bound			South	bound			Easth	oound			Westl	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:15 AM	0	3	11	0	0	0	33	136	0	0	0	0	0	0	0	0
PHF		0.	88			0.	69			0.	00			0.	00	
HV %	0.0%	0.0%	18.2%	0.0%	0.0%	0.0%	15.2%	0.7%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%

PM PEAK HOUR		Goose E	Bay Drive			Goose B	ay Drive		Lonza Pa	rking Garag	e Entrance	Driveway				
4:00 PM		North	bound			South	bound			Easth	ound			Westl	oound	
to	U-Turn					Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0					0	4	4	0	0	0	0	0	0	0	0
PHF		0.	39			0.	67			0.	00			0.	00	
HV~%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%

Project #: 1202_5_TB
BTD #: Location 8
Location: Portsmouth, NH
Street 1: Goose Bay Drive

Street 2: Lonza Parking Garage Entrance Dr

Count Date: 3/7/2023
Day of Week: Tuesday
Weather: Clouds & Sun, 40°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

										•						
		Goose B	Bay Drive			Goose E	Bay Drive		Lonza Pa	rking Garag	e Entrance	Driveway				
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	1	0	0	0	2	1	0	0	0	0	0	0	0	0
8:15 AM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	2	0	0	0	3	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	2	0	0	0	1	0	0	0	0	0	0	0	0	0

		Goose E	Bay Drive			Goose E	Bay Drive		Lonza Pa	rking Garag	je Entrance	Driveway				
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PE	AK HOUR		Goose E	Bay Drive			Goose B	ay Drive		Lonza Pa	rking Garag	ge Entrance	Driveway				
8:0	0 AM		North	bound			South	bound			Easth	oound			Westl	oound	
	to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:0	0 AM	0	0	6	0	0	0	6	1	0	0	0	0	0	0	0	0
P	HF		0.	75			0.	58			0.	00			0.	00	

PM PE	AK HOUR		Goose E	Bay Drive			Goose E	Bay Drive		Lonza Pa	rking Garag	e Entrance	Driveway				
4:0	00 PM		North	bound			South	bound			Eastb	ound			Westl	oound	
	to	U-Turn					Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:0	00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I	PHF		0.00				0.	00			0.0	00			0.	00	

Project #: 1202_5_TB
BTD #: Location 8
Location: Portsmouth, NH
Street 1: Goose Bay Drive

Street 2: Lonza Parking Garage Entrance Dr

Count Date: 3/7/2023
Day of Week: Tuesday
Weather: Clouds & Sun, 40°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

	Goose Bay Drive Northbound Left					Goose E	Bay Drive		Lonza Pa	rking Garag	ge Entrance	Driveway				
		North	bound			South	bound				oound			West	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
7:00 AM	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0

		Goose E	Bay Drive			Goose E	Bay Drive		Lonza Pa	rking Garag	ge Entrance	Driveway				
		North	bound			South	bound			Eastl	oound			Westl	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR ¹		Goose B	ay Drive			Goose E	Bay Drive		Lonza Pa	rking Garag	je Entrance	Driveway				
7:15 AM		Northl	oound			South	bound			Easth	oound			West	bound	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PM PEAK H	IOUR ¹		Goose E	Bay Drive			Goose E	Bay Drive		Lonza Pa	rking Garag	ge Entrance	Driveway				
4:00 PM	1		North	bound			South	bound			Eastl	oound			West	oound	
to		Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
5:00 PM	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

¹ NOTE: Peak hour summaries here correspond to peak hours identified for passenger cars and heavy vehicles combined.

Project #: 1202_5_TB
BTD #: Location 9
Location: Portsmouth, NH
Street 1: International Drive

Street 2: Granite State College Drive (South)

Count Date: 3/7/2023
Day of Week: Tuesday
Weather: Cloudy, 35°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

PASSENGER CARS & HEAVY VEHICLES COMBINED

		Internation	nal Drive			Internation	nal Drive						Granite	State Colle	ge Driveway	/ (South)
		North	bound			South	bound			Eastl	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	24	1	0	1	53	0	0	0	0	0	0	0	0	1
7:15 AM	0	0	19	4	0	0	49	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	19	1	0	2	56	0	0	0	0	0	0	2	0	0
7:45 AM	0	0	25	1	0	1	82	0	0	0	0	0	0	1	0	0
8:00 AM	0	0	29	4	0	1	55	0	0	0	0	0	0	0	0	1
8:15 AM	0	0	26	2	0	4	80	0	0	0	0	0	0	1	0	0
8:30 AM	0	0	19	3	0	1	47	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	18	1	1	1	47	0	0	0	0	0	0	0	0	0

		Internation	onal Drive			Internation	nal Drive						Granite :	State Colle	ge Driveway	/ (South)
		North	bound			South	bound			Easth	oound			Westl	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	102	1	0	1	18	0	0	0	0	0	0	3	0	1
4:15 PM	0	0	87	0	0	0	19	0	0	0	0	0	0	1	0	1
4:30 PM	0	0	111	1	0	0	22	0	0	0	0	0	0	2	0	0
4:45 PM	0	0	94	0	0	2	24	0	0	0	0	0	0	1	0	1
5:00 PM	0	0	138	0	0	1	11	0	0	0	0	0	0	1	0	0
5:15 PM	0	0	77	0	0	0	11	0	0	0	0	0	0	2	0	0
5:30 PM	0	0	54	0	0	0	11	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	43	1	0	0	16	0	0	0	0	0	0	1	0	1

AM PEAK HOUR	1	Internation	nal Drive			Internation	nal Drive						Granite	State Colleg	ge Driveway	(South)
7:30 AM		North	bound			South	bound			Easth	oound			Westl	oound	
to	U-Turn					Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:30 AM	0	0	99	8	0	8	273	0	0	0	0	0	0	4	0	1
PHF		0.	81			0.	84			0.	00			0.	63	
HV%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.7%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%

PM PEAK HOUR	1	Internation	onal Drive			Internation	nal Drive						Granite	State Colle	ge Driveway	(South)
4:15 PM		North	bound			South	bound			Easth	oound			West	bound	
to	U-Turn	3 1				Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:15 PM	0	0	430	1	0	3	76	0	0	0	0	0	0	5	0	2
PHF		0.	78			0.	76			0.	00			0.	88	
HV~%	0.0%	0.78 0.0% 0.0% 0.7% 0.0%				0.0%	3.9%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%

Project #: 1202_5_TB
BTD #: Location 9
Location: Portsmouth, NH
Street 1: International Drive

Street 2: Granite State College Drive (South)

Count Date: 3/7/2023
Day of Week: Tuesday
Weather: Cloudy, 35°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

HEAVY VEHICLES

		Internatio	nal Drive			Internation	onal Drive						Granita	State Colle	ne Driveway	(South)
			bound				bound			Easth	oound		Cianno		bound	(Coulin)
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0

		Internation	onal Drive			Internation	onal Drive						Granite	State Colle	ge Driveway	/ (South)
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	2	0	0	0	1	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0

1	AM PEAK HOUR		Internation	nal Drive			Internation	nal Drive						Granite S	State Colleg	ge Driveway	(South)
	8:00 AM		North	bound			South	bound			Easth	oound			Westh	oound	
	to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
	9:00 AM	0					0	1	0	0	0	0	0	0	0	0	0
	PHF		0.	25			0.	25			0.	00			0.0	00	

]	PM PEAK HOUR	-	Internation	nal Drive			Internation	nal Drive						Granite	State Colle	ge Driveway	(South)
	4:00 PM		North	bound			South	bound			Eastb	ound			Westl	oound	
	to	U-Turn					Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
	5:00 PM	0	0 0 3 0				0	3	0	0	0	0	0	0	0	0	0
	PHF		0.	38			0.	75			0.	00			0.	00	

Project #: 1202_5_TB
BTD #: Location 9
Location: Portsmouth, NH
Street 1: International Drive

Street 2: Granite State College Drive (South)

Count Date: 3/7/2023
Day of Week: Tuesday
Weather: Cloudy, 35°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

PEDESTRIANS & BICYCLES

		Internation	onal Drive			Internation	onal Drive						Granite	State Colleg	ge Driveway	y (South)
		North	bound			South	bound			Eastb	oound			West	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

		Internation	onal Drive			Internation	onal Drive						Granite	State Colle	ge Driveway	/ (South)
		North	bound			South	bound			Easth	oound			Westl	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR ¹		Internation	nal Drive			Internation	nal Drive						Granite	State Colleg	ge Driveway	(South)
7:30 AM		North	bound			South	bound			Easth	oound			West	bound	
to	Left					Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PM PEAK HOUR ¹		Internation	nal Drive			Internation	nal Drive						Granite	State Colleg	ge Driveway	/ (South)
4:15 PM		Northl	oound			South	bound			Eastb	ound			Westl	bound	
to	Left					Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

¹ NOTE: Peak hour summaries here correspond to peak hours identified for passenger cars and heavy vehicles combined.

Project #: 1202_5_TB
BTD #: Location 10
Location: Portsmouth, NH
Street 1: International Drive

Street 2: Lonza Biologics Driveway (North)

Count Date: 3/7/2023
Day of Week: Tuesday
Weather: Cloudy, 35°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

PASSENGER CARS & HEAVY VEHICLES COMBINED

		Internation	nal Drive			Internation	nal Drive						Lonz	a Biologics	Driveway (N	North)
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	10	4	0	4	49	0	0	0	0	0	0	6	0	15
7:15 AM	0	0	18	2	0	3	46	0	0	0	0	0	0	4	0	5
7:30 AM	0	0	17	3	0	3	55	0	0	0	0	0	0	4	0	2
7:45 AM	0	0	23	3	0	5	78	0	0	0	0	0	0	2	0	4
8:00 AM	0	0	29	1	0	2	53	0	0	0	0	0	0	1	0	4
8:15 AM	0	0	26	1	0	3	78	0	0	0	0	0	0	2	0	2
8:30 AM	0	0	19	2	0	1	46	0	0	0	0	0	0	2	0	3
8:45 AM	0	0	18	4	0	1	46	0	0	0	0	0	0	2	0	1

		Internation	onal Drive			Internation	nal Drive						Lonz	a Biologics	Driveway (N	North)
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	76	3	0	2	19	0	0	0	0	0	0	8	0	27
4:15 PM	0	0	61	1	0	1	19	0	0	0	0	0	0	8	0	26
4:30 PM	0	0	78	6	0	4	20	0	0	0	0	0	0	18	0	33
4:45 PM	0	0	62	1	0	4	21	0	0	0	0	0	0	5	0	33
5:00 PM	0	0	120	3	0	1	11	0	0	0	0	0	0	5	0	18
5:15 PM	0	0	61	1	0	0	13	0	0	0	0	0	0	0	0	16
5:30 PM	0	0	42	2	1	1	9	0	0	0	0	0	0	5	0	11
5:45 PM	0	0	34	0	0	3	14	0	0	0	0	0	0	2	0	10

AM PEAK HOUR	1	Internation	nal Drive			Internation	nal Drive						Lonza	a Biologics	Driveway (N	lorth)
7:30 AM		North	bound			South	bound			Easth	oound			Westl	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:30 AM	0	0	95	8	0	13	264	0	0	0	0	0	0	9	0	12
PHF		0.	86			0.	83			0.	00			0.	88	
HV%	0.0%	0.0%	1.1%	62.5%	0.0%	0.0%	0.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	44.4%	0.0%	0.0%

PM PEAK HOUR		Internation	onal Drive			Internation	nal Drive						Lonz	a Biologics	Driveway (N	North)
4:15 PM		North	bound			South	bound			Easth	ound			Westl	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:15 PM	0	0	321	11	0	10	71	0	0	0	0	0	0	36	0	110
PHF		0.	67			0.	81			0.	00			0.	72	
HV~%	0.0%	0.0%	0.9%	45.5%	0.0%	0.0%	2.8%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	13.9%	0.0%	0.0%

Project #: 1202_5_TB
BTD #: Location 10
Location: Portsmouth, NH
Street 1: International Drive

Street 2: Lonza Biologics Driveway (North)

Count Date: 3/7/2023
Day of Week: Tuesday
Weather: Cloudy, 35°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

HEAVY VEHICLES

		Internation	nal Drive			Internation	onal Drive						Lonz	a Biologics	Driveway (1	North)
		Northl	oound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	3	0	0	0	0	0	0	0	0	0	3	0	0
7:15 AM	0	0	0	2	0	0	0	0	0	0	0	0	0	2	0	0
7:30 AM	0	0	0	2	0	0	0	0	0	0	0	0	0	2	0	0
7:45 AM	0	0	1	2	0	0	0	0	0	0	0	0	0	1	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0
8:30 AM	0	0	0	2	0	0	0	0	0	0	0	0	0	2	0	0
8:45 AM	0	0	2	0	0	0	0	0	0	0	0	0	0	1	0	0

		Internation	onal Drive			Internation	onal Drive						Lonz	a Biologics	Driveway (N	√orth)
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	2	0	0	0	0	0	0	0	0	0	2	0	0
4:15 PM	0	0	0	0	0	0	1	0	0	0	0	0	0	2	0	0
4:30 PM	0	0	1	4	0	0	0	0	0	0	0	0	0	3	0	0
4:45 PM	0	0	2	1	0	0	1	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	1
5:45 PM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR		Internation	nal Drive			Internation	nal Drive						Lonza	a Biologics	Driveway (N	lorth)
7:00 AM		North	bound			South	bound			Easth	oound			Westh	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:00 AM	0	0	1	9	0	0	0	0	0	0	0	0	0	8	0	0
PHF		0.	83			0.	00			0.	00			0.0	67	

PM PEAK HOUR	1	Internation	nal Drive			Internation	nal Drive						Lonza	a Biologics	Driveway (N	lorth)
4:00 PM		North	bound			South	bound			Easth	oound			Westl	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	0	3	7	0	0	2	0	0	0	0	0	0	7	0	0
PHF		0.	50			0.	50			0.	00			0.	58	

Project #: 1202_5_TB
BTD #: Location 10
Location: Portsmouth, NH
Street 1: International Drive

Street 2: Lonza Biologics Driveway (North)

Count Date: 3/7/2023
Day of Week: Tuesday
Weather: Cloudy, 35°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

PEDESTRIANS & BICYCLES

		Internation	onal Drive			Internation	onal Drive						Lonz	a Biologics	Driveway (N	North)
		North	bound			South	bound			Easth	oound				bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
7:00 AM	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	13	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	15	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	8	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0

		Internation	onal Drive			Internation	onal Drive						Lonz	a Biologics	Driveway (N	√orth)
		North	bound			South	bound			Easth	oound			Westl	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
4:00 PM	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	15	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	7	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	6	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	10	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0

AM PEAK HOUR ¹		Internation	nal Drive			Internation	nal Drive						Lonza	a Biologics	Driveway (N	lorth)
7:30 AM		North	bound			South	bound			Easth	oound			West	bound	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
8:30 AM	0	0	0	0	0	0	0	46	0	0	0	0	0	0	0	0

PM PEAK HOUR ¹		Internation	nal Drive			Internation	nal Drive						Lonz	a Biologics	Driveway (N	√orth)
4:15 PM		Northl	oound			South	bound			Eastb	ound			Westl	bound	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
5:15 PM	0	0	0	0	0	0	0	38	0	0	0	0	0	0	0	0

NOTE: Peak hour summaries here correspond to peak hours identified for passenger cars and heavy vehicles combined.

Project #: 1202_5_TB
BTD #: Location 11
Location: Portsmouth, NH
Street 1: International Drive

Street 2: Lonza Biologics Driveway (South)

Count Date: 3/7/2023
Day of Week: Tuesday
Weather: Cloudy, 35°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

PASSENGER CARS & HEAVY VEHICLES COMBINED

							-									
		Internation	onal Drive			Internation	onal Drive						Lonz	a Biologics	Driveway (S	outh)
		North	bound			South	bound			Eastl	bound				bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	17	0	0	1	38	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	23	0	0	1	42	0	0	0	0	0	0	0	0	1
7:30 AM	0	0	22	0	0	2	48	0	0	0	0	0	0	0	0	1
7:45 AM	0	0	32	1	0	1	65	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	32	0	0	0	41	0	0	0	0	0	0	0	0	1
8:15 AM	0	0	30	0	0	2	56	0	0	0	0	0	0	0	0	1
8:30 AM	0	0	24	0	0	0	38	0	0	0	0	0	0	1	0	0
8:45 AM	0	0	22	0	0	1	25	0	0	0	0	0	0	0	0	0

		Internation	nal Drive			Internation	nal Drive						Lonza	a Biologics	Driveway (S	South)
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	65	0	0	1	26	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	45	0	0	0	26	0	0	0	0	0	0	0	0	3
4:30 PM	0	0	72	0	0	0	41	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	49	0	0	0	33	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	97	0	0	0	21	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	45	0	0	0	19	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	32	0	0	0	17	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	20	0	0	0	17	0	0	0	0	0	0	0	0	0

AM PEAK HOU	₹ .	Internation	onal Drive			Internation	nal Drive						Lonza	a Biologics	Driveway (S	outh)
7:30 AM		North	bound			South	bound			Easth	oound			Westl	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:30 AM	0	0	116	1	0	5	210	0	0	0	0	0	0	0	0	3
PHF		0.	89			0.	81			0.	00			0.	75	
HV~%	0.0%	0.0%	5.2%	100.0%	0.0%	0.0%	1.9%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%

PM PEAK HOUR		Internation	onal Drive			Internation	nal Drive						Lonza	a Biologics	Driveway (S	outh)
4:15 PM		North	bound			South	bound			Easth	ound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:15 PM	0	0	263	0	0	0	121	0	0	0	0	0	0	0	0	3
PHF		0.	68			0.	74			0.	00			0.	25	
HV~%	0.0%	0.0%	3.0%	0.0%	0.0%	0.0%	6.6%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%

Project #: 1202_5_TB
BTD #: Location 11
Location: Portsmouth, NH
Street 1: International Drive

Street 2: Lonza Biologics Driveway (South)

Count Date: 3/7/2023
Day of Week: Tuesday
Weather: Cloudy, 35°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

HEAVY VEHICLES

		Internation	nal Drive			Internation	onal Drive						Lonz	a Biologics	Driveway (S	South)
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	3	0	0	0	3	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	2	0	0	0	1	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	2	0	0	0	3	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	3	1	0	0	1	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	2	0	0	0	4	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	2	0	0	0	1	0	0	0	0	0	0	0	0	0

		Internation	onal Drive			Internation	nal Drive						Lonza	a Biologics	Driveway (S	South)
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	2	0	0	0	1	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	1	0	0	0	3	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	4	0	0	0	3	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	3	0	0	0	2	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	1	0	0	0	2	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR]	Internation	nal Drive			Internation	nal Drive						Lonza	Biologics I	Driveway (S	outh)
7:00 AM		North	bound			South	bound			Easth	oound			Westh	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:00 AM	0	0 0 10 1				0	8	0	0	0	0	0	0	0	0	0
PHF		0.69				0.	67			0.	00			0.0	00	

Γ	PM PEAK HOUR		Internation	nal Drive			Internation	nal Drive						Lonza	a Biologics	Driveway (S	outh)
	4:00 PM		North	bound			South	bound			Easth	ound			Westl	oound	
	to	U-Turn					Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
	5:00 PM	0 0 10 0				0	0	9	0	0	0	0	0	0	0	0	0
	PHF		0.	63			0.	75			0.	00	•		0.	00	

Project #: 1202_5_TB
BTD #: Location 11
Location: Portsmouth, NH
Street 1: International Drive

Street 2: Lonza Biologics Driveway (South)

Count Date: 3/7/2023
Day of Week: Tuesday
Weather: Cloudy, 35°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

PEDESTRIANS & BICYCLES

								-0 , , ,,, ,, ,,	. a <i>D.</i> 0 .							
		Internation	nal Drive			Internation	onal Drive						Lonza	a Biologics	Driveway (S	South)
		North	oound			South	bound			Easth	oound				bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

		Internation	onal Drive			Internation	onal Drive						Lonza	a Biologics l	Driveway (S	outh)
		North	bound			South	bound			Easth	oound			Westl	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR ¹		Internation	nal Drive			Internation	nal Drive						Lonza	a Biologics I	Driveway (S	outh)
7:30 AM		North	bound			South	bound			Easth	oound			West	bound	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

]	PM PEAK HOUR ¹		Internation	nal Drive			Internation	onal Drive						Lonza	a Biologics I	Driveway (S	outh)
	4:15 PM		Northl	bound			South	bound			Easth	ound			Westl	oound	
	to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
	5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

NOTE: Peak hour summaries here correspond to peak hours identified for passenger cars and heavy vehicles combined.

Project #: 1202_5_TB
BTD #: Location 12
Location: Portsmouth, NH

Street 1: New Hampshire Ave/Corporate Dr Street 2: International Drive/Durham Street

Count Date: 3/7/2023
Day of Week: Tuesday
Weather: Cloudy, 35°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

PASSENGER CARS & HEAVY VEHICLES COMBINED

		0 0 33 2 0 0 43 4 0 0 55 4 0 0 55 7				New Hamps		е			n Street				onal Drive	
		North	bound			South	bound			Eastl	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	33	29	0	3	17	6	0	0	1	0	0	8	0	2
7:15 AM	0	0	43	40	0	5	24	4	0	2	1	0	0	8	2	1
7:30 AM	0	0	55	46	0	7	30	6	0	0	1	0	0	14	0	0
7:45 AM	0	0	55	71	0	7	43	9	0	2	2	0	0	10	1	2
8:00 AM	0	0	67	70	0	2	44	4	0	2	0	0	0	10	0	0
8:15 AM	0	0	63	45	0	2	41	3	0	1	2	0	0	21	1	1
8:30 AM	0	0	64	57	0	5	43	2	0	0	2	1	0	12	1	1
8:45 AM	0	1	50	35	0	4	47	2	0	0	1	0	0	14	0	0

		Corpora	te Drive		1	New Hamps	hire Avenu	9		Durhan	n Street			Internation	onal Drive	
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	63	22	0	1	66	4	0	10	2	0	0	53	4	8
4:15 PM	0	0	49	13	0	1	59	2	0	2	4	2	0	39	5	1
4:30 PM	0	1	38	19	0	1	93	4	0	10	7	0	0	57	2	4
4:45 PM	0	0	55	27	0	0	84	1	0	4	1	0	0	52	2	6
5:00 PM	0	0	57	17	0	0	96	2	0	4	3	0	0	61	5	4
5:15 PM	0	0	27	18	0	0	69	3	0	1	0	1	0	48	2	5
5:30 PM	0	0	32	7	0	1	48	0	0	0	0	1	0	31	0	3
5:45 PM	0	0	28	8	0	0	40	1	0	0	2	0	0	18	1	2

AM PEAK HOUR		Corpora	ite Drive		1	New Hamps	hire Avenue	Э		Durhan	n Street			Internation	nal Drive	
7:45 AM		North	bound			South	bound			Easth	oound			West	oound	
to	U-Turn	3				Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:45 AM	0					16	171	18	0	5	6	1	0	53	3	4
PHF		0.90				0.	87			0.	75			0.	65	
HV%	0.0%					0.0%	2.9%	0.0%	0.0%	20.0%	0.0%	0.0%	0.0%	3.8%	0.0%	0.0%

PM PEAK HOUR		Corpora	te Drive		1	New Hamps	hire Avenu	е		Durhan	n Street			Internation	onal Drive	
4:15 PM		North	bound			South	bound			Easth	oound			West	bound	
to	U-Turn					Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:15 PM	0	0 1 199 76				2	332	9	0	20	15	2	0	209	14	15
PHF		0.	84			0.	88			0.	54			0.	85	
HV~%	0.0%	0.84 0.0% 0.0% 1.5% 1.3%				0.0%	0.6%	11.1%	0.0%	0.0%	13.3%	0.0%	0.0%	0.0%	14.3%	0.0%

Project #: 1202_5_TB
BTD #: Location 12
Location: Portsmouth, NH

Street 1: New Hampshire Ave/Corporate Dr Street 2: International Drive/Durham Street

Count Date: 3/7/2023
Day of Week: Tuesday
Weather: Cloudy, 35°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

HEAVY VEHICLES

			ite Drive bound		1		hire Avenu bound	е			n Street oound				onal Drive bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	2	0	0	1	0	0	1	0	0	0	1	0	0
7:30 AM	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	3	0	0	0	1	0	0	1	0	0	0	1	0	0
8:15 AM	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0
8:30 AM	0	0	1	3	0	0	3	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	1	0	0	0	2	0	0	0	0	0	0	0	0	0

			ate Drive		1		shire Avenu	е			n Street				nal Drive	
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	1	0	0	0	0	0	1	0	0	0	0	2	0
4:15 PM	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
4:30 PM	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0
4:45 PM	0	0	2	0	0	0	1	0	0	0	0	0	0	0	1	0
5:00 PM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	1	0	0	1	0	0	0	0	1	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR		Corpora	te Drive		١	lew Hamps	hire Avenue	Э		Durhan	n Street			Internatio	nal Drive	
8:00 AM		North	bound			South	bound			Eastb	oound			Westh	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	0	5	4	0	0	7	0	0	1	0	0	0	2	0	0
PHF		0.	56			0.	58			0.	25			0.	50	

ſ	PM PEAK HOUR		Corpora	te Drive		١	New Hamps	hire Avenu	е		Durhan	Street			Internation	nal Drive	
	4:00 PM		Northl	bound			South	bound			Easth	ound			Westl	oound	
	to	U-Turn					Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
	5:00 PM	0 0 3 2				0	0	2	0	0	1	2	0	0	0	4	0
	PHF		0.63				0.	50			0.	75			0.	50	

Project #: 1202_5_TB
BTD #: Location 12
Location: Portsmouth, NH

Street 1: New Hampshire Ave/Corporate Dr Street 2: International Drive/Durham Street

Count Date: 3/7/2023
Day of Week: Tuesday
Weather: Cloudy, 35°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

PEDESTRIANS & BICYCLES

		Corpora	ate Drive		1	New Hamps	shire Avenu	е		Durhan	n Street			Internation	onal Drive	
		North	bound			South	bound			Easth	oound			Westl	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

		Corpora	ite Drive		1	New Hamps	hire Avenu	е		Durhan	n Street			Internation	nal Drive	
		North	bound			South	bound			Easth	oound			Westl	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
4:15 PM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR ¹ 7:45 AM		•	ate Drive bound		1		shire Avenu bound	Э			n Street oound				onal Drive bound	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PM PEA	AK HOUR ¹		Corpora	ite Drive		1	New Hamps	hire Avenu	Э		Durhan	n Street			Internation	nal Drive	
4:1	15 PM		Northl	bound			South	bound			Easth	oound			Westl	oound	
	to	Left					Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
5:1	15 PM	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	1

¹ NOTE: Peak hour summaries here correspond to peak hours identified for passenger cars and heavy vehicles combined.

Project #: 1202_5_TB BTD#: Location 13 Location: Portsmouth, NH Corporate Drive Street 1: Street 2: Grafton Road Count Date: 3/7/2023 Day of Week: Tuesday Clouds & Sun, 40°F Weather:

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

PASSENGER CARS & HEAVY VEHICLES COMBINED

							O		· · · · — · · ·							
		Corpora	te Drive			Corpora	ate Drive			Grafto	n Road					
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	2	0	0	0	2	21	0	64	0	27	0	0	0	0
7:15 AM	0	5	0	0	0	0	8	19	0	83	0	28	0	0	0	0
7:30 AM	0	6	1	0	0	0	1	40	0	107	0	40	0	0	0	0
7:45 AM	0	4	1	0	0	0	10	29	0	132	0	57	0	0	0	0
8:00 AM	0	12	2	0	0	0	9	36	0	141	0	54	0	0	0	0
8:15 AM	0	7	2	0	0	0	8	39	0	111	0	51	0	0	0	0
8:30 AM	0	7	4	0	0	0	7	31	0	120	0	59	0	0	0	0
8:45 AM	0	14	5	0	0	0	12	29	0	92	0	61	0	0	0	0

		Corpora	ate Drive			Corpora	ate Drive			Grafto	n Road					
		North	bound			South	bound			Eastl	oound			Westl	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	34	7	0	0	0	4	111	0	75	0	12	0	0	0	0
4:15 PM	0	34	3	0	0	0	3	102	0	58	0	15	0	0	0	0
4:30 PM	0	44	3	0	0	0	3	147	0	52	0	7	0	0	0	0
4:45 PM	0	29	10	0	0	0	9	125	0	67	0	16	0	0	0	0
5:00 PM	0	42	18	0	0	0	3	164	0	53	0	16	0	0	0	0
5:15 PM	0	21	3	0	0	0	2	114	0	41	0	10	0	0	0	0
5:30 PM	0	20	1	0	0	0	5	71	0	37	0	10	0	0	0	0
5:45 PM	0	10	4	0	0	0	2	50	0	32	0	7	0	0	0	0

AM PEAK HOUR		Corpora	te Drive			Corpora	te Drive			Grafto	n Road					
7:45 AM		North	bound			South	bound			Easth	oound			Westl	oound	
to	U-Turn					Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:45 AM	0					0	34	135	0	504	0	221	0	0	0	0
PHF		0.	70			0.	90			0.	93			0.	00	
HV%	0.0%	3.3%	11.1%	0.0%	0.0%	0.0%	0.0%	4.4%	0.0%	1.4%	0.0%	1.4%	0.0%	0.0%	0.0%	0.0%

PM PEAK HOUR		Corpora	ate Drive			Corpora	ite Drive			Grafto	n Road					
4:15 PM		North	bound			South	bound			Easth	ound			Westl	bound	
to	U-Turn					Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:15 PM	0	149	34	0	0	0	18	538	0	230	0	54	0	0	0	0
PHF		0.	76			0.	83			0.	86			0.	00	
HV~%	0.0%	0.7%	2.9%	0.0%	0.0%	0.0%	0.0%	0.9%	0.0%	2.2%	0.0%	1.9%	0.0%	0.0%	0.0%	0.0%

Project #: 1202_5_TB BTD#: Location 13 Location: Portsmouth, NH Corporate Drive Street 1: Street 2: Grafton Road Count Date: 3/7/2023 Day of Week: Tuesday Clouds & Sun, 40°F Weather:

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

HEAVY VEHICLES

		Corpora	te Drive			Corpora	ate Drive			Grafto	n Road					
		North	bound			South	bound			Eastl	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	1	0	0	0	0	0	0	0	0	2	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	2	0	1	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	3	0	1	0	0	0	0
8:00 AM	0	1	0	0	0	0	0	2	0	1	0	1	0	0	0	0
8:15 AM	0	0	1	0	0	0	0	3	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	1	0	3	0	1	0	0	0	0
8:45 AM	0	2	0	0	0	0	0	0	0	1	0	1	0	0	0	0

		Corpora	ate Drive			Corpora	ate Drive			Grafto	n Road					
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	2	1	0	0	0	0	0	0	0	0	1	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	2	0	1	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	3	0	2	0	0	0	0	0	0
5:00 PM	0	1	1	0	0	0	0	0	0	1	0	1	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR		Corpora	te Drive			Corpora	te Drive			Grafto	n Road					
7:45 AM		North	bound			South	bound			Easth	oound			Westh	ound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:45 AM	0	1	1	0	0	0	0	6	0	7	0	3	0	0	0	0
PHF		0.	50			0.	50			0.	63			0.0	00	

PM PEAK HOUR		Corpora	te Drive			Corpora	te Drive			Graftor	n Road					
4:00 PM		North	bound			South	bound			Eastb	oound			Westl	oound	
to	U-Turn					Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	2	1	0	0	0	0	5	0	4	0	1	0	0	0	0
PHF		0.	25			0.	42			0.	63			0.	00	•

Project #: 1202_5_TB BTD#: Location 13 Portsmouth, NH Location: Corporate Drive Street 1: Street 2: Grafton Road 3/7/2023 Count Date: Day of Week: Tuesday Clouds & Sun, 40°F Weather:

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

PEDESTRIANS & BICYCLES

		Corpora	ate Drive			Corpora	ate Drive			Grafto	n Road					
		North	bound				bound			Easth	oound			Westl	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

		Corpora	te Drive			Corpora	ate Drive			Grafto	n Road					
		North	bound			South	bound			Eastl	oound			Westl	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
4:00 PM	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR ¹		•	te Drive				ate Drive			Grafto	n Road					
7:45 AM		Northl	oound			South	bound			Eastb	oound			West	bound	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PM PEAK HOUR ¹		Corpora	te Drive			Corpora	ate Drive			Grafto	n Road					
4:15 PM		North	bound			South	bound			Easth	oound			Westl	oound	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

NOTE: Peak hour summaries here correspond to peak hours identified for passenger cars and heavy vehicles combined.

Project #: 856_010_TB
BTD #: Location 11
Location: Portsmouth, NH
Street 1: Grafton Road
Street 2: I-95 Southbound Off-Ramp

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

PASSENGER CARS & HEAVY VEHICLES COMBINED

		Grafto	n Road			Grafto	n Road						J-9	95 Southbo	und Off-Ran	np
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	78	0	0	0	33	0	0	0	0	0	0	0	0	7
7:15 AM	0	0	92	0	0	0	31	0	0	0	0	0	0	0	0	26
7:30 AM	0	0	138	0	0	0	31	0	0	0	0	0	0	0	0	26
7:45 AM	0	0	227	0	0	0	37	0	0	0	0	0	0	0	0	36
8:00 AM	0	0	133	0	0	0	56	0	0	0	0	0	0	0	0	23
8:15 AM	0	0	136	0	0	0	47	0	0	0	0	0	0	0	0	23
8:30 AM	0	0	137	0	0	0	39	0	0	0	0	0	0	0	0	28
8:45 AM	0	0	137	0	0	0	44	0	0	0	0	0	0	0	0	24

		Grafto	n Road			Grafto	n Road						J-9	95 Southbo	und Off-Rar	np
		North	bound			South	bound			Eastl	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	75	0	0	0	185	0	0	0	0	0	0	0	0	11
4:15 PM	0	0	74	0	0	0	138	0	0	0	0	0	0	0	0	2
4:30 PM	0	0	78	0	0	0	183	0	0	0	0	0	0	0	0	11
4:45 PM	0	0	68	0	0	0	154	0	0	0	0	0	0	0	0	8
5:00 PM	0	0	52	0	0	0	198	0	0	0	0	0	0	0	0	6
5:15 PM	0	0	49	0	0	0	155	0	0	0	0	0	0	0	0	6
5:30 PM	0	0	54	0	0	0	142	0	0	0	0	0	0	0	0	12
5:45 PM	0	0	56	0	0	0	88	0	0	0	0	0	0	0	0	8

AM PEAK HOUR		Grafto	n Road			Graftor	n Road						1-9	5 Southboo	und Off-Ran	np
7:45 AM		North	bound			South	bound			Easth	oound			Westl	oound	
to	U-Turn					Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:45 AM	0					0	179	0	0	0	0	0	0	0	0	110
PHF		0.	70			0.	80			0.	00			0.	76	
HV %	0.0%	0.70 0.0% 0.0% 1.6% 0.0%				0.0%	3.9%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	2.7%

PM PEAK HOUR		Grafto	n Road			Grafto	n Road						1-9	95 Southboo	und Off-Ran	np
4:00 PM		North	bound			South	bound			Easth	ound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	0 0 295 0				0	660	0	0	0	0	0	0	0	0	32
PHF		0.	95			0.	89			0.	00			0.	73	
HV~%	0.0%	0.0%	1.4%	0.0%	0.0%	0.0%	1.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	12.5%

Project #: 856_010_TB
BTD #: Location 11
Location: Portsmouth, NH
Street 1: Grafton Road

Street 2: I-95 Southbound Off-Ramp

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

HEAVY VEHICLES

		Grafto	n Road			Grafto	n Road						1-9	95 Southbo	und Off-Ran	np
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	1	0	0	0	4	0	0	0	0	0	0	0	0	2
7:15 AM	0	0	5	0	0	0	2	0	0	0	0	0	0	0	0	1
7:30 AM	0	0	1	0	0	0	3	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	1	0	0	0	2	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	1	0	0	0	2	0	0	0	0	0	0	0	0	3
8:15 AM	0	0	3	0	0	0	2	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	5	0	0	0	1	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	3	0	0	0	1	0	0	0	0	0	0	0	0	1

		Grafto	n Road			Grafto	n Road						I-9	95 Southbo	und Off-Rar	np
		North	bound			South	bound			Easth	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	2
4:15 PM	0	0	2	0	0	0	2	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	1	0	0	0	4	0	0	0	0	0	0	0	0	2
4:45 PM	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	1
5:15 PM	0	0	1	0	0	0	2	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
5:45 PM	0	0	2	0	0	0	2	0	0	0	0	0	0	0	0	0

AM P	EAK HOUR		Grafto	n Road			Graftor	n Road						I-9	5 Southboo	und Off-Ran	np
7	:00 AM		North	bound			South	bound			Easth	oound			Westh	oound	
	to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8	:00 AM	0	0	8	0	0	0	11	0	0	0	0	0	0	0	0	3
	PHF		0.	40			0.	69			0.	00			0.:	38	

PM PEAK HOUR		Grafto	n Road			Grafto	n Road						I-9	5 Southboo	und Off-Ran	np
4:00 PM		North	bound			South	bound			Eastb	ound			West	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	0	4	0	0	0	8	0	0	0	0	0	0	0	0	4
PHF		0.	50			0.	50			0.	00			0.	50	

Project #: 856_010_TB
BTD #: Location 11
Location: Portsmouth, NH
Street 1: Grafton Road

Street 2: I-95 Southbound Off-Ramp

Count Date: 2/17/2022
Day of Week: Thursday
Weather: Cloudy, 55°F

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

PEDESTRIANS & BICYCLES

		Grafto	n Road			Grafto	n Road						I-9	95 Southboo	und Off-Rar	np
		North	bound			South	bound			Easth	oound			Westl	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

		Grafto	n Road			Grafto	n Road						I-9	95 Southboo	und Off-Ran	np
		North	bound			South	bound			Easth	oound			Westl	bound	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR ¹ 7:45 AM			n Road				n Road bound			Fasth	oound		I-9		und Off-Ram	np
to	Left	Northbound Left Thru Right PED				Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PM PEAK HOUR ¹		Graftor	n Road			Grafto	n Road						I-9	5 Southboo	und Off-Ram	np
4:00 PM		Northl	bound			South	bound			Easth	oound			West	oound	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED
5:00 PM	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0

NOTE: Peak hour summaries here correspond to peak hours identified for passenger cars and heavy vehicles combined.

Job 1202_5_TB_ATR 1A Area Portsmouth, NH

Location Pease Blvd (Newington St) EB, 200' west of Rte 4 SB Ramps

Tuesday, March 7, 2023

							_					onTrafficData	com
Time		tal		В			Time	То	tal		В		
0000	57		57		0		1200	221		221		0	
0015	27		27		0		1215	171		171		0	
0030	48		48		0		1230	146		146		0	
0045	10	142	10	142	0	0	1245	126	664	126	664	0	0
0100	13		13		0		1300	132		132		0	
0115	9		9		0		1315	111		111		0	
0130	5		5		0		1330	130		130		0	
0145	9	36	9	36	0	0	1345	153	526	153	526	0	0
0200	4		4		0		1400	150		150		0	
0215	2		2		0		1415	142		142		0	
0230	7		7		0		1430	243		243		0	
0245	4	17	4	17	0	0	1445	193	728	193	728	0	0
0300	1	.,	1	.,	0	Ū	1500	223	720	223	720	0	J
0315	4		4		0		1515	165		165		0	
0330	7		7		0		1530	281		281		0	
0345	5	17	5	17	0	0	1545	202	871	202	871	0	0
		17		17		U			0/1	325	07 1		U
0400	6		6		0		1600	325				0	
0415	7		7		0		1615	307		307		0	
0430	6	00	6	00	0	0	1630	325	4007	325	4007	0	•
0445	9	28	9	28	0	0	1645	250	1207	250	1207	0	0
0500	8		8		0		1700	339		339		0	
0515	10		10		0		1715	238		238		0	
0530	13		13		0		1730	165		165		0	
0545	18	49	18	49	0	0	1745	146	888	146	888	0	0
0600	24		24		0		1800	137		137		0	
0615	16		16		0		1815	92		92		0	
0630	26		26		0		1830	78		78		0	
0645	37	103	37	103	0	0	1845	58	365	58	365	0	0
0700	48		48		0		1900	85		85		0	
0715	41		41		0		1915	43		43		0	
0730	42		42		0		1930	41		41		0	
0745	52	183	52	183	0	0	1945	34	203	34	203	0	0
0800	51		51		0		2000	50		50		0	
0815	61		61		0		2015	17		17		0	
0830	60		60		0		2030	28		28		0	
0845	70	242	70	242	0	0	2045	17	112	17	112	0	0
0900	78		78		0		2100	12		12		0	
0915	87		87		0		2115	17		17		0	
0930	93		93		0		2130	15		15		0	
0945	88	346	88	346	0	0	2145	18	62	18	62	0	0
1000	98	0.10	98	0 10	0	J	2200	21	<i>52</i>	21	72	0	•
1015	104		104		0		2215	9		9		0	
1013	104		104		0		2230	7		7		0	
1030	111	422	111	422		0	2245	, 19	56	19	56	0	0
1100	137	422		422	0	U	2300	20	50	20	50		U
			137		0							0	
1115	143		143		0		2315	16		16		0	
1130	150	045	150	045	0	0	2330	60	400	60	400	0	•
1145	185	615	185	615	0	0	2345	32	128	32	128	0	0
							Total	8010		8010		0	

Job 1202_5_TB_ATR 1A Area Portsmouth, NH

Location Pease Blvd (Newington St) EB, 200' west of Rte 4 SB Ramps

Wednesday, March 8, 2023

								www.boston.ramebe					
Time		tal		В			Time		otal		В		
0000	58		58		0		1200	236		236		0	
0015	24		24		0		1215	182		182		0	
0030	42		42		0		1230	195		195		0	
0045	15	139	15	139	0	0	1245	152	765	152	765	0	0
0100	16		16		0		1300	126		126		0	
0115	11		11		0		1315	117		117		0	
0130	9		9		0		1330	128		128		0	
0145	5	41	5	41	0	0	1345	144	515	144	515	0	0
0200	5		5		0		1400	153		153		0	
0215	7		7		0		1415	137		137		0	
0230	4		4		0		1430	255		255		0	
0245	3	19	3	19	0	0	1445	215	760	215	760	0	0
0300	1		1		0		1500	261		261		0	
0315	1		1		0		1515	157		157		0	
0330	13		13		0		1530	263		263		0	
0345	5	20	5	20	0	0	1545	221	902	221	902	0	0
0400	4		4	_0	0	ŭ	1600	330	002	330		0	Ū
0415	9		9		0		1615	318		318		0	
0430	5		5		0		1630	352		352		0	
0445	11	29	11	29	0	0	1645	245	1245	245	1245	0	0
0500	7	20	7	20	0	U	1700	332	1240	332	1240	0	U
0500	, 12		, 12		0		1715	242		242		0	
0513	14		14		0		1713	193		193		0	
0545	19	52	19	52	0	0	1730	155	922	155	922	0	0
		32		32		U		144	922	144	922		U
0600 0615	29 21		29 21		0 0		1800 1815	79		79		0 0	
0630	20	445	20	445	0	0	1830	74	270	74	270	0	^
0645	45	115	45	115	0	0	1845	82	379	82	379	0	0
0700	56		56		0		1900	88		88		0	
0715	39		39		0		1915	49		49		0	
0730	37	400	37	400	0	•	1930	36	0.40	36	0.40	0	
0745	61	193	61	193	0	0	1945	39	212	39	212	0	0
0800	57		57		0		2000	44		44		0	
0815	69		69		0		2015	26		26		0	
0830	79		79		0		2030	21		21		0	
0845	75	280	75	280	0	0	2045	21	112	21	112	0	0
0900	81		81		0		2100	17		17		0	
0915	92		92		0		2115	10		10		0	
0930	85		85		0		2130	25	_	25	_	0	
0945	99	357	99	357	0	0	2145	19	71	19	71	0	0
1000	106		106		0		2200	15		15		0	
1015	116		116		0		2215	11		11		0	
1030	98		98		0		2230	10		10		0	
1045	135	455	135	455	0	0	2245	11	47	11	47	0	0
1100	161		161		0		2300	22		22		0	
1115	159		159		0		2315	5		5		0	
1130	183		183		0		2330	45		45		0	
1145	178	681	178	681	0	0	2345	32	104	32	104	0	0
							Total	8415		8415		0	

Job 1202_5_TB_ATR 1B Area Portsmouth, NH

Location Pease Blvd (Newington St) WB, 200' west of Rte 4 SB Ramps

Tuesday, March 7, 2023

Time	т.	4-1	14	/D			Times	т.	4-1	VA.	Б		
Time		tal		/B			Time	To	tai	440	В	0	
0000	6		6		0		1200	142		142		0	
0015	6		6		0		1215	157		157		0	
0030	3		3		0	•	1230	150	0.45	150	0.45	0	
0045	5	20	5	20	0	0	1245	196	645	196	645	0	0
0100	3		3		0		1300	151		151		0	
0115	1		1		0		1315	128		128		0	
0130	4		4		0		1330	139		139		0	
0145	0	8	0	8	0	0	1345	121	539	121	539	0	0
0200	8		8		0		1400	120		120		0	
0215	3		3		0		1415	116		116		0	
0230	4		4		0		1430	113		113		0	
0245	2	17	2	17	0	0	1445	121	470	121	470	0	0
0300	4		4		0		1500	89		89		0	
0315	3		3		0		1515	113		113		0	
0330	7		7		0		1530	98		98		0	
0345	6	20	6	20	0	0	1545	80	380	80	380	0	0
0400	3		3		0		1600	79		79		0	
0415	7		7		0		1615	89		89		0	
0430	19		19		0		1630	88		88		0	
0445	33	62	33	62	0	0	1645	84	340	84	340	0	0
0500	77		77		0		1700	63		63		0	
0515	132		132		0		1715	50		50		0	
0530	178		178		0		1730	56		56		0	
0545	202	589	202	589	0	0	1745	45	214	45	214	0	0
0600	130		130		0		1800	54		54		0	
0615	150		150		0		1815	61		61		0	
0630	163		163		0		1830	35		35		0	
0645	245	688	245	688	0	0	1845	27	177	27	177	0	0
0700	180		180		0		1900	24		24		0	
0715	219		219		0		1915	26		26		0	
0730	260		260		0		1930	35		35		0	
0745	313	972	313	972	0	0	1945	28	113	28	113	0	0
0800	275	0.2	275	V. <u>-</u>	0	Ū	2000	19		19		Ö	·
0815	241		241		0		2015	31		31		0	
0830	184		184		0		2030	14		14		0	
0845	193	893	193	893	0	0	2045	16	80	16	80	0	0
0900	146	000	146	000	0	Ū	2100	14	00	14	00	0	Ü
0915	126		126		0		2115	11		11		0	
0930	90		90		0		2130	8		8		0	
0945	114	476	114	476	0	0	2145	7	40	7	40	0	0
1000	89	470	89	710	0	3	2200	4	40	4	70	0	J
1015	108		108		0		2215	7		7		0	
1013	104		104		0		2230	5		5		0	
1030	104	406	104	406	0	0	2245	7	23	5 7	23	0	0
1100	89	400	89	400	0	U	2300	7	23	7	23	0	U
1115	106						2315	2		2		0	
1113			106		0		2330						
1145	114	127	114	127	0	0		5	20	5	20	0	0
1140	128	437	128	437	0	0	2345	6 7620	20	6	20	0	0
							Total	7629		7629		0	

Job 1202_5_TB_ATR 1B Area Portsmouth, NH

Location Pease Blvd (Newington St) WB, 200' west of Rte 4 SB Ramps

Wednesday, March 8, 2023

												onTrafficData	com
Time	To	tal	V	/B			Time		tal		/B		
0000	4		4		0		1200	145		145		0	
0015	3		3		0		1215	196		196		0	
0030	0		0		0		1230	161		161		0	
0045	0	7	0	7	0	0	1245	178	680	178	680	0	0
0100	6		6		0		1300	164		164		0	
0115	2		2		0		1315	136		136		0	
0130	5		5		0		1330	158		158		0	
0145	4	17	4	17	0	0	1345	124	582	124	582	0	0
0200	5	• •	5	* *	0	•	1400	123		123		0	-
0215	3		3		0		1415	106		106		0	
0230	1		1		0		1430	125		125		0	
0245	3	12	3	12	0	0	1445	130	484	130	484	0	0
0300	0	12	0	12	0	U	1500	99	404	99	404	0	U
0300	0		0		0		1515	102		102		0	
0313	7		7		0		1530	91		91		0	
		14		14		0			205	93	205		0
0345	7	14	7	14	0	0	1545	93	385		385	0	0
0400	8		8		0		1600	54		54		0	
0415	11		11		0		1615	78		78		0	
0430	21		21		0	•	1630	87		87		0	
0445	37	77	37	77	0	0	1645	90	309	90	309	0	0
0500	68		68		0		1700	65		65		0	
0515	127		127		0		1715	67		67		0	
0530	162		162		0		1730	57		57		0	
0545	206	563	206	563	0	0	1745	57	246	57	246	0	0
0600	137		137		0		1800	41		41		0	
0615	151		151		0		1815	44		44		0	
0630	170		170		0		1830	44		44		0	
0645	259	717	259	717	0	0	1845	24	153	24	153	0	0
0700	179		179		0		1900	38		38		0	
0715	224		224		0		1915	32		32		0	
0730	264		264		0		1930	28		28		0	
0745	335	1002	335	1002	0	0	1945	33	131	33	131	0	0
0800	262		262		0		2000	21		21		0	
0815	274		274		0		2015	22		22		0	
0830	221		221		0		2030	12		12		0	
0845	248	1005	248	1005	0	0	2045	22	77	22	77	0	0
0900	133	.000	133	. 500	0	3	2100	26		26		0	J
0900	135		135		0		2115	19		19		0	
0913	114		114		0		2130	14		14		0	
0930	119	501	119	501	0	0	2145	8	67	8	67	0	0
1000	102	JU I	102	JU I	0	U	2200	o 8	01	8	01	0	U
1015	122		122		0		2215	0		0		0	
1030	112	400	112	400	0	0	2230	7	40	7	40	0	^
1045	124	460	124	460	0	0	2245	4	19	4	19	0	0
1100	97		97		0		2300	5		5		0	
1115	124		124		0		2315	3		3		0	
1130	149		149		0		2330	7		7		0	
1145	133	503	133	503	0	0	2345	5	20	5 8031	20	0	0
							Total	8031				0	

APPENDIX BNHDOT Traffic Data

Location Info								
Location ID	82379024							
Туре	I-SECTION							
Functional Class	7							
Located On	Pease Blvd							
Direction	2-WAY							
Community	PORTSMOUTH							
MPO_ID								
HPMS ID								
Agency	New Hampshire DOT							

Count	Data Info
Start Date	7/18/2018
End Date	7/19/2018
Start Time	12:00 AM
End Time	12:00 AM
Direction	2-WAY
Notes	nhdot
Count Source	8.2379E+11
File Name	823790243070.prn
Weather	
Study	
Owner	iwong
QC Status	Accepted

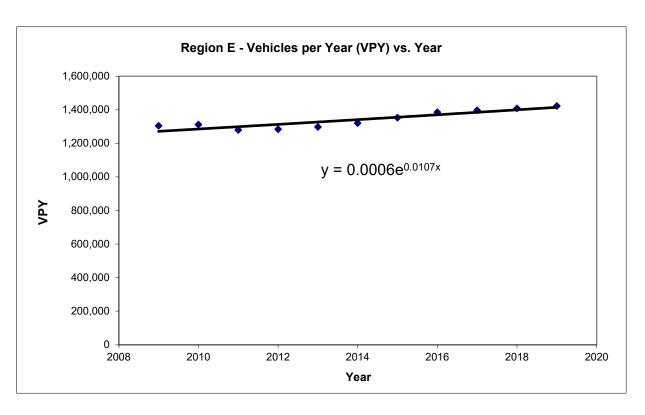
Interval: 60 mins									
Time	Hourly Count								
00:00 - 01:00	251								
01:00 - 02:00	46								
02:00 - 03:00	123								
03:00 - 04:00	92								
04:00 - 05:00	184								
05:00 - 06:00	416								
06:00 - 07:00	1130								
07:00 - 08:00	1664								
08:00 - 09:00	1817								
09:00 - 10:00	1277								
10:00 - 11:00	1079								
11:00 - 12:00	1570								
12:00 - 13:00	2098								
13:00 - 14:00	1616								
14:00 - 15:00	1424								
15:00 - 16:00	1936								
16:00 - 17:00	2032								
17:00 - 18:00	1831								
18:00 - 19:00	989								
19:00 - 20:00	603								
20:00 - 21:00	417								
21:00 - 22:00	343								
22:00 - 23:00	210								
23:00 - 24:00	166								
TOTAL	23314								

Year 2018 Monthly Data

Group 4 Averages: Urban Highways

		Adjustment	Adjustment				
<u>Month</u>	<u>ADT</u>	to Average	to Peak	<u>GROUP</u>	COUNTER	TOWN	LOCATION
January	11,282	1.13	1.24	04	02051003	BOW	NH 3A south of Robinson Rd
February	11,848	1.08	1.18	04	02089001	CHICHESTER	NH 28 (Suncook Valley Rd) north of Bear Hill Rd
March	11,828	1.08	1.18	04	02091001	CLAREMONT	NH 12/103 east of Vermont SL
April	12,491	1.02	1.12	04	62099056	CONCORD	NH 106 (Sheep Davis Rd) at Loudon TL (north of Ashby Rd)
May	13,587	0.94	1.03	04	72099278	CONCORD	US 3 (Fisherville Rd) north of Sewalls Falls Rd
June	13,911	0.92	1.00	04	02125001	DOVER	Dover Point Rd south of Thornwood Ln
July	13,765	0.93	1.01	04	02133021	DURHAM	US 4 east of NH 108
August	13,945	0.92	1.00	04	82197076	HAMPTON	US 1 (Lafayette Rd) south of Ramp to NH 101
September	13,168	0.97	1.06	04	02229022	HUDSON*	Circumferential Hwy east of Nashua TL
October	13,367	0.96	1.04	04	02253025	LEBANON	NH 120 1 mile south of Hanover TL (south of Lahaye Dr)
November	12,215	1.05	1.14	04	02255001	LEE	NH 125 (Calef Hwy) north of Pinkham Rd
December	11,963	1.07	1.17	04	02287001	MARLBOROUGH	NH 12 at Swanzey TL
				04	02297001	MERRIMACK	US 3 (Daniel Webster Hwy) north of Hilton Dr
Average ADT:	12,781			04	02303001	MILFORD*	NH 101A at Amherst TL (west of Overlook Dr)
Peak ADT:	13,945			04	02315051	NASHUA*	NH 111 (Bridge / Ferry St) at Hudson TL
				04	02339001	NEWPORT	NH 10 1 mile south of Croydon TL (north of Corbin Rd)
				04	02345001	NORTH HAMPTON	US 1 (Lafayette Rd) north of North Rd
				04	62387052	RINDGE*	US 202 at Jaffrey TL (north of County Rd)
				04	02445001	TEMPLE	NH 101 at Wilton TL (west of Old County Farm Rd)
				04	02489001	WINDHAM	NH 28 at Derry TL (north of Northland Rd)

^{*} denotes counter that is not included in calculation


Year 2019 Monthly Data

Group 4 Averages: Urban Highways

		Adjustment	Adjustment				
<u>Month</u>	<u>ADT</u>	to Average	to Peak	<u>GROUP</u>	COUNTER	TOWN	LOCATION
January	11,431	1.12	1.23	04	02051003	BOW	NH 3A south of Robinson Rd
February	11,848	1.08	1.18	04	02089001	CHICHESTER	NH 28 (Suncook Valley Rd) north of Bear Hill Rd
March	12,141	1.06	1.15	04	02091001	CLAREMONT	NH 12/103 east of Vermont SL
April	12,860	1.00	1.09	04	62099056	CONCORD	NH 106 (Sheep Davis Rd) at Loudon TL (north of Ashby F
May	13,551	0.95	1.03	04	72099278	CONCORD	US 3 (Fisherville Rd) north of Sewalls Falls Rd
June	13,785	0.93	1.02	04	02125001	DOVER	Dover Point Rd south of Thornwood Ln
July	13,942	0.92	1.01	04	02133021	DURHAM	US 4 east of NH 108
August	14,016	0.92	1.00	04	82197076	HAMPTON	US 1 (Lafayette Rd) south of Ramp to NH 101
September	13,379	0.96	1.05	04	02229022	HUDSON*	Circumferential Hwy east of Nashua TL
October	13,339	0.96	1.05	04	02253025	LEBANON	NH 120 1 mile south of Hanover TL (south of Lahaye Dr)
November	12,265	1.05	1.14	04	02255001	LEE	NH 125 (Calef Hwy) north of Pinkham Rd
December	11,496	1.12	1.22	04	02287001	MARLBOROUGH	NH 12 at Swanzey TL
				04	02297001	MERRIMACK	US 3 (Daniel Webster Hwy) north of Hilton Dr
Average ADT:	12,838			04	02303001	MILFORD*	NH 101A at Amherst TL (west of Overlook Dr)
Peak ADT:	14,016			04	02315051	NASHUA*	NH 111 (Bridge / Ferry St) at Hudson TL
				04	02339001	NEWPORT	NH 10 1 mile south of Croydon TL (north of Corbin Rd)
				04	02345001	NORTH HAMPTON	US 1 (Lafayette Rd) north of North Rd
				04	62387052	RINDGE*	US 202 at Jaffrey TL (north of County Rd)
				04	02445001	TEMPLE	NH 101 at Wilton TL (west of Old County Farm Rd)
				04	02489001	WINDHAM	NH 28 at Derry TL (north of Northland Rd)

^{*} denotes counter that is not included in calculation

Year	Total
2009	1303948
2010	1312251
2011	1279824
2012	1284314
2013	1298171
2014	1320862
2015	1353486
2016	1385361
2017	1396932
2018	1408237
2019	1422176
CAGR	0.87%
Exp	1.07%
Avg	0.97%

APPENDIX C

Traffic Volume Adjustment Calculation

Traffic Volume Adjustment Factor Calculation

		0000			NHDOT Count Station Data (Loc ID 82379024) - Pease Blvd, West of Route 4 SB Ramps				_			
Peak Hour	Feb 2022	2022 Seasonally Adjust to Peak ¹	March 2023	2023 Seasonally Adjust to Peak ²	July 2018	2018 Seasonally Adjusted ²	Grown to 2019 ³	2022 Adjustment Factor (to 2019)	2023 Adjustment Factor (to 2019)			
AM Peak	1027	1212	1175	1351	1817	1835	1854	53%	37%			
PM Peak	1210	1428	1551	1783	2032	2052	2073	45%	16%			
¹ 2019 Seasonal Adjustme	` '	1.18	2019 NHDOT Group 4 Adjustment to Peak for February									
	ent Factor to Peak (March)	1.15	2019 NHDOT Group 4 Adjustment to Peak for March									
	2018 Seasonal Adjustment Factor to Peak 1.01			2018 NHDOT Group 4 Adjustment to Peak for July								
² 2019 Seasonal Adjustment Factor 1.0			2019 NHDOT Group 4 Adjustment to Peak for August									
³ 2019 Annual Growth 1.0%					Per LOC ID 8237902	24 growth from 2018 to	2019					

APPENDIX D

Background Development Traffic Volumes

Feb 16, 2023-9:09am Plotted By: RCase Tighe & Bond, Inc. \\tighebond.com\\data\\Data\\Projects\\P\\P0595 Pro

Feb 16, 2023-9:10am Plotted By: RCase Tighe Projects Projects Pro Con General Proposals P0595-015 100 NH Avenue Drawings_Figures AutoCAD Figures Traffic Volume Figures. dwg

APPENDIX EReassigned Traffic Volumes

May 19, 2023-10:49am Plotted By: MStoutz Tighe & Bond, Inc. J:\L\L0700 Lonza Biologics Expansion was 1576F\026_Project Albacore\Drawings\AutoCAD\Figures\L0700-026 Traffic Volume Figures.dwg

May 19, 2023-10:49am Plotted By: MStoutz Tighe & Bond, Inc. J:\L\L0700 Lonza Biologics Expansion was 1576F\026_Project Albacore\Drawings\AutoCAD\Figures\L0700-026 Traffic Volume Figures.dwg

APPENDIX FCollision History Summary

Intersection	Collision	History	/ Summary
--------------	-----------	---------	-----------

Other/Unknown

Intersection: Pease Boulevard at **International Drive COLLISION TYPE** 2020 2021 2022 Total **Percent** 100.0% Fixed Object 0 1 0 1 TOTAL 0 0 100% 1 1 **CONTRIBUTING FACTOR** 2020 2021 2022 Total Percent Other/Unknown 0 0 100.0% 1 **TOTAL** 0 1 0 100% **COLLISION EVENT** 2021 2020 2022 Total Percent Motor Vehicle 100.0% 0 0 TOTAL 0 100% 1 0 **SEVERITY** 2020 2021 2022 **Total** Percent Minor Injury / Property Damage Only (PDO) 0 1 100.0% TOTAL 0 0 100% **DAY & TIME** 2020 2021 2022 Percent Total Weekday Off-Peak 0 0 100.0% 1 1 TOTAL 100% **WEATHER** 2020 2021 2022 **Total Percent** Other/Unknown 100.0% 0 0 TOTAL 1 0 0 100% **ROAD SURFACE CONDITION** 2020 2021 2022 Total Percent Other/Unknown 0 0 100.0% TOTAL 0 1 0 1 100% **LIGHT CONDITIONS** 2020 2021 2022 Total **Percent**

0

0

TOTAL

0

0

1

1

100.0%

100%

Intersection	Collision	History	Summary	,
--------------	-----------	---------	---------	---

COLLISION TYPE		2020	2021	2022	Total	Percent
Angle		2	2	0	4	57.1%
Rear-End		0	1	0	1	14.3%
Overturn/Rollover		0	0	1	1 1	14.3%
Sideswipe, Same Direction		1	0	0	1 1	14.3%
Sideswipe, Same Direction	TOTAL	3	3	1	7	100%
CONTRIBUTING FACTOR						
		2020	2021	2022	Total	Percent
Other/Unknown		3	3	1	7	100.0%
	TOTAL	3	3	1	7	100%
COLLISION EVENT						
		2020	2021	2022	Total	Percent
Motor Vehicle		3	3	0	6	100.0%
	TOTAL	3	3	0	6	100%
SEVERITY						
		2020	2021	2022	Total	Percent
Minor Injury / Property Damage Only (PDO)		3	3	1	7	100.0%
	TOTAL	3	3	1	7	100%
DAY & TIME						
		2020	2021	2022	Total	Percent
Weekday 6-9 A.M.		1	0	0	1	14.3%
Weekday Off-Peak		2	1	0	3	42.9%
Weekend Off-Peak		0	2	1	3	42.9%
	TOTAL	3	3	1	7	100%
WEATHER						
		2020	2021	2022	Total	Percent
Clear		2	3	0	5	71.4%
Snow		1	0	0	1	14.3%
Other/Unknown		0	0	1	1	14.3%
	TOTAL	3	3	1	7	100%
ROAD SURFACE CONDITION		2020	2021	2022	Tatal	Davaant
Dry	+	2020	3	0	Total 5	Percent 71.4%
Dry Snow		1	0	0	1	71.4% 14.3%
		0	0	1	1 1	14.3% 14.3%
Other/Unknown	TOTAL	3	3	1	7	100%
LIGHT CONDITIONS	· ·					
FIGUR CONDITIONS		2020	2021	2022	Total	Percent
Other/Unknown		3	3	1	7	100.0%
	TOTAL	3	3	1	7	100%

Intersection: Pease Boulevard

at

US Route 4 SB Ramps

Intersection: Gosling Road/Pease Boulevard

US Route 4 NB Ramps

COL	_LT	SIC	NC	TY	PE

	2020	2021	2022	Total	Percent
Rear-End	0	1	3	4	36.4%
Angle	0	1	2	3	27.3%
Sideswipe, Same Direction	0	1	3	4	36.4%
TOTAL	0	3	8	11	100%

CONTRIBUTING FACTOR

	2020	2021	2022	Total	Percent
Other/Unknown	0	3	8	11	100.0%
TOTAL	0	3	8	11	100%

COLLISION EVENT

	2020	2021	2022	Total	Percent
Motor Vehicle	0	3	8	11	100.0%
TOTAL	0	3	8	11	100%

SEVERITY

	2020	2021	2022	Total	Percent
Minor Injury / Property Damage Only (PDO)	0	3	8	11	100.0%
TOTAL	0	3	8	11	100%

DAY & TIME

		2020	2021	2022	Total	Percent
Weekday 6-9 A.M.		0	0	1	1	9.1%
Weekday 3-6 P.M.		0	0	2	2	18.2%
Weekday Off-Peak		0	3	2	5	45.5%
Saturday 11 A.M 2 P.M.		0	0	2	2	18.2%
Weekend Off-Peak		0	0	1	1	9.1%
	TOTAL	0	3	8	11	100%

WEATHER

	2020	2021	2022	Total	Percent
Clear	0	3	0	3	27.3%
Other/Unknown	0	0	8	8	72.7%
TOTAL	Λ	3	Q	11	100%

ROAD SURFACE CONDITION

	2020	2021	2022	Total	Percent
Dry	0	3	0	3	27.3%
Other/Unknown	0	0	8	8	72.7%
TOTAL	Λ	3	Q	11	100%

LIGHT CONDITIONS

	2020	2021	2022	Total	Percent
Other/Unknown	0	3	8	11	100.0%
TOTAL	0	3	8	11	100%

Other/Unknown

Intersection Collision History Summary	Intersection:	Route 33 (Greenland R	oad)	at	
		Grafton Ro		•		
COLLISION TYPE						
		2020	2021	2022	Total	Percent
Rear-End		1	2	2	5	100.0%
	TOTAL	1	2	2	5	100%
CONTRIBUTING FACTOR						
		2020	2021	2022	Total	Percent
Other/Unknown		1	2	2	5	100.0%
	TOTAL	1	2	2	5	100%
COLLISION EVENT						
		2020	2021	2022	Total	Percent
Motor Vehicle		1	2	2	5	100.0%
	TOTAL	1	2	2	5	100%
SEVERITY						
		2020	2021	2022	Total	Percent
Minor Injury / Property Damage Only (PDO)		1	2	2	5	100.0%
	TOTAL	1	2	2	5	100%
DAY & TIME						
		2020	2021	2022	Total	Percent
Weekday 3-6 P.M.		1	0	1	2	40.0%
Weekday Off-Peak		0	1	0	1	20.0%
Saturday 11 A.M 2 P.M.		0	1	0	1	20.0%
Weekend Off-Peak		Ö	0	1	1	20.0%
	TOTAL	1	2	2	5	100%
WEATHER						
		2020	2021	2022	Total	Percent
Other/Unknown		1	2	2	5	100.0%
	TOTAL	1	2	2	5	100%
ROAD SURFACE CONDITION						
		2020	2021	2022	Total	Percent
Other/Unknown		1	2	2	5	100.0%
	TOTAL	1	2	2	5	100%
LIGHT CONDITIONS						
		2020	2021	2022	Total	Percent
Oth or / Union own	t	4	2	2	-	100.00/

100.0%

Intersection	Collision	History	/ Summary
--------------	-----------	---------	-----------

Intersection: Corporate Drive

International Drive

COL	TCI	$\Gamma \cap$	NI	T	/DE	:
COL	 13.	LU	14	- 1 1	ľPE	:

		2020	2021	2022	Total	Percent
Rear-End		2	0	1	3	30.0%
Head-On		1	0	0	1	10.0%
Angle		3	2	1	5	50.0%
Sideswipe, Same Direction		1	0	0	1	10.0%
	TOTAL	7	2	2	10	100%

CONTRIBUTING FACTOR

	2020	2021	2022	Total	Percent
Other/Unknown	6	2	2	10	100.0%
TOTAL	6	2	2	10	100%

COLLISION EVENT

	2020	2021	2022	Total	Percent
Motor Vehicle	7	2	2	11	100.0%
TOTAL	7	2	2	11	100%

SEVERITY

	2020	2021	2022	Total	Percent
Minor Injury / Property Damage Only (PDO)	7	2	2	11	100.0%
TOTAL	7	2	2	11	100%

DAY & TIME

		2020	2021	2022	Total	Percent
Weekday 6-9 A.M.		1	1	1	3	27.3%
Weekday 3-6 P.M.		3	0	0	3	27.3%
Weekday Off-Peak		2	1	1	4	36.4%
Weekend Off-Peak		1	0	0	1	9.1%
	TOTAL	7	2	2	11	100%

WEATHER

	2020	2021	2022	Total	Percent
Other/Unknown	7	2	2	11	100.0%
TO	TAI 7	7	2	1.1	1000/-

ROAD SURFACE CONDITION

		2020	2021	2022	Total	Percent
Other/Unknown		7	2	2	11	100.0%
	ΤΩΤΔΙ	7	2	2	11	100%

LIGHT CONDITIONS

	2020	2021	2022	Total	Percent
Other/Unknown	7	2	2	11	100.0%
TOTAL	7	2	2	11	100%

Intersection	Collision	History	Summary	,
--------------	-----------	---------	---------	---

Intersection: New Hampshire Avenue **International Drive**

COLLISION TYPI	LUI	ᄔᆚ	LSI	UI	N	ΙY	ч	E
----------------	-----	----	-----	----	---	----	---	---

		2020	2021	2022	Total	Percent
Other/Unknown		1	0	0	1	16.7%
Angle		2	1	2	5	83.3%
	TOTAL	3	1	2	6	100%

CONTRIBUTING FACTOR

	2020	2021	2022	Total	Percent
Other/Unknown	3	1	2	6	100.0%
TO	TAI 3	1	2	6	100%

COLLISION EVENT

	2020	2021	2022	Total	Percent
Motor Vehicle	3	1	2	6	100.0%
TOTAL	3	1	2	6	100%

SEVERITY

	2020	2021	2022	Total	Percent
Serious Injury	1	0	0	1	16.7%
Minor Injury / Property Damage Only (PDO)	2	1	2	5	83.3%
TOTAL	. 3	1	2	6	100%

DAY & TIME

	2020	2021	2022	Total	Percent
Weekday 3-6 P.M.	0	0	1	1	16.7%
Weekday Off-Peak	3	1	0	4	66.7%
Weekend Off-Peak	0	0	1	1	16.7%
TOTAL	3	1	2	6	100%

WEATHER

	2020	2021	2022	Total	Percent
Other/Unknown	3	1	2	6	100.0%
TOTAL	. 3	1	2	6	100%

ROAD SURFACE CONDITION

	2020	2021	2022	Total	Percent
Other/Unknown	3	1	2	6	100.0%
T	OTAL 3	1	2	6	100%

LIGHT CONDITIONS

	2020	2021	2022	Total	Percent
Other/Unknown	3	1	2	6	100.0%
TOTAL	3	1	2	6	100%

Intersection: Grafton Drive

Corporate Drive

	,	orporate i	JIIVE			
COLLISION TYPE						
		2020	2021	2022	Total	Percent
Angle		1	0	0	1	100.0%
	TOTAL	1	0	0	1	100%
CONTRIBUTING FACTOR						
		2020	2021	2022	Total	Percent
Other/Unknown		1	0	0	1	100.0%
	TOTAL	1	0	0	1	100%
COLLISION EVENT						
		2020	2021	2022	Total	Percent
Motor Vehicle		1	0	0	1	100.0%
	TOTAL	1	0	0	1	100%
SEVERITY						
		2020	2021	2022	Total	Percent
Minor Injury / Property Damage Only (PDO)		1	0	0	1	100.0%
	TOTAL	1	0	0	1	100%
DAY & TIME						
		2020	2021	2022	Total	Percent
Weekday Off-Peak		1	0	0	1	100.0%
	TOTAL	1	0	0	1	100%
WEATHER						
		2020	2021	2022	Total	Percent
Other/Unknown		1	0	0	1	100.0%
	TOTAL	1	0	0	1	100%
ROAD SURFACE CONDITION						
		2020	2021	2022	Total	Percent
Other/Unknown		1	0	0	1	100.0%
	TOTAL	1	0	0	1	100%
LIGHT CONDITIONS						
		2020	2021	2022	Total	Percent
Other/Unknown		1	0	0	1	100.0%
	TOTAL	1	0		1	100%

APPENDIX G

Capacity Analysis Methodology

TECHNICAL MEMORANDUM Tighe&Bond

CAPACITY ANALYSIS METHODOLOGY

A primary result of capacity analysis is the assignment of levels of service to traffic facilities under various traffic flow conditions. The capacity analysis methodology is based on the concepts and procedures in the *Highway Capacity Manual* (HCM).¹ The concept of level of service (LOS) is defined as a qualitative measure describing operational conditions within a traffic stream and their perception by motorists and/or passengers. A level-of-service definition provides an index to quality of traffic flow in terms of such factors as speed, travel time, freedom to maneuver, traffic interruptions, comfort, convenience, and safety.

Six levels of service are defined for each type of facility. They are given letter designations from A to F, with LOS A representing the best operating conditions and LOS F the worst. Since the level of service of a traffic facility is a function of the traffic flows placed upon it, such a facility may operate at a wide range of levels of service, depending on the time of day, day of week, or period of year. A description of the operating condition under each level of service is provided below:

- LOS A describes conditions with little to no delay to motorists.
- LOS B represents a desirable level with relatively low delay to motorists.
- LOS C describes conditions with average delays to motorists.
- LOS D describes operations where the influence of congestion becomes more noticeable. Delays are still within an acceptable range.
- LOS E represents operating conditions with high delay values. This level is considered by many agencies to be the limit of acceptable delay.
- LOS F is considered to be unacceptable to most drivers with high delay values that often occur, when arrival flow rates exceed the capacity of the intersection.

Signalized Intersections

Levels of service for signalized intersections are also calculated using the operational analysis methodology of the HCM. The methodology for signalized intersections assesses the effects of signal type, timing, phasing, and progression; vehicle mix; and geometrics on average *control* delay. Control delay is used to establish the operating characteristics for an intersection or an approach to an intersection. Volume-to-capacity (v/c) ratios are also used to help signify the utilization of a lane group's capacity at an intersection. A v/c ratio of ≥ 1.00 represents conditions when the traffic signal cycle capacity is fully utilized and indicates a capacity failure. The level-of-service criteria for signalized intersections are shown in Table A-1.

¹Highway Capacity Manual, 6^{TH} Edition: A Guide for Multimodal Mobility Analysis. Washington, D.C.: Transportation Research Board, 2016.

TECHNICAL MEMORANDUM Tighe&Bond

Unsignalized Intersections

Levels of service for unsignalized intersections are calculated using the operational analysis methodology of the HCM. The procedure accounts for lane configuration on both the minor and major street approaches, conflicting traffic stream volumes, and the type of intersection control (STOP, YIELD, or all-way STOP control). The definition of level of service for unsignalized intersections is a function of average *control* delay. Control delay at an unsignalized intersection is defined as the total elapsed time from when a vehicle stops at the end of the queue until the vehicle departs from the stop line. This time includes the time required for the vehicle to travel from the last-in-queue position to the first-in-queue position.

Volume-to-capacity (v/c) ratios are also used to help signify the utilization of a movement's capacity at an intersection. A v/c ratio of ≥ 1.00 represents conditions when the movement is fully utilized and indicates a capacity failure. The capacity of the movements is based on the distribution of gaps in the major street traffic stream, the selection of gaps to complete the desired movement, and the follow-up headways for each driver in the queue. When an unsignalized intersection is located within 0.25 miles of a signalized intersection, traffic flows may not be random and some platoon structure may exist, thereby affecting the minor street operations. The level-of-service criteria for unsignalized intersections are shown in Table A-1.

TABLE A-1Level-of-Service Criteria for Intersections

Level of	Signalized Intersection Criteria Average Control Delay	Unsignalized Intersection Criteria Average Control Delay	
Service	(Seconds per Vehicle)	(Seconds per Vehicle)	V/C Ratio >1.00 ^a
Α	≤10	≤10	F
В	>10 and ≤20	>10 and ≤15	F
С	>20 and ≤35	>15 and ≤25	F
D	>35 and ≤55	>25 and ≤35	F
Е	>55 and ≤80	>35 and ≤50	F
F	>80	>50	F

Note: ^aFor approach-based and intersection-wide assessments, LOS is defined solely by control delay.

Source: Highway Capacity Manual, 6th Edition: A Guide for Multimodal Mobility Analysis. Washington, D.C.: Transportation Research Board, 2016. Exhibit 19-8, Pg. 19-16.

For signalized intersections, this delay criterion may be applied in assigning level-of-service designations to individual lane groups, to individual intersection approaches, or to the entire intersection. For unsignalized intersections, this delay criterion may be applied in assigning level-of-service designations to individual lane groups on the minor street approaches or to the left turns from the major street approaches.

APPENDIX HCapacity Analysis Worksheets

	Þ	-	•	1	604533 624533	•	1	1	1	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1		77	1			र्स	77		4	
Traffic Volume (vph)	3	90	6	1166	583	129	8	5	270	6	2	2
Future Volume (vph)	3	90	6	1166	583	129	8	5	270	6	2	2
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	12	11	12	12	16	12
Total Lost time (s)	5.0	6.0		6.0	6.0			6.0	6.0		6.0	
Lane Util. Factor	1.00	0.95		0.97	0.95			1.00	0.88		1.00	
Frt	1.00	0.99		1.00	0.97			1.00	0.85		0.97	
Flt Protected	0.95	1.00		0.95	1.00			0.97	1.00		0.97	
Satd. Flow (prot)	1805	3511		3467	3469			1783	2682		2035	
Flt Permitted	0.95	1.00		0.95	1.00			0.87	1.00		0.86	
Satd. Flow (perm)	1805	3511		3467	3469			1597	2682		1810	
Peak-hour factor, PHF	0.84	0.84	0.84	0.83	1.00	0.83	0.88	0.88	0.88	0.63	0.63	0.63
Adj. Flow (vph)	4	107	7	1405	583	155	9	6	307	10	3	3
RTOR Reduction (vph)	0	4	0	0	11	0	0	0	0	0	2	0
Lane Group Flow (vph)	4	110	0	1405	727	0	0	15	307	0	14	0
Heavy Vehicles (%)	0%	2%	0%	1%	1%	0%	0%	0%	6%	0%	0%	0%
Turn Type	Prot	NA		Prot	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	6	2		1	5			8			4	
Permitted Phases							8		8	4		
Actuated Green, G (s)	5.5	12.5		44.0	52.0			15.4	15.4		15.4	
Effective Green, g (s)	5.5	12.5		44.0	52.0			15.4	15.4		15.4	
Actuated g/C Ratio	0.06	0.14		0.49	0.58			0.17	0.17		0.17	
Clearance Time (s)	5.0	6.0		6.0	6.0			6.0	6.0		6.0	
Vehicle Extension (s)	2.0	3.0		3.0	3.0			3.0	3.0		3.0	
Lane Grp Cap (vph)	110	488		1696	2006			273	459		310	
v/s Ratio Prot	0.00	c0.03		c0.41	c0.21							
v/s Ratio Perm								0.01	c0.11		0.01	
v/c Ratio	0.04	0.22		0.83	0.36			0.05	0.67		0.04	
Uniform Delay, d1	39.7	34.4		19.7	10.1			31.2	34.9		31.1	
Progression Factor	1.00	1.00		1.00	1.00			1.00	1.00		1.00	
Incremental Delay, d2	0.0	0.2		3.5	0.1			0.1	3.7		0.1	
Delay (s)	39.8	34.6		23.2	10.2			31.2	38.5		31.2	
Level of Service	D	C		С	В			C	D		C	
Approach Delay (s)		34.8			18.7			38.2			31.2	
Approach LOS		С			В			D			С	
Intersection Summary												
HCM 2000 Control Delay			21.9	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capacit	y ratio		0.69									
Actuated Cycle Length (s)			89.9		um of lost				18.0			
Intersection Capacity Utilization	on		55.6%	IC	CU Level of	of Service			В			
Analysis Period (min)			15									

102: US Route 4 SB On-Ramp/US Route 4 SB Off-Ramp & Pease Blvd 2023 Existing Conditions Weekday AM Peak

	•		•	1	62455	•	1	1	1	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		††††	7	ሻሻ	^					77		77
Traffic Volume (vph)	0	252	114	154	969	0	0	0	0	555	0	802
Future Volume (vph)	0	252	114	154	969	0	0	0	0	555	0	802
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	10	11	10	11	12	12	12	12	12	12	12
Total Lost time (s)		6.0	6.0	6.0	6.0					6.0		6.0
Lane Util. Factor		0.86	1.00	0.97	0.95					0.97		0.88
Frt		1.00	0.85	1.00	1.00					1.00		0.85
Flt Protected		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (prot)		5981	1419	2918	3455					3467		2814
Flt Permitted		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (perm)		5981	1419	2918	3455					3467		2814
Peak-hour factor, PHF	0.80	0.80	0.80	0.80	0.80	0.80	0.92	0.92	0.92	0.75	0.75	0.75
Adj. Flow (vph)	0	315	142	192	1211	0	0	0	0	740	0	1069
RTOR Reduction (vph)	0	0	97	0	0	0	0	0	0	0	0	117
Lane Group Flow (vph)	0	315	46	193	1211	0	0	0	0	740	0	952
Heavy Vehicles (%)	0%	2%	10%	12%	1%	0%	2%	2%	2%	1%	0%	1%
Turn Type		NA	Prot	Prot	NA					Prot		Prot
Protected Phases		6	6	5	2 5					3		3
Permitted Phases												
Actuated Green, G (s)		32.7	32.7	25.0	63.7					25.0		25.0
Effective Green, g (s)		32.7	32.7	25.0	63.7					25.0		25.0
Actuated g/C Ratio		0.32	0.32	0.25	0.63					0.25		0.25
Clearance Time (s)		6.0	6.0	6.0						6.0		6.0
Vehicle Extension (s)		5.0	5.0	4.0						5.0		5.0
Lane Grp Cap (vph)		1942	460	724	2185					860		698
v/s Ratio Prot		0.05	0.03	0.07	c0.35					0.21		c0.34
v/s Ratio Perm												
v/c Ratio		0.16	0.10	0.27	0.55					0.86		1.36
Uniform Delay, d1		24.2	23.7	30.5	10.5					36.2		37.9
Progression Factor		1.00	1.00	0.88	1.62					1.00		1.00
Incremental Delay, d2		0.1	0.2	0.1	0.3					9.5		172.7
Delay (s)		24.3	23.9	26.8	17.2					45.7		210.6
Level of Service		С	С	С	В					D		F
Approach Delay (s)		24.2			18.5			0.0			143.2	
Approach LOS		С			В			Α			F	
Intersection Summary												
HCM 2000 Control Delay			80.7	Н	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capac	ity ratio		0.84									
Actuated Cycle Length (s)			100.7		um of lost				18.0			
Intersection Capacity Utilizati	on		64.8%	IC	CU Level o	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

103: US Route 4 NB Off-ramp/US Route 4 NB On-Ramp & Pease Blvd 2023 Existing Conditions Weekday AM Peak

	•	-	•	1	*	•	1	1	1	1	Į.	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	44			444		44		77			
Traffic Volume (vph)	110	697	0	0	372	76	751	0	359	0	0	0
Future Volume (vph)	110	697	0	0	372	76	751	0	359	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	11	12	12	12	12	12	12	12	12	12	12
Total Lost time (s)	6.0	6.0			6.0		6.0		6.0			
Lane Util. Factor	0.97	0.95			0.91		0.97		0.88			
Frt	1.00	1.00			0.97		1.00		0.85			
Flt Protected	0.95	1.00			1.00		0.95		1.00			
Satd. Flow (prot)	3113	3421			4932		3433		2733			
Flt Permitted	0.45	1.00			1.00		0.95		1.00			
Satd. Flow (perm)	1462	3421			4932		3433		2733			
Peak-hour factor, PHF	0.87	0.87	0.87	0.85	0.85	0.85	0.78	0.78	0.78	0.92	0.92	0.92
Adj. Flow (vph)	126	801	0	0	438	89	963	0	460	0	0	0
RTOR Reduction (vph)	0	0	0	0	27	0	0	0	346	0	0	0
Lane Group Flow (vph)	126	801	0	0	500	0	963	0	114	0	0	0
Heavy Vehicles (%)	5%	2%	0%	0%	2%	5%	2%	2%	4%	0%	0%	0%
Turn Type	pm+pt	NA			NA		Prot		Prot			
Protected Phases	1	6			2		3		3			
Permitted Phases	6											
Actuated Green, G (s)	49.7	32.7			40.7		25.0		25.0			
Effective Green, g (s)	49.7	32.7			40.7		25.0		25.0			
Actuated g/C Ratio	0.49	0.32			0.40		0.25		0.25			
Clearance Time (s)	6.0	6.0			6.0		6.0		6.0			
Vehicle Extension (s)	4.0	5.0			5.0		5.0		5.0			
Lane Grp Cap (vph)	1000	1110			1993		852		678			
v/s Ratio Prot	c0.02	c0.23			c0.10		c0.28		0.04			
v/s Ratio Perm	0.04											
v/c Ratio	0.13	0.72			0.25		1.13		0.17			
Uniform Delay, d1	13.5	30.0			19.9		37.9		29.7			
Progression Factor	1.16	1.31			1.00		1.00		1.00			
Incremental Delay, d2	0.1	2.2			0.1		73.3		0.2			
Delay (s)	15.7	41.5			20.0		111.1		29.9			
Level of Service	В	D			С		F		С			
Approach Delay (s)		38.0			20.0			84.9			0.0	
Approach LOS		D			С			F			Α	
Intersection Summary												
HCM 2000 Control Delay			57.9	Н	CM 2000	Level of	Service		Е			
HCM 2000 Volume to Capa	acity ratio		0.67									
Actuated Cycle Length (s)			100.7		um of lost				18.0			
Intersection Capacity Utiliza	ation		64.8%	IC	CU Level of	of Service			С			
Analysis Period (min)			15									
o Critical Lano Group												

	٠	-	*	~	1	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	*	^	^	7	7	7	
Traffic Volume (vph)	608	1990	717	536	148	175	
Future Volume (vph)	608	1990	717	536	148	175	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0	
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00	
Frt	1.00	1.00	1.00	0.85	1.00	0.85	
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1787	3471	3343	1583	1719	1538	
FIt Permitted	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	1787	3471	3343	1583	1719	1538	
Peak-hour factor, PHF	0.86	0.86	0.96	0.96	0.76	0.76	
Adj. Flow (vph)	707	2314	747	558	195	230	
RTOR Reduction (vph)	0	0	0	388	0	179	
Lane Group Flow (vph)	707	2314	747	170	195	51	
Heavy Vehicles (%)	1%	4%	8%	2%	5%	5%	
Turn Type	Prot	NA	NA	Perm	Prot	Prot	
Protected Phases	1	6	2		3	3	
Permitted Phases				2			
Actuated Green, G (s)	9.9	33.9	18.0	18.0	13.1	13.1	
Effective Green, g (s)	9.9	33.9	18.0	18.0	13.1	13.1	
Actuated g/C Ratio	0.17	0.57	0.31	0.31	0.22	0.22	
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	
Vehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0	
Lane Grp Cap (vph)	299	1994	1019	482	381	341	
v/s Ratio Prot	c0.40	c0.67	0.22		c0.11	0.03	
v/s Ratio Perm				0.11			
v/c Ratio	2.36	1.16	0.73	0.35	0.51	0.15	
Uniform Delay, d1	24.6	12.6	18.3	16.0	20.1	18.5	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	624.3	78.2	4.7	2.0	1.5	0.3	
Delay (s)	648.9	90.8	23.0	18.0	21.7	18.7	
Level of Service	F	F	С	В	С	В	
Approach Delay (s)		221.4	20.9		20.1		
Approach LOS		F	С		С		
ntersection Summary							
HCM 2000 Control Delay			148.3	H	CM 2000	Level of Service	
HCM 2000 Volume to Capa	acity ratio		1.31				
Actuated Cycle Length (s)			59.0		um of lost		18
Intersection Capacity Utiliza	ation		76.9%	IC	U Level c	of Service	
Analysis Period (min)			15				
c Critical Lane Group							

Intersection												
Intersection Delay, s/veh	115.4											
Intersection LOS	F											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	T.		1	*	7	7	1		1	*	7
Traffic Vol, veh/h	68	43	30	14	13	71	8	99	63	573	440	134
Future Vol, veh/h	68	43	30	14	13	71	8	99	63	573	440	134
Peak Hour Factor	0.76	0.76	0.76	0.78	0.78	0.78	0.83	0.83	0.83	0.76	0.76	0.76
Heavy Vehicles, %	0	4	5	0	13	18	0	0	3	2	0	0
Mvmt Flow	89	57	39	18	17	91	10	119	76	754	579	176
Number of Lanes	1	1	0	1	1	1	1	2	0	1	1	1
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	3			2			3			3		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	3			3			2			3		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	3			3			3			2		
HCM Control Delay	14.2			13.5			13.7			150.1		
HCM LOS	В			В			В			F		
Lane		NBLn1	NBLn2	NBLn3	EBLn1	EBLn2	WBLn1	WBLn2	WBLn3	SBLn1	SBLn2	SBLn3
Vol Left, %		100%	0%	0%	100%	0%	100%	0%	0%	100%	0%	0%
Vol Thru, %		0%	100%	34%	0%	59%	0%	100%	0%	0%	100%	0%
Vol Right, %		0%	0%	66%	0%	41%	0%	0%	100%	0%	0%	100%
Sign Control		Stop	Stop	Stop	Stop	Stop						
Traffic Vol by Lane		8	66	96	68	73	14	13	71	573	440	134
LT Vol		8	0	0	68	0	14	0	0	573	0	0

Vol Thru, %	0%	100%	34%	0%	59%	0%	100%	0%	0%	100%	0%
Vol Right, %	0%	0%	66%	0%	41%	0%	0%	100%	0%	0%	100%
Sign Control	Stop										
Traffic Vol by Lane	8	66	96	68	73	14	13	71	573	440	134
LT Vol	8	0	0	68	0	14	0	0	573	0	0
Through Vol	0	66	33	0	43	0	13	0	0	440	0
RT Vol	0	0	63	0	30	0	0	71	0	0	134
Lane Flow Rate	10	80	116	89	96	18	17	91	754	579	176
Geometry Grp	8	8	8	8	8	8	8	8	8	8	8
Degree of Util (X)	0.024	0.185	0.256	0.225	0.222	0.046	0.042	0.213	1.468	1.04	0.282
Departure Headway (Hd)	9.296	8.789	8.375	9.319	8.6	9.688	9.406	8.786	7.111	6.572	5.865
Convergence, Y/N	Yes										
Сар	387	411	431	387	420	372	383	411	520	556	617
Service Time	6.996	6.489	6.075	7.019	6.3	7.388	7.106	6.486	4.811	4.272	3.565
HCM Lane V/C Ratio	0.026	0.195	0.269	0.23	0.229	0.048	0.044	0.221	1.45	1.041	0.285
HCM Control Delay	12.2	13.5	13.9	14.7	13.7	12.9	12.5	13.8	240.8	74.5	10.9
HCM Lane LOS	В	В	В	В	В	В	В	В	F	F	В
HCM 95th-tile Q	0.1	0.7	1	0.9	8.0	0.1	0.1	0.8	37.1	16	1.2

Lonza TIS Tighe & Bond

Intersection						
Int Delay, s/veh	0.8					
			14/=:	14/5-		
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	T ₂			4	Y	
Traffic Vol, veh/h	433	246	22	79	19	0
Future Vol, veh/h	433	246	22	79	19	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	_	0	0	-
Peak Hour Factor	78	78	71	71	69	69
Heavy Vehicles, %	1	5	0	12	36	0
Mymt Flow	555	315	31	111	28	0
IVIVIII(I IOW	555	313	31	111	20	U
Major/Minor Ma	ajor1	N	/lajor2	1	Minor1	
Conflicting Flow All	0	0	870	0	886	713
Stage 1	-	-	-	_	713	_
Stage 2	_	_	_	_	173	_
Critical Hdwy	_	-	4.1	_	6.76	6.2
Critical Hdwy Stg 1	_	_		_	5.76	-
Critical Hdwy Stg 2	_	_	_	_	5.76	_
			2.2		3.824	3.3
Follow-up Hdwy	-	-				
Pot Cap-1 Maneuver	-	-	783	-	275	435
Stage 1	-	-	-	-	429	-
Stage 2	-	-	-	-	781	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	783	-	263	435
Mov Cap-2 Maneuver	-	-	-	-	263	-
Stage 1	-	-	-	-	429	-
Stage 2	-	-	-	-	748	-
5 g 5 _						
Approach	EB		WB		NB	
HCM Control Delay, s	0		2.1		20.3	
HCM LOS					С	
Minar Lana/Maiar Muset		JDI 1	EDT	EDD	WDI	WDT
Minor Lane/Major Mvmt	ľ	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		263	-	-	783	-
HCM Lane V/C Ratio		0.105	-	-	0.04	-
HCM Control Delay (s)		20.3	-	-	9.8	0
HCM Lane LOS		С	-	-	Α	Α
HCM 95th %tile Q(veh)		0.3	-	-	0.1	-

Traffic Vol, veh/h 17 418 82 2 0 6 Future Vol, veh/h 17 418 82 2 0 6 Conflicting Peds, #/hr 0 0 0 0 0 0 0 Sign Control Free Free Free Free Free Stop Stop RT Channelized - None - No - - 0 -	-						
Movement	Intersection						
Bar Bar		0.4					
Lane Configurations							
Traffic Vol, veh/h Future Vol, veh/h Free Free Free Free Free Free Free Fre					WBR		SBR
Future Vol, veh/h Conflicting Peds, #/hr Conflicting Length Conflicting Storage, # - None Free Free Free Free Free Stop Stop Conflicting Median Storage, # - O O - O - O - O - O - O - O - O - O	Lane Configurations						
Conflicting Peds, #/hr O O O O O O O O O	Traffic Vol, veh/h					0	
Sign Control Free RTE Free Free Free None Free None Free None Stop None Stop None RT Channelized - None One One - Stop One - None One One - Stop - None - Stop - None - None - Stop - None	Future Vol, veh/h	17	418	82		0	6
RT Channelized	Conflicting Peds, #/hr	0	0	0	0	0	0
RT Channelized	Sign Control	Free	Free	Free	Free	Stop	Stop
Storage Length	RT Channelized	-	None	-	None		
Weh in Median Storage, # - 0 0 - 0 - 0 - 0 - O - O - O - O - O - O - O - O - O - O - O - O - D - D - D - D A M 0 2 D A M 0 1 8 0 0 25 M M 1 2 2 4 2 2 4 2 2 4 2 2 4 2 2 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 <td>Storage Length</td> <td>0</td> <td></td> <td>-</td> <td></td> <td>0</td> <td>-</td>	Storage Length	0		-		0	-
Grade, % - 0 0 - 0 - Peak Hour Factor 85 85 71 71 50 50 Heavy Vehicles, % 0 1 8 0 0 25 Mvmt Flow 20 492 115 3 0 12 Major/Minor Major Major Minor Major/Minor Major Minor Major Minor Major Minor Major Minor Major Minor Major Minor Major Minor Major Minor Major Minor 1483 -			0	0	-		-
Peak Hour Factor 85 85 71 71 50 50 Heavy Vehicles, % 0 1 8 0 0 25 Mvmt Flow 20 492 115 3 0 12 Major/Minor Major Major Minor Minor Major Minor Minor Major Minor Minor Minor Major Minor Minor Major Minor M					_		_
Heavy Vehicles, %	-						
Mount Flow 20 492 115 3 0 12 Major/Minor Major1 Major2 Minor2 Conflicting Flow All 118 0 - 0 649 117 Stage 1 - - - 117 - Stage 2 - - - 532 - Critical Hdwy 4.1 - - 6.4 6.45 Critical Hdwy Stg 1 - - - 5.4 - Critical Hdwy Stg 2 - - - 5.4 - Critical Hdwy Stg 2 - - - 5.4 - Follow-up Hdwy 2.2 - - 3.5 3.525 Pot Cap-1 Maneuver 1483 - - 438 876 Stage 1 - - - - - - - - - - - - - - - - - -							
Major/Minor Major1 Major2 Minor2 Conflicting Flow All 118 0 - 0 649 117 Stage 1 - - - 1117 - Stage 2 - - - 532 - Critical Hdwy 4.1 - - 6.4 6.45 Critical Hdwy Stg 1 - - - 5.4 - Critical Hdwy Stg 2 - - - 5.4 - Follow-up Hdwy 2.2 - - 3.5 3.525 Pot Cap-1 Maneuver 1483 - - 438 876 Stage 1 - - - - 913 - Stage 2 -							
Stage 1	IVIVIIIL I IOW	20	432	113	J	U	12
Stage 1							
Stage 1	Major/Minor N	1ajor1	N	Major2	<u> </u>	/linor2	
Stage 1 - - - 117 - Stage 2 - - - 532 - Critical Hdwy Stg 1 - - - 5.4 - Critical Hdwy Stg 2 - - - 5.4 - Critical Hdwy Stg 2 - - - 5.4 - Follow-up Hdwy 2.2 - - - 3.5 3.525 Pol Cap-1 Maneuver 1483 - - 438 876 Stage 1 -					0	649	117
Stage 2 - - - 532 - Critical Hdwy 4.1 - - 6.4 6.45 Critical Hdwy Stg 1 - - - 5.4 - Critical Hdwy Stg 2 - - - 5.4 - Follow-up Hdwy 2.2 - - 3.5 3.525 Pot Cap-1 Maneuver 1483 - - 438 876 Stage 1 - - - 593 - Platoon blocked, % - - - 593 - Mov Cap-1 Maneuver 1483 - - 432 876 Mov Cap-2 Maneuver - - - 901 - Stage 1 - - - 901 - Stage 2 - - - 593 - Approach EB WB SB HCM LOS A - - 876 HCM LOS A - - 876 HCM Control Delay (s)				_			
Critical Hdwy 4.1 - - 6.4 6.45 Critical Hdwy Stg 1 - - - 5.4 - Critical Hdwy Stg 2 - - - 5.4 - Follow-up Hdwy 2.2 - - 3.5 3.525 Pot Cap-1 Maneuver 1483 - - 438 876 Stage 1 - - - 913 - Stage 2 - - - 593 - Platoon blocked, % - - - 593 - Mov Cap-1 Maneuver 1483 - - 432 876 Mov Cap-2 Maneuver - - - 432 876 Mov Cap-2 Maneuver - - - 901 - Stage 1 - - - 901 - Stage 2 - - - 593 - Approach EB WB SB HCM LOS A - - 876 HCM Los		_	_	_	_		_
Critical Hdwy Stg 1 - - - 5.4 - Critical Hdwy Stg 2 - - - 5.4 - Follow-up Hdwy 2.2 - - 3.5 3.525 Pot Cap-1 Maneuver 1483 - - 438 876 Stage 1 - - - 913 - Stage 2 - - - 593 - Platoon blocked, % - - - 593 - Mov Cap-1 Maneuver 1483 - - 432 876 Mov Cap-2 Maneuver - - - 432 - - Stage 1 - - - 901 - - Stage 2 - - - 593 - Approach EB WB SB HCM Control Delay, s 0.3 0 9.2 HCM Lane V/C Ratio 0.013 - - 876 HCM Lane LOS A - - - - -		4 1	_				6 45
Critical Hdwy Stg 2 - - - 5.4 - Follow-up Hdwy 2.2 - - 3.5 3.525 Pot Cap-1 Maneuver 1483 - - 438 876 Stage 1 - - - 593 - Platoon blocked, % - - - - Mov Cap-1 Maneuver 1483 - - 432 876 Mov Cap-2 Maneuver - - - 432 - Stage 1 - - - 901 - Stage 2 - - - 593 - Approach EB WB SB HCM Control Delay, s 0.3 0 9.2 HCM LOS A - - 876 Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 1483 - - - 876 HCM Lane V/C Ratio 0.013 - - 0.014 HCM Control Delay (s) 7.5 -	•		_	_			
Follow-up Hdwy 2.2 3.5 3.525 Pot Cap-1 Maneuver 1483 438 876 Stage 1 913 - 593 - 593 - 7 Platoon blocked, % 432 876 Mov Cap-1 Maneuver 1483 432 876 Mov Cap-2 Maneuver 432 876 Mov Cap-2 Maneuver 901 - 513 - 7 Stage 1 901 - 513 - 7 Stage 2 876 HCM Control Delay, s 0.3 0 9.2 HCM LOS A Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 1483 876 HCM Lane V/C Ratio 0.013 0.014 HCM Control Delay (s) 7.5 9.2 HCM Lane LOS A A			_				
Pot Cap-1 Maneuver			-				
Stage 1 - - - 913 - Stage 2 - - - 593 - Platoon blocked, % - - - - - Mov Cap-1 Maneuver 1483 - - 432 876 Mov Cap-2 Maneuver - - - 432 - Stage 1 - - - 901 - Stage 2 - - - 593 - Approach EB WB SB HCM Control Delay, s 0.3 0 9.2 HCM LOS A Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 1483 876 HCM Lane V/C Ratio 0.013 0.014 HCM Control Delay (s) 7.5 9.2 HCM Lane LOS A A							
Stage 2 - - - 593 - Platoon blocked, % - - - - - Mov Cap-1 Maneuver 1483 - - - 432 876 Mov Cap-2 Maneuver - - - - 432 - Stage 1 - - - 901 - Stage 2 - - - - 593 - Approach EB WB SB HCM Control Delay, s 0.3 0 9.2 HCM Lane //Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 1483 - - - 876 HCM Lane V/C Ratio 0.013 - - 0.014 HCM Control Delay (s) 7.5 - - 9.2 HCM Lane LOS A - - A							
Platoon blocked, %							
Mov Cap-1 Maneuver 1483 - - 432 876 Mov Cap-2 Maneuver - - - 432 - Stage 1 - - - 901 - Stage 2 - - - 593 - Approach EB WB SB HCM Control Delay, s 0.3 0 9.2 HCM LOS A A Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 1483 876 HCM Lane V/C Ratio 0.013 0.014 HCM Control Delay (s) 7.5 9.2 HCM Lane LOS A A		-	-	-		593	-
Mov Cap-2 Maneuver - - - 432 - Stage 1 - - - 901 - Stage 2 - - - 593 - Approach EB WB SB HCM Control Delay, s 0.3 0 9.2 HCM LOS A A Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 1483 876 HCM Lane V/C Ratio 0.013 0.014 HCM Control Delay (s) 7.5 9.2 HCM Lane LOS A A			-	-	-		
Stage 1 - - - 901 - Stage 2 - - - 593 - Approach EB WB SB HCM Control Delay, s 0.3 0 9.2 HCM LOS A A Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 1483 - - 876 HCM Lane V/C Ratio 0.013 - - 0.014 HCM Control Delay (s) 7.5 - - 9.2 HCM Lane LOS A - - A		1483	-	-	-		876
Stage 2 - - - 593 - Approach EB WB SB HCM Control Delay, s 0.3 0 9.2 HCM LOS A A Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 1483 - - 876 HCM Lane V/C Ratio 0.013 - - 0.014 HCM Control Delay (s) 7.5 - - 9.2 HCM Lane LOS A - - A		-	-	-	-		-
Approach	Stage 1	-	-	-	-		-
Approach	Stage 2	-	-	-	-	593	-
HCM Control Delay, s 0.3 0 9.2							
HCM Control Delay, s 0.3 0 9.2	Annroach	ED		\\/D		QD.	
Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 1483 - - 876 HCM Lane V/C Ratio 0.013 - - 0.014 HCM Control Delay (s) 7.5 - - 9.2 HCM Lane LOS A - - A							
Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 1483 - - - 876 HCM Lane V/C Ratio 0.013 - - - 0.014 HCM Control Delay (s) 7.5 - - - 9.2 HCM Lane LOS A - - A		0.3		U			
Capacity (veh/h) 1483 - - 876 HCM Lane V/C Ratio 0.013 - - 0.014 HCM Control Delay (s) 7.5 - - 9.2 HCM Lane LOS A - - A	HUM LUS					А	
Capacity (veh/h) 1483 - - 876 HCM Lane V/C Ratio 0.013 - - 0.014 HCM Control Delay (s) 7.5 - - 9.2 HCM Lane LOS A - - A							
Capacity (veh/h) 1483 - - 876 HCM Lane V/C Ratio 0.013 - - 0.014 HCM Control Delay (s) 7.5 - - 9.2 HCM Lane LOS A - - A	Minor Lane/Maior Mymt		EBL	EBT	WBT	WBR :	SBLn1
HCM Lane V/C Ratio 0.013 - - 0.014 HCM Control Delay (s) 7.5 - - 9.2 HCM Lane LOS A - - A							
HCM Control Delay (s) 7.5 9.2 HCM Lane LOS A A							
HCM Lane LOS A A							
	3 ()			-			
				-	-		
	Holvi sour mule Q(ven)		U	-		-	U

•						
Intersection						
Int Delay, s/veh	1.4					
		ED 5	14/5	MOT	NE	NES
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	P			4	Y	
Traffic Vol, veh/h	222	7	7	102	9	5
Future Vol, veh/h	222	7	7	102	9	5
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, #	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	95	95	82	82	25	40
Heavy Vehicles, %	1	0	0	5	20	0
Mvmt Flow	234	7	9	124	36	13
IVIVIIILIIOW	204	1	J	127	30	10
Major/Minor Ma	ajor1	N	Major2	N	Minor1	
Conflicting Flow All	0	0	241	0	380	238
Stage 1	_	_	-	_	238	_
Stage 2	_	_	_	_	142	_
Critical Hdwy	_	_	4.1	_	6.6	6.2
Critical Hdwy Stg 1	_	_	7.1	<u>-</u>	5.6	- 0.2
Critical Hdwy Stg 2			-	<u>-</u>	5.6	
	-	-	-			-
Follow-up Hdwy	-	-	2.2	-	3.68	3.3
Pot Cap-1 Maneuver	-	-	1337	-	588	806
Stage 1	-	-	-	-	761	-
Stage 2	-	-	-	-	843	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1337	-	584	806
Mov Cap-2 Maneuver	-	-	-	-	584	-
Stage 1	-	-	-	-	761	-
Stage 2	_	-	_	-	837	-
5 g 5 _						
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.5		11.2	
HCM LOS					В	
Min and an a /Mailen Mennet		JDL 4	EDT		WDI	WDT
Minor Lane/Major Mvmt	ľ	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		629	-		1337	-
HCM Lane V/C Ratio		0.077	-	-	0.006	-
HCM Control Delay (s)		11.2	-	-	7.7	0
HCM Lane LOS		В	-	-	Α	Α
HCM 95th %tile Q(veh)		0.2	-	-	0	-

Intersection Int Delay, s/veh Movement	1.1					
Int Delay, s/veh Movement	1.1					
	WBL	WBR	NBT	NBR	SBL	SBT
Lana Configurations	WDL	אטא		NDIX	ODL	
Lane Configurations Traffic Vol, veh/h	0	0	1	13	6	र्स 8
	~			13		
Future Vol, veh/h Conflicting Peds, #/hr	0	0	14	0	6	8
•						
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	25	25	53	53	50	50
Heavy Vehicles, %	0	0	0	13	0	0
Mvmt Flow	0	0	26	25	12	16
Major/Minor N	1inor1	N	/lajor1	N	Major2	
Conflicting Flow All	79	39	0	0	51	0
	39	-			ان -	-
Stage 1	40		-	-		
Stage 2		-	-	-	-	-
Critical Hdwy	6.4	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	929	1038	-	-	1568	-
Stage 1	989	-	-	-	-	-
Stage 2	988	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	922	1038	-	_	1568	-
Mov Cap-2 Maneuver	922	-	_	-	_	-
Stage 1	989	_	_	_	_	_
Stage 2	980	_	_	_	_	_
Olage 2	300					
Approach	WB		NB		SB	
HCM Control Delay, s	0		0		3.1	
HCM LOS	Α					
Minor Lane/Major Mvmt		NBT	NRRV	VBLn1	SBL	SBT
		-	14514		1568	
			_	-		-
Capacity (veh/h)						
Capacity (veh/h) HCM Lane V/C Ratio		-	-		0.008	-
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		-	-	0	7.3	0
Capacity (veh/h) HCM Lane V/C Ratio		- - -				

Intersection						
Int Delay, s/veh	1.4					
		EDD	NE	NET	057	000
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			र्स	1	
Traffic Vol, veh/h	6	0	0	8	27	8
Future Vol, veh/h	6	0	0	8	27	8
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	50	50	42	42	69	69
Heavy Vehicles, %	75	0	0	0	6	80
Mvmt Flow	12	0	0	19	39	12
IVIVIII(I IOVV	12	U	U	13	00	12
Major/Minor	Minor2	N	Major1	N	/lajor2	
Conflicting Flow All	64	45	51	0	-	0
Stage 1	45	-	-	-	-	-
Stage 2	19	-	-	_	-	_
Critical Hdwy	7.15	6.2	4.1	_	_	_
Critical Hdwy Stg 1	6.15	-	T. I	<u>_</u>	_	_
Critical Hdwy Stg 2	6.15	_	_	_	_	_
			2.2	-		
Follow-up Hdwy	4.175	3.3		-	-	-
Pot Cap-1 Maneuver	788	1031	1568	-	-	-
Stage 1	819	-	-	-	-	-
Stage 2	844	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	788	1031	1568	-	-	-
Mov Cap-2 Maneuver	788	-	-	-	-	-
Stage 1	819	-	-	-	-	-
Stage 2	844	-	_	-	-	-
J						
					0.5	
Approach	EB		NB		SB	
HCM Control Delay, s	9.6		0		0	
HCM LOS	Α					
Miner Lene/Meier M.	-4	NDI	NDT	CDI1	CDT	CDD
Minor Lane/Major Mvn	π	NBL		EBLn1	SBT	SBR
Capacity (veh/h)		1568	-		-	-
HCM Lane V/C Ratio		-	-	0.015	-	-
HCM Control Delay (s)		0	-	9.6	-	-
HCM Lane LOS		Α	-	Α	-	-
HCM 95th %tile Q(veh)	0	-	0	-	-
<u>-</u>						

Int Delay, s/yeh													
Int Delay, s/veh	Intersection												
Lane Configurations		0.1											
Lane Configurations	Movement	FRI	FRT	FRR	WRI	WRT	WRR	NRI	NRT	NRR	SRI	SRT	SBR
Traffic Vol, veh/h		LDL		LDI	VVDL		WDIX	NDL		NOIL	ODL		אופט
Future Vol, veh/h Conflicting Peds, #hhr O O O O O O O O O O O O O O O O O O		٥		٥	٥		٥	5		Λ	٥		216
Conflicting Peds, #/hr Stop Sto	· ·												
Sign Control Stop Free					-								
RT Channelized													
Storage Length													
Veh in Median Storage, # 0 - - 0 - - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 0 - 0 0 - 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 - 0 0 - 0 0 - 0 0 - 0 0 0 - 0 <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td>				-			-			-			-
Grade, %				_			_			_			_
Peak Hour Factor 92 92 92 92 92 88 88 92 92													
Heavy Vehicles, % 2 2 2 2 2 2 2 0 18 2 2 15 1	-	92	-										69
Mynt Flow 0 0 0 0 0 6 22 0 0 75 313 Major/Minor Minor2 Minor1 Major1 Major2 Conflicting Flow All 266 266 232 266 422 22 388 0 0 22 0 0 Stage 1 232 232 232 388 -													
Major/Minor Minor2 Minor1 Major1 Major2													•
Conflicting Flow All 266 266 232 266 422 22 388 0 0 22 0 0												10	010
Conflicting Flow All 266 266 232 266 422 22 388 0 0 22 0 0 Stage 1 232 232 - 34 34 Stage 2 34 34 - 232 388	NA ' /NA'	N 4'			N 4"					_			
Stage 1 232 232 - 34 34						,							
Stage 2 34 34 - 232 388 - <								388	0	0	22	0	0
Critical Hdwy 7.12 6.52 6.22 7.12 6.52 6.22 4.1 - 4.12 - 4.12	· ·									-	-		-
Critical Hdwy Stg 1 6.12 5.52 - 6.12 5.52 -										-	- 4.40		-
Critical Hdwy Stg 2 6.12 5.52 - 6.12 5.52 - <t< td=""><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td>4.1</td><td></td><td>-</td><td></td><td></td><td>-</td></t<>	•							4.1		-			-
Follow-up Hdwy 3.518 4.018 3.318 3.518 4.018 3.318 2.2 - 2.218 Pot Cap-1 Maneuver 687 640 807 687 523 1055 1182 - 1593 - Stage 1 771 713 - 982 867								-		-			-
Pot Cap-1 Maneuver										-			-
Stage 1 771 713 - 982 867 -										-			-
Stage 2 982 867 - 771 609 -							1055	1182		-			-
Platoon blocked, %							-	-		-			-
Mov Cap-1 Maneuver 684 637 807 684 520 1055 1182 - - 1593 - - Mov Cap-2 Maneuver 684 637 - 684 520 - <td>ŭ</td> <td>982</td> <td>86/</td> <td>-</td> <td>111</td> <td>609</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>-</td>	ŭ	982	86/	-	111	609	-	-	-	-	-		-
Mov Cap-2 Maneuver 684 637 - 684 520 - </td <td></td> <td>604</td> <td>627</td> <td>007</td> <td>604</td> <td>E00</td> <td>1055</td> <td>1100</td> <td>-</td> <td>-</td> <td>1502</td> <td></td> <td>-</td>		604	627	007	604	E00	1055	1100	-	-	1502		-
Stage 1 767 713 - 977 863 -							1055	ΠΙ	-				-
Stage 2 977 863 - 771 609 -							-	-	-				-
Approach EB WB NB SB HCM Control Delay, s 0 0 1.7 0 HCM LOS A A A Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1 SBL SBT SBR Capacity (veh/h) 1182 - - - 1593 - - HCM Lane V/C Ratio 0.005 - - - - - - HCM Control Delay (s) 8.1 0 - 0 0 - - HCM Lane LOS A A - A A - -	<u> </u>						-	-	-	-			-
HCM Control Delay, s 0 0 1.7 0 HCM LOS A A Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1 SBL SBT SBR Capacity (veh/h) 1182 1593 HCM Lane V/C Ratio 0.005 HCM Control Delay (s) 8.1 0 - 0 0 0 HCM Lane LOS A A - A A A	Stage 2	911	503	-	771	009	-	-	-	-	-	-	-
HCM Control Delay, s 0 0 1.7 0 HCM LOS A A Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1 SBL SBT SBR Capacity (veh/h) 1182 1593 HCM Lane V/C Ratio 0.005 HCM Control Delay (s) 8.1 0 - 0 0 0 HCM Lane LOS A A - A A A													
Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1 SBL SBT SBR Capacity (veh/h) 1182 - - - 1593 - - HCM Lane V/C Ratio 0.005 - - - - - - HCM Control Delay (s) 8.1 0 - 0 0 0 - - HCM Lane LOS A A - A A A - -	Approach	EB									SB		
Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1 SBL SBT SBR Capacity (veh/h) 1182 - - - 1593 - - HCM Lane V/C Ratio 0.005 - - - - - - HCM Control Delay (s) 8.1 0 - 0 0 0 - - HCM Lane LOS A A - A A A - -	HCM Control Delay, s	0			0			1.7			0		
Capacity (veh/h) 1182 1593 HCM Lane V/C Ratio 0.005 HCM Control Delay (s) 8.1 0 - 0 0 0 HCM Lane LOS A A - A A	HCM LOS	Α			Α								
Capacity (veh/h) 1182 1593 HCM Lane V/C Ratio 0.005 HCM Control Delay (s) 8.1 0 - 0 0 0 HCM Lane LOS A A - A A													
Capacity (veh/h) 1182 1593 HCM Lane V/C Ratio 0.005 HCM Control Delay (s) 8.1 0 - 0 0 0 HCM Lane LOS A A - A A	Minor Lane/Maior Mym	nt	NBI	NBT	NBR	EBL n1\	WBLn1	SBL	SBT	SBR			
HCM Lane V/C Ratio 0.005 - - - - - - HCM Control Delay (s) 8.1 0 - 0 0 0 - - HCM Lane LOS A A - A A A - -					-								
HCM Control Delay (s) 8.1 0 - 0 0 0 HCM Lane LOS A A - A A				_	_	_	_		_	-			
HCM Lane LOS A A - A A				0	_	0	0		_	_			
	3 ()				_								
)		-	_	-							

Lonza TIS Tighe & Bond

Intersection						
Int Delay, s/veh	0.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	WDL	אטווי	λ	אטוז	ODL	अव
Traffic Vol, veh/h	T	2	156	13	13	430
	6		156	13		430
Future Vol, veh/h		2			13	
Conflicting Peds, #/hr	O Cton	O Ctop	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	63	63	81	81	84	84
Heavy Vehicles, %	0	0	0	0	0	1
Mvmt Flow	10	3	193	16	15	512
Major/Minor	Minor1	N	/lajor1	N	Major2	
						^
Conflicting Flow All	743	201	0	0	209	0
Stage 1	201	-	-	-	-	-
Stage 2	542	-	-	-	-	-
Critical Hdwy	6.4	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	386	845	-	-	1374	-
Stage 1	838	-	-	-	-	-
Stage 2	587	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	380	845	-	_	1374	_
Mov Cap-2 Maneuver	380	-	_	_	-	_
Stage 1	838	_	_	_	_	_
Stage 2	578	_		_		_
Staye 2	310	-	-	<u>-</u>	-	<u>-</u>
Approach	WB		NB		SB	
HCM Control Delay, s	13.4		0		0.2	
HCM LOS	В					
NA:		NET	NDD	MDL 4	051	057
Minor Lane/Major Mvm	nt	NBT	NBKV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	441	1374	-
HCM Lane V/C Ratio		-	-	0.029		-
HCM Control Delay (s)		-	-	13.4	7.7	0
HCM Lane LOS		-	-	В	Α	Α
HCM 95th %tile Q(veh)	-	-	0.1	0	-

Intersection						
Int Delay, s/veh	0.8					
		WDD	NET	NDD	ODI	ODT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		Þ			स
Traffic Vol, veh/h	14	19	150	13	20	416
Future Vol, veh/h	14	19	150	13	20	416
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	88	88	86	86	83	83
Heavy Vehicles, %	44	0	1	63	0	1
Mvmt Flow	16	22	174	15	24	501
		LL		- 10	- (
Major/Minor	Minor1	N	/lajor1	N	Major2	
Conflicting Flow All	731	182	0	0	189	0
Stage 1	182	-	-	-	-	-
Stage 2	549	-	-	-	-	-
Critical Hdwy	6.84	6.2	-	_	4.1	-
Critical Hdwy Stg 1	5.84	-	_	_	-	_
Critical Hdwy Stg 2	5.84	_	_	_	_	_
Follow-up Hdwy	3.896	3.3	_	_	2.2	_
Pot Cap-1 Maneuver	333	866	_	_	1397	_
	758			_		
Stage 1		-	-	-	-	-
Stage 2	503	-	-	-	-	-
Platoon blocked, %	225		-	-	1005	-
Mov Cap-1 Maneuver	325	866	-	-	1397	-
Mov Cap-2 Maneuver	325	-	-	-	-	-
Stage 1	758	-	-	-	-	-
Stage 2	491	-	-	-	-	-
Annroach	WB		NB		SB	
Approach						
HCM Control Delay, s	12.7		0		0.3	
HCM LOS	В					
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		1101	ייייייייייייייייייייייייייייייייייייייי		1397	-
HCM Lane V/C Ratio		-	-	0.074		
		-	-			-
HCM Control Delay (s)		-	-	12.7	7.6	0
HCM Lane LOS		-	-	В	A	Α
HCM 95th %tile Q(veh)	-	-	0.2	0.1	-

Intersection						
Int Delay, s/veh	0.2					
		WPD	NDT	NDD	CDI	CDT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y	-	\$	^	^	4
Traffic Vol, veh/h	0	5	183	2	8	331
Future Vol, veh/h	0	5	183	2	8	331
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,	# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	75	75	89	89	81	81
Heavy Vehicles, %	0	0	5	100	0	2
Mvmt Flow	0	7	206	2	10	409
WWW.CT IOW		•	200	_	10	100
	1inor1		/lajor1		Major2	
Conflicting Flow All	636	207	0	0	208	0
Stage 1	207	-	-	-	-	-
Stage 2	429	-	-	-	-	-
Critical Hdwy	6.4	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.4	-	_	_	_	_
Critical Hdwy Stg 2	5.4	_	_	_	-	_
Follow-up Hdwy	3.5	3.3	_	_	2.2	_
Pot Cap-1 Maneuver	445	839	_	_	1375	_
Stage 1	832	-	_	_	1075	_
	661	_	-	_	_	
Stage 2	1 00	-	-	-	-	-
Platoon blocked, %	444	000	-	-	4075	-
Mov Cap-1 Maneuver	441	839	-	-	1375	-
Mov Cap-2 Maneuver	441	-	-	-	-	-
Stage 1	832	-	-	-	-	-
Stage 2	655	-	-	-	-	-
Annroach	WB		NB		SB	
Approach						
HCM Control Delay, s	9.3		0		0.2	
HCM LOS	Α					
Minor Lane/Major Mvmt		NBT	NBRV	VBLn1	SBL	SBT
		-		839	1375	
Lanacity (Vanin)			_	000	10/0	_
Capacity (veh/h)				ባ በባያ	በ በበ7	
HCM Lane V/C Ratio		-	-	0.008		-
HCM Lane V/C Ratio HCM Control Delay (s)		-	-	9.3	7.6	0
HCM Lane V/C Ratio			- - -			

Intersection											
Int Delay, s/veh 7.2											
Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	4			4			4			4	
Traffic Vol, veh/h 8		2	84	5	6	0	392	383	25	269	28
Future Vol, veh/h 8	9	2	84	5	6	0	392	383	25	269	28
Conflicting Peds, #/hr 0	0	0	0	0	0	0	0	0	0	0	0
Sign Control Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized -	-	None	-	-	None	-	-	None	-	-	None
Storage Length -	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %		-	-	0	-	-	0	-	-	0	-
Peak Hour Factor 75		75	65	65	65	90	90	90	87	87	87
Heavy Vehicles, % 20		0	4	0	0	0	2	3	0	3	0
Mvmt Flow 11	12	3	129	8	9	0	436	426	29	309	32
Major/Minor Minor2			Minor1			Major1		N	Major2		
Conflicting Flow All 1041	1245	325	1040	1048	649	341	0	0	862	0	0
Stage 1 383		-	649	649	-	-	-	-	-	-	-
Stage 2 658	862	_	391	399	_	_	_	_	_	_	_
Critical Hdwy 7.3		6.2	7.14	6.5	6.2	4.1	_	_	4.1	_	-
Critical Hdwy Stg 1 6.3	5.5	-	6.14	5.5	-	-	_	-	-	_	-
Critical Hdwy Stg 2 6.3		_	6.14	5.5	_	_	-	_	-	-	-
Follow-up Hdwy 3.68		3.3	3.536	4	3.3	2.2	-	-	2.2	-	-
Pot Cap-1 Maneuver 193		721	207	230	473	1229	-	-	789	-	-
Stage 1 605		-	455	469	-	-	-	-	-	-	-
Stage 2 425		-	629	606	-	-	-	-	-	-	-
Platoon blocked, %							-	-		-	-
Mov Cap-1 Maneuver 178	168	721	188	219	473	1229	-	-	789	-	-
Mov Cap-2 Maneuver 178	168	-	188	219	-	-	-	-	-	-	-
Stage 1 605	588	-	455	469	-	-	-	-	-	-	-
Stage 2 410	375	-	586	578	-	-	-	-	-	-	-
Approach EB			WB			NB			SB		
HCM Control Delay, s 27.1			62.5			0			0.8		
HCM LOS D			02.5 F			- 0			0.0		
1.0.11 2.00											
Minor Long/Major Mumt	MDI	NDT	NDD	EDI 541	M/DI 1	CDI	CDT	CDD			
Minor Lane/Major Mvmt	NBL	NBT		EBLn1V		SBL	SBT	SBR			
Capacity (veh/h)	1229	-	-	188	197	789	-	-			
HCM Cantrol Delay (a)	-	-	-		0.742		-	-			
HCM Long LOS	0	-	-	27.1	62.5	9.7	0	-			
HCM Lane LOS											
HCM 95th %tile Q(veh)	A 0	-	-	D 0.5	F 4.9	0.1	A -	-			

Lonza TIS Tighe & Bond

Intersection	60					
Int Delay, s/veh						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	7	7	7	↑	↑	ř
Traffic Vol, veh/h	794	348	47	14	54	213
Future Vol, veh/h	794	348	47	14	54	213
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	290	100	-	-	175
Veh in Median Storag	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	93	93	70	70	90	90
Heavy Vehicles, %	1	1	3	11	0	4
Mvmt Flow	854	374	67	20	60	237
N.A (N.A.)	N4: 0					
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	214	60	297	0	-	0
Stage 1	60	-	-	-	-	-
Stage 2	154	-	-	-	-	-
Critical Hdwy	6.41	6.21	4.13	-	-	-
Critical Hdwy Stg 1	5.41	-	-	-	-	-
Critical Hdwy Stg 2	5.41	-	-	-	-	-
Follow-up Hdwy	3.509	3.309	2.227	-	-	-
Pot Cap-1 Maneuver	~ 777	1008	1259	-	-	-
Stage 1	965	-	-	-	_	-
Stage 2	877	_	_	-	_	_
Platoon blocked, %				_	-	_
Mov Cap-1 Maneuver	~ 736	1008	1259	_	_	_
Mov Cap-2 Maneuver		-	-	_	_	_
Stage 1	914	_	_	_	_	_
Stage 2	877	_	_			
Staye 2	011	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	78.3		6.2		0	
HCM LOS	F					
110111 200	•					
Minor Lane/Major Mvr	nt	NBL	NBT	EBLn1 I	EBLn2	SBT
Capacity (veh/h)		1259	-	736	1008	-
HCM Lane V/C Ratio		0.053	-	1.16	0.371	-
HCM Control Delay (s	5)	8	-	107.9	10.7	-
HCM Lane LOS		Α	-	F	В	-
HCM 95th %tile Q(veh	1)	0.2	-	26.7	1.7	-
,						
Notes						
~: Volume exceeds ca	pacity	\$: De	elay exc	eeds 30	00s	+: Comp

Delay, s/veh G7.5							
Delay, s/veh 67.5 Sement WBL WBR NBT NBR SBL SBT SBT NBR SBL SBT S	Intersection						
WBL WBR NBT NBR SBL SBT NBR SBL NBL NBL SBT NBR NBL SBT NBL NBL SBT NBL NBL SBT NBL	Int Delay, s/veh	67.5					
Fic Vol, veh/h ficting Peds, #/hr fic			14/5-			05:	0==
fic Vol, veh/h	Movement	WBL			NBR	SBL	
Tre Vol, veh/h	Lane Configurations						
flicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Traffic Vol, veh/h	0			0	0	
Control Stop Stop Free Free Free Free Channelized - None - None - None age Length - 0 - 0 0 0 ote, % 0 - 0 - 0 0 ote, % 0 - 0 0 - 0 0 ote, % 0 0 0 0 0 0 ote, % 0 0 0 0 0 ote, % 0 0 0 0 0 ote, % 0 0 0 ote, % 0 0 0 ote, % 0 0 ote, % 0 0 ote, %	Future Vol, veh/h	0	199	1144	0	0	323
Control Stop Stop Free Free Free Free Channelized - None - None - None age Length - 0 - 0 0 0 ote, % 0 - 0 - 0 0 ote, % 0 - 0 0 0 0 ote, % 0 0 0 0 0 ote, % 0 0 0 ote, % 0 0 0 ote, % 0 0 ote, % 0 0 ote, % 0 ot	Conflicting Peds, #/hr	0	0	0	0	0	0
Channelized - None - None age Length - 0 - 0	Sign Control	Stop	Stop	Free	Free	Free	Free
age Length	RT Channelized						
in Median Storage, # 0	Storage Length						-
Stage 1							n
K Hour Factor 76	Grade, %						
vy Vehicles, % 2 3 2 2 2 4 nt Flow 0 262 1634 0 0 404 or/Minor Minor1 Major1 Major2 flicting Flow All - 1634 0 - - - Stage 1 -							
or/Minor Minor1 Major1 Major2 flicting Flow All - 1634 0 - Stage 1 - Stage 2 cal Hdwy - 6.245 cal Hdwy Stg 1							
Stage 1							
Stage 1	Mvmt Flow	0	262	1634	0	0	404
Stage 1							
Stage 1	Major/Minor	Minor1	N	Major1	N/	aior?	
Stage 1 - - - - - - - - - - - - - - - - -							
Stage 2		-	1634	0	-	-	-
cal Hdwy cal Hdwy Stg 1 cal Hdwy Stg 1 cal Hdwy Stg 2 cal Hdwy Stg 1 cal Hdwy Stg 2 cal Hdwy Stg 2 cal Hdwy Stg 2 cal Hdwy Stg 1 cal Hdwy Stg 2 cal Cap-Tag 2 cal Hdwy Stg 2 cal Cap-Tag 3 cal Cap-T	•	-	-	-	-	-	-
cal Hdwy Stg 1 -		-	-	-	-	-	-
Call Holly Stg 2	Critical Hdwy	-	6.245	-	-	-	-
Call Holly Stg 2	Critical Hdwy Stg 1	-	-	-	-	-	-
Cap-1 Maneuver	Critical Hdwy Stg 2	_	-	_	_	_	_
Cap-1 Maneuver 0 ~ 123 - 0 0 - Stage 1 0 - - 0 0 - Stage 2 0 - - 0 0 - con blocked, % - - 0 0 - con blocked, % - - - 0 - Cap-1 Maneuver - ~ 123 - - - Cap-2 Maneuver -			3 3285	_	_	_	_
Stage 1 0 - - 0 0 - Stage 2 0 - - 0 0 - con blocked, % - - 0 0 - Cap-1 Maneuver - <td< td=""><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td></td<>				_			
Stage 2 0 - - 0 0 - con blocked, % - <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>				-			
Cap-1 Maneuver				-			
Cap-1 Maneuver - ~ 123 Cap-2 Maneuver 123 Stage 1		0	-	-	0	0	-
Cap-2 Maneuver Stage 1	Platoon blocked, %			-			-
Stage 1 - </td <td>Mov Cap-1 Maneuver</td> <td>-</td> <td>~ 123</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	Mov Cap-1 Maneuver	-	~ 123	-	-	-	-
Stage 1 - </td <td>Mov Cap-2 Maneuver</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 2		_	_	_	_	_	_
roach WB NB SB M Control Delay, s\$ 592.5 0 0 LOS F Or Lane/Major Mvmt NBTWBLn1 SBT acity (veh/h) - 123 - A Lane V/C Ratio - 2.129 - M Control Delay (s) - \$ 592.5 - M Lane LOS - F - M 95th %tile Q(veh) - 21.8 -	_	_	_	_	_	_	_
## Control Delay, s\$ 592.5	Glage 2			_	-	_	
## Control Delay, s\$ 592.5							
## Control Delay, s\$ 592.5	Approach	WB		NB		SB	
## LOS F ## Proceedings				0			
or Lane/Major Mvmt NBTWBLn1 SBT acity (veh/h) - 123 - M Lane V/C Ratio - 2.129 - M Control Delay (s) -\$ 592.5 - M Lane LOS - F - M 95th %tile Q(veh) - 21.8 -	HCM LOS			U		U	
acity (veh/h) - 123 - # Lane V/C Ratio - 2.129 - # Control Delay (s) - \$ 592.5 - # Lane LOS - F - # 95th %tile Q(veh) - 21.8 -	TICIVI LOS	Г					
acity (veh/h) - 123 - # Lane V/C Ratio - 2.129 - # Control Delay (s) - \$ 592.5 - # Lane LOS - F - # 95th %tile Q(veh) - 21.8 -							
acity (veh/h) - 123 - # Lane V/C Ratio - 2.129 - # Control Delay (s) - \$ 592.5 - # Lane LOS - F - # 95th %tile Q(veh) - 21.8 -	Minor Lane/Major Mvr	nt	NBTV	VBLn1	SBT		
// Lane V/C Ratio - 2.129 - // Control Delay (s) - \$ 592.5 - // Lane LOS - F - // 95th %tile Q(veh) - 21.8 -	Capacity (veh/h)						
// Control Delay (s) -\$ 592.5 - // Lane LOS - F - // 95th %tile Q(veh) - 21.8 -							
// Lane LOS - F - // // 95th %tile Q(veh) - 21.8 - // es		١					
∕/ 95th %tile Q(veh) - 21.8 - es	3 \)	φ-				
es ·		,	-				
	HCM 95th %tile Q(veh	1)	-	21.8	-		
	Notes						
olume exceeds capacity — \$. Delay exceeds 500s — +: Comp		nacity	¢. Da	lay ova	anda 20	າ _ເ	T. Com.
	. Volume exceeds ca	pacity	φ. De	ay exc	eeus 30	J5	+. COM

	٨	-	•	1		•	1	1	1	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	1		44	1			र्स	77		4	
Traffic Volume (vph)	0	420	3	287	160	24	11	3	1200	56	3	3
Future Volume (vph)	0	420	3	287	160	24	11	3	1200	56	3	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	12	11	12	12	16	12
Total Lost time (s)		6.0		6.0	6.0			6.0	6.0		6.0	
Lane Util. Factor		0.95		0.97	0.95			1.00	0.88		1.00	
Frt		1.00		1.00	0.98			1.00	0.85		0.99	
Flt Protected		1.00		0.95	1.00			0.96	1.00		0.96	
Satd. Flow (prot)		3571		3433	3539			1766	2814		2047	
FIt Permitted		1.00		0.95	1.00			0.83	1.00		0.74	
Satd. Flow (perm)		3571		3433	3539			1529	2814		1594	
Peak-hour factor, PHF	0.88	0.88	0.88	0.96	0.96	0.96	0.91	0.91	0.91	0.68	0.68	0.68
Adj. Flow (vph)	0	477	3	299	167	25	12	3	1319	82	4	4
RTOR Reduction (vph)	0	0	0	0	7	0	0	0	0	0	1	0
Lane Group Flow (vph)	0	480	0	299	185	0	0	15	1319	0	89	0
Heavy Vehicles (%)	0%	1%	0%	2%	0%	0%	0%	0%	1%	0%	0%	0%
Turn Type	Prot	NA		Prot	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	6	2		1	5			8			4	
Permitted Phases							8		8	4		
Actuated Green, G (s)		13.9		11.6	31.5			20.1	20.1		20.1	
Effective Green, g (s)		13.9		11.6	31.5			20.1	20.1		20.1	
Actuated g/C Ratio		0.22		0.18	0.50			0.32	0.32		0.32	
Clearance Time (s)		6.0		6.0	6.0			6.0	6.0		6.0	
Vehicle Extension (s)		3.0		3.0	3.0			3.0	3.0		3.0	
Lane Grp Cap (vph)		780		626	1752			483	889		503	
v/s Ratio Prot		c0.13		c0.09	0.05							
v/s Ratio Perm								0.01	c0.47		0.06	
v/c Ratio		0.62		0.48	0.11			0.03	1.48		0.18	
Uniform Delay, d1		22.4		23.3	8.5			15.0	21.8		15.8	
Progression Factor		1.00		1.00	1.00			1.00	1.00		1.00	
Incremental Delay, d2		1.5		0.6	0.0			0.0	223.7		0.2	
Delay (s)		23.9		23.9	8.6			15.0	245.5		15.9	
Level of Service		С		С	Α			В	F		В	
Approach Delay (s)		23.9			17.9			242.9			15.9	
Approach LOS		С			В			F			В	
Intersection Summary												
HCM 2000 Control Delay			144.3	H	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capacity	/ ratio		0.96									
Actuated Cycle Length (s)			63.6		um of lost				18.0			
Intersection Capacity Utilization	n		73.7%	IC	U Level o	of Service			D			
Analysis Period (min)			15									

102: US Route 4 SB On-Ramp/US Route 4 SB Off-Ramp & Pease Blvd 2023 Existing Conditions Weekday PM Peak

	•	-	•	1		•	1	1	1	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		1111	7	77	*					44		77
Traffic Volume (vph)	0	1091	585	671	453	0	0	0	0	381	0	139
Future Volume (vph)	0	1091	585	671	453	0	0	0	0	381	0	139
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	10	11	10	11	12	12	12	12	12	12	12
Total Lost time (s)		6.0	6.0	6.0	6.0					6.0		6.0
Lane Util. Factor		0.86	1.00	0.97	0.95					0.97		0.88
Frt		1.00	0.85	1.00	1.00					1.00		0.85
Flt Protected		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (prot)		6040	1546	3236	3455					3502		2814
Flt Permitted		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (perm)		6040	1546	3236	3455					3502		2814
Peak-hour factor, PHF	0.85	0.85	0.85	0.94	0.94	0.94	0.92	0.92	0.92	0.90	0.90	0.90
Adj. Flow (vph)	0	1284	688	714	482	0	0	0	0	423	0	154
RTOR Reduction (vph)	0	0	364	0	0	0	0	0	0	0	0	118
Lane Group Flow (vph)	0	1284	324	714	482	0	0	0	0	423	0	36
Heavy Vehicles (%)	0%	1%	1%	1%	1%	0%	0%	0%	0%	0%	0%	1%
Turn Type		NA	Prot	Prot	NA					Prot		Prot
Protected Phases		6	6	5	2 5					3		3
Permitted Phases												
Actuated Green, G (s)		35.0	35.0	25.0	61.4					23.8		23.8
Effective Green, g (s)		35.0	35.0	25.0	61.4					23.8		23.8
Actuated g/C Ratio		0.34	0.34	0.25	0.60					0.23		0.23
Clearance Time (s)		6.0	6.0	6.0						6.0		6.0
Vehicle Extension (s)		5.0	5.0	4.0						5.0		5.0
Lane Grp Cap (vph)		2076	531	794	2083					818		657
v/s Ratio Prot		c0.21	0.21	c0.22	0.14					c0.12		0.01
v/s Ratio Perm												
v/c Ratio		0.62	0.61	0.90	0.23					0.52		0.05
Uniform Delay, d1		27.8	27.7	37.2	9.3					34.0		30.3
Progression Factor		1.00	1.00	1.37	1.08					1.00		1.00
Incremental Delay, d2		0.8	2.9	10.0	0.1					1.1		0.1
Delay (s)		28.6	30.6	61.0	10.2					35.1		30.3
Level of Service		С	С	Е	В					D		С
Approach Delay (s)		29.3			40.5			0.0			33.8	
Approach LOS		С			D			Α			С	
Intersection Summary												
HCM 2000 Control Delay			33.6	H	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capaci	ty ratio		0.67									
Actuated Cycle Length (s)			101.8		um of lost				18.0			
Intersection Capacity Utilization	on		81.2%	IC	U Level o	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

103: US Route 4 NB Off-ramp/US Route 4 NB On-Ramp & Pease Blvd 2023 Existing Conditions Weekday PM Peak

	•	-	•	1		•	1	1	1	1	Į.	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	^			444		77		77			
Traffic Volume (vph)	659	813	0	0	902	399	222	0	613	0	0	0
Future Volume (vph)	659	813	0	0	902	399	222	0	613	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	11	12	12	12	12	12	12	12	12	12	12
Total Lost time (s)	6.0	6.0			6.0		6.0		6.0			
Lane Util. Factor	0.97	0.95			0.91		0.97		0.88			
Frt	1.00	1.00			0.95		1.00		0.85			
Flt Protected	0.95	1.00			1.00		0.95		1.00			
Satd. Flow (prot)	3236	3455			4914		3433		2814			
Flt Permitted	0.11	1.00			1.00		0.95		1.00			
Satd. Flow (perm)	389	3455			4914		3433		2814			
Peak-hour factor, PHF	0.87	0.87	0.92	0.90	0.90	0.90	0.94	0.94	0.94	0.92	0.92	0.92
Adj. Flow (vph)	757	934	0	0	1002	443	236	0	652	0	0	0
RTOR Reduction (vph)	0	0	0	0	75	0	0	0	500	0	0	0
Lane Group Flow (vph)	757	934	0	0	1370	0	236	0	152	0	0	0
Heavy Vehicles (%)	1%	1%	0%	0%	1%	0%	2%	0%	1%	0%	0%	0%
Turn Type	pm+pt	NA			NA		Prot		Prot			
Protected Phases	1	6			2		3		3			
Permitted Phases	6											
Actuated Green, G (s)	58.6	35.0			36.4		23.8		23.8			
Effective Green, g (s)	58.6	35.0			36.4		23.8		23.8			
Actuated g/C Ratio	0.58	0.34			0.36		0.23		0.23			
Clearance Time (s)	6.0	6.0			6.0		6.0		6.0			
Vehicle Extension (s)	4.0	5.0			5.0		5.0		5.0			
Lane Grp Cap (vph)	883	1187			1757		802		657			
v/s Ratio Prot	c0.20	0.27			0.28		c0.07		0.05			
v/s Ratio Perm	c0.29											
v/c Ratio	0.86	0.79			0.78		0.29		0.23			
Uniform Delay, d1	26.5	30.0			29.1		32.1		31.6			
Progression Factor	1.68	0.56			1.00		1.00		1.00			
Incremental Delay, d2	7.1	3.3			2.6		0.4		0.4			
Delay (s)	51.5	20.1			31.8		32.5		32.0			
Level of Service	D	С			С		С		С			
Approach Delay (s)		34.1			31.8			32.1			0.0	
Approach LOS		С			С			С			Α	
Intersection Summary												
HCM 2000 Control Delay			32.8	Н	ICM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.68									
Actuated Cycle Length (s)			101.8	S	um of lost	t time (s)			18.0			
Intersection Capacity Utiliz	ation		81.2%	IC	CU Level o	of Service			D			
Analysis Period (min)			15									
o Critical Lana Group												

	•			•	1	1	
Novement	EBL	EBT	WBT	WBR	SBL	SBR	
ane Configurations	*	^	^	7	7	7	
raffic Volume (vph)	303	1620	1258	202	375	806	
uture Volume (vph)	303	1620	1258	202	375	806	
eal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
tal Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0	
ne Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00	
t	1.00	1.00	1.00	0.85	1.00	0.85	
t Protected	0.95	1.00	1.00	1.00	0.95	1.00	
atd. Flow (prot)	1787	3539	3539	1583	1787	1599	
It Permitted	0.95	1.00	1.00	1.00	0.95	1.00	
atd. Flow (perm)	1787	3539	3539	1583	1787	1599	
eak-hour factor, PHF	0.88	0.88	0.93	0.93	0.87	0.87	
dj. Flow (vph)	344	1841	1353	217	431	926	
RTOR Reduction (vph)	0	0	0	151	0	166	
ane Group Flow (vph)	344	1841	1353	66	431	760	
leavy Vehicles (%)	1%	2%	2%	2%	1%	1%	
urn Type	Prot	NA	NA	Perm	Prot	Prot	
rotected Phases	1	6	2		3	3	
ermitted Phases				2			
ctuated Green, G (s)	5.0	29.0	18.0	18.0	18.0	18.0	
ffective Green, g (s)	5.0	29.0	18.0	18.0	18.0	18.0	
ctuated g/C Ratio	0.08	0.49	0.31	0.31	0.31	0.31	
learance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	
ehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0	
ane Grp Cap (vph)	151	1739	1079	482	545	487	
/s Ratio Prot	c0.19	0.52	c0.38		0.24	c0.48	
/s Ratio Perm				0.04			
/c Ratio	2.28	1.06	1.25	0.14	0.79	1.56	
Jniform Delay, d1	27.0	15.0	20.5	14.9	18.8	20.5	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	
ncremental Delay, d2	595.7	39.0	122.0	0.6	8.1	262.1	
Pelay (s)	622.7	54.0	142.5	15.5	26.9	282.6	
evel of Service	F	D	F	В	С	F	
pproach Delay (s)		143.6	124.9		201.4		
oproach LOS		F	F		F		
ersection Summary							
CM 2000 Control Delay			153.2	H	CM 2000	Level of Service	F
CM 2000 Volume to Capa	city ratio		1.51				
ctuated Cycle Length (s)			59.0	Sı	um of los	t time (s)	18.0
tersection Capacity Utiliza	ition		94.7%	IC	U Level	of Service	F
nalysis Period (min)			15				
Critical Lane Group							

Through Vol

Lane Flow Rate

Geometry Grp

Degree of Util (X)

Convergence, Y/N

HCM Lane V/C Ratio

HCM Control Delay

HCM Lane LOS

HCM 95th-tile Q

Service Time

Departure Headway (Hd)

RT Vol

Cap

Intersection												
Intersection Delay, s/veh	95.7											
Intersection LOS	F											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1		1	↑	7	7	1		1	†	7
Traffic Vol, veh/h	137	4	15	9	24	487	15	555	7	60	88	85
Future Vol, veh/h	137	4	15	9	24	487	15	555	7	60	88	85
Peak Hour Factor	0.84	0.84	0.84	0.77	0.77	0.77	0.89	0.89	0.89	0.93	0.93	0.93
Heavy Vehicles, %	0	0	0	0	6	1	0	1	0	4	3	0
Mvmt Flow	163	5	18	12	31	632	17	624	8	65	95	91
Number of Lanes	1	1	0	1	1	1	1	2	0	1	1	1
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	3			2			3			3		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	3			3			2			3		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	3			3			3			2		
HCM Control Delay	19.9			191.8			48.3			15.6		
HCM LOS	С			F			Е			С		
Lane		NBLn1	NBLn2	NBLn3	EBLn1	EBLn2	WBLn1	WBLn2	WBLn3	SBLn1	SBLn2	SBLn3
Vol Left, %		100%	0%	0%	100%	0%	100%	0%	0%	100%	0%	0%
Vol Thru, %		0%	100%	96%	0%	21%	0%	100%	0%	0%	100%	0%
Vol Right, %		0%	0%	4%	0%	79%	0%	0%	100%	0%	0%	100%
Sign Control		Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane		15	370	192	137	19	9	24	487	60	88	85
LT Vol		15	0	0	137	0	9	0	0	60	0	0
		_			•		_		_	•		_

0

0

17

8

0.041

9.567

Yes

377

7.267

0.045

12.7

В

0.1

370

416

0.953

9.069

Yes

403

6.769

1.032

64.4

10.8

0

8

185

216

0.492

9.026

Yes

401

6.726

0.539

20.2

С

2.6

7

8

0

0

8

163

0.442

10.281

Yes

352

7.981

0.463

20.9

С

2.2

15

23

8

0.055

9.228

Yes

390

6.928

0.059

12.5

В

0.2

0

0

12

8

0.029

9.02

Yes

397

6.765

0.03

12

В

0.1

24

0

31

8

0.075

8.617

Yes

416

6.362

0.075

12.1

В

0.2

0

487

632

1.374

7.822

Yes

468

5.567

1.35

204

29.4

F

8

0

0

65

8

0.176

10.805

Yes

334

8.505

0.195

15.8

C

0.6

88

0

95

8

0.245

10.267

Yes

352

7.967

0.27

16.3

С

0.9

85

91

8

0.218

9.486

Yes

381

7.186

0.239

14.8

В

8.0

Lonza TIS Synchro 11 Report
Tighe & Bond HCM 6th AWSC

-						
Intersection						
Int Delay, s/veh	21.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	₽.	LDIN	VVDL	4	Y	NUIN
Traffic Vol, veh/h	63	8	2	351	169	9
	63					
Future Vol, veh/h		8	2	351	169	9
Conflicting Peds, #/hr	_ 0	_ 0	0	_ 0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	70	70	73	73	40	40
Heavy Vehicles, %	4	0	0	2	0	0
Mvmt Flow	90	11	3	481	423	23
Miller Ion				101	120	
Major/Minor I	Major1	N	Major2	N	Minor1	
Conflicting Flow All	0	0	101	0	583	96
Stage 1	-	-	-	-	96	-
Stage 2	_	_	_	_	487	_
Critical Hdwy	_	_	4.1	_	6.4	6.2
Critical Hdwy Stg 1	_	_		_	5.4	-
Critical Hdwy Stg 2	_	_	_	_	5.4	_
			2.2		3.5	3.3
Follow-up Hdwy	-	-		-		
Pot Cap-1 Maneuver	-	-	1504	-	478	966
Stage 1	-	-	-	-	933	-
Stage 2	-	-	-	-	622	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1504	-	477	966
Mov Cap-2 Maneuver	-	-	-	-	477	-
Stage 1	_	_	-	_	933	_
Stage 2	_	_	_	_	620	_
Olago 2					020	
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		50.2	
HCM LOS					F	
		.D. 4			14/51	MOT
Minor Lane/Major Mvm	it 1	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		490	-		1504	-
HCM Lane V/C Ratio		0.908	-	-	0.002	-
HCM Control Delay (s)		50.2	-	-	7.4	0
HCM Lane LOS		F	-	-	Α	Α
HCM 95th %tile Q(veh)		10.4	-	-	0	-

Intersection						
Int Delay, s/veh	0.9					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	7	†	Þ		Y	
Traffic Vol, veh/h	7	65	342	3	1	12
Future Vol, veh/h	7	65	342	3	1	12
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	0	-	-	-	0	-
Veh in Median Storage,		0	0	-	0	-
Grade, %	-	0	0	-	0	_
Peak Hour Factor	63	63	77	77	36	36
Heavy Vehicles, %	40	0	0	1	0	11
Mvmt Flow	11	103	444	4	3	33
IVIVIIIL I IUW		103	444	4	J	33
Major/Minor M	lajor1	N	Major2	N	Minor2	
Conflicting Flow All	448	0		0	571	446
Stage 1	-	-	_	-	446	-
Stage 2	_	_	_	_	125	_
Critical Hdwy	4.5	_	_	_	6.4	6.31
Critical Hdwy Stg 1	٦.٥	_	_	_	5.4	- 0.01
Critical Hdwy Stg 2	_	_			5.4	_
Follow-up Hdwy	2.56	-	-	-		3.399
	938		-		486	594
Pot Cap-1 Maneuver		-	-	-		
Stage 1	-	-	-	-	649	-
Stage 2	-	-	-	-	906	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	938	-	-	-	480	594
Mov Cap-2 Maneuver	-	-	-	-	480	-
Stage 1	-	-	-	-	641	-
Stage 2	-	-	-	-	906	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.9		0		11.6	
HCM LOS					В	
Minor Lane/Major Mvmt		EBL	EBT	WBT	WBR:	SBLn1
Capacity (veh/h)		938			-	583
HCM Lane V/C Ratio		0.012		_		0.062
HCM Control Delay (s)		8.9	-		-	
			-		-	
HCM Lane LOS		A	-	-	-	В
HCM 95th %tile Q(veh)		0	-	-	-	0.2

Intersection						
Int Delay, s/veh	1					
Movement	EBT	EDD	WBL	WBT	NBL	NBR
		EBR	WBL			NBK
Lane Configurations	4		_	र्स	Y	4.4
Traffic Vol, veh/h	73	1	5	189	12	11
Future Vol, veh/h	73	1	5	189	12	11
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	78	78	81	81	71	71
Heavy Vehicles, %	0	0	0	1	11	0
Mvmt Flow	94	1	6	233	17	15
IVIVIIIL FIOW	94	l.	U	233	17	15
Major/Minor N	//ajor1	N	Major2	l	Minor1	
Conflicting Flow All	0	0	95	0	340	95
Stage 1	_	_	_	_	95	_
Stage 2	_	_	_	_	245	_
Critical Hdwy	_	_	4.1	_	6.51	6.2
						0.2
Critical Hdwy Stg 1	-	-	-	-	5.51	
Critical Hdwy Stg 2	-	-	-	-	5.51	-
Follow-up Hdwy	-	-	2.2	-	3.599	3.3
Pot Cap-1 Maneuver	-	-	1512	-	638	967
Stage 1	-	-	-	-	907	-
Stage 2	-	-	-	-	775	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1512	-	635	967
Mov Cap-2 Maneuver	_	_	_	_	635	_
Stage 1	_	_	_	_	907	_
Stage 2	_				771	_
Staye 2	-	-	-	_	// 1	<u>-</u>
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.2		9.9	
HCM LOS					Α	
J					1	
						14/5-
Minor Lane/Major Mvm	t l	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		760	-	-	1512	-
HCM Lane V/C Ratio		0.043	-	-	0.004	-
HCM Control Delay (s)		9.9	-	-	7.4	0
HCM Lane LOS		Α	_	-	Α	A
HCM 95th %tile Q(veh)		0.1	_	_	0	
Juli Jour Julio Q(VOII)		J. 1			- 0	

Intersection						
Int Delay, s/veh	2.9					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
		WBK		INBK	SBL	
Lane Configurations	Y	40	þ	4	0	र्सु
Traffic Vol, veh/h	1	10	13	1	0	6
Future Vol, veh/h	1	10	13	1	0	6
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-		-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	67	67	69	69	50	50
Heavy Vehicles, %	0	0	10	0	0	0
Mvmt Flow	1	15	19	1	0	12
Major/Minor N	/linor1	N	Major1	, N	Major2	
						^
Conflicting Flow All	32	20	0	0	20	0
Stage 1	20	-	-	-	-	-
Stage 2	12	-	-	-	-	-
Critical Hdwy	6.4	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	987	1064	-	-	1609	-
Stage 1	1008	-	-	-	-	-
Stage 2	1016	-	-	-	-	-
Platoon blocked, %			-			-
Mov Cap-1 Maneuver	987	1064	-	-	1609	-
Mov Cap-2 Maneuver	987	-	-	-	-	-
Stage 1	1008	-	-	-	-	-
Stage 2	1016	-	-	-	-	-
<u> </u>						
Annroach	WD		NID		CD	
Approach	WB		NB		SB	
HCM Control Delay, s	8.5		0		0	
HCM LOS	Α					
Minor Lane/Major Mvmt	<u> </u>	NBT	NBRV	WBLn1	SBL	SBT
Capacity (veh/h)		-		1057	1609	-
HCM Lane V/C Ratio		_		0.016	1003	-
HCM Control Delay (s)		_	_	8.5	0	
HCM Lane LOS			_			
HCM 95th %tile Q(veh)		-	-	A 0	A 0	-
HOW SOUL WILL W(Ven)		-		U	U	-

-						
Intersection						
Int Delay, s/veh	2.3					
		ED5	NIS	NET	057	000
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			र्स	T ₃	
Traffic Vol, veh/h	3	0	0	7	14	0
Future Vol, veh/h	3	0	0	7	14	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	25	25	63	63	63	63
Heavy Vehicles, %	0	0	0	0	10	0
Mvmt Flow	12	0	0	11	22	0
	· -				<u></u> -	
	/linor2		Major1		/lajor2	
Conflicting Flow All	33	22	22	0	-	0
Stage 1	22	-	-	-	-	-
Stage 2	11	-	-	-	-	-
Critical Hdwy	6.4	6.2	4.1	-	-	-
Critical Hdwy Stg 1	5.4	-	_	-	_	-
Critical Hdwy Stg 2	5.4	_	_	_	_	_
Follow-up Hdwy	3.5	3.3	2.2	_	_	_
Pot Cap-1 Maneuver	986	1061	1607	_	_	_
Stage 1	1006	-	1007	_	_	_
Stage 2	1017	_	_	-	_	_
Platoon blocked, %	1017	-	_	-		
	000	1001	1007	-	-	-
Mov Cap-1 Maneuver	986	1061	1607	-	-	-
Mov Cap-2 Maneuver	986	-	-	-	-	-
Stage 1	1006	-	-	-	-	-
Stage 2	1017	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	8.7		0		0	
HCM LOS	Α					
Minor Lane/Major Mvm	t	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1607	-		-	
HCM Lane V/C Ratio				0.012		-
HCM Control Delay (s)		0	-	8.7	-	
					-	-
HCM Lane LOS		A	-	A	-	-
HCM 95th %tile Q(veh)		0	-	0	-	-

Intersection
Int Delay, s/veh 0
Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SB
Lane Configurations 4 4
Traffic Vol, veh/h 0 0 0 0 0 0 178 0 0 5
Future Vol, veh/h 0 0 0 0 0 0 178 0 0 5
Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0
Sign Control Stop Stop Stop Stop Stop Free Free Free Free Free Free
RT Channelized None None None
Storage Length
Veh in Median Storage, # - 0 0 0
Grade, % - 0 0 0
Peak Hour Factor 92 92 92 92 92 39 39 92 92 67 6
Heavy Vehicles, % 2 2 2 2 2 0 0 2 2 0
Mvmt Flow 0 0 0 0 0 0 456 0 0 7
Major/Minor Minor2 Minor1 Major1 Major2
Conflicting Flow All 467 467 11 467 470 456 14 0 0 456 0
Stage 1 11 11 - 456 456
Stage 2 456 456 - 11 14
Critical Hdwy 7.12 6.52 6.22 7.12 6.52 6.22 4.1 4.12 -
Critical Hdwy Stg 1 6.12 5.52 - 6.12 5.52
Critical Hdwy Stg 2 6.12 5.52 - 6.12 5.52
Follow-up Hdwy 3.518 4.018 3.318 3.518 4.018 3.318 2.2 2.218 -
Pot Cap-1 Maneuver 506 493 1070 506 492 604 1617 1105 -
Stage 1 1010 886 - 584 568
Stage 2 584 568 - 1010 884
Platoon blocked, %
Mov Cap-1 Maneuver 506 493 1070 506 492 604 1617 1105 -
Mov Cap-2 Maneuver 506 493 - 506 492
Stage 1 1010 886 - 584 568
Stage 2 584 568 - 1010 884
Approach EB WB NB SB
HCM Control Delay, s 0 0 0 0
HCM LOS A A
HOW LOO A A
Miner Leve Meior Mirrot NDL NDT NDD FDL -4M/DL -4 ODL ODT ODD
Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1 SBL SBT SBR
Capacity (veh/h) 1617 1105
HCM Lane V/C Ratio
HCM Control Delay (s) 0 0 0 0 HCM Lane LOS A A A A
HCM Lane LOS A A A A
HCM 95th %tile Q(veh) 0 0

Lonza TIS Tighe & Bond

Intersection						
Int Delay, s/veh	0.3					
		WDD	NET	NDD	ODI	ODT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		Þ			ન
Traffic Vol, veh/h	7	3	574	1	4	101
Future Vol, veh/h	7	3	574	1	4	101
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	88	88	78	78	76	76
Heavy Vehicles, %	0	0	1	0	0	4
Mvmt Flow	8	3	736	1	5	133
N 4 = i = ::/N 4 i = =	N 41:		1-:- 4		4-1-0	
	Minor1		//ajor1		Major2	
Conflicting Flow All	880	737	0	0	737	0
Stage 1	737	-	-	-	-	-
Stage 2	143	-	-	-	-	-
Critical Hdwy	6.4	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	320	422	-	-	878	-
Stage 1	477	-	-	-	-	-
Stage 2	889	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	318	422	-	-	878	-
Mov Cap-2 Maneuver	318	-	-	-	-	-
Stage 1	477	_	_	_	_	_
	884	_	_	_	_	_
Stage 2						
Stage 2	004					
Approach	WB		NB		SB	
Approach HCM Control Delay, s	WB 15.9		NB 0		SB 0.3	
Approach	WB					
Approach HCM Control Delay, s	WB 15.9					
Approach HCM Control Delay, s HCM LOS	WB 15.9 C	NRT	0	WRI n1	0.3	SRT
Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm	WB 15.9 C	NBT	0	VBLn1	0.3 SBL	SBT
Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h)	WB 15.9 C	NBT -	0 NBRV	343	0.3 SBL 878	-
Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	15.9 C	NBT -	0 NBRV	343 0.033	0.3 SBL 878 0.006	-
Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	15.9 C	- - -	0 NBRV	343 0.033 15.9	0.3 SBL 878 0.006 9.1	- - 0
Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	15.9 C	NBT - - -	0 NBRV	343 0.033	0.3 SBL 878 0.006	-

-						
Intersection						
Int Delay, s/veh	6.9					
		WDD	NET	NDD	ODL	ODT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y	4	1			4
Traffic Vol, veh/h	48	147	428	15	13	95
Future Vol, veh/h	48	147	428	15	13	95
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e,# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	72	72	67	67	81	81
Heavy Vehicles, %	14	0	1	46	0	3
Mvmt Flow	67	204	639	22	16	117
N 4 - i /N 4 i	N 4: 4		1-:- 4		4-1- 0	
	Minor1		//ajor1		Major2	
Conflicting Flow All	799	650	0	0	661	0
Stage 1	650	-	-	-	-	-
Stage 2	149	-	-	-	-	-
Critical Hdwy	6.54	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.54	-	-	-	-	-
Critical Hdwy Stg 2	5.54	-	-	-	-	-
Follow-up Hdwy	3.626	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	339	473	-	-	937	-
Stage 1	498	-	-	-	-	-
Stage 2	850	-	-	-	-	_
Platoon blocked, %			_	_		_
Mov Cap-1 Maneuver	333	473	_	_	937	_
Mov Cap 1 Maneuver	333	-	_	_	-	_
Stage 1	498	_	_	_	_	_
Stage 2	835	_	_	_	_	
Staye Z	000	-	-	<u>-</u>	_	-
Approach	WB		NB		SB	
HCM Control Delay, s	26.7		0		1.1	
HCM LOS	D					
NA:	-4	NDT	MDD	NDL 4	001	ODT
Minor Lane/Major Mvr	nt	NBT	NRK	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	429	937	-
HCM Lane V/C Ratio		-	-	0.631		-
HCM Control Delay (s)	-	-	26.7	8.9	0
HCM Lane LOS		-	-	D	Α	Α
HCM 95th %tile Q(veh	1)	-	-	4.2	0.1	-

Intersection						
Int Delay, s/veh	0.2					
		MES	Not	NES	051	057
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		Þ			4
Traffic Vol, veh/h	0	4	351	0	0	161
Future Vol, veh/h	0	4	351	0	0	161
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,	# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	25	25	68	68	74	74
Heavy Vehicles, %	0	0	3	0	0	7
Mymt Flow	0	16	516	0	0	218
WWIIICTIOW	U	10	010	U	U	210
Major/Minor M	linor1	N	Major1	N	//ajor2	
Conflicting Flow All	734	516	0	0	516	0
Stage 1	516	-	-	-	-	-
Stage 2	218	_	-	-	-	_
Critical Hdwy	6.4	6.2	_	_	4.1	_
Critical Hdwy Stg 1	5.4	-	_	_	-	_
Critical Hdwy Stg 2	5.4	_	_	_	_	_
Follow-up Hdwy	3.5	3.3	_	_	2.2	_
Pot Cap-1 Maneuver	390	563			1060	
			-	-	1000	-
Stage 1	603	-	-	-	-	-
Stage 2	823	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	390	563	-	-	1060	-
Mov Cap-2 Maneuver	390	-	-	-	-	-
Stage 1	603	-	-	-	-	-
Stage 2	823	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	11.6		0		0	
HCM LOS	В					
Minor Lane/Major Mvmt		NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)			-		1060	-
HCM Lane V/C Ratio				0.028	-	_
HCM Control Delay (s)		_	_	11.6	0	
HCM Lane LOS		_	_	В	A	
		-	-			-
HCM 95th %tile Q(veh)		-	-	0.1	0	-

Intersection													
Int Delay, s/veh	86.7												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4	LDIX	1100	4	TIDIT	HUL	4	HUIT	ODL	4	ODIT	
Traffic Vol, veh/h	27	20	3	279	19	20	1	265	101	3	443	12	
-uture Vol, veh/h	27	20	3	279	19	20	1	265	101	3	443	12	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	Slop -	Stop	None	Stop -	Stop -	None	-	-	None	-	-	None	
Storage Length		_	INOHE	_	_	INOTIC	_	_	NOHE	_	-	NOHE	
/eh in Median Storage		0	_	_	0	_		0		-	0	_	
Grade, %		0	_	_	0	_	-	0	<u>-</u>	_	0	<u>-</u>	
Peak Hour Factor	54	54	54	85	85	85	84	84	84	88	88	88	
	0	13		00	14		04	2	1			11	
leavy Vehicles, %	-	37	0	-		0	-			3	502	14	
/Ivmt Flow	50	3/	6	328	22	24	1	315	120	3	503	14	
4-i/\	Min C			Ain cut			\			Anis TO			
	Minor2			Minor1			Major1			Major2			
Conflicting Flow All	916	953	510	915	900	375	517	0	0	435	0	0	
Stage 1	516	516	-	377	377	-	-	-	-	-	-	-	
Stage 2	400	437	-	538	523	-	-	-	-	-	-	-	
ritical Hdwy	7.1	6.63	6.2	7.1	6.64	6.2	4.1	-	-	4.1	-	-	
ritical Hdwy Stg 1	6.1	5.63	-	6.1	5.64	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.1	5.63	-	6.1	5.64	-	-	-	-	-	-	-	
ollow-up Hdwy	3.5	4.117	3.3		4.126	3.3	2.2	-	-	2.2	-	-	
ot Cap-1 Maneuver	255	248	567		266	676	1059	-	-	1135	-	-	
Stage 1	546	517	-	649	595	-	-	-	-	-	-	-	
Stage 2	630	561	-	531	511	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	230	247		~ 223	265	676	1059	-	-	1135	-	-	
Mov Cap-2 Maneuver	230	247	-	~ 223	265	-	-	-	-	-	-	-	
Stage 1	545	515	-	648	594	-	-	-	-	-	-	-	
Stage 2	585	560	-	486	509	-	-	-	-	-	-	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	28.2			\$ 323			0			0.1			
HCM LOS	D			F									
//linor Lane/Major Mvm	nt	NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR				
Capacity (veh/h)		1059	-	-	246	235	1135	-	_				
ICM Lane V/C Ratio		0.001	_	-		1.592		_	_				
ICM Control Delay (s)		8.4	0	_		\$ 323	8.2	0	-				
ICM Lane LOS		A	A	_	D	F	A	A	_				
HCM 95th %tile Q(veh))	0	-	-	1.7	23.4	0	-	-				
Notes													
	onoit:	¢. D-	dov. ov.	oode 20)/\c	L. Com	nutation	Not D	finad	*. AII	maior	oluma :	n nlotoon
~: Volume exceeds cap	Dacity	⊅; D6	ay exc	eeds 30	JUS -	+. Com	putation	NOT DE	illea	. All	major v	oluitie II	n platoon

Delay, Siveh 34.8 Siveh 34.8 Siveh 34.8 Siveh Sive
Second
The Configurations The Configuration The Confi
The Configurations 1
Affic Vol, veh/h 307 72 199 45 24 718 Intre Vol, veh/h 307 72 199 45 24 718 Inflicting Peds, #Ihr 0 0 0 0 0 0 In Control Stop Stop Free Free Free Free Channelized None None None None None rage Length 0 290 100 - 175 h in Median Storage, # 0 - 0 0 - ade, % 0 - - 0 0 - ade, % 2 2 1 3 0 1 mt Flow 357 84 262 59 29 865 jor/Minor Minor Majort Majort Majort jor/Minor Minor Majort Majort Majort jor/Minor Minor Majort Majort <t< td=""></t<>
ture Vol, veh/h 307 72 199 45 24 718 fillicting Peds, #hr 10 0 0 0 0 0 0 0 0 0 0 0 0
Inflicting Peds, #hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Control Stop Channelized None None
Channelized - None - None - None rarge Length 0 290 100 - 175 In Median Storage, # 0 - 0 0 0 - ade, % 0 - 0 0 0 - ade, % 0 - 0 0 0 - ade, % 0 - 0 0 0 - ade, Hour Factor 86 86 76 76 83 83 avy Vehicles, % 2 2 1 1 3 0 1 mt Flow 357 84 262 59 29 865 In Median Storage, # 0 - 0 0 In Median Storage, # 0 0 - 0 In Median Storage, # 0 0 - 0 In Median Storage In
rage Length
h in Median Storage, # 0
ade, % 0 0 0 - ak Hour Factor 86 86 76 76 83 83 avy Vehicles, % 2 2 1 3 0 1 mt Flow 357 84 262 59 29 865
ak Hour Factor 86 86 76 76 83 83 83 avy Vehicles, % 2 2 1 3 0 1 mt Flow 357 84 262 59 29 865
avy Vehicles, % 2 2 1 3 0 1 mt Flow 357 84 262 59 29 865 jor/Minor Minor2 Major1 Major2 mifficting Flow All 612 29 894 0 - 0 Stage 1 29 Stage 2 583 Stage 2 583 Stical Hdwy Stg 1 5.42 tical Hdwy Stg 2 5.42 tical Hdwy Stg 2 5.42 tow-up Hdwy 3.518 3.318 2.209 Stage 1 994 Stage 1 994 Stage 2 558 Stage 2 558 Stage 3 558 Stage 4 563 V Cap-1 Maneuver
mit Flow 357 84 262 59 29 865
Stage 1
Stage 1
Stage 1
Stage 1 29
Stage 2
tical Hdwy 6.42 6.22 4.11
tical Hdwy Stg 1 5.42
tical Hdwy Stg 2 5.42
Now-up Hdwy
Cap-1 Maneuver
Stage 1 994 Stage 2 558 Stage 1 653 Stage 1 653 Stage 2 558
Stage 1 994 Stage 2 558 Stage 1 653 Stage 2 558
Stage 2 558
The stoop blocked, %
v Cap-1 Maneuver ~ 300 1046 763
Stage 1
Stage 1 653 -
Stage 2 558
proach EB NB SB M Control Delay, s 123.6 9.9 0 M LOS F Nor Lane/Major Mvmt NBL NBT EBLn1 EBLn2 SBT SBR pacity (veh/h) 763 - 300 1046 M Lane V/C Ratio 0.343 - 1.19 0.08 M Control Delay (s) 12.2 - 150.6 8.7 M Lane LOS B - F A M 95th %tile Q(veh) 1.5 - 15.7 0.3
M Control Delay, s 123.6 9.9 0 M LOS F Nor Lane/Major Mvmt NBL NBT EBLn1 EBLn2 SBT SBR pacity (veh/h) 763 - 300 1046 M Lane V/C Ratio 0.343 - 1.19 0.08 M Control Delay (s) 12.2 - 150.6 8.7 M Lane LOS B - F A M 95th %tile Q(veh) 1.5 - 15.7 0.3
M Control Delay, s 123.6 9.9 0 M LOS F Nor Lane/Major Mvmt NBL NBT EBLn1 EBLn2 SBT SBR pacity (veh/h) 763 - 300 1046 M Lane V/C Ratio 0.343 - 1.19 0.08 M Control Delay (s) 12.2 - 150.6 8.7 M Lane LOS B - F A M 95th %tile Q(veh) 1.5 - 15.7 0.3
M LOS F nor Lane/Major Mvmt NBL NBT EBLn1 EBLn2 SBT SBR pacity (veh/h) 763 - 300 1046 M Lane V/C Ratio 0.343 - 1.19 0.08 M Control Delay (s) 12.2 - 150.6 8.7 M Lane LOS B - F A M 95th %tile Q(veh) 1.5 - 15.7 0.3 tes
nor Lane/Major Mvmt NBL NBT EBLn1 EBLn2 SBT SBR pacity (veh/h) 763 - 300 1046 M Lane V/C Ratio 0.343 - 1.19 0.08 M Control Delay (s) 12.2 - 150.6 8.7 M Lane LOS B - F A M 95th %tile Q(veh) 1.5 - 15.7 0.3
pacity (veh/h) 763 - 300 1046 M Lane V/C Ratio 0.343 - 1.19 0.08 M Control Delay (s) 12.2 - 150.6 8.7 M Lane LOS B - F A M 95th %tile Q(veh) 1.5 - 15.7 0.3 tes
pacity (veh/h) 763 - 300 1046 M Lane V/C Ratio 0.343 - 1.19 0.08 M Control Delay (s) 12.2 - 150.6 8.7 M Lane LOS B - F A M 95th %tile Q(veh) 1.5 - 15.7 0.3
M Lane V/C Ratio 0.343 - 1.19 0.08 M Control Delay (s) 12.2 - 150.6 8.7 M Lane LOS B - F A M 95th %tile Q(veh) 1.5 - 15.7 0.3 tes
M Control Delay (s) 12.2 - 150.6 8.7 M Lane LOS B - F A M 95th %tile Q(veh) 1.5 - 15.7 0.3 tes
M Lane LOS B - F A M 95th %tile Q(veh) 1.5 - 15.7 0.3 tes
M 95th %tile Q(veh) 1.5 - 15.7 0.3 tes
tes
volume exceeds capacity — \$. Delay exceeds 5005 — +. Computation Not Delined — . All major volume in platoon

Intersection						
Int Delay, s/veh	0.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	VVDL	VVDK	ND1	אטוז	ODL	1
Traffic Vol, veh/h	0	55	505	0	0	TT 1181
			505			
Future Vol, veh/h	0	55		0	0	1181
Conflicting Peds, #/hr	0	0	0		0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage,		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	73	73	95	95	89	89
Heavy Vehicles, %	0	13	0	1	0	1
Mvmt Flow	0	75	532	0	0	1327
		_				
	/linor1		Major1	N	/lajor2	
Conflicting Flow All	-	532	0	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.395	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	_	_	_	-	_	-
Follow-up Hdwy	_ ;	3.4235	_	_	_	_
Pot Cap-1 Maneuver	0	521	_	0	0	_
Stage 1	0	JZ 1 -	_	0	0	_
Stage 2	0	_		0	0	
	U	-		U	U	
Platoon blocked, %		F0.4	-			-
Mov Cap-1 Maneuver	-	521	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Annroach	WD		ND		CD	
Approach	WB		NB		SB	
HCM Control Delay, s	13.1		0		0	
HCM LOS	В					
Minor Lane/Major Mvmt		NRT\/	VBLn1	SBT		
		TAD I V				
Capacity (veh/h)		-	521	-		
HCM Cantral Dalay (a)		-	0.145	-		
HCM Control Delay (s)		-	13.1	-		
HCM Lane LOS		-	В	-		
HCM 95th %tile Q(veh)		-	0.5	-		
` '						

	Þ		7	1	694.03 604.03	~	1	1	~	/	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†		ሻሻ	1			स	77		4	
Traffic Volume (vph)	3	106	6	1189	642	132	8	5	275	6	2	2
Future Volume (vph)	3	106	6	1189	642	132	8	5	275	6	2	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	12	11	12	12	16	12
Total Lost time (s)	5.0	6.0		6.0	6.0			6.0	6.0		6.0	
Lane Util. Factor	1.00	0.95		0.97	0.95			1.00	0.88		1.00	
Frt	1.00	0.99		1.00	0.97			1.00	0.85		0.97	
Flt Protected	0.95	1.00		0.95	1.00			0.97	1.00		0.97	
Satd. Flow (prot)	1805	3515		3467	3475			1783	2682		2035	
Flt Permitted	0.95	1.00		0.95	1.00			0.87	1.00		0.86	
Satd. Flow (perm)	1805	3515		3467	3475			1598	2682		1811	
Peak-hour factor, PHF	0.84	0.84	0.84	0.83	1.00	0.83	0.88	0.88	0.88	0.63	0.63	0.63
Adj. Flow (vph)	4	126	7	1433	642	159	9	6	312	10	3	3
RTOR Reduction (vph)	0	4	0	0	10	0	0	0	0	0	2	0
Lane Group Flow (vph)	4	129	0	1433	791	0	0	15	313	0	14	0
Heavy Vehicles (%)	0%	2%	0%	1%	1%	0%	0%	0%	6%	0%	0%	0%
Turn Type	Prot	NA		Prot	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	6	2		1	5			8			4	
Permitted Phases							8		8	4		
Actuated Green, G (s)	5.8	13.0		46.0	54.2			15.7	15.7		15.7	
Effective Green, g (s)	5.8	13.0		46.0	54.2			15.7	15.7		15.7	
Actuated g/C Ratio	0.06	0.14		0.50	0.58			0.17	0.17		0.17	
Clearance Time (s)	5.0	6.0		6.0	6.0			6.0	6.0		6.0	
Vehicle Extension (s)	2.0	3.0		3.0	3.0			3.0	3.0		3.0	
Lane Grp Cap (vph)	112	492		1720	2031			270	454		306	
v/s Ratio Prot	0.00	c0.04		c0.41	c0.23							
v/s Ratio Perm								0.01	c0.12		0.01	
v/c Ratio	0.04	0.26		0.83	0.39			0.06	0.69		0.04	
Uniform Delay, d1	40.8	35.6		20.1	10.4			32.3	36.2		32.2	
Progression Factor	1.00	1.00		1.00	1.00			1.00	1.00		1.00	
Incremental Delay, d2	0.0	0.3		3.6	0.1			0.1	4.3		0.1	
Delay (s)	40.9	35.9		23.7	10.5			32.4	40.5		32.3	
Level of Service	D	D		С	В			C	D		С	
Approach Delay (s)		36.0			18.9			40.2			32.3	
Approach LOS		D			В			D			С	
Intersection Summary												
HCM 2000 Control Delay			22.4	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capac	city ratio		0.71									
Actuated Cycle Length (s)				S	um of lost	time (s)			18.0			
Intersection Capacity Utilization			56.3%	IC	CU Level o	of Service			В			
Analysis Period (min)			15									
o Critical Lana Croup												

102: US Route 4 SB On-Ramp/US Route 4 SB Off-Ramp & Pease Blvd 2025 No Build Condition Weekday AM Peak

	1		•	1		•	1	1	1	/	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		1111	7	77	^					12		77
Traffic Volume (vph)	0	271	116	157	1014	0	0	0	0	566	0	839
Future Volume (vph)	0	271	116	157	1014	0	0	0	0	566	0	839
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	10	11	10	11	12	12	12	12	12	12	12
Total Lost time (s)		6.0	6.0	6.0	6.0					6.0		6.0
Lane Util. Factor		0.86	1.00	0.97	0.95					0.97		0.88
Frt		1.00	0.85	1.00	1.00					1.00		0.85
Flt Protected		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (prot)		5981	1419	2918	3455					3467		2814
Flt Permitted		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (perm)		5981	1419	2918	3455					3467		2814
Peak-hour factor, PHF	0.80	0.80	0.80	0.80	0.80	0.80	0.92	0.92	0.92	0.75	0.75	0.75
Adj. Flow (vph)	0	339	145	196	1268	0	0	0	0	755	0	1119
RTOR Reduction (vph)	0	0	97	0	0	0	0	0	0	0	0	104
Lane Group Flow (vph)	0	339	48	196	1268	0	0	0	0	755	0	1015
Heavy Vehicles (%)	0%	2%	10%	12%	1%	0%	2%	2%	2%	1%	0%	1%
Turn Type		NA	Prot	Prot	NA					Prot		Prot
Protected Phases		6	6	5	25					3		3
Permitted Phases												
Actuated Green, G (s)		33.3	33.3	25.0	64.3					25.0		25.0
Effective Green, g (s)		33.3	33.3	25.0	64.3					25.0		25.0
Actuated g/C Ratio		0.33	0.33	0.25	0.63					0.25		0.25
Clearance Time (s)		6.0	6.0	6.0						6.0		6.0
Vehicle Extension (s)		5.0	5.0	4.0						5.0		5.0
Lane Grp Cap (vph)		1966	466	720	2193					855		694
v/s Ratio Prot		0.06	0.03	0.07	c0.37					0.22		c0.36
v/s Ratio Perm												
v/c Ratio		0.17	0.10	0.27	0.58					0.88		1.46
Uniform Delay, d1		24.2	23.6	30.8	10.7					36.7		38.1
Progression Factor		1.00	1.00	0.90	1.58					1.00		1.00
Incremental Delay, d2		0.1	0.2	0.1	0.3					11.4		216.1
Delay (s)		24.3	23.8	27.7	17.2					48.2		254.2
Level of Service		С	С	С	В					D		F
Approach Delay (s)		24.1			18.6			0.0			171.2	
Approach LOS		С			В			Α			F	
Intersection Summary												
HCM 2000 Control Delay			94.1	Н	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capac	itv ratio		0.88			2.3.07	J		-			
Actuated Cycle Length (s)	.,		101.3	S	um of lost	time (s)			18.0			
Intersection Capacity Utilizat	ion		67.4%			of Service			C			
Analysis Period (min)			15		2 23.61	2230						
c Critical Lane Group												

103: US Route 4 NB Off-ramp/US Route 4 NB On-Ramp & Pease Blvd 2025 No Build Condition Weekday AM Peak

	•	-	•	1	624.00	•	1	1	1	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	77	^			*		77		77			
Traffic Volume (vph)	118	719	0	0	405	78	766	0	366	0	0	0
Future Volume (vph)	118	719	0	0	405	78	766	0	366	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	11	12	12	12	12	12	12	12	12	12	12
Total Lost time (s)	6.0	6.0			6.0		6.0		6.0			
Lane Util. Factor	0.97	0.95			0.91		0.97		0.88			
Frt	1.00	1.00			0.98		1.00		0.85			
Flt Protected	0.95	1.00			1.00		0.95		1.00			
Satd. Flow (prot)	3113	3421			4938		3433		2733			
Flt Permitted	0.43	1.00			1.00		0.95		1.00			
Satd. Flow (perm)	1402	3421			4938		3433		2733			
Peak-hour factor, PHF	0.87	0.87	0.87	0.85	0.85	0.85	0.78	0.78	0.78	0.92	0.92	0.92
Adj. Flow (vph)	136	826	0	0	476	92	982	0	469	0	0	0
RTOR Reduction (vph)	0	0	0	0	25	0	0	0	353	0	0	0
Lane Group Flow (vph)	136	826	0	0	543	0	982	0	116	0	0	0
Heavy Vehicles (%)	5%	2%	0%	0%	2%	5%	2%	2%	4%	0%	0%	0%
Turn Type	pm+pt	NA			NA		Prot		Prot			
Protected Phases	1	6			2		3		3			
Permitted Phases	6											
Actuated Green, G (s)	50.3	33.3			41.3		25.0		25.0			
Effective Green, g (s)	50.3	33.3			41.3		25.0		25.0			
Actuated g/C Ratio	0.50	0.33			0.41		0.25		0.25			
Clearance Time (s)	6.0	6.0			6.0		6.0		6.0			
Vehicle Extension (s)	4.0	5.0			5.0		5.0		5.0			
Lane Grp Cap (vph)	983	1124			2013		847		674			
v/s Ratio Prot	c0.02	c0.24			c0.11		c0.29		0.04			
v/s Ratio Perm	0.05											
v/c Ratio	0.14	0.73			0.27		1.16		0.17			
Uniform Delay, d1	13.4	30.1			20.0		38.1		30.0			
Progression Factor	1.14	1.29			1.00		1.00		1.00			
Incremental Delay, d2	0.1	2.3			0.2		84.8		0.3			
Delay (s)	15.4	41.2			20.1		122.9		30.3			
Level of Service	В	D			С		F		С			
Approach Delay (s)		37.6			20.1			93.0			0.0	
Approach LOS		D			С			F			Α	
Intersection Summary												
HCM 2000 Control Delay			61.2	Н	CM 2000	Level of S	Service		Е			
HCM 2000 Volume to Capa	city ratio		0.69									
Actuated Cycle Length (s)			101.3	S	um of lost	time (s)			18.0			
Intersection Capacity Utiliza	ition		67.4%		CU Level				С			
Analysis Period (min)			15									
c Critical Lane Group												

		0.500		≪′	
Novement EBL EB	T WBT	WBR	SBL	SBR	
ane Configurations 🦎 🔥	†	7	-	7	
raffic Volume (vph) 620 203		586	162	189	
uture Volume (vph) 620 203	0 731	586	162	189	
eal Flow (vphpl) 1900 190	0 1900	1900	1900	1900	
otal Lost time (s) 6.0 6	0 6.0	6.0	6.0	6.0	
ane Util. Factor 1.00 0.9	5 0.95	1.00	1.00	1.00	
rt 1.00 1.0	0 1.00	0.85	1.00	0.85	
t Protected 0.95 1.0	0 1.00	1.00	0.95	1.00	
atd. Flow (prot) 1787 347	1 3343	1583	1719	1538	
It Permitted 0.95 1.0	0 1.00	1.00	0.95	1.00	
atd. Flow (perm) 1787 347	1 3343	1583	1719	1538	
eak-hour factor, PHF 0.86 0.8		0.96	0.76	0.76	
Adj. Flow (vph) 721 236		610	213	249	
TOR Reduction (vph) 0	0 0	424	0	192	
ane Group Flow (vph) 721 236		186	213	57	
leavy Vehicles (%) 1% 4		2%	5%	5%	
urn Type Prot N		Perm	Prot	Prot	
rotected Phases 1	6 2		3	3	
ermitted Phases		2			
actuated Green, G (s) 9.5 33.	5 18.0	18.0	13.5	13.5	
ffective Green, g (s) 9.5 33.		18.0	13.5	13.5	
ctuated g/C Ratio 0.16 0.5		0.31	0.23	0.23	
Clearance Time (s) 6.0 6.		6.0	6.0	6.0	
ehicle Extension (s) 4.0 4.0		4.0	4.0	4.0	
ane Grp Cap (vph) 287 197		482	393	351	
/s Ratio Prot c0.40 c0.6			c0.12	0.04	
/s Ratio Perm		0.12			
//c Ratio 2.51 1.2	0.75	0.39	0.54	0.16	
Jniform Delay, d1 24.8 12.		16.1	20.0	18.2	
Progression Factor 1.00 1.0		1.00	1.00	1.00	
ncremental Delay, d2 690.8 94.		2.3	1.9	0.3	
Delay (s) 715.5 107.	1 23.4	18.5	21.9	18.5	
evel of Service F	F C	В	С	В	
Approach Delay (s) 249.	4 21.2		20.1		
pproach LOS	F C		С		
ntersection Summary					
ICM 2000 Control Delay	164.2	Н	CM 2000	Level of Service	F
ICM 2000 Volume to Capacity ratio	1.36				
ctuated Cycle Length (s)	59.0		um of lost		18.0
ntersection Capacity Utilization	80.6%	IC	CU Level of	of Service	D
Analysis Period (min)	15				
Critical Lane Group					

Intersection												
Intersection Delay, s/veh	124.5											
Intersection LOS	F											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	₽.		-	↑	7	7	1		7	↑	7
Traffic Vol, veh/h	69	44	31	14	13	73	8	101	64	585	449	137
Future Vol, veh/h	69	44	31	14	13	73	8	101	64	585	449	137
Peak Hour Factor	0.76	0.76	0.76	0.78	0.78	0.78	0.83	0.83	0.83	0.76	0.76	0.76
Heavy Vehicles, %	0	4	5	0	13	18	0	0	3	2	0	0
Mvmt Flow	91	58	41	18	17	94	10	122	77	770	591	180
Number of Lanes	1	1	0	1	1	1	1	2	0	1	1	1
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	3			2			3			3		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	3			3			2			3		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	3			3			3			2		
HCM Control Delay	14.3			13.7			13.8			162.3		
HCM LOS	В			В			В			F		
Lane		NBLn1	NBLn2	NBLn3	EBLn1	EBLn2	WBLn1	WBLn2	WBLn3	SBLn1	SBLn2	SBLn3
Vol Left, %		100%	0%	0%	100%	0%	100%	0%	0%	100%	0%	0%
Vol Thru, %		0%	100%	34%	0%	59%	0%	100%	0%	0%	100%	0%
Vol Right, %		0%	0%	66%	0%	41%	0%	0%	100%	0%	0%	100%
Sign Control		Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane		8	67	98	69	75	14	13	73	585	449	137
LT Mal		0	٥	٥	60	۸	4.4	٥	٥	EOE	٥	0

Lane	NBLn1	NBLn2	NBLn3	EBLn1	EBLn2	WBLn1	WBLn2	WBLn3	SBLn1	SBLn2	SBLn3
Vol Left, %	100%	0%	0%	100%	0%	100%	0%	0%	100%	0%	0%
Vol Thru, %	0%	100%	34%	0%	59%	0%	100%	0%	0%	100%	0%
Vol Right, %	0%	0%	66%	0%	41%	0%	0%	100%	0%	0%	100%
Sign Control	Stop										
Traffic Vol by Lane	8	67	98	69	75	14	13	73	585	449	137
LT Vol	8	0	0	69	0	14	0	0	585	0	0
Through Vol	0	67	34	0	44	0	13	0	0	449	0
RT Vol	0	0	64	0	31	0	0	73	0	0	137
Lane Flow Rate	10	81	118	91	99	18	17	94	770	591	180
Geometry Grp	8	8	8	8	8	8	8	8	8	8	8
Degree of Util (X)	0.024	0.188	0.26	0.227	0.228	0.046	0.042	0.218	1.509	1.069	0.291
Departure Headway (Hd)	9.374	8.867	8.453	9.385	8.663	9.761	9.48	8.859	7.056	6.517	5.81
Convergence, Y/N	Yes										
Cap	384	407	427	385	417	369	380	408	516	555	613
Service Time	7.074	6.567	6.153	7.085	6.363	7.461	7.18	6.559	4.843	4.304	3.597
HCM Lane V/C Ratio	0.026	0.199	0.276	0.236	0.237	0.049	0.045	0.23	1.492	1.065	0.294
HCM Control Delay	12.3	13.6	14.1	14.8	13.9	12.9	12.6	14	258.4	83.3	11
HCM Lane LOS	В	В	В	В	В	В	В	В	F	F	В
HCM 95th-tile Q	0.1	0.7	1	0.9	0.9	0.1	0.1	8.0	39.3	17.3	1.2

Lonza TIS
Tighe & Bond
Synchro 11 Report
HCM 6th AWSC

Intersection						
Int Delay, s/veh	0.8					
		ED5	14/51	1A/ST	NE	NES
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	Þ			4	Y	
Traffic Vol, veh/h	442	251	22	81	19	0
Future Vol, veh/h	442	251	22	81	19	0
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, #	+ 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	78	78	71	71	69	69
Heavy Vehicles, %	1	5	0	12	36	0
Mvmt Flow	567	322	31	114	28	0
	ajor1		/lajor2		Minor1	
Conflicting Flow All	0	0	889	0	904	728
Stage 1	-	-	-	-	728	-
Stage 2	-	-	-	-	176	-
Critical Hdwy	-	-	4.1	-	6.76	6.2
Critical Hdwy Stg 1	-	-	-	-	5.76	-
Critical Hdwy Stg 2	-	-	-	_	5.76	_
Follow-up Hdwy	-	-	2.2	-	3.824	3.3
Pot Cap-1 Maneuver	_	_	771	_	268	427
Stage 1	_	-	-	-	422	-
Stage 2	_	_	_	_	779	_
Platoon blocked, %	_	-		_		
Mov Cap-1 Maneuver	_	_	771	_	256	427
Mov Cap-1 Maneuver	-	_	- 111	_	256	421
Stage 1	-		_		422	
•		-	-	-	746	-
Stage 2	-	-	-	-	740	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		2.1		20.8	
HCM LOS					С	
110111 200						
Minor Lane/Major Mvmt	1	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		256	-	-	771	-
HCM Lane V/C Ratio		0.108	-	-	0.04	-
HCM Control Delay (s)		20.8	-	-	9.9	0
HCM Lane LOS		С	-	-	Α	Α
HCM 95th %tile Q(veh)		0.4	-	-	0.1	-

Intersection Int Delay, s/veh 0.4
Int Delay, s/veh O.4 Movement EBL EBT WBT WBR SBL SBR SBR Configurations
Traffic Vol, veh/h
Traffic Vol, veh/h
Traffic Vol, veh/h 17 426 84 2 0 6 Future Vol, veh/h 17 426 84 2 0 6 Conflicting Peds, #/hr 0 0 0 0 0 0 0 Sign Control Free Free Free Free Stop Stop Stop RT Channelized - None - None <td< td=""></td<>
Future Vol, veh/h 17 426 84 2 0 6 Conflicting Peds, #/hr 0 0 0 0 0 0 0 Sign Control Free Free Free Free Stop Stop RT Channelized - None - None - None Storage Length 0 - - 0 - 0 - Veh in Median Storage, # - 0 0 - 0 - Grade, % - 0 0 - 0 - Peak Hour Factor 85 85 71 71 50 50 Heavy Vehicles, % 0 1 8 0 0 25 Mvmt Flow 20 501 118 3 0 12 Major/Minor Major1 Major2 Minor2 Conflicting Flow All 121 0 - 0 661 120
Conflicting Peds, #/hr 0 0 0 0 0 0 0 Sign Control Free Free Free Free Free Stop Stop RT Channelized - None - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 85 85 71 71 80 0
Sign Control Free Free Free Free Free Stop Stop RT Channelized - None O O O O O - SO - SO - SO - SO - None -
RT Channelized - None - None - None Storage Length 0 0 - Veh in Median Storage, # - 0 0 - 0 - Grade, % - 0 0 - 0 - Peak Hour Factor 85 85 71 71 50 50 Heavy Vehicles, % 0 0 1 8 0 0 25 Mvmt Flow 20 501 118 3 0 12 Major/Minor Major1 Major2 Minor2 Conflicting Flow All 121 0 - 0 661 120 Stage 1 - - - 120 - Stage 2 - - - 541 - Critical Hdwy 4.1 - - 6.4 6.45 Critical Hdwy Stg 1 - - - 5.4 - - - - - 5.4 -
Storage Length 0 - - 0 - Veh in Median Storage, # - 0 0 - 0 - Grade, % - 0 0 - 0 - Peak Hour Factor 85 85 71 71 50 50 Heavy Vehicles, % 0 1 8 0 0 25 Mvmt Flow 20 501 118 3 0 12 Major/Minor Major1 Major2 Minor2 Conflicting Flow All 121 0 - 0 661 120 Stage 1 - - - 120 - Stage 2 - - - 541 - Critical Hdwy 4.1 - - 6.4 6.45 Critical Hdwy Stg 1 - - - 5.4 - - - - - 5.4 -
Weh in Median Storage, # - 0 0 - 0 - 0 - O - Grade, % - 0 0 - 0 - - 0 - - 0 - - - 0 - - - - - 0 50 - - - - - 0 25 -
Grade, % - 0 0 - 0 - Peak Hour Factor 85 85 71 71 50 50 Heavy Vehicles, % 0 1 8 0 0 25 Mvmt Flow 20 501 118 3 0 12 Major/Minor Major1 Major2 Minor2 Conflicting Flow All 121 0 - 0 661 120 Stage 1 - - - - 120 - Stage 2 - - - 541 - Critical Hdwy 4.1 - - 6.4 6.45 Critical Hdwy Stg 1 - - - 5.4 - Critical Hdwy Stg 2 - - - 5.4 -
Peak Hour Factor 85 85 71 71 50 50 Heavy Vehicles, % 0 1 8 0 0 25 Mvmt Flow 20 501 118 3 0 12 Major/Minor Major1 Major2 Minor2 Conflicting Flow All 121 0 - 0 661 120 Stage 1 - - - - 541 - Stage 2 - - - 541 - Critical Hdwy 4.1 - - 6.4 6.45 Critical Hdwy Stg 1 - - - 5.4 - Critical Hdwy Stg 2 - - - 5.4 -
Major/Minor Major1 Major2 Minor2 Conflicting Flow All 121 0 - 0 661 120 Stage 1 - - - - 541 - Critical Hdwy 4.1 - - 6.4 6.45 Critical Hdwy Stg 1 - - - 5.4 - Critical Hdwy Stg 2 - - - 5.4 -
Mvmt Flow 20 501 118 3 0 12 Major/Minor Major1 Major2 Minor2 Conflicting Flow All 121 0 - 0 661 120 Stage 1 - - - 120 - Stage 2 - - - 541 - Critical Hdwy 4.1 - - 6.4 6.45 Critical Hdwy Stg 1 - - - 5.4 - Critical Hdwy Stg 2 - - - 5.4 -
Mvmt Flow 20 501 118 3 0 12 Major/Minor Major1 Major2 Minor2 Conflicting Flow All 121 0 - 0 661 120 Stage 1 - - - 120 - Stage 2 - - - 541 - Critical Hdwy 4.1 - - 6.4 6.45 Critical Hdwy Stg 1 - - - 5.4 - Critical Hdwy Stg 2 - - - 5.4 -
Major/Minor Major1 Major2 Minor2 Conflicting Flow All 121 0 - 0 661 120 Stage 1 - - - 120 - Stage 2 - - - 541 - Critical Hdwy 4.1 - - 6.4 6.45 Critical Hdwy Stg 1 - - - 5.4 - Critical Hdwy Stg 2 - - - 5.4 -
Conflicting Flow All 121 0 - 0 661 120 Stage 1 - - - - 120 - Stage 2 - - - - 541 - Critical Hdwy 4.1 - - - 6.4 6.45 Critical Hdwy Stg 1 - - - 5.4 - Critical Hdwy Stg 2 - - - 5.4 -
Conflicting Flow All 121 0 - 0 661 120 Stage 1 - - - - 120 - Stage 2 - - - - 541 - Critical Hdwy 4.1 - - - 6.4 6.45 Critical Hdwy Stg 1 - - - 5.4 - Critical Hdwy Stg 2 - - - 5.4 -
Stage 1 - - - - 120 - Stage 2 - - - 541 - Critical Hdwy 4.1 - - 6.4 6.45 Critical Hdwy Stg 1 - - - 5.4 - Critical Hdwy Stg 2 - - - 5.4 -
Stage 2 - - - 541 - Critical Hdwy 4.1 - - 6.4 6.45 Critical Hdwy Stg 1 - - - 5.4 - Critical Hdwy Stg 2 - - - 5.4 -
Critical Hdwy 4.1 - - - 6.4 6.45 Critical Hdwy Stg 1 - - - 5.4 - Critical Hdwy Stg 2 - - - 5.4 -
Critical Hdwy 4.1 - - - 6.4 6.45 Critical Hdwy Stg 1 - - - 5.4 - Critical Hdwy Stg 2 - - - 5.4 -
Critical Hdwy Stg 1 5.4 - Critical Hdwy Stg 2 5.4 -
Critical Hdwy Stg 2 5.4 -
Follow-up Hdwy 2.2 3.5 3.525
Pot Cap-1 Maneuver 1479 431 873
Stage 1 910 -
<u> </u>
•
Platoon blocked, %
Mov Cap-1 Maneuver 1479 425 873
Mov Cap-2 Maneuver 425 -
Stage 1 897 -
Stage 2 588 -
Approach EB WB SB
HCM Control Delay, s 0.3 0 9.2
HCM LOS A
Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1
0.000
HCM Lane V/C Ratio 0.014 0.014
HCM Lane V/C Ratio 0.014 0.014 HCM Control Delay (s) 7.5 9.2
HCM Lane V/C Ratio 0.014 0.014

-						
Intersection						
Int Delay, s/veh	1.5					
		EDD	MDI	MPT	ND	NDD
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1		_	4	Y	
Traffic Vol, veh/h	226	7	7	104	10	5
Future Vol, veh/h	226	7	7	104	10	5
Conflicting Peds, #/hr	0	0	0	0	0	0
0	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	95	95	82	82	25	40
Heavy Vehicles, %	1	0	0	5	20	0
Mvmt Flow	238	7	9	127	40	13
NA=:/NA:	-!4		4-1. 0		Al	
	ajor1		Major2		/linor1	
Conflicting Flow All	0	0	245	0	387	242
Stage 1	-	-	-	-	242	-
Stage 2	-	-	-	-	145	-
Critical Hdwy	-	-	4.1	-	6.6	6.2
Critical Hdwy Stg 1	-	-	-	-	5.6	-
Critical Hdwy Stg 2	-	-	-	-	5.6	-
Follow-up Hdwy	-	-	2.2	-	3.68	3.3
Pot Cap-1 Maneuver	-	-	1333	-	583	802
Stage 1	-	-	-	-	758	-
Stage 2	-	-	_	-	840	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	_	_	1333	-	579	802
Mov Cap-2 Maneuver	_	-	-	-	579	-
Stage 1	_	_	_	_	758	_
Stage 2	_	_	_	_	834	_
Jugo 2					507	
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.5		11.3	
HCM LOS					В	
Minor Lang/Major Mumb		NBLn1	EBT	EBR	WBL	WBT
Minor Lane/Major Mvmt	ľ					
Capacity (veh/h)		620	-		1333	-
HCM Lane V/C Ratio		0.085	-		0.006	-
HCM Control Delay (s)		11.3	-	-	7.7	0
HCM Lane LOS		В	-	-	Α	Α
HCM 95th %tile Q(veh)		0.3	-	-	0	-

Intersection						
Int Delay, s/veh	1.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	VVDL	אטא		אסוו	ODL	
Traffic Vol, veh/h		0	1 → 15	13	6	र्भ 8
	0		15	13		
Future Vol, veh/h Conflicting Peds, #/hr	0	0	0	0	6	8
•						
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	25	25	53	53	50	50
Heavy Vehicles, %	0	0	0	13	0	0
Mvmt Flow	0	0	28	25	12	16
Major/Minor N	/linor1	N	Major1	N	Major2	
						^
Conflicting Flow All	81	41	0	0	53	0
Stage 1	41	-	-	-	-	-
Stage 2	40	-	-	-	-	-
Critical Hdwy	6.4	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	926	1036	-	-	1566	-
Stage 1	987	-	-	-	-	-
Stage 2	988	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	919	1036	_	-	1566	-
Mov Cap-2 Maneuver	919	-	_	_	-	-
Stage 1	987	_	_	-	-	-
Stage 2	980	_	_	_	_	_
Olugo Z	500					
Approach	WB		NB		SB	
HCM Control Delay, s	0		0		3.1	
HCM LOS	Α					
Minor Lanc/Major Mumi		NBT	NDDV	VBLn1	CDI	SBT
Minor Lane/Major Mymt			NDKV		SBL	
Capacity (veh/h)		-	-	-	1566	-
HCM Lane V/C Ratio		-	-		0.008	-
HCM Control Delay (s)		-	-	0	7.3	0
HCM Lane LOS		-	-	Α	Α	Α
HCM 95th %tile Q(veh)		-	-	-	0	-

Intersection						
Int Delay, s/veh	1.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y	LDIX	HUL	4	4	OBIT
Traffic Vol, veh/h	6	0	0	8	28	8
Future Vol, veh/h	6	0	0	8	28	8
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None	-	
Storage Length	0	-	_	-	_	-
Veh in Median Storage		_	_	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	50	50	42	42	69	69
Heavy Vehicles, %	75	0	0	0	6	80
Mvmt Flow	12	0	0	19	41	12
IVIVIIIL FIOW	12	U	U	19	41	12
Major/Minor	Minor2	N	Major1	N	/lajor2	
Conflicting Flow All	66	47	53	0	-	0
Stage 1	47	_	-	-	-	-
Stage 2	19	-	-	-	-	-
Critical Hdwy	7.15	6.2	4.1	-	-	-
Critical Hdwy Stg 1	6.15	-	_	_	-	_
Critical Hdwy Stg 2	6.15	_	-	-	-	-
Follow-up Hdwy	4.175	3.3	2.2	_	_	_
Pot Cap-1 Maneuver	786	1028	1566	-	_	-
Stage 1	818	-	-	_	_	_
Stage 2	844	_	_	_	_	_
Platoon blocked, %	U-1-7			<u>-</u>	_	<u>-</u>
Mov Cap-1 Maneuver	786	1028	1566	_	_	_
Mov Cap-1 Maneuver		1020	1500	_	_	_
Stage 1	818		_	-		
		-	-		-	-
Stage 2	844	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	9.7		0		0	
HCM LOS	A					
3 <u>- 2 2</u>						
Min - 1 /N 4 N 4	1	NDI	NDT	EDL 4	ODT	ODD
Minor Lane/Major Mvr	nt	NBL		EBLn1	SBT	SBR
Capacity (veh/h)		1566	-		-	-
HCM Lane V/C Ratio		-	-	0.015	-	-
HCM Control Delay (s)	0	-	٠	-	-
HCM Lane LOS		Α	-	Α	-	-
HCM 95th %tile Q(veh	1)	0	-	0	-	-

Intersection												
Int Delay, s/veh	0.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	0	0	0	0	0	0	5	19	0	0	53	220
Future Vol, veh/h	0	0	0	0	0	0	5	19	0	0	53	220
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	_	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	88	88	92	92	69	69
Heavy Vehicles, %	2	2	2	2	2	2	0	18	2	2	15	1
Mvmt Flow	0	0	0	0	0	0	6	22	0	0	77	319
Major/Minor	Minor2			Minor1		ı	Major1			Major2		
Conflicting Flow All	271	271	237	271	430	22	396	0	0	22	0	0
Stage 1	237	237	-	34	34	-	-	-	-	-	-	-
Stage 2	34	34	-	237	396	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.1	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	_	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.2	-	-	2.218	-	-
Pot Cap-1 Maneuver	682	636	802	682	518	1055	1174	-	-	1593	-	-
Stage 1	766	709	-	982	867	-	-	-	-	-	-	-
Stage 2	982	867	-	766	604	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	679	633	802	679	515	1055	1174	-	-	1593	-	-
Mov Cap-2 Maneuver	679	633	-	679	515	-	-	-	-	-	-	-
Stage 1	762	709	-	977	863	-	-	-	-	-	-	-
Stage 2	977	863	-	766	604	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0			1.7			0		
HCM LOS	Α			Α								
Minor Lane/Major Mvr	nt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1174	-	-	-	-	1593	-	-			
HCM Lane V/C Ratio		0.005	-	-	-	-	-	-	-			
HCM Control Delay (s)	8.1	0	-	0	0	0	-	-			
HCM Lane LOS		Α	Α	-	Α	Α	Α	-	-			
HCM 95th %tile Q(veh	1)	0	-	-	-	-	0	-	-			

Intersection						
Int Delay, s/veh	0.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
		WDIX		INDIX	ODL	- SB1
Lane Configurations Traffic Vol, veh/h	7	2	1 59	13	13	
	6	2		13		439 439
Future Vol, veh/h	0	0	159		13	
Conflicting Peds, #/hr			0	0		0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	63	63	81	81	84	84
Heavy Vehicles, %	0	0	0	0	0	1
Mvmt Flow	10	3	196	16	15	523
Major/Minor	Minor1	N	/lajor1	N	/lajor2	
Conflicting Flow All	757	204	0	0	212	0
Stage 1	204	-	-	-	-	-
Stage 2	553	-	-	-	-	-
Critical Hdwy	6.4	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	378	842	-	-	1370	-
Stage 1	835	-	-	-	-	-
Stage 2	580	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	372	842	_	-	1370	-
Mov Cap-2 Maneuver	372	-	_	_	-	-
Stage 1	835	_	_	_	_	_
Stage 2	571	_	_	_	_	_
Olaye Z	J/ 1	_				_
Approach	WB		NB		SB	
HCM Control Delay, s	13.6		0		0.2	
HCM LOS	В					
Minor Lone /Maior Ma	.4	NDT	NDDV	MDL = 4	CDI	CDT
Minor Lane/Major Mvm	IL	NBT	NRKA	VBLn1	SBL	SBT
Capacity (veh/h)		-	-		1370	-
HCM Lane V/C Ratio		-	-	0.029		-
HCM Control Delay (s)		-	-	13.6	7.7	0
HCM Lane LOS		-	-	В	Α	Α
HCM 95th %tile Q(veh)		-	-	0.1	0	-

Intersection						
Int Delay, s/veh	8.0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y	1,51	1	11511	UDL	4
Traffic Vol, veh/h	14	19	153	13	20	425
Future Vol, veh/h	14	19	153	13	20	425
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	NONE -	_	-
Veh in Median Storage		-	0	_	_	0
Grade, %	e, # 0 0	-	0	-	-	0
Peak Hour Factor	88	88	86	86	83	83
	44			63		
Heavy Vehicles, %		0	170		0	1
Mvmt Flow	16	22	178	15	24	512
Major/Minor	Minor1	N	Major1	- 1	Major2	
Conflicting Flow All	746	186	0	0	193	0
Stage 1	186	-	-	-	-	-
Stage 2	560	_	_	_	_	_
Critical Hdwy	6.84	6.2	_	_	4.1	_
Critical Hdwy Stg 1	5.84	-	_	_	-	_
Critical Hdwy Stg 2	5.84	_	_	_	_	_
Follow-up Hdwy	3.896	3.3	_	<u>-</u>	2.2	_
Pot Cap-1 Maneuver	326	861	_	_	1392	_
Stage 1	754	-	_		1002	_
Stage 2	497		_	-	_	
Platoon blocked, %	431	-		-	-	-
-	318	861	-	-	1392	
Mov Cap-1 Maneuver			-	-		-
Mov Cap-2 Maneuver	318	-	-	-	-	-
Stage 1	754	-	-	-	-	-
Stage 2	485	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	12.8		0		0.3	
HCM LOS	В		· ·		0.0	
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	499	1392	-
HCM Lane V/C Ratio		-	-	0.075		-
HCM Control Delay (s)		-	-	12.8	7.6	0
HCM Lane LOS		-	-	В	Α	Α
HCM 95th %tile Q(veh)		-	-	0.2	0.1	-

Intersection						
Int Delay, s/veh	0.2					
		WPD	NDT	NDD	CDI	CDT
	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	7	Г	107	0	0	4
Traffic Vol, veh/h	0	5	187	2	8	338
Future Vol, veh/h	0	5	187	2	8	338
Conflicting Peds, #/hr	0	0	_ 0	0	0	_ 0
	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	75	75	89	89	81	81
Heavy Vehicles, %	0	0	5	100	0	2
Mvmt Flow	0	7	210	2	10	417
Major/Minor Mi	nor1	N	/lajor1		Major2	
						^
Conflicting Flow All	648	211	0	0	212	0
Stage 1	211	-	-	-	-	-
Stage 2	437	-	-	-	-	-
Critical Hdwy	6.4	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	438	834	-	-	1370	-
Stage 1	829	-	-	-	-	-
Stage 2	655	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	434	834	-	-	1370	-
Mov Cap-2 Maneuver	434	-	-	-	-	-
Stage 1	829	-	-	-	-	-
Stage 2	648	-	-	-	-	-
Annanah	WD		ND		OB	
Approach	WB		NB		SB	
HCM Control Delay, s	9.4		0		0.2	
HCM LOS	Α					
Minor Lane/Major Mvmt		NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-		834	1370	
HCM Lane V/C Ratio		_		0.008		_
HCM Control Delay (s)		_	-	9.4	7.6	0
HCM Lane LOS			_			
		-	-	A 0	A	Α
HCM 95th %tile Q(veh)		-	-	U	0	-

Intersection	4.4.4											
Int Delay, s/veh	11.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	8	9	2	86	5	6	0	461	391	26	295	29
Future Vol, veh/h	8	9	2	86	5	6	0	461	391	26	295	29
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	75	75	75	65	65	65	90	90	90	87	87	87
Heavy Vehicles, %	20	0	0	4	0	0	0	2	3	0	3	0
Mvmt Flow	11	12	3	132	8	9	0	512	434	30	339	33
Major/Minor N	Minor2		ı	Minor1			Major1		N	/lajor2		
Conflicting Flow All	1154	1362	356	1152	1161	729	372	0	0	946	0	0
Stage 1	416	416	- 330	729	729	129	JIZ	-	-	340	-	-
Stage 2	738	946	_	423	432	_	-	_	_		_	_
Critical Hdwy	7.3	6.5	6.2	7.14	6.5	6.2	4.1		_	4.1	_	
Critical Hdwy Stg 1	6.3	5.5	0.2	6.14	5.5	0.2	-7 . I	_	_	4.1	_	_
Critical Hdwy Stg 2	6.3	5.5	_	6.14	5.5	_	_	_	_	_	_	_
Follow-up Hdwy	3.68	4		3.536	4	3.3	2.2	<u>-</u>	_	2.2	_	<u>-</u>
Pot Cap-1 Maneuver	160	149	693	173	197	426	1198	_	_	734	_	_
Stage 1	580	595	-	411	431	-	- 100	<u>-</u>	_		_	_
Stage 2	383	343	_	605	586	_	_	_	_	_	_	_
Platoon blocked, %	- 000	010		- 500	500			_	_		_	_
Mov Cap-1 Maneuver	146	141	693	155	187	426	1198	-	-	734	-	-
Mov Cap-2 Maneuver	146	141	-	155	187	-	-	_	_	-	_	_
Stage 1	580	564	_	411	431	-	_	_	-	_	_	-
Stage 2	368	343	-	559	556	-	-	-	-	-	-	-
g		•										
Ammanah	ED			MD			ND			CD		
Approach	EB			WB			NB			SB		
HCM Control Delay, s	32.5			105.3			0			0.8		
HCM LOS	D			F								
Minor Lane/Major Mvm	t	NBL	NBT	NBR E	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1198	-	-	156	163	734					
HCM Lane V/C Ratio		-	-	-		0.916		-	-			
HCM Control Delay (s)		0	-	-		105.3	10.1	0	-			
HCM Lane LOS		Α	-	-	D	F	В	Α	-			
HCM 95th %tile Q(veh)		0	-	-	0.6	6.7	0.1	-	-			
,												

Lonza TIS Tighe & Bond

Intersection	00.0							
Int Delay, s/veh	88.2							
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	7	7	7	1	↑	ř		
Traffic Vol, veh/h	871	355	48	14	55	238		
Future Vol, veh/h	871	355	48	14	55	238		
Conflicting Peds, #/hr		0	0	0	0	0		
Sign Control	Stop	Stop	Free	Free	Free	Free		
RT Channelized	-	None	-	None	-	None		
Storage Length	0	290	100	-	-	175		
Veh in Median Storag		-	-	0	0	-		
Grade, %	0	-	-	0	0	-		
Peak Hour Factor	93	93	70	70	90	90		
Heavy Vehicles, %	1	1	3	11	0	4		
Mvmt Flow	937	382	69	20	61	264		
Major/Minor	Minor2		Major1	ı	Major2			
Conflicting Flow All	219	61	325	0	<u>viajui 2</u> -	0		
Stage 1	61	UI	323	U	-	-		
Stage 2	158	-	-	-	-	-		
Critical Hdwy	6.41	6.21	4.13	-	-			
Critical Hdwy Stg 1	5.41	0.21	4.13	_	-	-		
Critical Hdwy Stg 2	5.41	-		-	-			
Follow-up Hdwy	3.509	3.309		-	-	-		
Pot Cap-1 Maneuver	~ 771	1007	1229	-	-			
Stage 1	964	1007	1229	-	-	-		
Stage 2	~ 873	-	-	-	-			
Platoon blocked, %	013	-	-	-	-	-		
Mov Cap-1 Maneuver	~ 720	1007	1229	-	-	-		
Mov Cap-1 Maneuver		1007	1229	-	-	-		
Stage 1	~ 910	-	-	-	-	-		
	~ 873	-	_		-	-		
Stage 2	~ 6/3	-	-	-	-	-		
Approach	EB		NB		SB			
HCM Control Delay, s	115.5		6.3		0			
HCM LOS	F							
	•							
		.,					222	
Minor Lane/Major Mvi	mt	NBL	NBT	EBLn1 I		SBT	SBR	
Capacity (veh/h)		1229	-		1007	-	-	
HCM Lane V/C Ratio		0.056		1.286		-	-	
HCM Control Delay (s	s)	8.1	-	158.2	10.7	-	-	
HCM Lane LOS		Α	-	F	В	-	-	
HCM 95th %tile Q(veh	1)	0.2	-	35.9	1.8	-	-	
Notes								
~: Volume exceeds ca	anacity	\$· D4	alay eye	eeds 30	00s	+: Com	outation Not Defined	
. VOIGITIO EXCEEDS CO	apaony	ψ. υ	July GAL	ocus o	000	·. Comp	Jatation Not Delineu	

Intersection						
Int Delay, s/veh	103.5					
		14/55	NET	NDD	001	007
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		ř	↑			^
Traffic Vol, veh/h	0	225	1206	0	0	351
Future Vol, veh/h	0	225	1206	0	0	351
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	_	0	-	-	-	-
Veh in Median Storag	e,# 0	-	0	-	-	0
Grade, %	0	_	0	_	_	0
Peak Hour Factor	76	76	70	70	80	80
Heavy Vehicles, %	2	3	2	2	2	4
Mvmt Flow	0	296	1723	0	0	439
MOLL LIOM	U	290	1723	U	U	439
Major/Minor	Minor1	N	Major1	N	lajor2	
Conflicting Flow All	-		0	_	-	
Stage 1		1725	-			_
	-					_
Stage 2	-	-	-	-	-	
Critical Hdwy	-	6.245	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	- 3	3.3285	-	-	-	-
Pot Cap-1 Maneuver	0	~ 109	-	0	0	-
Stage 1	0	-	-	0	0	-
Stage 2	0	_	_	0	0	_
Platoon blocked, %			_			_
Mov Cap-1 Maneuver		~ 109		_	_	_
		~ 109	-			_
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	WB		NB		SB	
					_	
HCM Control Delay, s			0		0	
HCM LOS	F					
Minor Lane/Major Mv	mt	NRTV	VBLn1	SBT		
			109	ODT		
Capacity (veh/h)		-		-		
HCM Lane V/C Ratio	`		2.716	-		
HCM Control Delay (s	6)	-\$	859.4	-		
HCM Lane LOS		-	F	-		
HCM 95th %tile Q(vel	1)	-	27.4	-		
Notes						
	'1	6 D	l	1 00	0-	
~: Volume exceeds ca	apacity	\$: De	lay exc	eeds 30	US	+: Comp

	۶		7	1		~	1	1	~	/	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1		77	1			र्स	77		4	
Traffic Volume (vph)	0	474	3	293	184	24	11	3	1225	57	3	3
Future Volume (vph)	0	474	3	293	184	24	11	3	1225	57	3	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	12	11	12	12	16	12
Total Lost time (s)		6.0		6.0	6.0			6.0	6.0		6.0	
Lane Util. Factor		0.95		0.97	0.95			1.00	0.88		1.00	
Frt		1.00		1.00	0.98			1.00	0.85		0.99	
Flt Protected		1.00		0.95	1.00			0.96	1.00		0.96	
Satd. Flow (prot)		3571		3433	3548			1766	2814		2047	
FIt Permitted		1.00		0.95	1.00			0.83	1.00		0.74	
Satd. Flow (perm)		3571		3433	3548			1526	2814		1587	
Peak-hour factor, PHF	0.88	0.88	0.88	0.96	0.96	0.96	0.91	0.91	0.91	0.68	0.68	0.68
Adj. Flow (vph)	0	539	3	305	192	25	12	3	1346	84	4	4
RTOR Reduction (vph)	0	0	0	0	5	0	0	0	0	0	1	0
Lane Group Flow (vph)	0	542	0	305	212	0	0	15	1346	0	91	0
Heavy Vehicles (%)	0%	1%	0%	2%	0%	0%	0%	0%	1%	0%	0%	0%
Turn Type	Prot	NA		Prot	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	6	2		1	5			8			4	
Permitted Phases							8		8	4		
Actuated Green, G (s)		15.2		11.9	33.1			20.1	20.1		20.1	
Effective Green, g (s)		15.2		11.9	33.1			20.1	20.1		20.1	
Actuated g/C Ratio		0.23		0.18	0.51			0.31	0.31		0.31	
Clearance Time (s)		6.0		6.0	6.0			6.0	6.0		6.0	
Vehicle Extension (s)		3.0		3.0	3.0			3.0	3.0		3.0	
Lane Grp Cap (vph)		832		626	1801			470	867		489	
v/s Ratio Prot		c0.15		c0.09	0.06							
v/s Ratio Perm								0.01	c0.48		0.06	
v/c Ratio		0.65		0.49	0.12			0.03	1.55		0.19	
Uniform Delay, d1		22.6		23.9	8.4			15.8	22.6		16.5	
Progression Factor		1.00		1.00	1.00			1.00	1.00		1.00	
Incremental Delay, d2		1.8		0.6	0.0			0.0	254.3		0.2	
Delay (s)		24.4		24.5	8.4			15.8	276.9		16.7	
Level of Service		C		С	A			В	F		B	
Approach Delay (s)		24.4			17.8			274.0			16.7	
Approach LOS		С			В			F			В	
Intersection Summary												
HCM 2000 Control Delay			157.7	H	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capacity	ratio		0.99									
Actuated Cycle Length (s)			65.2	Sı	um of lost	time (s)			18.0			_
Intersection Capacity Utilization	1		76.1%	IC	CU Level o	of Service			D			
Analysis Period (min)			15									
o Critical Lana Croup												

102: US Route 4 SB On-Ramp/US Route 4 SB Off-Ramp & Pease Blvd 2025 No Build Condition Weekday PM Peak

	٠	-	•	1		•	1	1	1	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		1111	7	44	44					44		77
Traffic Volume (vph)	0	1159	597	684	474	0	0	0	0	389	0	151
Future Volume (vph)	0	1159	597	684	474	0	0	0	0	389	0	151
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	10	11	10	11	12	12	12	12	12	12	12
Total Lost time (s)		6.0	6.0	6.0	6.0					6.0		6.0
Lane Util. Factor		0.86	1.00	0.97	0.95					0.97		0.88
Frt		1.00	0.85	1.00	1.00					1.00		0.85
Flt Protected		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (prot)		6040	1546	3236	3455					3502		2814
Flt Permitted		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (perm)		6040	1546	3236	3455					3502		2814
Peak-hour factor, PHF	0.85	0.85	0.85	0.94	0.94	0.94	0.92	0.92	0.92	0.90	0.90	0.90
Adj. Flow (vph)	0	1364	702	728	504	0	0	0	0	432	0	168
RTOR Reduction (vph)	0	0	365	0	0	0	0	0	0	0	0	128
Lane Group Flow (vph)	0	1364	337	728	504	0	0	0	0	432	0	40
Heavy Vehicles (%)	0%	1%	1%	1%	1%	0%	0%	0%	0%	0%	0%	1%
Turn Type		NA	Prot	Prot	NA					Prot		Prot
Protected Phases		6	6	5	25					3		3
Permitted Phases												
Actuated Green, G (s)		35.0	35.0	25.0	60.9					24.0		24.0
Effective Green, g (s)		35.0	35.0	25.0	60.9					24.0		24.0
Actuated g/C Ratio		0.34	0.34	0.25	0.60					0.24		0.24
Clearance Time (s)		6.0	6.0	6.0						6.0		6.0
Vehicle Extension (s)		5.0	5.0	4.0						5.0		5.0
Lane Grp Cap (vph)		2072	530	793	2062					824		662
v/s Ratio Prot		c0.23	0.22	c0.22	0.15					c0.12		0.01
v/s Ratio Perm												
v/c Ratio		0.66	0.64	0.92	0.24					0.52		0.06
Uniform Delay, d1		28.4	28.2	37.5	9.7					34.0		30.2
Progression Factor		1.00	1.00	1.37	1.12					1.00		1.00
Incremental Delay, d2		1.0	3.5	11.4	0.1					1.1		0.1
Delay (s)		29.5	31.6	62.6	10.9					35.2		30.3
Level of Service		С	С	Е	В					D		С
Approach Delay (s)		30.2			41.5			0.0			33.8	
Approach LOS		С			D			Α			С	
Intersection Summary												
HCM 2000 Control Delay			34.3	H	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capaci	ty ratio		0.70									
Actuated Cycle Length (s)			102.0	Sı	um of lost	time (s)			18.0			
Intersection Capacity Utilization	on		82.6%			of Service			Е			
Analysis Period (min)			15									
c. Critical Lane Group												

103: US Route 4 NB Off-ramp/US Route 4 NB On-Ramp & Pease Blvd 2025 No Build Condition Weekday PM Peak

	٠	-	~	1	624.00	•	1	1	1	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	77	^			^		77		77			
Traffic Volume (vph)	693	855	0	0	932	407	226	0	625	0	0	0
Future Volume (vph)	693	855	0	0	932	407	226	0	625	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	11	12	12	12	12	12	12	12	12	12	12
Total Lost time (s)	6.0	6.0			6.0		6.0		6.0			
Lane Util. Factor	0.97	0.95			0.91		0.97		0.88			
Frt	1.00	1.00			0.95		1.00		0.85			
Flt Protected	0.95	1.00			1.00		0.95		1.00			
Satd. Flow (prot)	3236	3455			4916		3433		2814			
Flt Permitted	0.11	1.00			1.00		0.95		1.00			
Satd. Flow (perm)	389	3455			4916		3433		2814			
Peak-hour factor, PHF	0.87	0.87	0.92	0.90	0.90	0.90	0.94	0.94	0.94	0.92	0.92	0.92
Adj. Flow (vph)	797	983	0	0	1036	452	240	0	665	0	0	0
RTOR Reduction (vph)	0	0	0	0	75	0	0	0	509	0	0	0
Lane Group Flow (vph)	797	983	0	0	1413	0	240	0	156	0	0	0
Heavy Vehicles (%)	1%	1%	0%	0%	1%	0%	2%	0%	1%	0%	0%	0%
Turn Type	pm+pt	NA			NA		Prot		Prot			
Protected Phases	1	6			2		3		3			
Permitted Phases	6											
Actuated Green, G (s)	59.1	35.0			35.9		24.0		24.0			
Effective Green, g (s)	59.1	35.0			35.9		24.0		24.0			
Actuated g/C Ratio	0.58	0.34			0.35		0.24		0.24			
Clearance Time (s)	6.0	6.0			6.0		6.0		6.0			
Vehicle Extension (s)	4.0	5.0			5.0		5.0		5.0			
Lane Grp Cap (vph)	898	1185			1730		807		662			
v/s Ratio Prot	c0.21	0.28			0.29		c0.07		0.06			
v/s Ratio Perm	c0.30											
v/c Ratio	0.89	0.83			0.82		0.30		0.24			
Uniform Delay, d1	27.4	30.8			30.1		32.1		31.6			
Progression Factor	1.67	0.54			1.00		1.00		1.00			
Incremental Delay, d2	8.8	4.4			3.5		0.4		0.4			
Delay (s)	54.6	20.9			33.6		32.5		32.0			
Level of Service	D	С			С		С		С			
Approach Delay (s)		36.0			33.6			32.1			0.0	
Approach LOS		D			С			С			Α	
Intersection Summary												
HCM 2000 Control Delay			34.3	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.71									
Actuated Cycle Length (s)			102.0		um of lost				18.0			
Intersection Capacity Utilization	ation		82.6%	IC	CU Level of	of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

	•			•	/	1		
rement	EBL	EBT	WBT	WBR	SBL	SBR		
e Configurations	7	^	^	7	7	7		
fic Volume (vph)	309	1653	1283	223	416	850		
ire Volume (vph)	309	1653	1283	223	416	850		
I Flow (vphpl)	1900	1900	1900	1900	1900	1900		
I Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
e Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00		
	1.00	1.00	1.00	0.85	1.00	0.85		
Protected	0.95	1.00	1.00	1.00	0.95	1.00		
d. Flow (prot)	1787	3539	3539	1583	1787	1599		
Permitted	0.95	1.00	1.00	1.00	0.95	1.00		
d. Flow (perm)	1787	3539	3539	1583	1787	1599		
k-hour factor, PHF	0.88	0.88	0.93	0.93	0.87	0.87		
Flow (vph)	351	1878	1380	240	478	977		
OR Reduction (vph)	0	0	0	167	0	166		
e Group Flow (vph)	351	1878	1380	73	478	811		
vy Vehicles (%)	1%	2%	2%	2%	1%	1%		
n Type	Prot	NA	NA	Perm	Prot	Prot		
ected Phases	1	6	2		3	3		
nitted Phases				2				
ated Green, G (s)	5.0	29.0	18.0	18.0	18.0	18.0		
ctive Green, g (s)	5.0	29.0	18.0	18.0	18.0	18.0		
ated g/C Ratio	0.08	0.49	0.31	0.31	0.31	0.31		
arance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
icle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0		
e Grp Cap (vph)	151	1739	1079	482	545	487		
Ratio Prot	c0.20	0.53	c0.39		0.27	c0.51		
Ratio Perm				0.05				
Ratio	2.32	1.08	1.28	0.15	0.88	1.67		
orm Delay, d1	27.0	15.0	20.5	14.9	19.5	20.5		
gression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
emental Delay, d2	616.3	46.7	132.8	0.7	15.1	308.3		
ay (s)	643.3	61.7	153.3	15.6	34.6	328.8		
el of Service	F	Е	F	В	С	F		
roach Delay (s)		153.3	132.9		232.1			
roach LOS		F	F		F			
rsection Summary			100 =					_
A 2000 Control Delay			168.7	Н	CM 2000	Level of Service		F
A 2000 Volume to Capacity	y ratio		1.57					
lated Cycle Length (s)			59.0		um of los		18	8.0
rsection Capacity Utilization	n		98.1%	IC	CU Level	of Service		F
lysis Period (min)			15					
Critical Lane Group								

Intersection												
Intersection Delay, s/veh	104.3											
Intersection LOS	F											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1		7	†	7	7	1		1	*	7
Traffic Vol, veh/h	140	4	15	9	24	497	15	566	7	61	90	87
Future Vol, veh/h	140	4	15	9	24	497	15	566	7	61	90	87
Peak Hour Factor	0.84	0.84	0.84	0.77	0.77	0.77	0.89	0.89	0.89	0.93	0.93	0.93
Heavy Vehicles, %	0	0	0	0	6	1	0	1	0	4	3	0
Mvmt Flow	167	5	18	12	31	645	17	636	8	66	97	94
Number of Lanes	1	1	0	1	1	1	1	2	0	1	1	1
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	3			2			3			3		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	3			3			2			3		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	3			3			3			2		
HCM Control Delay	20.4			210			52.5			15.9		
HCM LOS	С			F			F			С		
Lane		NBLn1	NBLn2	NBLn3	EBLn1	EBLn2	WBLn1	WBLn2	WBLn3	SBLn1	SBLn2	SBLn3
Vol Left, %		100%	0%	0%	100%	0%	100%	0%	0%	100%	0%	0%
Vol Thru, %		0%	100%	96%	0%	21%	0%	100%	0%	0%	100%	0%
Vol Right, %		0%	0%	4%	0%	79%	0%	0%	100%	0%	0%	100%
Sign Control		Stop	Stop	Stop	Ston	Ston	Stop	Ston	Stop	Stop	Ston	Stop

Lane	NBLn1	NBLn2	NBLn3	EBLn1	EBLn2	WBLn1	WBLn2	WBLn3	SBLn1	SBLn2	SBLn3
Vol Left, %	100%	0%	0%	100%	0%	100%	0%	0%	100%	0%	0%
Vol Thru, %	0%	100%	96%	0%	21%	0%	100%	0%	0%	100%	0%
Vol Right, %	0%	0%	4%	0%	79%	0%	0%	100%	0%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	15	377	196	140	19	9	24	497	61	90	87
LT Vol	15	0	0	140	0	9	0	0	61	0	0
Through Vol	0	377	189	0	4	0	24	0	0	90	0
RT Vol	0	0	7	0	15	0	0	497	0	0	87
Lane Flow Rate	17	424	220	167	23	12	31	645	66	97	94
Geometry Grp	8	8	8	8	8	8	8	8	8	8	8
Degree of Util (X)	0.041	0.977	0.504	0.455	0.055	0.03	0.075	1.419	0.18	0.252	0.225
Departure Headway (Hd)	9.697	9.199	9.155	10.415	9.363	9.112	8.708	7.913	10.964	10.426	9.643
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Cap	371	399	396	348	385	393	412	465	329	346	375
Service Time	7.397	6.899	6.855	8.115	7.063	6.854	6.451	5.655	8.664	8.126	7.343
HCM Lane V/C Ratio	0.046	1.063	0.556	0.48	0.06	0.031	0.075	1.387	0.201	0.28	0.251
HCM Control Delay	12.8	70.5	20.8	21.5	12.6	12.1	12.2	223.1	16.1	16.6	15.1
HCM Lane LOS	В	F	С	С	В	В	В	F	С	С	С
HCM 95th-tile Q	0.1	11.4	2.7	2.3	0.2	0.1	0.2	31.4	0.6	1	0.9

Lonza TIS
Tighe & Bond
Synchro 11 Report
HCM 6th AWSC

Intersection						
	24.3					
				==		
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	Þ			4	Y	
Traffic Vol, veh/h	64	8	2	358	172	10
Future Vol, veh/h	64	8	2	358	172	10
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control F	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, #	ŧ 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	70	70	73	73	40	40
Heavy Vehicles, %	4	0	0	2	0	0
Mvmt Flow	91	11	3	490	430	25
IVIVIIIL I IOW	91		J	430	700	20
Major/Minor Ma	ajor1	N	/lajor2	N	Minor1	
Conflicting Flow All	0	0	102	0	593	97
Stage 1	_	_	_	_	97	_
Stage 2	_	_	_	_	496	_
Critical Hdwy	_	_	4.1	_	6.4	6.2
Critical Hdwy Stg 1	-		4.1	-	5.4	0.2
		-	-			
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1503	-	472	965
Stage 1	-	-	-	-	932	-
Stage 2	-	-	-	-	616	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1503	-	471	965
Mov Cap-2 Maneuver	-	-	-	-	471	-
Stage 1	-	_	_	-	932	_
Stage 2	_	_	_	_	614	_
Olago 2					011	
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		56.2	
HCM LOS					F	
Minor Long/Maior Mr.		IDI 4	EDT	EDD	WDI	WDT
Minor Lane/Major Mvmt	1	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		485	-		1503	-
HCM Lane V/C Ratio		0.938	-	-	0.002	-
HCM Control Delay (s)		56.2	-	-	7.4	0
HCM Lane LOS		F	-	-	Α	Α
HCM 95th %tile Q(veh)		11.3	-	-	0	-
,						

Intersection						
Int Delay, s/veh	0.9					
		EDT	WDT	WIDD	CDI	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	7	↑	Þ		Y	40
Traffic Vol, veh/h	7	66	349	3	1	12
Future Vol, veh/h	7	66	349	3	1	12
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	0	-
Veh in Median Storage	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	63	63	77	77	36	36
Heavy Vehicles, %	40	0	0	1	0	11
Mvmt Flow	11	105	453	4	3	33
WWIIICIIOW	• •	100	700	-	U	00
Major/Minor N	Major1	N	/lajor2	N	Minor2	
Conflicting Flow All	457	0	-	0	582	455
Stage 1	-	-	_	-	455	_
Stage 2	_	_	_	_	127	_
Critical Hdwy	4.5	_	_	_	6.4	6.31
Critical Hdwy Stg 1		_	_	_	5.4	- 0.01
Critical Hdwy Stg 2	_	_	_	_	5.4	_
	2.56					3.399
Follow-up Hdwy		-	-	-		
Pot Cap-1 Maneuver	930	-	-	-	479	587
Stage 1	-	-	-	-	643	-
Stage 2	-	-	-	-	904	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	930	-	-	-	473	587
Mov Cap-2 Maneuver	-	-	-	-	473	-
Stage 1	-	-	-	-	635	-
Stage 2	-	-	-	-	904	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.9		0		11.7	
HCM LOS					В	
				14/5-	14/00	201 4
Minor Lane/Major Mvm	τ	EBL	EBT	WBT	WBR :	
Capacity (veh/h)		930	-	-	-	576
HCM Lane V/C Ratio		0.012	-	-		0.063
HCM Control Delay (s)		8.9	-	-	-	11.7
HCM Lane LOS		Α	-	-	-	В
HCM 95th %tile Q(veh)		0	-	-	-	0.2

Intersection						
Int Delay, s/veh	1					
Movement	EBT	EDD	WBL	WBT	NBL	NBR
		EBR	WBL			NBK
Lane Configurations	f)		•	र्स	Y	
Traffic Vol, veh/h	74	1	6	193	13	11
Future Vol, veh/h	74	1	6	193	13	11
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	,# 0	-	-	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	78	78	81	81	71	71
	0				11	0
Heavy Vehicles, %		0	0	1		
Mvmt Flow	95	1	7	238	18	15
Major/Minor N	Major1	N	Major2		Minor1	
Conflicting Flow All	0	0	96	0	348	96
Stage 1	-	-	-	-	96	-
Stage 2	-	-	-	-	252	-
Critical Hdwy	-	-	4.1	-	6.51	6.2
Critical Hdwy Stg 1	-	-	-	-	5.51	-
Critical Hdwy Stg 2	-	-	-	-	5.51	-
Follow-up Hdwy	-	-	2.2	-	3.599	3.3
Pot Cap-1 Maneuver	-	-	1510	-	631	966
Stage 1	_	_	-	_	906	-
Stage 2	_	_	_	_	769	_
					103	_
Platoon blocked, %	-	-	4540	-	000	000
Mov Cap-1 Maneuver	-	-	1510	-	628	966
Mov Cap-2 Maneuver	-	-	-	-	628	-
Stage 1	-	-	-	-	906	-
Stage 2	-	-	-	-	765	-
Annroach	ED		WD		ND	
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.2		10	
HCM LOS					В	
Minor Lane/Major Mvm	it N	NBLn1	EBT	EBR	WBL	WBT
		748			1510	
Capacity (veh/h)			-			-
HCM Lane V/C Ratio		0.045	-		0.005	-
HCM Control Delay (s)		10	-	-	7.4	0
HCM Lane LOS		В	-	-	Α	Α
HCM 95th %tile Q(veh)		0.1	-	-	0	-

Intersection						
Int Delay, s/veh	2.9					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
		אטא		NDK	ODL	
Lane Configurations	Y	11	12	1	0	4
Traffic Vol, veh/h	1	11	13	1	0	7
Future Vol, veh/h	1	11	13	1	0	7
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	67	67	69	69	50	50
Heavy Vehicles, %	0	0	10	0	0	0
Mvmt Flow	1	16	19	1	0	14
Major/Miner	Mineral		Ania 1		/loie=0	
	Minor1		Major1		Major2	
Conflicting Flow All	34	20	0	0	20	0
Stage 1	20	-	-	-	-	-
Stage 2	14	-	-	-	-	-
Critical Hdwy	6.4	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	984	1064	-	-	1609	-
Stage 1	1008	-	-	-	-	-
Stage 2	1014	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	984	1064	_	-	1609	-
Mov Cap-2 Maneuver	984	-	_	_	-	_
Stage 1	1008	_	_		_	_
Stage 2	1014			_	_	
Glaye Z	1014	_	_	_	_	<u>-</u>
Approach	WB		NB		SB	
HCM Control Delay, s	8.5		0		0	
HCM LOS	Α					
		NET	MES	MDI 4	0.51	007
Minor Lane/Major Mvm	it	NBT		VBLn1	SBL	SBT
Capacity (veh/h)		-		1057	1609	-
HCM Lane V/C Ratio		-	-	0.017	-	-
HCM Control Delay (s)		-	-	8.5	0	-
HCM Lane LOS		-	-	Α	Α	-
HCM 95th %tile Q(veh)		-	-	0.1	0	-

-						
Intersection						
Int Delay, s/veh	2.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
		EDI	INDL			SDN
Lane Configurations	Y	٥	٥	र्स	1	٥
Traffic Vol, veh/h	3	0	0	8		0
Future Vol, veh/h	3	0	0	8	14	0
Conflicting Peds, #/hr	0	0	_ 0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	25	25	63	63	63	63
Heavy Vehicles, %	0	0	0	0	10	0
Mvmt Flow	12	0	0	13	22	0
	Minor2		Major1	N	/lajor2	
Conflicting Flow All	35	22	22	0	-	0
Stage 1	22	-	-	-	-	-
Stage 2	13	-	-	-	-	-
Critical Hdwy	6.4	6.2	4.1	-	_	-
Critical Hdwy Stg 1	5.4	-	_	_	_	_
Critical Hdwy Stg 2	5.4	_	_	_	_	_
Follow-up Hdwy	3.5	3.3	2.2	_	_	_
Pot Cap-1 Maneuver	983	1061	1607	_	_	_
		1001	1007			
Stage 1	1006	-	-	-	-	-
Stage 2	1015	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	983	1061	1607	-	-	-
Mov Cap-2 Maneuver	983	-	-	-	-	-
Stage 1	1006	-	-	-	-	-
Stage 2	1015	-	-	-	-	-
J 11 G						
Approach	EB		NB		SB	
HCM Control Delay, s	8.7		0		0	
HCM LOS	Α					
Minor Long/Major Mym	.1	NDI	NDT	EDI 51	CDT	CDD
Minor Lane/Major Mvm	ı	NBL	INDI	EBLn1	SBT	SBR
Capacity (veh/h)		1607	-	983	-	-
HCM Lane V/C Ratio		-	-	0.012	-	-
HCM Control Delay (s)		0	-	8.7	-	-
HCM Lane LOS		Α	-	Α	-	-
HCM 95th %tile Q(veh)		0	-	0	-	-
,						

Intersection												
Int Delay, s/veh	0											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	0	0	0	0	0	0	0	182	0	0	5	5
Future Vol, veh/h	0	0	0	0	0	0	0	182	0	0	5	5
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	39	39	92	92	67	67
Heavy Vehicles, %	2	2	2	2	2	2	0	0	2	2	0	0
Mvmt Flow	0	0	0	0	0	0	0	467	0	0	7	7
Major/Minor	Minor2			Minor1		ı	Major1			Major2		
Conflicting Flow All	478	478	11	478	481	467	14	0	0	467	0	0
Stage 1	11	11	-	467	467	-	-	-	-		-	-
Stage 2	467	467	_	11	14	-	<u>-</u>	<u>-</u>	_	_	_	<u>-</u>
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.1	_	_	4.12	_	_
Critical Hdwy Stg 1	6.12	5.52		6.12	5.52	-	-	_	_	-	_	_
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318		4.018	3.318	2.2	_	-	2.218	-	-
Pot Cap-1 Maneuver	498	486	1070	498	485	596	1617	-	-		-	-
Stage 1	1010	886	-	576	562	-	-	-	-	-	-	-
Stage 2	576	562	-		884	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	498	486	1070	498	485	596	1617	-	-	1094	-	-
Mov Cap-2 Maneuver	498	486	-	498	485	-	-	-	-	-	-	-
Stage 1	1010	886	-	576	562	-	-	-	-	-	-	-
Stage 2	576	562	-	1010	884	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
				0			0			0		
HCM Control Delay, s HCM LOS	0 A			A			U			U		
I IOW LOS	А			A								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1617	-	-	-	-	1094	-	-			
HCM Lane V/C Ratio		-	-	-	-	-	-	-	-			
HCM Control Delay (s)		0	-	-	0	0	0	-	-			
HCM Lane LOS		Α	-	-	Α	Α	Α	-	-			
HCM 95th %tile Q(veh))	0	-	-	-	-	0	-	-			

Lonza TIS Tighe & Bond

Intersection						
Int Delay, s/veh	0.2					
		WDD	NET	NDD	ODI	ODT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		Þ			4
Traffic Vol, veh/h	7	3	586	1	4	103
Future Vol, veh/h	7	3	586	1	4	103
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,		-	0	-	-	0
Grade, %	0	-	0	-	_	0
Peak Hour Factor	88	88	78	78	76	76
Heavy Vehicles, %	0	0	1	0	0	4
Mymt Flow	8	3	751	1	5	136
IVIVIIIL I IOW	U	J	751		J	130
Major/Minor N	1inor1	N	Major1	N	Major2	
Conflicting Flow All	898	752	0	0	752	0
Stage 1	752	-	-	-	-	-
Stage 2	146	<u>-</u>	_	_	_	_
Critical Hdwy	6.4	6.2	_	_	4.1	_
Critical Hdwy Stg 1	5.4					
		-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	312	413	-	-	867	-
Stage 1	469	-	-	-	-	-
Stage 2	886	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	310	413	_	-	867	-
Mov Cap-2 Maneuver	310	-	_	-	_	-
Stage 1	469	-	_	_	_	-
Stage 2	881	_	_	_	_	_
Jugo 2	001					
Approach	WB		NB		SB	
HCM Control Delay, s	16.1		0		0.3	
HCM LOS	С					
Minor Lane/Major Mvmt		NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	335	867	-
HCM Lane V/C Ratio		-	-	0.034	0.006	-
HCM Control Delay (s)		-	-	16.1	9.2	0
HCM Lane LOS		-	_	С	Α	A
HCM 95th %tile Q(veh)		_	_	0.1	0	-
				J. 1	- 3	

Intersection						
Int Delay, s/veh	7.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
		WDN		NDI	SDL	
Lane Configurations	10	150	127	4.5	12	4
Traffic Vol, veh/h	49	150	437	15	13	97
Future Vol, veh/h	49	150	437	15	13	97
Conflicting Peds, #/hr	0	0	_ 0	_ 0	0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	72	72	67	67	81	81
Heavy Vehicles, %	14	0	1	46	0	3
Mvmt Flow	68	208	652	22	16	120
	Minor1		Major1		Major2	
Conflicting Flow All	815	663	0	0	674	0
Stage 1	663	-	-	-	-	-
Stage 2	152	-	-	-	-	-
Critical Hdwy	6.54	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.54	-	-	-	-	-
Critical Hdwy Stg 2	5.54	-	-	_	-	-
Follow-up Hdwy	3.626	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	331	465	-	_	927	-
Stage 1	491	-	-	_	-	_
Stage 2	847	_	_	_	_	_
Platoon blocked, %	047		_	_		_
Mov Cap-1 Maneuver	325	465	_	_	927	_
	325					
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	491	-	-	-	-	-
Stage 2	832	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	28.6		0		1.1	
HCM LOS	20.0 D		U		1.1	
HCW LOS	U					
Minor Lane/Major Mvm	nt	NBT	NBRV	NBLn1	SBL	SBT
Capacity (veh/h)		_	_	420	927	_
HCM Lane V/C Ratio		_	_	0.658		-
HCM Control Delay (s)		-	_	28.6	9	0
3 ()		_	_	ח	Δ	Α
HCM Lane LOS HCM 95th %tile Q(veh		-	-	D 4.6	0.1	A -

Intersection				
Int Delay, s/veh 0.2				
	NET	NES	051	OPT
Movement WBL WBR	NBT	NBR	SBL	SBT
Lane Configurations 🧗	Þ			4
Traffic Vol, veh/h 0 4	358	0	0	164
Future Vol, veh/h 0 4	358	0	0	164
Conflicting Peds, #/hr 0 0	0	0	0	0
Sign Control Stop Stop	Free	Free	Free	Free
RT Channelized - None	-	None	-	None
Storage Length 0 -	-	-	-	-
Veh in Median Storage, # 0 -	0	-	-	0
Grade, % 0 -	0	-	-	0
Peak Hour Factor 25 25	68	68	74	74
Heavy Vehicles, % 0 0	3	0	0	7
Mvmt Flow 0 16	526	0	0	222
	lajor1		/lajor2	
Conflicting Flow All 748 526	0	0	526	0
Stage 1 526 -	-	-	-	-
Stage 2 222 -	-	-	-	-
Critical Hdwy 6.4 6.2	-	_	4.1	-
Critical Hdwy Stg 1 5.4 -	_	_	-	-
Critical Hdwy Stg 2 5.4 -	_	_	_	_
Follow-up Hdwy 3.5 3.3	_	_	2.2	_
Pot Cap-1 Maneuver 383 556	_	_	1051	_
Stage 1 597 -	_		1031	
Stage 2 820 -		-	-	
	-	-	-	-
Platoon blocked, %	-	-	1051	-
Mov Cap-1 Maneuver 383 556	-	-	1051	-
Mov Cap-2 Maneuver 383 -	-	-	-	-
Stage 1 597 -	-	-	-	-
Stage 2 820 -	-	-	-	-
Annana ah IMD	NB		SB	
Annroach	0		0	
Approach WB			U	
HCM Control Delay, s 11.7	U			
HCM Control Delay, s 11.7	U			
HCM Control Delay, s 11.7 HCM LOS B		VBLn1	SBL	SBT
HCM Control Delay, s 11.7 HCM LOS B Minor Lane/Major Mvmt NBT		VBLn1 556	SBL 1051	SBT -
HCM Control Delay, s 11.7 HCM LOS B Minor Lane/Major Mvmt NBT Capacity (veh/h) -	NBRV -	556	1051	SBT -
HCM Control Delay, s 11.7 HCM LOS B Minor Lane/Major Mvmt NBT Capacity (veh/h) - HCM Lane V/C Ratio -	NBRW - -	556 0.029	1051	-
HCM Control Delay, s 11.7 HCM LOS B Minor Lane/Major Mvmt NBT Capacity (veh/h) - HCM Lane V/C Ratio - HCM Control Delay (s) -	NBRV -	556 0.029 11.7	1051 - 0	- - -
HCM Control Delay, s 11.7 HCM LOS B Minor Lane/Major Mvmt NBT Capacity (veh/h) - HCM Lane V/C Ratio -	NBRW - -	556 0.029	1051	-

Intersection													
	126.7												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	LUL	4	LDIX	VVDL	4	VVDIX	NDL	4	NOIN	ODL	4	ODIN	
Traffic Vol, veh/h	28	20	3	285	19	20	1	297	103	3	513	12	
Future Vol, veh/h	28	20	3	285	19	20	1	297	103	3	513	12	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	- Olop	None	- Olop	-	None	-	-	None	-	-	None	
Storage Length	_	_	-	_	_	-	_	_	-	_	_	-	
/eh in Median Storage,	# -	0	_	_	0	_	_	0	_	_	0	_	
Grade, %	, <i>''</i> -	0	_	_	0	_	_	0	_	_	0	_	
Peak Hour Factor	54	54	54	85	85	85	84	84	84	88	88	88	
Heavy Vehicles, %	0	13	0	0	14	0	0	2	1	0	1	11	
Nymt Flow	52	37	6	335	22	24	1	354	123	3	583	14	
	V_	O.					•	001	120		000	• •	
4 ' /84'	. . 0			4									
	/linor2	4075		Minor1	4004		Major1			Major2			
Conflicting Flow All	1037	1075	590	1036	1021	416	597	0	0	477	0	0	
Stage 1	596	596	-	418	418	-	-	-	-	-	-	-	
Stage 2	441	479	-	618	603	-	-	-	-	-	-	-	
ritical Hdwy	7.1	6.63	6.2	7.1	6.64	6.2	4.1	-	-	4.1	-	-	
Critical Hdwy Stg 1	6.1	5.63	-	6.1	5.64	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.1	5.63	-	6.1	5.64	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	4.117	3.3		4.126	3.3	2.2	-	-	2.2	-	-	
Pot Cap-1 Maneuver	211	210	511	~ 212	225	641	989	-	-	1096	-	-	
Stage 1	494	475	-	616	570	-	-	-	-	-	-	-	
Stage 2	599	537	-	480	470	-	-	-	-	-	-	-	
Platoon blocked, %	187	209	E11	~ 180	224	641	989	-	-	1096	-	-	
Mov Cap-1 Maneuver	187	209		~ 180	224	041	909	-	-		-	-	
Mov Cap-2 Maneuver Stage 1	494	473	-	615	569	-	-	-	-	-	-	-	
Stage 2	554	536	-	436	468	-	-	-	-	-	-	-	
Olaye Z	554	330	_	700	700	-	_	_	_	-	_	-	
				1410			N.D.			0.0			
Approach	EB			WB			NB			SB			
HCM Control Delay, s	37.3		\$	506.9			0			0			
HCM LOS	E			F									
Minor Lane/Major Mvm	t	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR				
Capacity (veh/h)		989	-	-	203	191	1096	-	-				
ICM Lane V/C Ratio		0.001	-	-	0.465	1.996	0.003	-	-				
HCM Control Delay (s)		8.6	0	-	37.3\$	506.9	8.3	0	-				
ICM Lane LOS		Α	Α	-	Е	F	Α	Α	-				
HCM 95th %tile Q(veh)		0	-	-	2.2	28.7	0	-	-				
lotes													
: Volume exceeds cap	acity	\$· De	lav exc	eeds 3	00s	+. Com	outation	Not De	efined	*· All	maior v	olume ir	n platoon
. Volumo execedo eap	doity	ψ. DC	hay one			Com	Jalalion	.100 D0	Jilliou	. 7 111	najoi v		ii piatoon

elay, s/veh
Section Sect
Configurations N
ic Vol, Veh/h 340 73 203 46 24 793 rev Vol, Veh/h 340 73 203 46 24 793 rev Vol, Veh/h 340 73 203 46 24 793 rev Vol, Veh/h 340 73 203 46 24 793 rev Vol, Veh/h 340 73 203 46 24 793 rev Vol, Veh/h 340 73 203 46 24 793 rev Vol, Veh/h 340 73 203 46 24 793 rev Vol, Veh/h 340 73 203 46 24 793 rev Vol, Veh/h 340 73 203 46 24 793 rev Vol, Veh/h 340 73 203 46 24 793 rev Vol, Veh/h 340 73 203 46 24 793 rev Vol, Veh/h 340 73 203 46 24 793 rev Vol, Veh/h 340 73 203 46 24 793 rev Vol, Veh/h 340 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
re Vol, veh/h 340 73 203 46 24 793 licting Peds, #hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ilicting Peds, #hr
Control Stop Stop Free Free
Channelized
Age Length 0 290 100 175 In Median Storage, # 0 0 0 - 16, 6, % 0 0 0 0 - 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
In Median Storage, # 0 0 0 0 - e, % 0 0 0 0 - e, % 0 0 1 0 e, % 0 0 0 0 0 - e, % 0 0 1 0 e, % 0 0 1 0 e, % 0 0 0 - e, % 0 0 0 0 0 - e, % 0 0 1 0 e, % 0 0 1 0 e, % 0 0 1 0 e, % 0 0 0 - e, % 0 0 0 0 0 e, % 0 0 1 0 e, % 0 0 1 0 e, % 0 0 0 - e, % 0 0 0 - e, % 0 0 0 0 0 - e, % 0 0 0 0 - e, % 0 0 0 0 0 0 - e, % 0 0 0 0 0 0 0 0 e, % 0 0 0 0 0 0 0 0 0 e, % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
le, % 0 0 0 0 - Hour Factor 86 86 76 76 83 83 ry Vehicles, % 2 2 1 3 0 1 t Flow 395 85 267 61 29 955 r/Minor Minor2 Major1 Major2 licting Flow All 624 29 984 0 - 0 Stage 1 29
Hour Factor 86 86 76 76 83 83 83
ry Vehicles, % 2 2 1 3 0 1 t Flow 395 85 267 61 29 955 r/Minor Minor2 Major1 Major2 liciting Flow All 624 29 984 0 - 0 Stage 1 29 Stage 2 595
IF Iow 395 85 267 61 29 955 Ir/Minor Minor2 Major1 Major2 Ilicting Flow All 624 29 984 0 0 Stage 1 29 - - - - stage 2 595 - - - - stal Hdwy 6.42 6.22 4.11 - - - sal Hdwy Stg 1 5.42 - - - - - sal Hdwy Stg 2 5.42 - - - - - w-up Hdwy 3.518 3.318 2.209 - - - Pape 1 Maneuver 49 10.46 706 - - - Stage 1 994 - - - - - - Cap-1 Maneuver - 279 10.46 706 - - - Cap-2 Maneuver - 279
Tr/Minor Minor2 Major1 Major2 Ilicting Flow All 624 29 984 0 - 0 Stage 1 29 Stage 2 595 Ial Hdwy Stg 1 5.42 Ial Hdwy Stg 1 5.42 Ial Hdwy Stg 2 5.42 Ial Hdwy Stg 3.518 3.318 2.209 Ial Hdwy Stg 5 5.42 Ial Hdwy Stg 6 5.42 Ial Hdwy Stg 7 5.45 Ial Hdwy Stg 8 5.48 Ial Hdwy Stg 9 5.49 Ial Hdwy Stg 9 5.49 Ial Hdwy Stg 9 5.49 Ial Hdwy Stg 1 5.49
Stage 1
Stage 1
Stage 1
Stage 1
Stage 2 595
Stage 1
ral Hdwy Stg 1
ral Hdwy Stg 2 5.42
W-up Hdwy 3.518 3.318 2.209
Cap-1 Maneuver
Stage 1 994
Stage 2 551
Cap-1 Maneuver
Cap-1 Maneuver ~ 279 1046 706 Cap-2 Maneuver ~ 279
Cap-2 Maneuver ~ 279 - - - - Stage 1 618 - - - - Stage 2 551 - - - - Oach EB NB SB I Control Delay, s 200.9 10.7 0 I LOS F I Lane/Major Mvmt NBL NBT EBLn1 EBLn2 SBT SBR acity (veh/h) 706 - 279 1046 - - I Lane V/C Ratio 0.378 - 1.417 0.081 - - I Control Delay (s) 13.2 - 242.2 8.7 - - I Lane LOS B - F A - - I Sth %tile Q(veh) 1.8 - 21.5 0.3 - -
Stage 1 618 Stage 2 551
Stage 2 551
Control Delay, s 200.9 10.7 0 1 1 1 1 1 1 1 1 1
Control Delay, s 200.9
Control Delay, s 200.9
r Lane/Major Mvmt
r Lane/Major Mvmt NBL NBT EBLn1 EBLn2 SBT SBR acity (veh/h) 706 - 279 1046 I Lane V/C Ratio 0.378 - 1.417 0.081 I Control Delay (s) 13.2 - 242.2 8.7 I Lane LOS B - F A I 95th %tile Q(veh) 1.8 - 21.5 0.3
Acity (veh/h) 706 - 279 1046 Lane V/C Ratio 0.378 - 1.417 0.081 Control Delay (s) 13.2 - 242.2 8.7 Lane LOS B - F A 95th %tile Q(veh) 1.8 - 21.5 0.3
Acity (veh/h) 706 - 279 1046 Lane V/C Ratio 0.378 - 1.417 0.081 Control Delay (s) 13.2 - 242.2 8.7 Lane LOS B - F A 95th %tile Q(veh) 1.8 - 21.5 0.3
Lane V/C Ratio
Control Delay (s)
I Lane LOS B - F A I 95th %tile Q(veh) 1.8 - 21.5 0.3 s
l 95th %tile Q(veh) 1.8 - 21.5 0.3 s
s ·
nume exceeds capacity — \$. Delay exceeds 5005 — \$. Computation Not Delined — . All major volume in piatoon

Intersection						
Int Delay, s/veh	0.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	VVDL	₩DIX	↑	NDIX	ODL	1
Traffic Vol, veh/h	0	66	532	0	0	1266
Future Vol, veh/h	0	66	532	0	0	1266
	0	0	0	0	0	0
Conflicting Peds, #/hr			Free	Free	Free	Free
Sign Control	Stop	Stop				
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage,		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	73	73	95	95	89	89
Heavy Vehicles, %	0	13	0	1	0	1
Mvmt Flow	0	90	560	0	0	1422
Major/Minor	1inor1		Anior1		/aior?	
			Major1		/lajor2	
Conflicting Flow All	-	560	0	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.395	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	- 3	3.4235	-	-	-	-
Pot Cap-1 Maneuver	0	502	-	0	0	-
Stage 1	0	-	-	0	0	_
Stage 2	0	_	_	0	0	_
Platoon blocked, %	U		_	U	U	_
Mov Cap-1 Maneuver	_	502	_	_	_	_
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	13.7		0		0	
HCM LOS	13.7 B		U		U	
I IOIVI LOS	D					
Minor Lane/Major Mvmt		NBTV	VBLn1	SBT		
Capacity (veh/h)		_	502	-		
HCM Lane V/C Ratio		-	0.18	_		
HCM Control Delay (s)		_	13.7	_		
HCM Lane LOS		_	В	_		
HCM 95th %tile Q(veh)			0.7	_		
HOW JOHN JOHNE Q(VEII)		_	0.1	_		

	۶	→	•	•	+	•	•	†	~	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑ ↑		44	∱ }			ર્ન	77		4	
Traffic Volume (vph)	3	106	6	1286	642	132	8	5	323	6	2	2
Future Volume (vph)	3	106	6	1286	642	132	8	5	323	6	2	2
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	12	11	12	12	16	12
Total Lost time (s)	5.0	6.0		6.0	6.0			6.0	6.0		6.0	
Lane Util. Factor	1.00	0.95		0.97	0.95			1.00	0.88		1.00	
Frt	1.00	0.99		1.00	0.97			1.00	0.85		0.97	
Flt Protected	0.95	1.00		0.95	1.00			0.97	1.00		0.97	
Satd. Flow (prot)	1805	3515		3467	3475			1783	2682		2035	
Flt Permitted	0.95	1.00		0.95	1.00			0.88	1.00		0.87	
Satd. Flow (perm)	1805	3515		3467	3475			1609	2682		1824	
Peak-hour factor, PHF	0.84	0.84	0.84	0.83	1.00	0.83	0.88	0.88	0.88	0.63	0.63	0.63
Adj. Flow (vph)	4	126	7	1549	642	159	9	6	367	10	3	3
RTOR Reduction (vph)	0	4	0	0	10	0	0	0	0	0	2	0
Lane Group Flow (vph)	4	129	0	1549	791	0	0	15	367	0	14	0
Heavy Vehicles (%)	0%	2%	0%	1%	1%	0%	0%	0%	6%	0%	0%	0%
Turn Type	Prot	NA		Prot	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	6	2		1	5			8			4	
Permitted Phases							8		8	4		
Actuated Green, G (s)	6.1	12.8		50.1	57.8			17.6	17.6		17.6	
Effective Green, g (s)	6.1	12.8		50.1	57.8			17.6	17.6		17.6	
Actuated g/C Ratio	0.06	0.13		0.51	0.59			0.18	0.18		0.18	
Clearance Time (s)	5.0	6.0		6.0	6.0			6.0	6.0		6.0	
Vehicle Extension (s)	2.0	3.0		3.0	3.0			3.0	3.0		3.0	
Lane Grp Cap (vph)	111	456		1763	2039			287	479		325	
v/s Ratio Prot	0.00	c0.04		c0.45	c0.23							
v/s Ratio Perm								0.01	c0.14		0.01	
v/c Ratio	0.04	0.28		0.88	0.39			0.05	0.77		0.04	
Uniform Delay, d1	43.4	38.7		21.5	10.9			33.5	38.5		33.5	
Progression Factor	1.00	1.00		1.00	1.00			1.00	1.00		1.00	
Incremental Delay, d2	0.0	0.3		5.3	0.1			0.1	7.2		0.1	
Delay (s)	43.5	39.0		26.8	11.0			33.6	45.7		33.5	
Level of Service	D	D		С	В			С	D		С	
Approach Delay (s)		39.2			21.4			45.2			33.5	
Approach LOS		D			С			D			С	
Intersection Summary												
HCM 2000 Control Delay			25.5	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capac	city ratio		0.76									
Actuated Cycle Length (s)			98.5	S	um of lost	time (s)			18.0			
Intersection Capacity Utiliza	tion		59.1%	IC	CU Level o	of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

102: US Route 4 SB On-Ramp/US Route 4 SB Off-Ramp & Pease Blvd 2025 Build Condition Weekday AM Peak

	۶	-	•	•	←	•	•	†	~	>	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		1111	7	1,4	^					1,4		77
Traffic Volume (vph)	0	302	133	157	1056	0	0	0	0	566	0	894
Future Volume (vph)	0	302	133	157	1056	0	0	0	0	566	0	894
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	10	11	10	11	12	12	12	12	12	12	12
Total Lost time (s)		6.0	6.0	6.0	6.0					6.0		6.0
Lane Util. Factor		0.86	1.00	0.97	0.95					0.97		0.88
Frt		1.00	0.85	1.00	1.00					1.00		0.85
Flt Protected		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (prot)		5981	1419	2918	3455					3467		2814
Flt Permitted		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (perm)		5981	1419	2918	3455					3467		2814
Peak-hour factor, PHF	0.80	0.80	0.80	0.80	0.80	0.80	0.92	0.92	0.92	0.75	0.75	0.75
Adj. Flow (vph)	0	378	166	196	1320	0	0	0	0	755	0	1192
RTOR Reduction (vph)	0	0	111	0	0	0	0	0	0	0	0	93
Lane Group Flow (vph)	0	378	55	196	1320	0	0	0	0	755	0	1099
Heavy Vehicles (%)	0%	2%	10%	12%	1%	0%	2%	2%	2%	1%	0%	1%
Turn Type		NA	Prot	Prot	NA					Prot		Prot
Protected Phases		6	6	5	25					3		3
Permitted Phases												
Actuated Green, G (s)		33.5	33.5	25.0	64.5					25.0		25.0
Effective Green, g (s)		33.5	33.5	25.0	64.5					25.0		25.0
Actuated g/C Ratio		0.33	0.33	0.25	0.64					0.25		0.25
Clearance Time (s)		6.0	6.0	6.0						6.0		6.0
Vehicle Extension (s)		5.0	5.0	4.0						5.0		5.0
Lane Grp Cap (vph)		1974	468	718	2195					853		693
v/s Ratio Prot		0.06	0.04	0.07	c0.38					0.22		c0.39
v/s Ratio Perm												
v/c Ratio		0.19	0.12	0.27	0.60					0.89		1.59
Uniform Delay, d1		24.3	23.7	30.9	10.9					36.9		38.2
Progression Factor		1.00	1.00	0.89	1.59					1.00		1.00
Incremental Delay, d2		0.1	0.2	0.1	0.3					11.6		270.7
Delay (s)		24.4	23.9	27.5	17.7					48.5		308.9
Level of Service		С	С	С	В					D		F
Approach Delay (s)		24.3			18.9			0.0			207.9	
Approach LOS		С			В			Α			F	
Intersection Summary												
HCM 2000 Control Delay			111.5	Н	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capaci	ty ratio		0.94									
Actuated Cycle Length (s)			101.5	S	um of lost	time (s)			18.0			
Intersection Capacity Utilizati	on		76.2%			of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

103: US Route 4 NB Off-ramp/US Route 4 NB On-Ramp & Pease Blvd 2025 Build Condition Weekday AM Peak

	۶	-	•	•	←	•	•	†	~	/	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	^			↑ ↑		ሻሻ		77			
Traffic Volume (vph)	145	723	0	0	412	78	801	0	366	0	0	0
Future Volume (vph)	145	723	0	0	412	78	801	0	366	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	11	12	12	12	12	12	12	12	12	12	12
Total Lost time (s)	6.0	6.0			6.0		6.0		6.0			
Lane Util. Factor	0.97	0.95			0.91		0.97		0.88			
Frt	1.00	1.00			0.98		1.00		0.85			
Flt Protected	0.95	1.00			1.00		0.95		1.00			
Satd. Flow (prot)	3113	3421			4941		3433		2733			
FIt Permitted	0.42	1.00			1.00		0.95		1.00			
Satd. Flow (perm)	1390	3421			4941		3433		2733			
Peak-hour factor, PHF	0.87	0.87	0.87	0.85	0.85	0.85	0.78	0.78	0.78	0.92	0.92	0.92
Adj. Flow (vph)	167	831	0	0	485	92	1027	0	469	0	0	0
RTOR Reduction (vph)	0	0	0	0	24	0	0	0	339	0	0	0
Lane Group Flow (vph)	167	831	0	0	553	0	1027	0	130	0	0	0
Heavy Vehicles (%)	5%	2%	0%	0%	2%	5%	2%	2%	4%	0%	0%	0%
Turn Type	pm+pt	NA			NA		Prot		Prot			
Protected Phases	1	6			2		3		3			
Permitted Phases	6											
Actuated Green, G (s)	50.5	33.5			41.5		25.0		25.0			
Effective Green, g (s)	50.5	33.5			41.5		25.0		25.0			
Actuated g/C Ratio	0.50	0.33			0.41		0.25		0.25			
Clearance Time (s)	6.0	6.0			6.0		6.0		6.0			
Vehicle Extension (s)	4.0	5.0			5.0		5.0		5.0			
Lane Grp Cap (vph)	980	1129			2020		845		673			
v/s Ratio Prot	c0.03	c0.24			c0.11		c0.30		0.05			
v/s Ratio Perm	0.06											
v/c Ratio	0.17	0.74			0.27		1.22		0.19			
Uniform Delay, d1	13.5	30.1			20.0		38.2		30.3			
Progression Factor	1.13	1.26			1.00		1.00		1.00			
Incremental Delay, d2	0.1	2.3			0.2		107.7		0.3			
Delay (s)	15.4	40.1			20.1		146.0		30.6			
Level of Service	В	D			С		F		С			
Approach Delay (s)		36.0			20.1			109.8			0.0	
Approach LOS		D			С			F			Α	
Intersection Summary												
HCM 2000 Control Delay			69.0	H	CM 2000	Level of S	Service		Е			
HCM 2000 Volume to Capa	city ratio		0.71									
Actuated Cycle Length (s)			101.5		um of lost				18.0			
Intersection Capacity Utiliza	ation		76.2%	IC	U Level o	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

	≯	_	•	•	\ \	1	
Marramant	-		WDT	WDD	001	CDD	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	624	^	^	612	105	7	
Traffic Volume (vph)	634	2030	731	613	165	206	
Future Volume (vph)	634	2030	731	613	165	206	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0	
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00	
Frt	1.00	1.00	1.00	0.85	1.00	0.85	
Fit Protected	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1787	3471	3343	1583	1719	1538	
Flt Permitted	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	1787	3471	3343	1583	1719	1538	_
Peak-hour factor, PHF	0.86	0.86	0.96	0.96	0.76	0.76	
Adj. Flow (vph)	737	2360	761	639	217	271	
RTOR Reduction (vph)	0	0	0	444	0	205	
Lane Group Flow (vph)	737	2360	761	195	217	66	
Heavy Vehicles (%)	1%	4%	8%	2%	5%	5%	
Turn Type	Prot	NA	NA	Perm	Prot	Prot	
Protected Phases	1	6	2		3	3	
Permitted Phases				2			
Actuated Green, G (s)	9.4	33.4	18.0	18.0	13.6	13.6	
Effective Green, g (s)	9.4	33.4	18.0	18.0	13.6	13.6	
Actuated g/C Ratio	0.16	0.57	0.31	0.31	0.23	0.23	
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	
Vehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0	
Lane Grp Cap (vph)	284	1964	1019	482	396	354	
v/s Ratio Prot	c0.41	c0.68	0.23		c0.13	0.04	
v/s Ratio Perm				0.12			
v/c Ratio	2.60	1.20	0.75	0.40	0.55	0.19	
Uniform Delay, d1	24.8	12.8	18.4	16.3	20.0	18.2	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	727.9	95.9	5.0	2.5	1.9	0.3	
Delay (s)	752.7	108.7	23.4	18.8	21.9	18.6	
Level of Service	F	F	С	В	С	В	
Approach Delay (s)		262.0	21.3		20.1		
Approach LOS		F	С		С		
Intersection Summary							
HCM 2000 Control Delay			170.7	H	CM 2000	Level of Service	è
HCM 2000 Volume to Capacit	ty ratio		1.38				
Actuated Cycle Length (s)			59.0	Sı	um of lost	time (s)	
Intersection Capacity Utilization	on		83.1%	IC	U Level c	of Service	
Analysis Period (min)			15				
c Critical Lane Group							

Lane Flow Rate

Geometry Grp

Degree of Util (X)

Convergence, Y/N

HCM Lane V/C Ratio

HCM Control Delay

HCM Lane LOS

HCM 95th-tile Q

Service Time

Cap

Departure Headway (Hd)

Intersection												
Intersection Delay, s/veh	197.2											
Intersection LOS	F											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ĵ»		ሻ	1	7	ሻ	∱ }		ሻ		7
Traffic Vol, veh/h	69	44	31	14	13	121	8	101	64	682	449	137
Future Vol, veh/h	69	44	31	14	13	121	8	101	64	682	449	137
Peak Hour Factor	0.76	0.76	0.76	0.78	0.78	0.78	0.83	0.83	0.83	0.76	0.76	0.76
Heavy Vehicles, %	0	4	5	0	13	18	0	0	3	2	0	0
Mvmt Flow	91	58	41	18	17	155	10	122	77	897	591	180
Number of Lanes	1	1	0	1	1	1	1	2	0	1	1	1
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	3			2			3			3		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	3			3			2			3		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	3			3			3			2		
HCM Control Delay	15.1			16.4			14.8			261.2		
HCM LOS	С			С			В			F		
Lane		NBLn1	NBLn2	NBLn3	EBLn1	EBLn2	WBLn1	WBLn2	WBLn3	SBLn1	SBLn2	SBLn3
Vol Left, %		100%	0%	0%	100%	0%	100%	0%	0%	100%	0%	0%
Vol Thru, %		0%	100%	34%	0%	59%	0%	100%	0%	0%	100%	0%
Vol Right, %		0%	0%	66%	0%	41%	0%	0%	100%	0%	0%	100%
Sign Control		Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane		8	67	98	69	75	14	13	121	682	449	137
LT Vol		8	0	0	69	0	14	0	0	682	0	0
Through Vol		0	67	34	0	44	0	13	0	0	449	0
RT Vol		0	0	64	0	31	0	0	121	0	0	137

10

8

0.025

9.996

Yes

360

7.696

0.028

13

В

0.1

81

0.195

9.488

Yes

380

7.188

0.213

14.5

В

0.7

8

118

0.27

9.073

Yes

399

6.773

0.296

15.1

С

1.1

8

91

0.234

9.913

Yes

365

7.613

0.249

15.6

С

0.9

8

99

8

0.235

9.192

Yes

393

6.892

0.252

14.7

В

0.9

18

8

0.047

10.089

Yes

357

0.05

13.3

В

0.1

7.789

17

8

0.042

9.808

Yes

367

7.508

0.046

12.9

В

0.1

155

0.364

9.187

Yes

394

6.887

0.393

17.1

С

1.6

8

897

1.86

7.461

Yes

494

5.161

1.816

412.7

F

57.7

8

591

1.136

6.921

Yes

532

4.621

1.111

107.1

19.9

8

180

0.311

6.212

Yes

582

3.912

0.309

11.7

В

1.3

8

Lonza TIS Synchro 11 Report
Tighe & Bond HCM 6th AWSC

Intersection						
Int Delay, s/veh	7.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1>	LDIN	VVDL	WB1	₩.	NOIN
Traffic Vol, veh/h	451	339	67	1 71	77	25
Future Vol, veh/h	451	339	67	71	77	25
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	_	-	_	-	0	-
Veh in Median Storage		_	_	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	78	78	71	71	69	69
Heavy Vehicles, %	1	5	0	12	36	0
Mymt Flow	578	435	94	100	112	36
IVIVIIIL I IOW	310	400	34	100	112	30
Major/Minor	Major1	N	Major2		Minor1	
Conflicting Flow All	0	0	1013	0	1084	796
Stage 1	-	-	-	-	796	-
Stage 2	-	-	-	-	288	-
Critical Hdwy	-	-	4.1	-	6.76	6.2
Critical Hdwy Stg 1	-	-	-	-	5.76	-
Critical Hdwy Stg 2	-	-	-	-	5.76	-
Follow-up Hdwy	-	-	2.2	-	3.824	3.3
Pot Cap-1 Maneuver	-	-	692	-	207	390
Stage 1	-	-	-	-	390	-
Stage 2	-	_	-	-	689	_
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	692	-	177	390
Mov Cap-2 Maneuver	_	-	-	-	177	-
Stage 1	-	_	_	_	390	_
Stage 2	_	_	-	_	590	_
Glago L					000	
A			\A/D		, LID	
Approach	EB		WB		NB	
HCM Control Delay, s	0		5.4		58.6	
HCM LOS					F	
Minor Lane/Major Mvm	nt I	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		204	-	-	692	-
HCM Lane V/C Ratio		0.725	_		0.136	<u>-</u>
HCM Control Delay (s)		58.6	_	_	11	0
HCM Lane LOS		50.0 F	_	_	В	A
HCM 95th %tile Q(veh)	\	4.7	_	_	0.5	-
HOW JOHN JOHN WINE WINE		7.1			0.0	

Intersection						
Int Delay, s/veh	0.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ሻ	<u> </u>	1	WDIX.	W	ODIT
Traffic Vol, veh/h	17	460	119	2	0	6
Future Vol, veh/h	17	460	119	2	0	6
Conflicting Peds, #/hr	0	0	0	0	0	0
•	Free	Free	Free	Free	Stop	Stop
RT Channelized	-			None	-	
Storage Length	0	-	_	-	0	-
Veh in Median Storage,		0	0	_	0	_
Grade, %	-	0	0	_	0	_
Peak Hour Factor	85	85	71	71	50	50
Heavy Vehicles, %	0	1	8	0	0	25
Mymt Flow	20	541	168	3	0	12
IVIVIIIL I IOW	20	J 4 I	100	J	U	12
Major/Minor M	lajor1	N	Major2	N	Minor2	
Conflicting Flow All	171	0	-	0	751	170
Stage 1	-	-	-	-	170	-
Stage 2	-	-	-	-	581	-
Critical Hdwy	4.1	-	-	-	6.4	6.45
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	2.2	-	-	-	3.5	3.525
Pot Cap-1 Maneuver	1418	-	-	-	381	818
Stage 1	-	-	-	-	865	-
Stage 2	-	-	-	-	563	-
Platoon blocked, %		-	_	-		
	1418	_	-	_	376	818
Mov Cap-2 Maneuver	-	-	-	_	376	-
Stage 1	_	_	_	-	853	-
Stage 2	_	_	_	_	563	_
					500	
Approach	EB		WB		SB	
HCM Control Delay, s	0.3		0		9.5	
HCM LOS					Α	
Minor Lane/Major Mvmt		EBL	EBT	WBT	WBR :	SBI n1
Capacity (veh/h)		1418	-	1101	-	818
HCM Lane V/C Ratio		0.014	-	-		0.015
HCM Control Delay (s)		7.6	_	<u>-</u>	_	9.5
HCM Lane LOS		7.0 A		-	_	9.5 A
HCM 95th %tile Q(veh)		0	-	<u>-</u>	-	0
		U	_	-	_	U

Intersection						
Int Delay, s/veh	0.1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1>	LDI	VVDL	4	¥	NDIX
Traffic Vol, veh/h	251	16	3	149	0	0
Future Vol, veh/h	251	16	3	149	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-			None	- Stop	
Storage Length	_	-	_	-	0	-
Veh in Median Storage,			_	0	0	
Grade, %	0	_	_	0	0	_
Peak Hour Factor	95	95	82	82	25	40
Heavy Vehicles, %	1	0	0	5	20	0
Mvmt Flow	264	17	4	182	0	0
Major/Minor N	/lajor1	N	//ajor2	N	/linor1	
Conflicting Flow All	0	0	281	0	463	273
Stage 1	_	_	-	-	273	
Stage 2	-	-	-	-	190	-
Critical Hdwy	_	_	4.1	-	6.6	6.2
Critical Hdwy Stg 1	_	_		_	5.6	-
Critical Hdwy Stg 2	_	_	_	_	5.6	_
Follow-up Hdwy	_	_	2.2	_	3.68	3.3
Pot Cap-1 Maneuver	_	_	1293	_	525	771
Stage 1	_	_	1233	<u>-</u>	733	-
Stage 2	_	_			801	
Platoon blocked, %	-	_	_	-	001	
Mov Cap-1 Maneuver			1293		523	771
	-	-		-	523	
Mov Cap-2 Maneuver	-	-	-	-		-
Stage 1	-	-	-	-	733	-
Stage 2	-	-	-	-	799	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.2		0	
HCM LOS			V. <u>-</u>		A	
					, ,	
					14.5	14/5-
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		-	-		1293	-
HCM Lane V/C Ratio		-	-	-	0.003	-
HCM Control Delay (s)		0	-	-	7.8	0
HCM Lane LOS		Α	-	-	Α	Α
HCM 95th %tile Q(veh)		-	-	-	0	-

Intersection						
Int Delay, s/veh	0					
	WBL	WBR	NBT	NBR	SBL	SBT
		אטא		NDK	ODL	
Lane Configurations Traffic Vol, veh/h	Y	0	♣	0	19	ન
	0	0	0	0		0
Future Vol, veh/h	0	0	0	0	19	0
Conflicting Peds, #/hr	0	0	0	0	0	0
	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	25	25	53	53	50	50
Heavy Vehicles, %	0	0	0	13	0	0
Mvmt Flow	0	0	0	0	38	0
Majay/Minas	!		1-14		Ania TO	
	inor1		//ajor1		Major2	
Conflicting Flow All	76	0	0	0	0	0
Stage 1	0	-	-	-	-	-
Stage 2	76	-	-	-	-	-
Critical Hdwy	6.4	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	_	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	932	_	_	_	-	_
Stage 1	-	_	_	_	_	_
Stage 2	952	_	_	_	_	_
Platoon blocked, %	JUZ			<u>-</u>		_
	932	_	_	_	_	
Mov Cap-1 Maneuver						
Mov Cap-2 Maneuver	932	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	952	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	0		0			
HCM LOS	A		U			
TIOIVI LOO	А					
Minor Lane/Major Mvmt		NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-			-	-
HCM Lane V/C Ratio		-	_	-	-	-
HCM Control Delay (s)		_	_	0	_	-
HCM Lane LOS		_	_	A	_	_
HCM 95th %tile Q(veh)		_	_	-	_	_

Intersection						
Int Delay, s/veh	4.7					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥	וטו	TIDE	4	\$	ODIN
Traffic Vol, veh/h	6	0	0	0	0	8
Future Vol, veh/h	6	0	0	0	0	8
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None	-	
Storage Length	0	-	_	-	_	-
Veh in Median Storage		_	_	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	50	50	42	42	69	69
Heavy Vehicles, %	75	0	0	0	6	80
Mymt Flow	12	0	0	0	0	12
IVIVIIICI IOW	12	U	U	U	U	12
	Minor2		Major1		/lajor2	
Conflicting Flow All	6	6	12	0	-	0
Stage 1	6	-	-	-	-	-
Stage 2	0	-	-	-	-	-
Critical Hdwy	7.15	6.2	4.1	-	-	-
Critical Hdwy Stg 1	6.15	-	-	-	-	-
Critical Hdwy Stg 2	6.15	-	-	-	-	-
Follow-up Hdwy	4.175	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	855	1083	1620		-	-
Stage 1	856	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	855	1083	1620	-	-	-
Mov Cap-2 Maneuver	855	-	-	-	-	-
Stage 1	856	-	-	_	-	-
Stage 2	_	-	-	-	-	-
y -						
Annroach	ED		ND		CD	
Approach	EB		NB		SB	
HCM Control Delay, s	9.3		0		0	
HCM LOS	Α					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1620	-		-	-
HCM Lane V/C Ratio		-		0.014	_	_
HCM Control Delay (s)		0	_		_	_
HCM Lane LOS		A	_	Α.	_	_
HCM 95th %tile Q(veh)	0	_	0	_	_
TOW JOHN JOHN W(VOI)	1	U		-		

Intersection												
Int Delay, s/veh	2.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44			4			4			4	
Traffic Vol, veh/h	0	0	0	0	0	68	5	34	0	138	48	220
Future Vol, veh/h	0	0	0	0	0	68	5	34	0	138	48	220
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	е,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	_	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	88	88	92	92	69	69
Heavy Vehicles, %	2	2	2	2	2	2	0	18	2	2	15	1
Mvmt Flow	0	0	0	0	0	74	6	39	0	150	70	319
Major/Minor	Minor2			Minor1		- 1	Major1			Major2		
Conflicting Flow All	618	581	230	581	740	39	389	0	0	39	0	0
Stage 1	530	530	-	51	51	-	-	-	-	-	-	-
Stage 2	88	51	_	530	689	-	_	_	_	-	_	_
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.1	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	_	_	-	-	_
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.2	_	_	2.218	_	_
Pot Cap-1 Maneuver	402	425	809	425	345	1033	1181	-	_	1571	_	_
Stage 1	533	527	-	962	852		-	_	_		_	_
Stage 2	920	852	-	533	446	-	-	-	-	-	-	-
Platoon blocked, %								_	_		-	-
Mov Cap-1 Maneuver	335	369	809	382	299	1033	1181	-	-	1571	-	-
Mov Cap-2 Maneuver	335	369	-	382	299	-	-	-	-	-	-	-
Stage 1	530	460	-	957	848	-	-	-	-	-	-	-
Stage 2	850	848	-	465	389	-	-	-	-	-	-	-
5 tt. 5 t	200	J. J			300							
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			8.8			1			2.1		
HCM LOS	A			A			•					
200	,,			,,								
Minor Lane/Major Mvn	nt	NBL	NBT	NBR	EBLn1\	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1181	-			1033	1571	_	_			
HCM Lane V/C Ratio		0.005	_	_		0.072		_	_			
HCM Control Delay (s))	8.1	0	_	0	8.8	7.5	0	_			
HCM Lane LOS		Α	A	_	A	Α	Α.5	A	_			
HCM 95th %tile Q(veh	1)	0	-	_	-	0.2	0.3	-	_			
1.13111 00til 70tilo Q(VOII	7	- 0				0.2	0.0					

Lonza TIS Tighe & Bond

Intersection						
Int Delay, s/veh	0.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	VVDL	אטויי		חטוז	ODL	<u> </u>
		2	♣	13	13	
Traffic Vol, veh/h	6	2	159			439
Future Vol, veh/h	6	2	159	13	13	439
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	63	63	81	81	84	84
Heavy Vehicles, %	0	0	0	0	0	1
Mvmt Flow	10	3	196	16	15	523
Major/Minor N	linor1		laior1	N	/laior?	
	/linor1		//ajor1		Major2	
Conflicting Flow All	757	204	0	0	212	0
Stage 1	204	-	-	-	-	-
Stage 2	553	-	-	-	-	-
Critical Hdwy	6.4	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	378	842	-	-	1370	-
Stage 1	835	_	_	-	-	-
Stage 2	580	-	_	-	_	-
Platoon blocked, %	000		<u>-</u>	<u>-</u>		_
Mov Cap-1 Maneuver	372	842	_		1370	
Mov Cap-1 Maneuver	372	- 042	_	_	1370	
Stage 1	835	-	-	-	-	-
Stage 2	571	-	_	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	13.6		0		0.2	
HCM LOS	13.0 B		U		0.2	
I IGIVI EUS	Ď					
Minor Lane/Major Mvmt		NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		_	_	432	1370	-
HCM Lane V/C Ratio		-	_	0.029		-
HCM Control Delay (s)		_	_	13.6	7.7	0
HCM Lane LOS		_	_	В	A	A
HCM 95th %tile Q(veh)				0.1	0	-
Holvi Jour Joure Q(Veri)		_	_	0.1	U	_

Intersection						
Int Delay, s/veh	8.0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥	WDIX	1	NDIN	ODL	<u>લ</u>
Traffic Vol, veh/h	14	19	153	13	20	425
Future Vol, veh/h	14	19	153	13	20	425
	0	0	153	0	0	425
Conflicting Peds, #/hr						
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	88	88	86	86	83	83
Heavy Vehicles, %	44	0	1	63	0	1
Mvmt Flow	16	22	178	15	24	512
Majar/Minar	N //: 1		1-:1		Ania nO	
	Minor1		//ajor1		Major2	
Conflicting Flow All	746	186	0	0	193	0
Stage 1	186	-	-	-	-	-
Stage 2	560	-	-	-	-	-
Critical Hdwy	6.84	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.896	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	326	861	-	-	1392	-
Stage 1	754	-	-	-	-	-
Stage 2	497	_	-	_	_	_
Platoon blocked, %			_	_		_
Mov Cap-1 Maneuver	318	861	_	_	1392	_
Mov Cap-2 Maneuver	318	-	_	_	1002	_
	754	-		-		
Stage 1			-	-	-	-
Stage 2	485	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	12.8		0		0.3	
HCM LOS	12.0 B		U		0.0	
TIOWI LOO	U					
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	499	1392	-
HCM Lane V/C Ratio		_	-	0.075		_
HCM Control Delay (s)		-	-	12.8	7.6	0
HCM Lane LOS		_	_	В	A	A
HCM 95th %tile Q(veh)	_	_	0.2	0.1	-
				J.L	5.1	

Intersection						
Int Delay, s/veh	0.2					
	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	WDL	MOL	1 DI	NON	ODL	<u>उठा</u>
Traffic Vol, veh/h	0	5	187	2	8	338
Future Vol, veh/h	0	5	187	2	8	338
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Slop -	None	riee -	None	riee -	None
Storage Length	0	NOHE -	_	NOHE -	-	None -
Veh in Median Storage,			0			0
Grade, %	# 0 0	-	0	-	-	0
	75	- 75	89	89	- 01	81
Peak Hour Factor		75			81	
Heavy Vehicles, %	0	0	5	100	0	2
Mvmt Flow	0	7	210	2	10	417
Major/Minor M	linor1	Λ	/lajor1		Major2	
Conflicting Flow All	648	211	0	0	212	0
Stage 1	211	-	-	-		-
Stage 2	437	_	<u>-</u>	_	_	<u>-</u>
Critical Hdwy	6.4	6.2	_	_	4.1	_
Critical Hdwy Stg 1	5.4	- 0.2	_	_	7.1	_
Critical Hdwy Stg 2	5.4	_	_	_	_	
Follow-up Hdwy	3.5	3.3	_	_	2.2	-
Pot Cap-1 Maneuver	438	834	-	-	1370	
	829	004			13/0	
Stage 1			-	-	-	-
Stage 2	655	-	-	-	-	-
Platoon blocked, %	10.1	004	-	-	4070	-
Mov Cap-1 Maneuver	434	834	-	-	1370	-
Mov Cap-2 Maneuver	434	-	-	-	-	-
Stage 1	829	-	-	-	-	-
Stage 2	648	-	-	-	-	-
Approach	WB		NB		SB	
	9.4		0		0.2	
HCM Control Delay, s HCM LOS			U		U.Z	
HOIVI LOS	Α					
Minor Lane/Major Mvmt		NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	834	1370	-
HCM Lane V/C Ratio		-	_	0.008		-
HCM Control Delay (s)		_	_	9.4	7.6	0
HCM Lane LOS		_	_	A	A	A
HCM 95th %tile Q(veh)		_	_	0	0	-

Intersection												
Int Delay, s/veh	11.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	8	9	2	86	5	6	0	461	391	26	295	29
Future Vol, veh/h	8	9	2	86	5	6	0	461	391	26	295	29
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	- -	- Otop	None	-	-	None	-	-	None	-	-	None
Storage Length	_	_	-	_	_	-	_	_	-	_	_	-
Veh in Median Storage		0	_	_	0	_	_	0	_	_	0	_
Grade, %	-, "	0	_	_	0	_	_	0	_	_	0	_
Peak Hour Factor	75	75	75	65	65	65	90	90	90	87	87	87
Heavy Vehicles, %	20	0	0	4	0	0	0	2	3	0	3	0
Mymt Flow	11	12	3	132	8	9	0	512	434	30	339	33
WHILE IOW		12	J	102			- 0	UIZ	707	- 00	000	- 00
NA - ' - /NA'	\d'		_	A'						4.1.0		
	Minor2	1000		Minor1	4451		Major1			Major2		
Conflicting Flow All	1154	1362	356	1152	1161	729	372	0	0	946	0	0
Stage 1	416	416	-	729	729	-	-	-	-	-	-	-
Stage 2	738	946	-	423	432	-	-	-	-	-	-	-
Critical Hdwy	7.3	6.5	6.2	7.14	6.5	6.2	4.1	-	-	4.1	-	-
Critical Hdwy Stg 1	6.3	5.5	-	6.14	5.5	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.3	5.5	-	6.14	5.5	-	-	-	-	-	-	-
Follow-up Hdwy	3.68	4	3.3	3.536	4	3.3	2.2	-	-	2.2	-	-
Pot Cap-1 Maneuver	160	149	693	173	197	426	1198	-	-	734	-	-
Stage 1	580	595	-	411	431	-	-	-	-	-	-	-
Stage 2	383	343	-	605	586	-	-	-	-	-	-	-
Platoon blocked, %				4 = =		,		-	-		-	-
Mov Cap-1 Maneuver	146	141	693	155	187	426	1198	-	-	734	-	-
Mov Cap-2 Maneuver	146	141	-	155	187	-	-	-	-	-	-	-
Stage 1	580	564	-	411	431	-	-	-	-	-	-	-
Stage 2	368	343	-	559	556	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	32.5			105.3			0			0.8		
HCM LOS	D			F								
Minor Lane/Major Mvm	ıt	NBL	NBT	NRR I	EBLn1V	WRI n1	SBL	SBT	SBR			
Capacity (veh/h)		1198		ואופאו	156	163	734					
HCM Lane V/C Ratio		-		_		0.916						
HCM Control Delay (s)		0	-	-		105.3	10.1	0	_			
HCM Lane LOS		A	_	_	32.5 D	103.5 F	В	A	_			
HCM 95th %tile Q(veh)		0	-	-	0.6	6.7	0.1	- -	-			
HOW Jour Joure Q(Veri)		U		_	0.0	0.1	0.1	_				

-								
Intersection								
Int Delay, s/veh	115.2							
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	ኘ	T T	Ť	<u> </u>	<u> </u>	7		
Traffic Vol, veh/h	871	396	68	14	55	238		
Future Vol, veh/h	871	396	68	14	55	238		
Conflicting Peds, #/hr	0	0	0	0	0	0		
Sign Control	Stop	Stop	Free	Free	Free	Free		
RT Channelized	-		-		-			
Storage Length	0	290	100	-	-	175		
Veh in Median Storage	e, # 0	-	-	0	0	-		
Grade, %	0	-	-	0	0	-		
Peak Hour Factor	93	93	70	70	90	90		
Heavy Vehicles, %	1	1	3	11	0	4		
Mvmt Flow	937	426	97	20	61	264		
Major/Minor	Minor2		Major1	N	Major2			
Conflicting Flow All	275	61	325	0	- viajoiz	0		
Stage 1	61	-	JZJ -	-	_	-		
Stage 2	214	_	_	_	_	_		
Critical Hdwy	6.41	6.21	4.13	_				
Critical Hdwy Stg 1	5.41	J.E 1	- 1.10	_	_	_		
Critical Hdwy Stg 2	5.41	-	-	_	-	-		
Follow-up Hdwy	3.509	3.309	2.227	_	_	-		
Pot Cap-1 Maneuver	~ 717	1007	1229	-	_	-		
Stage 1	964	-	-	-	-	-		
Stage 2	~ 824	_	-	-	_	_		
Platoon blocked, %				-	-	-		
Mov Cap-1 Maneuver	~ 660	1007	1229	-	-	-		
Mov Cap-2 Maneuver		-	-	-	-	-		
Stage 1	~ 888	-	-	-	-	-		
Stage 2	~ 824	-	-	-	-	-		
<u> </u>								
Annroach	EB		NB		SB			
Approach								
HCM LOS	152		6.8		0			
HCM LOS	F							
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1 I	EBLn2	SBT	SBR	
Capacity (veh/h)		1229	-	660	1007	-	-	
HCM Lane V/C Ratio		0.079	-	1.419		-	-	
HCM Control Delay (s)	8.2	-	216	11.2	-	-	
HCM Lane LOS		Α	-	F	В	-	-	
HCM 95th %tile Q(veh	1)	0.3	-	42.8	2.1	-	-	
Notes								
	nacity	¢. Da	lov ovo	oodo 20)Oc	L. Com	utation Not Defined	
~: Volume exceeds ca	pacity	⊅; De	ay exc	eeds 30	JUS -	+. Comp	utation Not Defined	*

Intersection						
Int Delay, s/veh	113.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	VVDL	7	<u> </u>	NDIX	ODL	↑ ↑
Traffic Vol, veh/h	0	225	1247	0	0	371
Future Vol, veh/h	0	225	1247	0	0	371
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control			Free	Free	Free	Free
RT Channelized	Stop -	Stop				
			-		-	
Storage Length	- " 0	0	-	-	-	-
Veh in Median Storag		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	76	76	70	70	80	80
Heavy Vehicles, %	2	3	2	2	2	4
Mvmt Flow	0	296	1781	0	0	464
Major/Minor	Minor1	N	Major1	N /	oior?	
Major/Minor			Major1		ajor2	
Conflicting Flow All	-	1781	0	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.245	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	- ;	3.3285	-	-	-	-
Pot Cap-1 Maneuver	0	~ 100	-	0	0	-
Stage 1	0	-	-	0	0	-
Stage 2	0	-	_	0	0	-
Platoon blocked, %			_			_
Mov Cap-1 Maneuver	_	~ 100	_	_	_	_
Mov Cap-2 Maneuver		-	_	_	_	_
Stage 1		_			_	
	-		-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s			0		0	
HCM LOS	F					
TIOWI LOG	ı					
Minor Lane/Major Mvr	nt	NBTV	VBLn1	SBT		
Capacity (veh/h)		-	100	-		
HCM Lane V/C Ratio		-	2.961	-		
HCM Control Delay (s	s)		974.6	-		
HCM Lane LOS	,	-	F	-		
HCM 95th %tile Q(vel	າ)	-	28.4	_		
,	.,					
Notes						
~: Volume exceeds ca	apacity	\$: De	lay exc	eeds 300	Os ·	+: Comp

	۶	→	•	•	←	•	1	†	/	/	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ž	↑ ↑		14.54	↑ ↑			ર્ન	77		4	
Traffic Volume (vph)	0	474	3	302	184	24	11	3	1326	57	3	3
Future Volume (vph)	0	474	3	302	184	24	11	3	1326	57	3	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	12	11	12	12	16	12
Total Lost time (s)		6.0		6.0	6.0			6.0	6.0		6.0	
Lane Util. Factor		0.95		0.97	0.95			1.00	0.88		1.00	
Frt		1.00		1.00	0.98			1.00	0.85		0.99	
Flt Protected		1.00		0.95	1.00			0.96	1.00		0.96	
Satd. Flow (prot)		3571		3433	3548			1766	2814		2047	
FIt Permitted		1.00		0.95	1.00			0.83	1.00		0.74	
Satd. Flow (perm)		3571		3433	3548			1525	2814		1586	
Peak-hour factor, PHF	0.88	0.88	0.88	0.96	0.96	0.96	0.91	0.91	0.91	0.68	0.68	0.68
Adj. Flow (vph)	0	539	3	315	192	25	12	3	1457	84	4	4
RTOR Reduction (vph)	0	0	0	0	5	0	0	0	0	0	1	0
Lane Group Flow (vph)	0	542	0	315	212	0	0	15	1457	0	91	0
Heavy Vehicles (%)	0%	1%	0%	2%	0%	0%	0%	0%	1%	0%	0%	0%
Turn Type	Prot	NA		Prot	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	6	2		1	5			8			4	
Permitted Phases							8		8	4		
Actuated Green, G (s)		15.3		12.1	33.4			20.1	20.1		20.1	
Effective Green, g (s)		15.3		12.1	33.4			20.1	20.1		20.1	
Actuated g/C Ratio		0.23		0.18	0.51			0.31	0.31		0.31	
Clearance Time (s)		6.0		6.0	6.0			6.0	6.0		6.0	
Vehicle Extension (s)		3.0		3.0	3.0			3.0	3.0		3.0	
Lane Grp Cap (vph)		834		634	1809			467	863		486	
v/s Ratio Prot		c0.15		c0.09	0.06							
v/s Ratio Perm								0.01	c0.52		0.06	
v/c Ratio		0.65		0.50	0.12			0.03	1.69		0.19	
Uniform Delay, d1		22.7		24.0	8.4			15.9	22.7		16.7	
Progression Factor		1.00		1.00	1.00			1.00	1.00		1.00	
Incremental Delay, d2		1.8		0.6	0.0			0.0	314.8		0.2	
Delay (s)		24.4		24.6	8.4			15.9	337.5		16.9	
Level of Service		С		С	Α			В	F		В	
Approach Delay (s)		24.4			18.0			334.2			16.9	
Approach LOS		С			В			F			В	
Intersection Summary												
HCM 2000 Control Delay			195.7	H	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capacity	y ratio		1.05									
Actuated Cycle Length (s)			65.5		um of lost				18.0			
Intersection Capacity Utilizatio	n		79.6%	IC	U Level o	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

102: US Route 4 SB On-Ramp/US Route 4 SB Off-Ramp & Pease Blvd 2025 Build Condition Weekday PM Peak

	۶	-	\rightarrow	•	←	•	•	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		1111	7	14.54	^					14.54		77
Traffic Volume (vph)	0	1224	633	684	478	0	0	0	0	389	0	156
Future Volume (vph)	0	1224	633	684	478	0	0	0	0	389	0	156
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	10	11	10	11	12	12	12	12	12	12	12
Total Lost time (s)		6.0	6.0	6.0	6.0					6.0		6.0
Lane Util. Factor		0.86	1.00	0.97	0.95					0.97		0.88
Frt		1.00	0.85	1.00	1.00					1.00		0.85
Flt Protected		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (prot)		6040	1546	3236	3455					3502		2814
Flt Permitted		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (perm)		6040	1546	3236	3455					3502		2814
Peak-hour factor, PHF	0.85	0.85	0.85	0.94	0.94	0.94	0.92	0.92	0.92	0.90	0.90	0.90
Adj. Flow (vph)	0	1440	745	728	509	0	0	0	0	432	0	173
RTOR Reduction (vph)	0	0	365	0	0	0	0	0	0	0	0	132
Lane Group Flow (vph)	0	1440	380	728	509	0	0	0	0	432	0	41
Heavy Vehicles (%)	0%	1%	1%	1%	1%	0%	0%	0%	0%	0%	0%	1%
Turn Type		NA	Prot	Prot	NA					Prot		Prot
Protected Phases		6	6	5	25					3		3
Permitted Phases												
Actuated Green, G (s)		35.0	35.0	25.0	60.2					24.0		24.0
Effective Green, g (s)		35.0	35.0	25.0	60.2					24.0		24.0
Actuated g/C Ratio		0.34	0.34	0.25	0.59					0.24		0.24
Clearance Time (s)		6.0	6.0	6.0						6.0		6.0
Vehicle Extension (s)		5.0	5.0	4.0						5.0		5.0
Lane Grp Cap (vph)		2072	530	793	2039					824		662
v/s Ratio Prot		0.24	c0.25	c0.22	0.15					c0.12		0.01
v/s Ratio Perm												
v/c Ratio		0.69	0.72	0.92	0.25					0.52		0.06
Uniform Delay, d1		28.9	29.2	37.5	10.0					34.0		30.3
Progression Factor		1.00	1.00	1.35	1.12					1.00		1.00
Incremental Delay, d2		1.3	5.7	11.2	0.1					1.1		0.1
Delay (s)		30.2	34.9	62.0	11.4					35.2		30.3
Level of Service		С	С	Е	В					D		С
Approach Delay (s)		31.8			41.2			0.0			33.8	
Approach LOS		С			D			А			С	
Intersection Summary												
HCM 2000 Control Delay			35.0	H	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capaci	ty ratio		0.72									
Actuated Cycle Length (s)			102.0	Sı	um of lost	time (s)			18.0			
Intersection Capacity Utilization	on		84.8%	IC	U Level o	of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

103: US Route 4 NB Off-ramp/US Route 4 NB On-Ramp & Pease Blvd 2025 Build Condition Weekday PM Peak

	٠	→	•	•	←	•	1	†	~	/	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1/1	^↑			↑ ↑₽		44		77			
Traffic Volume (vph)	751	862	0	0	933	407	229	0	625	0	0	0
Future Volume (vph)	751	862	0	0	933	407	229	0	625	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	11	12	12	12	12	12	12	12	12	12	12
Total Lost time (s)	6.0	6.0			6.0		6.0		6.0			
Lane Util. Factor	0.97	0.95			0.91		0.97		0.88			
Frt	1.00	1.00			0.95		1.00		0.85			
Flt Protected	0.95	1.00			1.00		0.95		1.00			
Satd. Flow (prot)	3236	3455			4917		3433		2814			
Flt Permitted	0.11	1.00			1.00		0.95		1.00			
Satd. Flow (perm)	389	3455			4917		3433		2814			
Peak-hour factor, PHF	0.87	0.87	0.92	0.90	0.90	0.90	0.94	0.94	0.94	0.92	0.92	0.92
Adj. Flow (vph)	863	991	0	0	1037	452	244	0	665	0	0	0
RTOR Reduction (vph)	0	0	0	0	76	0	0	0	509	0	0	0
Lane Group Flow (vph)	863	991	0	0	1413	0	244	0	156	0	0	0
Heavy Vehicles (%)	1%	1%	0%	0%	1%	0%	2%	0%	1%	0%	0%	0%
Turn Type	pm+pt	NA			NA		Prot		Prot			
Protected Phases	1	6			2		3		3			
Permitted Phases	6											
Actuated Green, G (s)	59.8	35.0			35.2		24.0		24.0			
Effective Green, g (s)	59.8	35.0			35.2		24.0		24.0			
Actuated g/C Ratio	0.59	0.34			0.35		0.24		0.24			
Clearance Time (s)	6.0	6.0			6.0		6.0		6.0			
Vehicle Extension (s)	4.0	5.0			5.0		5.0		5.0			
Lane Grp Cap (vph)	920	1185			1696		807		662			
v/s Ratio Prot	c0.23	0.29			0.29		c0.07		0.06			
v/s Ratio Perm	c0.32											
v/c Ratio	0.94	0.84			0.83		0.30		0.24			
Uniform Delay, d1	28.5	30.9			30.7		32.1		31.6			
Progression Factor	1.67	0.54			1.00		1.00		1.00			
Incremental Delay, d2	13.6	4.5			4.1		0.4		0.4			
Delay (s)	61.2	21.2			34.8		32.6		32.0			
Level of Service	E	С			С		С		С			
Approach Delay (s)		39.8			34.8			32.1			0.0	
Approach LOS		D			С			С			Α	
Intersection Summary												
HCM 2000 Control Delay			36.4	H	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capa	acity ratio		0.75									
Actuated Cycle Length (s)			102.0		um of lost				18.0			
Intersection Capacity Utiliza	ation		84.8%	IC	CU Level o	of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

	•	→	—	4	<u> </u>	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
	EDL Š			WDK_	SDL 1	JDK 7	
Lane Configurations Traffic Volume (vph)	310	↑↑ 1653	↑↑ 1283	226	4 23	886	
Future Volume (vph)	310	1653	1283	226	423	886	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0	
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00	
Frt	1.00	1.00	1.00	0.85	1.00	0.85	
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1787	3539	3539	1583	1787	1599	
Flt Permitted	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	1787	3539	3539	1583	1787	1599	
Peak-hour factor, PHF	0.88	0.88	0.93	0.93	0.87	0.87	
Adj. Flow (vph)	352	1878	1380	243	486	1018	
RTOR Reduction (vph)	0	0	0	169	0	166	
Lane Group Flow (vph)	352	1878	1380	74	486	852	
Heavy Vehicles (%)	1%	2%	2%	2%	1%	1%	
Turn Type	Prot	NA	NA	Perm	Prot	Prot	
Protected Phases	1	6	2	1 01111	3	3	
Permitted Phases	•		_	2			
Actuated Green, G (s)	5.0	29.0	18.0	18.0	18.0	18.0	
Effective Green, g (s)	5.0	29.0	18.0	18.0	18.0	18.0	
Actuated g/C Ratio	0.08	0.49	0.31	0.31	0.31	0.31	
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	
Vehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0	
Lane Grp Cap (vph)	151	1739	1079	482	545	487	
v/s Ratio Prot	c0.20	0.53	c0.39		0.27	c0.53	
v/s Ratio Perm				0.05			
v/c Ratio	2.33	1.08	1.28	0.15	0.89	1.75	
Uniform Delay, d1	27.0	15.0	20.5	14.9	19.6	20.5	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	619.2	46.7	132.8	0.7	17.0	345.6	
Delay (s)	646.2	61.7	153.3	15.6	36.6	366.1	
Level of Service	F	Е	F	В	D	F	
Approach Delay (s)		154.0	132.7		259.6		
Approach LOS		F	F		F		
Intersection Summary							
HCM 2000 Control Delay			177.2	Н	CM 2000	Level of Service	ce
HCM 2000 Volume to Capacit	y ratio		1.61				
Actuated Cycle Length (s)			59.0		um of los		
Intersection Capacity Utilization	on		100.3%	IC	U Level	of Service	
Analysis Period (min)			15				
c Critical Lane Group							

Intersection												
Intersection Delay, s/veh	164.8											
Intersection LOS	F											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	₽		*	†	7	Ť	∱ }		*	†	7
Traffic Vol, veh/h	140	4	15	9	24	598	15	566	7	70	90	87
Future Vol, veh/h	140	4	15	9	24	598	15	566	7	70	90	87
Peak Hour Factor	0.84	0.84	0.84	0.77	0.77	0.77	0.89	0.89	0.89	0.93	0.93	0.93
Heavy Vehicles, %	0	0	0	0	6	1	0	1	0	4	3	0
Mvmt Flow	167	5	18	12	31	777	17	636	8	75	97	94
Number of Lanes	1	1	0	1	1	1	1	2	0	1	1	1
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	3			2			3			3		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	3			3			2			3		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	3			3			3			2		
HCM Control Delay	21.3			334.1			55.3			16.8		
HCM LOS	С			F			F			С		
Lane		NBLn1	NBLn2	NBLn3	EBLn1	EBLn2	WBLn1	WBLn2	WBLn3	SBLn1	SBLn2	SBLn3
Vol Left, %		100%	0%	0%	100%	0%	100%	0%	0%	100%	0%	0%
Vol Thru, %		0%	100%	96%	0%	21%	0%	100%	0%	0%	100%	0%
Vol Right, %		0%	0%	4%	0%	79%	0%	0%	100%	0%	0%	100%
Sign Control		Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane		15	377	196	140	19	9	24	598	70	90	87
			_			•	_		_		•	_

Lane	NBLNI	NBLNZ	MBLU3	EBLUI	EBLNZ	WBLNI	WBLNZ	WBLN3	SBLITT	SBLNZ	SBLN3
Vol Left, %	100%	0%	0%	100%	0%	100%	0%	0%	100%	0%	0%
Vol Thru, %	0%	100%	96%	0%	21%	0%	100%	0%	0%	100%	0%
Vol Right, %	0%	0%	4%	0%	79%	0%	0%	100%	0%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	15	377	196	140	19	9	24	598	70	90	87
LT Vol	15	0	0	140	0	9	0	0	70	0	0
Through Vol	0	377	189	0	4	0	24	0	0	90	0
RT Vol	0	0	7	0	15	0	0	598	0	0	87
Lane Flow Rate	17	424	220	167	23	12	31	777	75	97	94
Geometry Grp	8	8	8	8	8	8	8	8	8	8	8
Degree of Util (X)	0.041	0.982	0.507	0.456	0.055	0.03	0.076	1.718	0.207	0.253	0.225
Departure Headway (Hd)	10.284	9.784	9.74	10.904	9.851	9.161	8.757	7.962	11.565	11.023	10.236
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Cap	350	373	374	333	366	391	410	458	312	328	353
Service Time	7.984	7.484	7.44	8.604	7.551	6.905	6.501	5.705	9.265	8.723	7.936
HCM Lane V/C Ratio	0.049	1.137	0.588	0.502	0.063	0.031	0.076	1.697	0.24	0.296	0.266
HCM Control Delay	13.4	74.3	22	22.4	13.1	12.2	12.2	351.9	17.3	17.4	15.9
HCM Lane LOS	В	F	С	С	В	В	В	F	С	С	С
HCM 95th-tile Q	0.1	11.2	2.8	2.3	0.2	0.1	0.2	46.6	0.8	1	0.8

Lonza TIS Tighe & Bond

Intersection								
Int Delay, s/veh	201							
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	î,			4	W		٠	
Traffic Vol, veh/h	64	17	12	356	275	64		
Future Vol, veh/h	64	17	12	356	275	64		
Conflicting Peds, #/hr		0	0	0	0	0		
Sign Control	Free	Free	Free	Free	Stop	Stop		
RT Channelized	-		-		-			
Storage Length	_	-	_	-	0	-		
Veh in Median Storag	ae.# 0	_	_	0	0	_		
Grade, %	ος, π 0	_	_	0	0	_		
Peak Hour Factor	70	70	73	73	40	40		
Heavy Vehicles, %	4	0	0	2	0	0		
Mvmt Flow	91	24	16	488	688	160		
Major/Minor	Major1	P	Major2	P	Minor1			
Conflicting Flow All	0	0	115	0	623	103		
Stage 1	-		-	-	103	-		
Stage 2	_		_	<u>-</u>	520	_		
•	_	_	4.1		6.4	6.2		
Critical Hdwy	-	-						
Critical Hdwy Stg 1	-		-	-	5.4	-		
Critical Hdwy Stg 2	-	-	-	-	5.4	-		
Follow-up Hdwy	-	-	2.2	-	3.5	3.3		
Pot Cap-1 Maneuver	-	-	1487	-	~ 453	957		
Stage 1	-	-	-	-	926	-		
Stage 2	-	-	-	-	~ 601	-		
Platoon blocked, %	-	-		-				
Mov Cap-1 Maneuver	r -	-	1487	-	~ 446	957		
Mov Cap-2 Maneuver		-	-	-	~ 446	-		
Stage 1	_	_	_	_	926	_		
Stage 2	_	_	_	_	~ 592	_		
olago 2					002			
Approach	EB		WB		NB			
HCM Control Delay, s	s 0		0.2	\$	347.8			
HCM LOS					F			
NA:		NIDL 4	EDT	EDD	WDI	WDT		
Minor Lane/Major Mv	mt i	NBLn1	EBT	EBR	WBL	WBT		
Capacity (veh/h)		496	-		1487	-		
HCM Lane V/C Ratio		1.709	-	-	0.011	-		
HCM Control Delay (s	s) \$	347.8	-	-	7.4	0		
HCM Lane LOS		F	-	-	Α	Α		
HCM 95th %tile Q(vel	h)	50.3	-	-	0	-		
							į	
Mataa								
Notes ~: Volume exceeds ca		A -		eeds 30				outation Not Defined

Intersection						
Int Delay, s/veh	0.8					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ሻ	†	- ↑		W	02.1
Traffic Vol, veh/h	7	121	358	3	1	12
Future Vol, veh/h	7	121	358	3	1	12
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None		None	_	
Storage Length	0	-	-	-	0	-
Veh in Median Storag		0	0	_	0	_
Grade, %	-	0	0	_	0	_
Peak Hour Factor	63	63	77	77	36	36
Heavy Vehicles, %	40	0	0	1	0	11
Mvmt Flow	11	192	465	4	3	33
	• •	102	100	•		00
				_		
Major/Minor	Major1		//ajor2		/linor2	
Conflicting Flow All	469	0	-	0	681	467
Stage 1	-	-	-	-	467	-
Stage 2	-	-	-	-	214	-
Critical Hdwy	4.5	-	-	-	6.4	6.31
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	2.56	-	-	-	3.5	3.399
Pot Cap-1 Maneuver	920	-	-	-	419	578
Stage 1	-	-	-	-	635	-
Stage 2	-	-	-	-	826	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	920	-	-	-	414	578
Mov Cap-2 Maneuver		-	-	-	414	-
Stage 1	-	-	_	-	627	_
Stage 2	_	_	_	_	826	_
5 13 gc =						
Annragah	EB		WB		SB	
Approach						
HCM Control Delay, s	0.5		0		11.9	
HCM LOS					В	
Minor Lane/Major Mvi	mt	EBL	EBT	WBT	WBR :	SBLn1
Capacity (veh/h)		920	_	_	-	561
HCM Lane V/C Ratio		0.012	_	_		0.064
HCM Control Delay (s	3)	9	_	_	_	11.9
HCM Lane LOS	7	A	_	_	_	В
HCM 95th %tile Q(vel	h)	0	_	_	_	0.2
1.5W 55W 70W Q(VO	,	U				J.Z

Intersection						
Int Delay, s/veh	0.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1	LDIX	****	4	¥	HOIL
Traffic Vol, veh/h	128	1	0	203	11	0
Future Vol, veh/h	128	1	0	203	11	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-			None	-	
Storage Length	_	-	_	-	0	-
Veh in Median Storage		_	_	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	78	78	81	81	71	71
Heavy Vehicles, %	0	0	0	1	11	0
Mvmt Flow	164	1	0	251	15	0
IVIVIIIL FIOW	104	I	U	201	10	U
Major/Minor N	/lajor1	N	//ajor2	ا	Minor1	
Conflicting Flow All	0	0	165	0	416	165
Stage 1	-	-	-	-	165	-
Stage 2	-	-	-	-	251	-
Critical Hdwy	_	-	4.1	-	6.51	6.2
Critical Hdwy Stg 1	_	-	_	-	5.51	-
Critical Hdwy Stg 2	_	_	-	_	5.51	_
Follow-up Hdwy	_	_	2.2		3.599	3.3
Pot Cap-1 Maneuver	_	_	1426	_	576	885
Stage 1	_	_	-	_	843	-
Stage 2	_	_	_	_	770	_
Platoon blocked, %	_	_		_	110	
Mov Cap-1 Maneuver	-	-	1426	-	576	885
Mov Cap-1 Maneuver					576	
	-	-	-	-	843	-
Stage 1	-	-	-	-		-
Stage 2	-	-	-	-	770	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		11.4	
HCM LOS					В	
3						
N. 1 (0.1)		IDI 4	EDT		14/51	MAIDT
Minor Lane/Major Mvm	i 1	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		576	-	-	1426	-
HCM Lane V/C Ratio		0.027	-	-	-	-
HCM Control Delay (s)		11.4	-	-	0	-
HCM Lane LOS		В	-	-	Α	-
HCM 95th %tile Q(veh)		0.1	-	-	0	-

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
	WDL	אטא		אטוו	ODL	
Lane Configurations		11	₽	0	1	ન
Traffic Vol, veh/h	1		0	0		0
Future Vol, veh/h	1	11	0	0	1	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	67	67	69	69	50	50
Heavy Vehicles, %	0	0	10	0	0	0
Mvmt Flow	1	16	0	0	2	0
Main/Min.n.	A:4		1-:1		4-:0	
	/linor1		Major1		Major2	
Conflicting Flow All	4	0	0	0	0	0
Stage 1	0	-	-	-	-	-
Stage 2	4	-	-	-	-	-
Critical Hdwy	6.4	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	1023	_	-	_	-	-
Stage 1	_	-	_	-	_	-
Stage 2	1024	_	_	_	_	_
Platoon blocked, %	1021		_	_		_
Mov Cap-1 Maneuver	1023	_	_	_	_	_
	1023					-
Mov Cap-2 Maneuver		-	-	-	-	
Stage 1	-	-	-	-	-	-
Stage 2	1024	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s			0			
HCM LOS	_		- 0			
I IOIVI LOO	_					
Minor Lane/Major Mvmt		NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	-	-	-
HCM Lane V/C Ratio		-	-	-	-	-
HCM Control Delay (s)		_	-	-	-	-
HCM Lane LOS		-	-	-	_	-
HCM 95th %tile Q(veh)		_	-	_	-	_

Intersection						
Int Delay, s/veh	6.8					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W	LDIT	1100	4	\$	OBIT
Traffic Vol, veh/h	3	0	0	1	0	0
Future Vol, veh/h	3	0	0	1	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	- Olop	None		None	-	
Storage Length	0	-	_	-	<u>-</u>	-
Veh in Median Storage,		_	_	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	25	25	63	63	63	63
	0	0	03	03	10	03
Heavy Vehicles, %	12		0	2	0	
Mvmt Flow	12	0	U	2	U	0
Major/Minor N	/linor2	N	Major1	N	/lajor2	
Conflicting Flow All	4	2	2	0	-	0
Stage 1	2	_	_	-	_	-
Stage 2	2	_	-	_	_	_
Critical Hdwy	6.4	6.2	4.1	_	_	_
Critical Hdwy Stg 1	5.4	-	-	_	_	_
Critical Hdwy Stg 2	5.4	-	_	_	_	_
Follow-up Hdwy	3.5	3.3	2.2		<u>-</u>	_
Pot Cap-1 Maneuver	1023	1088	1634	-		
•	1023		1034	-	-	-
Stage 1		-	-	-	-	-
Stage 2	1026	-	-	-	-	-
Platoon blocked, %	1000	1000	1001	-	-	-
Mov Cap-1 Maneuver	1023	1088	1634	-	-	-
Mov Cap-2 Maneuver	1023	-	-	-	-	-
Stage 1	1026	-	-	-	-	-
Stage 2	1026	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	8.6		0		0	
HCM LOS			U		U	
I IOIVI LUO	Α					
Minor Lane/Major Mvmt	l	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1634	_	1023	-	-
HCM Lane V/C Ratio		-		0.012	_	-
HCM Control Delay (s)		0	_		_	-
HCM Lane LOS		A	_	A	_	_
HCM 95th %tile Q(veh)		0	_	0	_	_

Intersection												
Int Delay, s/veh	3.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	0	0	0	0	0	144	0	195	0	13	11	5
Future Vol, veh/h	0	0	0	0	0	144	0	195	0	13	11	5
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	_	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	39	39	92	92	67	67
Heavy Vehicles, %	2	2	2	2	2	2	0	0	2	2	0	0
Mvmt Flow	0	0	0	0	0	157	0	500	0	14	16	7
Major/Minor	Minor2			Minor1		- 1	Major1		ı	Major2		
Conflicting Flow All	627	548	20	548	551	500	23	0	0	500	0	0
Stage 1	48	48	-	500	500	-	-	-	-	-	-	-
Stage 2	579	500	_	48	51	-	_	_	_	_	-	_
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.1	_	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	_	_	-	-	_
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.2	_	_	2.218	-	_
Pot Cap-1 Maneuver	396	444	1058	447	442	571	1605	_	-	1064	-	-
Stage 1	965	855	-	553	543	-	-	-	_	-	-	-
Stage 2	501	543	-	965	852	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	285	438	1058	443	436	571	1605	-	-	1064	-	-
Mov Cap-2 Maneuver	285	438	-	443	436	-	-	-	-	-	-	-
Stage 1	965	844	-	553	543	-	-	-	-	-	-	-
Stage 2	364	543	-	952	841	-	-	-	-	-	-	-
Ĭ												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			13.7			0			3.1		
HCM LOS	A			В								
Minor Lane/Major Mvn	nt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1605	-	-	-	571	1064	-	-			
HCM Lane V/C Ratio		-	-	-	_	0.274		_	_			
HCM Control Delay (s)		0	_	-	0	13.7	8.4	0	_			
HCM Lane LOS		A	-	-	A	В	A	A	_			
HCM 95th %tile Q(veh)	0	_	_	-	1.1	0	-	-			
2 22 70 2(1011	,											

Lonza TIS Tighe & Bond

Intersection						
Int Delay, s/veh	0.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
	WDL	WDN		NDI	ODL	
Lane Configurations		2	F 96	1	1	4
Traffic Vol, veh/h	7	3	586	1	4	103
Future Vol, veh/h	7	3	586	1 0	4	103
Conflicting Peds, #/hr	0		0		0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None	-	
Storage Length	0	-	-	-	-	-
Veh in Median Storage,		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	88	88	78	78	76	76
Heavy Vehicles, %	0	0	1	0	0	4
Mvmt Flow	8	3	751	1	5	136
Major/Minor N	1inor1	N	/lajor1	N	Major2	
		752				0
Conflicting Flow All	898		0	0	752	0
Stage 1	752	-	-	-	-	-
Stage 2	146	-	-	-	-	-
Critical Hdwy	6.4	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	312	413	-	-	867	-
Stage 1	469	-	-	-	-	-
Stage 2	886	_	_	_	_	_
Platoon blocked, %			_	_		_
Mov Cap-1 Maneuver	310	413	_	_	867	_
Mov Cap-1 Maneuver	310	413	_	<u> </u>	-	_
	469			-		
Stage 1		-	-	-	-	-
Stage 2	881	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	16.1		0		0.3	
HCM LOS	C				3.0	
TIOWI LOO						
Minor Lane/Major Mvmt		NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	335	867	-
HCM Lane V/C Ratio		-	-	0.034	0.006	-
HCM Control Delay (s)		-	-		9.2	0
HCM Lane LOS		-	_	С	Α	A
HCM 95th %tile Q(veh)		_	_	0.1	0	-
				J. 1		

Intersection						
Int Delay, s/veh	7.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥	WDIX	1>	NDIX	ODL	4
Traffic Vol, veh/h	49	150	437	15	13	97
Future Vol, veh/h	49	150	437	15	13	97
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None	-	
Storage Length	0	-	_	-	_	-
Veh in Median Storage		_	0	_	_	0
Grade, %	0	_	0	_	_	0
Peak Hour Factor	72	72	67	67	81	81
Heavy Vehicles, %	14	0	1	46	0	3
Mvmt Flow	68	208	652	22	16	120
IVIVIIIL FIOW	00	200	002	22	10	120
Major/Minor	Minor1	N	//ajor1	N	Major2	
Conflicting Flow All	815	663	0	0	674	0
Stage 1	663	-	-	-	-	-
Stage 2	152	-	-	-	-	-
Critical Hdwy	6.54	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.54	-	_	_	_	_
Critical Hdwy Stg 2	5.54	_	-	_	-	-
Follow-up Hdwy	3.626	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	331	465	_	_	927	_
Stage 1	491	-	-	-		-
Stage 2	847	-	-	_	-	-
Platoon blocked, %	J 11		_	_		_
Mov Cap-1 Maneuver	325	465	_	_	927	_
Mov Cap-1 Maneuver	325	-	_	<u>-</u>	-	_
Stage 1	491	_	_		_	_
Stage 2	832	_	_	_	_	_
Olaye Z	UUZ		-	_	_	
Approach	WB		NB		SB	
HCM Control Delay, s	28.6		0		1.1	
HCM LOS	D					
Minor Lane/Major Mvm	nt	NBT	NRRV	VBLn1	SBL	SBT
	IL.	INDI			927	
Capacity (veh/h) HCM Lane V/C Ratio		-	-			-
		-		0.658		-
HCM Long LOS		-	-		9	0
HCM Lane LOS	\	-	-	D	Α	Α
HCM 95th %tile Q(veh)	-	-	4.6	0.1	-

Intersection						
Int Delay, s/veh	0.2					
Movement	WBL	WBR	NDT	NBR	SBL	SBT
		WDK	NBT	INDK	SDL	
Lane Configurations	**	1	1 → 358	٥	٥	र्स 164
Traffic Vol, veh/h Future Vol, veh/h	0	4	358	0	0	164
	0	4		0	0	
Conflicting Peds, #/hr		0	0		0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	25	25	68	68	74	74
Heavy Vehicles, %	0	0	3	0	0	7
Mvmt Flow	0	16	526	0	0	222
Major/Minor I	Minor1	N	/lajor1	N	/lajor2	
			_			^
Conflicting Flow All	748	526	0	0	526	0
Stage 1	526	-	-	-	-	-
Stage 2	222	-	-	-	-	-
Critical Hdwy	6.4	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	383	556	-	-	1051	-
Stage 1	597	-	-	-	-	-
Stage 2	820	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	383	556	-	-	1051	-
Mov Cap-2 Maneuver	383	-	-	-	-	-
Stage 1	597	-	-	-	-	-
Stage 2	820	-	_	_	_	_
3.0.g0 L	320					
Approach	WB		NB		SB	
HCM Control Delay, s	11.7		0		0	
HCM LOS	В					
Minor Lane/Major Mvm	+	NBT	NRDV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	556	1051	-
HCM Lane V/C Ratio		-		0.029	-	-
HCM Control Delay (s)		-	-		0	-
HCM Lane LOS		-	-	В	A	-
HCM 95th %tile Q(veh)		-	-	0.1	0	-

Intersection													
Int Delay, s/veh	126.7												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
_ane Configurations		4		1100	4	11511	1102	4	HOIT	UDL	4	OBIT	
Traffic Vol, veh/h	28	20	3	285	19	20	1	297	103	3	513	12	
uture Vol, veh/h	28	20	3	285	19	20	1	297	103	3	513	12	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control				Stop	Stop			Free	Free	Free	Free	Free	
	Stop	Stop	Stop			Stop	Free			riee	riee		
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	<u>-</u>	-	-	-	-	-	-	-	-	-	-	-	
eh in Median Storage		0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0		-	0	-	-	0	-	-	0	-	
eak Hour Factor	54	54	54	85	85	85	84	84	84	88	88	88	
eavy Vehicles, %	0	13	0	0	14	0	0	2	1	0	1	11	
lvmt Flow	52	37	6	335	22	24	1	354	123	3	583	14	
/lajor/Minor N	Minor2			Minor1			Major1		<u> </u>	Major2			
Conflicting Flow All	1037	1075	590	1036	1021	416	597	0	0	477	0	0	
Stage 1	596	596	-	418	418	-	-	-	-	-	-	-	
Stage 2	441	479	-	618	603	-	-	-	-	-	-	-	
ritical Hdwy	7.1	6.63	6.2	7.1	6.64	6.2	4.1	-	-	4.1	-	-	
ritical Hdwy Stg 1	6.1	5.63	_	6.1	5.64	-	-	-	-	-	_	-	
ritical Hdwy Stg 2	6.1	5.63	_	6.1	5.64	-	_	_	_	-	-	-	
ollow-up Hdwy	3.5	4.117	3.3		4.126	3.3	2.2	_	_	2.2	_	_	
ot Cap-1 Maneuver	211	210	511	~ 212	225	641	989	_	_	1096	_	_	
Stage 1	494	475	-	616	570	-	-	_	_	-	_	_	
Stage 2	599	537	_	480	470	_	_	_	_	_	_	_	
Platoon blocked, %	000	001		100	110			_	_		_	_	
Nov Cap-1 Maneuver	187	209	511	~ 180	224	641	989		_	1096		_	
Nov Cap-1 Maneuver	187	209		~ 180	224	U + 1	-			-	_	_	
Stage 1	494	473	_	615	569	_	<u>-</u>	_	_	_	-	-	
Stage 2	554	536	-	436	468	-	-	-	-		-		
Slaye Z	554	550	-	430	400	-	-	-	-	-	-	-	
	ED			14/5			ND			00			
pproach	EB			WB			NB			SB			
HCM Control Delay, s	37.3		\$	506.9			0			0			
ICM LOS	Е			F									
/linor Lane/Major Mvm	t	NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR				
capacity (veh/h)		989		-	203	191	1096	-	-				
ICM Lane V/C Ratio		0.001	-	-		1.996		-	-				
ICM Control Delay (s)		8.6	0	-		506.9	8.3	0	-				
CM Lane LOS		A	A	-	E	F	A	A	-				
ICM 95th %tile Q(veh)		0	-	-	2.2	28.7	0	-	-				
lotes													
	agoity.	¢. Da	lay aya	oodo 20	Mc	L. Com	outotion	Not Do	fined	*. All =	naior	olumo in	nlatoon
: Volume exceeds cap	dully	φ: D6	ay exc	eeds 30	108 -	r. Com	outation	ווטנו שפ	iiiiea	. All í	najor v	oiume ir	n platoon

Intersection								
Int Delay, s/veh	101.3							
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	ሻ	7	7	†		7		
Traffic Vol, veh/h	340	77	246	46	24	793		
Future Vol, veh/h	340	77	246	46	24	793		
Conflicting Peds, #/hr	0	0	0	0	0	0		
Sign Control	Stop	Stop	Free	Free	Free	Free		
RT Channelized	-		-	None	-			
Storage Length	0	290	100	-	-	175		
Veh in Median Storage		-	-	0	0	-		
Grade, %	0	-	-	0	0	-		
Peak Hour Factor	86	86	76	76	83	83		
Heavy Vehicles, %	2	2	1	3	0	1		
Mvmt Flow	395	90	324	61	29	955		
Major/Minor	Minor2		Major1	Į.	Major2			
Conflicting Flow All	738	29	984	0	-	0		
Stage 1	29	-	_	-	-	-		
Stage 2	709	-	-	-	-	-		
Critical Hdwy	6.42	6.22	4.11	-	-	-		
Critical Hdwy Stg 1	5.42	-	-	-	-	-		
Critical Hdwy Stg 2	5.42	-	-	_	_	-		
Follow-up Hdwy		3.318	2,209	_	_	-		
Pot Cap-1 Maneuver	~ 385	1046	706	-	-	_		
Stage 1	994		-	_	_	_		
Stage 2	488	_	_	-	_	_		
Platoon blocked, %	100			_	_	_		
Mov Cap-1 Maneuver	~ 208	1046	706	_	_	_		
Mov Cap-1 Maneuver		-		<u> </u>	_	_		
Stage 1	538	_		_		_		
Stage 2	488	_	_	_	_	_		
olago z	700	_		_		-		
Approach	EB		NB		SB			
HCM Control Delay, s			12.1		0			
HCM LOS	F							
Minor Lane/Major Mvm	nt	NBL	NBT	EBLn1 I	EBLn2	SBT	SBR	
Capacity (veh/h)		706	-		1046	-	-	
HCM Lane V/C Ratio		0.458				_	-	
HCM Control Delay (s)		14.3		3 461.3	8.8	_	-	
HCM Lane LOS		В	- -	F	Α	_	<u>-</u>	
HCM 95th %tile Q(veh)	2.4	-		0.3	-	-	
Notes					20			
~: Volume exceeds cap	pacity	\$: De	elay exc	eeds 30)0s	+: Comp	outation Not Defined	*.

-						
Intersection						
Int Delay, s/veh	0.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	WDL			NDI	ODL	
	0	أ	↑ 536	0	٥	† †
Traffic Vol., veh/h	0	66	536	0	0	1309
Future Vol, veh/h		66			0	1309
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None	-	
Storage Length	-	0	-	-	-	-
Veh in Median Storage,		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	73	73	95	95	89	89
Heavy Vehicles, %	0	13	0	1	0	1
Mvmt Flow	0	90	564	0	0	1471
Major/Minor M	linor1	N	Major1	ı	/lajor2	
Conflicting Flow All	-	564	0	-	- najoiz	_
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.395	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy		3.4235	-	-	-	-
Pot Cap-1 Maneuver	0	499	-	0	0	-
Stage 1	0	-	-	0	0	-
Stage 2	0	-	-	0	0	-
Platoon blocked, %			-			-
Mov Cap-1 Maneuver	-	499	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	_	-	_	_	_	-
Stage 2	_	_	_	_	_	_
3.0.g5 L						
Approach	WB		NB		SB	
HCM Control Delay, s	13.8		0		0	
HCM LOS	В					
Minor Lane/Major Mvmt		NRTV	VBLn1	SBT		
Capacity (veh/h) HCM Lane V/C Ratio		-		-		
HUW LANE V/U RATIO		-	0.181	-		
			40.0			
HCM Control Delay (s)		-		-		
		- -	13.8 B 0.7	-		

	٠		•	1	62455	•	1	1	1	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1		77	1			र्स	77		4	
Traffic Volume (vph)	3	115	7	1405	704	145	9	6	356	7	2	2
Future Volume (vph)	3	115	7	1405	704	145	9	6	356	7	2	2
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	12	11	12	12	16	12
Total Lost time (s)	5.0	6.0		6.0	6.0			6.0	6.0		6.0	
Lane Util. Factor	1.00	0.95		0.97	0.95			1.00	0.88		1.00	
Frt	1.00	0.99		1.00	0.97			1.00	0.85		0.98	
Flt Protected	0.95	1.00		0.95	1.00			0.97	1.00		0.97	
Satd. Flow (prot)	1805	3514		3467	3474			1784	2682		2036	
Flt Permitted	0.95	1.00		0.95	1.00			0.88	1.00		0.87	
Satd. Flow (perm)	1805	3514		3467	3474			1613	2682		1819	
Peak-hour factor, PHF	0.84	0.84	0.84	0.83	1.00	0.83	0.88	0.88	0.88	0.63	0.63	0.63
Adj. Flow (vph)	4	137	8	1693	704	175	10	7	405	11	3	3
RTOR Reduction (vph)	0	4	0	0	11	0	0	0	0	0	2	0
Lane Group Flow (vph)	4	141	0	1693	868	0	0	17	405	0	15	0
Heavy Vehicles (%)	0%	2%	0%	1%	1%	0%	0%	0%	6%	0%	0%	0%
Turn Type	Prot	NA		Prot	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	6	2		1	5			8			4	
Permitted Phases							8		8	4		
Actuated Green, G (s)	6.3	13.2		50.1	58.0			18.8	18.8		18.8	
Effective Green, g (s)	6.3	13.2		50.1	58.0			18.8	18.8		18.8	
Actuated g/C Ratio	0.06	0.13		0.50	0.58			0.19	0.19		0.19	
Clearance Time (s)	5.0	6.0		6.0	6.0			6.0	6.0		6.0	
Vehicle Extension (s)	2.0	3.0		3.0	3.0			3.0	3.0		3.0	
Lane Grp Cap (vph)	113	463		1735	2012			302	503		341	
v/s Ratio Prot	0.00	c0.04		c0.49	c0.25							
v/s Ratio Perm								0.01	c0.15		0.01	
v/c Ratio	0.04	0.30		0.98	0.43			0.06	0.81		0.04	
Uniform Delay, d1	44.0	39.3		24.4	11.8			33.4	38.9		33.3	
Progression Factor	1.00	1.00		1.00	1.00			1.00	1.00		1.00	
Incremental Delay, d2	0.0	0.4		16.1	0.1			0.1	9.1		0.1	
Delay (s)	44.1	39.7		40.5	12.0			33.4	48.0		33.3	
Level of Service	D	D		D	В			C	D		C	
Approach Delay (s)		39.8			30.7			47.4			33.3	
Approach LOS		D			С			D			С	
Intersection Summary												
HCM 2000 Control Delay			33.4	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capaci	ty ratio		0.83									
Actuated Cycle Length (s)			100.1		um of lost				18.0			
Intersection Capacity Utilization	on		66.7%	IC	CU Level of	of Service			С			
Analysis Period (min)			15									

102: US Route 4 SB On-Ramp/US Route 4 SB Off-Ramp & Pease Blvd 2035 No Build Condition Weekday AM Peak

	٠		~	~	62455	•	1	1	1	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		1111	7	77	^					77		77
Traffic Volume (vph)	0	334	144	174	1172	0	0	0	0	625	0	961
Future Volume (vph)	0	334	144	174	1172	0	0	0	0	625	0	961
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	10	11	10	11	12	12	12	12	12	12	12
Total Lost time (s)		6.0	6.0	6.0	6.0					6.0		6.0
Lane Util. Factor		0.86	1.00	0.97	0.95					0.97		0.88
Frt		1.00	0.85	1.00	1.00					1.00		0.85
Flt Protected		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (prot)		5981	1419	2918	3455					3467		2814
Flt Permitted		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (perm)		5981	1419	2918	3455					3467		2814
Peak-hour factor, PHF	0.80	0.80	0.80	0.80	0.80	0.80	0.92	0.92	0.92	0.75	0.75	0.75
Adj. Flow (vph)	0	418	180	218	1465	0	0	0	0	833	0	1281
RTOR Reduction (vph)	0	0	119	0	0	0	0	0	0	0	0	72
Lane Group Flow (vph)	0	418	61	218	1465	0	0	0	0	833	0	1209
Heavy Vehicles (%)	0%	2%	10%	12%	1%	0%	2%	2%	2%	1%	0%	1%
Turn Type		NA	Prot	Prot	NA					Prot		Prot
Protected Phases		6	6	5	2 5					3		3
Permitted Phases												
Actuated Green, G (s)		34.5	34.5	25.0	65.5					25.0		25.0
Effective Green, g (s)		34.5	34.5	25.0	65.5					25.0		25.0
Actuated g/C Ratio		0.34	0.34	0.24	0.64					0.24		0.24
Clearance Time (s)		6.0	6.0	6.0						6.0		6.0
Vehicle Extension (s)		5.0	5.0	4.0						5.0		5.0
Lane Grp Cap (vph)		2013	477	711	2207					845		686
v/s Ratio Prot		0.07	0.04	0.07	c0.42					0.24		c0.43
v/s Ratio Perm												
v/c Ratio		0.21	0.13	0.31	0.66					0.99		1.76
Uniform Delay, d1		24.3	23.6	31.7	11.6					38.6		38.8
Progression Factor		1.00	1.00	0.90	1.55					1.00		1.00
Incremental Delay, d2		0.1	0.3	0.1	0.2					27.4		349.1
Delay (s)		24.4	23.8	28.6	18.2					66.0		387.9
Level of Service		С	С	С	В					Е		F
Approach Delay (s)		24.2			19.6			0.0			261.0	
Approach LOS		С			В			Α			F	
Intersection Summary												
HCM 2000 Control Delay			136.4	Н	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capaci	ty ratio		1.04									
Actuated Cycle Length (s)			102.5		um of lost				18.0			
Intersection Capacity Utilizati	on		82.7%	IC	CU Level o	of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

103: US Route 4 NB Off-ramp/US Route 4 NB On-Ramp & Pease Blvd 2035 No Build Condition Weekday AM Peak

	٠	-	\rightarrow	1		•	1	1	1	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	44			44%		77		77			
Traffic Volume (vph)	150	809	0	0	472	86	874	0	405	0	0	0
Future Volume (vph)	150	809	0	0	472	86	874	0	405	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	11	12	12	12	12	12	12	12	12	12	12
Total Lost time (s)	6.0	6.0			6.0		6.0		6.0			
Lane Util. Factor	0.97	0.95			0.91		0.97		0.88			
Frt	1.00	1.00			0.98		1.00		0.85			
Flt Protected	0.95	1.00			1.00		0.95		1.00			
Satd. Flow (prot)	3113	3421			4945		3433		2733			
Flt Permitted	0.39	1.00			1.00		0.95		1.00			
Satd. Flow (perm)	1282	3421			4945		3433		2733			
Peak-hour factor, PHF	0.87	0.87	0.87	0.85	0.85	0.85	0.78	0.78	0.78	0.92	0.92	0.92
Adj. Flow (vph)	172	930	0	0	555	101	1121	0	519	0	0	0
RTOR Reduction (vph)	0	0	0	0	22	0	0	0	345	0	0	0
Lane Group Flow (vph)	172	930	0	0	634	0	1121	0	174	0	0	0
Heavy Vehicles (%)	5%	2%	0%	0%	2%	5%	2%	2%	4%	0%	0%	0%
Turn Type	pm+pt	NA			NA		Prot		Prot			
Protected Phases	1	6			2		3		3			
Permitted Phases	6											
Actuated Green, G (s)	51.5	34.5			42.5		25.0		25.0			
Effective Green, g (s)	51.5	34.5			42.5		25.0		25.0			
Actuated g/C Ratio	0.50	0.34			0.41		0.24		0.24			
Clearance Time (s)	6.0	6.0			6.0		6.0		6.0			
Vehicle Extension (s)	4.0	5.0			5.0		5.0		5.0			
Lane Grp Cap (vph)	947	1151			2050		837		666			
v/s Ratio Prot	c0.03	c0.27			c0.13		c0.33		0.06			
v/s Ratio Perm	0.06											
v/c Ratio	0.18	0.81			0.31		1.34		0.26			
Uniform Delay, d1	13.4	31.0			20.1		38.8		31.3			
Progression Factor	1.10	1.25			1.00		1.00		1.00			
Incremental Delay, d2	0.1	3.3			0.2		160.8		0.4			
Delay (s)	14.8	41.9			20.3		199.5		31.7			
Level of Service	В	D			С		F		С			
Approach Delay (s)		37.7			20.3			146.4			0.0	
Approach LOS		D			С			F			Α	
Intersection Summary												
HCM 2000 Control Delay			86.8	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capa	city ratio		0.78									
Actuated Cycle Length (s)	·		102.5	S	um of lost	time (s)			18.0			
Intersection Capacity Utiliza	ation		82.7%		CU Level o				Е			
Analysis Period (min)			15									
c. Critical Lane Group												

	٨	-		•	1	1		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	7	^	44	đ	7	7		
Traffic Volume (vph)	685	2242	808	643	178	207		
Future Volume (vph)	685	2242	808	643	178	207		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00		
Frt	1.00	1.00	1.00	0.85	1.00	0.85		
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (prot)	1787	3471	3343	1583	1719	1538		
Flt Permitted	0.95	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (perm)	1787	3471	3343	1583	1719	1538		
Peak-hour factor, PHF	0.86	0.86	0.96	0.96	0.76	0.76		
Adj. Flow (vph)	797	2607	842	670	234	272		
RTOR Reduction (vph)	0	0	0	466	0	195		
Lane Group Flow (vph)	797	2607	842	204	234	77		
Heavy Vehicles (%)	1%	4%	8%	2%	5%	5%		
Turn Type	Prot	NA	NA	Perm	Prot	Prot		
Protected Phases	1	6	2		3	3		
Permitted Phases				2				
Actuated Green, G (s)	8.8	32.8	18.0	18.0	14.2	14.2		
Effective Green, g (s)	8.8	32.8	18.0	18.0	14.2	14.2		
Actuated g/C Ratio	0.15	0.56	0.31	0.31	0.24	0.24		
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Vehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0		
Lane Grp Cap (vph)	266	1929	1019	482	413	370		
v/s Ratio Prot	c0.45	c0.75	0.25		c0.14	0.05		
v/s Ratio Perm				0.13				
v/c Ratio	3.00	1.35	0.83	0.42	0.57	0.21		
Uniform Delay, d1	25.1	13.1	19.0	16.4	19.7	17.9		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	908.4	161.7	7.7	2.7	2.2	0.4		
Delay (s)	933.5	174.8	26.7	19.1	21.9	18.3		
Level of Service	F	F	С	В	С	В		
Approach Delay (s)		352.4	23.3		19.9			
Approach LOS		F	С		В			
Intersection Summary								
HCM 2000 Control Delay			229.6	H	CM 2000	Level of Service	F	
HCM 2000 Volume to Capac	city ratio		1.51					
Actuated Cycle Length (s)			59.0		um of lost		18.0	
Intersection Capacity Utiliza	tion		87.8%	IC	U Level o	of Service	Е	
Analysis Period (min)			15					
c Critical Lane Group								

	١		7	1	524.00	•	1	1	-	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	1		7	↑	7	1	1		7	↑	7
Traffic Volume (vph)	77	48	34	16	15	84	9	159	71	718	515	151
Future Volume (vph)	77	48	34	16	15	84	9	159	71	718	515	151
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0		4.5	6.0	6.0
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	0.95		1.00	1.00	1.00
Frt	1.00	0.94		1.00	1.00	0.85	1.00	0.95		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1805	1706		1805	1681	1369	1805	3411		1770	1900	1615
Flt Permitted	0.75	1.00		0.69	1.00	1.00	0.41	1.00		0.42	1.00	1.00
Satd. Flow (perm)	1416	1706		1306	1681	1369	774	3411		791	1900	1615
Peak-hour factor, PHF	0.76	0.76	0.76	0.78	0.78	0.78	0.83	0.83	0.83	0.76	0.76	0.76
Adj. Flow (vph)	101	63	45	21	19	108	11	192	86	945	678	199
RTOR Reduction (vph)	0	24	0	0	0	91	0	47	0	0	0	61
Lane Group Flow (vph)	101	84	0	21	19	17	11	231	0	945	678	138
Heavy Vehicles (%)	0%	4%	5%	0%	13%	18%	0%	0%	3%	2%	0%	0%
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		pm+pt	NA	Perm
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8		8	2			6		6
Actuated Green, G (s)	13.3	13.3		13.3	13.3	13.3	13.0	13.0		57.8	57.8	57.8
Effective Green, g (s)	13.3	13.3		13.3	13.3	13.3	13.0	13.0		57.8	57.8	57.8
Actuated g/C Ratio	0.16	0.16		0.16	0.16	0.16	0.16	0.16		0.70	0.70	0.70
Clearance Time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0		4.5	6.0	6.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	226	273		209	269	219	121	533		1024	1321	1123
v/s Ratio Prot		0.05			0.01			0.07		c0.45	0.36	
v/s Ratio Perm	c0.07			0.02		0.01	0.01			c0.19		0.09
v/c Ratio	0.45	0.31		0.10	0.07	0.08	0.09	0.43		0.92	0.51	0.12
Uniform Delay, d1	31.6	30.8		29.8	29.6	29.7	30.0	31.7		10.9	6.0	4.2
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	1.4	0.6		0.2	0.1	0.2	0.3	0.6		13.3	0.3	0.0
Delay (s)	33.0	31.5		30.0	29.8	29.8	30.3	32.3		24.2	6.3	4.3
Level of Service	С	С		С	С	С	С	С		С	Α	Α
Approach Delay (s)		32.2			29.9			32.2			15.4	
Approach LOS		С			С			С			В	
Intersection Summary												
HCM 2000 Control Delay			19.6	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	city ratio		0.87									
Actuated Cycle Length (s)			83.1		um of lost				16.5			
Intersection Capacity Utiliza	tion		73.6%	IC	U Level o	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

1					
ERT	ERD	\//DI	\M/RT	NRI	NBR
	LDK	VVDL			NDK
	277	25		21	0
					0
					0
					0
					Stop
-		-	None	-	None
-	-	-	-	0	-
# 0	-	-	0	0	-
0	-	-	0	0	-
78	78	71	71	69	69
1	5	0	12	36	0
		35			0
110	000		.02	00	
/lajor1	N	Major2		Minor1	
0	0	1073	0	1098	896
-	-	_	_	896	-
-	-	_	-		-
_	_	4 1	_		6.2
_	_		_		-
					_
					3.3
	-				342
	-				-
-	-	-	-	/5/	-
-	-		-		
-	-	657	-		342
-	-	-	-	191	-
-	-	-	-	348	-
-	-	-	-	713	-
ED		WD		ND	
0		2.3			
				D	
t N	NBLn1	EBT	EBR	WBL	WBT
- 1				657	VVDI
	101		_	05/	-
	191	-			
	0.159	-	-	0.054	-
	0.159 27.4		-	0.054 10.8	0
	0.159	-	-	0.054	
	560 560 0 Free # 0 0 78 1 718 Major1	EBT EBR 560 277 560 277 0 0 Free Free - None 0 - 78 78 1 5 718 355 Major1	EBT EBR WBL 560 277 25 560 277 25 0 0 0 0 Free Free Free - None 0 78 78 78 71 1 5 0 718 355 35 Major1 Major2 0 0 1073 4.1 4.1 2.2 - 657 657 657 EB WB 0 2.3	EBT EBR WBL WBT 560 277 25 94 560 277 25 94 0 0 0 0 0 Free Free Free Free - None - None 0 0 0 78 78 71 71 1 5 0 12 718 355 35 132 Major1 Major2 0 0 1073 0	EBT EBR WBL WBT NBL 560 277 25 94 21 560 277 25 94 21 0 0 0 0 0 0 Free Free Free Free Stop - None - None 0 0 # 0 0 0 78 78 78 71 71 69 1 5 0 12 36 718 355 35 132 30 Major1 Major2 Minor1 0 0 1073 0 1098 896 896 5.76 5.76 5.76 348 657 - 203 348 657 - 191 191 348 348 348 713 EB WB NB 0 2.3 27.4

Intersection						
Int Delay, s/veh	0.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
				WDR		SDR
Lane Configurations	10	†	1	2	7	7
Traffic Vol, veh/h	19	543	96	2	0	7
Future Vol, veh/h	19	543	96	2	0	7
Conflicting Peds, #/hr	_ 0	_ 0	_ 0	_ 0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	0	-
Veh in Median Storage	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	85	85	71	71	50	50
Heavy Vehicles, %	0	1	8	0	0	25
Mvmt Flow	22	639	135	3	0	14
		_		_		
-	/lajor1		/lajor2		Minor2	
Conflicting Flow All	138	0	-	0	820	137
Stage 1	-	-	-	-	137	-
Stage 2	-	-	-	-	683	-
Critical Hdwy	4.1	-	-	_	6.4	6.45
Critical Hdwy Stg 1	_	-	_	-	5.4	-
Critical Hdwy Stg 2	_	_	_	_	5.4	_
Follow-up Hdwy	2.2	_	_	_		3.525
Pot Cap-1 Maneuver	1458	_	_	_	347	854
Stage 1	-	<u>-</u>	_	<u>-</u>	895	- 004
		_			505	
Stage 2	-	-	-	-	505	-
Platoon blocked, %	4450	-	-	-	0.40	054
Mov Cap-1 Maneuver	1458	-	-	-	342	854
Mov Cap-2 Maneuver	-	-	-	-	342	-
Stage 1	-	-	-	-	882	-
Stage 2	-	-	-	-	505	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.3		0		9.3	
HCM LOS					Α	
Minor Lane/Major Mvm	ł	EBL	EBT	WBT	WBR :	SBI n1
Capacity (veh/h)		1458	-	-	-	
Capacity (VEII/II)				-		0.016
		111111			_	U.U I U
HCM Lane V/C Ratio		0.015	-			
HCM Lane V/C Ratio HCM Control Delay (s)		7.5	-	-	-	9.3
HCM Lane V/C Ratio			- - -			

Intersection						
Int Delay, s/veh	1.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
		EDI	VVDL			NDN
Lane Configurations	1	0	0	4	Y	0
Traffic Vol, veh/h	322	8	8	119	10	6
Future Vol, veh/h	322	8	8	119	10	6
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	95	95	82	82	25	40
Heavy Vehicles, %	1	0	0	5	20	0
Mvmt Flow	339	8	10	145	40	15
Major/Minor N	lajor1	N	Major2	Λ	/linor1	
Conflicting Flow All	0	0	347	0	508	343
Stage 1	-	-	-	-	343	-
Stage 2	-	-	-	-	165	-
Critical Hdwy	_	_	4.1	-	6.6	6.2
Critical Hdwy Stg 1	_	_	_	_	5.6	_
Critical Hdwy Stg 2	_	_	_	_	5.6	_
Follow-up Hdwy	_	_	2.2	_	3.68	3.3
Pot Cap-1 Maneuver			1223	_	494	704
•			1223		680	704
Stage 1	-	-	-	-		
Stage 2	-	-	-	-	822	-
Platoon blocked, %	-	-	1000	-	100	
Mov Cap-1 Maneuver	-	-	1223	-	490	704
Mov Cap-2 Maneuver	-	-	-	-	490	-
Stage 1	-	-	-	-	680	-
Stage 2	-	-	-	-	815	-
A	ED		WD		ND	
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.5		12.5	
HCM LOS					В	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		534	-		1223	-
HCM Lane V/C Ratio		0.103	-	-	800.0	-
HCM Control Delay (s)		12.5	-	-	8	0
HCM Lane LOS		В	-	-	Α	Α
HCM 95th %tile Q(veh)		0.3	-	-	0	-

Intersection						
Int Delay, s/veh	1.1					
	M/DI	WBR	NBT	NBR	SBL	SBT
	WBL	WBK		NRK	OBL	
Lane Configurations	Y	0	1	15	7	4
Traffic Vol, veh/h	0	0	16	15	7	9
Future Vol, veh/h	0	0	16	15	7	9
Conflicting Peds, #/hr	0	0	_ 0	_ 0	0	_ 0
	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, #		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	25	25	53	53	50	50
Heavy Vehicles, %	0	0	0	13	0	0
Mvmt Flow	0	0	30	28	14	18
Major/Minor Mi	nor1	N	Major1	N	Major2	
						^
Conflicting Flow All	90	44	0	0	58	0
Stage 1	44	-	-	-	-	-
Stage 2	46	-	-	-	-	-
Critical Hdwy	6.4	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	915	1032	-	-	1559	-
Stage 1	984	-	-	-	-	-
Stage 2	982	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	907	1032	-	-	1559	-
Mov Cap-2 Maneuver	907	-	-	-	-	-
Stage 1	984	-	-	-	-	-
Stage 2	973	_	_	_	-	-
A	MD		ND		OD	
Approach	WB		NB		SB	
HCM Control Delay, s	0		0		3.2	
HCM LOS	Α					
Minor Lane/Major Mvmt		NBT	NRR\	VBLn1	SBL	SBT
Capacity (veh/h)		-	אוטווע	-	1559	- 100
HCM Lane V/C Ratio		-	-		0.009	
		-	-	0	7.3	0
HCM Control Delay (s) HCM Lane LOS		-	-	-		
HCM 95th %tile Q(veh)		-	-	A	A 0	A -

Intersection						
Int Delay, s/veh	1.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y	LDIT	1102	र्स	4	OBIT
Traffic Vol, veh/h	7	0	0	9	31	9
Future Vol, veh/h	7	0	0	9	31	9
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None	_	
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	_	0	0	-
Grade, %	0	_	-	0	0	_
Peak Hour Factor	50	50	42	42	69	69
Heavy Vehicles, %	75	0	0	0	6	80
Mvmt Flow	14	0	0	21	45	13
mining i lon		•	•		10	.0
				_		
	Minor2		Major1		//ajor2	
Conflicting Flow All	73	52	58	0	-	0
Stage 1	52	-	-	-	-	-
Stage 2	21	-	-	-	-	-
Critical Hdwy	7.15	6.2	4.1	-	-	-
Critical Hdwy Stg 1	6.15	-	-	-	-	-
Critical Hdwy Stg 2	6.15	-	-	-	-	-
Follow-up Hdwy	4.175	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	778	1021	1559	-	-	-
Stage 1	813	-	-	-	-	-
Stage 2	842	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	778	1021	1559	-	-	-
Mov Cap-2 Maneuver	778	-	-	-	-	-
Stage 1	813	-	-	-	-	-
Stage 2	842	-	-	-	-	-
Approach	ΓD		ND		CD	
Approach	EB		NB		SB	
HCM Control Delay, s	9.7		0		0	
HCM LOS	Α					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1559	-		-	
HCM Lane V/C Ratio		-		0.018	_	_
HCM Control Delay (s)		0	_		_	_
HCM Lane LOS		A	_	Α	_	_
HCM 95th %tile Q(veh)	0	_	0.1	_	_
	1			J. 1		

Interception												
Intersection Int Delay, s/veh	0.1											
•					14/==	14/5-		NE		0=:-	0	055
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	0	0	0	0	0	0	6	21	0	0	59	243
Future Vol, veh/h	0	0	0	0	0	0	6	21	0	0	59	243
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	88	88	92	92	69	69
Heavy Vehicles, %	2	2	2	2	2	2	0	18	2	2	15	1
Mvmt Flow	0	0	0	0	0	0	7	24	0	0	86	352
Major/Minor	Minor2			Minor1		N	Major1			Major2		
Conflicting Flow All	300	300	262	300	476	24	438	0	0	24	0	0
Stage 1	262	262	-	38	38	-	-	-	-	- 1	-	-
Stage 2	38	38	_	262	438	_	_	_	_	_	_	_
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.1	_	_	4.12	_	_
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	- '	_	_		_	_
Critical Hdwy Stg 2	6.12	5.52	_	6.12	5.52	_	_	_	_	_	_	_
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.2	<u>-</u>		2.218	<u>-</u>	_
Pot Cap-1 Maneuver	652	612	777	652	488	1052	1133	_	_	1591	_	_
Stage 1	743	691	-	977	863	- 1002	- 100	<u>-</u>	<u>-</u>	-	_	_
Stage 2	977	863	_	743	579	_	_	_	_	_	_	_
Platoon blocked, %	011	500		140	010			<u>-</u>	<u>-</u>		_	<u>-</u>
Mov Cap-1 Maneuver	649	608	777	649	485	1052	1133	_	_	1591	_	_
Mov Cap-2 Maneuver	649	608	-	649	485	-	- 100	<u>-</u>	_	-	<u>-</u>	<u>-</u>
Stage 1	739	691	_	971	858	_	_	_	_	_	_	_
Stage 2	971	858	_	743	579	<u>-</u>	_	_	_	_	_	_
Stago Z	311	300		, 40	313							
A				1470			ND			0.0		
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0			1.8			0		
HCM LOS	А			Α								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1133	-	-	-	-	1591	-	-			
HCM Lane V/C Ratio		0.006	-	-	-	-	-	-	-			
HCM Control Delay (s)		8.2	0	-	0	0	0	-	-			
HCM Lane LOS		Α	Α	-	Α	Α	Α	-	-			
HCM 95th %tile Q(veh))	0	-	-	-	-	0	-	-			

Lonza TIS Tighe & Bond

Intersection						
Int Delay, s/veh	0.4					
		14/00	NET	NES	051	OFT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		Þ			4
Traffic Vol, veh/h	7	2	223	15	15	504
Future Vol, veh/h	7	2	223	15	15	504
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	63	63	81	81	84	84
Heavy Vehicles, %	0	0	0	0	0	1
Mvmt Flow	11	3	275	19	18	600
		•	,			
	Minor1		Major1	N	Major2	
Conflicting Flow All	921	285	0	0	294	0
Stage 1	285	-	-	-	-	-
Stage 2	636	-	-	-	-	-
Critical Hdwy	6.4	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.4	_	_	_	_	_
Critical Hdwy Stg 2	5.4	_	_	_	_	_
Follow-up Hdwy	3.5	3.3	_	_	2.2	_
Pot Cap-1 Maneuver	303	759	_	_	1279	_
Stage 1	768	-	_		1213	_
Stage 2	531				_	
	551	-	-	-	-	-
Platoon blocked, %	007	750	-	-	4070	
Mov Cap-1 Maneuver	297	759	-	-	1279	-
Mov Cap-2 Maneuver	297	-	-	-	-	-
Stage 1	768	-	-	-	-	-
Stage 2	520	-	-	-	-	-
Approach	WB		NB		SB	
πρρισασιι			0		0.2	
HCM Control Dolovi -	4.0		U		0.2	
HCM Control Delay, s	16					
HCM Control Delay, s HCM LOS	16 C					
HCM LOS	С	NBT	NBRV	VBLn1	SBL	SBT
HCM LOS Minor Lane/Major Mvm	С	NBT_	NBRV -	<u>VBLn1</u>	SBL 1279	SBT -
Minor Lane/Major Mvm Capacity (veh/h)	С	NBT -	-	343	1279	-
Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	C t	NBT - -	-	343 0.042	1279 0.014	-
Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	C t	- - -	-	343 0.042 16	1279 0.014 7.9	- - 0
Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	C t	NBT - - -	-	343 0.042	1279 0.014	-

Intersection						
Int Delay, s/veh	0.9					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	WDL	אטוע	λ	וטוז	ODL	अव
Traffic Vol, veh/h	16	21	217	15	23	488
	16	21			23	488
Future Vol, veh/h	0	0	217	15		
Conflicting Peds, #/hr			0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	88	88	86	86	83	83
Heavy Vehicles, %	44	0	1	63	0	1
Mvmt Flow	18	24	252	17	28	588
N.A. '. (N.A.)						
	Minor1		//ajor1		Major2	
Conflicting Flow All	905	261	0	0	269	0
Stage 1	261	-	-	-	-	-
Stage 2	644	-	-	-	-	-
Critical Hdwy	6.84	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.896	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	260	783	_	-	1306	-
Stage 1	695	-	-	_	-	_
Stage 2	451	_	_	_	_	_
Platoon blocked, %	701		_	_		_
	252	783	-	-	1306	
Mov Cap-1 Maneuver			-	-		-
Mov Cap-2 Maneuver	252	-	-	-	-	-
Stage 1	695	-	-	-	-	-
Stage 2	437	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	14.8		0		0.4	
HCM LOS			U		0.4	
HOM FOS	В					
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	_	410	1306	_
HCM Lane V/C Ratio		_	_	0.103		-
HCM Control Delay (s)		_	_	14.8	7.8	0
HCM Lane LOS		_	_	В	Α.	A
HCM 95th %tile Q(veh	١	-	-	0.3	0.1	-
HOW SOUT WITH Q(Ven)	-	-	0.5	0.1	-

Intersection						
Int Delay, s/veh	0.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
		WDK		NDI	ODL	
Lane Configurations	**	6	752	2	0	303
Traffic Vol, veh/h	0	6	253	2	9	392
Future Vol, veh/h	0	6	253	2	9	392
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	75	75	89	89	81	81
Heavy Vehicles, %	0	0	5	100	0	2
Mvmt Flow	0	8	284	2	11	484
Major/Minor	Minor1	N	/lajor1		Major2	
						^
Conflicting Flow All	791	285	0	0	286	0
Stage 1	285	-	-	-	-	-
Stage 2	506	-	-	-	-	-
Critical Hdwy	6.4	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	361	759	-	-	1288	-
Stage 1	768	-	-	-	-	-
Stage 2	610	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	357	759	-	-	1288	-
Mov Cap-2 Maneuver	357	-	-	_	-	-
Stage 1	768	_	_	_	-	-
Stage 2	603	_	_	_	_	_
Glago Z	000					
Approach	WB		NB		SB	
HCM Control Delay, s	9.8		0		0.2	
HCM LOS	Α					
Minor Long/Mairy M		NDT	NDD	VDI 4	ODI	CDT
Minor Lane/Major Mvm	It	NBT	NRKA	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	759	1288	-
HCM Lane V/C Ratio		-	-	0.011		-
HCM Control Delay (s)		-	-	9.8	7.8	0
HCM Lane LOS		-	-	Α	Α	Α
HCM 95th %tile Q(veh)		-	-	0	0	-

Intersection													
Int Delay, s/veh	23.1												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			4			4	02.1	
Fraffic Vol, veh/h	9	10	2	95	6	7	0	503	432	28	324	32	
uture Vol, veh/h	9	10	2	95	6	7	0	503	432	28	324	32	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop				-		Free	Free	Free	Free	Free	Free	
RT Channelized		Stop	Stop	Stop	Stop	Stop				riee	riee		
	-	-	None	-	-	None	-	-	None	-	-	None	
torage Length	-	-	-	-	-	-	-	-	-	-	-	-	
eh in Median Storage		0	-	-	0	-	-	0	-	-	0	-	
rade, %		0	-	-	0	-	-	0	-	-	0	-	
eak Hour Factor	75	75	75	65	65	65	90	90	90	87	87	87	
eavy Vehicles, %	20	0	0	4	0	0	0	2	3	0	3	0	
vmt Flow	12	13	3	146	9	11	0	559	480	32	372	37	
ajor/Minor	Minor2			Minor1			Major1		N	Major2			
Conflicting Flow All	1264	1494	391	1262	1272	799	409	0	0	1039	0	0	
Stage 1	455	455	-	799	799	-	-	_		-	-	-	
Stage 2	809	1039	_	463	473	_	_	_			_		
ritical Hdwy	7.3	6.5	6.2	7.14	6.5	6.2	4.1	_		4.1	_		
itical Hdwy Stg 1	6.3	5.5	0.2	6.14	5.5	0.2	4.1	-	_			-	
	6.3	5.5		6.14	5.5			-	-	-	-	-	
ritical Hdwy Stg 2			- 2.2			2.2	-	-	-	-	-	-	
ollow-up Hdwy	3.68	4	3.3	3.536	4	3.3	2.2	-	-	2.2	-	-	
ot Cap-1 Maneuver	134	124		~ 145	169	389	1161	-	-	677	-	-	
Stage 1	552	572	-	376	401	-	-	-	-	-	-	-	
Stage 2	349	310	-	575	562	-	-	-	-	-	-	-	
latoon blocked, %								-	-		-	-	
lov Cap-1 Maneuver		116		~ 126	159	389	1161	-	-	677	-	-	
lov Cap-2 Maneuver	119	116	-	~ 126	159	-	-	-	-	-	-	-	
Stage 1	552	537	-	376	401	-	-	-	-	-	-	-	
Stage 2	332	310	-	524	528	-	-	-	-	-	-	-	
pproach	EB			WB			NB			SB			
CM Control Delay, s	41.2			223.7			0			0.8			
CM LOS	41.Z E			725.7 F			U			0.0			
OIVI LOO				ı									
linor Lane/Major Mvn	nt	NBL	NBT	NBR E	EBLn1V		SBL	SBT	SBR				
apacity (veh/h)		1161	-	-	127	133	677	-	-				
CM Lane V/C Ratio		-	-	-	0.22	1.249	0.048	-	-				
CM Control Delay (s))	0	-	-	41.2	223.7	10.6	0	-				
CM Lane LOS		Α	-	-	Е	F	В	Α	-				
CM 95th %tile Q(veh	1)	0	-	-	0.8	10.2	0.1	-	-				
,													
otes	n = =!t .	ф. D	Janu -	d - 00	10-	0 - :-	a uka ti a	Not D	afin e -l	*. ^!!		alumaa '	
: Volume exceeds ca	pacity	\$: De	elay exc	eeds 30	JUS -	+: Com	putation	NOT DE	erined	î: All	major v	olume II	n platoon

ntersection								
nt Delay, s/veh	130.1							
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	7	7	7	↑	†	7		
Fraffic Vol, veh/h	956	392	53	16	61	261		
uture Vol, veh/h	956	392	53	16	61	261		
Conflicting Peds, #/hr	0	0	0	0	0	0		
Sign Control	Stop	Stop	Free	Free	Free	Free		
RT Channelized	-	None	-	None	-	None		
Storage Length	0	290	100	-	-	175		
Veh in Median Storag	e,# 0	-	-	0	0	-		
Grade, %	0	-	-	0	0	-		
Peak Hour Factor	93	93	70	70	90	90		
Heavy Vehicles, %	1	1	3	11	0	4		
/lvmt Flow	1028	422	76	23	68	290		
/lajor/Minor	Minor2		Major1	ı	Major2			
Conflicting Flow All	243	68	358	0	- viajoi <u>-</u>	0		
Stage 1	68	-	-	-	_			
Stage 2	175	_		_	_	_		
Critical Hdwy	6.41	6.21	4.13	<u>-</u>		_		
ritical Hdwy Stg 1	5.41	0.21	4.13	_	_	_		
ritical Hdwy Stg 2	5.41				_	_		
ollow-up Hdwy	3.509	3.309	2.227	_	_	_		
Pot Cap-1 Maneuver	~ 748	998	1195	-		_		
Stage 1	~ 957	330	1133	_	_	_		
Stage 2	~ 858				_	_		
Platoon blocked, %	000	-	-	-	_	-		
าลเออก blocked, % Mov Cap-1 Maneuver	~ 700	998	1195	-	-			
Mov Cap-1 Maneuver Mov Cap-2 Maneuver		330	1193	-	-	-		
Stage 1	~ 896	-	-	-	-	-		
•	~ 858	-	-	-	-	-		
Stage 2	- 000	-	-	-	-	-		
pproach	EB		NB		SB			
HCM Control Delay, s	170.6		6.3		0			
HCM LOS	F							
//Iinor Lane/Major Mvr	mt	NBL	NBT	EBLn1 l	EBLn2	SBT	SBR	
Capacity (veh/h)		1195	-	700	998	-	-	
ICM Lane V/C Ratio		0.063	-	1.469		-	-	
ICM Control Delay (s	s)	8.2	_	236	11.2		-	
CM Lane LOS	,	A	_	F	В	-	-	
ICM 95th %tile Q(veh	ո)	0.2	-	40.0	2.1	-	-	
,	,							
otes	'1	φ. Γ.	.1=		00-		out-the Net D. C I	*. All
-: Volume exceeds ca	apacity	\$: De	elay exc	eeds 30	UUS	+: Comp	outation Not Defined	*: All major volume in platoon

Intersection						
Int Delay, s/veh	163.6					
		==				
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		ř	†			^
Traffic Vol, veh/h	0	246	1328	0	0	385
Future Vol, veh/h	0	246	1328	0	0	385
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage	e,# 0	-	0	-	_	0
Grade, %	0, "	_	0	_	_	0
Peak Hour Factor	76	76	70	70	80	80
	2	3	2	2	2	4
Heavy Vehicles, %						
Mvmt Flow	0	324	1897	0	0	481
Major/Minor	Minor1	N	Major1	M	ajor2	
Conflicting Flow All	-		0	-	<u> </u>	
	-					-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.245	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-;	3.3285	-	-	-	-
Pot Cap-1 Maneuver	0	~ 85	-	0	0	-
Stage 1	0	_	_	0	0	_
Stage 2	0	_	_	0	0	_
Platoon blocked, %	U		_	U	U	_
•		. 05	_			_
Mov Cap-1 Maneuver		~ 85	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Annroach	WB		NB		SB	
Approach						
HCM Control Delay, s			0		0	
HCM LOS	F					
Minor Lane/Major Mvr	mt	NDTV	VBLn1	SBT		
	III	INDIV		SDT		
Capacity (veh/h)		-	85	-		
HCM Lane V/C Ratio			3.808	-		
HCM Control Delay (s	5)	- 9	3 1366	-		
HCM Lane LOS			F	-		
HCM 95th %tile Q(veh	1)	-	33.5	-		
Notos						
Notes		<u> </u>				
~: Volume exceeds ca	pacity	\$: De	lay exc	eeds 300	JS	+: Com _l

Future Volume (vph) 0 519 3 Ideal Flow (vphpl) 1900 1900 1900 Lane Width 12 12 13 Total Lost time (s) 6.0 6.0 Lane Util. Factor 0.95 5 Frt 1.00 5 Flt Protected 1.00 3572 Flt Permitted 1.00 5372 Flt Permitted 1.00 5372 Peak-hour factor, PHF 0.88 0.88 0.88 Adj. Flow (vph) 0 590 3 RTOR Reduction (vph) 0 0 0	WBL 3 455 3 455	WBT ↑1 → 201	WBR	NBL	NBT	NBR	SBL	SBT	CDD
Traffic Volume (vph) 0 519 3 Future Volume (vph) 0 519 3 Ideal Flow (vphpl) 1900 1900 1900 Lane Width 12 12 12 Total Lost time (s) 6.0 6.0 Lane Util. Factor 0.95 5 Frt 1.00 5 Flt Protected 1.00 5 Satd. Flow (prot) 3572 5 Flt Permitted 1.00 5 Satd. Flow (perm) 3572 5 Peak-hour factor, PHF 0.88 0.88 0.88 Adj. Flow (vph) 0 590 3 RTOR Reduction (vph) 0 0 0 Lane Group Flow (vph) 0 593 0 Heavy Vehicles (%) 0% 1% 0%	3 455							ODI	SBR
Future Volume (vph) 0 519 3 Ideal Flow (vphpl) 1900 1900 1900 Lane Width 12 12 12 Total Lost time (s) 6.0 6.0 6.0 6.0 Lane Util. Factor 0.95 6.0		201			स	77		4	
Ideal Flow (vphpl) 1900 1900 1900 Lane Width 12 12 12 Total Lost time (s) 6.0 6.0 Lane Util. Factor 0.95 6.0 Frt 1.00 6.0 Fit Protected 1.00 6.0 Satd. Flow (prot) 3572 7 Fit Permitted 1.00 7 Satd. Flow (perm) 3572 7 Peak-hour factor, PHF 0.88 0.88 0.88 Adj. Flow (vph) 0 590 3 RTOR Reduction (vph) 0 0 0 Lane Group Flow (vph) 0 593 0 Heavy Vehicles (%) 0% 1% 0%	3 455		27	12	3	1367	63	3	3
Lane Width 12 12 12 Total Lost time (s) 6.0 6.0 Lane Util. Factor 0.95 Frt 1.00 Flt Protected 1.00 Satd. Flow (prot) 3572 Flt Permitted 1.00 Satd. Flow (perm) 3572 Peak-hour factor, PHF 0.88 0.88 0.88 Adj. Flow (vph) 0 590 50 RTOR Reduction (vph) 0 0 0 Lane Group Flow (vph) 0 593 0 Heavy Vehicles (%) 0% 1% 0%		201	27	12	3	1367	63	3	3
Total Lost time (s) 6.0 Lane Util. Factor 0.95 Frt 1.00 Flt Protected 1.00 Satd. Flow (prot) 3572 Flt Permitted 1.00 Satd. Flow (perm) 3572 Peak-hour factor, PHF 0.88 0.88 0.88 Adj. Flow (vph) 0 590 0 RTOR Reduction (vph) 0 0 0 Lane Group Flow (vph) 0 593 0 Heavy Vehicles (%) 0% 1% 0%		1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor 0.95 Frt 1.00 Fit Protected 1.00 Satd. Flow (prot) 3572 Fit Permitted 1.00 Satd. Flow (perm) 3572 Peak-hour factor, PHF 0.88 0.88 0.88 Adj. Flow (vph) 0 590 3 RTOR Reduction (vph) 0 0 0 Lane Group Flow (vph) 0 593 0 Heavy Vehicles (%) 0% 1% 0%		12	12	12	11	12	12	16	12
Frt 1.00 Flt Protected 1.00 Satd. Flow (prot) 3572 Flt Permitted 1.00 Satd. Flow (perm) 3572 Peak-hour factor, PHF 0.88 0.88 0.88 Adj. Flow (vph) 0 590 3 RTOR Reduction (vph) 0 0 0 Lane Group Flow (vph) 0 593 0 Heavy Vehicles (%) 0% 1% 0%	6.0	6.0			6.0	6.0		6.0	
Fit Protected 1.00 Satd. Flow (prot) 3572 Fit Permitted 1.00 Satd. Flow (perm) 3572 Peak-hour factor, PHF 0.88 0.88 0.88 Adj. Flow (vph) 0 590 3 RTOR Reduction (vph) 0 0 0 Lane Group Flow (vph) 0 593 0 Heavy Vehicles (%) 0% 1% 0%	0.97	0.95			1.00	0.88		1.00	
Satd. Flow (prot) 3572 Flt Permitted 1.00 Satd. Flow (perm) 3572 Peak-hour factor, PHF 0.88 0.88 0.88 Adj. Flow (vph) 0 590 3 RTOR Reduction (vph) 0 0 0 Lane Group Flow (vph) 0 593 0 Heavy Vehicles (%) 0% 1% 0%	1.00	0.98			1.00	0.85		0.99	
Flt Permitted 1.00 Satd. Flow (perm) 3572 Peak-hour factor, PHF 0.88 0.88 0.88 Adj. Flow (vph) 0 590 0 RTOR Reduction (vph) 0 0 0 Lane Group Flow (vph) 0 593 0 Heavy Vehicles (%) 0% 1% 0%	0.95	1.00			0.96	1.00		0.96	
Satd. Flow (perm) 3572 Peak-hour factor, PHF 0.88 0.88 0.88 Adj. Flow (vph) 0 590 3 RTOR Reduction (vph) 0 0 0 Lane Group Flow (vph) 0 593 0 Heavy Vehicles (%) 0% 1% 0%	3433	3546			1765	2814		2048	
Peak-hour factor, PHF 0.88 0.88 0.88 Adj. Flow (vph) 0 590 3 RTOR Reduction (vph) 0 0 0 Lane Group Flow (vph) 0 593 0 Heavy Vehicles (%) 0% 1% 0%	0.95	1.00			0.82	1.00		0.73	
Adj. Flow (vph) 0 590 3 RTOR Reduction (vph) 0 0 0 Lane Group Flow (vph) 0 593 0 Heavy Vehicles (%) 0% 1% 0%	3433	3546			1502	2814		1566	
RTOR Reduction (vph) 0 0 0 Lane Group Flow (vph) 0 593 0 Heavy Vehicles (%) 0% 1% 0%		0.96	0.96	0.91	0.91	0.91	0.68	0.68	0.68
Lane Group Flow (vph) 0 593 0 Heavy Vehicles (%) 0% 1% 0%	3 474	209	28	13	3	1502	93	4	4
Heavy Vehicles (%) 0% 1% 0%	0	5	0	0	0	0	0	1	0
) 474	232	0	0	16	1502	0	100	0
Turn Type Prot NA		0%	0%	0%	0%	1%	0%	0%	0%
• •	Prot	NA		Perm	NA	Perm	Perm	NA	
Protected Phases 6 2	1	5			8			4	
Permitted Phases				8		8	4		
Actuated Green, G (s) 17.4	16.0	39.4			20.2	20.2		20.2	
Effective Green, g (s) 17.4	16.0	39.4			20.2	20.2		20.2	
Actuated g/C Ratio 0.24	0.22	0.55			0.28	0.28		0.28	
Clearance Time (s) 6.0	6.0	6.0			6.0	6.0		6.0	
Vehicle Extension (s) 3.0	3.0	3.0			3.0	3.0		3.0	
Lane Grp Cap (vph) 868	767	1951			423	793		441	
v/s Ratio Prot c0.17	c0.14	0.07							
v/s Ratio Perm					0.01	c0.53		0.06	
v/c Ratio 0.68	0.62	0.12			0.04	1.89		0.23	
Uniform Delay, d1 24.6	25.0	7.7			18.6	25.7		19.7	
Progression Factor 1.00	1.00	1.00			1.00	1.00		1.00	
Incremental Delay, d2 2.2	1.5	0.0			0.0	407.1		0.3	
Delay (s) 26.8	26.5	7.8			18.7	432.8		20.0	
Level of Service C	С	Α			B	F		В	
Approach Delay (s) 26.8		20.3			428.4			20.0	
Approach LOS C		С			F			В	
Intersection Summary									
HCM 2000 Control Delay 233.6		ICM 2000	Level of S	Service		F			
HCM 2000 Volume to Capacity ratio 1.12									
Actuated Cycle Length (s) 71.6		um of lost				18.0			
Intersection Capacity Utilization 82.3%	6 IC	CU Level o	of Service						
Analysis Period (min) 15		J	, OCI VICE			E			

102: US Route 4 SB On-Ramp/US Route 4 SB Off-Ramp & Pease Blvd 2035 No Build Condition Weekday PM Peak

	•	-	•	1		•	1	1	1	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		1111	7	44	44					12		77
Traffic Volume (vph)	0	1285	664	756	522	0	0	0	0	429	0	166
Future Volume (vph)	0	1285	664	756	522	0	0	0	0	429	0	166
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	10	11	10	11	12	12	12	12	12	12	12
Total Lost time (s)		6.0	6.0	6.0	6.0					6.0		6.0
Lane Util. Factor		0.86	1.00	0.97	0.95					0.97		0.88
Frt		1.00	0.85	1.00	1.00					1.00		0.85
Flt Protected		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (prot)		6040	1546	3236	3455					3502		2814
Flt Permitted		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (perm)		6040	1546	3236	3455					3502		2814
Peak-hour factor, PHF	0.85	0.85	0.85	0.94	0.94	0.94	0.92	0.92	0.92	0.90	0.90	0.90
Adj. Flow (vph)	0	1512	781	804	555	0	0	0	0	477	0	184
RTOR Reduction (vph)	0	0	363	0	0	0	0	0	0	0	0	140
Lane Group Flow (vph)	0	1512	418	804	555	0	0	0	0	477	0	44
Heavy Vehicles (%)	0%	1%	1%	1%	1%	0%	0%	0%	0%	0%	0%	1%
Turn Type		NA	Prot	Prot	NA					Prot		Prot
Protected Phases		6	6	5	2 5					3		3
Permitted Phases												
Actuated Green, G (s)		35.0	35.0	25.0	66.0					24.5		24.5
Effective Green, g (s)		35.0	35.0	25.0	66.0					24.5		24.5
Actuated g/C Ratio		0.34	0.34	0.24	0.64					0.24		0.24
Clearance Time (s)		6.0	6.0	6.0						6.0		6.0
Vehicle Extension (s)		5.0	5.0	4.0						5.0		5.0
Lane Grp Cap (vph)		2062	527	789	2224					837		672
v/s Ratio Prot		0.25	c0.27	c0.25	0.16					c0.14		0.02
v/s Ratio Perm												
v/c Ratio		0.73	0.79	1.02	0.25					0.57		0.07
Uniform Delay, d1		29.6	30.5	38.8	7.7					34.4		30.1
Progression Factor		1.00	1.00	1.33	1.26					1.00		1.00
Incremental Delay, d2		1.7	9.2	28.5	0.1					1.5		0.1
Delay (s)		31.3	39.7	80.3	9.8					35.8		30.2
Level of Service		С	D	F	Α					D		С
Approach Delay (s)		34.2			51.5			0.0			34.3	
Approach LOS		С			D			А			С	
Intersection Summary												
HCM 2000 Control Delay			39.6	H	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capaci	ty ratio		0.79									
Actuated Cycle Length (s)			102.5	Sı	um of lost	time (s)			18.0			
Intersection Capacity Utilizati	on		89.9%	IC	U Level o	of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

103: US Route 4 NB Off-ramp/US Route 4 NB On-Ramp & Pease Blvd 2035 No Build Condition Weekday PM Peak

	٠	-	~	1	624.00	•	1	1	1	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	77	^			^		ሻሻ		77			
Traffic Volume (vph)	768	946	0	0	1028	450	250	0	691	0	0	0
Future Volume (vph)	768	946	0	0	1028	450	250	0	691	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	11	12	12	12	12	12	12	12	12	12	12
Total Lost time (s)	6.0	6.0			6.0		6.0		6.0			
Lane Util. Factor	0.97	0.95			0.91		0.97		0.88			
Frt	1.00	1.00			0.95		1.00		0.85			
Flt Protected	0.95	1.00			1.00		0.95		1.00			
Satd. Flow (prot)	3236	3455			4916		3433		2814			
Flt Permitted	0.11	1.00			1.00		0.95		1.00			
Satd. Flow (perm)	389	3455			4916		3433		2814			
Peak-hour factor, PHF	0.87	0.87	0.92	0.90	0.90	0.90	0.94	0.94	0.94	0.92	0.92	0.92
Adj. Flow (vph)	883	1087	0	0	1142	500	266	0	735	0	0	0
RTOR Reduction (vph)	0	0	0	0	76	0	0	0	559	0	0	0
Lane Group Flow (vph)	883	1087	0	0	1566	0	266	0	176	0	0	0
Heavy Vehicles (%)	1%	1%	0%	0%	1%	0%	2%	0%	1%	0%	0%	0%
Turn Type	pm+pt	NA			NA		Prot		Prot			
Protected Phases	1	6			2		3		3			
Permitted Phases	6											
Actuated Green, G (s)	60.0	35.0			35.0		24.5		24.5			
Effective Green, g (s)	60.0	35.0			35.0		24.5		24.5			
Actuated g/C Ratio	0.59	0.34			0.34		0.24		0.24			
Clearance Time (s)	6.0	6.0			6.0		6.0		6.0			
Vehicle Extension (s)	4.0	5.0			5.0		5.0		5.0			
Lane Grp Cap (vph)	922	1179			1678		820		672			
v/s Ratio Prot	c0.23	0.31			0.32		c0.08		0.06			
v/s Ratio Perm	c0.33											
v/c Ratio	0.96	0.92			0.93		0.32		0.26			
Uniform Delay, d1	29.4	32.4			32.6		32.2		31.7			
Progression Factor	1.65	0.56			1.00		1.00		1.00			
Incremental Delay, d2	15.9	9.3			10.3		0.5		0.4			
Delay (s)	64.5	27.5			43.0		32.7		32.1			
Level of Service	Е	С			D		С		С			
Approach Delay (s)		44.0			43.0			32.2			0.0	
Approach LOS		D			D			С			Α	
Intersection Summary												
HCM 2000 Control Delay			41.1	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	acity ratio		0.77									
Actuated Cycle Length (s)			102.5		um of lost	. ,			18.0			
Intersection Capacity Utilization	ation		89.9%	IC	CU Level of	of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

	٨	-		•	1	4		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	7	^	^	7	7	7		
Traffic Volume (vph)	341	1825	1418	245	456	936		
Future Volume (vph)	341	1825	1418	245	456	936		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00		
Frt	1.00	1.00	1.00	0.85	1.00	0.85		
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (prot)	1787	3539	3539	1583	1787	1599		
Flt Permitted	0.95	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (perm)	1787	3539	3539	1583	1787	1599		
Peak-hour factor, PHF	0.88	0.88	0.93	0.93	0.87	0.87		
Adj. Flow (vph)	388	2074	1525	263	524	1076		
RTOR Reduction (vph)	0	0	0	183	0	165		
Lane Group Flow (vph)	388	2074	1525	80	524	911		
Heavy Vehicles (%)	1%	2%	2%	2%	1%	1%		
Turn Type	Prot	NA	NA	Perm	Prot	Prot		
Protected Phases	1	6	2		3	3		
Permitted Phases				2				
Actuated Green, G (s)	5.0	29.0	18.0	18.0	18.0	18.0		
Effective Green, g (s)	5.0	29.0	18.0	18.0	18.0	18.0		
Actuated g/C Ratio	0.08	0.49	0.31	0.31	0.31	0.31		
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Vehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0		
Lane Grp Cap (vph)	151	1739	1079	482	545	487		
v/s Ratio Prot	c0.22	0.59	c0.43		0.29	c0.57		
v/s Ratio Perm				0.05				
v/c Ratio	2.57	1.19	1.41	0.17	0.96	1.87		
Uniform Delay, d1	27.0	15.0	20.5	15.0	20.2	20.5		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	725.3	92.7	191.5	0.7	29.1	399.2		
Delay (s)	752.3	107.7	212.0	15.8	49.2	419.7		
Level of Service	F	F	F	В	D	F		
Approach Delay (s)		209.3	183.2		298.4			
Approach LOS		F	F		F			
Intersection Summary								
HCM 2000 Control Delay			225.7	H	CM 2000	Level of Service)	
HCM 2000 Volume to Capac	city ratio		1.75					
Actuated Cycle Length (s)			59.0			t time (s)		
Intersection Capacity Utiliza	tion		107.2%	IC	U Level	of Service		
Analysis Period (min)			15					
c Critical Lane Group								

	٨		7	1	684.00	•	1	1	-	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	13		7	↑	7	1	1		7	↑	7
Traffic Volume (vph)	154	5	17	10	27	556	17	633	8	149	150	96
Future Volume (vph)	154	5	17	10	27	556	17	633	8	149	150	96
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0		4.5	6.0	6.0
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	0.95		1.00	1.00	1.00
Frt	1.00	0.88		1.00	1.00	0.85	1.00	1.00		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1805	1681		1805	1792	1599	1805	3568		1736	1845	1615
Flt Permitted	0.73	1.00		0.74	1.00	1.00	0.66	1.00		0.17	1.00	1.00
Satd. Flow (perm)	1395	1681		1407	1792	1599	1245	3568		310	1845	1615
Peak-hour factor, PHF	0.84	0.84	0.84	0.77	0.77	0.77	0.89	0.89	0.89	0.93	0.93	0.93
Adj. Flow (vph)	183	6	20	13	35	722	19	711	9	160	161	103
RTOR Reduction (vph)	0	12	0	0	0	153	0	1	0	0	0	60
Lane Group Flow (vph)	183	14	0	13	35	569	19	719	0	160	161	43
Heavy Vehicles (%)	0%	0%	0%	0%	6%	1%	0%	1%	0%	4%	3%	0%
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		pm+pt	NA	Perm
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8		8	2			6		6
Actuated Green, G (s)	32.5	32.5		32.5	32.5	32.5	20.1	20.1		32.1	32.1	32.1
Effective Green, g (s)	32.5	32.5		32.5	32.5	32.5	20.1	20.1		32.1	32.1	32.1
Actuated g/C Ratio	0.42	0.42		0.42	0.42	0.42	0.26	0.26		0.42	0.42	0.42
Clearance Time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0		4.5	6.0	6.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	591	713		596	760	678	326	936		269	773	676
v/s Ratio Prot		0.01			0.02			c0.20		c0.06	0.09	
v/s Ratio Perm	0.13			0.01		c0.36	0.02			0.19		0.03
v/c Ratio	0.31	0.02		0.02	0.05	0.84	0.06	0.77		0.59	0.21	0.06
Uniform Delay, d1	14.6	12.8		12.8	12.9	19.7	21.2	26.1		15.8	14.2	13.3
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	0.3	0.0		0.0	0.0	9.0	0.1	3.8		3.5	0.1	0.0
Delay (s)	14.9	12.8		12.8	13.0	28.7	21.2	29.9		19.3	14.3	13.3
Level of Service	В	В		В	В	С	С	С		В	В	В
Approach Delay (s)		14.7			27.7			29.7			16.0	
Approach LOS		В			С			С			В	
Intersection Summary												
HCM 2000 Control Delay			24.8	H	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	city ratio		0.79									
Actuated Cycle Length (s)			76.6		um of lost				16.5			
Intersection Capacity Utiliza	ition		76.3%	IC	U Level	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

Intersection						
Int Delay, s/veh	78.1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1>	LDIX	VVDL	₩ <u>₩</u>	Y	INDIX
Traffic Vol, veh/h	153	9	3	403	190	11
Future Vol, veh/h	153	9	3	403	190	11
Conflicting Peds, #/hr	0	0	0	403	0	0
•	Free	Free	Free	Free	Stop	
Sign Control RT Channelized	Free -					Stop None
			-		-	None -
Storage Length	- 4 0	-	-	-	0	
Veh in Median Storag		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	70	70	73	73	40	40
Heavy Vehicles, %	4	0	0	2	0	0
Mvmt Flow	219	13	4	552	475	28
Major/Minor	Major1	N	Major2		Minor1	
Conflicting Flow All	0	0	232	0	786	226
Stage 1	-	_	-	-	226	-
Stage 2	_	_	_	_	560	_
Critical Hdwy	_	_	4.1	_	6.4	6.2
Critical Hdwy Stg 1	_	<u>-</u>	7.1	_	5.4	-
Critical Hdwy Stg 2		_	-		5.4	
	-	-	2.2	-		-
Follow-up Hdwy	-	-		-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1348	-	~ 364	818
Stage 1	-	-	-	-	816	-
Stage 2	-	-	-	-	576	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver		-	1348	-	~ 363	818
Mov Cap-2 Maneuver	-	-	-	-	~ 363	-
Stage 1	-	-	-	-	816	-
Stage 2	-	-	-	-	574	-
, and the second se						
A	- ED		WD		ND	
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.1		200.5	
HCM LOS					F	
Minor Lane/Major Mvr	nt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		374			1348	-
HCM Lane V/C Ratio		1.344	_		0.003	_
HCM Control Delay (s	Λ	200.5		_	7.7	0
HCM Lane LOS)		-	-		
	.\	F	-		A	Α
HCM 95th %tile Q(veh	1)	23.9	-	-	0	-
Notes						
~: Volume exceeds ca	pacity	\$: De	lay exc	eeds 30	00s	+: Comp
	parony	Ţ. D 0	one			

Intersection						
Int Delay, s/veh	0.8					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	T T	<u></u>	T _a	וטייי	M	אומט
Traffic Vol, veh/h	8	T 154	392	3		14
					1	14
Future Vol, veh/h	8	154	392	3	1	
Conflicting Peds, #/hr	0	0	_ 0	_ 0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	0	-
Veh in Median Storage	, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	63	63	77	77	36	36
Heavy Vehicles, %	40	0	0	1	0	11
Mvmt Flow	13	244	509	4	3	39
				•		
	Major1	N	/lajor2	N	Minor2	
Conflicting Flow All	513	0	-	0	781	511
Stage 1	-	-	-	-	511	-
Stage 2	-	-	-	-	270	-
Critical Hdwy	4.5	_	-	_	6.4	6.31
Critical Hdwy Stg 1	-	_	_	_	5.4	-
Critical Hdwy Stg 2	_	_	_	_	5.4	_
Follow-up Hdwy	2.56	_	_	_		3.399
Pot Cap-1 Maneuver	884		_		366	545
		-			606	J45 -
Stage 1	-	-	-	-		
Stage 2	-	-	-	-	780	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	884	-	-	-	361	545
Mov Cap-2 Maneuver	-	-	-	-	361	-
Stage 1	-	-	-	-	597	-
Stage 2	-	-	-	-	780	-
	- FD)A/D		00	
Approach	EB		WB		SB	
HCM Control Delay, s	0.5		0		12.4	
HCM LOS					В	
Minar Lang/Major Mym		EDI	ГОТ	WDT	WDD	CDI 51
Minor Lane/Major Mvm	IL	EBL	EBT	WBT	WBR:	
Capacity (veh/h)		884	-	-	-	527
HCM Lane V/C Ratio		0.014	-	-	-	0.079
HCM Control Delay (s)		9.1	-	-	-	12.4
HCM Lane LOS		Α	-	-	-	В
HCM 95th %tile Q(veh)		0	-	-	-	0.3

Intersection						
Int Delay, s/veh	0.9					
Movement	EBT	EDD	WBL	WDT	NBL	NBR
		EBR	WBL	WBT		NBK
Lane Configurations	\$	4	^	4	Y	40
Traffic Vol, veh/h	163	1	6	220	15	12
Future Vol, veh/h	163	1	6	220	15	12
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	, # 0	-	-	0	0	-
Grade, %	0	_	-	0	0	-
Peak Hour Factor	78	78	81	81	71	71
Heavy Vehicles, %	0	0	0	1	11	0
Mvmt Flow	209	1	7	272	21	17
IVIVIII I IOW	200	I	T I	212	Z 1	11
Major/Minor I	Major1	N	Major2	I	Minor1	
Conflicting Flow All	0	0	210	0	496	210
Stage 1	-	_	-	_	210	-
Stage 2	_	_	_	_	286	_
Critical Hdwy	_	_	4.1	_	6.51	6.2
Critical Hdwy Stg 1	_	_	-	_	5.51	- 0.2
Critical Hdwy Stg 2	_	_	_	_	5.51	_
			2.2			3.3
Follow-up Hdwy	-	-		-	3.599	
Pot Cap-1 Maneuver	-	-	1373	-	517	835
Stage 1	-	-	-	-	804	-
Stage 2	-	-	-	-	742	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1373	-	514	835
Mov Cap-2 Maneuver	-	-	-	-	514	-
Stage 1	_	_	-	_	804	_
Stage 2	_	_	_	_	738	_
olago 2						
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.2		11.2	
HCM LOS					В	
Minar Lana/Maiar Musa	.1 K	UDL1	EDT	EDD	WDI	WDT
Minor Lane/Major Mvm	it f	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		620	-		1373	-
HCM Lane V/C Ratio		0.061	-	-	0.005	-
HCM Control Delay (s)		11.2	-	-	7.6	0
HCM Lane LOS		В	-	-	Α	Α
HCM 95th %tile Q(veh)		0.2	-	-	0	-
,						

Intersection						
Int Delay, s/veh	2.9					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
	VVDL	NDK		NDIX	ODL	
Lane Configurations		10	1 5	1	٥	4
Traffic Vol, veh/h	1	12	15	1	0	7
Future Vol, veh/h	1	12	15	1	0	7
Conflicting Peds, #/hr	0	0	_ 0	_ 0	0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	67	67	69	69	50	50
Heavy Vehicles, %	0	0	10	0	0	0
Mvmt Flow	1	18	22	1	0	14
	/linor1		/lajor1		Major2	
Conflicting Flow All	37	23	0	0	23	0
Stage 1	23	-	-	-	-	-
Stage 2	14	-	-	-	-	-
Critical Hdwy	6.4	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.4	-	-	_	-	-
Critical Hdwy Stg 2	5.4	_	_	_	_	_
Follow-up Hdwy	3.5	3.3	_	_	2.2	_
Pot Cap-1 Maneuver	981	1060	_	_	1605	_
Stage 1	1005	-	_	_	-	_
Stage 2	1014	_	-		_	
	1014	-	_	-	-	
Platoon blocked, %	004	1000	-	-	4005	-
Mov Cap-1 Maneuver	981	1060	-	-	1605	-
Mov Cap-2 Maneuver	981	-	-	-	-	-
Stage 1	1005	-	-	-	-	-
Stage 2	1014	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	8.5		0		0	
HCM LOS	Α					
						SBT
Minor Lane/Maior Mym	t	NBT	NBRV	VBLn1	SBL	ODI
Minor Lane/Major Mvm	t	NBT -		VBLn1 1053	SBL 1605	
Capacity (veh/h)	t	-	-	1053	1605	-
Capacity (veh/h) HCM Lane V/C Ratio	t		-	1053 0.018	1605 -	-
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	t .	- - -	- - -	1053 0.018 8.5	1605 - 0	- - -
Capacity (veh/h) HCM Lane V/C Ratio	t	-	-	1053 0.018	1605 -	-

Intersection						
Int Delay, s/veh	2.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y	EDI	INDL			SDN
	3	0	٥	€ 1 8	1 6	0
Traffic Vol, veh/h			0			
Future Vol, veh/h	3	0	0	8	16	0
Conflicting Peds, #/hr	0		0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None	-	
Storage Length	0	-	-	-	-	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	25	25	63	63	63	63
Heavy Vehicles, %	0	0	0	0	10	0
Mvmt Flow	12	0	0	13	25	0
Major/Minor N	/linor2	N	Major1	Λ.	/lajor2	
			25			
Conflicting Flow All	38	25		0	-	0
Stage 1	25	-	-	-	-	-
Stage 2	13	-	-	-	-	-
Critical Hdwy	6.4	6.2	4.1	-	-	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	979	1057	1603	-	-	-
Stage 1	1003	-	-	-	-	-
Stage 2	1015	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	979	1057	1603	-	-	-
Mov Cap-2 Maneuver	979	-	-	-	-	-
Stage 1	1003	-	-	-	-	-
Stage 2	1015	-	-	-	-	-
Annroach	ED		ND		CD	
Approach	EB		NB		SB	
HCM Control Delay, s	8.7		0		0	
HCM LOS	Α					
Minor Lane/Major Mvm	t	NBL	NBT I	EBLn1	SBT	SBR
Capacity (veh/h)		1603	-		-	-
HCM Lane V/C Ratio		1005		0.012	_	_
HCM Control Delay (s)		0			_	_
HCM Lane LOS		A	_	Α	_	_
HCM 95th %tile Q(veh)		0	-	0	-	-
		U	_	U	_	_

Intersection												
Int Delay, s/veh	0											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	LDL	4	LDI	VVDL	4	אטא	INDL	TION	אטוז	ODL	3B1	ODIX
Traffic Vol, veh/h	0	0	0	0	0	0	0	201	0	0	6	6
Future Vol, veh/h	0	0	0	0	0	0	0	201	0	0	6	6
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	39	39	92	92	67	67
Heavy Vehicles, %	2	2	2	2	2	2	0	0	2	2	0	0
Mvmt Flow	0	0	0	0	0	0	0	515	0	0	9	9
Major/Minor I	Minor2			Minor1		N	Major1			Major2		
Conflicting Flow All	529	529	14	529	533	515	18	0	0	515	0	0
Stage 1	14	14	-	515	515	-	-	-	-	-	-	-
Stage 2	515	515	-	14	18	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.1	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.2	-	-	2.218	-	-
Pot Cap-1 Maneuver	460	455	1066	460	453	560	1612	-	-	1051	-	-
Stage 1	1006	884	-	543	535	-	-	-	-	-	-	-
Stage 2	543	535	-	1006	880	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	460	455	1066	460	453	560	1612	-	-	1051	-	-
Mov Cap-2 Maneuver	460	455	-	460	453	-	-	-	-	-	-	-
Stage 1	1006	884	-	543	535	-	-	-	-	-	-	-
Stage 2	543	535	-	1006	880	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0			0			0		
HCM LOS	Α			Α								
Minor Lane/Major Mvm	nt	NBL	NBT	NRR	EBLn1V	VRI n1	SBL	SBT	SBR			
Capacity (veh/h)		1612	-	-	-	-	1051	-	-			
HCM Lane V/C Ratio		1012	_	_	_	_	-	_	_			
HCM Control Delay (s)		0	_	_	0	0	0	_	_			
HCM Lane LOS		A	_	-	A	A	A	_	_			
HCM 95th %tile Q(veh))	0	-	-	-	-	0	-	-			
22. 702.24(10.1)												

Lonza TIS Tighe & Bond

Intersection						
Int Delay, s/veh	0.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
		MOL		NDK	SDL	
Lane Configurations	Y	2	₽ CEE	1	E	4
Traffic Vol, veh/h	8	3	655	1	5	165
Future Vol, veh/h	8	3	655	1	5	165
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	88	88	78	78	76	76
Heavy Vehicles, %	0	0	1	0	0	4
Mvmt Flow	9	3	840	1	7	217
Major/Minor	Minor1	N	/lajor1	٨	/lajor2	
						^
Conflicting Flow All	1072	841	0	0	841	0
Stage 1	841	-	-	-	-	-
Stage 2	231	-	-	-	-	-
Critical Hdwy	6.4	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	246	368	-	-	803	-
Stage 1	426	-	-	-	-	-
Stage 2	812	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	244	368	-	-	803	-
Mov Cap-2 Maneuver	244	-	-	-	-	-
Stage 1	426	-	-	-	-	-
Stage 2	804	-	-	-	-	-
Approach	\A/D		ND		CD	
Approach	WB		NB		SB	
HCM Control Delay, s			0		0.3	
HCM LOS	С					
Minor Lane/Major Mvr	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-		269	803	
HCM Lane V/C Ratio		_	_	0.046		_
HCM Control Delay (s)	_	_	19	9.5	0
HCM Lane LOS		_	_	C	3.5 A	A
HCM 95th %tile Q(veh)			0.1	0	-
HOW JOHN JOHN W(VEI)	7			0.1	U	_

Intersection						
Int Delay, s/veh	12.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y	WDIX	1	HOIL	ODL	4
Traffic Vol, veh/h	54	166	490	17	15	158
Future Vol, veh/h	54	166	490	17	15	158
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None		None		None
	-		-		-	
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	72	72	67	67	81	81
Heavy Vehicles, %	14	0	1	46	0	3
Mvmt Flow	75	231	731	25	19	195
Major/Minor	Minor1	N	Major1	N	//ajor2	
						0
Conflicting Flow All	977	744	0	0	756	0
Stage 1	744	-	-	-	-	-
Stage 2	233	-	-	-	-	-
Critical Hdwy	6.54	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.54	-	-	-	-	-
Critical Hdwy Stg 2	5.54	-	-	-	-	-
Follow-up Hdwy	3.626	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	264	418	-	-	864	-
Stage 1	449	-	-	-	-	-
Stage 2	778	_	-	_	-	-
Platoon blocked, %			_	_		_
Mov Cap-1 Maneuver	257	418	_	_	864	_
Mov Cap-1 Maneuver	257	- 10	_	_	-	_
•	449			-		
Stage 1		-	-	-	-	-
Stage 2	759	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	50.6		0		0.8	
HCM LOS	F		U		0.0	
TIOWI LOG	I.					
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	_	362	864	-
HCM Lane V/C Ratio		-	-	0.844		-
HCM Control Delay (s)		-	-	50.6	9.3	0
HCM Lane LOS		_	_	F	A	A
HCM 95th %tile Q(veh)	_	_	7.7	0.1	-
TOWN JOHN JUHIC Q VEH	1			1.1	0.1	

Intersection						
Int Delay, s/veh	0.3					
		MDD	NOT	NDD	051	ODT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		Þ			4
Traffic Vol, veh/h	0	5	404	0	0	232
Future Vol, veh/h	0	5	404	0	0	232
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,	# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	25	25	68	68	74	74
Heavy Vehicles, %	0	0	3	0	0	7
Mvmt Flow	0	20	594	0	0	314
WWITCHIOW	U	20	004	U	U	OIT
Major/Minor M	linor1	N	Major1	N	/lajor2	
Conflicting Flow All	908	594	0	0	594	0
Stage 1	594	-	-	-	-	-
Stage 2	314	-	_	-	_	-
Critical Hdwy	6.4	6.2	_	_	4.1	_
Critical Hdwy Stg 1	5.4	-	_	_	-	_
Critical Hdwy Stg 2	5.4	_	_	_	_	_
Follow-up Hdwy	3.5	3.3	_	_	2.2	_
	308	509			992	
Pot Cap-1 Maneuver			-	-		-
Stage 1	555	-	-	-	-	-
Stage 2	745	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	308	509	-	-	992	-
Mov Cap-2 Maneuver	308	-	-	-	-	-
Stage 1	555	-	-	-	-	-
Stage 2	745	-	-	-	-	-
, and the second						
	MD		ND		0.0	
Approach	WB		NB		SB	
HCM Control Delay, s	12.4		0		0	
HCM LOS	В					
Minor Lane/Major Mvmt		NBT	NIDDI	VBLn1	SBL	SBT
		IND				
Capacity (veh/h)		-	-	000	992	-
HCM Lane V/C Ratio		-		0.039	-	-
HCM Control Delay (s)		-	-	12.4	0	-
HCM Lane LOS		-	-	В	Α	-
HCM 95th %tile Q(veh)		-	-	0.1	0	-

Intersection													
Int Delay, s/veh	205.8												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4	LDIX	1100	4	TIDIT	INDL	4	HOIL	ODL	4	OBIT	
Traffic Vol, veh/h	30	23	3	314	21	23	1	326	114	3	560	14	
Future Vol, veh/h	30	23	3	314	21	23	1	326	114	3	560	14	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	Stop -	Stop -	None	Stop -	Stop -	None			None	riee	riee	None	
	_	-	None	_	-	INOHE	-	-	None	-	_	None	
Storage Length Veh in Median Storage		0	-		0	_		0	-	-	0	-	
Grade, %	•	0	-	-	-	_	-		_	-	0	-	
	54	54	54	85	0 85	85	84	0 84	84	88	88	88	
Peak Hour Factor													
Heavy Vehicles, %	0	13	0	0	14	0	0	2	1	0	1	11	
Mvmt Flow	56	43	6	369	25	27	1	388	136	3	636	16	
Major/Minor I	Minor2			Minor1			Major1		N	//ajor2			
Conflicting Flow All	1134	1176	644	1133	1116	456	652	0	0	524	0	0	
Stage 1	650	650	_	458	458	-	-	_	-	_	-	-	
Stage 2	484	526	_	675	658	_	_	_	_	_	_	-	
Critical Hdwy	7.1	6.63	6.2	7.1	6.64	6.2	4.1	_	_	4.1	_	_	
Critical Hdwy Stg 1	6.1	5.63	-	6.1	5.64		-	_	_	-	_	_	
Critical Hdwy Stg 2	6.1	5.63	_	6.1	5.64	_	_	_	_	_	_	_	
Follow-up Hdwy	3.5	4.117	3.3		4.126	3.3	2.2	_	_	2.2	_	_	
Pot Cap-1 Maneuver	181	182	476	~ 182	197	609	944	_	_	1053	_	_	
Stage 1	461	448	-	587	547	-	-	<u>_</u>	_	-	_	_	
Stage 2	568	511	_	447	443	_	_	_	_	_	_	_	
Platoon blocked, %	300	311		771	טדד			_	_		_	_	
Mov Cap-1 Maneuver	155	181	476	~ 147	196	609	944			1053			
Mov Cap-1 Maneuver	155	181		~ 147	196	003	J -1-1	_		1000	<u>-</u>	_	
Stage 1	460	446	-	586	546	<u>-</u>	-	_	<u>-</u>	_	<u>-</u>	-	
Stage 2	517	510	-	398	441	-	-		-	_	_	_	
Slaye Z	317	510	-	290	441	-	-	-	-	-	-	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	54.1		\$	820.1			0			0			
HCM LOS	F			F									
Minor Lang/Major Muss	·+	NIDI	NIDT	NIDD	EDI 54V	MDI 51	CDI	CDT	CDD				
Minor Lane/Major Mvm	IL	NBL	NBT	ואמאו	EBLn1V		SBL	SBT	SBR				
Capacity (veh/h)		944	-	-	171	157	1053	-	-				
HCM Lane V/C Ratio		0.001	-	-		2.683		-	-				
HCM Control Delay (s)		8.8	0	-		820.1	8.4	0	-				
HCM Lane LOS		A	Α	-	F	F	Α	Α	-				
HCM 95th %tile Q(veh)		0	-	-	3.3	37.3	0	-	-				
Notes													
~: Volume exceeds car	nacity	\$· De	lav exc	eeds 30	00s	+: Com	putation	Not De	efined	*: All	maior v	olume ir	n platoon
. Volumo oxocodo od	Jaonty	ψ. Δ0	nay one	.5040 01	, , ,	. 50111	Patation	.100 00	,ou	. Tul	najor v	Cidino II	ii piatooii

ntersection								
nt Delay, s/veh	106.9							
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
ane Configurations	1	7	-	*	↑	7		
raffic Vol, veh/h	373	81	224	51	27	870		
uture Vol, veh/h	373	81	224	51	27	870		
Conflicting Peds, #/hr	. 0	0	0	0	0	0		
Sign Control	Stop	Stop	Free	Free	Free	Free		
RT Channelized	-	None	-	None	-	None		
Storage Length	0	290	100	-	-	175		
Veh in Median Storag	je,# 0	-	-	0	0	-		
Grade, %	0	-	-	0	0	-		
Peak Hour Factor	86	86	76	76	83	83		
Heavy Vehicles, %	2	2	1	3	0	1		
Mvmt Flow	434	94	295	67	33	1048		
Major/Minor	Minor2		Major1	N	Major2			
Conflicting Flow All	690	33	1081	0	viajui <u>2</u> -	0		
Stage 1	33	33	1001	-	-			
•	657	-	-	-	-	-		
Stage 2	6.42	6.22	4.11	-	-	-		
ritical Hdwy	5.42	0.22	4.11	-	-	-		
Critical Hdwy Stg 1	5.42	-	-	-	-	-		
Critical Hdwy Stg 2		3.318	2 200	-	-	-		
Follow-up Hdwy Pot Cap-1 Maneuver		1041	649	-	-	-		
	989	1041	049	-	-	-		
Stage 1	516	_	-	-	-	-		
Stage 2 Platoon blocked, %	310		-	-	-	-		
	- 224	1041	649	-	-	-		
Mov Cap-1 Maneuver Mov Cap-2 Maneuver			049	-	-	-		
Stage 1	539	-	-	-	-	-		
•	516		-	-	_	-		
Stage 2	310	-	-	_	-	-		
Approach	EB		NB		SB			
HCM Control Delay, s	\$ 390.4		12.3		0			
HCM LOS	F							
Minor Lane/Major Mv	mt	NBL	NBT	EBLn1 F	EBLn2	SBT	SBR	
Capacity (veh/h)		649		224	1041	-	-	
ICM Lane V/C Ratio		0.454	_	1.936	0.09	_	-	
HCM Control Delay (s		15.1		473.3	8.8	_	-	
ICM Lane LOS		C	- Ψ -	F	Α	<u>-</u>	<u>-</u>	
ICM 95th %tile Q(vel	h)	2.4	_	011	0.3	_	-	
,	,	۷.٦		01.7	0.0			
lotes								
: Volume exceeds ca	apacity	\$: De	elay exc	eeds 30	00s	+: Comp	outation Not Defined	*: All major volume in platoon

Intersection						
Int Delay, s/veh	0.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	WDL	VVDIX	ND1	NDIX	ODL	↑ ↑
Traffic Vol, veh/h	0	72	586	0	0	TT 1392
Future Vol, veh/h	0	72	586	0	0	1392
•	0	0	0	0	0	1392
Conflicting Peds, #/hr						
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	73	73	95	95	89	89
Heavy Vehicles, %	0	13	0	1	0	1
Mvmt Flow	0	99	617	0	0	1564
Major/Minor	Minor1	N	Major1		/lajor2	
Conflicting Flow All	-	617	0	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.395	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-3	3.4235	-	-	-	-
Pot Cap-1 Maneuver	0	465	-	0	0	-
Stage 1	0	-	-	0	0	-
Stage 2	0	_	-	0	0	-
Platoon blocked, %			_			-
Mov Cap-1 Maneuver	_	465	_	_	_	_
Mov Cap-2 Maneuver	_	-	_	_	_	_
Stage 1	_	_	_	_	_	_
Stage 2	_			_	_	_
Stage 2	-	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	14.8		0		0	
HCM LOS	В					
110111 200						
Minor Lane/Major Mvm	nt	NBTV	VBLn1	SBT		
Capacity (veh/h)		-	465	-		
HCM Lane V/C Ratio		-	0.212	-		
HCM Control Delay (s)		-	14.8	-		
HCM Lane LOS		-	В	-		
HCM 95th %tile Q(veh))	_	0.8	-		
oour /ouro se(von)			0.0			

Lonza TIS Tighe & Bond

	۶	→	•	•	←	•	4	†	/	/	Ţ	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	∱ î≽		14.14	∱ β			र्स	77		4	
Traffic Volume (vph)	3	115	7	1502	704	145	9	6	404	7	2	2
Future Volume (vph)	3	115	7	1502	704	145	9	6	404	7	2	2
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	12	11	12	12	16	12
Total Lost time (s)	5.0	6.0		6.0	6.0			6.0	6.0		6.0	
Lane Util. Factor	1.00	0.95		0.97	0.95			1.00	0.88		1.00	
Frt	1.00	0.99		1.00	0.97			1.00	0.85		0.98	
Flt Protected	0.95	1.00		0.95	1.00			0.97	1.00		0.97	
Satd. Flow (prot)	1805	3514		3467	3474			1784	2682		2036	
Flt Permitted	0.95	1.00		0.95	1.00			0.88	1.00		0.87	
Satd. Flow (perm)	1805	3514		3467	3474			1619	2682		1826	
Peak-hour factor, PHF	0.84	0.84	0.84	0.83	1.00	0.83	0.88	0.88	0.88	0.63	0.63	0.63
Adj. Flow (vph)	4	137	8	1810	704	175	10	7	459	11	3	3
RTOR Reduction (vph)	0	4	0	0	11	0	0	0	0	0	2	0
Lane Group Flow (vph)	4	141	0	1810	868	0	0	17	459	0	15	0
Heavy Vehicles (%)	0%	2%	0%	1%	1%	0%	0%	0%	6%	0%	0%	0%
Turn Type	Prot	NA		Prot	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	6	2		1	5			8			4	
Permitted Phases							8		8	4		
Actuated Green, G (s)	6.4	13.3		50.0	57.9			20.0	20.0		20.0	
Effective Green, g (s)	6.4	13.3		50.0	57.9			20.0	20.0		20.0	
Actuated g/C Ratio	0.06	0.13		0.49	0.57			0.20	0.20		0.20	
Clearance Time (s)	5.0	6.0		6.0	6.0			6.0	6.0		6.0	
Vehicle Extension (s)	2.0	3.0		3.0	3.0			3.0	3.0		3.0	
Lane Grp Cap (vph)	114	461		1711	1985			319	529		360	
v/s Ratio Prot	0.00	c0.04		c0.52	c0.25							
v/s Ratio Perm								0.01	c0.17		0.01	
v/c Ratio	0.04	0.31		1.06	0.44			0.05	0.87		0.04	
Uniform Delay, d1	44.6	39.8		25.6	12.4			33.0	39.4		32.9	
Progression Factor	1.00	1.00		1.00	1.00			1.00	1.00		1.00	
Incremental Delay, d2	0.0	0.4		38.9	0.2			0.1	14.0		0.0	
Delay (s)	44.6	40.2		64.6	12.6			33.0	53.4		32.9	
Level of Service	D	D		E	47.0			C 50.7	D		C	
Approach Delay (s)		40.3			47.6			52.7			32.9	
Approach LOS		D			D			D			С	
Intersection Summary												
HCM 2000 Control Delay			47.9	Н	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capac	city ratio		0.90									
Actuated Cycle Length (s)			101.3		um of lost				18.0			
Intersection Capacity Utilizat	tion		69.4%	IC	CU Level o	of Service			С			
Analysis Period (min)			15									
o Critical Lana Croup												

102: US Route 4 SB On-Ramp/US Route 4 SB Off-Ramp & Pease Blvd 2035 Build Condition Weekday AM Peak

	۶	-	•	•	←	•	4	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		1111	7	ሻሻ	† †					77		77
Traffic Volume (vph)	0	365	161	174	1214	0	0	0	0	625	0	1016
Future Volume (vph)	0	365	161	174	1214	0	0	0	0	625	0	1016
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	10	11	10	11	12	12	12	12	12	12	12
Total Lost time (s)		6.0	6.0	6.0	6.0					6.0		6.0
Lane Util. Factor		0.86	1.00	0.97	0.95					0.97		0.88
Frt		1.00	0.85	1.00	1.00					1.00		0.85
Flt Protected		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (prot)		5981	1419	2918	3455					3467		2814
Flt Permitted		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (perm)		5981	1419	2918	3455					3467		2814
Peak-hour factor, PHF	0.80	0.80	0.80	0.80	0.80	0.80	0.92	0.92	0.92	0.75	0.75	0.75
Adj. Flow (vph)	0	456	201	218	1518	0	0	0	0	833	0	1355
RTOR Reduction (vph)	0	0	133	0	0	0	0	0	0	0	0	72
Lane Group Flow (vph)	0	456	68	218	1518	0	0	0	0	833	0	1283
Heavy Vehicles (%)	0%	2%	10%	12%	1%	0%	2%	2%	2%	1%	0%	1%
Turn Type		NA	Prot	Prot	NA					Prot		Prot
Protected Phases		6	6	5	25					3		3
Permitted Phases												
Actuated Green, G (s)		34.7	34.7	25.0	65.7					25.0		25.0
Effective Green, g (s)		34.7	34.7	25.0	65.7					25.0		25.0
Actuated g/C Ratio		0.34	0.34	0.24	0.64					0.24		0.24
Clearance Time (s)		6.0	6.0	6.0						6.0		6.0
Vehicle Extension (s)		5.0	5.0	4.0						5.0		5.0
Lane Grp Cap (vph)		2020	479	710	2210					843		685
v/s Ratio Prot		0.08	0.05	0.07	c0.44					0.24		c0.46
v/s Ratio Perm												
v/c Ratio		0.23	0.14	0.31	0.69					0.99		1.87
Uniform Delay, d1		24.4	23.6	31.8	11.9					38.7		38.9
Progression Factor		1.00	1.00	0.89	1.57					1.00		1.00
Incremental Delay, d2		0.1	0.3	0.0	0.1					28.0		398.5
Delay (s)		24.5	23.9	28.4	18.8					66.7		437.3
Level of Service		С	С	С	В					Е		F
Approach Delay (s)		24.3			20.0			0.0			296.2	
Approach LOS		С			В			Α			F	
Intersection Summary												
HCM 2000 Control Delay			152.5	Н	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capac	ity ratio		1.09									
Actuated Cycle Length (s)	•		102.7	S	um of lost	t time (s)			18.0			
Intersection Capacity Utilizati	on		86.8%			of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

103: US Route 4 NB Off-ramp/US Route 4 NB On-Ramp & Pease Blvd 2035 Build Condition Weekday AM Peak

	۶	→	•	•	←	•	•	†	~	/	ļ	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	^			↑ ↑		ሻሻ		77			
Traffic Volume (vph)	177	813	0	0	479	86	909	0	405	0	0	0
Future Volume (vph)	177	813	0	0	479	86	909	0	405	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	11	12	12	12	12	12	12	12	12	12	12
Total Lost time (s)	6.0	6.0			6.0		6.0		6.0			
Lane Util. Factor	0.97	0.95			0.91		0.97		0.88			
Frt	1.00	1.00			0.98		1.00		0.85			
Flt Protected	0.95	1.00			1.00		0.95		1.00			
Satd. Flow (prot)	3113	3421			4947		3433		2733			
Flt Permitted	0.39	1.00			1.00		0.95		1.00			
Satd. Flow (perm)	1270	3421			4947		3433		2733			
Peak-hour factor, PHF	0.87	0.87	0.87	0.85	0.85	0.85	0.78	0.78	0.78	0.92	0.92	0.92
Adj. Flow (vph)	203	934	0	0	564	101	1165	0	519	0	0	0
RTOR Reduction (vph)	0	0	0	0	22	0	0	0	331	0	0	0
Lane Group Flow (vph)	203	934	0	0	643	0	1165	0	188	0	0	0
Heavy Vehicles (%)	5%	2%	0%	0%	2%	5%	2%	2%	4%	0%	0%	0%
Turn Type	pm+pt	NA			NA		Prot		Prot			
Protected Phases	1	6			2		3		3			
Permitted Phases	6											
Actuated Green, G (s)	51.7	34.7			42.7		25.0		25.0			
Effective Green, g (s)	51.7	34.7			42.7		25.0		25.0			
Actuated g/C Ratio	0.50	0.34			0.42		0.24		0.24			
Clearance Time (s)	6.0	6.0			6.0		6.0		6.0			
Vehicle Extension (s)	4.0	5.0			5.0		5.0		5.0			
Lane Grp Cap (vph)	944	1155			2056		835		665			
v/s Ratio Prot	c0.04	c0.27			c0.13		c0.34		0.07			
v/s Ratio Perm	0.07											
v/c Ratio	0.22	0.81			0.31		1.40		0.28			
Uniform Delay, d1	13.5	31.0			20.1		38.9		31.6			
Progression Factor	1.09	1.22			1.00		1.00		1.00			
Incremental Delay, d2	0.1	3.4			0.2		185.2		0.5			
Delay (s)	14.8	41.0			20.3		224.0		32.0			
Level of Service	В	D			С		F		С			
Approach Delay (s)		36.4			20.3			164.8			0.0	
Approach LOS		D			С			F			А	
Intersection Summary												
HCM 2000 Control Delay			95.4	H	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capa	city ratio		0.81									
Actuated Cycle Length (s)			102.7	Sı	um of lost	time (s)			18.0			
Intersection Capacity Utiliza	ation		86.8%	IC	U Level o	of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

	•	_	+	4	<u> </u>	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Movement Lang Configurations	EBL				SBL 1	SBR 7	
Lane Configurations Traffic Volume (vph)	6 99	↑↑ 2242	↑↑ 808	6 70	1 81	224	
Future Volume (vph)	699	2242	808	670	181	224	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0	
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00	
Frt	1.00	1.00	1.00	0.85	1.00	0.85	
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1787	3471	3343	1583	1719	1538	
Flt Permitted	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	1787	3471	3343	1583	1719	1538	
Peak-hour factor, PHF	0.86	0.86	0.96	0.96	0.76	0.76	
Adj. Flow (vph)	813	2607	842	698	238	295	
RTOR Reduction (vph)	0	0	0	485	0	195	
Lane Group Flow (vph)	813	2607	842	213	238	100	
Heavy Vehicles (%)	1%	4%	8%	2%	5%	5%	
Turn Type	Prot	NA	NA	Perm	Prot	Prot	
Protected Phases	1	6	2		3	3	
Permitted Phases				2			
Actuated Green, G (s)	8.7	32.7	18.0	18.0	14.3	14.3	
Effective Green, g (s)	8.7	32.7	18.0	18.0	14.3	14.3	
Actuated g/C Ratio	0.15	0.55	0.31	0.31	0.24	0.24	
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	
Vehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0	
Lane Grp Cap (vph)	263	1923	1019	482	416	372	
v/s Ratio Prot	c0.45	c0.75	0.25		c0.14	0.07	
v/s Ratio Perm				0.13			
v/c Ratio	3.09	1.36	0.83	0.44	0.57	0.27	
Uniform Delay, d1	25.1	13.1	19.0	16.5	19.7	18.1	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	951.1	163.6	7.7	2.9	2.3	0.5	
Delay (s)	976.2	176.7	26.7	19.4	21.9	18.7	
Level of Service	F	F	С	В	С	В	
Approach Delay (s)		366.8	23.4		20.1		
Approach LOS		F	С		С		
Intersection Summary							
HCM 2000 Control Delay			236.9	H	CM 2000	Level of Service)
HCM 2000 Volume to Capaci	ity ratio		1.53				
Actuated Cycle Length (s)			59.0		um of lost		
Intersection Capacity Utilizati	on		90.2%	IC	U Level c	of Service	
Analysis Period (min)			15				
c Critical Lane Group							

	۶	→	•	•	—	•	•	†	~	\	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ħ	f)		ň	†	7	7	∱ ∱		ř	†	7
Traffic Volume (vph)	77	48	34	16	15	132	9	159	71	815	515	151
Future Volume (vph)	77	48	34	16	15	132	9	159	71	815	515	151
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0		4.5	6.0	6.0
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	0.95		1.00	1.00	1.00
Frt	1.00	0.94		1.00	1.00	0.85	1.00	0.95		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1805	1706		1805	1681	1369	1805	3411		1770	1900	1615
FIt Permitted	0.75	1.00		0.69	1.00	1.00	0.41	1.00		0.38	1.00	1.00
Satd. Flow (perm)	1416	1706		1306	1681	1369	774	3411		703	1900	1615
Peak-hour factor, PHF	0.76	0.76	0.76	0.78	0.78	0.78	0.83	0.83	0.83	0.76	0.76	0.76
Adj. Flow (vph)	101	63	45	21	19	169	11	192	86	1072	678	199
RTOR Reduction (vph)	0	24	0	0	0	146	0	49	0	0	0	51
Lane Group Flow (vph)	101	84	0	21	19	23	11	229	0	1072	678	148
Heavy Vehicles (%)	0%	4%	5%	0%	13%	18%	0%	0%	3%	2%	0%	0%
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		pm+pt	NA	Prot
Protected Phases		4			8			2		1	6	6
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	13.3	13.3		13.3	13.3	13.3	12.7	12.7		72.5	72.5	72.5
Effective Green, g (s)	13.3	13.3		13.3	13.3	13.3	12.7	12.7		72.5	72.5	72.5
Actuated g/C Ratio	0.14	0.14		0.14	0.14	0.14	0.13	0.13		0.74	0.74	0.74
Clearance Time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0		4.5	6.0	6.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	192	232		177	228	186	100	442		1124	1408	1197
v/s Ratio Prot		0.05			0.01			0.07		c0.54	0.36	0.09
v/s Ratio Perm	c0.07			0.02		0.02	0.01			c0.17		
v/c Ratio	0.53	0.36		0.12	0.08	0.12	0.11	0.52		0.95	0.48	0.12
Uniform Delay, d1	39.3	38.4		37.1	36.9	37.1	37.6	39.7		13.3	5.1	3.6
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	2.6	1.0		0.3	0.2	0.3	0.5	1.0		16.8	0.3	0.0
Delay (s)	41.9	39.4		37.4	37.1	37.4	38.0	40.7		30.1	5.3	3.6
Level of Service	D	D		D	D	D	D	D		С	Α	Α
Approach Delay (s)		40.6			37.4			40.6			18.8	
Approach LOS		D			D			D			В	
Intersection Summary												
HCM 2000 Control Delay			24.4	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.92									
Actuated Cycle Length (s)			97.8		um of lost				16.5			
Intersection Capacity Utiliza	ation		79.0%	IC	U Level	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

Intersection						
Int Delay, s/veh	14.3					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
		EDI	WDL			NDI
Lane Configurations	5 70	364	70	€ 84	70	26
Traffic Vol. veh/h	570	364	70	84	79 79	26 26
Future Vol, veh/h	570					
Conflicting Peds, #/hr	0	0	0	0	O Cton	0 Ctop
•	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	110110		None		None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	78	78	71	71	69	69
Heavy Vehicles, %	1	5	0	12	36	0
Mvmt Flow	731	467	99	118	114	38
Major/Minor Major/Minor	lajor1	٨	//ajor2		Minor1	
						005
Conflicting Flow All	0	0	1198	0	1281	965
Stage 1	-	-	-	-	965	-
Stage 2	-	-	-	-	316	-
Critical Hdwy	-	-	4.1	-	6.76	6.2
Critical Hdwy Stg 1	-	-	-	-	5.76	-
Critical Hdwy Stg 2	-	-	-	-	5.76	-
Follow-up Hdwy	-	-	2.2	-	3.824	3.3
Pot Cap-1 Maneuver	-	-	590	-	155	312
Stage 1	-	-	_	-	321	-
Stage 2	_	-	_	_	668	-
Platoon blocked, %	_	_		_	300	
Mov Cap-1 Maneuver	_	_	590	_	127	312
Mov Cap-1 Maneuver	_	_	-	_	127	J 1Z -
Stage 1		-			321	
	-	-	-	-		-
Stage 2	-	-	-	-	548	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		5.6		139.4	
HCM LOS	- 0		0.0		155.4 F	
TIOWI LOO					I.	
Minor Lane/Major Mvmt	1	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		149	-	-	590	-
HCM Lane V/C Ratio		1.021	-	_	0.167	-
HCM Control Delay (s)		139.4	_	_	12.3	0
HCM Lane LOS		F	_	_	В	A
HCM 95th %tile Q(veh)		7.8	_	_	0.6	-
Sim oom /ono Q(von)		7.0			0.0	

Intersection						
Int Delay, s/veh	0.3					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	T T	<u></u>	7∌	אופייי	₩.	אופט
Traffic Vol, veh/h	19	T 579	131	2	0	7
	19	579				
Future Vol, veh/h	0	5/9	131	2	0	7
Conflicting Peds, #/hr			0		0	
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	0	-
Veh in Median Storage,		0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	85	85	71	71	50	50
Heavy Vehicles, %	0	1	8	0	0	25
Mvmt Flow	22	681	185	3	0	14
Mainu/Mina	-!- 4		4-1- 0		Alian e C	
	lajor1		//ajor2		Minor2	
Conflicting Flow All	188	0	-	0	912	187
Stage 1	-	-	-	-	187	-
Stage 2	-	-	-	-	725	-
Critical Hdwy	4.1	-	-	-	6.4	6.45
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	2.2	-	-	-	3.5	3.525
	1398	-	-	-	307	799
Stage 1	_	-	_	-	850	-
Stage 2	_	_	_	_	483	_
Platoon blocked, %		_	_	_	100	
	1398	_	_		302	799
Mov Cap-1 Maneuver				-	302	799
	-	-	-			
Stage 1	-	-	-	-	836	-
Stage 2	-	-	-	-	483	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.2		0		9.6	
HCM LOS	U.Z		- 0		3.0 A	
TOW LOO						
Minor Lane/Major Mvmt		EBL	EBT	WBT	WBR :	SBLn1
Capacity (veh/h)		1398	-	-	_	799
HCM Lane V/C Ratio		0.016	_	-	-	0.018
HCM Control Delay (s)		7.6	-	-	-	9.6
HCM Lane LOS		A	_	-	_	A
HCM 95th %tile Q(veh)		0	-	-	-	0.1
						-

Intersection						
Int Delay, s/veh	0.1					
		EDD	WDI	WDT	NDI	NDD
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\$			र्स	¥	
Traffic Vol, veh/h	348	18	4	164	0	0
Future Vol, veh/h	348	18	4	164	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	95	95	82	82	25	40
Heavy Vehicles, %	1	0	0	5	20	0
Mymt Flow	366	19	5	200	0	0
IVIVIIIL I IOW	000	10	J	200	U	U
Major/Minor N	1ajor1	N	Major2	N	/linor1	
Conflicting Flow All	0	0	385	0	586	376
Stage 1	_	_	_	-	376	-
Stage 2	_	_	_	_	210	_
Critical Hdwy	_	_	4.1	_	6.6	6.2
Critical Hdwy Stg 1	_	_	-	_	5.6	- 0.2
Critical Hdwy Stg 2	_	_	_	_	5.6	_
			2.2			3.3
Follow-up Hdwy	-	-		-	3.68	
Pot Cap-1 Maneuver	-	-	1185	-	444	675
Stage 1	-	-	-	-	656	-
Stage 2	-	-	-	-	784	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1185	-	442	675
Mov Cap-2 Maneuver	-	-	-	-	442	-
Stage 1	-	-	-	_	656	-
Stage 2	_	_	_	_	780	_
olago 2					100	
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.2		0	
HCM LOS					Α	
Minar Lana/Maiar Musat		JDI1	EDT	EDD	WDI	WDT
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		-	-		1185	-
HCM Lane V/C Ratio		-	-	-	0.004	-
HCM Control Delay (s)		0	-	-	8.1	0
HCM Lane LOS		Α	-	-	Α	Α
HCM 95th %tile Q(veh)		_	-	-	0	-

Intersection						
Int Delay, s/veh	0					
	WBL	WBR	NBT	NBR	SBL	SBT
		אטא		NDK	ODL	
Lane Configurations Traffic Vol, veh/h	Y	0	₽	0	22	ન
	0	0	0	0		0
Future Vol, veh/h	0	0	0	0	22	0
Conflicting Peds, #/hr	0	0	0	0	0	0
	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	25	25	53	53	50	50
Heavy Vehicles, %	0	0	0	13	0	0
Mvmt Flow	0	0	0	0	44	0
Majar/Minar	!		1-11		Ania TO	
	inor1		/lajor1		Major2	
Conflicting Flow All	88	0	0	0	0	0
Stage 1	0	-	-	-	-	-
Stage 2	88	-	-	-	-	-
Critical Hdwy	6.4	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	_
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	918	_	-	_	-	_
Stage 1	-	_	_	_	_	_
Stage 2	940	_	_	_	_	_
Platoon blocked, %	J+0		_	<u>-</u>		_
	918	_	_	_	_	
Mov Cap-1 Maneuver						
Mov Cap-2 Maneuver	918	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	940	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	0		0			
HCM LOS	A		U			
TIOWI LOG	А					
Minor Lane/Major Mvmt		NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	_		-	-
HCM Lane V/C Ratio		-	-	-	-	-
HCM Control Delay (s)		_	_	0	_	-
HCM Lane LOS		_	_	A	_	_
HCM 95th %tile Q(veh)		_	_	-	_	_

Intersection						
Int Delay, s/veh	4.8					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥	LDIT	1100	4	<u>₽</u>	OBIT
Traffic Vol, veh/h	7	0	0	0	0	9
Future Vol, veh/h	7	0	0	0	0	9
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	- -	None		None	-	
Storage Length	0	-	_	-	_	-
Veh in Median Storage		_	_	0	0	_
Grade, %	0, 11	_	_	0	0	_
Peak Hour Factor	50	50	42	42	69	69
Heavy Vehicles, %	75	0	0	0	6	80
Mvmt Flow	14	0	0	0	0	13
IVIVIIIL FIOW	14	U	U	U	U	13
Major/Minor	Minor2	N	Major1	N	//ajor2	
Conflicting Flow All	7	7	13	0	-	0
Stage 1	7	-	-	-	-	-
Stage 2	0	-	-	-	-	-
Critical Hdwy	7.15	6.2	4.1	-	-	-
Critical Hdwy Stg 1	6.15	-	-	-	-	-
Critical Hdwy Stg 2	6.15	_	_	-	_	-
Follow-up Hdwy	4.175	3.3	2.2	-	_	-
Pot Cap-1 Maneuver	854	1081	1619	_	-	-
Stage 1	855	-	-	_	-	-
Stage 2	_	_	_	_	_	_
Platoon blocked, %				_	_	_
Mov Cap-1 Maneuver	854	1081	1619	_	_	-
Mov Cap-1 Maneuver		-	1013	_	_	_
Stage 1	855		_		_	_
Stage 2	000	-	_	_	_	_
Staye 2	_		-		-	
Approach	EB		NB		SB	
HCM Control Delay, s	9.3		0		0	
HCM LOS	Α					
Minor Lanc/Major Mur	nt	NDI	NDT	EDI 51	SBT	CDD
Minor Lane/Major Mvn	IIC	NBL		EBLn1		SBR
Capacity (veh/h)		1619	-	•••	-	-
HCM Lane V/C Ratio		-		0.016	-	-
	\					
HCM Control Delay (s		0	-	0.0	-	-
HCM Control Delay (s HCM Lane LOS HCM 95th %tile Q(veh		0 A 0	-	Α	- -	- -

Int Delay, siveh													
Int Delay, s/veh	Intersection												
Traffic Vol, veh/h	Int Delay, s/veh	2.7											
Traffic Vol, veh/h	Movement	FBI	FRT	EBR	WRI	WRT	WRR	NBI	NBT	NBR	SBI	SBT	SBR
Traffic Vol, veh/h					1102		TTDIX	1102		HOIT	002		OBIT
Future Vol, veh/h		0		0	0		68	6		0	138		243
Conflicting Peds, #/hr	•		_										
Sign Control Stop Free Free	· · · · · · · · · · · · · · · · · · ·												
RT Channelized													
Storage Length						•							
Veh in Median Storage, # - 0		-	-	-	-	-	-	-	-	-	_	-	-
Grade, % - 0 - - 0 - - 0 - - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 0 - 0 0 - 0 0 - 0<		.# -	0	-	_	0	-	-	0	_	-	0	-
Peak Hour Factor 92 92 92 92 92 88 88 92 92				-	-		-	-		-	_	0	-
Heavy Vehicles, % 2 2 2 2 2 2 2 0 18 2 2 15 1		92	92	92	92	92	92	88	88	92	92	69	69
Mymmt Flow 0 0 0 0 74 7 42 0 150 77 352 Major/Minor Minor2 Minor1 Major1 Major2 Conflicting Flow All 646 609 253 609 785 42 429 0 0 42 0 0 Stage 1 553 553 556 56 -		2	2	2	2	2	2	0	18	2	2	15	1
Conflicting Flow All			0	0	0	0	74	7	42	0	150		352
Conflicting Flow All													
Conflicting Flow All	Major/Minor	Minor?			Minor1			Maior1			Maior?		
Stage 1 553 553 553 - 56 56 -			600			705			^			^	0
Stage 2 93 56 - 553 729 - <													
Critical Hdwy 7.12 6.52 6.22 7.12 6.52 6.22 4.1 - 4.12 - 4.12 2 Critical Hdwy Stg 1 6.12 5.52 - 6.12 5.52	•									-	-		-
Critical Hdwy Stg 1 6.12 5.52 - 6.12 5.52 - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>112</td><td></td><td>-</td></t<>										-	112		-
Critical Hdwy Stg 2 6.12 5.52 - 6.12 5.52 - <t< td=""><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td>4.1</td><td></td><td>-</td><td></td><td></td><td></td></t<>	•							4.1		-			
Follow-up Hdwy 3.518 4.018 3.318 3.518 4.018 3.318 2.2 - 2.218 Pot Cap-1 Maneuver 385 410 786 407 325 1029 1141 - 1567 Stage 1 517 514 - 956 848 Stage 2 914 848 - 517 428								_	_	-			_
Pot Cap-1 Maneuver 385													_
Stage 1 517 514 - 956 848 -													_
Stage 2 914 848 - 517 428 -							1023	-	_	_			_
Platoon blocked, %							_	_	_	_			_
Mov Cap-1 Maneuver 320 354 786 364 280 1029 1141 - - 1567 - - Mov Cap-2 Maneuver 320 354 - 364 280 - <td>•</td> <td>J11</td> <td>310</td> <td></td> <td>711</td> <td>120</td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td> <td></td> <td>_</td>	•	J11	310		711	120			_	_			_
Mov Cap-2 Maneuver 320 354 - 364 280 - </td <td></td> <td>320</td> <td>354</td> <td>786</td> <td>364</td> <td>280</td> <td>1029</td> <td>1141</td> <td>_</td> <td>_</td> <td>1567</td> <td></td> <td>-</td>		320	354	786	364	280	1029	1141	_	_	1567		-
Stage 1 514 446 - 950 843 -								-	_	_		_	_
Stage 2 843 843 - 449 372 -							_	_	-	_	_	-	-
Approach EB WB NB SB HCM Control Delay, s 0 8.8 1.1 2 HCM LOS A A A A Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1 SBL SBT SBR Capacity (veh/h) 1141 - - 1029 1567 - - HCM Lane V/C Ratio 0.006 - - - 0.072 0.096 - - HCM Control Delay (s) 8.2 0 - 0 8.8 7.5 0 - HCM Lane LOS A A - A A A A -	•			-			-	-	-	-	-	-	-
HCM Control Delay, s 0 8.8 1.1 2 HCM LOS A A A Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1 SBL SBT SBR Capacity (veh/h) 1141 - - 1029 1567 - - HCM Lane V/C Ratio 0.006 - - - 0.072 0.096 - - HCM Control Delay (s) 8.2 0 - 0 8.8 7.5 0 - HCM Lane LOS A A - A A A A -													
HCM Control Delay, s 0 8.8 1.1 2 HCM LOS A A A Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1 SBL SBT SBR Capacity (veh/h) 1141 - - 1029 1567 - - HCM Lane V/C Ratio 0.006 - - - 0.072 0.096 - - HCM Control Delay (s) 8.2 0 - 0 8.8 7.5 0 - HCM Lane LOS A A - A A A A -	Annroach	FR			\/\P			NR			SB		
Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1 SBL SBT SBR Capacity (veh/h) 1141 - - - 1029 1567 - - HCM Lane V/C Ratio 0.006 - - - 0.072 0.096 - - HCM Control Delay (s) 8.2 0 - 0 8.8 7.5 0 - HCM Lane LOS A A - A A A A -													
Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1 SBL SBT SBR Capacity (veh/h) 1141 - - - 1029 1567 - - HCM Lane V/C Ratio 0.006 - - - 0.072 0.096 - - HCM Control Delay (s) 8.2 0 - 0 8.8 7.5 0 - HCM Lane LOS A A - A A A A -								1.1					
Capacity (veh/h) 1141 1029 1567 HCM Lane V/C Ratio 0.006 0.072 0.096 HCM Control Delay (s) 8.2 0 - 0 8.8 7.5 0 - HCM Lane LOS A A - A A A A -	TIOWI LOS	A			A								
Capacity (veh/h) 1141 1029 1567 HCM Lane V/C Ratio 0.006 0.072 0.096 HCM Control Delay (s) 8.2 0 - 0 8.8 7.5 0 - HCM Lane LOS A A - A A A A - A A - A A A - A A A A								0.71					
HCM Lane V/C Ratio 0.006 - - - 0.072 0.096 - - HCM Control Delay (s) 8.2 0 - 0 8.8 7.5 0 - HCM Lane LOS A A - A A A A -		<u>it</u>		NBT	NBR				SBT	SBR			
HCM Control Delay (s) 8.2 0 - 0 8.8 7.5 0 - HCM Lane LOS A A - A A A A -				-	-				-	-			
HCM Lane LOS A A - A A A -				-	-				-	-			
					-	-							
HCM 95th %tile Q(veh) 0 0.2 0.3				Α	-	Α							
	HCM 95th %tile Q(veh)		0	-	-	-	0.2	0.3	-	-			

Intersection						
Int Delay, s/veh	0.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		ĵ.			4
Traffic Vol, veh/h	7	2	223	15	15	504
Future Vol, veh/h	7	2	223	15	15	504
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None	_	
Storage Length	0	-	_	-	-	-
Veh in Median Storage,		_	0	_	_	0
Grade, %	0	_	0	_	_	0
Peak Hour Factor	63	63	81	81	84	84
Heavy Vehicles, %	0	0	0	0	0	1
Mymt Flow	11	3	275	19	18	600
IVIVIIILIIOW	- 11	3	210	13	10	000
Major/Minor N	1inor1	N	/lajor1	N	Major2	
Conflicting Flow All	921	285	0	0	294	0
Stage 1	285	-	-	-	-	-
Stage 2	636	-	-	-	-	-
Critical Hdwy	6.4	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.4	-	_	-	_	-
Critical Hdwy Stg 2	5.4	_	-	_	-	-
Follow-up Hdwy	3.5	3.3	_	-	2.2	-
Pot Cap-1 Maneuver	303	759	_	-	1279	-
Stage 1	768	-	_	_		_
Stage 2	531	_	_	_	_	_
Platoon blocked, %	001		_	<u>-</u>		_
Mov Cap-1 Maneuver	297	759	_		1279	_
Mov Cap-1 Maneuver	297	139	_		1219	_
Stage 1	768			<u>-</u>		
		-	-	-	-	-
Stage 2	520	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	16		0		0.2	
HCM LOS	С					
Minariana /Mariana		NDT	NDD	NDL 4	001	ODT
Minor Lane/Major Mvmt		NBT		VBLn1	SBL	SBT
Capacity (veh/h)		-	-		1279	-
HCM Lane V/C Ratio		-		0.042		-
HCM Control Delay (s)		-	-	16	7.9	0
HCM Lane LOS		-	-	С	Α	Α
HCM 95th %tile Q(veh)		-	-	0.1	0	-

Intersection						
Int Delay, s/veh	0.9					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥	אוטוע	1\ ∂1	ווטוו	ODL	4
Traffic Vol, veh/h	16	21	217	15	23	488
Future Vol, veh/h	16	21	217	15	23	488
· · · · · · · · · · · · · · · · · · ·	0	0		0	23	
Conflicting Peds, #/hr			0			0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	88	88	86	86	83	83
Heavy Vehicles, %	44	0	1	63	0	1
Mvmt Flow	18	24	252	17	28	588
Majay/Minay	Minord		1-:1		Ania nO	
	Minor1		Major1		Major2	
Conflicting Flow All	905	261	0	0	269	0
Stage 1	261	-	-	-	-	-
Stage 2	644	-	-	-	-	-
Critical Hdwy	6.84	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.896	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	260	783	-	-	1306	-
Stage 1	695	-	-	-	-	-
Stage 2	451	_	-	_	_	_
Platoon blocked, %			_	_		_
Mov Cap-1 Maneuver	252	783	_	_	1306	_
Mov Cap-1 Maneuver	252	705	-	_	1300	_
	695			-		
Stage 1		-	-	-	-	-
Stage 2	437	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	14.8		0		0.4	
HCM LOS	14.0 B		U		0.7	
TIOIVI LOG	Б					
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	410	1306	-
HCM Lane V/C Ratio		-	_	0.103		-
HCM Control Delay (s)		_	_	14.8	7.8	0
HCM Lane LOS		_	_	В	A	A
HCM 95th %tile Q(veh)	_	_	0.3	0.1	-
TOW JOHN JUNE Q(VEI)	1			0.0	0.1	

Intersection						
Int Delay, s/veh	0.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
		אטא		NOR	ODL	
Lane Configurations	Y	6	∱	2	0	4 392
Traffic Vol, veh/h	0	6	253	2	9	392
Future Vol, veh/h	0	6	253	2	9	
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-			None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	75	75	89	89	81	81
Heavy Vehicles, %	0	0	5	100	0	2
Mvmt Flow	0	8	284	2	11	484
Major/Minor M	linor1	A	laier1		Major?	
	linor1		//ajor1		Major2	
Conflicting Flow All	791	285	0	0	286	0
Stage 1	285	-	-	-	-	-
Stage 2	506	-	-	-	-	-
Critical Hdwy	6.4	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	361	759	-	-	1288	-
Stage 1	768	-	_	-	_	-
Stage 2	610	_	_	-	_	_
Platoon blocked, %	010		_	_		_
Mov Cap-1 Maneuver	357	759	_	_	1288	_
Mov Cap-1 Maneuver	357	133				
	768	_	-	-	-	-
Stage 1		-	-	-	-	-
Stage 2	603	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	9.8		0		0.2	
HCM LOS			U		0.2	
HOM FOS	Α					
Minor Lane/Major Mvmt		NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	759	1288	-
HCM Lane V/C Ratio		_			0.009	_
HCM Control Delay (s)		_	_	9.8	7.8	0
		_	_	9.0 A	7.0 A	A
HI WI AND I I'V						
HCM Lane LOS HCM 95th %tile Q(veh)		_	_	0	0	-

Intersection													
Int Delay, s/veh	23.1												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
ane Configurations		4			4			4			4		
Traffic Vol, veh/h	9	10	2	95	6	7	0	503	432	28	324	32	
uture Vol, veh/h	9	10	2	95	6	7	0	503	432	28	324	32	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	- Otop	None	- Olop	-	None	-	-	None	-	-	None	
Storage Length	_	_	-	_	_	-	_	_	-	_	_	-	
/eh in Median Storage		0	_	_	0	_	_	0	_	_	0	_	
Grade, %	, <i>''</i> -	0	_	_	0	_	_	0	_	_	0	_	
Peak Hour Factor	75	75	75	65	65	65	90	90	90	87	87	87	
leavy Vehicles, %	20	0	0	4	0	0	0	2	3	0	3	0	
Mymt Flow	12	13	3	146	9	11	0	559	480	32	372	37	
IIIII IOW	14	10	- 3	170	J	- 11	0	000	700	UZ	OIZ	OI.	
	Minor2			Minor1			Major1		N	Major2			
Conflicting Flow All	1264	1494	391	1262	1272	799	409	0	0	1039	0	0	
Stage 1	455	455	-	799	799	-	-	-	-	-	-	-	
Stage 2	809	1039	-	463	473	-	-	-	-	-	-	-	
ritical Hdwy	7.3	6.5	6.2	7.14	6.5	6.2	4.1	-	-	4.1	-	-	
Critical Hdwy Stg 1	6.3	5.5	-	6.14	5.5	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.3	5.5	-	6.14	5.5	-	-	-	-	-	-	-	
ollow-up Hdwy	3.68	4	3.3	3.536	4	3.3	2.2	-	-	2.2	-	-	
Pot Cap-1 Maneuver	134	124	662	~ 145	169	389	1161	-	-	677	-	-	
Stage 1	552	572	-	376	401	-	-	-	-	-	-	-	
Stage 2	349	310	-	575	562	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	119	116		~ 126	159	389	1161	-	-	677	-	-	
Mov Cap-2 Maneuver	119	116	-	~ 126	159	-	-	-	-	-	-	-	
Stage 1	552	537	-	376	401	-	-	-	-	-	-	-	
Stage 2	332	310	-	524	528	-	-	-	-	-	-	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	41.2			223.7			0			0.8			
HCM LOS	E			F						3.0			
	_												
Minor Long/Mailer NA		NDI	NDT	NDD 5	TDL 414	MDL 4	ODI	CDT	CDD				
Minor Lane/Major Mvm		NBL	NBT	NRK F	EBLn1V		SBL	SBT	SBR				
Capacity (veh/h)		1161	-	-	127	133	677	-	-				
ICM Cartal Dalay (a)		-	-	-		1.249		-	-				
HCM Control Delay (s)		0	-	-		223.7	10.6	0	-				
HCM Lane LOS		A	-	-	E	F	В	Α	-				
HCM 95th %tile Q(veh)		0	-	-	8.0	10.2	0.1	-	-				
Votes													
: Volume exceeds cap	acity	\$: De	lay exc	eeds 30	00s -	+: Com	outation	Not De	efined	*: All r	najor v	olume ir	n platoon
	-										,		

							_
Intersection							
Int Delay, s/veh	161.4						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	I
Lane Configurations	ሻ	7	*	†	†	7	_
Traffic Vol, veh/h	956	433	73	16	61	261	
Future Vol, veh/h	956	433	73	16	61	261	
Conflicting Peds, #/hr		0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	- -	None	-	None	-		
	0	290	100	-	_	175	
Storage Length							
Veh in Median Storag		-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	93	93	70	70	90	90	
Heavy Vehicles, %	1	1	3	11	0	4	
Mvmt Flow	1028	466	104	23	68	290	
Major/Minor	Minor2		Majar1		Major		
Major/Minor			Major1		Major2		
Conflicting Flow All	299	68	358	0	-	0	
Stage 1	68	-	-	-	-	-	
Stage 2	231	-	-	-	-	-	
Critical Hdwy	6.41	6.21	4.13	-	-	-	
Critical Hdwy Stg 1	5.41	-	-	-	-	-	
Critical Hdwy Stg 2	5.41	-	-	-	-	-	
Follow-up Hdwy	3.509	3.309	2.227	-	-	-	
Pot Cap-1 Maneuver	~ 694	998	1195	-	-	-	
Stage 1	~ 957	-	-	_	-	-	
Stage 2	~ 810	_	_	_	_	_	
Platoon blocked, %	010			_	_	_	
Mov Cap-1 Maneuver	~ 631	998	1195		_	_	
		990	1195	-		-	
Mov Cap-2 Maneuver		-	-	-	-	-	
Stage 1	~ 874	-	-	-	-	-	
Stage 2	~ 810	-	-	-	-	-	
Approach	EB		NB		SB		
					_		
HCM Control Delay, s			6.8		0		
HCM LOS	F						
Minor Lane/Major Mvi	mt	NBL	NBT I	EBLn1 I	EBLn2	SBT	
Capacity (veh/h)		1195	_	634	998	_	
HCM Lane V/C Ratio		0.087	_			_	
HCM Control Delay (s	٠)	8.3		304.4	11.7	_	
HCM Lane LOS	9)	0.5 A	Ψ	504.4 F	В		
	h\		-			-	
HCM 95th %tile Q(vel	11)	0.3	-	56.1	2.5	-	
Notes							
~: Volume exceeds ca	apacity	\$· De	elay exc	eeds 30	00s	+: Comp)
. Volumo oxocodo de	apaony	ψ. υ	nay ono	2040 00	, , ,	. Comp	

Intersection						
Int Delay, s/veh	174.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
	WDL			INDIX	SDL	
Lane Configurations	٥	740	1200	0	0	^
Traffic Vol, veh/h	0	246	1369	0	0	405
Future Vol, veh/h	0	246	1369	0	0	405
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-		-		-	
Storage Length	-	0	-	-	-	-
Veh in Median Storag		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	76	76	70	70	80	80
Heavy Vehicles, %	2	3	2	2	2	4
Mvmt Flow	0	324	1956	0	0	506
NA = : = :/NA::= = ::	M:4		1-:1	N 4	-:0	
Major/Minor	Minor1		//ajor1	IVI	ajor2	
Conflicting Flow All	-	1956	0	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.245	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	- (3.3285	-	-	-	-
Pot Cap-1 Maneuver	0	~ 79	-	0	0	-
Stage 1	0	-	-	0	0	-
Stage 2	0	_	-	0	0	_
Platoon blocked, %	•		_	•		_
Mov Cap-1 Maneuver		~ 79	_	_	_	_
Mov Cap-2 Maneuver		-	_	<u>-</u>	_	<u>-</u>
Stage 1	_		-			-
	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, \$			0		0	
HCM LOS	F		V		v	
TIOWI LOG	'					
Minor Lane/Major Mvi	mt	NBTV	VBLn1	SBT		
Capacity (veh/h)		-	79	-		
HCM Lane V/C Ratio		-	4.097	-		
HCM Control Delay (s	s)	\$-1	502.2	-		
HCM Lane LOS	,	-	F	_		
HCM 95th %tile Q(vel	h)	_	34.1	_		
	-,		•			
Notes						
~: Volume exceeds ca	apacity	\$: De	lay exc	eeds 300	Os -	+: Comp

	•	→	•	•	—	•	1	†	/	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	, J	↑ ↑		1,1	∱ }			ર્ન	77		4	
Traffic Volume (vph)	0	519	3	464	201	27	12	3	1468	63	3	3
Future Volume (vph)	0	519	3	464	201	27	12	3	1468	63	3	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	12	11	12	12	16	12
Total Lost time (s)		6.0		6.0	6.0			6.0	6.0		6.0	
Lane Util. Factor		0.95		0.97	0.95			1.00	0.88		1.00	
Frt		1.00		1.00	0.98			1.00	0.85		0.99	
Flt Protected		1.00		0.95	1.00			0.96	1.00		0.96	
Satd. Flow (prot)		3572		3433	3546			1765	2814		2048	
FIt Permitted		1.00		0.95	1.00			0.82	1.00		0.73	
Satd. Flow (perm)		3572		3433	3546			1501	2814		1566	
Peak-hour factor, PHF	0.88	0.88	0.88	0.96	0.96	0.96	0.91	0.91	0.91	0.68	0.68	0.68
Adj. Flow (vph)	0	590	3	483	209	28	13	3	1613	93	4	4
RTOR Reduction (vph)	0	0	0	0	5	0	0	0	0	0	1	0
Lane Group Flow (vph)	0	593	0	483	232	0	0	16	1613	0	100	0
Heavy Vehicles (%)	0%	1%	0%	2%	0%	0%	0%	0%	1%	0%	0%	0%
Turn Type	Prot	NA		Prot	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	6	2		1	5			8			4	
Permitted Phases							8		8	4		
Actuated Green, G (s)		17.5		16.3	39.8			20.2	20.2		20.2	
Effective Green, g (s)		17.5		16.3	39.8			20.2	20.2		20.2	
Actuated g/C Ratio		0.24		0.23	0.55			0.28	0.28		0.28	
Clearance Time (s)		6.0		6.0	6.0			6.0	6.0		6.0	
Vehicle Extension (s)		3.0		3.0	3.0			3.0	3.0		3.0	
Lane Grp Cap (vph)		868		777	1960			421	789		439	
v/s Ratio Prot		c0.17		c0.14	0.07							
v/s Ratio Perm								0.01	c0.57		0.06	
v/c Ratio		0.68		0.62	0.12			0.04	2.04		0.23	
Uniform Delay, d1		24.7		25.1	7.7			18.8	25.9		19.9	
Progression Factor		1.00		1.00	1.00			1.00	1.00		1.00	
Incremental Delay, d2		2.2		1.6	0.0			0.0	474.4		0.3	
Delay (s)		27.0		26.6	7.7			18.9	500.3		20.2	
Level of Service		C		С	Α			B	F		C	
Approach Delay (s)		27.0			20.4			495.6			20.2	
Approach LOS		С			С			F			С	
Intersection Summary												
HCM 2000 Control Delay			276.0	H	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capacity	/ ratio		1.17									
Actuated Cycle Length (s)			72.0		um of lost				18.0			
Intersection Capacity Utilization	n		85.8%	IC	U Level o	of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

102: US Route 4 SB On-Ramp/US Route 4 SB Off-Ramp & Pease Blvd 2035 Build Condition Weekday PM Peak

	•	-	\rightarrow	•	←	•	•	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		1111	7	14.14	^					14.14		77
Traffic Volume (vph)	0	1350	700	756	526	0	0	0	0	429	0	171
Future Volume (vph)	0	1350	700	756	526	0	0	0	0	429	0	171
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	10	11	10	11	12	12	12	12	12	12	12
Total Lost time (s)		6.0	6.0	6.0	6.0					6.0		6.0
Lane Util. Factor		0.86	1.00	0.97	0.95					0.97		0.88
Frt		1.00	0.85	1.00	1.00					1.00		0.85
Flt Protected		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (prot)		6040	1546	3236	3455					3502		2814
FIt Permitted		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (perm)		6040	1546	3236	3455					3502		2814
Peak-hour factor, PHF	0.85	0.85	0.85	0.94	0.94	0.94	0.92	0.92	0.92	0.90	0.90	0.90
Adj. Flow (vph)	0	1588	824	804	560	0	0	0	0	477	0	190
RTOR Reduction (vph)	0	0	363	0	0	0	0	0	0	0	0	144
Lane Group Flow (vph)	0	1588	461	804	560	0	0	0	0	477	0	46
Heavy Vehicles (%)	0%	1%	1%	1%	1%	0%	0%	0%	0%	0%	0%	1%
Turn Type		NA	Prot	Prot	NA					Prot		Prot
Protected Phases		6	6	5	25					3		3
Permitted Phases												
Actuated Green, G (s)		35.0	35.0	25.0	66.0					24.7		24.7
Effective Green, g (s)		35.0	35.0	25.0	66.0					24.7		24.7
Actuated g/C Ratio		0.34	0.34	0.24	0.64					0.24		0.24
Clearance Time (s)		6.0	6.0	6.0						6.0		6.0
Vehicle Extension (s)		5.0	5.0	4.0						5.0		5.0
Lane Grp Cap (vph)		2058	526	787	2220					842		676
v/s Ratio Prot		0.26	c0.30	c0.25	0.16					c0.14		0.02
v/s Ratio Perm												
v/c Ratio		0.77	0.88	1.02	0.25					0.57		0.07
Uniform Delay, d1		30.3	31.8	38.9	7.8					34.3		30.1
Progression Factor		1.00	1.00	1.33	1.25					1.00		1.00
Incremental Delay, d2		2.2	16.2	29.2	0.1					1.4		0.1
Delay (s)		32.4	48.0	81.1	9.9					35.7		30.2
Level of Service		С	D	F	Α					D		С
Approach Delay (s)		37.8			51.8			0.0			34.2	
Approach LOS		D			D			Α			С	
Intersection Summary												
HCM 2000 Control Delay			41.5	H	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capaci	ty ratio		0.83									
Actuated Cycle Length (s)			102.7		um of lost				18.0			
Intersection Capacity Utilization	on		92.1%	IC	U Level o	of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

103: US Route 4 NB Off-ramp/US Route 4 NB On-Ramp & Pease Blvd 2035 Build Condition Weekday PM Peak

BT EB	R WBL	MOT							
* *		WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
		ተ ተኈ		44		77			
	0 0	1029	450	253	0	691	0	0	0
53	0 0	1029	450	253	0	691	0	0	0
000 190	0 1900	1900	1900	1900	1900	1900	1900	1900	1900
	2 12	12	12	12	12	12	12	12	12
									0.92
									0
									0
									0
	<u>% 0%</u>		0%		0%		0%	0%	0%
6		2		3		3			
.32		0.32		c0.08		0.06			
				C	20.0	C		0.0	
ט		D			C			А	
		HCM 2000	Level of S	Service		D			
						10.0			
		CU Level	of Service			F			
1	5								
	953 900 190 11 1 6.0 .95 .00 .00 .00 .00 .00 .00 .00 .0	053	953 0 0 1029 953 0 0 1029 900 1900 1900 1900 11 12 12 12 6.0 6.0 95 0.91 .00 0.95 0.91 0.00 .00 1.00 495 4916 .00 1.00 455 4916 .87 0.92 0.90 0.90 .95 0 0 143 0 0 0 76 .995 0 0 1567 1% 0% 0% 1% NA 6 2 5.0 35.0 35.0 .34 0.34 0.34 6.0 5.0 5.0 177 1675 .32 .93 0.94 2.7 .57 1.00 9.8 8.5 43.3 C D 3.6	953	0553 0 0 1029 450 253 053 0 0 1029 450 253 000 1900 1900 1900 1900 11 12 12 12 12 12 6.0 6.0 6.0 6.0 6.0 .95 0.91 0.97 0.00 0.95 1.00 .00 1.00 0.95 1.00 0.95 .00 1.00 0.95 1.00 0.95 .455 4916 3433 3433 3433 .87 0.92 0.90 0.90 0.90 0.94 .955 0 0 1143 500 269 .095 0 0 1567 0 269 .095 0 0 1567 0 269 .095 0 0 1567 0 269 .096 0 0 1567 0	0553 0 0 1029 450 253 0 0500 1900 1900 1900 1900 1900 1900 11 12 12 12 12 12 12 6.0 6.0 6.0 6.0 6.0 6.0 6.0 .95 0.91 0.97 0.00 0.95 1.00 0.00 0.95 4.00 0.00 0.95 4.00 0.00 0.00 0.95 4.00 0.00 0.95 4.00 0.00 0.95 4.00 0.00 0.95 4.00 0.00 0.95 4.00 0.00 0.95 4.00 0.00 0.95 4.00 0.95 4.00 0.99 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.93 0.94 0.33 2.24 7 3.34 0.9	353 0 0 1029 450 253 0 691 353 0 0 1029 450 253 0 691 300 1900 1900 1900 1900 1900 1900 11 12 12 12 12 12 12 12 6.0 6.0 6.0 6.0 6.0 6.0 6.0 .95 0.91 0.97 0.88 0.00 0.95 1.00 0.85 .00 1.00 0.95 1.00 0.85 1.00 0.85 .00 1.00 0.95 1.00 0.85 1.00 0.85 .00 1.00 0.95 1.00 0.85 1.00 0.85 .00 1.00 0.95 1.00 0.95 1.00 0.95 1.00 .85 4916 3433 2814 0.94 0.94 0.94 0.94 0.94 0.94 0.94 <	3653 0 0 1029 450 253 0 691 0 3630 0 0 1029 450 253 0 691 0 300 1900	100 1029 450 253 0 691 0 0 0 0 0 0 1029 450 253 0 691 0 0 0 0 0 0 1000 1900 0 0 0 0 0 0 0 0 0

Ideal Flow (vphpl)		•		_	•	(,		
Lane Configurations			-	-	_	*	∢		
Traffic Volume (vph)	Movement				WBR	SBL	SBR		
Traffic Volume (vph) 342 1825 1418 248 463 972 Future Volume (vph) 342 1825 1418 248 463 972 Gléael Flow (vphpl) 1900 1900 1900 1900 1900 1900 Total Lost time (s) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Lane Util, Factor 1.00 0.95 0.95 1.00 1.00 1.00 Fit	Lane Configurations	ሻ	^	^	7	7	7		
Ideal Flow (yphpi)		342			248	463	972		
Total Lost time (s) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Lane Util. Factor 1.00 0.95 0.95 1.00 1.00 1.00 0.85	Future Volume (vph)	342	1825	1418	248	463	972		
Lane Util. Factor	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Frit 1.00 1.00 1.00 1.00 0.85 1.00 0.85 Fil Protected 0.95 1.00 1.00 1.00 0.95 1.00 Fil Protected 0.95 1.00 1.00 1.00 0.95 1.00 Satd. Flow (prot) 1787 3539 3539 1583 1787 1599 Fil Permitted 0.95 1.00 1.00 1.00 0.95 1.00 Satd. Flow (perm) 1787 3539 3539 1583 1787 1599 Peak-hour factor, PHF 0.88 0.88 0.88 0.93 0.93 0.87 0.87 Adj. Flow (vph) 389 2074 1525 267 532 1117 RTOR Reduction (vph) 0 0 0 0 186 0 165 Lane Group Flow (vph) 389 2074 1525 81 532 952 Heavy Vehicles (%) 1% 2% 2% 2% 1% 1% Turn Type Prot NA NA Perm Prot Prot Prot Protected Phases 1 6 2 3 3 3 Permitted Phases 2 2 3 3 3 Permitted Green, G (s) 5.0 29.0 18.0 18.0 18.0 18.0 Effective Green, g (s) 5.0 29.0 18.0 18.0 18.0 18.0 Clearance Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Vehicle Extension (s) 4.0 4.0 4.0 4.0 4.0 4.0 Lane Grp Cap (vph) 151 1739 1079 482 545 487 Vis Ratio Perm Vis Ratio Prot Co.22 0.59 c0.43 0.30 0.30 c0.60 Vis Ratio Perm Vis R	Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Fit Protected 0.95 1.00 1.00 1.00 0.95 1.00 Satd. Flow (prot) 1787 3539 3539 1583 1787 1599 Fit Permitted 0.95 1.00 1.00 1.00 0.95 1.00 Satd. Flow (perm) 1787 3539 3539 1583 1787 1599 Feak-hour factor, PHF 0.88 0.88 0.93 0.93 0.87 0.87 Adj. Flow (vph) 389 2074 1525 267 532 1117 RTOR Reduction (vph) 0 0 0 186 0 165 Lane Group Flow (vph) 389 2074 1525 81 532 952 Heavy Vehicles (%) 1% 2% 2% 2% 1% 1% 1% 1% 1 Turn Type Prot NA NA Perm Prot Prot Prot Protected Phases 1 6 2 3 3 3 Permitted Phases 2 Actuated Green, G (s) 5.0 29.0 18.0 18.0 18.0 18.0 Effective Green, g (s) 5.0 29.0 18.0 18.0 18.0 18.0 18.0 Effective Green, g (s) 5.0 29.0 18.0 18.0 18.0 18.0 18.0 Clearance Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Clearance Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Clearance Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Clearance Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 Clearance Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 Clearance Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 Clearance Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 Clearance Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 Clearance Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 Clearance Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 Clearance Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 Clearance Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 Clearance Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 Clearance Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Clearance Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 Clearance Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 Clearance Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Clearance Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Clearance Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Clearance Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Clearance Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00		
Satd. Flow (prot) 1787 3539 3539 1583 1787 1599 Flt Permitted 0.95 1.00 1.00 1.00 0.95 1.00 Satd. Flow (perm) 1787 3539 3539 1583 1787 1599 Peak-hour factor, PHF 0.88 0.88 0.93 0.93 0.87 0.87 Adj. Flow (vph) 389 2074 1525 267 532 1117 RTOR Reduction (vph) 0 0 0 186 0 165 Lane Group Flow (vph) 389 2074 1525 81 532 952 Heavy Vehicles (%) 1% 2% 2% 2% 1% 1% Turn Type Prot NA NA Perm Prot Prot Protected Phases 1 6 2 3 3 Permitted Phases 2 2 3 18.0 Actuated Green, G (s) 5.0 29.0 18.0 18.0<	Frt	1.00	1.00	1.00	0.85	1.00	0.85		
Fit Permitted 0.95 1.00 1.00 1.00 0.95 1.00 Satd. Flow (perm) 1787 3539 3539 1583 1787 1599 Peak-hour factor, PHF 0.88 0.88 0.93 0.93 0.87 0.87 Adj. Flow (yph) 389 2074 1525 267 532 11117 RTOR Reduction (yph) 0 0 0 1866 0 165 Lane Group Flow (yph) 389 2074 1525 81 532 952 Heavy Vehicles (%) 1% 2% 2% 2% 1% 1% 1% Turn Type Prot NA NA Perm Prot Prot Prot Protected Phases 1 6 2 3 3 3 Permitted Phases 2 Actuated Green, G (s) 5.0 29.0 18.0 18.0 18.0 18.0 18.0 Effective Green, g (s) 5.0 29.0 18.0 18.0 18.0 18.0 18.0 Actuated g/C Ratio 0.08 0.49 0.31 0.31 0.31 0.31 Clearance Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4	Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (perm) 1787 3539 3539 1583 1787 1599 Peak-hour factor, PHF 0.88 0.88 0.93 0.93 0.87 0.87 Adj. Flow (vph) 389 2074 1525 267 532 1117 RTOR Reduction (vph) 0 0 0 186 0 165 Lane Group Flow (vph) 389 2074 1525 81 532 952 Heavy Vehicles (%) 1% 2% 2% 1% 1% Lane Group Flow (vph) 389 2074 1525 81 532 952 Heavy Vehicles (%) 1% 2% 2% 1% 1% 1% Permitted Phases 1 6 2 3 3 3 9 Permitted Phases 2 2 Actuated Green, G (s) 5.0 29.0 18.0 18.0 18.0 18.0 Effective Green, G (s) 5.0 29.0 18.0 18.0 18.0	Satd. Flow (prot)	1787	3539	3539	1583	1787	1599		
Peak-hour factor, PHF 0.88 0.88 0.93 0.93 0.87 Adj. Flow (vph) 389 2074 1525 267 532 1117 RTOR Reduction (vph) 0 0 0 186 0 165 Lane Group Flow (vph) 389 2074 1525 81 532 952 Heavy Vehicles (%) 1% 2% 2% 2% 1% 1% Turn Type Prot NA NA Permitted Phases 1 6 2 3 3 Permitted Phases 1 6 2 3 3 3 Permitted Phases 2 2 18.0 18.0 18.0 18.0 Ffective Green, G (s) 5.0 29.0 18.0 18.0 18.0 18.0 Effective Green, g (s) 5.0 29.0 18.0 18.0 18.0 18.0 Effective Green, g (s) 5.0 29.0 18.0 18.0 18.0 18.0	Flt Permitted	0.95	1.00	1.00	1.00	0.95	1.00		
Adj. Flow (vph) 389 2074 1525 267 532 1117 RTOR Reduction (vph) 0 0 0 186 0 165 Lane Group Flow (vph) 389 2074 1525 81 532 952 Heavy Vehicles (%) 1% 2% 2% 2% 1% 1% Turn Type Prot NA NA Perm Prot Prot Protected Phases 1 6 2 3 3 Permitted Phases 2 2 3 3 Permitted Phases 1 6 2 3 3 Permitted Phases 2 2 3 3 Actuated Green, G (s) 5.0 29.0 18.0 18.0 18.0 18.0 Effective Green, g (s) 5.0 29.0 18.0 18.0 18.0 18.0 Effective Green, g (s) 5.0 29.0 18.0 18.0 18.0 18.0 Metacted S	Satd. Flow (perm)	1787	3539	3539	1583	1787	1599		
Adj. Flow (vph) 389 2074 1525 267 532 1117 RTOR Reduction (vph) 0 0 0 186 0 165 Lane Group Flow (vph) 389 2074 1525 81 532 952 Heavy Vehicles (%) 1% 2% 2% 2% 1% 1% Turn Type Prot NA NA Perm Prot Prot Protected Phases 1 6 2 3 3 Permitted Phases 2 2 3 3 Permitted Phases 1 6 2 3 3 Permitted Phases 2 2 3 3 Actuated Green, G (s) 5.0 29.0 18.0 18.0 18.0 18.0 Effective Green, g (s) 5.0 29.0 18.0 18.0 18.0 18.0 Effective Green, g (s) 5.0 29.0 18.0 18.0 18.0 18.0 Metacted S	Peak-hour factor, PHF	0.88	0.88	0.93	0.93	0.87	0.87		
RTOR Reduction (vph)									
Lane Group Flow (vph) 389 2074 1525 81 532 952 Heavy Vehicles (%) 1% 2% 2% 2% 1% 1% Turn Type Prot NA NA Perm Prot Prot Protected Phases 1 6 2 3 3 Permitted Phases 2 2 Actuated Green, G (s) 5.0 29.0 18.0 18.0 18.0 Effective Green, g (s) 5.0 29.0 18.0 18.0 18.0 18.0 Actuated g/C Ratio 0.08 0.49 0.31 0.31 0.31 0.31 0.31 Clearance Time (s) 6.0									
Heavy Vehicles (%)	,								
Turn Type					2%				
Protected Phases 1 6 2 3 3 3 Permitted Phases 2 Actuated Green, G (s) 5.0 29.0 18.0 18.0 18.0 18.0 Effective Green, g (s) 5.0 29.0 18.0 18.0 18.0 18.0 Actuated g/C Ratio 0.08 0.49 0.31 0.31 0.31 0.31 Clearance Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Vehicle Extension (s) 4.0 4.0 4.0 4.0 4.0 4.0 Lane Grp Cap (vph) 151 1739 1079 482 545 487 v/s Ratio Prot c0.22 0.59 c0.43 0.30 c0.60 v/s Ratio Perm V/c Ratio 2.58 1.19 1.41 0.17 0.98 1.95 Uniform Delay, d1 27.0 15.0 20.5 15.0 20.3 20.5 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 728.2 92.7 191.5 0.8 32.3 436.8 Delay (s) 755.2 107.7 212.0 15.8 52.6 457.3 Level of Service F F F B D F Approach Delay (s) 210.0 182.8 326.7 Approach LOS F F F F F Intersection Summary HCM 2000 Control Delay 234.3 HCM 2000 Level of Service F HCM 2000 Volume to Capacity ratio 1.79 Actuated Cycle Length (s) 59.0 Sum of lost time (s) 18.0 Include Control Capacity Utilization 109.4% ICU Level of Service H Analysis Period (min) 15									
Permitted Phases									
Effective Green, g (s) 5.0 29.0 18.0 18.0 18.0 18.0 18.0 Actuated g/C Ratio 0.08 0.49 0.31 0.31 0.31 0.31 0.31 0.31 Clearance Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Vehicle Extension (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	Permitted Phases				2				
Actuated g/C Ratio 0.08 0.49 0.31 0.31 0.31 0.31 0.31 Clearance Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Vehicle Extension (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 Lane Grp Cap (vph) 151 1739 1079 482 545 487 v/s Ratio Prot c0.22 0.59 c0.43 0.30 c0.60 v/s Ratio Perm 0.05 v/c Ratio 2.58 1.19 1.41 0.17 0.98 1.95 Uniform Delay, d1 27.0 15.0 20.5 15.0 20.3 20.5 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 728.2 92.7 191.5 0.8 32.3 436.8 Delay (s) 755.2 107.7 212.0 15.8 52.6 457.3 Level of Service F F F F B D F Approach Delay (s) 210.0 182.8 326.7 Approach LOS F F F F F Intersection Summary HCM 2000 Control Delay 234.3 HCM 2000 Level of Service F HCM 2000 Volume to Capacity ratio 1.79 Actuated Cycle Length (s) 59.0 Sum of lost time (s) 18.0 Intersection Capacity Utilization 109.4% ICU Level of Service H Analysis Period (min) 15	Actuated Green, G (s)	5.0	29.0	18.0	18.0	18.0	18.0		
Actuated g/C Ratio 0.08 0.49 0.31 0.31 0.31 0.31 0.31 Clearance Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Vehicle Extension (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 Lane Grp Cap (vph) 151 1739 1079 482 545 487 v/s Ratio Prot c0.22 0.59 c0.43 0.30 c0.60 v/s Ratio Perm 0.05 v/c Ratio 2.58 1.19 1.41 0.17 0.98 1.95 Uniform Delay, d1 27.0 15.0 20.5 15.0 20.3 20.5 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 728.2 92.7 191.5 0.8 32.3 436.8 Delay (s) 755.2 107.7 212.0 15.8 52.6 457.3 Level of Service F F F F B D F Approach Delay (s) 210.0 182.8 326.7 Approach LOS F F F F F Intersection Summary HCM 2000 Control Delay 234.3 HCM 2000 Level of Service F HCM 2000 Volume to Capacity ratio 1.79 Actuated Cycle Length (s) 59.0 Sum of lost time (s) 18.0 Intersection Capacity Utilization 109.4% ICU Level of Service H Analysis Period (min) 15	,	5.0	29.0	18.0		18.0	18.0		
Clearance Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Vehicle Extension (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 Lane Grp Cap (vph) 151 1739 1079 482 545 487 v/s Ratio Prot c0.22 0.59 c0.43 0.30 c0.60 v/s Ratio Perm 0.05 v/c Ratio 2.58 1.19 1.41 0.17 0.98 1.95 Uniform Delay, d1 27.0 15.0 20.5 15.0 20.3 20.5 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 728.2 92.7 191.5 0.8 32.3 436.8 Delay (s) 755.2 107.7 212.0 15.8 52.6 457.3 Level of Service F F F F B D F Approach Delay (s) 210.0 182.8 326.7 Approach LOS F F F F F F Intersection Summary HCM 2000 Control Delay 234.3 HCM 2000 Level of Service F HCM 2000 Volume to Capacity ratio 1.79 Actuated Cycle Length (s) 59.0 Sum of lost time (s) 18.0 Intersection Capacity Utilization 109.4% ICU Level of Service H Analysis Period (min) 15	- · · ·	0.08	0.49	0.31	0.31	0.31	0.31		
Vehicle Extension (s) 4.0 4.0 4.0 4.0 4.0 4.0 Lane Grp Cap (vph) 151 1739 1079 482 545 487 v/s Ratio Prot c0.22 0.59 c0.43 0.30 c0.60 v/s Ratio Perm 0.05 0.05 0.05 v/c Ratio 2.58 1.19 1.41 0.17 0.98 1.95 Uniform Delay, d1 27.0 15.0 20.5 15.0 20.3 20.5 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 728.2 92.7 191.5 0.8 32.3 436.8 Delay (s) 755.2 107.7 212.0 15.8 52.6 457.3 Level of Service F F F F F Approach LOS F F F F Intersection Summary 40 1.79 1.79 1.79 1.79 1.79 1.79		6.0	6.0	6.0	6.0	6.0	6.0		
Lane Grp Cap (vph) 151 1739 1079 482 545 487 v/s Ratio Prot c0.22 0.59 c0.43 0.30 c0.60 v/s Ratio Perm 0.05 v/c Ratio 2.58 1.19 1.41 0.17 0.98 1.95 Uniform Delay, d1 27.0 15.0 20.5 15.0 20.3 20.5 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 728.2 92.7 191.5 0.8 32.3 436.8 Delay (s) 755.2 107.7 212.0 15.8 52.6 457.3 Level of Service F F F F F Approach Delay (s) 210.0 182.8 326.7 326.7 Approach LOS F F F F Intersection Summary F F F F Intersection Capacity (s) 59.0 Sum of lost time (s) 18.0									
v/s Ratio Prot c0.22 0.59 c0.43 0.30 c0.60 v/s Ratio Perm 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.00 0									
v/s Ratio Perm 0.05 v/c Ratio 2.58 1.19 1.41 0.17 0.98 1.95 Uniform Delay, d1 27.0 15.0 20.5 15.0 20.3 20.5 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 728.2 92.7 191.5 0.8 32.3 436.8 Delay (s) 755.2 107.7 212.0 15.8 52.6 457.3 Level of Service F F F B D F Approach Delay (s) 210.0 182.8 326.7 Approach LOS F F F Intersection Summary F F F F F F F F F HCM 2000 Control Delay 234.3 HCM 2000 Level of Service F F H H Actuated Cycle Length (s) 59.0 Sum of lost time (s) 18.0 Intersection Capacity Utilization 109.4% ICU Level of Service H Analysis Period (min) 15									
v/c Ratio 2.58 1.19 1.41 0.17 0.98 1.95 Uniform Delay, d1 27.0 15.0 20.5 15.0 20.3 20.5 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 728.2 92.7 191.5 0.8 32.3 436.8 Delay (s) 755.2 107.7 212.0 15.8 52.6 457.3 Level of Service F F F B D F Approach Delay (s) 210.0 182.8 326.7 326.7 326.7 Approach LOS F F F F F F Intersection Summary F F F F F F F HCM 2000 Control Delay 234.3 HCM 2000 Level of Service F F H H Actuated Cycle Length (s) 59.0 Sum of lost time (s) 18.0 Intersection Capacity Utilization 109.4% ICU Level of Service					0.05				
Uniform Delay, d1 27.0 15.0 20.5 15.0 20.3 20.5 Progression Factor 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 728.2 92.7 191.5 0.8 32.3 436.8 Delay (s) 755.2 107.7 212.0 15.8 52.6 457.3 Level of Service F F F B D F Approach Delay (s) 210.0 182.8 326.7 Approach LOS F F Intersection Summary F F F F F HCM 2000 Control Delay 234.3 HCM 2000 Level of Service F HCM 2000 Volume to Capacity ratio 1.79 Sum of lost time (s) 18.0 Actuated Cycle Length (s) 59.0 Sum of lost time (s) 18.0 Intersection Capacity Utilization 109.4% ICU Level of Service H Analysis Period (min) 15		2.58	1.19	1.41		0.98	1.95		
Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 728.2 92.7 191.5 0.8 32.3 436.8 Delay (s) 755.2 107.7 212.0 15.8 52.6 457.3 Level of Service F F F B D F Approach Delay (s) 210.0 182.8 326.7 Approach LOS F F Intersection Summary F F F F F HCM 2000 Control Delay 234.3 HCM 2000 Level of Service F HCM 2000 Volume to Capacity ratio 1.79 Actuated Cycle Length (s) 59.0 Sum of lost time (s) 18.0 Intersection Capacity Utilization 109.4% ICU Level of Service H Analysis Period (min) 15									
Incremental Delay, d2									
Delay (s) 755.2 107.7 212.0 15.8 52.6 457.3 Level of Service F F F B D F Approach Delay (s) 210.0 182.8 326.7 Approach LOS F F F Intersection Summary HCM 2000 Control Delay 234.3 HCM 2000 Level of Service F HCM 2000 Volume to Capacity ratio 1.79 Actuated Cycle Length (s) 59.0 Sum of lost time (s) 18.0 Intersection Capacity Utilization 109.4% ICU Level of Service H Analysis Period (min) 15									
Level of Service F F F B D F Approach Delay (s) 210.0 182.8 326.7 Approach LOS F F F Intersection Summary HCM 2000 Control Delay 234.3 HCM 2000 Level of Service F HCM 2000 Volume to Capacity ratio 1.79 Actuated Cycle Length (s) 59.0 Sum of lost time (s) 18.0 Intersection Capacity Utilization 109.4% ICU Level of Service H Analysis Period (min) 15	•		107.7	212.0			457.3		
Approach LOS F F F F F F F F F F F F F F F F F F F		F		F		D			
Approach LOS F F F F F F F F F F F F F F F F F F F	Approach Delay (s)		210.0	182.8		326.7			
HCM 2000 Control Delay234.3HCM 2000 Level of ServiceFHCM 2000 Volume to Capacity ratio1.79Actuated Cycle Length (s)59.0Sum of lost time (s)18.0Intersection Capacity Utilization109.4%ICU Level of ServiceHAnalysis Period (min)15	Approach LOS		F	F		F			
HCM 2000 Volume to Capacity ratio1.79Actuated Cycle Length (s)59.0Sum of lost time (s)18.0Intersection Capacity Utilization109.4%ICU Level of ServiceHAnalysis Period (min)15	Intersection Summary								
Actuated Cycle Length (s) 59.0 Sum of lost time (s) 18.0 Intersection Capacity Utilization 109.4% ICU Level of Service H Analysis Period (min) 15	HCM 2000 Control Delay			234.3	H	CM 2000	Level of Service		F
Intersection Capacity Utilization 109.4% ICU Level of Service H Analysis Period (min) 15	HCM 2000 Volume to Capa	acity ratio		1.79					
Analysis Period (min) 15	Actuated Cycle Length (s)			59.0	Sı	um of los	t time (s)	18.	0
· · · · · · · · · · · · · · · · · · ·	Intersection Capacity Utiliza	ation		109.4%	IC	U Level	of Service		Н
c Critical Lane Group	Analysis Period (min)			15					
	c Critical Lane Group								

	۶	→	•	•	+	•	1	†	/	\	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	£		ħ	†	7	ň	∱ β		7	†	7
Traffic Volume (vph)	154	5	17	10	27	657	17	633	8	158	150	96
Future Volume (vph)	154	5	17	10	27	657	17	633	8	158	150	96
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0		4.5	6.0	6.0
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	0.95		1.00	1.00	1.00
Frt	1.00	0.88		1.00	1.00	0.85	1.00	1.00		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1805	1681		1805	1792	1599	1805	3568		1736	1845	1615
FIt Permitted	0.73	1.00		0.74	1.00	1.00	0.66	1.00		0.16	1.00	1.00
Satd. Flow (perm)	1395	1681		1407	1792	1599	1245	3568		289	1845	1615
Peak-hour factor, PHF	0.84	0.84	0.84	0.77	0.77	0.77	0.89	0.89	0.89	0.93	0.93	0.93
Adj. Flow (vph)	183	6	20	13	35	853	19	711	9	170	161	103
RTOR Reduction (vph)	0	11	0	0	0	156	0	1	0	0	0	63
Lane Group Flow (vph)	183	15	0	13	35	697	19	719	0	170	161	40
Heavy Vehicles (%)	0%	0%	0%	0%	6%	1%	0%	1%	0%	4%	3%	0%
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		pm+pt	NA	Perm
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8		8	2			6		6
Actuated Green, G (s)	39.5	39.5		39.5	39.5	39.5	20.8	20.8		32.9	32.9	32.9
Effective Green, g (s)	39.5	39.5		39.5	39.5	39.5	20.8	20.8		32.9	32.9	32.9
Actuated g/C Ratio	0.47	0.47		0.47	0.47	0.47	0.25	0.25		0.39	0.39	0.39
Clearance Time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0		4.5	6.0	6.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	652	786		658	838	748	306	879		242	719	629
v/s Ratio Prot		0.01			0.02			c0.20		c0.06	0.09	
v/s Ratio Perm	0.13			0.01		c0.44	0.02			0.21		0.02
v/c Ratio	0.28	0.02		0.02	0.04	0.93	0.06	0.82		0.70	0.22	0.06
Uniform Delay, d1	13.7	12.1		12.1	12.2	21.2	24.3	30.0		19.3	17.2	16.1
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	0.2	0.0		0.0	0.0	18.3	0.1	6.0		8.9	0.2	0.0
Delay (s)	14.0	12.1		12.1	12.2	39.5	24.4	36.0		28.1	17.4	16.2
Level of Service	В	В		В	В	D	С	D		С	В	В
Approach Delay (s)		13.7			38.0			35.7			21.3	
Approach LOS		В			D			D			С	
Intersection Summary												
HCM 2000 Control Delay			31.9	H	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capac	city ratio		0.87									
Actuated Cycle Length (s)			84.4		um of los				16.5			
Intersection Capacity Utilizat	ion		82.6%	IC	U Level	of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

Intersection	205 7					
Int Delay, s/veh	335.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ĵ»			4	W	
Traffic Vol, veh/h	153	18	13	400	294	66
Future Vol, veh/h	153	18	13	400	294	66
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	_	None	_	None
Storage Length	_	-	-	-	0	-
Veh in Median Storage	e,# 0	_	_	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	70	70	73	73	40	40
	4	0	0	2	-	-
Heavy Vehicles, %			-		725	0
Mvmt Flow	219	26	18	548	735	165
Major/Minor	Major1	N	Major2		Minor1	
Conflicting Flow All	0	0	245	0	816	232
Stage 1	-	U	245		232	232
		-		-	584	
Stage 2	-	-	-	-		-
Critical Hdwy	-	-	4.1	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1333	-	~ 349	812
Stage 1	-	-	-	-	811	-
Stage 2	-	-	-	-	~ 561	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1333	-	~ 342	812
Mov Cap-2 Maneuver	_	_	-		~ 342	-
Stage 1	_		_	_	811	_
Stage 2					~ 550	_
Slaye 2		_			330	
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.2	\$	637.8	
HCM LOS				•	F	
					•	
Minor Lane/Major Mvn	nt 1	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		383	-	-	1333	-
HCM Lane V/C Ratio		2.35	-	-	0.013	-
HCM Control Delay (s)) \$	637.8	-	-	7.7	0
HCM Lane LOS	, +	F	_	_	Α	A
HCM 95th %tile Q(veh	1)	69.5	_	_	0	_
	·/	00.0				
Notes						
~: Volume exceeds ca	pacity	\$: De	lay exc	eeds 30)0s -	+: Comp

Intersection						
Int Delay, s/veh	0.7					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
				WBK		SBK
Lane Configurations	ች	↑	}	^	Y	4.4
Traffic Vol, veh/h	8	210	400	3	1	14
Future Vol, veh/h	8	210	400	3	1	14
Conflicting Peds, #/hr	0	0	0	0	0	0
0	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	0	-
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	63	63	77	77	36	36
Heavy Vehicles, %	40	0	0	1	0	11
Mvmt Flow	13	333	519	4	3	39
		000	010	•		00
	ajor1	N	//ajor2		Minor2	
Conflicting Flow All	523	0	-	0	880	521
Stage 1	-	-	-	-	521	-
Stage 2	-	-	-	-	359	-
Critical Hdwy	4.5	-	-	-	6.4	6.31
Critical Hdwy Stg 1	_	_	_	_	5.4	_
Critical Hdwy Stg 2	_	_	_	_	5.4	_
Follow-up Hdwy	2.56	_	_	_		3.399
Pot Cap-1 Maneuver	876	_	_	_	320	538
Stage 1	-		_	<u>-</u>	600	-
		_	_		711	_
Stage 2	-				711	-
Platoon blocked, %	070	-	-	-	0.45	500
Mov Cap-1 Maneuver	876	-	-	-	315	538
Mov Cap-2 Maneuver	-	-	-	-	315	-
Stage 1	-	-	-	-	591	-
Stage 2	-	-	-	-	711	-
Approach	EB		WB		SB	
	0.3		0		12.6	
HCM Control Delay, s	0.3		U			
HCM LOS					В	
Minor Lane/Major Mvmt		EBL	EBT	WBT	WBR :	SBLn1
Capacity (veh/h)		876	-			514
HCM Lane V/C Ratio		0.014	_	<u>-</u>		0.081
HCM Control Delay (s)		9.2	-		_	12.6
			-			
HCM Lane LOS		A	-	-	-	В
HCM 95th %tile Q(veh)		0	-	-	-	0.3

Intersection						
Int Delay, s/veh	0.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	7>	בטוע	TTDL	4	¥	אופא
Traffic Vol, veh/h	218	1	0	230	12	0
Future Vol, veh/h	218	1	0	230	12	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-			None	-	
Storage Length	_	-	_	-	0	-
Veh in Median Storage		_	_	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	78	78	81	81	71	71
Heavy Vehicles, %	0	0	0	1	11	0
Mymt Flow	279	1	0	284	17	0
IVIVIIIL FIOW	219	ı	U	204	17	U
Major/Minor	Major1	N	//ajor2		Minor1	
Conflicting Flow All	0	0	280	0	564	280
Stage 1	-	-	-	-	280	-
Stage 2	-	-	-	-	284	-
Critical Hdwy	-	-	4.1	-	6.51	6.2
Critical Hdwy Stg 1	-	-	-	-	5.51	-
Critical Hdwy Stg 2	-	-	-	-	5.51	-
Follow-up Hdwy	-	-	2.2	-	3.599	3.3
Pot Cap-1 Maneuver	_	-	1294	-	472	764
Stage 1	_	_	-	-	747	-
Stage 2	-	_	_	-	744	-
Platoon blocked, %	_	_		_		
Mov Cap-1 Maneuver	_	_	1294	_	472	764
Mov Cap-1 Maneuver	_	_	1234	_	472	- 104
Stage 1	-	_		_	747	
Stage 2	_	_	_		744	-
Olaye Z	_	_	-	_	144	_
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		12.9	
HCM LOS					В	
Minor Lane/Major Mvn	nt I	NBLn1	EBT	EBR	WBL	WBT
	IL I					
Capacity (veh/h)		472	-	-	1294	-
HCM Cantral Dalay (a)		0.036	-	-	-	-
HCM Control Delay (s		12.9	-	-	0	-
HCM Lane LOS	\	В	-	-	A	-
HCM 95th %tile Q(veh)	0.1	-	-	0	-

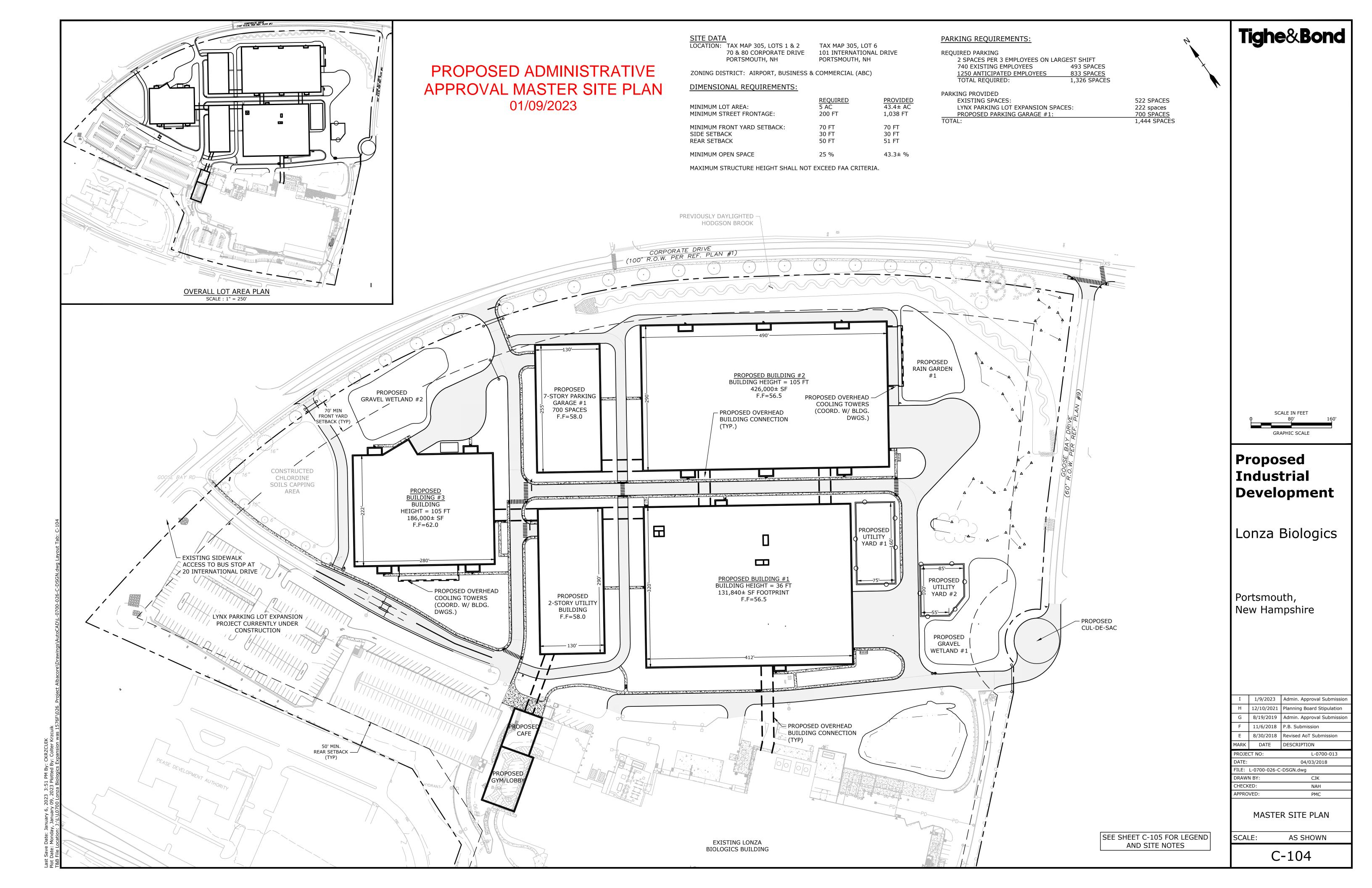
-						
Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	WDL.	VVDIX	1\D1	NDIX	ODL	<u>ુુકા</u>
Traffic Vol, veh/h	<u></u>	12	0	0	1	0
Future Vol, veh/h	1	12	0	0	1	0
·	0	0	0	0	0	0
Conflicting Peds, #/hr				Free	Free	Free
Sign Control RT Channelized	Stop -	Stop	Free	None		
		None			-	
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	67	67	69	69	50	50
Heavy Vehicles, %	0	0	10	0	0	0
Mvmt Flow	1	18	0	0	2	0
Major/Minor I	Minor1	N	Major1	ı	/lajor2	
		0		0	0 (najorz	0
Conflicting Flow All	4		0			
Stage 1	0	-	-	-	-	-
Stage 2	4	-	-	-	-	-
Critical Hdwy	6.4	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	1023	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	1024	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	1023	_	_	-	_	-
Mov Cap-2 Maneuver	1023	-	-	_	-	_
Stage 1	-	_	_	_	_	_
Stage 2	1024	_	_	_	_	_
Stage 2	1024					
Approach	WB		NB		SB	
HCM Control Delay, s			0			
HCM LOS	-					
NAinan Lana (NA di Ant		NDT	MDD	MDL 4	ODI	OPT
Minor Lane/Major Mvm	τ	NBT	NRKA	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	-	-	-
HCM Lane V/C Ratio		-	-	-	-	-
HCM Control Delay (s)		-	-	-	-	-
HCM Lane LOS		-	-	-	-	-
HCM 95th %tile Q(veh)		-	-	-	-	-

-						
Intersection						
Int Delay, s/veh	6.8					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	₩.	EDR	INDL			SDK
	T	0	0	र्स 1	1	0
Traffic Vol, veh/h						
Future Vol, veh/h	3	0	0	1	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None	-	
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	25	25	63	63	63	63
Heavy Vehicles, %	0	0	0	0	10	0
Mvmt Flow	12	0	0	2	0	0
Major/Minor I	Minor2	N	Major1	N	/lajor2	
		2	2			
Conflicting Flow All	4			0	-	0
Stage 1	2	-	-	-	-	-
Stage 2	2	-	-	-	-	-
Critical Hdwy	6.4	6.2	4.1	-	-	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	1023	1088	1634	-	-	-
Stage 1	1026	-	-	-	-	-
Stage 2	1026	-	-	-	-	-
Platoon blocked, %				_	_	_
Mov Cap-1 Maneuver	1023	1088	1634	_	_	_
Mov Cap-1 Maneuver	1023	-	1007	_	_	_
Stage 1	1023		-	_		
		-	-		-	-
Stage 2	1026	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	8.6		0		0	
HCM LOS	A					
	,,					
		NE	NET	EDL 1	057	000
Minor Lane/Major Mvm	t	NBL		EBLn1	SBT	SBR
Capacity (veh/h)		1634		1023	-	-
HCM Lane V/C Ratio		-		0.012	-	-
HCM Control Delay (s)		0	-	8.6	-	-
HCM Lane LOS		Α	-	Α	-	-
HCM 95th %tile Q(veh)		0	-	0	-	-
,						

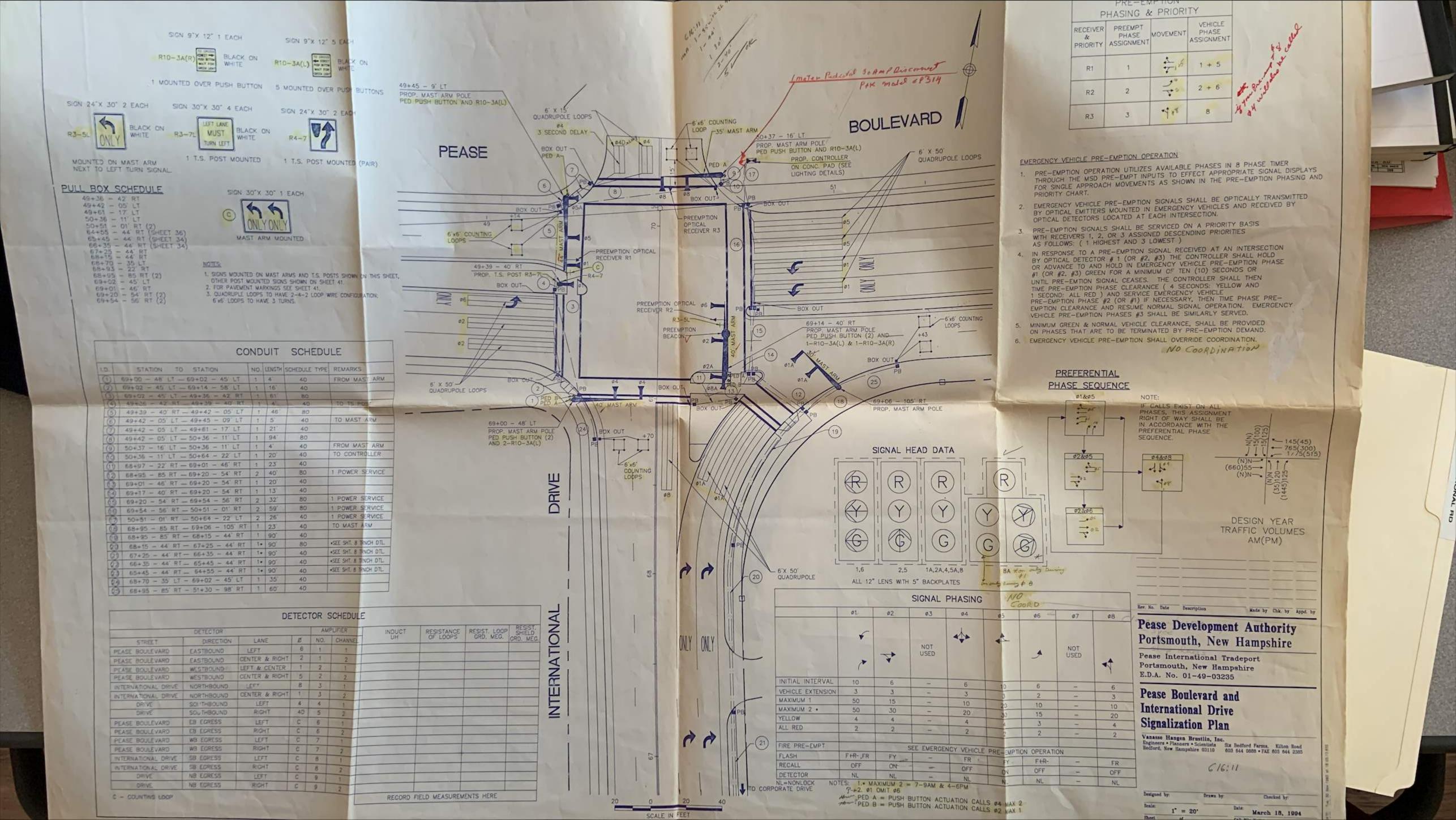
Int Delay, s/veh 3.2 3.2
Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR
Traffic Vol, veh/h
Traffic Vol, veh/h 0 0 0 0 144 0 216 0 13 12 6 Future Vol, veh/h 0 0 0 0 144 0 216 0 13 12 6 Conflicting Peds, #/hr 0
Future Vol, veh/h 0 0 0 0 144 0 216 0 13 12 6 Conflicting Peds, #/hr 0
Conflicting Peds, #/hr
Sign Control Stop Stop Stop Stop Stop Stop Free
RT Channelized - - None - - None - - None - - None - - None -
Storage Length -
Weh in Median Storage, # - 0 - 6 6 6 6 7 0
Grade, % - 0 - - 0 - - 0 - - 0 - 0 - - 0 - 0 - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 6 6 6 6 6 6 6 7 6 5 4 0<
Peak Hour Factor 92 92 92 92 92 92 39 39 92 92 67 67 Heavy Vehicles, % 2 2 2 2 2 2 2 0 0 2 2 0 0 Mwnt Flow 0 0 0 0 157 0 554 0 14 18 9 Major/Minor Minor1 Major1 Major2 0 0 0 0 554 0
Major/Minor Minor2 Minor1 Major1 Major2 Major3 Major4 Major5 Major
Mymt Flow 0 0 0 0 157 0 554 0 14 18 9 Major/Minor Minor1 Minor1 Major1 Major2 Conflicting Flow All 684 605 23 605 609 554 27 0 0 554 0 0 Stage 1 51 51 - 554 554 -
Major/Minor Minor2 Minor1 Major1 Major2 Conflicting Flow All 684 605 23 605 609 554 27 0 0 554 0 0 Stage 1 51 51 - 554 554 -
Conflicting Flow All 684 605 23 605 609 554 27 0 0 554 0 0 Stage 1 51 51 51 - 554 554 -
Conflicting Flow All 684 605 23 605 609 554 27 0 0 554 0 0 Stage 1 51 51 51 - 554 554 -
Stage 1 51 51 - 554 554 - <
Stage 1 51 51 - 554 554 - <
Critical Hdwy 7.12 6.52 6.22 7.12 6.52 6.22 7.12 6.52 6.22 4.1 - - 4.12 - - Critical Hdwy Stg 1 6.12 5.52 - 6.12 5.52 -
Critical Hdwy Stg 1 6.12 5.52 - 6.12 5.52 -
Critical Hdwy Stg 2 6.12 5.52 - 6.12 5.52 -
Follow-up Hdwy 3.518 4.018 3.318 3.518 4.018 3.318 2.2 2.218 Pot Cap-1 Maneuver 363 412 1054 410 410 532 1600 1016 Stage 1 962 852 - 517 514 Stage 2 468 514 - 962 849
Pot Cap-1 Maneuver 363 412 1054 410 410 532 1600 - - 1016 - - Stage 1 962 852 - 517 514 - <
Stage 1 962 852 - 517 514 -
Stage 2 468 514 - 962 849 -
Platoon blocked, % -
Mov Cap-1 Maneuver 253 406 1054 405 404 532 1600 - - 1016 - - Mov Cap-2 Maneuver 253 406 - 405 404 - <
Mov Cap-2 Maneuver 253 406 - 405 404 Stage 1 962 840 - 517 514
Stage 1 962 840 - 517 514
Stage 2 320 514 040 937
Stage 2 330 314 - 949 637
Approach EB WB NB SB
HCM Control Delay, s 0 14.6 0 3
HCM LOS A B
Miner Lene/Meier Miner
Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1 SBL SBT SBR
Capacity (veh/h) 1600 532 1016
HCM Lane V/C Ratio 0.294 0.014
HCM Control Delay (s) 0 0 14.6 8.6 0 -
HCM Lane LOS A A B A A -
HCM 95th %tile Q(veh) 0 1.2 0

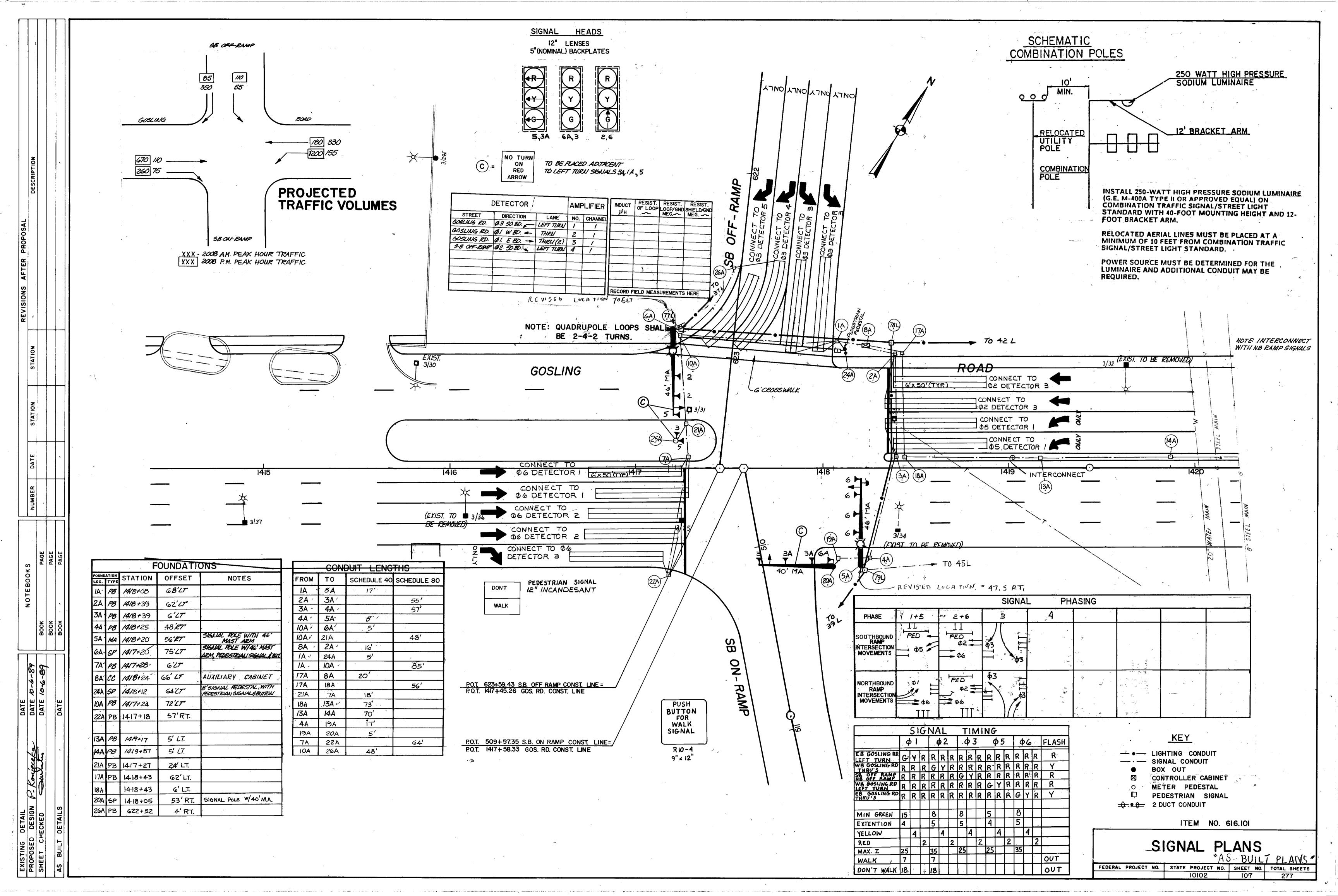
Intersection						
Int Delay, s/veh	0.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
		MOL		NDR	SDL	
Lane Configurations	¥	2	}	1		વ
Traffic Vol, veh/h	8	3	655	1	5	165
Future Vol, veh/h	8	3	655	1	5	165
Conflicting Peds, #/hr	0	0	0	_ 0	0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e,# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	88	88	78	78	76	76
Heavy Vehicles, %	0	0	1	0	0	4
Mvmt Flow	9	3	840	1	7	217
			010	•	•	
Major/Minor	Minor1	N	Major1		Major2	
Conflicting Flow All	1072	841	0	0	841	0
Stage 1	841	-	-	-	-	-
Stage 2	231	-	-	-	_	-
Critical Hdwy	6.4	6.2	_	_	4.1	_
Critical Hdwy Stg 1	5.4	- 0.2	_	_	-T. I	_
Critical Hdwy Stg 2	5.4	_	_	_	_	_
Follow-up Hdwy	3.5	3.3	_	_	2.2	_
	246	368			803	
Pot Cap-1 Maneuver					003	-
Stage 1	426	-	-	-	-	-
Stage 2	812	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver		368	-	-	803	-
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	426	-	-	-	-	-
Stage 2	804	-	-	_	_	-
	301					
Approach	WB		NB		SB	
HCM Control Delay, s	19		0		0.3	
HCM LOS	С					
				VDI (0.51	05-
Minor Lane/Major Mvr	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	269	803	-
HCM Lane V/C Ratio		-	-	0.046	0.008	-
HCM Control Delay (s)	-	-	19	9.5	0
HCM Lane LOS		-	-	С	Α	Α
HCM 95th %tile Q(veh	1)	_	-	0.1	0	-
/ 0 2 (101	,					

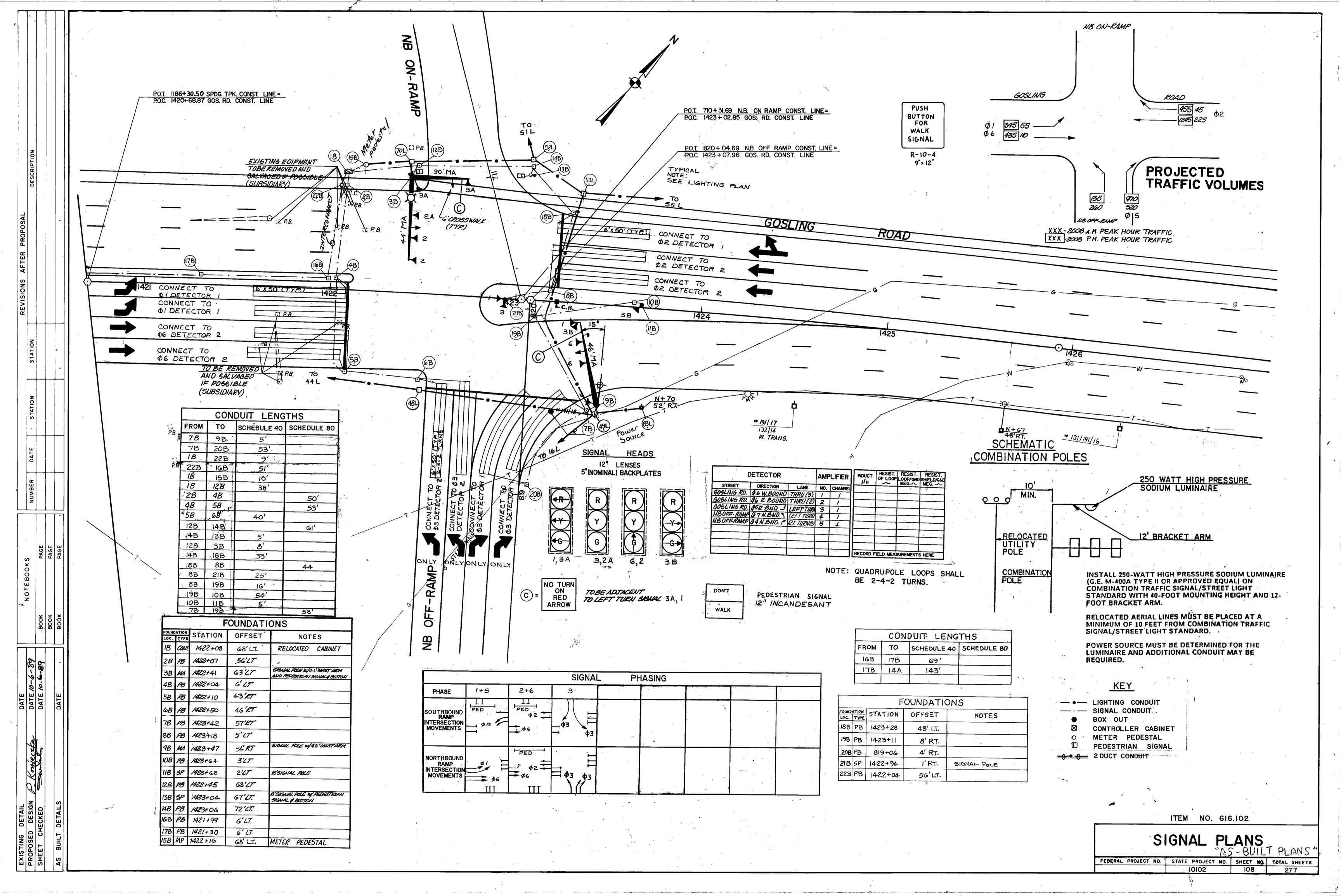
•						
Intersection						
Int Delay, s/veh	12.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	₩.	WDIX	♣	NDIX	ODL	<u>⊕</u>
Traffic Vol, veh/h	54	166	490	17	15	158
Future Vol, veh/h	54	166	490	17	15	158
Conflicting Peds, #/hr	0	0	0	_ 0	0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	72	72	67	67	81	81
Heavy Vehicles, %	14	0	1	46	0	3
Mvmt Flow	75	231	731	25	19	195
WWWIICTIOW	70	201	701	20	10	150
Major/Minor	Minor1	N	//ajor1	N	Major2	
Conflicting Flow All	977	744	0	0	756	0
Stage 1	744	-	_	_	-	-
Stage 2	233	_	_	_	_	_
Critical Hdwy	6.54	6.2	_	_	4.1	_
Critical Hdwy Stg 1	5.54	- 0.2	<u>-</u>	_	T. I	_
		_				
Critical Hdwy Stg 2	5.54		-	-	-	-
Follow-up Hdwy	3.626	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	264	418	-	-	864	-
Stage 1	449	-	-	-	-	-
Stage 2	778	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	257	418	-	-	864	-
Mov Cap-2 Maneuver	257	-	-	-	_	-
Stage 1	449	_	_	_	_	_
Stage 2	759	_	_	_	_	_
Olago Z	700					
Approach	WB		NB		SB	
HCM Control Delay, s	50.6		0		0.8	
HCM LOS	F					
Minor Long (Maior M	-4	NDT	MDDV	MDI 4	CDI	CDT
Minor Lane/Major Mvn	π	NBT	NRKA	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	362	864	-
HCM Lane V/C Ratio		-	-	0.844		-
HCM Control Delay (s)		-	-	50.6	9.3	0
HCM Lane LOS		-	-	F	Α	Α
HCM 95th %tile Q(veh)	-	-	7.7	0.1	-
	,					

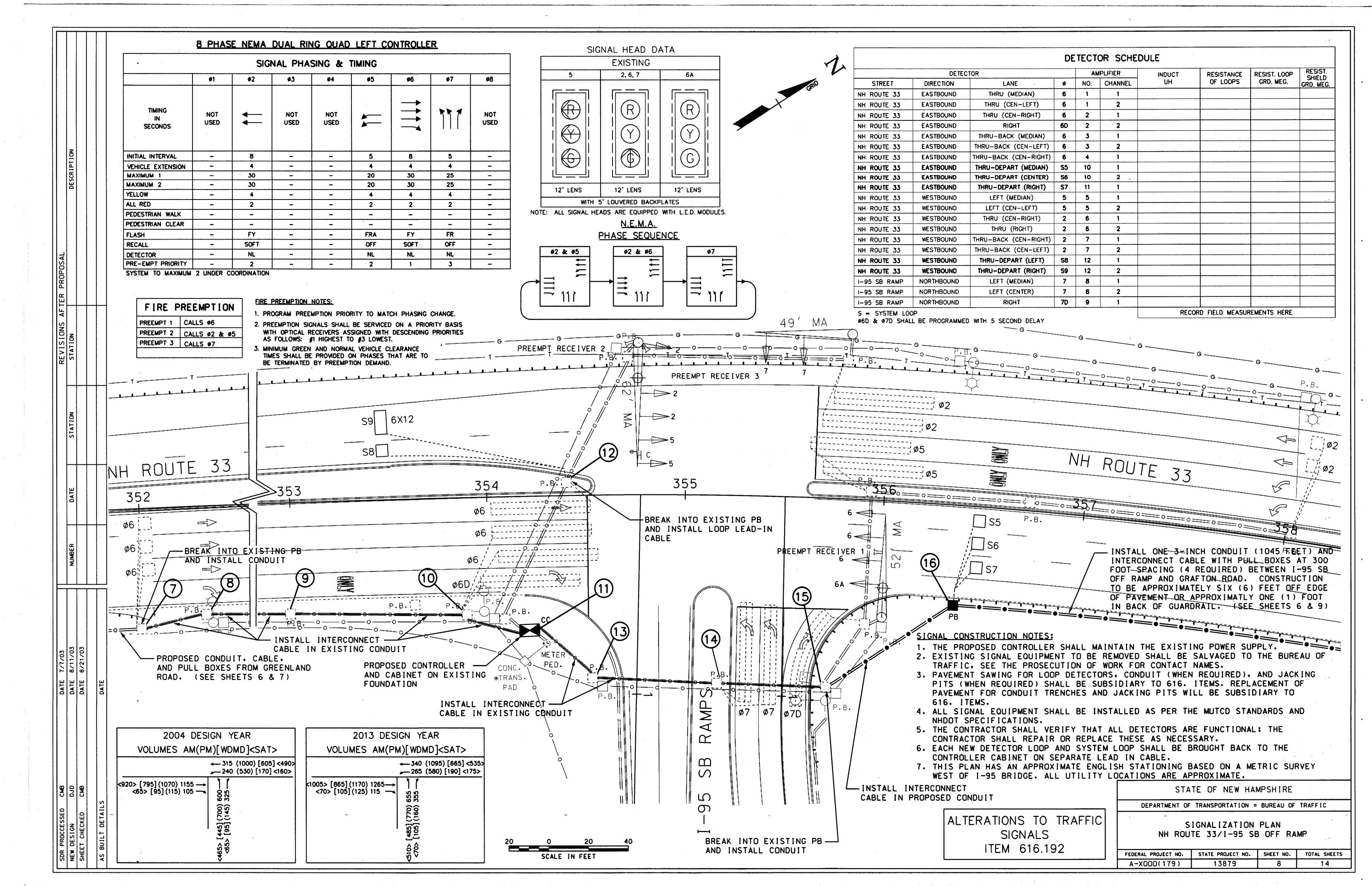

Intersection						
Int Delay, s/veh	0.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
	WBL	WDN		NDI	ODL	
Lane Configurations	T	E	♣	0	0	4 232
Traffic Vol, veh/h Future Vol, veh/h		5	404	0		232
·	0	0		0	0	
Conflicting Peds, #/hr	0		0		0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None	-	
Storage Length	0	-	-	-	-	-
Veh in Median Storage,		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	25	25	68	68	74	74
Heavy Vehicles, %	0	0	3	0	0	7
Mvmt Flow	0	20	594	0	0	314
Major/Minor N	/linor1	N	/lajor1	A	/lajor2	
						^
Conflicting Flow All	908	594	0	0	594	0
Stage 1	594	-	-	-	-	-
Stage 2	314	-	-	-	-	-
Critical Hdwy	6.4	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	308	509	-	-	992	-
Stage 1	555	-	-	-	-	-
Stage 2	745	-	_	-	_	-
Platoon blocked, %			_	_		_
Mov Cap-1 Maneuver	308	509	_	_	992	_
Mov Cap-2 Maneuver	308	-	_	-	-	_
Stage 1	555		_		_	_
	745	-		-		
Stage 2	740	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	12.4		0		0	
HCM LOS	В					
Minor Lane/Major Mvmt		NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-		992	-
HCM Lane V/C Ratio		-	-	0.039	-	-
HCM Control Delay (s)		-	-	12.4	0	-
HCM Lane LOS		-	-	В	Α	-
HCM 95th %tile Q(veh)		-	-	0.1	0	-
(3011)						

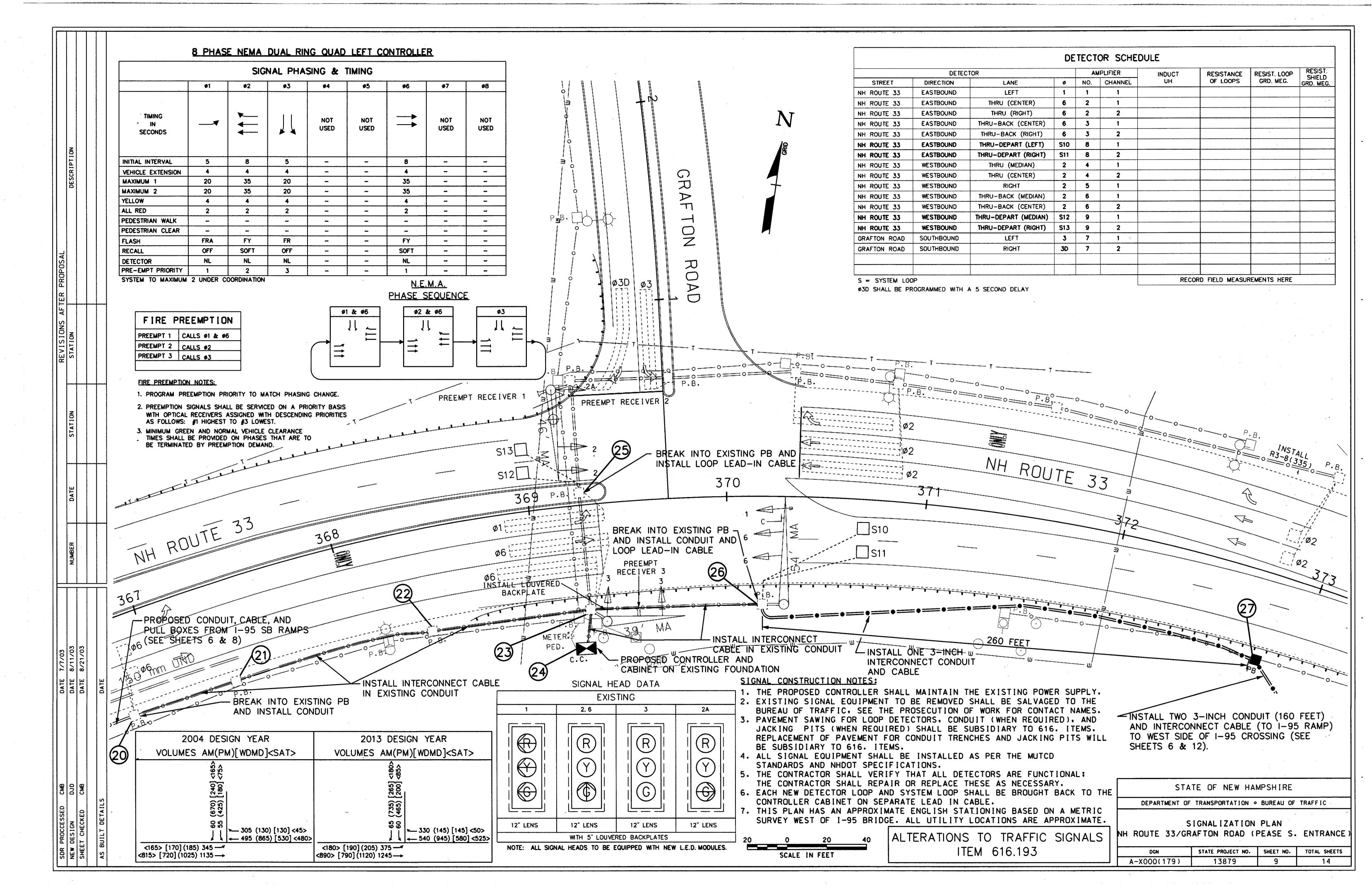
Intersection													
Int Delay, s/veh	205.8												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	LDL	4	LDIX	WDL	₩	WDIX	NDL	4	INDIX	ODL	4	SDIX	
Fraffic Vol, veh/h	30	23	3	314	21	23	1	326	114	3	560	14	
uture Vol, veh/h	30	23	3	314	21	23	1	326	114	3	560	14	
· · · · · · · · · · · · · · · · · · ·	0	23	0	0	0	0	0	0	0	0	0	0	
Conflicting Peds, #/hr													
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free None	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-		-	-	None	
Storage Length	- ш	-	-	-	-	-	-	-	-	-	-	-	
eh in Median Storage	•	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	- 04	0	- 0.4	-	0	-	
Peak Hour Factor	54	54	54	85	85	85	84	84	84	88	88	88	
leavy Vehicles, %	0	13	0	0	14	0	0	2	1	0	1	11	
Mvmt Flow	56	43	6	369	25	27	1	388	136	3	636	16	
lajor/Minor	Minor2			Minor1			Major1		N	Major2			
	1134	1176	644		1116	456	652	^	0	524	0	0	
Conflicting Flow All	650	650		1133 458	1116			0					
Stage 1			-		458	-	-	-	-	-	-	-	
Stage 2	484	526	-	675	658	-	-	-	-	-	-	-	
itical Hdwy	7.1	6.63	6.2	7.1	6.64	6.2	4.1	-	-	4.1	-	-	
ritical Hdwy Stg 1	6.1	5.63	-	6.1	5.64	-	-	-	-	-	-	-	
ritical Hdwy Stg 2	6.1	5.63	-	6.1	5.64	-	-	-	-	-	-	-	
ollow-up Hdwy	3.5	4.117	3.3	3.5	4.126	3.3	2.2	-	-	2.2	-	-	
ot Cap-1 Maneuver	181	182	476	~ 182	197	609	944	-	-	1053	-	-	
Stage 1	461	448	-	587	547	-	-	-	-	-	-	-	
Stage 2	568	511	-	447	443	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Nov Cap-1 Maneuver	155	181		~ 147	196	609	944	-	-	1053	-	-	
lov Cap-2 Maneuver	155	181	-	~ 147	196	-	-	-	-	-	-	-	
Stage 1	460	446	-	586	546	-	-	-	-	-	-	-	
Stage 2	517	510	-	398	441	-	-	-	-	-	-	-	
nnroach	EB			WD			ND			SB			
pproach				WB			NB						
ICM Control Delay, s	54.1		\$	820.1			0			0			
ICM LOS	F			F									
Minor Lane/Major Mvn	nt	NBL	NBT	NRR	EBLn1V	VBI n1	SBL	SBT	SBR				
Capacity (veh/h)		944		ואופאו	171	157	1053						
CM Lane V/C Ratio		0.001	-	_	0.606		0.003	-	-				
CM Control Delay (s)	8.8	0	-		820.1	8.4	0	-				
ICM Lane LOS)			-	54. IŞ F	620.1 F	0.4 A	A					
ICM 95th %tile Q(veh	1)	A 0	A -	-	3.3	37.3	0	- A	-				
•	'/	U			3.3	31.3	U						
lotes	.,	Φ. D.		1 04	20.		((NL (D	C	# A11			
: Volume exceeds ca	pacity	\$: De	lay exc	eeds 30	JUS -	+: Com	outation	Not De	etined	*: All r	najor v	olume in	platoon

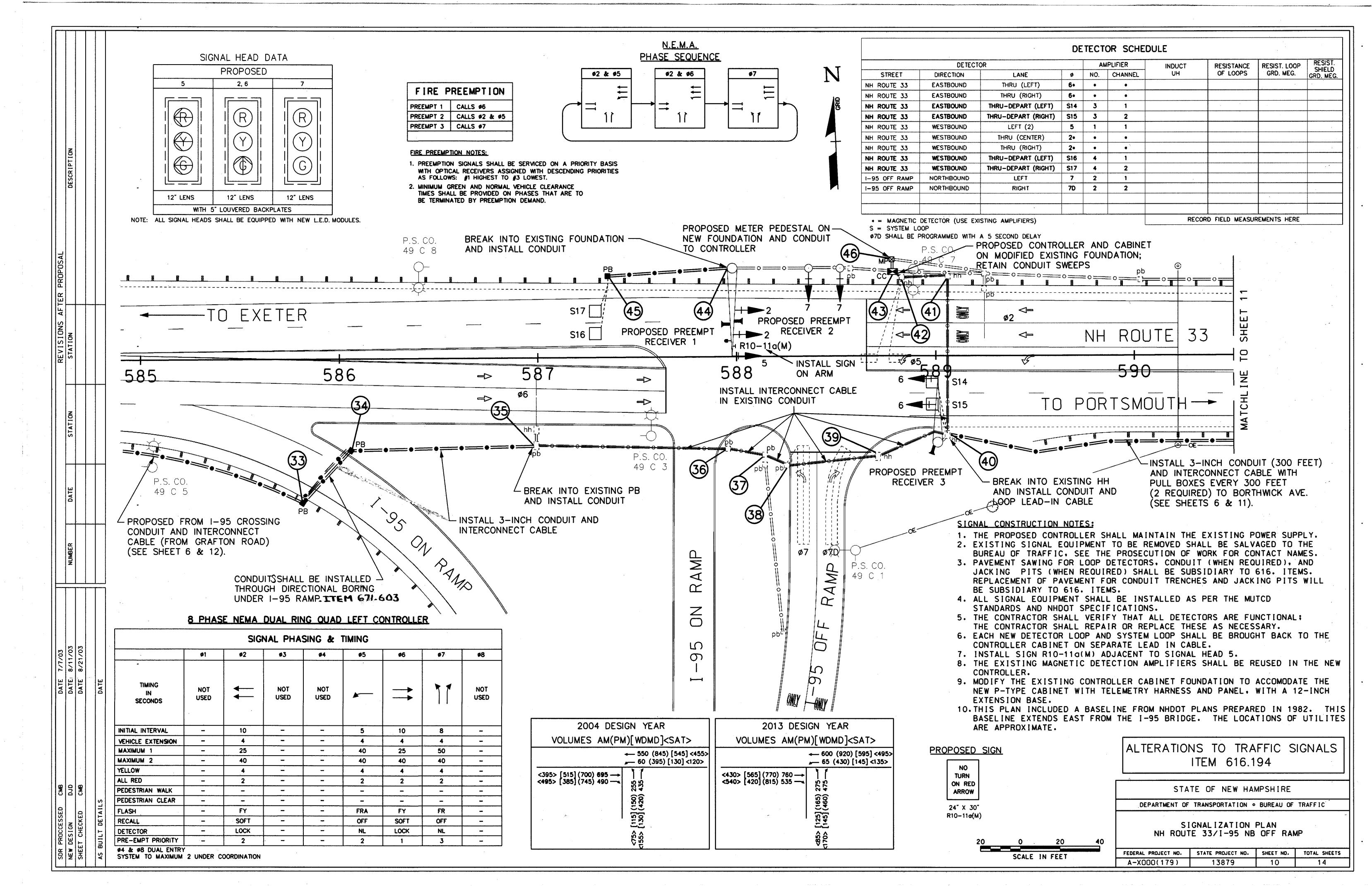

Intersection								
Int Delay, s/veh	177.5							
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	ሻ	7	ሻ	†	†			
Traffic Vol, veh/h	373	85	267	51	27			
Future Vol, veh/h	373	85	267	51	27	870		
Conflicting Peds, #/hr		0	0	0	0			
Sign Control	Stop	Stop	Free	Free	Free			
RT Channelized	- -		-		-			
Storage Length	0	290	100	-	_			
Veh in Median Storag		230	-	0	0			
		-	-					
Grade, %	0		70	0	0			
Peak Hour Factor	86	86	76	76	83			
Heavy Vehicles, %	2	2	1	3	0	-		
Mvmt Flow	434	99	351	67	33	1048		
Major/Minor	Minor2	ľ	Major1	1	Major2		ĺ	
Conflicting Flow All	802	33	1081	0	_			
Stage 1	33	_	-	_	_			
Stage 2	769	_	_	_	_			
Critical Hdwy	6.42	6.22	4.11	_	_			
	5.42		4.11					
Critical Hdwy Stg 1		-			-			
Critical Hdwy Stg 2	5.42	-	-	-	-	-		
Follow-up Hdwy		3.318			-	-		
Pot Cap-1 Maneuver		1041	649	-	-	-		
Stage 1	989	-	-	-	-	-		
Stage 2	457	-	-	-	-	-		
Platoon blocked, %				-	-	-		
Mov Cap-1 Maneuver	~ 162	1041	649	-	-	-		
Mov Cap-2 Maneuver	r ~ 162	-	-	-	-	-		
Stage 1	454	_	_	_	_	-		
Stage 2	457	-	_	-	_	-		
J	107							
Approach	EB		NB		SB			
HCM Control Delay, s	\$ 666.1		14.2		0			
HCM LOS	F							
Minor Lang/Major My	mt	NBL	NDT	EBLn1 I	EDI n2	SBT		SBR
Minor Lane/Major Mv	mt		INDI			SDI	l	SDR
Capacity (veh/h)		649	-		1041	-		-
HCM Lane V/C Ratio		0.541		2.677				-
HCM Control Delay (s	3)	16.9	-\$	815.9	8.8			-
HCM Lane LOS		С	-	F	Α			-
HCM 95th %tile Q(ve	h)	3.3	-	38.2	0.3	-		-
Notes								
Notes ~: Volume exceeds ca	angoity	¢. Da	ylav ova	eeds 30)()c	L: Como		utation Not Defined

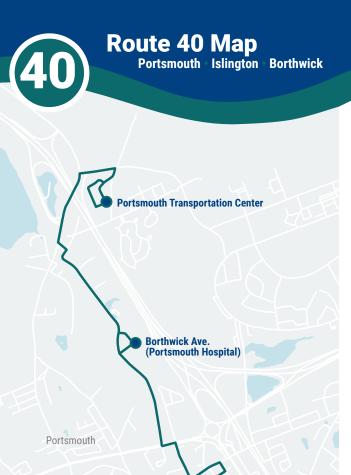

Intersection						
Int Delay, s/veh	0.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	VVDL			INDIX	ODL	
	0	7 72	†	0	٥	^
Traffic Vol. veh/h	0	72	590 590	0		1435
Future Vol, veh/h		0			0	1435
Conflicting Peds, #/hr	0		0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None	-	
Storage Length	-	0	-	-	-	-
Veh in Median Storage,		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	73	73	95	95	89	89
Heavy Vehicles, %	0	13	0	1	0	1
Mvmt Flow	0	99	621	0	0	1612
Major/Minor N	1inor1	N	Major1	١	/lajor2	
Conflicting Flow All	-	621	0		- najoiz	_
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.395	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy		3.4235	-	-	-	-
Pot Cap-1 Maneuver	0	462	-	0	0	-
Stage 1	0	-	-	0	0	-
Stage 2	0	-	-	0	0	-
Platoon blocked, %			-			-
Mov Cap-1 Maneuver	-	462	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	_	-	_	_	_	-
Stage 2	_	_	_	_	_	_
J						
Approach	WB		NB		SB	
HCM Control Delay, s	14.9		0		0	
HCM LOS	В					
Minor Lane/Major Mumt		NRTM	VRI n1	QRT		
Minor Lane/Major Mvmt			VBLn1	SBT		
Capacity (veh/h)		-	462	-		
Capacity (veh/h) HCM Lane V/C Ratio		-	462 0.213	-		
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		- - -	462 0.213 14.9	- - -		
Capacity (veh/h) HCM Lane V/C Ratio		-	462 0.213	-		


APPENDIX ISite Development Plan




APPENDIX JTraffic Control Signal Plans





APPENDIX K
COAST Bus Schedule & Map

Islington St. (Plaza 800)

MAP KEY

Time Point

Transfer Point

Ride Information

COAST BUS FARES

Base Cash Fare

\$1.50

All passengers ages 5 and up are required to pay this fare each time they board a COAST bus.

\$ 0.75 Half-Fare

Passengers 65 and older, or passengers with a disability are entitled to pay half the cash fare. Proof of eligibility is required by showing a Medicare card, photo ID with birth date, COAST ADA Paratransit Card, or COAST Half-Fare Card. Please contact COAST to apply for a Half-Fare Card.

Multi-Ride Tickets and Passes

Available at www.coastbus.org or call 603-743-5777, TTY 711.

Unlimited Monthly Pass

\$ 52

Unlimited rides on COAST Routes for the month.

YOUR RIGHTS

COAST adheres to all Federal regulations regarding Civil Rights. If you need to request an ADA Reasonable Modification/ Accommodation, or if you believe you have been discriminated against or would like to file a complaint under the ADA or Title VI, please contact COAST's Civil Rights Officer at 603-516-0788, TTY 711 or email CivilRights@coastbus.org.

NO SERVICE DAYS

COAST does not operate on the following holidays:

- New Year's Day
- Labor Day
- Martin Luther King Jr./ Civil Rights Day
- Thanksgiving Day
- Memorial Day

Hanover Station

Transfer Point

- · Christmas Eve Day
- · Christmas Day

42 Sumner Drive • Dover, NH 03820 603-743-5777 • TTY 711 • www.coastbus.org

This brochure is available in alternative formats upon request.

Bus Schedule & Map (40)

Portsmouth · Islington · Borthwick

Find all of the full COAST schedules online at coastbus.org

MAP OUT YOUR GAME PLAN

Planning your trip has never been easier!

www.coastbus.org

OUTBOUND • INBOUND Route 40 Portsmouth · Islington · Borthwick

How to Read the Schedule

Printed bus schedules only show the timepoints (major bus stops where the bus will hold until the scheduled departure time). In between those timepoints are many other stops that you can use. For a full listing of bus stops, visit www.coastbus.org, or use the Passio GO! App.

The times shown represent the number of minutes after the hour that the bus will depart from that stop. Last stop times are arrivals. Any exceptions will be noted.

OUTBOUND (M-Sat)	Servio	Hour			
Hanover Station - Portsmouth Transportation Center	First Bus	Minutes Past Hour	Last Bus		
Hanover Station	6:00am	:00*	7:00pm		
• Islington St. (Plaza 800)	6:07am	:07*	7:07pm		
Borthwick Ave. (Ports. Hospital)	6:15am	:15*	7:15pm		
Portsmouth Transportation Center	6:23am	:23*	7:23pm		

*No Service during the hour of 3pm.

INBOUND (M-Sat)	Service On Every Hour					
Portsmouth Transportation Center- Hanover Station	First Bus	Minutes Past Hour	Last Bus			
Portsmouth Transportation Center	6:24am	:24*	7:24pm			
Borthwick Ave. (Ports. Hospital)	6:31am	:31*	7:31pm			
• Islington St. (Plaza 800)	6:39am	:39*	7:39pm			
Hanover Station	6:47am	:47*	7:47pm			

*No Service during the hour of 3pm.

COAST BUS FARES

Base Cash Fare

\$1.50

All passengers ages 5 and up are required to pay this fare each time they board a COAST bus.

\$ 0.75 Half-Fare

Passengers 65 and older, or passengers with a disability are entitled to pay half the cash fare. Proof of eligibility is required by showing a Medicare card, photo ID with birth date, COAST ADA Paratransit Card, or COAST Half-Fare Card. Please contact COAST to apply for a Half-Fare Card.

Multi-Ride Tickets and Passes

Available at www.coastbus.org or call 603-743-5777, TTY 711.

Unlimited Monthly Pass

\$ 52

Unlimited rides on COAST Routes for the month.

YOUR RIGHTS

COAST adheres to all Federal regulations regarding Civil Rights. If you need to request an ADA Reasonable Modification/ Accommodation, or if you believe you have been discriminated against or would like to file a complaint under the ADA or Title VI, please contact COAST's Civil Rights Officer at 603-516-0788, TTY 711 or email CivilRights@coastbus.org.

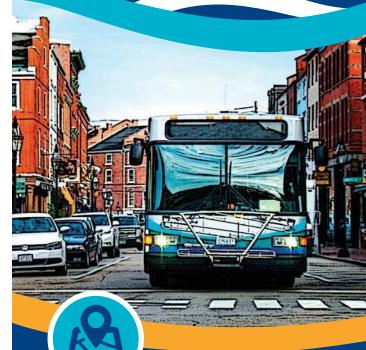
NO SERVICE DAYS

COAST does not operate on the following holidays:

- New Year's Day
- Labor Day
- Martin Luther King Jr./ Civil Rights Day
- · Thanksgiving Day
- Memorial Day
- · Christmas Eve Day
- · Christmas Day
- Independence Day

42 Sumner Drive • Dover, NH 03820 603-743-5777 • TTY 711 • www.coastbus.org

This brochure is available in alternative formats upon request.


Bus Schedule & Map (42)

Portsmouth • Pease Shuttle

Find all of the full COAST schedules online at coastbus.org

MAP OUT YOUR GAME PLAN

Planning your trip has never been easier!

www.coastbus.org

OUTBOUND • INBOUND Route 42 Portsmouth · Pease Shuttle

How to Read the Schedule

Printed bus schedules only show the timepoints (major bus stops where the bus will hold until the scheduled departure time). In between those timepoints are many other stops that you can use. For a full listing of bus stops, visit www.coastbus.org, or use the Passio Go! App.

The times shown represent the number of minutes after the hour that the bus will depart from that stop. Last stop times are arrivals. Any exceptions will be noted.

OUTBOUND (M-F)	Servio	e On Every	Hour
Hanover Station - Pease Airline Terminal	First Bus	Minutes Past Hour	Last Bus
Hanover Station	6:22am	:00*	6:00pm
Portsmouth Transportation Center	6:33am	:11*	6:11pm
Pease Airline Terminal	6:42am	:20*	6:20pm

*Regular hourly schedule starts during the hour of 7am and No Service during the hour of 10am.

INBOUND (M-F)	Service On Every Hour					
Pease Airline Terminal - Hanover Station	First Bus	Minutes Past Hour	Last Bus			
 Pease Airline Terminal 	6:43am	:21*	6:21pm			
Portsmouth Transportation Center	6:47am	:25*	6:25pm			
Hanover Station	6:57am	:35*	6:35pm			

*Regular hourly schedule starts during the hour of 7am and No Service during the hour of 10am.

COAST SYSTEM MAP

APPENDIX L

Lonza Employee Residential Zip Code Based Trip Distribution Analysis

LONZA BIOLOGICS EMPLOYEE RESIDENTIAL ZIP CODE BASED TRIP DISTRIBUTION ANALYSIS

OBJECTID ZIP_CC	DE PO_NAME	STATE em	ployeeCount Shape_Area	I-95 Direction Soutl		Route 33 South	Route 33 East	Route 1 East	Route 1 North	Route 4 West	Gosling Road North	check	I-95 South	I-95 North	Route 33 South	Route 33 East	Route 1 East	Route 1 North	Route 4 West	Gosling Road North
1	1010.00 Brimfield	MA	1 0.010514	Direction South	100.00%	Journ	Lust	Lust	North	west	North	OK	1	0	0	0	0	0	0	0
2	1451.00 Harvard	MA	1 0.006399		100.00%							ОК	1	0	0	0	0	0	0	0
3	1507.00 Charlton	MA	1 0.012443		100.00%							OK	1	0	0	0	0	0	0	0
4	1522.00 Jefferson 1581.00 Westborough	MA MA	1 0.00476		100.00% 100.00%							OK OK	1	0	0	0	0	0	0	0
6	1730.00 Bedford	MA	1 0.005997 2 0.003859		100.00%							OK	2	0	0	0	0	0	0	0
7	1772.00 Southborough	MA	1 0.004393		100.00%							OK	1	0	0	0	0	0	0	0
8	1801.00 Woburn	MA	1 0.00367		100.00%							ОК	1	0	0	0	0	0	0	0
9	1810.00 Andover	MA	2 0.009116		100.00%							OK	2	0	0	0	0	0	0	0
10	1826.00 Dracut	MA	2 0.006115		100.00%							OK	2	0	0	0	0	0	0	0
11 12	1830.00 Haverhill 1832.00 Haverhill	MA MA	6 0.004248 2 0.003408		100.00% 100.00%							OK OK	6	0	0	0	0	0	0	0
13	1833.00 Georgetown	MA	1 0.003762		100.00%							OK	1	0	0	0	0	0	0	0
14	1835.00 Haverhill	MA	1 0.002461		100.00%							OK	1	0	0	0	0	0	0	0
15	1844.00 Methuen	MA	10 0.006546		100.00%							OK	10	0	0	0	0	0	0	0
16	1845.00 North Andover	MA	2 0.007855		100.00%							OK	2	0	0	0	0	0	0	0
17	1852.00 Lowell	MA	1 0.001495		100.00%							OK	1	0	0	0	0	0	0	0
18 19	1854.00 Lowell 1860.00 Merrimac	MA MA	2 0.001247 2 0.002536		100.00% 100.00%							OK OK	2	0	0	0	0	0	0	0
20	1876.00 Tewksbury	MA	2 0.006037		100.00%							OK	2	0	0	0	0	0	0	0
21	1880.00 Wakefield	MA	1 0.00226		100.00%							OK	1	0	0	0	0	0	0	0
22	1886.00 Westford	MA	1 0.008731		100.00%							ОК	1	0	0	0	0	0	0	0
23	1907.00 Swampscott	MA	1 0.00085		100.00%							OK	1	0	0	0	0	0	0	0
24	1913.00 Amesbury	MA	5 0.003893		100.00%							OK	5	0	0	0	0	0	0	0
25 26	1915.00 Beverly 1921.00 Boxford	MA MA	1 0.00446 2 0.006996		100.00% 100.00%							OK OK	1	0	0	0	0	0	0	0
27	1938.00 Ipswich	MA	1 0.009451		100.00%							OK	1	0	0	0	0	0	0	0
28	1950.00 Newburyport	MA	7 0.003159		100.00%							OK	7	0	0	0	0	0	0	0
29	1951.00 Newbury	MA	2 0.005088		100.00%							ОК	2	0	0	0	0	0	0	0
30	1952.00 Salisbury	MA	3 0.004937		100.00%							OK	3	0	0	0	0	0	0	0
31	1960.00 Peabody	MA	1 0.004791		100.00%							OK	1	0	0	0	0	0	0	0
32	1970.00 Salem	MA	1 0.002453		100.00%							OK	1	0	0	0	0	0	0	0
33 34	1985.00 West Newbury 2127.00 Boston	MA MA	1 0.004183 1 0.000853		100.00% 100.00%							OK OK	1	0	0	0	0	0	0	0
35	2145.00 Somerville	MA	1 0.000407		100.00%							OK	1	0	0	0	0	0	0	0
36	2176.00 Melrose	MA	1 0.001348		100.00%							ОК	1	0	0	0	0	0	0	0
37	2180.00 Stoneham	MA	1 0.001849		100.00%							ОК	1	0	0	0	0	0	0	0
38	2461.00 Newton Highlands	MA	1 0.000427		100.00%							OK	1	0	0	0	0	0	0	0
39	2472.00 Watertown	MA	3 0.001181		100.00%							OK OK	3	0	0	0	0	0	0	0
40 41	2492.00 Needham 3031.00 Amherst	MA NH	1 0.00267 5 0.010143		100.00% 100.00%							OK	5	0	0	0	0	0	0	0
42	3032.00 Auburn	NH	1 0.008167		100.00%							OK	1	0	0	0	0	0	0	0
43	3034.00 Candia	NH	3 0.01063		100.00%							ОК	3	0	0	0	0	0	0	0
44	3037.00 Deerfield	NH	4 0.014317		100.00%							ОК	4	0	0	0	0	0	0	0
45	3038.00 Derry	NH	8 0.010857		100.00%					50.	200/	OK	8	0	0	0	0	0	0	0
46 47	3042.00 Epping 3044.00 Fremont	NH NH	11 0.007973 4 0.004945		50.00% 50.00%	50.1	00%			50.0	00%	OK OK	5.5	0	0	0	0	0	5.5	0
48	3045.00 Goffstown	NH	2 0.010311		100.00%	30.1	0076					OK	2	0	0	0	0	0	0	0
49	3047.00 Greenfield	NH	1 0.008001		100.00%							ОК	1	0	0	0	0	0	0	0
50	3051.00 Hudson	NH	1 0.008357		100.00%							OK	1	0	0	0	0	0	0	0
51	3052.00 Litchfield	NH	1 0.004289		100.00%							OK	1	0	0	0	0	0	0	0
52 53	3053.00 Londonderry 3054.00 Merrimack	NH NH	10 0.011616 1 0.009547		100.00% 100.00%							OK OK	10 1	0	0	0	0	0	0	0
54	3055.00 Milford	NH	1 0.009547		75.00%	25.0	00%					OK	0.75	0	0.25	0	0	0	0	0
55	3062.00 Nashua	NH	1 0.003368		100.00%							OK	1	0	0	0	0	0	0	0
56	3070.00 New Boston	NH	2 0.012502		75.00%	25.0	00%					ОК	1.5	0	0.5	0	0	0	0	0
57	3076.00 Pelham	NH	3 0.007647		100.00%							OK	3	0	0	0	0	0	0	0
58 59	3077.00 Raymond 3079.00 Salem	NH NH	8 0.008318 6 0.007438		100.00% 100.00%							OK OK	8	0	0	0	0	0	0	0
60	3101.00 Manchester	NH NH	1 0.000226		90.00%					10.0	00%	OK	0.9	0	0	0	0	0	0.1	0
61	3102.00 Manchester	NH	9 0.002627		90.00%						00%	OK	8.1	0	0	0	0	0	0.9	0
62	3103.00 Manchester	NH	6 0.002887		90.00%					10.0	00%	ОК	5.4	0	0	0	0	0	0.6	0
63	3104.00 Manchester	NH	9 0.002441		90.00%					10.0	00%	ОК	8.1	0	0	0	0	0	0.9	0
64	3106.00 Hooksett	NH	3 0.010556		100.00%					40.	2001	OK	3	0	0	0	0	0	0	0
65 66	3109.00 Manchester 3110.00 Bedford	NH NH	1 0.002277 4 0.009428		90.00% 100.00%					10.0	00%	OK OK	0.9	0	0	0	0	0	0.1	0
67	3225.00 Center Barnstead	NH	1 0.008176		100.00%					100.0	00%	OK	0	0	0	0	0	0	1	0
68	3234.00 Epsom	NH	1 0.009624							100.0		OK	0	0	0	0	0	0	1	0
69	3235.00 Franklin	NH	1 0.009122			0.00%				50.0		ОК	0	0.5	0	0	0	0	0.5	0
70	3244.00 Hillsborough	NH	1 0.024593		100.00%							OK	1	0	0	0	0	0	0	0
71	3245.00 Holderness	NH	1 0.010031							100.0		OK	0	0	0	0	0	0	1	0
72 73	3253.00 Meredith 3255.00 Newbury	NH NH	1 0.014683 1 0.010912		50.00%					100.0	00% 00%	OK OK	0	0	0	0	0	0	0.5	0
73 74	3258.00 Chichester	NH	3 0.005796							100.0		OK	0.5	0	0	0	0	0	3	0
75	3261.00 Northwood	NH	9 0.008624							100.0		ОК	0	0	0	0	0	0	9	0
76	3263.00 Pittsfield	NH	1 0.007336							100.0		ОК	0	0	0	0	0	0	1	0
77	3275.00 Suncook	NH	1 0.011764		50.00%					50.0	00%	OK	0.5	0	0	0	0	0	0.5	0

LONZA BIOLOGICS EMPLOYEE RESIDENTIAL ZIP CODE BASED TRIP DISTRIBUTION ANALYSIS

TID ZIP_CODE	PO_NAME		nployeeCount Shape_Area	Direction	I-95 South	I-95 North	Route 33 South	Route 33 East	Route 1 East	Route 1 North	Route 4 West	Gosling Road North
	3280.00 Washington	NH	1 0.013125			0.00%						000/
	3281.00 Weare	NH	1 0.017189			0.00%						.00%
	3290.00 Nottingham	NH	18 0.013032			0.00%						.00%
	3301.00 Concord	NH	2 0.014821			0.00%						.00%
	3303.00 Concord	NH	1 0.020526		50	0.00%						.00%
83 3	3570.00 Berlin	NH	1 0.023446								100	.00%
84 3	3576.00 Colebrook	NH	1 0.057233			34	4.00% 3	3.00%			33	.00%
85 3	3801.00 Portsmouth	NH	116 0.008103				2	0.00% 2	0.00% 2	0.00%	20	.00% 20.00
86 3	3809.00 Alton	NH	1 0.014804								100	.00%
	3810.00 Alton Bay	NH	3 0.008575									.00%
	3811.00 Atkinson	NH	2 0.003295		100	0.00%						
	3812.00 Bartlett	NH	1 0.02191		100	3.0070					100	.00%
					F.C	0.000/						
	3819.00 Danville	NH	3 0.003186		50	0.00%						.00%
	3820.00 Dover	NH	116 0.00875									.00%
	3823.00 Madbury	NH	5 0.003217									.00%
93 3	3824.00 Durham	NH	7 0.007376								100.	.00%
94 3	3825.00 Barrington	NH	20 0.014117								100	.00%
95 3	3826.00 East Hampstead	NH	2 0.001192		100	0.00%						
	3827.00 East Kingston	NH	3 0.00496			0.00%						
	3830.00 East Wakefield	NH	2 0.003238		100						100	.00%
	3833.00 Exeter	NH	39 0.013793		50	0.00%		0.00%			100.	
					30	3.5370		0.0070			100	00%
	3835.00 Farmington	NH	15 0.010892									.00%
	3839.00 Rochester	NH	9 0.002018								100.	.00%
	3840.00 Greenland	NH	24 0.003048				10	0.00%				
	3841.00 Hampstead	NH	7 0.003098			0.00%						
103 3	3842.00 Hampton	NH	27 0.003921		100	0.00%						
104 3	3844.00 Hampton Falls	NH	4 0.003506		100	0.00%						
	3848.00 Kingston	NH	3 0.005907			0.00%						
	3851.00 Milton	NH	10 0.008272		100						100	.00%
	3852.00 Milton Mills	NH	1 0.001669									.00%
	3855.00 New Durham	NH	9 0.012785								100.	.00%
109 3	3856.00 Newfields	NH	5 0.00225				10	0.00%				
110 3	3857.00 Newmarket	NH	25 0.004782		50	0.00%					50	.00%
111 3	3858.00 Newton	NH	1 0.002836		100	0.00%						
	3861.00 Lee	NH	7 0.005561								100	.00%
	3862.00 North Hampton	NH	9 0.003932				10	0.00%			100.	
							10	0.0070			100	00%
	3864.00 Ossipee	NH	2 0.01136			2.000/					100.	.00%
	3865.00 Plaistow	NH	4 0.002967		100	0.00%						
	3867.00 Rochester	NH	58 0.009024									.00%
117 3	3868.00 Rochester	NH	15 0.002244								100	.00%
118 3	3869.00 Rollinsford	NH	5 0.001979			50	0.00%			5	60.00%	
	3870.00 Rye	NH	10 0.003512		50	0.00%		0.00%				
	3872.00 Sanbornville	NH	3 0.012299								100	.00%
	3873.00 Sandown	NH	4 0.004147		50	0.00%	-	0.00%			100.	
		NH				0.00%	3	0.0070				
	3874.00 Seabrook		5 0.002676		100	J.0076						000/
	3878.00 Somersworth	NH	50 0.002836									.00%
	3882.00 Effingham	NH	2 0.011411									.00%
125 3	3884.00 Strafford	NH	5 0.014538								100	.00%
126 3	3885.00 Stratham	NH	24 0.004492				10	0.00%				
	3887.00 Union	NH	7 0.006041								100	.00%
	3894.00 Wolfeboro	NH	1 0.020419									.00%
	3901.00 Berwick	ME	10 0.0107			10	0.00%				100.	
	3902.00 Cape Neddick	ME	9 0.005456				0.00%					
	3903.00 Eliot	ME	13 0.006136				0.00%					
	3904.00 Kittery	ME	10 0.003178				0.00%					
133 3	3905.00 Kittery Point	ME	3 0.002057			10	0.00%					
134 3	3906.00 North Berwick	ME	7 0.011124			10	0.00%					
	3907.00 Ogunquit	ME	1 0.0011				0.00%					
	3908.00 South Berwick	ME	13 0.009329				0.00%					
	3909.00 York											
		ME	9 0.010628				0.00%					
	4005.00 Biddeford	ME	2 0.014128				0.00%					
	4009.00 Bridgton	ME	1 0.018959				0.00%					
140 4	4021.00 Cumberland Center	ME	1 0.005747			10	0.00%					
141 4	4027.00 Lebanon	ME	5 0.016093			10	0.00%					
	4038.00 Gorham	ME	1 0.014925				0.00%					
	4042.00 Hollis Center	ME	2 0.009715				0.00%					
	4043.00 Kennebunk	ME	9 0.009994				0.00%					
	4046.00 Kennebunkport	ME	2 0.013092				0.00%					
	4061.00 North Waterboro	ME	1 0.005735				0.00%					
146 4	4062.00 Windham	ME	3 0.014431				0.00%					
146 4 147 4		ME	2 0.011271			10	0.00%					
146 4 147 4	4072.00 Saco		4 0.010941				0.00%					
146 4 147 4 148 4		ME					0.00%					
146 4 147 4 148 4 149 4	4073.00 Sanford											
146 4 147 4 148 4 149 4 150 4	4073.00 Sanford 4076.00 Shapleigh	ME	3 0.011892				1 00%					
146 4 147 4 148 4 149 4 150 4 151 4	4073.00 Sanford 4076.00 Shapleigh 4083.00 Springvale	ME ME	3 0.011892 2 0.002897			10	0.00%					
146 4 147 4 148 4 149 4 150 4 151 4 152 4	4073.00 Sanford 4076.00 Shapleigh 4083.00 Springvale 4087.00 Waterboro	ME ME ME	3 0.011892 2 0.002897 1 0.005467			100 100	0.00%					
146 4 147 4 148 4 149 4 150 4 151 4 152 4	4073.00 Sanford 4076.00 Shapleigh 4083.00 Springvale	ME ME	3 0.011892 2 0.002897			100 100						
146 4 147 4 148 4 149 4 150 4 151 4 152 4 153 4	4073.00 Sanford 4076.00 Shapleigh 4083.00 Springvale 4087.00 Waterboro	ME ME ME	3 0.011892 2 0.002897 1 0.005467			100 100 100	0.00%					
146 4 147 4 148 4 149 4 150 4 151 4 152 4 153 4 154 4	4073.00 Sanford 4076.00 Shapleigh 4083.00 Springvale 4087.00 Waterboro 4090.00 Wells	ME ME ME ME	3 0.011892 2 0.002897 1 0.005467 2 0.016786			100 100 100 100	0.00% 0.00%					
146 4 147 4 148 4 149 4 150 4 151 4 152 4 153 4 154 4 155 4	4073.00 Sanford 4076.00 Shapleigh 4083.00 Springvale 4087.00 Waterboro 4090.00 Wells 4105.00 Falmouth	ME ME ME ME ME	3 0.011892 2 0.002897 1 0.005467 2 0.016786 1 0.008846			100 100 100 100 100	0.00% 0.00% 0.00%					

-95 louth	I-95 North	Route 33 South	Route 33 East	Route 1 East	Route 1 North	Route 4 West	Gosling Road North
1	0	0	0	0	0	0	0
0.5	0	0	0	0	0	0.5	0
9	0 0	0	0 0	0 0	0	9 1	0 0
1 0.5	0	0	0	0	0	0.5	0
0.5	0	0	0	0	0	1	0
0	0.34	0.33	0	0	0	0.33	0
0	0	23.2	23.2	23.2	0	23.2	23.2
0	0	0	0	0	0	1	0
0	0	0	0	0	0	3	0
2	0	0	0	0	0	0	0
0	0	0	0	0	0	1	0
1.5	0	0	0	0	0	1.5	0
0	0	0	0	0	0	116	0
0	0	0	0	0	0	5	0
0	0	0	0	0	0	7 20	0
0 2	0	0	0 0	0	0	0	0 0
3	0	0	0	0	0	0	0
0	0	0	0	0	0	2	0
19.5	0	19.5	0	0	0	0	0
0	0	0	0	0	0	15	0
0	0	0	0	0	0	9	0
0	0	24	0	0	0	0	0
7	0	0	0	0	0	0	0
27	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0
0	0	0	0	0	0	10	0
0	0	0	0	0	0	1	0
0	0	0	0	0	0	9	0
0	0	5	0	0	0	0	0
12.5	0	0	0	0	0	12.5	0
1	0	0	0	0	0	0	0
0	0	0 9	0 0	0	0	7 0	0 0
0	0	0	0	0	0	2	0
4	0	0	0	0	0	0	0
0	0	0	0	0	0	58	0
0	0	0	0	0	0	15	0
0	2.5	0	0	0	2.5	0	0
5	0	5	0	0	0	0	0
0	0	0	0	0	0	3	0
2	0	2	0	0	0	0	0
5	0	0	0	0	0	0	0
0	0	0	0	0	0	50	0
0	0	0	0	0	0	2	0
0	0	0	0	0	0	5	0
0	0	24	0	0	0	0	0
0	0	0	0	0	0	7	0
0	0	0	0	0	0	1	0
0	10 9	0	0	0	0	0	0 0
0	13	0	0	0	0	0	0
0	10	0	0	0	0	0	0
0	3	0	0	0	0	0	0
0	7	0	0	0	0	0	0
0	1	0	0	0	0	0	0
0	13	0	0	0	0	0	0
0	9	0	0	0	0	0	0
0	2	0	0	0	0	0	0
0	1	0	0	0	0	0	0
0	1	0	0	0	0	0	0
0	5	0	0	0	0	0	0
0	1	0	0	0	0	0	0
0	2	0	0	0	0	0	0
0	9	0	0	0	0	0	0
0	2	0	0	0	0	0	0
0	1	0	0	0	0	0	0
0	3	0	0	0	0	0	0
0	2	0	0	0	0	0	0
0	4	0	0	0	0	0	0
0	3	0	0	0	0	0	0
	2	0	0	0	0	0	0
0	1 2	0	0	0	0	0	0
0	1	0	0	0	0	0	0
0	1	0	0	0	0	0	0
~		0	0	0	0	0	0
0							
0 285.65	1 122.34	114.78	23.2	23.2	2.5	425.13	23.2

L0700-026 July 17, 2023

Mr. Peter Britz, Director of Planning & Sustainability City of Portsmouth Planning & Sustainability Department 1 Junkins Avenue Portsmouth NH, 03801

Re: Lonza Biologics - Proposed Industrial Development
Site Plan Review Permit - Stipulations of Approval, Conditions Subsequent

Dear Peter:

On behalf of Lonza, we are pleased to submit Amended Site Plans and Drainage Analysis for the above referenced project. The project was granted Site Plan approval on January 17, 2019, and amended by administrative approvals on September 27, 2019 and January 27, 2023, with seven (7) Conditions Subsequent. The enclosed Site Plans, Drainage Analysis, and Traffic Impact Study have been revised to address these Conditions, and the following is an update on the status of those conditions:

- 2.5 PDA staff and Board may review and address any outstanding issues raised by the third party peer review and have the third party peer reviewer do a final review of the plans prior to construction. Any revisions to drainage plans and reports which may result should be provided to the City's Planning Department.
 - Prior to the commencement of Phase 1A construction coordination was completed between the applicant and the peer reviewer. Additional administrative and amended approvals were also granted by the PDA and PDA Board in January 2023 for Phase 1B construction to commence.
- 2.6 Applicant shall not proceed to Phase 2 until the project has been issued an approved application for water service(s) associated with the expansion.
 - The applicant acknowledges that an application for water service will be required prior to commencing Phase 2 construction.
- 2.7 The applicant shall not proceed to Phase 2 until the project has been issued an Industrial User Permit by the City for the increased wastewater flows and loads associated with the expansion.

The applicant acknowledges that an approved application for an Industrial User Permit by the City will be required prior to commencing Phase 2 construction. The applicants expected development on the Iron Parcel for the foreseeable future will not necessitate additional capacity for increased wastewater flows beyond its existing permits. This has been previously communicated to the City in the enclosed letter from DTC Lawyers dated February 14, 2023.

2.8 The Planning Board's recommended approval applies only to Phase 1A and Phase 1B as depicted on the approved site and grading plans. Any changes to said plans, as well as subsequent phases of development shall require submission of updated plans and supporting documents and noticed public hearings with the City's Technical Advisory Committee and Planning Board for amended site plan approval.

Acknowledged.

2.9 For the purpose of this site plan approval, the term "active and substantial development or building" shall mean the construction of the stream restoration and associated site improvements included in Phase 1(A). The term "substantial completion of the improvements as shown on the subdivision plat or site plan" shall mean the completion of all site improvements depicted in Phase 1(B), to include drive aisles, fire lanes, utilities, lighting, sidewalks, stormwater management, as well as the construction of a temporary gravel area for construction trailers, parking and laydown in the approximate location of proposed building #3, intermittent grading between stream and building #1 and temporary sedimentation basins at locations of gravel wetland #2 and rain garden #1, and construction of the shell of building #1, but not final fit-out of building #1.

Acknowledged.

- 2.10 For subsequent phases of development (beyond Phase 1A and Phase IB), applicant shall update the Traffic Analysis to include the following intersections:
 - Gosling Road/ Spaulding Turnpike Intersection
 - International Drive/Corporate Drive/Manchester Square Intersection
 - International Drive/Pease Blvd Intersection
 - New Hampshire Ave/International Dr./Corporate Dr./Durham St. Intersection
 - Corporate Drive/Grafton Drive Intersection
 - NH 33/ Grafton Drive Intersection

The Traffic Impact Study has been updated to include the requested additional intersections, as well as for the updated size of building #1. The updated Traffic Study is enclosed as part of this submission.

2.11 Applicant shall verify how fertilizer will be applied as part of the stream restoration.

Fertilizer was not used as part of the construction of the stream.

If you have any questions or need any additional information, please contact Neil Hansen by phone at (603) 294-9213 or by email at nahansen@tighebond.com.

Sincerely,

TIGHE & BOND, INC.

Neil A. Hansen, PE Project Manager Patrick M. Crimmins, PE Vice President

Copy: Lonza Biologics Inc. (via email)
Pease Development Authority

 $J:\L0700\ Lonza\ Biologics\ Expansion\ was\ 1576F\026_Project\ Albacore\Report_Evaluations\Applications\City\ of Portsmouth\20230717\ TAC\ Submission\L0700-026\ PB\ Stipulation\ Response.docx$

CELEBRATING OVER 35 YEARS OF SERVICE TO OUR CLIENTS

14 February 2023

Via email: smwoodland@cityofportsmouth.com and U.S. Mail

Suzanne M. Woodland, Esquire Deputy City Manager/Deputy City Attorney City of Portsmouth City Hall 1 Junkins Avenue Portsmouth, NH 03801

Re: Pease Wastewater Treatment Facility Improvements Design Effort

Dear Suzanne:

This letter follows the productive meeting between representatives of Lonza Biologics, Inc. ("Lonza") and representatives of the of City of Portsmouth and its Public Works and Engineering Departments on Monday, 6 February, and responds to your letter dated 13 December 2022, all of which pertain to the City's anticipated Pease Wastewater Treatment Facility ("PWWTF") improvement project. We understand that the City is in the process of working with AECOM Engineering ("AECOM") to determine the central purpose of that project as one rooted in addressing infrastructure obsolescence and reliability issues at the PWWTF, and potentially one which also incorporates improvements to account for increased demand for capacity by Lonza associated with development of the Iron Parcel, which is now a part of Lonza's leased property at 101 International Drive (the "Iron Parcel").

Executive Summary

Lonza is excited to inform you that it is finalizing a pending growing collaboration with a customer that, if and when completed, will require manufacturing space that Lonza intends to provide in Building 1 of its approved site plan for the Iron Parcel, thus advancing Lonza's long-standing investment in Portsmouth and the state of New Hampshire. However, based on Lonza's progressing sustainability initiatives as well as the unique requirements of the customer, Lonza anticipates being able to stay within the parameters of its existing water and wastewater permits. As a result, Lonza's current development plans for the Iron Parcel do not justify capital planning or budgeting for infrastructure improvements to the PWWTF to accommodate additional capacity demand by Lonza, at this time.

DONAHUE, TUCKER & CIANDELLA, PLLC
16 Acadia Lane, P.O. Box 630, Exeter, NH 03833
111 Maplewood Avenue, Suite D, Portsmouth, NH 03801
Towle House, Unit 2, 164 NH Route 25, Meredith, NH 03253
83 Clinton Street, Concord, NH 03301

LIZABETH M. MACDONALD JOHN J. RATIGAN **DENISE A. POULOS** ROBERT M. DEROSIER CHRISTOPHER L. BOLDT SHARON CUDDY SOMERS DOUGLAS M. MANSFIELD KATHERINE B. MILLER CHRISTOPHER T. HILSON HEIDI J. BARRETT-KITCHEN JUSTIN L. PASAY ERICA, MAHER CHRISTOPHER D. HAWKINS BRENDAN A. O'DONNELL ELAINA L. HOEPPNER WILLIAM K. WARREN

RETIRED
MICHAEL J. DONAHUE
CHARLES F. TUCKER
ROBERT D. CIANDELLA
NICHOLAS R. AESCHLIMAN

Suzanne Woodland, Esquire Page 2 14 February 2023

Lonza looks forward to beginning construction of the shell of Building 1 on the Iron Parcel and to beginning the local review process for the fit-up and occupation of that building with the City's staff, Technical Review Committee and Planning Board in the near future.

Analysis

By way of brief background, in 2019, Lonza obtained land use permitting approvals to facilitate the phased construction of three industrial buildings and related site improvements on the Iron Parcel (the "Iron Parcel Approvals" or the "Iron Parcel Project" or the "Project"). More specifically, as originally approved, the phased development contemplated proposed building #1 with a 132,000 sf footprint ("Building 1"), proposed building #2 with a 150,000 sf footprint, and proposed building #3 with a 62,000 sf footprint. Over the subsequent years, Lonza obtained successive extensions of the Iron Parcel Approvals and a renewed Conditional Use Permit approval, all of which approvals are now vested by virtue of certain site work Lonza has performed at the Iron Parcel to include, among other things, the "day-lighting" and restoration of Hodgson Brook which resulted in approximately 42,500 sf of wetland creation.

While Lonza worked to vest its Iron Parcel Approvals to preserve its ability to develop the Iron Parcel, it was also expanding its investment in Lonza's existing facility. Specifically, in an effort to enhance its mammalian drug substance manufacturing capabilities in both Visp, Switzerland and Portsmouth, Lonza fit-up formerly unoccupied space in the existing building at Lonza's Portsmouth facility to support late-phase clinical and commercial development and manufacturing of pharmaceuticals, which initiative will help address increasing market demand for small to mid-scale mammalian-derived biologics (the "Lynx Project"). Lonza's investment in the Lynx Project includes state-of-the-art technologies in perfusion, purification and automation and is projected, once fully operational, to create 250 new jobs.

Additionally, over the last few years, Lonza has been focused on improving its existing operations at the Portsmouth facility and on establishing and implementing new sustainability initiatives, and continues to do so within the context of water reuse efforts, all to decrease its operational footprint and water usage.

Lonza greatly appreciates all of the efforts made by the City, and other regulatory agencies, over the last several years regarding the recently issued National Pollutant Discharge Elimination System Permit (the "NPDES Permit"). With the finalization of the NPDES Permit and the corresponding appeal, Lonza is happy to share with the City news that Lonza recently began working with a customer who has an immediate need for manufacturing space which Lonza intends to accommodate in Building 1 of the Iron Parcel Project (the "Customer"). Towards that end, last month, Lonza obtained minor site plan amendment approvals from the Pease Development Authority's Board of Directors ("PDA") for several minor changes to the Iron Parcel Project's site plan that are required to accommodate the Customer. Should Lonza finalize a deal with the Customer, these approvals will clear the way for Lonza to begin construction of the shell of Building 1 and associated site improvements on the Iron Parcel. Further, these minor site plan amendments from the PDA clear the path for Lonza to initiate the City of Portsmouth's review, through its City Staff, the Technical Review Committee and

Suzanne Woodland, Esquire Page 3 14 February 2023

ultimately the Planning Board, of Phase II of the Project, which pertains to the fit-up and eventual occupation of Building 1 by the Customer ("Phase II"). Lonza anticipates that should it finalize a deal with the Customer and obtain the necessary land use permits, the new operation on the Iron Parcel will create many additional jobs, further cementing Lonza's continuing investment in Portsmouth, in New Hampshire, and in the surrounding region.

As the City is well-aware, part of the Phase II review and approval process requires a review of the anticipated water and wastewater needs and the implications of same on Lonza's existing water and wastewater permits. Fortunately, and as we discussed at our meeting on 6 February, based on Lonza's progressing sustainability initiatives and the unique requirements of the Customer, Lonza anticipates being able to work within the parameters of its existing permits such that no increased wastewater flows are anticipated at this time. Lonza looks forward to discussing this issue further with the City's Public Works and Engineering Departments.

Finally, as currently contemplated, Lonza's expected development on the Iron Parcel for the forcseeable future will not necessitate additional capacity for increased wastewater flows beyond its existing permits. Accordingly, the City does not need to, and should not, incorporate expansion improvements by Lonza within its capital improvement budgeting and planning for the PWWTF project, which it is currently undertaking with AECOM.

Conclusion

Lonza continues to appreciate the collaboration with and support from the City of Portsmouth which it has enjoyed over the years and Lonza looks forward to advancing its investment in Portsmouth through the development of the Iron Parcel as summarized in this letter.

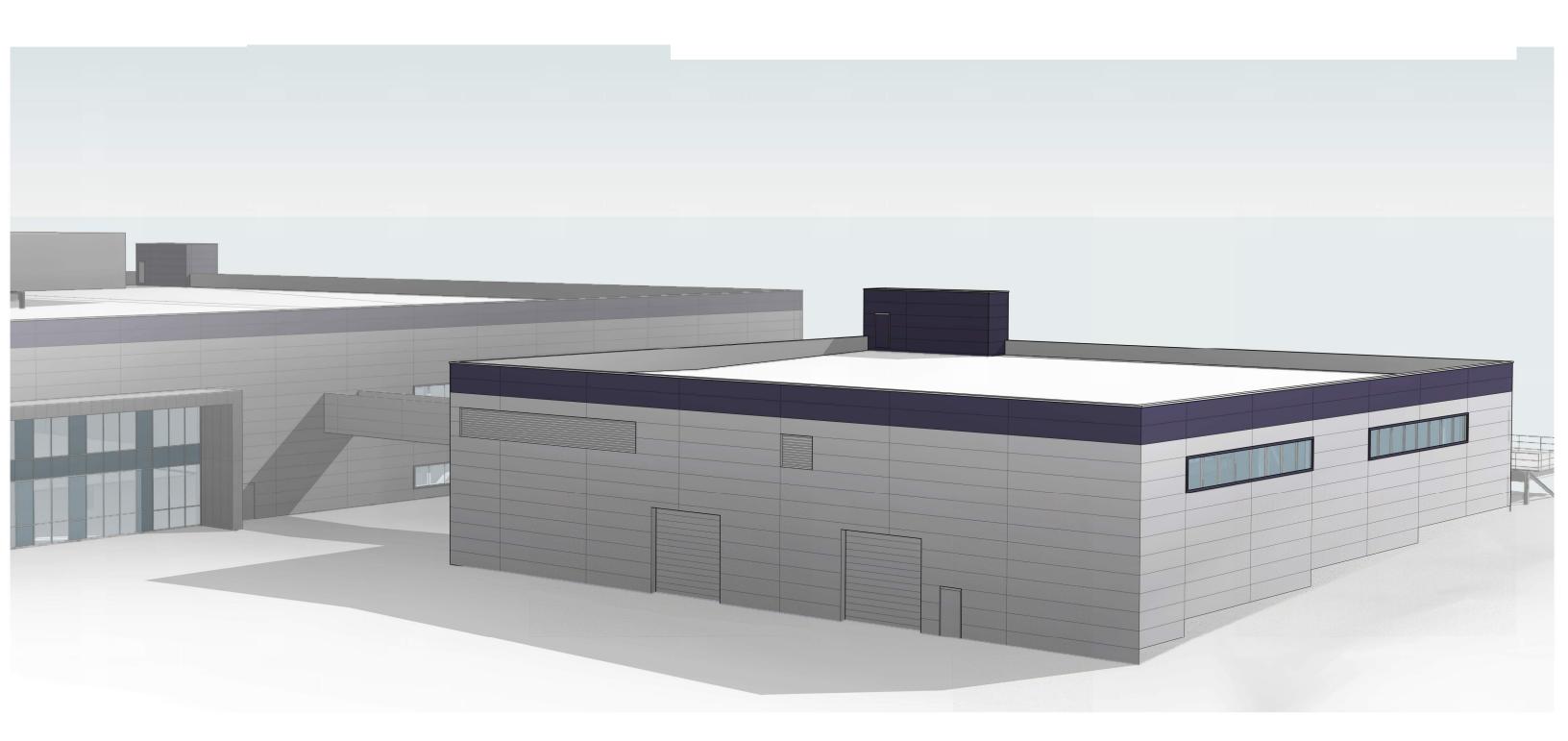
Thank you very much for your time, and please do not hesitate to reach out to me with comments or questions that you may have.

Yours truly,

DONAHUE, JUCKER & CIANDELLA, PLLC

Justin I. Pasay, Esq.

jpasav(2dtclawyers.com


JLP:I

cc: Lolza Biologics, Inc.

Pease Development Authority

Tighe & Bond

