Civil Engineers
Structural Engineers
Traffic Engineers
Land Surveyors
Landscape Architects
NEW

June 29, 2022

Rick Chellman, Chair
Portsmouth Planning Board
1 Junkins Ave, $3^{\text {rd }}$ Floor
Portsmouth, NH 03801

RE: 70 Pleasant Point Drive - Submittal Rev 2
 70 Pleasant Point Drive - Katara, LLC - Tax Map 207 Lot 15 Project \#47307.01

Dear Mr. Chellman,
On behalf of our client, Katara, LLC, please find a Wetland Conditional Use Permit submission relative to the above-referenced project. The application, LU-22-112, was presented to the Portsmouth Conservation Commission on June 8, 2022 and this submittal is in response to concerns raised at that meeting. The following materials are included in this submission:

- Invasive Removal Report, prepared by Terrain Planning \& Design LLC;
- Drainage Analysis (1 copy);
- NHDES Wetland Impact Plan, Shoreland Impact Plan, and Dock Plans; and
- Site Development Plans entitled "Site Development Plans, Tax Map 207 Lot 15, Site Renovation Plans, 70 Pleasant Point Drive, Portsmouth, New Hampshire", prepared by TFMoran, Inc., dated May 25, 2022, Last Revised on June 27, 2022 (1 copy at 22"x34").

Project Description

The project includes the development of a two-story, 2,306 SF, single family dwelling at 70 Pleasant Point Drive. The existing Tax Map 207 Lot 15 is approximately .642 acres and currently contains a single-story residence with a shed and water access. The site is within the Single Residence B (SRB) Zone, partially located within the extended flood hazard area, and is adjacent to the Piscataqua River.

The proposed project is to construct a two-story residential dwelling. Associated improvements include but are not limited to access, grading, utilities, stormwater management system, and landscaping. The project proposes a 2,605 SF building footprint and total 3,642 SF of impervious area upon the property and approximately 20,582 SF of disturbance to facilitate the development.

The development is proposed outside the Wetland but within the 100' Wetland Buffer located south of the development. The project will be undergoing additional review by Portsmouth Conservation Commission, and the New Hampshire Department of Environmental Services, for both Wetland and Shoreland Impacts. We have included a copy of the plans submitted to NHDES detailing impacts within

70 Pleasant Point Drive - Submittal Rev 2
May 25, 2022
70 Pleasant Point Drive - Katara, LLC - Tax Map 207 Lot 15
Project \#47307.01
the 100' Wetland Buffer and the 250' Shoreland Buffer as well as information related to the proposed tidal dock.

We appreciate your consideration of these matters and look forward to presenting this project to you in the near future.

We respectfully request that we be placed on the upcoming agenda for the Conservation Commission on July 13, 2022

If you have any questions or concerns, please do not hesitate to contact us.
Respectfully,
TFMoran, Inc.

Jason Cook

Civil Project Engineer

JKC/jcc

[^0]Civil Engineers
Structural Engineers
Traffic Engineers
Land Surveyors
Landscape Architects
Scientists

Letter of Authorization

I, Rebecca Rowe, of Katara, LLC, 274 Miller Avenue, Portsmouth, NH, hereby authorize TFMoran, Inc., 170 Commerce Way, Suite 102, Portsmouth, NH, to act on my behalf concerning property owned by Katara, LLC, located on 70 Pleasant Point Drive, Portsmouth, NH, known as Tax Map 207, Lot 15.

I hereby appoint TFMoran, Inc. as my agent to act on my behalf in the review process, to include any required signatures.

5/24/2022

Witness
Date

May 19, 2022
Peter Britz
Environmental Planner/Sustainability Coordinator
City of Portsmouth NH
Re: 70 Pleasant Point Drive Portsmouth NH

Dear Peter:

This letter is intended to address recommendations for invasive species removal and native plant restoration along the shorefront of 70 Pleasant Point Drive. The site is .65 acres with an existing, non-conforming, single family residence that is planned to be torn down and rebuilt. Accompanying the house construction project is the conversion of existing impervious driveway and hardscape surfaces into new permeable driveway and outdoor patio spaces. The project also includes introduction of native plantings along the shoreline and around the home, as well as the transition of a large lawn area into a native, low maintenance grass and ground cover mix mix.

The property sits on the Piscataqua River with almost 336 feet of frontage. A majority of the site is a level plateau that perches above the shoreline. A majority of the site sits within the 100 ft buffer and the 250 ft NH DES Shoreland protection zone. There is a drastic slope along the southerly shore frontage from the relatively flat part of the site to the tide line. This slope is covered in a mix of ornamental, native and invasive plantings.

Acting as good stewards the owners have asked that we put together an invasive species analysis and plan for removal and replacement. Enclosed is an outline of our findings as well as recommendations for new native plants to be installed.

Respectfully Submitted,

Eric R. Buck, PLA, ASLA
Owner/ Landscape Architect
Terrain Planning \& Design LLC

Our list of existing invasive plant species can be found below. We propose removing invasive species by lowimpact manual hand pulling methods whenever possible. During our inventory a majority of the invasives we found had stems less than 1 " in diameter. This means they likely have minimal root mass in the slope. However, should larger plants be discovered during the removal process, we recommend a cut \& dab herbicide application by licensed applicators. This method of removal for larger specimens will greatly reduce the chance of erosion along the shoreline. All existing erosion shall be stabilized and any soil disturbed during planting will be seeded with native conservation/ wetlands mix.

Likely Invasive species identified:

- Celastrus orbiculatus, Asiatic Bittersweet
- Fallopia japonica, Japanese Knotweed
- Rosa multiflora, Multiflora Rose
- Deutzria scabra, Fuzzy Deutzia

Recommended Native Plantings:

- Amelanchier laevis Shadblow Serviceberry
- Clethra alnifolia Summersweet
- Cornus amonum Silky Dogwood
- Cornus racemosa Gray Dogwood
- Ilex vertilicillata Winterberry
- Rosa virginiana Virginia Rose

Whenever possible native plantings should be installed via a live staking method, rather than as field grown plant material with a root ball. This will avoid added erosion on the slope caused by excavation of the soil to place the plants. Should the existing slope not have sufficient soil for live staking method to take place, erosion control tubes filled with growing medium are to be staked to the slope and live staking should be placed into the soil socks. Enclosed are specifications for recommended soil medium and erosion sock type and method.

Below are images of the area that was inventoried.

SUSTAINABLE TECHNOLOGIES

GREENLOXX® ${ }^{\circledR}$
 \section*{VEGETATED WALL \& SLOPE SYSTEMS}

DESIGNED FOR STRENGTH. ROOTED IN SUSTAINABILITY.

GreenLoxx ${ }^{\circledR}$ vegetated systems allow for the restoration of eroded or damaged slopes, riparian waterways, shoreline banks, and more.

Create attractive, naturally vegetated landscapes without the use of hard concrete materials on your restoration projects.

GREENLOXX SYSTEM COMPARISON

System Name	MSE	Slope Degree	Anchors	FLW Geogrid	GroSoxx Size	Purpose
GreenLoxx VSF Vegetated Slope Facing	No	up to 60°	Yes	Yes	$8^{\prime \prime x 3^{\prime}}$	Protect slope surface from erosion
GreenLoxx MSE Mechanically Stabilized Earth	Yes	$70^{\circ}-90^{\circ}$	No	Yes	$12^{\prime \prime x 2^{\prime}}$	Gain back land
GreenLoxx MSE - RSS Reinforced Soil Slope	Yes	$50^{\circ}-70^{\circ}$	No	Yes	$12^{\prime \prime x 2^{\prime}}$	Gain back land

GREENLOXX COMPONENTS

GroSoxx: Durable mesh is filled with Certified GrowingMedia ${ }^{\text {TM }}$ as the basis to quickly establish vegetation.
FLW Geogrid: Used to wrap layers of GroSoxx. Biaxial pattern provides strength and features a 2"x2" opening to eliminate cutting the grid for planting.

Soil Anchors: Used in GreenLoxx VSF to secure layers of geogrid and GroSoxx.
Vegetation: Options include pre-seeded GroSoxx, live staking, broadcast seeding, or plugs.

GroSoxx is the basis of GreenLoxx systems for quickly establishing vegetation on shorelines, banks, walls, and slopes. GroSoxx uses Durable mesh, filled with certified, composted GrowingMedia ${ }^{\text {TM }}$ to provide a stable and fertile environment for plant growth. The use of GroSoxx for wall infill speeds construction, eliminates waste, prevents weeds from taking root, and offers a safer installation process. Available pre-seeded throughout, or plant after construction is complete. GroSoxx provides the highest amount of facial growing material in each application, maximizing environmental benefits.

Vegetation Options

- Grasses, including natives
- Vines and ground cover
- Wildflowers
- Perennials and annuals
- Woody vegetation from live stakes or pots ($2^{\prime \prime}$ diameter or less so that grids are not cut in planting)

DESIGN DRAWINGS

Refer to Design Specifications and CADs for complete application, design, installation, and maintenance documentation at www.filtrexx.com/specs

GREENLOXX MSE VEGETATED RETAINING WALL DETAIL

\qquad

GREENLOXX VEGETATED SLOPE FACING (VSF)

GreenLoxx VSF is typically used to protect the face of the slope or bank from erosion. Requires minimal base preparation/excavation, and no backfill. FLW Geogrid is wrapped over the GroSoxx and secured with soil anchors.

- Lightweight components
- Immediate protection from toe cutting \& sloughing
- Establish and reinforce vegetation under intense hydraulic pressure
- Drains freely, less hydrostatic pressure

Project location: Lake Erie shoreline, Rocky River, OH

GREENLOXX MECHANICALLY STABILIZED EARTH (MSE)

SUSTAINABILITY BENEFITS

Our compost-based GreenLoxx systems are designed for environmental benefits and can have a significant impact on your project's sustainability.

Vegetated Wall \& Slope Benefits ${ }^{1}$

- Reduction of the Urban Heat Island Effect
- Improved Exterior Air Quality
- Noise Reduction
- Increased Green Space, Biodiversity and Habitat
- Forage for Native Pollinators
- Urban Agriculture
- On-Site Wastewater Treatment
- Improved Health and Well-Being
- Aesthetic Improvements
- Local Job Creation

Carbon Footprint Reduction ${ }^{2}$

There are three key ways in which compost-based GreenLoxx systems can significantly lower a site's carbon footprint:

- Methane avoidance resulting from diverting organics from landfills
- Carbon sequestration by permanent vegetation
- Carbon sequestration by storing carbon in the soil

This GreenLoxx MSE project on the Chattahoochee River has the following impact:

- 656,000 lbs of Organics Diverted from Landfills
- $1,148,000 \mathrm{lbs}$ of CO_{2} e Methane Avoidance
- 205 lbs of CO_{2} Sequestered in Vegetation
- 110,700 lbs of CO_{2} Sequestered in Soil

This is the equivalent of offsetting the greenhouse gas emissions of 121 passenger vehicles driven for one year. ${ }^{2}$

Treating Stormwater Runoff ${ }^{2}$

With approximately 50% organic matter, a high porosity, and high relative surface area, compost has the ability to absorb significant volumes of water.
This GreenLoxx MSE project, restoring a bluff on Lake Michigan, not only provides habitat and beauty, it can also absorb significant amounts of stormwater. Each linear ft of 12-in GroSoxx (1 square foot) can absorb up to 4 gallons of water. Utilizing 2,000 ft of 12-in GroSoxx, this wall has the potential to absorb up to 8,000 gallons of rainfall per event. ${ }^{2}$
In other applications, replacing a traditional concrete block wall with a permeable GreenLoxx system on a site with a stormwater retention basin or bioretention system, may allow engineering and construction of a smaller stormwater retention basin or bioretention system, and/or increased absorption of area rainfall, and may also contribute to LEED Green Building Credits.

[^1]
PROJECT PROFILE: STREAMBANK RESTORATION

Columbia, SC

A Richland County stream had heavily eroded banks, and residents had begun voicing concerns to the County about the loss of land. Richland County took on the project in order to restore the lost real estate. The engineer originally proposed using turf reinforcement mats, but that would have meant taking away even more land to create the necessary slope angle."The County was looking for a design that would allow for the streambanks to be built back up quickly, almost vertically in some locations, and a design that would also look very natural," said Allison Steele, Stormwater Engineer for Richland County. "The whole point of the project was to give them their yards back." Engineering firm CDM Smith decided to use the GreenLoxx system, not only for its verticality, but also for its ease of installation in a forested environment. The GroSoxx used in the GreenLoxx system mold to fit around trees, eliminating the need to clear cut. Filtrexx ${ }^{\oplus}$ Certified ${ }^{\text {SM }}$ Installers Eco-FX, Inc. (Charlotte, NC) and Coogler Construction, Inc. (Ballentine, SC) teamed up for the custom installation. Together they installed approximately 600 feet of streambank, and the work was completed in about two weeks. GreenLoxx can be installed with or without mechanical reinforcement-this project used both. The GroSoxx were pre-seeded with an annual cover crop. The team returned in spring to plant several hundred native plants for permanent stabilization.

Use GreenLoxx Systems for a variety of applications and industries

(414) PROMOTES GROWTH

APPLICATIONS

- STREAMBANKS
- STEEP SLOPES
- SHORELINES
- RETAINING WALLS
-ROADSIDE SLOPES

INDUSTRIES

- MUNICIPALITIES
-RESIDENTIAL/HOA
-LANDSCAPING
- CONSERVATION DISTRICTS

Contact Filtrexx for availability and system packages.
filtrexx.com | 877-542-7699|info@filtrexx.com

DESIGN SPECIFICATION 5.2 GrowingMedia ${ }^{\text {Tm }}$

PURPOSE \& DESCRIPTION

Composted products used for Filtrexx GrowingMedia ${ }^{\text {TM }}$ shall be weed free and derived from a well-decomposed source of organic matter. The composted products shall be produced using an aerobic composting process meeting USEPA CFR 503 regulations (In Canada: M.O.E. 101, C.C.M.E. Type "A" and Type "AA" regulations), including time and temperature data indicating effective weed seed, pathogen and insect larvae kill. The composted products shall be free of any refuse, contaminants or other materials toxic to plant growth. Non-composted products will not be accepted. Test methods for the items below should follow USCC TMECC guidelines for laboratory procedures:

Section

A. PH - 5.0-8.0 in accordance with TMECC 04.11-A, "Electrometric pH Determinations for Compost"
B. Moisture content of less than 60% in accordance with standardized test methods for moisture determination.
C. GrowingMedia to be used with Filtrexx ${ }^{\circledR}$ Soxx ${ }^{\mathrm{TM}}$ where seeding and/or live stakes are specified; on low grade slopes where vegetation establishment is the priority; or where rainwater absorption, water holding capacity, runoff reduction and infiltration are the priority shall meet the following particle size distribution. Examples include Soxx for Runoff Diversion, Channel Protection, Bank Stabilization, Severe Slope Stabilization, Vegetated Retaining Walls, Vegetated Gabion, Filtration System, Compost Vegetated Cover, Compost Erosion Control Blanket ${ }^{\mathrm{TM}}$, Compost Storm Water Blanket ${ }^{\mathrm{TM}}$, Compost Engineered Soil, Compost Bioretention System, Green Roof GrowingMedia.

Particle Sizes - 100\% passing a 2 in (50 mm) sieve, 99% passing a 1 in $(25 \mathrm{~mm})$ sieve, minimum of 60% passing a $1 / 2$ in $(12.5 \mathrm{~mm})$ sieve in accordance with TMECC 02.02-B, "Sample Sieving for Aggregate Size Classification".
D. Material shall be relatively free ($<1 \%$ by dry weight) of inert or foreign man made materials.
E. Material feedstocks shall not contain wood materials that have been treated or painted, contain preservatives or adhesives, or are composed of engineered wood products.
F. A sample shall be submitted to the Engineer for approval prior to being used and must comply with all local, state and federal regulations.

Option A: Erosion Control

For vegetated non Soxx applications where slope grades are greater than $3: 1$, where sheet runoff rate or velocity may be high, or rainfall rate/intensity may be high.

Substitution for Section C. Particle Size of GrowingMedia shall use the following particle size distribution specification: 99\% passing a 1 in (25 mm) sieve, maximum of 50% passing a $1 / 2$ in (12.5 mm) sieve.

Option B: Non-vegetated Temporary Erosion Control

For non-vegetated non Soxx applications where slope grades are greater than $3: 1$, where sheet runoff rate or velocity may be high, or rainfall rate/intensity may be high.

Substitution for Section C. Particle Size of GrowingMedia shall use the following particle size distribution specification: 99% passing a 3 in $(75 \mathrm{~mm})$ sieve and a maximum of 30% passing a $1 / 2$ in $(12.5 \mathrm{~mm})$ sieve.

Rationale for Options: Research conducted at The University of Georgia and Auburn University (Faucette et al, 2006; Faucette, 2006) to evaluate the performance of particle sizes in compost erosion control blankets found that distributions with predominantly small particles absorbed more rainfall, reduced a greater volume of runoff, increased the delay of runoff commencement, and exhibited greater vegetation growth, relative to compost erosion control blankets with large particle sizes. However, compost erosion control blankets with distributions of predominantly large particles slowed runoff rate and reduced soil loss prior to vegetation establishment over compost erosion control blankets with smaller particles sizes.

FIELD APPLICATION PHOTO REFERENCES

GrowingMedia Sample

ADDITIONAL INFORMATION

For other references on this topic, including additional research reports and trade magazine and press coverage, visit the Filtrexx website at filtrexx.com

Filtrexx International, Technical Support
877-542-7699 | www.filtrexx.com | info@filtrexx.com
Call for complete list of international installers and distributors.
branch \& leaf \circledR^{\circledR} logo, EnviroSoxx ${ }^{\circledR}$, Filtrexx ${ }^{\circledR}$, GreenLoxx ${ }^{\circledR}$, GroSoxx ${ }^{\circledR}$, and the color GREEN®, are Registered Trademarks used by Filtrexx International.

CECB $^{\text {TM }}$ [Compost Erosion Control Blanket], CSWB ${ }^{\text {TM }}$ [Compost StormWater Blanket], DitchChexx ${ }^{\text {TM }}$, EdgeSaver ${ }^{\text {TM }}$, FilterCell ${ }^{\text {TM }}$, FilterMedia ${ }^{\mathrm{TM}}$, FilterSoxx ${ }^{\mathrm{TM}}$, GrowingMedia ${ }^{\mathrm{TM}}$, InletSoxx ${ }^{\mathrm{TM}}$, LivingWall ${ }^{\mathrm{TM}}$, Lockdown ${ }^{\mathrm{TM}}$, SiltSoxx ${ }^{\mathrm{TM}}$, and Soxx ${ }^{\mathrm{TM}}$ are Trademarks used by Filtrexx International.

Filtrexx Certified ${ }^{\mathrm{SM}}$ and its accompanying logo are Service Marks used by Filtrexx International.

The information contained herein may be subject to confidential intellectual property of Filtrexx International, including but not limited to US Patents $7,226,240 ; 7,452,165 ; 7,654,292 ; 8,272,812 ; 8,439,607$; 8,740,503; 8,821,076; 9,044,795; 9,945,090; and 9,982,409 or Patents Pending and is the property of Filtrexx International.

Copyright 2005-2021, Filtrexx International, all rights reserved. Unauthorized reproduction prohibited. All statements, product characteristics, and performance data contained herein are believed to be reliable based on observation and testing, but no representations, guarantees, or warranties of any kind are made as to accuracy, suitability for particular applications, or the results to be obtained. Nothing contained herein is to be considered to be permission or a recommendation to use any proprietary process or technology without permission of the owner. No warranty of any kind, expressed or implied, is made or intended.

REFERENCES CITED \& ADDITIONAL RESOURCES

Demars, K.R. and R.P. Long, 1998. Field evaluation of source separated compost and Coneg model procurement specifications for Connecticut DOT projects. University of Connecticut and Connecticut Department of Transportation. December, 1998. JHR 98-264.

Faucette, L.B., J. Governo, C.F. Jordan, B.G. Lockaby, H.F. Carino, and R. Governo. 2006. Storm water quality, C factors, and particle size specifications for compost and mulch blankets relative to straw blankets with PAM used for erosion control. Currently Under Peer Review by Journal of Soil and Water Conservation. In: Filtrexx Library \#706

Faucette, B. 2006. How Important is Particle Size in Specifications for Compost Erosion Control Blankets? In: Filtrexx Tech Link \#3310; and Filtrexx Standard Specifications and Design Manual 5.0, Appendix 5.9.

Faucette B, C. Jordan, M. Risse, M. Cabrera, D. Coleman, and L. West. 2005. Evaluation of storm water from compost and conventional erosion control practices in construction activities. Journal of Soil and Water Conservation. 60:6:288-297.

Faucette, B., M. Risse, M. Nearing, J. Gaskin, and L. West. 2004. Runoff, erosion, and nutrient losses from compost and mulch blankets under simulated rainfall. Journal of Soil and Water Conservation. 59:4:154-160.

Mukhtar, S., M. McFarland, C. Gerngross, F. Mazac. 2004. Efficacy of using dairy manure
compost as erosion control and revegetation material. 2004 American Society of Agricultural Engineers/Canadian Society of Agricultural Engineers Annual International Meeting, Ontario, CA. Paper \#44079.

Persyn, R.A., T.D. Glanville, T.L. Richard, J.M. Laflen, and P.M. Dixon. 2004. Environmental effects of applying composted organics to new highway impacts: Part 1. Interrill runoff and erosion. Transactions of the American Society of Agricultural and Biological Engineers. 47:2:463-469.

DRAINAGE ANALYSIS REPORT

FOR

Site Renovation Plans

70 Pleasant Point Drive
Portsmouth, New Hampshire Rockingham County

Tax Map 207, Lot 15

Owned by and Prepared
for Katara, LLC

May 25, 2022
(This Page Is Intentionally Blank)

Contents

1.0 - SUMMARY \& PROJECT DESCRIPTION 1
2.0 - CALCULATION METHODS 1
3.0 - EXISTING SITE CONDITIONS 2
4.0 - PRE-DEVELOPMENT CONDITIONS 2
5.0 - POST-DEVELOPMENT CONDITIONS 2
6.0 - REGULATORY COMPLIANCE 4
6.1 - PORTSMOUTH STORMWATER MANAGEMENT STANDARDS 4
7.0 - BEST MANAGEMENT PRACTICES 4
7.1 - TEMPORARY PRACTICES 5
7.2 - PERMANENT PRACTICES 6
7.3 - BEST MANAGEMENT PRACTICE EFFICIENCIES. 6
8.0 - GENERAL CONSTRUCTION SEQUENCING 6
9.0 - CONCLUSION 7
APPENDIX A - EXTREME PRECIPITATION RATES 10
APPENDIX B - SITE-SPECIFIC SOIL SURVEY \& NRCS WEB SOIL REPORT 13
APPENDIX C - TEST PIT LOGS \& INFILTRATION TEST DATA 14
APPENDIX D - PRE-DEVELOPMENT CALCULATIONS 47
APPENDIX E - PRE-DEVELOPMENT CALCULATIONS (10-YEAR STORM EVENT) $\underline{59}$
APPENDIX F - POST-DEVELOPMENT CALCULATIONS 65
APPENDIX G - POST-DEVELOPMENT CALCULATIONS (10-YEAR STORM EVENT) 81
APPENDIX H - PRE-DEVELOPMENT DRAINAGE MAP 95
APPENDIX I - POST-DEVELOPMENT DRAINAGE MAP 99
Table of FiguresTable 1 - 24-Hour Rainfall Rates1
Table 2 - Pre and Post- Development Peak Runoff Rate Comparison. 3
Table 3 - Pre and Post- Development Peak Runoff Volume Comparison 3
(This Page Is Intentionally Blank)

1.0-SUMMARY \& PROJECT DESCRIPTION

The project includes the development of a single-family residential house on 70 Pleasant Point Drive. The existing lot is approximately 0.642 acres and currently contains a single-family residence. The site is within the Single Residence B Zone and Flood Plain Overlay District and is adjacent to the Piscataqua River on both the southeast and southwest side.

The project proposes to remove the existing dwelling and replace with a new modern 2-story dwelling. Associated improvements include, but are not limited to access, grading, utilities, stormwater management system, lighting, and landscaping. The project proposes a 2,605 SF building footprint and total of 3,546 SF of impervious area within the property lines and approximately 19,907 SF of disturbance to facilitate the development.

This analysis has been completed to verify the project will not pose adverse stormwater effects on-site and off-site. Compared to the pre-development conditions, the post-development stormwater management system has been designed to reduce peak runoff rates, reduce runoff volume, reduce the risk of erosion and sedimentation, and improve stormwater runoff quality. In addition, Best Management Practices are employed to formulate a plan that assures stormwater quality both during and after construction. The following summarizes the findings from the study.

2.0-CALCULATION METHODS

The design storms analyzed in this study are the 2-year, 10-year, 25 year, and 50-year 24hour storm events. The software program, HydroCAD version 10.00^{1} was utilized to calculate the peak runoff rates from these storm events. The program estimates the peak rates using the TR-20 method. A Type III storm pattern was used in the model. Rainfall frequencies for the analyzed region were also incorporated into the model. Rainfall frequencies from the higher of the Extreme Precipitation Rates from Cornell University's Northeast Regional Climate Center (see Appendix A, Table 1). Due to the project's location within the Coastal/Great Bay Region community, the design rainfall increases the Cornell rates by 15% to address projected storm surge, sea level rise, and precipitation events per Env-Wq 1503.08(I). Design standards were taken from the New Hampshire Stormwater Manual, December 200 ² 2.

	24-HOUR RAINFALL RATES	
Storm-Event (year)	Northeast Regional Climate Center Extreme Precipitation (in)	Design Rainfall (in)
2	3.21	3.69
10	4.86	5.59
25	6.17	7.10
50	7.38	8.49

Table 1-24-Hour Rainfall Rates

Time of Concentration is the time it takes for water to flow from the hydraulically most remote point in the watershed (with the longest travel time) to the watershed outlet. This time is

[^2]determined by calculating the time it takes runoff to travel this route under one of three hydrologic conditions: sheet flow, shallow concentrated flow, or channel flow. Because the Intensity-Duration-Frequency (IDF) curve is steep with short TC's, estimating the actual intensity is subject to error and overestimates actual runoff. Due to this, the TC's are adjusted to a minimum of 6 minutes.

3.0 - EXISTING SITE CONDITIONS

The soils within the proposed area of disturbance are identified per the NRCS Web Soil (see Appendix B for detail and soil locations). The soils are composed of Urban land - canton complex (HSG A). These soils are classified as well-drained.

Three test pits and infiltration tests were conducted. In nearly all test pit locations, loam was discovered. Infiltration tests were determined per Ksat testing using a Compact Constant Head Permeameter (Amoozemeter) per Env-Wq 1504.14(d). The highest Estimated Seasonal HighWater Table (ESWT) observed was at: elevation 10.17' at the location of the proposed bioretention system.

4.0 - PRE-DEVELOPMENT CONDITIONS

The pre-development condition is characterized by four subcatchments composing two watersheds, which flows towards the Piscataqua River. Pre-development subcatchment areas are depicted on the attached plan entitled "Pre-Development Drainage Map," Sheet DRAIN-01 in Appendix H .

Stormwater runoff from the site primarily infiltrates into the well-drained soils on-site. The remaining stormwater runoff discharges primarily towards the Piscataqua River (EPR) while the remaining runoff is directed to the neighboring properties to the north of the site (POI-1).

In the pre-development condition, the total impervious area is 3,642 SF over a total drainage analysis area of 27,965 SF.

5.0-POST-DEVELOPMENT CONDITIONS

The post-development condition is characterized by two watersheds divided into many subcatchment areas. Post-development subcatchment areas are depicted on the attached plan entitled "Post-Development Drainage Map," sheet DRAIN-02 in Appendix I.

In the post-development condition, the total impervious area is $3,561 \mathrm{SF}$ over a total drainage analysis area of 27,965 SF. The total impervious area decreases from the existing amount. Impervious area from the project consists of a $2,605 \mathrm{SF}$ footprint residential building and associated improvements. One rain garden is proposed to treat and mitigate the stormwater runoff from the impact of the new impervious area from the proposed development.

Table 2 summarizes the pre- and post-development peak runoff rates for the 2 -year, 10 -year, 25 year, and 50 -year 24 -hour Type III storm events for all discharge. Table 3 summarizes the pre- and post-development peak runoff volumes for the 2-year 24-hour Type III storm events for all discharge.

	TABLE 2 - SURFACE WATER PEAK RUNOFF				
RATE COMPARISON (CFS)					

Table 2-Pre- and Post- Development Peak Runoff Rate Comparison

TABLE 3-SURFACE WATER PEAK RUNOFF		
VOLUME COMPARISON (CF)		
POINT OF INTEREST		DESIGN STORM
POI-1	Pre	2-year
	Post	87
Piscataqua River	Pre	87
	Post	1,437

Table 3 - Pre- and Post- Development Peak Runoff Volume Comparison

The proposed project reduces peak rates of runoff compared to existing conditions for all storm events, in accordance with AoT regulations and Portsmouth stormwater regulations. Additionally, per NHDES, the 2-year 24-hour storm does not result in an increased peak flow rate and reduces volume within the limits of Env-Wq 1507.05(b)(1) from the pre-development to post-development condition. There will be no adverse effects on the abutting properties from the proposed stormwater management system.

Appendices D and F summarize all 24 -hour storm events for pre- and post-development drainage calculations using HydroCAD analysis. Appendices E and G provide a full summary of the 10-year, 24 -hour storm for the pre- and post-development drainage calculations using HydroCAD analysis.

There were three warning messages for the 10-year storm event related to the proposed rain garden:

- [87] Warning: Pond ST Oscillations may require smaller dt or Finer Routing (severity=114)
- [87] Warning: Pond ST2 Oscillations may require smaller dt or Finer Routing (severity=88)
- [87] Warning: Pond ST3: Oscillations may require smaller dt or Finer Routing (severity=156)

There was one warning message for the 10-year storm event related to the proposed pervious patio and:

- [87] Warning: Pond PVP Oscillations may require smaller dt or Finer Routing (severity=282)

Warning 87 is related to the dt and fine routing were adjusted to minimize the severity of this occurrence. The oscillation occurs as the water drains down to the surface of the subsurface
infiltration basins (See Figure 1). Oscillation warnings less than 100 are considered minor. All oscillation errors occur outside of the peak runoff and therefore are not a significant factor in the calculations.

Figure 1: View of the Hydrographs with Oscillation Warning

6.0 - REGULATORY COMPLIANCE

The project meets the stricter of the stormwater standards identified in the New Hampshire Department of Environmental Services (DES) Env-Wq 1500 Alteration of Terrain Regulations and Portsmouth stormwater management regulations.

6.1 - PORTSMOUTH STORMWATER MANAGEMENT STANDARDS

The following regulatory requirements are provided to show project conformance to the applicable criteria of Portsmouth Stormwater Management Performance Standards defined in the Portsmouth Zoning Ordinance Section 10.1018.10. All regulations are met.

All construction activities and uses of buildings, structures, and land within wetlands and wetland buffers shall be carried out so as to minimize the volume and rate of stormwater runoff, the amount of erosion, and the export of sediment from the site. All such activities shall be conducted in accordance with Best Management Practices for stormwater management including but not limited to:

1. New Hampshire Stormwater Manual, NHDES, current version.
2. Best Management Practices to Control Non-point Source Pollution: A Guide for Citizens and City Officials, NHDES, January 2004.

7.0 - BEST MANAGEMENT PRACTICES

Best Management Practices will be developed in accordance with the New Hampshire Stormwater Manual, Volumes Two and Three, December 2008^{3} to formulate a plan that assures stormwater quality both during and after construction. The intent of the outlined measures is to minimize erosion and sedimentation during construction, stabilize and protect the site from erosion after construction is complete and mitigate any adverse impacts to stormwater quality resulting from development. Best Management Practices for this project include:

- Temporary practices to be implemented during construction.
- Permanent practices to be implemented after construction.

7.1 - TEMPORARY PRACTICES

1. Erosion, sediment, and stormwater detention measures must be installed as directed by the engineer.
2. All disturbed areas, as well as loam stockpiles, shall be seeded and contained by a silt barrier.
3. Silt barriers must be installed prior to any construction commencing. All erosion control devices including silt barriers and storm drain inlet filters shall be inspected at least once per week and following any rainfall. All necessary maintenance shall be completed within twenty-four (24) hours.
4. Any silt barriers found to be failing must be replaced immediately. Sediment is to be removed from behind the silt barrier if found to be one-third the height of the silt barrier or greater.
5. Any area of the site, which has been disturbed and where construction activity will not occur for more than twenty-one (21) days, shall be temporarily stabilized by mulching and seeding.
6. No construction materials shall be buried on-site.
7. After all areas have been stabilized, temporary practices are to be removed, and the area they are removed from must be smoothed and revegetated.
8. Areas must be temporarily stabilized within 14 days of disturbance or seeded and mulched within 3 days of final stabilization.
9. After November $15^{\text {th }}$, incomplete driveways or parking areas must be protected with a minimum of 3 " of crushed gravel, meeting the standards of NHDOT item 304.3.
10. An area shall be considered stable if one of the following has occurred:
a) Base course gravels are installed in areas to be paved.
b) A minimum of 85% vegetated growth has been established.
c) A minimum of $3^{\prime \prime}$ of non-erosive material such as stone or rip rap has been installed.
d) Erosion control blankets have been properly installed.
[^3]
7.2 - PERMANENT PRACTICES

The objectives for developing permanent Best Management Practices for this site include the following:

1. Maintain existing runoff flow characteristics.
a) Drainage is structured to minimize any offsite increase in runoff
2. Treatment BMP's are established to ensure the water quality.
3. Maintenance schedules are set to safeguard the long-term working of the stormwater BMP's.

7.3 - BEST MANAGEMENT PRACTICE EFFICIENCIES

Appendix E of Volume 2 of the New Hampshire Stormwater ${ }^{4}$ lists the pollutant removal efficiencies of various BMP's. All proposed BMP's meet all state and Portsmouth requirements for total suspended solids (TSS) and pollutant removal, Total Nitrogen (TN), and Total Phosphorous (TP).

Bioretention Systems have a 90% TSS removal efficiency, 65% TN removal efficiency, and 65% TP efficiency.

8.0 - GENERAL CONSTRUCTION SEQUENCING

To minimize erosion and sedimentation due to construction, construction shall follow this general construction sequence.

Modifications to the sequence necessary due to the contractor's schedule shall include appropriate temporary and permanent erosion and sedimentation control measures.

The contractor shall schedule work such that any construction area is stabilized within 45 days of initial disturbance except as noted below. No more than 5 acres of disturbed land shall be unstabilized at any one time.

The project shall be managed so that it meets the requirements and intent of RSA 430:53 and chapter ARG 3800 relative to invasive species.

Do not traffic exposed soil surface of infiltration systems with construction equipment. If feasible, perform excavations with equipment positioned outside the limits of the infiltration components of the system.

Do not discharge sediment-laden waters from construction activities (runoff, water from excavations) to stormwater bmp's. Stormwater runoff must be directed to temporary practices until stormwater bmp's are stabilized.

Do not place stormwater bmp's into service until the contributing areas have been fully stabilized.

[^4]After the infiltration system is excavated to the final design elevation, the floor should be deeply tilled with a rotary tiller or disc harrow to restore the infiltration rates, followed by a pass with a leveling drag.

1. Notify easement owners prior to commencement of work.
2. Install all perimeter erosion protection measures as indicated on the plans prior to the commencement of construction.
3. Stormwater treatment ponds and swales shall be installed before rough grading the site.
4. During construction every effort shall be made to manage surface runoff quality.
5. Daily, or as required, construct temporary berms, drains, ditches, silt barriers, sediment traps, etc. Mulch and seed as required. (temporary seed mixture of winter rye applied at a rate of $2.5 \mathrm{lbs} / 1000 \mathrm{sf}$ shall be used).
6. Conduct major earthwork, including clearing and grubbing, within the limits of work. All cut and fill slopes shall be seeded within 72 hours after grading.
7. All stripped topsoil and other earth materials shall be stockpiled outside the immediate work and 100' buffer. A silt barrier shall be constructed around these piles in a manner to provide access and avoid sediment outside of the work area.
8. Construct building pad and commence new building construction.
9. Construct temporary diversions as required.
10. Begin permanent and temporary installation of seed and mulch.
11. Perform earthwork necessary to establish rough grading around driveway. Manage exposed soil surfaces to avoid transporting sediments into wetlands.
12. Install subsurface utilities (water, sewer, gas, electric, communications, drainage, drainage facilities, etc.).
13. Construct proposed driveway, rain gardens, gravel wetlands and drainage swales. All ditches, swales, and gravel wetlands shall be fully stabilized prior to directing flow to them.
14. Complete building and all off-site improvements.
15. Complete seeding and mulching. Seed to be applied with broadcast spreader or by hydroseeding, then rolled, raked, or dragged to assure seed/soil contact.
16. Remove temporary erosion control measures after seeded areas have become firmly established and site improvements are complete.
17. During the course of the work and upon completion, the contractor shall remove all sediment deposits, either on or off site, including catch basins, and sumps, drain pipes and ditches, curb lines, along silt barriers, etc. Resulting from soil and/or construction operations. 18. See winter construction sequence for work conducted after October 15th.

9.0 - CONCLUSION

The proposed stormwater management system will treat, infiltrate, and mitigate the runoff generated from the proposed development and provide protection of groundwater and surface waters as required through the Alteration of Terrain Bureau and Portsmouth stormwater management regulations. Further, the surface water peak runoff rate is reduced in the 2-year, 10 -year, 25-year, and 50-year storm. The project has been designed in accordance with NHDES and Portsmouth regulations. There is little change in the flow characteristics of the site. The proposed project has been designed to pose no adverse effects on surrounding properties.

Respectfully,
TFMoran, Inc. Seacoast Division

Jason Cook
Civil Project Engineer
JKC/jcc

(This Page Is Intentionally Blank)

APPENDIX A - EXTREME PRECIPITATION RATES

(This Page Is Intentionally Blank)

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Smoothing	Yes
State	
Location	
Longitude	70.746 degrees West
Latitude	43.068 degrees North
Elevation	0 feet
Date/Time	Mon, 18 Apr 2022 11:32:07-0400

Extreme Precipitation Estimates

	5 min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.26	0.40	0.50	0.65	0.81	1.04	1yr	0.70	0.98	1.21	1.56	2.03	2.66	2.92	1yr	2.35	2.81	3.22	3.94	4.55	1yr
2 yr	0.32	0.50	0.62	0.81	1.02	1.30	2 yr	0.88	1.18	1.52	1.94	2.49	3.21	3.57	2yr	2.84	3.43	3.94	4.68	5.33	2 yr
5 yr	0.37	0.58	0.73	0.98	1.25	1.6	5 yr	1.08	1.47	1.89	2.43	3.14	4.07	4.58	5 yr	3.60	4.40	5.04	5.94	6.70	5yr
10 yr	0.41	0.65	0.82	1.12	1.45	1.89	10 yr	1.25	1.73	2.23	2.90	3.75	4.86	5.53	10 yr	4.30	5.32	6.09	7.11	7.98	10 yr
25 yr	0.48	0.76	0.97	1.34	1.78	2.34	$25 y r$	1.54	2.15	2.78	3.64	4.74	6.17	7.10	$25 y r$	5.46	6.83	7.81	9.02	10.05	$25 y \mathrm{yr}$
50 yr	0.54	0.86	1.10	1.54	2.08	2.77	50yr	1.79	2.53	3.30	4.33	5.67	7.38	8.58	50yr	6.54	8.25	9.43	10.81	11.97	50 yr
100 yr	0.60	0.97	1.25	1.78	2.43	3.27	100 yr	2.09	2.99	3.92	5.17	6.77	8.85	10.37	100 yr	7.83	9.98	11.39	12.96	14.26	100 yr
200yr	0.68	1.11	1.43	2.05	2.84	3.85	200yr	2.45	3.53	4.63	6.14	8.09	10.60	12.54	200yr	9.38	12.06	13.76	15.54	17.00	200yr
500yr	0.80	1.32	1.72	2.50	3.50	4.79	500yr	3.02	4.40	5.79	7.72	10.23	13.47	16.13	500yr	11.92	15.51	17.68	19.77	21.47	500yr

Lower Confidence Limits

	5 min	10 min	15 min	30min	60min	120 min		1 hr	2hr	3hr	6hr	12 hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.23	0.36	0.44	0.59	0.72	0.88	1yr	0.62	0.86	0.93	1.33	1.69	2.25	2.48	1yr	1.99	2.38	2.87	3.20	3.91	1yr
2 yr	0.31	0.49	0.60	0.81	1.00	1.19	2 yr	0.86	1.16	1.37	1.82	2.33	3.06	3.45	2 yr	2.71	3.32	3.82	4.55	5.09	2 yr
5 yr	0.35	0.54	0.67	0.92	1.17	1.40	5 yr	1.01	1.37	1.61	2.11	2.73	3.78	4.18	5 yr	3.35	4.02	4.72	5.53	6.23	5yr
10 yr	0.39	0.59	0.73	1.03	1.33	1.60	10 yr	1.14	1.56	1.80	2.38	3.05	4.36	4.85	10 yr	3.86	4.66	5.43	6.40	7.18	10 yr
25 yr	0.44	0.67	0.83	1.19	1.56	1.90	$25 y r$	1.35	1.86	2.10	2.75	3.52	4.74	5.87	$25 y \mathrm{yr}$	4.20	5.64	6.62	7.77	8.66	$25 y r$
50 yr	0.48	0.73	0.91	1.31	1.76	2.16	50yr	1.52	2.12	2.34	3.06	3.91	5.36	6.76	50 yr	4.75	6.50	7.69	9.01	9.99	50 yr
100 yr	0.53	0.81	1.01	1.46	2.01	2.46	100yr	1.73	2.41	2.62	3.40	4.32	6.03	7.80	100 yr	5.34	7.50	8.92	10.47	11.53	100yr
200 yr	0.59	0.89	1.13	1.63	2.27	2.81	200 yr	1.96	2.75	2.93	3.76	4.76	6.77	8.99	200 yr	5.99	8.64	10.34	12.17	13.33	200 yr
500 yr	0.68	1.02	1.31	1.90	2.70	3.36	500 yr	2.33	3.28	3.41	4.28	5.40	7.89	10.84	500 yr	6.99	10.43	12.56	14.89	16.15	500 yr

Upper Confidence Limits

	5 min	10min	15min	30 min	60 min	120 min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1 yr	0.29	0.44	0.54	0.72	0.89	1.09	1yr	0.77	1.06	1.26	1.74	2.20	2.97	3.17	1 yr	2.63	3.05	3.58	4.37	5.04	1 yr
2 yr	0.34	0.52	0.64	0.87	1.07	1.27	2 yr	0.92	1.24	1.48	1.96	2.52	3.42	3.71	2 yr	3.03	3.57	4.10	4.84	5.62	2y
5 yr	0.40	0.62	0.77	1.05	1.34	1.62	5 yr	1.15	1.59	1.89	2.54	3.26	4.34	4.97	5 yr	3.84	4.78	5.38	6.39	7.17	5 yr
10 yr	0.47	0.72	0.89	1.25	1.61	1.98	10 yr	1.39	1.94	2.29	3.11	3.97	5.34	6.22	10 yr	4.72	5.98	6.84	7.86	8.77	10 yr
25 yr	0.58	0.88	1.09	1.56	2.05	2.58	25 yr	1.77	2.52	2.96	4.08	5.17	7.74	8.37	25yr	6.85	8.05	9.20	10.36	11.43	$25 y \mathrm{r}$
50 yr	0.67	1.03	1.28	1.84	2.47	3.14	50 yr	2.13	3.07	3.61	5.02	6.35	9.69	10.50	50 yr	8.57	10.10	11.51	12.76	13.99	50 yr
100 yr	0.79	1.20	1.50	2.17	2.98	3.83	100 yr	2.57	3.74	4.39	6.18	7.81	12.11	13.17	100yr	10.72	12.66	14.41	15.74	17.13	100yr
200 yr	0.93	1.40	1.77	2.57	3.58	4.68	200 yr	3.09	4.57	5.36	7.61	9.61	15.19	16.53	$200 y r$	13.44	15.89	18.08	19.41	20.97	200 yr
500 yr	1.16	1.72	2.21	3.21	4.57	6.07	500 yr	3.94	5.94	6.96	10.07	12.67	20.50	22.33	500 yr	18.14	21.48	24.39	25.60	27.40	500 yr

APPENDIX B - SITE-SPECIFIC SOIL SURVEY \& NRCS WEB SOIL REPORT

(This Page Is Intentionally Blank)

United States Department of Agriculture

Natural
Resources
Conservation
Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Rockingham County, New Hampshire

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.
Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/ portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).
Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.
Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require
alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface 2
How Soil Surveys Are Made 5
Soil Map 8
Soil Map 9
Legend 10
Map Unit Legend 11
Map Unit Descriptions. 11
Rockingham County, New Hampshire 13
799-Urban land-Canton complex, 3 to 15 percent slopes. 13
W-Water 14
References 15

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.
Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.
Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.
After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Area of Interest (AOI)	
\square	Area of Interest (AOI)
Soils	
\square	Soil Map Unit Polygons
\square	Soil Map Unit Lines
\square	Soil Map Unit Points

Special Point Features
(c) Blowout

B Borrow Pit
粠 Clay Spot
\diamond Closed Depression
The Gravel Pit
$\therefore \quad$ Gravelly Spot
(4) Landfill
A. Lava Flow
A. Marsh or swamp
\% Mine or Quarry
(-) Miscellaneous Water

- Perennial Water
- Rock Outcrop
+ Saline Spot
$\because \quad$ Sandy Spot
을 Severely Eroded Spot
- Sinkhole

3) Slide or Slip
(6) Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Rockingham County, New Hampshire Survey Area Data: Version 24, Aug 31, 2021

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Dec 31, 2009—Jun
14,2017 14, 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background magery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol		Map Unit Name	Acres in AOI
799	Urban land-Canton complex, 3 to 15 percent slopes	$\mathbf{1 . 3}$	Percent of AOI
W	Water	0.9	49.0%
Totals for Area of Interest	$\mathbf{2 . 2}$	$\mathbf{4 1 . 0 \%}$	

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.
A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.
Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.
The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,
onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.
Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Rockingham County, New Hampshire

799—Urban land-Canton complex, 3 to 15 percent slopes

```
Map Unit Setting
    National map unit symbol: 9cq0
    Elevation: 0 to 1,000 feet
    Mean annual precipitation: }42\mathrm{ to }46\mathrm{ inches
    Mean annual air temperature: }45\mathrm{ to 48 degrees F
    Frost-free period: }120\mathrm{ to }160\mathrm{ days
    Farmland classification: Not prime farmland
Map Unit Composition
    Urban land: }55\mathrm{ percent
    Canton and similar soils: }20\mathrm{ percent
    Minor components: }25\mathrm{ percent
    Estimates are based on observations, descriptions, and transects of the mapunit.
Description of Canton
    Setting
            Parent material: Till
    Typical profile
        H1-0 to 5 inches: gravelly fine sandy loam
        H2 - 5 to 21 inches: gravelly fine sandy loam
        H3-21 to 60 inches: loamy sand
    Properties and qualities
        Slope: }3\mathrm{ to }8\mathrm{ percent
        Depth to restrictive feature: More than }80\mathrm{ inches
        Drainage class: Well drained
        Runoff class: Low
        Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00
            in/hr)
        Depth to water table: More than }80\mathrm{ inches
        Frequency of flooding: None
        Frequency of ponding: None
        Available water supply, 0 to 60 inches: Low (about 5.3 inches)
    Interpretive groups
        Land capability classification (irrigated): None specified
        Land capability classification (nonirrigated): 2e
        Hydrologic Soil Group: A
        Ecological site: F144AY034CT - Well Drained Till Uplands
        Hydric soil rating: No
Minor Components
    Udorthents
        Percent of map unit: 5 percent
        Hydric soil rating: No
    Squamscott and scitico
        Percent of map unit: 4 percent
        Landform: Marine terraces
```

Hydric soil rating: Yes

Walpole

Percent of map unit: 4 percent
Landform: Depressions
Hydric soil rating: Yes

Chatfield

Percent of map unit: 4 percent
Hydric soil rating: No

Scituate and newfields

Percent of map unit: 4 percent
Hydric soil rating: No

Boxford and eldridge

Percent of map unit: 4 percent
Hydric soil rating: No

W-Water

Map Unit Setting

National map unit symbol: 9cq3
Elevation: 200 to 2,610 feet
Farmland classification: Not prime farmland

Map Unit Composition

Water: 100 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.
Federal Register. September 18, 2002. Hydric soils of the United States.
Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.
Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262
Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http:// www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577
Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://
www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580
Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.
United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242
United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624
United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http:// www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

APPENDIX C - TEST PIT LOGS \& INFILTRATION TEST DATA

(This Page Is Intentionally Blank)

Test Pit Report

For
70 Pleasant Point Drive,

Portsmouth, NH

Prepared For
Katara, LLC
47307.01

PREPARED BY
TFMoran, Inc.
48 Constitution Drive
Bedford, NH 03110

April ${ }^{\text {th }}, 2022$

Test Pit \# 1 April 6 ${ }^{\text {th }} \mathbf{, ~} 2022$

0-8 10YR 3/4 Dark Yellowish Brown, Loam, High Organic Concentration, Blocky, Friable,

8-21 10YR 5/8 Yellowish Brown, Silt Loam, > 15\% Angular Rock Fragments, Friable, Homogeneous, Granular

21-28 10YR 6/8 Brownish Yellow, Sandy Loam, > 15\% Rounded Cobbles, Friable, Blocky

28-37 10YR 6/4 Light Yellowish Brown, Fine Sand, Single Grained, Homogenous

37-48 10YR 7/3 Very Pale Brown, Very Fine Sand, Single Grained, Homogenous

48-61 2.5Y 5/4 Light Olive Brown, Sandy Clay Loam, > 50\% Angular Rock Fragments, Decaying Bedrock

REDOX OBS: 57-61 10R 4/8 Red (Oxidization of Iron)

Soil Series: Canton

OBSWT: > 61" Below Grade
ESHWT: 57" Below Grade
Roots: 0-23" Below Grade
Ledge: $33^{\prime \prime}$ Below Grade \& 61" below Grade

Test Pit \# 2 April 6 ${ }^{\text {th }} \mathbf{2 0 2 2}$

0-9 10YR 3/3 Dark Brown, Loam, Organic Horizon, Friable, Blocky
9-19 2.5Y 4/3 Olive Brown, Loamy Sand, Friable, Common Gravels, Granular

19-36 10YR 5/6 Yellowish Brown, Loamy Sand, Common Gravels, Heterogeneous, Massive

36-58 2.5Y 6/4 Light Yellowish Brown, Sandy Loam, Blocky, Medium Grain Size, Few Cobbles

58-68 10YR 7/6 Yellow, Medium Sand, Heterogeneous, loose, Single Grained

REDOX OBS: 43 " Below Grade 7.5YR 5/8 Strong Brown

Soil Series: Canton

OBSWT: > 68" Below Grade
ESHWT: 43" Below Grade
Roots: 8-26" Below Grade
Ledge: 50" Below Grade \& 68" below Grade

Test Pit \# 3 April 6 ${ }^{\text {th }} \mathbf{, ~} 2022$

0-8 10YR 3/2 Very Dark Grayish Brown, Loam, Organic Horizon, Friable, Blocky

8-24 2.5Y 5/6 Light Olive Brown, Sandy Loam, Massive,
24-40 2.5Y 7/4 Pale Brown, Loamy Sand, Friable, Granular, Homogenous, Very Few Cobbles

40-88 10YR 5/4 Yellowish Brown, Loamy Sand, > 15\% Angular Rock Fragments, Homogenous Soils, Platy, Decaying Bedrock

REDOX OBS: 70" Below Grade 2.5YR 4/8 Red

Soil Series: Canton

OBSWT: > 88" Below Grade
ESHWT: 70" Below Grade
Roots: 20-24" Below Grade
Ledge: 62" Below Grade

[^5]Project No： 45407.12
For 5 cm Auger
$H=D-d=43-13=30$

[^6]
Distance from bottom of auger hole to impereable layer
エ《すぞさか

[^7]| | | | | | | | | | | | f Hole = of Auger ayer or E | $\begin{gathered} 2.5 \\ \text { Hole }= \\ \text { HWT } \end{gathered}$ | $\begin{gathered} \mathrm{cm} \\ 84.4 \\ 243.8 \end{gathered}$ | | $\begin{gathered} 23 " \text { Down i } \\ 96 \end{gathered}$ | the hole | $=26+23 * 2.5$
 (From Grou | d Surfact |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $H=D$ | $=26$ | $=13$ | | | | | | | Approxim | e Glover | | | | Glover Solut | | | |
| | | | | | | | | | | | | | | | if $s>$ | | if $s<$ | |
| Reading \# | Time Interval | | Coefficient
 A | Reading | | Elapsed Time | $\begin{aligned} & \text { \# On } \\ & \text { Azm } \end{aligned}$ | Conv.
 Factor
 (Area) | Outflow | Saturated Conducti | ydraulic
 ty ($\mathrm{K}_{\text {sat }}$) | s | A1 | B1 | Saturated Conductiv | ydraulic $\operatorname{ty}\left(K_{\text {sat }}\right)$ | Saturated Conductiv | ydraulic $\mathrm{ty}\left(\mathrm{~K}_{\mathrm{sat}}\right)$ |
| | min | cm | 1/cm | cm | cm | hrs | cm | cm^{3} | $\mathrm{cm}^{3} / \mathrm{hr}$ | cm/hr | in/hr | cm | | | cm/hr | $\mathrm{in} / \mathrm{hr}$ | cm/hr | $\mathrm{in} / \mathrm{hr}$ |
| 1 | 0 | - | - | 32.0 | - | - | | - | - | - | - | - | - | - | - | | | |
| 2 | 0.5 | 13 | 0.001436 | 28.0 | 4.0 | 0.008 | 1 | 20 | 9600 | 13.7856 | 5.427 | 159.4 | 0.001436 | 0.0003 | 13.786 | 5.428 | 3.249 | 1.279 |
| 3 | 1 | 13 | 0.001436 | 23.4 | 4.6 | 0.008 | 1 | 20 | 11040 | 15.85344 | 6.242 | 159.4 | 0.001436 | 0.0003 | 15.854 | 6.242 | 3.736 | 1.471 |
| 4 | 1.5 | 13 | 0.001436 | 19.1 | 4.3 | 0.008 | 1 | 20 | 10320 | 14.81952 | 5.834 | 159.4 | 0.001436 | 0.0003 | 14.820 | 5.835 | 3.493 | 1.375 |
| 5 | 2 | 13 | 0.001436 | 14.8 | 4.3 | 0.008 | 1 | 20 | 10320 | 14.81952 | 5.834 | 159.4 | 0.001436 | 0.0003 | 14.820 | 5.835 | 3.493 | 1.375 |
| 6 | 2.5 | 13 | 0.001436 | 10.4 | 4.4 | 0.008 | 1 | 20 | 10560 | 15.16416 | 5.970 | 159.4 | 0.001436 | 0.0003 | 15.165 | 5.970 | 3.574 | 1.407 |
| 7 | 3 | 13 | 0.001436 | 5.8 | 4.6 | 0.008 | 1 | 20 | 11040 | 15.85344 | 6.242 | 159.4 | 0.001436 | 0.0003 | 15.854 | 6.242 | 3.736 | 1.471 |
| | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | |
| Average Ksat based on readings 3-6 | | | | | | | | | | | 5.880 | | | | | 5.880 | | 1.386 |
| | | | | | | | | | | | | | | | | | | |

A of Auger Hole $=19.6 \quad \mathrm{~cm}$
$\begin{array}{ll}\text { 19" Down in the hole }= & 40+19 * 2.54 \\ 96 \text { in } & \text { (From Ground Surfact }\end{array}$

. ,

${ }^{81100}$	(10)														

$\begin{array}{cccl}\text { A of Auger Hole }= & 19.6 & \mathrm{~cm}^{2} & \\ \text { Radius of Hole }= & 2.5 & \mathrm{~cm} & \\ \text { Depth of Auger Hole }= & 79.3 & \mathrm{~cm} \\ \text { Depth to Impervious Layer or ESHWT } & =243.8 & \mathrm{~cm}\end{array}$

A of Auger Hole $=$	19.6	$\mathrm{~cm}^{2}$	
Radius of Hole $=$	2.5	cm	
Depth of Auger Hole $=$	79.3	cm	
Depth to Impervious Layer or ESHWT $=$	243.8	cm	

A of Auger Hole $=$	19.6	$\mathrm{~cm}^{2}$	
Radius of Hole $=$	2.5	cm	
Depth of Auger Hole $=$	79.3	cm	
Depth to Impervious Layer or ESHWT $=$	243.8	cm	

Saturated Hydraulic	s*		

 -
For 5 cm Auger
$\tau 乙=0 \tau-\tau \varepsilon=\mathrm{p}-\mathrm{Q}=\mathrm{H}$

[^8]

[^9]
APPENDIX D - PRE-DEVELOPMENT CALCULATIONS

(This Page Is Intentionally Blank)

Existing

Piscataqua River

Pre and Post

Prepared by \{enter your company name here\}
Printed 5/24/2022
HydroCAD® 10.10-6a s/n 00866 © 2020 HydroCAD Software Solutions LLC

Rainfall Events Listing (selected events)

Event\#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)
1	2 yr	Type III 24-hr		Default	24.00	1	3.69
2	10 yr	Type III 24-hr	Default	24.00	1	5.59	2
3	25 yr	Type III 24-hr	Default	24.00	1	7.10	2
4	50 yr	Type III 24-hr	Default	24.00	1	8.49	2

Pre and Post
Prepared by \{enter your company name here\}
Printed 5/24/2022
HydroCAD® 10.10-6a s/n 00866 © 2020 HydroCAD Software Solutions LLC

Area Listing (selected nodes)

Area (acres)	CN	Description (subcatchment-numbers)
0.142	35	Brush, Fair, HSG A (ES02, ES03, ES04)
0.435	49	Pasture/grassland/range, Fair, HSG A (ES01, ES02, ES03, ES04)
0.120	98	Paved parking, HSG A (ES02, ES03, ES04)
0.057	98	Roofs, HSG A (ES01, ES03, ES04)
0.005	43	Woods/grass comb., Fair, HSG A (ES01)
$\mathbf{0 . 7 5 9}$	$\mathbf{5 8}$	TOTAL AREA

Pre and Post

Prepared by \{enter your company name here\}
Printed 5/24/2022
HydroCAD® 10.10-6a s/n 00866 © 2020 HydroCAD Software Solutions LLC

Soil Listing (selected nodes)

Area (acres)	Soil Group	Subcatchment Numbers
0.759	HSG A	ES01, ES02, ES03, ES04
0.000	HSG B	
0.000	HSG C	
0.000	HSG D	
0.000	Other	
$\mathbf{0 . 7 5 9}$		TOTAL AREA

Pre and Post

Prepared by \{enter your company name here\}
Printed 5/24/2022
HydroCAD® 10.10-6a s/n 00866 © 2020 HydroCAD Software Solutions LLC
Page 5

Ground Covers (selected nodes)							
HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
0.142	0.000	0.000	0.000	0.000	0.142	Brush, Fair	ESO
							2,
							ESO
							3 ,
							ESO
							4
0.435	0.000	0.000	0.000	0.000	0.435	Pasture/grassland/range, Fair	ESO
							1,
							ESO
							2 ,
							ESO
							3 ,
							ESO
							4
0.120	0.000	0.000	0.000	0.000	0.120	Paved parking	ESO
							2 ,
							ESO
							3 ,
							ESO
							4
0.057	0.000	0.000	0.000	0.000	0.057	Roofs	ESO
							1.
							ESO
							3 ,
							ESO
0.005	0.000	0.000	0.000	0.000	0.005	Woods/grass comb., Fair	ESO
							1
0.759	0.000	0.000	0.000	0.000	0.759	TOTAL AREA	

Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points $\times 3$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentES01: ES01 Flow Length=85' Slope=0.0235 $/ / \quad$ Tc=8.1 $\mathrm{min} \quad \mathrm{CN}=50$ Runoff $=0.0 \mathrm{cfs} 0.002$ af

SubcatchmentES02: ES02

SubcatchmentES03: ES03

SubcatchmentES04: ES04

Link EPOI1: POI1

Link EPR: Piscataqua River

Runoff Area $=10,846$ sf 38.00% Impervious Runoff Depth=0.96" Flow Length=120' Tc=6.0 min CN=67 Runoff=0.2 cfs 0.020 af Runoff Area $=13,313$ sf 17.35% Impervious Runoff Depth=0.31" Flow Length=141' Tc=8.5 min CN=52 Runoff=0.0 cfs 0.008 af

Runoff Area=4,216 sf 26.54% Impervious Runoff Depth=0.66" Flow Length=93' Tc=6.0 min CN=61 Runoff=0.1 cfs 0.005 af

Inflow=0.0 cfs 0.002 af Primary $=0.0$ cfs 0.002 af

Inflow=0.3 cfs 0.033 af Primary $=0.3$ cfs 0.033 af

Total Runoff Area $=0.759 \mathrm{ac} \quad$ Runoff Volume $=0.035$ af
76.65% Pervious $=0.581$ ac $\quad 23.35 \%$ Impervious $=0.177$ ac

Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points $\times 3$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method
SubcatchmentES01: ES01
Runoff Area $=4,670$ sf 3.55% Impervious Runoff Depth $=0.95$ " Flow Length=85' Slope=0.0235 '/' Tc=8.1 $\mathrm{min} \quad \mathrm{CN}=50$ Runoff=0.1 cfs 0.008 af

SubcatchmentES02: ES02

SubcatchmentES03: ES03

SubcatchmentES04: ES04

Link EPOI1: POI1

Link EPR: Piscataqua River

Runoff Area $=10,846$ sf 38.00% Impervious Runoff Depth $=2.23$ " Flow Length=120' Tc=6.0 min CN=67 Runoff=0.6 cfs 0.046 af

Runoff Area=13,313 sf 17.35% Impervious Runoff Depth=1.08" Flow Length=141' Tc=8.5 min CN=52 Runoff=0.3 cfs 0.028 af

Runoff Area=4,216 sf 26.54\% Impervious Runoff Depth=1.74" Flow Length=93' Tc=6.0 min CN=61 Runoff=0.2 cfs 0.014 af

Inflow=0.1 cfs 0.008 af Primary $=0.1$ cfs 0.008 af

Inflow=1.1 cfs 0.088 af Primary $=1.1$ cfs 0.088 af

Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points $\times 3$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method
SubcatchmentES01: ES01
Runoff Area $=4,670$ sf 3.55% Impervious Runoff Depth=1.72" Flow Length=85' Slope=0.0235 '/' Tc=8.1 $\mathrm{min} \quad \mathrm{CN}=50$ Runoff=0.2 cfs 0.015 af

SubcatchmentES02: ES02

SubcatchmentES03: ES03

SubcatchmentES04: ES04

Link EPOI1: POI1

Link EPR: Piscataqua River

Runoff Area $=10,846$ sf 38.00% Impervious Runoff Depth $=3.39$ " Flow Length=120' Tc=6.0 min CN=67 Runoff=1.0 cfs 0.070 af Runoff Area=13,313 sf 17.35% Impervious Runoff Depth=1.91" Flow Length=141' Tc=8.5 min CN=52 Runoff=0.6 cfs 0.049 af

Runoff Area=4,216 sf 26.54% Impervious Runoff Depth=2.77" Flow Length=93' Tc=6.0 min CN=61 Runoff=0.3 cfs 0.022 af

Inflow=0.2 cfs 0.015 af Primary $=0.2$ cfs 0.015 af

Inflow=1.8 cfs 0.141 af Primary $=1.8$ cfs 0.141 af

Total Runoff Area $=0.759 \mathrm{ac} \quad$ Runoff Volume $=0.157$ af \quad Average Runoff Depth $=2.48 "$
76.65% Pervious $=0.581$ ac $\quad 23.35 \%$ Impervious $=0.177$ ac

Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points $\times 3$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method
SubcatchmentES01: ES01
Runoff Area $=4,670$ sf 3.55% Impervious Runoff Depth=2.55" Flow Length=85' Slope=0.0235 '/' Tc=8.1 $\mathrm{min} \quad \mathrm{CN}=50$ Runoff $=0.3 \mathrm{cfs} 0.023 \mathrm{af}$

SubcatchmentES02: ES02

SubcatchmentES03: ES03

SubcatchmentES04: ES04

Link EPOI1: POI1

Link EPR: Piscataqua River

Runoff Area $=10,846$ sf 38.00% Impervious Runoff Depth=4.53" Flow Length=120' Tc=6.0 min CN=67 Runoff=1.3 cfs 0.094 af

Runoff Area=13,313 sf 17.35% Impervious Runoff Depth=2.78" Flow Length=141' Tc=8.5 min CN=52 Runoff=0.8 cfs 0.071 af

Runoff Area=4,216 sf 26.54% Impervious Runoff Depth=3.82" Flow Length=93' Tc=6.0 min CN=61 Runoff=0.4 cfs 0.031 af

Inflow=0.3 cfs 0.023 af Primary $=0.3$ cfs 0.023 af

Inflow=2.5 cfs 0.196 af Primary $=2.5$ cfs 0.196 af

> Total Runoff Area $=0.759$ ac Runoff Volume $=0.218$ af Average Runoff Depth $=3.46$ " 76.65% Pervious $=0.581$ ac 23.35% Impervious $=0.177$ ac

APPENDIX E - PRE-DEVELOPMENT

 CALCULATIONS (10-YEAR STORM EVENT)(This Page Is Intentionally Blank)

Pre and Post

Prepared by \{enter your company name here\}
Printed 5/24/2022
HydroCAD® 10.10-6a s/n 00866 © 2020 HydroCAD Software Solutions LLC

Rainfall Events Listing (selected events)

Event\#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	10 yr	Type III 24-hr		Default	24.00	1	5.59	2

Summary for Subcatchment ES01: ES01

Runoff = 0.1 cfs @ 12.15 hrs, Volume= 0.008 af, Depth= $0.95{ }^{\prime \prime}$

Routed to Link EPOI1 : POI1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.59"

	Area (sf)	CN	Description		
	166	98 R	Roofs, HSG A		
	225	43 V	Woods/grass comb., Fair, HSG A		
	4,279	49 P	Pasture/grassland/range, Fair, HSG A		
	4,670	50	Weighted Average		
	4,504		96.45\% Pervious Area		
	166		3.55\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
8.1	85	0.0235	- 0.18		Sheet Flow, S Grass: Short

Summary for Subcatchment ES02: ES02

Runoff $=0.6$ cfs @ 12.10 hrs, Volume= 0.046 af, Depth= 2.23"
Routed to Link EPR : Piscataqua River
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$ Type III 24-hr 10 yr Rainfall=5.59"

	Area (sf)	CN	Description		
	$\begin{array}{r} \hline 4,121 \\ 738 \\ 5,987 \\ \hline \end{array}$	$\begin{aligned} & 98 \\ & 35 \\ & 49 \\ & \hline \end{aligned}$	Paved parking, HSG A Brush, Fair, HSG A Pasture/grassland/range, Fair, HSG A		
	$\begin{array}{r} 10,846 \\ 6,725 \\ 4,121 \end{array}$	67	Weighted Average 62.00\% Pervious Area 38.00\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
2.6	48	0.1250	0.31		Sheet Flow, Sheet Flow 1 Grass: Short $\mathrm{n}=0.150 \mathrm{P} 2=3.21^{\prime \prime}$
0.4	51	0.0660	1.94		Sheet Flow, Sheet Flow 2 Smooth surfaces $\mathrm{n}=0.011 \mathrm{P} 2=3.21^{\prime \prime}$
0.2 2.8	21	0.1900	2.18		Shallow Concentrated Flow, Shallow Concentrated 1 Woodland Kv= 5.0 fps Direct Entry, Direct Entry
6.0	120	Total			

Summary for Subcatchment ES03: ES03

Runoff $=0.3$ cfs @ 12.15 hrs, Volume= 0.028 af, Depth= 1.08 "

Routed to Link EPR : Piscataqua River
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.59"

Summary for Subcatchment ES04: ES04

Runoff $=0.2$ cfs @ 12.10 hrs, Volume= 0.014 af, Depth= 1.74"
Routed to Link EPR : Piscataqua River
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.59"

Area (sf)	CN	Description
463	98	Paved parking, HSG A
656	98	Roofs, HSG A
283	35	Brush, Fair, HSG A
2,814	49	Pasture/grassland/range, Fair, HSG A
4,216	61	Weighted Average
3,097		73.46\% Pervious Area
1,119		26.54% Impervious Area

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description \quad| Sheet Flow, Sheet Flow 1 |
| :--- |
| 0.1 |

Summary for Link EPOI1: POI1

Inflow Area $=$	0.107 ac,	3.55% Impervious, Inflow Depth $=0.95 "$ for 10 yr event	
Inflow	$=$	$0.1 \mathrm{cfs} @$	12.15 hrs , Volume=
Primary	$=$	$0.1 \mathrm{cfs} @$	12.15 hrs , Volume=

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

Summary for Link EPR: Piscataqua River

Inflow	0.651 ac	26.61\% Impervious,	Inflow Depth = 1.62" for 10 yr event
Inflo	1.1 cfs @	12.11 hrs , Volume=	0.088 af
Primary	1.1 cfs @	12.11 hrs , Volume=	0.088 af, Atten= 0%, Lag $=0.0 \mathrm{~m}$

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

APPENDIX F - POST-DEVELOPMENT CALCULATIONS

(This Page Is Intentionally Blank)

Pre and Post

Prepared by \{enter your company name here\}
Printed 5/24/2022
HydroCAD® 10.10-6a s/n 00866 © 2020 HydroCAD Software Solutions LLC

Rainfall Events Listing (selected events)

Event\#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)
1	2 yr	Type III 24-hr		Default	24.00	1	3.69
2	10 yr	Type III 24-hr	Default	24.00	1	5.59	2
3	25 yr	Type III 24-hr	Default	24.00	1	7.10	2
4	50 yr	Type III 24-hr	Default	24.00	1	8.49	2

Pre and Post

Prepared by \{enter your company name here\}
Printed 5/24/2022
HydroCAD® 10.10-6a s/n 00866 © 2020 HydroCAD Software Solutions LLC

Area Listing (selected nodes)

Area (acres)	CN	Description (subcatchment-numbers)
0.513	49	Pasture/grassland/range, Fair, HSG A (PS01, PS02, PS03, PS04, PS05)
0.138	98	Paved parking, HSG A (DVWY, PS01, PS02)
0.026	98	Pervious Patio, HSG A (PATIO)
0.013	98	Retaining Wall \& Steps, HSG A (PS03)
0.005	98	Retaining Wall \& Walkway, HSG A (PS05)
0.004	98	Retaining Wall and Steps, HSG A, (PS04)
0.059	98	Roofs, HSG A (NER, NR, NWR, ROOF)
$\mathbf{0 . 7 5 9}$	$\mathbf{6 5}$	TOTAL AREA

Pre and Post

Prepared by \{enter your company name here\}
Printed 5/24/2022
HydroCAD® 10.10-6a s/n 00866 © 2020 HydroCAD Software Solutions LLC

Soil Listing (selected nodes)

Area (acres)	Soil Group	Subcatchment Numbers
0.759	HSG A	DVWY, NER, NR, NWR, PATIO, PS01, PS02, PS03, PS04, PS05, ROOF
0.000	HSG B	
0.000	HSG C	
0.000	HSG D	
0.000	Other	
$\mathbf{0 . 7 5 9}$		TOTAL AREA

Pre and Post
Prepared by \{enter your company name here\}
Printed 5/24/2022
HydroCAD® 10.10-6a s/n 00866 © 2020 HydroCAD Software Solutions LLC

Ground Covers (selected nodes)

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
0.513	0.000	0.000	0.000	0.000	0.513	Pasture/grassland/range, Fair	PS0
							1,
							PS0
							2 ,
							PSO
							3,
							PSO
							4,
							PS0
							5
0.138	0.000	0.000	0.000	0.000	0.138	Paved parking	DV
							WY,
							PSO
							1,
							PS0
							2
0.026	0.000	0.000	0.000	0.000	0.026	Pervious Patio	PAT
							10
0.013	0.000	0.000	0.000	0.000	0.013	Retaining Wall \& Steps	PS0
							3
0.005	0.000	0.000	0.000	0.000	0.005	Retaining Wall \& Walkway	PS0
							5
0.004	0.000	0.000	0.000	0.000	0.004	Retaining Wall and Steps	PSO
							4
0.059	0.000	0.000	0.000	0.000	0.059	Roofs	NER
							NR,
							NW
							R,
							RO
							OF
0.759	0.000	0.000	0.000	0.000	0.759	TOTAL AREA	

Time span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}, 961$ points $\times 3$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentDVWY: Driveway

SubcatchmentNER: NE Roof

SubcatchmentNR: North Roof

SubcatchmentNWR: NW Roof

SubcatchmentPATIO: Patio

SubcatchmentPS01: PS01

SubcatchmentPS02: PS02

SubcatchmentPS03: PS03

SubcatchmentPS04: PS04

SubcatchmentPS05: PS05
Flow Length=63'

Runoff Area $=2,397$ sf 100.00% Impervious Runoff Depth >3.44 " $\mathrm{Tc}=790.0 \mathrm{~min} \mathrm{CN}=98$ Runoff= 0.0 cfs 0.016 af

Runoff Area=871 sf 100.00% Impervious Runoff Depth $=3.46$ " $\mathrm{Tc}=0.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.1 \mathrm{cfs} 0.006$ af

Runoff Area=288 sf 100.00\% Impervious Runoff Depth=3.46" $\mathrm{Tc}=0.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.0 \mathrm{cfs} 0.002 \mathrm{af}$

Runoff Area=359 sf 100.00% Impervious Runoff Depth=3.46" $\mathrm{Tc}=0.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=$=0.0$ cfs 0.002 af

Runoff Area $=1,136$ sf 100.00% Impervious Runoff Depth >3.44 " $\mathrm{Tc}=790.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=0.0 cfs 0.007 af

Runoff Area $=3,398$ sf 3.91% Impervious Runoff Depth $=0.27$ " Slope $=0.0630$ '/' Tc=6.0 min CN=51 Runoff $=0.0$ cfs 0.002 af

Runoff Area $=11,262$ sf 30.98% Impervious Runoff Depth=0.80" Flow Length=145' Tc=6.0 min CN=64 Runoff=0.2 cfs 0.017 af

Runoff Area=7,487 sf 7.71\% Impervious Runoff Depth=0.34" Flow Length=71' Slope=0.0600 '/' Tc=6.0 min CN=53 Runoff=0.0 cfs 0.005 af

Runoff Area $=2,723$ sf 6.17% Impervious Runoff Depth=0.31" Flow Length=68' Slope=0.1760 '/' Tc=6.0 min CN=52 Runoff=0.0 cfs 0.002 af

Runoff Area=2,083 sf 10.66% Impervious Runoff Depth=0.38" Slope=0.1070 $/ / \quad$ Tc=6.0 min CN=54 Runoff $=0.0$ cfs 0.001 af

SubcatchmentROOF: Roof

Pond PPD: Porous Paver Driveway

Pond PVP: Pervious Patio

Pond RG: Rain Garden
Discarded $=0.0$ cfs 0.003 af
Pond ST: Stone Trench

Pond ST2: Stone Trench

Runoff Area $=1,041$ sf 100.00% Impervious Runoff Depth=3.46" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.1 \mathrm{cfs} 0.007$ af

Peak Elev=9.70' Storage=0 cf Inflow=0.0 cfs 0.016 af Outflow=0.0 cfs 0.016 af

Peak Elev=16.61' Storage=75 cf Inflow=0.1 cfs 0.014 af Outflow=0.0 cfs 0.014 af

Peak Elev=14.02' Storage=88 cf Inflow=0.1 cfs 0.003 af Primary $=0.0$ cfs 0.000 af Secondary $=0.0$ cfs 0.000 af Outflow $=0.0$ cfs 0.003 af

Peak Elev=14.71' Storage=0.000 af Inflow=0.0 cfs 0.002 af Discarded $=0.0$ cfs 0.001 af Primary $=0.0$ cfs 0.001 af Oufflow=0.0 cfs 0.002 af

Peak Elev=18.23' Storage=0.000 af Inflow=0.0 cfs 0.002 af Discarded $=0.0$ cfs 0.001 af Primary $=0.0$ cfs 0.001 af Outflow=0.0 cfs 0.002 af

Peak Elev=19.01' Storage=42 cf Inflow=0.1 cfs 0.006 af Discarded $=0.0$ cfs 0.002 af Primary $=0.1$ cfs 0.004 af Outflow=0.1 cfs 0.006 af

Link PPOI1: POI1 Inflow=0.0 cfs 0.002 af Primary $=0.0$ cfs 0.002 af

Inflow=0.3 cfs 0.028 af Primary $=0.3$ cfs 0.028 af

Total Runoff Area $=0.759$ ac Runoff Volume $=0.067$ af Average Runoff Depth $=1.06$ " 67.68% Pervious $=0.513$ ac 32.32% Impervious $=0.245$ ac

Time span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}, 961$ points $\times 3$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentDVWY: Driveway

SubcatchmentNER: NE Roof

SubcatchmentNR: North Roof

SubcatchmentNWR: NW Roof

SubcatchmentPATIO: Patio

SubcatchmentPS01: PS01

SubcatchmentPS02: PS02

SubcatchmentPS03: PS03

SubcatchmentPS04: PS04

SubcatchmentPS05: PS05
Flow Length=63'

Runoff Area $=2,397$ sf 100.00% Impervious Runoff Depth >5.32 " $\mathrm{Tc}=790.0 \mathrm{~min} \mathrm{CN}=98$ Runoff= 0.0 cfs 0.024 af

Runoff Area=871 sf 100.00% Impervious Runoff Depth $=5.35^{\prime \prime}$ $\mathrm{Tc}=0.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.1 \mathrm{cfs} 0.009 \mathrm{af}$

Runoff Area=288 sf 100.00\% Impervious Runoff Depth=5.35" $\mathrm{Tc}=0.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.0 \mathrm{cfs} 0.003 \mathrm{af}$

Runoff Area=359 sf 100.00% Impervious Runoff Depth=5.35" Tc=0.0 min CN=98 Runoff=0.1 cfs 0.004 af

Runoff Area $=1,136$ sf 100.00% Impervious Runoff Depth >5.32 " $\mathrm{Tc}=790.0 \mathrm{~min} \mathrm{CN}=98$ Runoff= 0.0 cfs 0.012 af

Runoff Area $=3,398$ sf 3.91% Impervious Runoff Depth=1.01" Slope $=0.0630$ '/' Tc=6.0 min CN=51 Runoff $=0.1$ cfs 0.007 af

Runoff Area=11,262 sf 30.98% Impervious Runoff Depth=1.98" Flow Length=145' Tc=6.0 min CN=64 Runoff=0.6 cfs 0.043 af

Runoff Area=7,487 sf 7.71\% Impervious Runoff Depth=1.15" Flow Length=71' Slope=0.0600 '/' Tc=6.0 min CN=53 Runoff=0.2 cfs 0.016 af

Runoff Area=2,723 sf 6.17\% Impervious Runoff Depth=1.08" Flow Length=68' Slope=0.1760 '/' Tc=6.0 min CN=52 Runoff=0.1 cfs 0.006 af

Runoff Area=2,083 sf 10.66% Impervious Runoff Depth=1.22" Slope $=0.1070$ '/' Tc=6.0 min CN=54 Runoff $=0.1$ cfs 0.005 af

SubcatchmentROOF: Roof

Pond PPD: Porous Paver Driveway

Pond RG: Rain Garden
Discarded $=0.0$ cfs 0.005 af
Pond ST: Stone Trench

Pond ST2: Stone Trench

Runoff Area $=1,041$ sf 100.00% Impervious Runoff Depth=5.35" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.1 \mathrm{cfs} 0.011$ af

Peak Elev=9.70' Storage=0 cf Inflow=0.0 cfs 0.024 af Outflow=0.0 cfs 0.024 af

Peak Elev=16.78' Storage=144 cf Inflow=0.1 cfs 0.022 af Outflow=0.0 cfs 0.022 af

Peak Elev=14.38' Storage=153 cf Inflow=0.1 cfs 0.008 af Primary $=0.0$ cfs 0.004 af Secondary $=0.0$ cfs 0.000 af Outflow= 0.0 cfs 0.008 af

Peak Elev=14.71' Storage=0.000 af Inflow=0.1 cfs 0.004 af Discarded $=0.0$ cfs 0.002 af Primary $=0.0$ cfs 0.002 af Outflow= 0.0 cfs 0.004 af

Peak Elev=18.23' Storage=0.000 af Inflow=0.0 cfs 0.003 af Discarded $=0.0$ cfs 0.001 af Primary $=0.0$ cfs 0.001 af Outflow=0.0 cfs 0.003 af

Peak Elev=19.02' Storage=42 cf Inflow=0.1 cfs 0.009 af Discarded $=0.0$ cfs 0.002 af Primary $=0.1$ cfs 0.007 af Outflow=0.1 cfs 0.009 af

Link PPOI1: POI1

Inflow=0.1 cfs 0.007 af Primary $=0.1$ cfs 0.007 af

Inflow $=0.9$ cfs 0.076 af Primary $=0.9 \mathrm{cfs} 0.076$ af

Total Runoff Area $=\mathbf{0} .759$ ac Runoff Volume $=0.138$ af Average Runoff Depth $=2.19$ " 67.68% Pervious $=0.513$ ac 32.32% Impervious $=0.245$ ac

Time span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}, 961$ points $\times 3$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentDVWY: Driveway

SubcatchmentNER: NE Roof

SubcatchmentNR: North Roof

SubcatchmentNWR: NW Roof

SubcatchmentPATIO: Patio

SubcatchmentPS01: PS01

SubcatchmentPS02: PS02

SubcatchmentPS03: PS03

SubcatchmentPS04: PS04

SubcatchmentPS05: PS05
Flow Length=63'

Runoff Area $=2,397$ sf 100.00% Impervious Runoff Depth >6.82 " $\mathrm{Tc}=790.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.0 \mathrm{cfs} 0.031$ af

Runoff Area=871 sf 100.00% Impervious Runoff Depth $=6.86$ " $\mathrm{Tc}=0.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.2$ cfs 0.011 af

Runoff Area=288 sf 100.00\% Impervious Runoff Depth=6.86" $\mathrm{Tc}=0.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.1 \mathrm{cfs} 0.004 \mathrm{af}$

Runoff Area=359 sf 100.00\% Impervious Runoff Depth=6.86" $\mathrm{Tc}=0.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.1 \mathrm{cfs} 0.005 \mathrm{af}$

Runoff Area $=1,136$ sf 100.00% Impervious Runoff Depth >6.82 " $\mathrm{Tc}=790.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.0 \mathrm{cfs} 0.015$ af

Runoff Area $=3,398$ sf 3.91% Impervious Runoff Depth $=1.81$ " Slope $=0.0630$ '/' Tc=6.0 min CN=51 Runoff $=0.1$ cfs 0.012 af

Runoff Area=11,262 sf 30.98% Impervious Runoff Depth=3.08" Flow Length=145' Tc=6.0 min CN=64 Runoff=0.9 cfs 0.066 af

Runoff Area=7,487 sf 7.71\% Impervious Runoff Depth=2.00" Flow Length=71' Slope=0.0600 '/' Tc=6.0 min CN=53 Runoff=0.4 cfs 0.029 af

Runoff Area $=2,723$ sf 6.17% Impervious Runoff Depth=1.91" Flow Length=68' Slope $=0.1760$ ' $/ 1$ Tc=6.0 $\mathrm{min} \quad \mathrm{CN}=52$ Runoff= 0.1 cfs 0.010 af

Runoff Area=2,083 sf 10.66% Impervious Runoff Depth=2.09" Slope $=0.1070$ '/' Tc=6.0 min CN=54 Runoff= 0.1 cfs 0.008 af Runoff Area $=1,041$ sf 100.00% Impervious Runoff Depth $=6.86$ " Tc=6.0 min CN=98 Runoff=0.2 cfs 0.014 af

Peak Elev=9.70' Storage=0 cf Inflow=0.0 cfs 0.031 af Outflow=0.0 cfs 0.031 af

Peak Elev=16.94' Storage=207 cf Inflow=0.2 cfs 0.028 af Outflow=0.0 cfs 0.029 af

Peak Elev=14.43' Storage=166 cf Inflow=0.2 cfs 0.014 af Primary $=0.2$ cfs 0.009 af Secondary $=0.0$ cfs 0.000 af Outflow=0.2 cfs 0.014 af

Peak Elev=14.71' Storage=0.000 af Inflow=0.1 cfs 0.005 af Discarded $=0.0$ cfs 0.002 af Primary $=0.1$ cfs 0.003 af Outflow= 0.1 cfs 0.005 af

Peak Elev=18.23' Storage=0.000 af Inflow=0.1 cfs 0.004 af Discarded $=0.0$ cfs 0.002 af Primary $=0.0$ cfs 0.002 af Outflow=0.1 cfs 0.004 af

Peak Elev=19.02' Storage=42 cf Inflow=0.2 cfs 0.011 af Discarded $=0.0$ cfs 0.002 af Primary $=0.2$ cfs 0.009 af Outflow=0.2 cfs 0.011 af

Link PPOI1: POI1

Inflow=0.1 cfs 0.012 af Primary $=0.1$ cfs 0.012 af

Inflow=1.6 cfs 0.123 af Primary $=1.6$ cfs 0.123 af

Total Runoff Area $=0.759$ ac Runoff Volume $=0.205$ af Average Runoff Depth $=3.24$ " 67.68% Pervious $=0.513$ ac 32.32% Impervious $=0.245$ ac

Time span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}, 961$ points $\times 3$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentDVWY: Driveway

SubcatchmentNER: NE Roof

SubcatchmentNR: North Roof

SubcatchmentNWR: NW Roof

SubcatchmentPATIO: Patio

SubcatchmentPS01: PS01

SubcatchmentPS02: PS02

SubcatchmentPS03: PS03

SubcatchmentPS04: PS04

SubcatchmentPS05: PS05
Flow Length=63'

Runoff Area $=2,397$ sf 100.00% Impervious Runoff Depth >8.21 " $\mathrm{Tc}=790.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.0 \mathrm{cfs} 0.038 \mathrm{af}$

Runoff Area=871 sf 100.00% Impervious Runoff Depth $=8.25^{\prime \prime}$ $\mathrm{Tc}=0.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.2 \mathrm{cfs} 0.014 \mathrm{af}$

Runoff Area=288 sf 100.00\% Impervious Runoff Depth=8.25" $\mathrm{Tc}=0.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.1 \mathrm{cfs} 0.005 \mathrm{af}$

Runoff Area=359 sf 100.00\% Impervious Runoff Depth=8.25" $\mathrm{Tc}=0.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.1 \mathrm{cfs} 0.006 \mathrm{af}$

Runoff Area $=1,136$ sf 100.00% Impervious Runoff Depth >8.21 " $\mathrm{Tc}=790.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.0 \mathrm{cfs} 0.018$ af

Runoff Area $=3,398$ sf 3.91% Impervious Runoff Depth $=2.67$ " Slope $=0.0630$ '/' Tc=6.0 min CN=51 Runoff $=0.2$ cfs 0.017 af

Runoff Area=11,262 sf 30.98% Impervious Runoff Depth=4.18" Flow Length=145' Tc=6.0 min CN=64 Runoff=1.2 cfs 0.090 af

Runoff Area=7,487 sf 7.71\% Impervious Runoff Depth=2.89" Flow Length=71' Slope=0.0600 '/' Tc=6.0 min CN=53 Runoff=0.5 cfs 0.041 af

Runoff Area=2,723 sf 6.17\% Impervious Runoff Depth=2.78" Flow Length=68' Slope=0.1760 '/' Tc=6.0 min CN=52 Runoff=0.2 cfs 0.014 af

Runoff Area=2,083 sf 10.66% Impervious Runoff Depth=3.01" Slope $=0.1070$ '/' Tc=6.0 min CN=54 Runoff=0.2 cfs 0.012 af

SubcatchmentROOF: Roof

Pond PPD: Porous Paver Driveway

Pond RG: Rain Garden
Discarded $=0.0$ cfs 0.005 af
Pond ST: Stone Trench

Pond ST2: Stone Trench

Runoff Area $=1,041$ sf 100.00% Impervious Runoff Depth $=8.25$ " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.2 \mathrm{cfs} 0.016 \mathrm{af}$

Peak Elev=9.70' Storage=1 cf Inflow=0.0 cfs 0.038 af Outflow=0.0 cfs 0.038 af

Peak Elev=17.10' Storage=271 cf Inflow=0.2 cfs 0.034 af Outflow=0.0 cfs 0.034 af

Peak Elev=14.45' Storage=172 cf Inflow=0.2 cfs 0.019 af Primary $=0.3$ cfs 0.014 af Secondary $=0.0$ cfs 0.000 af Outflow=0.3 cfs 0.019 af

Peak Elev=14.72' Storage=0.000 af Inflow=0.1 cfs 0.006 af Discarded $=0.0$ cfs 0.002 af Primary $=0.1$ cfs 0.004 af Outflow=0.1 cfs 0.006 af

Peak Elev=18.23' Storage=0.000 af Inflow=0.1 cfs 0.005 af Discarded $=0.0$ cfs 0.002 af Primary $=0.1$ cfs 0.003 af Outflow=0.1 cfs 0.005 af

Peak Elev=19.03' Storage=42 cf Inflow=0.2 cfs 0.014 af Discarded $=0.0$ cfs 0.002 af Primary $=0.2$ cfs 0.012 af Outflow=0.2 cfs 0.014 af

Link PPOI1: POI1

Inflow=0.2 cfs 0.017 af Primary=0.2 cfs 0.017 af

Inflow=2.3 cfs 0.172 af Primary $=2.3$ cfs 0.172 af

Total Runoff Area $=0.759$ ac Runoff Volume $=0.271$ af Average Runoff Depth $=4.29$ " 67.68% Pervious $=0.513$ ac 32.32% Impervious $=0.245$ ac

APPENDIX G - POST-DEVELOPMENT CALCULATIONS (10-YEAR STORM EVENT)

(This Page Is Intentionally Blank)

Pre and Post

Prepared by \{enter your company name here\}
Printed 5/24/2022
HydroCAD® 10.10-6a s/n 00866 © 2020 HydroCAD Software Solutions LLC

Rainfall Events Listing (selected events)

Event\#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	10 yr	Type III 24-hr		Default	24.00	1	5.59	2

Summary for Subcatchment DVWY: Driveway

Runoff $=0.0$ cfs @ 21.94 hrs, Volume= 0.024 af, Depth> 5.32"

Routed to Pond PPD : Porous Paver Driveway
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.59"

Summary for Subcatchment NER: NE Roof

Runoff $=\quad 0.1 \mathrm{cfs} @ 12.00$ hrs, Volume= 0.009 af, Depth= 5.35"
Routed to Pond ST3 : Stone Trench 3
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$ Type III 24-hr 10 yr Rainfall=5.59"

Area (sf)	CN	Description
871	98	Roofs, HSG A
871		100.00% Impervious Area

Summary for Subcatchment NR: North Roof

Runoff $=\quad 0.0 \mathrm{cfs} @ 12.00 \mathrm{hrs}$, Volume= $\quad 0.003 \mathrm{af}$, Depth= $5.35{ }^{\prime \prime}$

Routed to Pond ST2 : Stone Trench
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.59"

Area (sf)	CN	Description
288	98	Roofs, HSG A
288		100.00% Impervious Area

Summary for Subcatchment NWR: NW Roof

Runoff $=\quad 0.1$ cfs @ 12.00 hrs, Volume= 0.004 af, Depth= $5.35{ }^{\prime \prime}$
Routed to Pond ST : Stone Trench
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.59"

Area (sf)	CN	Description
359	98	Roofs, HSG A
359		100.00% Impervious Area

Summary for Subcatchment PATIO: Patio

Runoff $=0.0$ cfs @ 21.94 hrs, Volume= 0.012 af, Depth> 5.32"
Routed to Pond PVP : Pervious Patio
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.59"

Summary for Subcatchment PS01: PS01

Runoff $=0.1$ cfs @ 12.11 hrs, Volume= $\quad 0.007$ af, Depth= $1.01^{\prime \prime}$

Routed to Link PPOI1 : POI1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.59"

Summary for Subcatchment PS02: PS02

Runoff $=\quad 0.6$ cfs @ 12.10 hrs , Volume= 0.043 af , Depth= $1.98{ }^{\prime \prime}$ Routed to Link PPR : Piscataqua River

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$ Type III 24-hr 10 yr Rainfall=5.59"

Summary for Subcatchment PS03: PS03

Runoff = 0.2 cfs @ 12.11 hrs, Volume= 0.016 af, Depth= $1.15{ }^{\prime \prime}$
Routed to Link PPR : Piscataqua River
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.59"

	ea (sf)	CN D	Description		
*	577	98 R	Retaining Wall \& Steps, HSG A		
	6,910	49 P	asture/gr	ssland/ran	e, Fair, HSG A
	7,487	53 V	Weighted Average 92.29\% Pervious Area 7.71\% Impervious Area		
	6,910				
	577				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity \qquad	Description
4.8	71	0.0600	0.25		Sheet Flow, Sheet Flow 1
					Grass: Short $\mathrm{n}=0.150 \mathrm{P} 2=3.21{ }^{\prime \prime}$
1.2					Direct Entry, Direct Entry
6.0	71	Total			

Summary for Subcatchment PS04: PS04

Runoff = 0.1 cfs @ 12.11 hrs, Volume= 0.006 af, Depth= 1.08 "

Routed to Link PPR : Piscataqua River
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.59"

Area (sf)	CN	Description	
$*$	168	98	Retaining Wall and Steps, HSG A,
0	98	Roofs, HSG A	
2,555	49	Pasture/grassland/range, Fair, HSG A	
0	35	Brush, Fair, HSG A	

Summary for Subcatchment PS05: PS05

Runoff $=\quad 0.1$ cfs @ 12.11 hrs, Volume= 0.005 af, Depth= $1.22{ }^{\prime \prime}$

Routed to Pond RG: Rain Garden
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$ Type III 24-hr 10 yr Rainfall=5.59"

	Area (sf)	CN	Description		
*	$\begin{array}{r} 222 \\ 1,861 \\ \hline \end{array}$	$\begin{aligned} & \hline 98 \\ & 49 \\ & \hline \end{aligned}$	Retaining Wall \& Walkway, HSG A Pasture/grassland/range, Fair, HSG A		
	$\begin{array}{r} 2,083 \\ 1,861 \\ 222 \end{array}$	54	Weighted Average 89.34\% Pervious Area 10.66\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
2.2 3.8	35	0.1070	0.27		Sheet Flow, Sheet Flow Grass: Short n=0.150 P2=3.21" Direct Entry, Direct Entry
6.0	35	Total			

Summary for Subcatchment ROOF: Roof

Runoff $=\quad 0.1$ cfs @ 12.09 hrs, Volume= $\quad 0.011$ af, Depth= $5.35{ }^{\prime \prime}$

Routed to Pond PVP : Pervious Patio
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.59"

Area (sf)		CN Description			
1,041		98 Roofs, HSG A			
	1,041		00.00\% Im	pervious A	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= $0.05 \mathrm{hrs} / 3$
Peak Elev=9.70' @ 21.94 hrs Surf.Area= 2,099 sf Storage= 0 cf
Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time $=0.0 \mathrm{~min}(1,455.9-1,455.9)$

Volume	Invert	Avail.Storage	Storage Description
\#1	10.95'	210 cf	Subbase (Irregular)Listed below (Recalc) -Impervious 2,099 cf Overall x 10.0\% Voids
\#2	10.70'	210 cf	Pea Stone (Irregular)Listed below (Recalc) -Impervious 525 cf Overall x 40.0\% Voids
\#3	9.70'	840 cf	Rock Reservoir (Irregular)Listed below (Recalc) 2,099 cf Overall x 40.0\% Voids

Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
10.95	2,099	257.0	0	0	2,099
11.95	2,099	257.0	2,099	2,099	2,356
Elevation	Surf.Area	Perim.	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (feet)
10.70	2,099	257.0	0	0	2,099
10.95	2,099	257.0	525	525	2,163

Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area $(\mathrm{sq}$-ft)
9.70	2,099	257.0	0	0	2,099
10.70	2,099	257.0	2,099	2,099	2,356

Device	Routing	Invert	Outlet Devices
\#1	Discarded	9.70^{\prime}	$\mathbf{0 . 6 5 0} \mathbf{~ i n / h r ~ E x f i l t r a t i o n ~ o v e r ~ H o r i z o n t a l ~ a r e a ~}$

Discarded OutFlow Max=0.0 cfs @ 21.94 hrs HW=9.70' (Free Discharge)
L1=Exfiltration (Exfiltration Controls 0.0 cfs)

Summary for Pond PVP: Pervious Patio

Inflow Area =	0.050	0\% Impervious,	epth > 5	34" for 10 yr event
Inflow	0.1 cfs @	12.09 hrs , Volume=	0.022 af	
Outflow	0.0 cfs @	11.85 hrs , Volume=	0.022 af ,	, Atten= 88\%, Lag= 0.0 mi
Discarded $=$	0.0 cfs @	11.85 hrs , Volume=	0.022 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= $0.05 \mathrm{hrs} / 3$
Peak Elev= 16.78' @ 12.76 hrs Surf.Area= 1,000 sf Storage= 144 cf
Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time $=36.4 \mathrm{~min}$ ($1,151.9-1,115.6$)

Discarded OutFlow Max=0.0 cfs @ 11.85 hrs HW=16.46' (Free Discharge)
_1=Exfiltration (Exfiltration Controls 0.0 cfs)

Summary for Pond RG: Rain Garden

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= $0.05 \mathrm{hrs} / 3$
Peak Elev=14.38' @ 12.46 hrs Surf.Area= 115 sf Storage= 153 cf
Plug-Flow detention time $=390.0$ min calculated for 0.008 af (100% of inflow)
Center-of-Mass det. time $=390.9 \mathrm{~min}(1,217.7-826.8)$

Head (feet) $0.200 .400 .600 .801 .001 .201 .401 .601 .80 \quad 2.00$ 2.503 .003 .504 .004 .505 .005 .50

Coef. (English) $2.342 .502 .702 .682 .682 .662 .652 .65 \quad 2.65$ 2.652 .672 .662 .682 .702 .742 .792 .88

\#4	Device 1	14.40'	24.0" Horiz. Grate $\quad C=0.600$	Limited to weir flow at low heads
\#5	Device 1	14.20^{\prime}	2.0" Vert. Orifice $\quad C=0.600$	Limited to weir flow at low heads

Discarded OutFlow Max=0.0 cfs @ 11.45 hrs HW=11.29' (Free Discharge)
L2=Exfiltration (Exfiltration Controls 0.0 cfs)
Primary OutFlow Max=0.0 cfs @ 12.46 hrs HW=14.38' TW=0.00' (Dynamic Tailwater)
-1=Culvert (Passes 0.0 cfs of 1.1 cfs potential flow)
-4=Grate (Controls 0.0 cfs)
— $5=$ Orifice (Orifice Controls 0.0 cfs @ 1.50 fps)
Secondary OutFlow Max=0.0 cfs @ 0.00 hrs HW=11.25' TW=0.00' (Dynamic Tailwater)
${ }^{-3}$ =Broad-Crested Rectangular Weir (Controls 0.0 cfs)

Summary for Pond ST: Stone Trench

| Device | Routing | Invert | Outlet Devices | |
| :---: | :--- | :--- | :--- | :--- | :--- |
| \#1 | Discarded | 13.70^{\prime} | $\mathbf{0 . 7 0 0}$ in/hr Exfiltration over Surface area | |
| \#2 | Primary | 14.70^{\prime} | $\mathbf{1 6 . 0}$ ' long x 14.0' breadth Broad-Crested Rectangular Weir | |
| | | | Head (feet) $0.20 \quad 0.40 \quad 0.60 \quad 0.801 .00 \quad 1.20 \quad 1.401 .60$ | |
| | | | Coef. (English) $2.642 .67 \quad 2.70 \quad 2.65 \quad 2.64 \quad 2.65 \quad 2.65 \quad 2.63$ | |

Discarded OutFlow Max=0.0 cfs @ 7.00 hrs HW=13.71' (Free Discharge)
L1=Exfiltration (Exfiltration Controls 0.0 cfs)
Primary OutFlow Max=0.0 cfs @ 12.00 hrs HW=14.71' TW=13.02' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir(Weir Controls 0.0 cfs @ 0.28 fps)

Summary for Pond ST2: Stone Trench

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= $0.05 \mathrm{hrs} / 3$
Peak Elev= 18.23' @ 12.00 hrs Surf.Area= 0.001 ac Storage= 0.000 af
Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time= 116.9 min (857.6-740.7)

Volume	Invert	Avail.Storage	Storage Description
\#1	17.22'	$\begin{array}{ll}0.000 \text { af } & 3.00^{\prime} \mathrm{W} \times 14.70^{\prime} \mathrm{L} \times 1.00^{\prime} \mathrm{H} \text { Prismatoid } \\ & 0.001 \text { af Overall } \times 40.0 \% \text { Voids }\end{array}$	
\#2	18.22'	0.000 af	$3.00^{\prime} \mathrm{W} \times 14.70^{\prime} \mathrm{L} \times 0.20^{\prime} \mathrm{H}$ PrismatoidImpervious 0.000 af Overall $\times 0.0 \%$ Voids
0.000 af Total Available Storage			
Device	Routing	Invert Outlet Devices	
\#1	Discarded	17.22' $\quad 0.700 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area	
\#2	Primary	18.22'	16.0' long x 14.0' breadth Broad-Crested Rectangular Weir Head (feet) $0.20 \quad 0.400 .60 \quad 0.801 .001 .201 .401 .60$
			ef. (English) 2.642 .672 .702 .652 .642 .652 .652 .63

Discarded OutFlow Max=0.0 cfs @ 7.80 hrs HW=17.23' (Free Discharge)
($\mathbf{1 = E x f i l t r a t i o n ~ (E x f i l t r a t i o n ~ C o n t r o l s ~} 0.0 \mathrm{cfs}$)
Primary OutFlow Max=0.0 cfs @ 12.00 hrs HW=18.23' TW=13.02' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir(Weir Controls 0.0 cfs @ 0.25 fps)

Summary for Pond ST3: Stone Trench 3

Inflow Area =	0.020	0.00\% Impervious,	pth $=$	5.35 " for 10 yr event
Inflow	0.1 cfs @	12.00 hrs , Volume=	0.009 af	
Outflow	0.1 cfs @	12.00 hrs , Volume=	0.009 af ,	, Atten= 1\%, Lag= 0.0 min
Discarded =	0.0 cfs @	3.05 hrs , Volume=	0.002 af	
Primary	0.1 cfs @	12.00 hrs , Volume=	0.007 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3
Peak Elev= 19.02' @ 12.00 hrs Surf.Area= 33 sf Storage= 42 cf
Plug-Flow detention time= 172.2 min calculated for 0.009 af (100% of inflow)
Center-of-Mass det. time= 173.3 min (914.0-740.7)

Summary for Link PPR: Piscataqua River

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

APPENDIX H - PRE-DEVELOPMENT DRAINAGE MAP

(This Page Is Intentionally Blank)

APPENDIX I - POST-DEVELOPMENT DRAINAGE MAP

(This Page Is Intentionally Blank)

GENERAL INFORMATIO

SITE RENOVATION PLANS

70 PLEASANT POINT DRIVE PORTSMOUTH, NEW HAMPSHIRE

MAY 25, 2022
LAST REVISED JUNE 27, 2022

PERMITS/APPROVALS

70 PLEASANT POINT DRIVE PORTSMOUTH, NEW HAMPSHIRE
KATARA, LLC

PERSPECTIVE AT REAR 4

SITE DEVELOPMENT PLANS
vulnerability assessment - projected sea level rise 70 PLEASANT POINT DRIVE 70 PLEASANT POINT DRIVE
kATARA, LLC

JUNE 27, 2022
TFM
17M

[^0]: cc: Katara, LLC
 Joshua Butkus, Maugel Destefano Architects (via jbutkus@maugel.com)
 Marcos Cintra, Auger Building Company (via marcos@augerbuildingcompany.com)
 Eric Buck, Terrain Planning \& Design (via eric@terrainplanning.com)

[^1]: Filtrexx Environmental Sustainability Benefits
 Filtrexx GroSoxx ${ }^{\oplus}$ uses locally recycled organic materials inside of photodegradable or biodegradable mesh. Diverting these organic materials from landfills and applying them to the soil means a reduction in greenhouse gas emissions. For every 1,000' of 12" GroSoxx used, $\mathbf{1 6 0 , 0 0 0} \mathbf{l b s}$ of organic materials are diverted and your carbon footprint is reduced by $\mathbf{3 0 7 , 0 0 0} \mathbf{l b s} \mathrm{CO}_{2} \mathrm{e}$. This is the equivalent of offsetting the greenhouse gas emissions of 29 passenger vehicles driven for one year. In addition, the potential water absorption equals up to $\mathbf{4 , 0 0 0}$ gallons, per rainfall event. ${ }^{2}$

[^2]: ${ }^{1}$ HydroCAD version 10.00, HydroCAD Software Solutions LLC, Chocorua, NH, 2013.
 ${ }^{2}$ New Hampshire Stormwater Manual: Volume One - Stormwater and Antidegradation, December 2008; Volume Two - Post-Construction Best Management Practices Selection and Design, December 2008; Volume Three Erosion and Sediment Controls During Construction, December 2008.

[^3]: ${ }^{3}$ New Hampshire Stormwater Manual: Volume One - Stormwater and Antidegradation, December 2008; Volume Two - Post-Construction Best Management Practices Selection and Design, December 2008; Volume Three Erosion and Sediment Controls During Construction, December 2008.

[^4]: ${ }^{4}$ New Hampshire Stormwater Manual: Volume One - Stormwater and Antidegradation, December 2008; Volume Two - Post-Construction Best Management Practices Selection and Design, December 2008; Volume Three Erosion and Sediment Controls During Construction, December 2008.

[^5]: NOTE: Could not keep a steady H reading in the Hole - Infiltrating beyond equipment ability to read
 Steady Head (amount of water in auger hole from bottom of the hole to the surface of the water D-d) Coefficient A from CCHP Manual - Approximate for Glover Solution Distinance from top of water to outflow of CCHP (D-H)

 Calculated Coefficient A for Glover Solution ($\mathrm{H}>2 \mathrm{~s}$)
 Distance from bottom of auger hole to impereable layer

[^6]: NOTE：Could not keep a steady H reading in the Hole－Infiltrating beyond equipment ability to read Steady Head（amount of water in auger hole from bottom of the hole to the surface of the water Coefficient A from CCHP Manual－Approximate for Glover Solution Distinance from top of water to outflow of CCHP（D－H）

 Calculated Coefficient A for Glover Solution（ $\mathrm{H}>2 \mathrm{~s}$ ）
 Calculated Coefficient A for Glover Solution（ $\mathrm{H}<2 \mathrm{~s}$ ）
 Distance from bottom of auger hole to impereable layer

 エ《すぞさい

[^7]: NOTE: Could not keep a steady H reading in the Hole - Infiltrating beyond equipment ability to read Steady Head (amount of water in auger hole from bottom of the hole to the surface of the water Coefficient A from CCHP Manual - Approximate for Glover Solution Distinance from top of water to outflow of CCHP (D-H)

 Calculated Coefficient A for Glover Solution ($\mathrm{H}>2 \mathrm{~s}$)
 Calculated Coefficient A for Glover Solution ($\mathrm{H}<2 \mathrm{~s}$)
 Distance from bottom of auger hole to impereable layer (ESHW - Depth of Auger Hole in cm)

[^8]: NOTE: Could not keep a steady H reading in the Hole - Infiltrating beyond equipment ability to read Steady Head (amount of water in auger hole from bottom of the hole to the surface of the water Coefficient A from CCHP Manual - Approximate for Glover Solution Distinance from top of water to outflow of CCHP (D-H)

 Calculated Coefficient A for Glover Solution ($\mathrm{H}>2 \mathrm{~s}$)
 Calculated Coefficient A for Glover Solution ($\mathrm{H}<2 \mathrm{~s}$)
 Distance from bottom of auger hole to impereable layer (ESHW - Depth of Auger Hole in cm)

[^9]: NOTE: Could not keep a steady H reading in the Hole - Infiltrating beyond equipment ability to read Steady Head (amount of water in auger hole from bottom of the hole to the surface of the water Coefficient A from CCHP Manual - Approximate for Glover Solution Distinance from top of water to outflow of CCHP (D-H)

 Calculated Coefficient A for Glover Solution (H>2s)
 Distance from bottom of auger hole to impereable layer (ESHW - Depth of Auger Hole in cm)

