

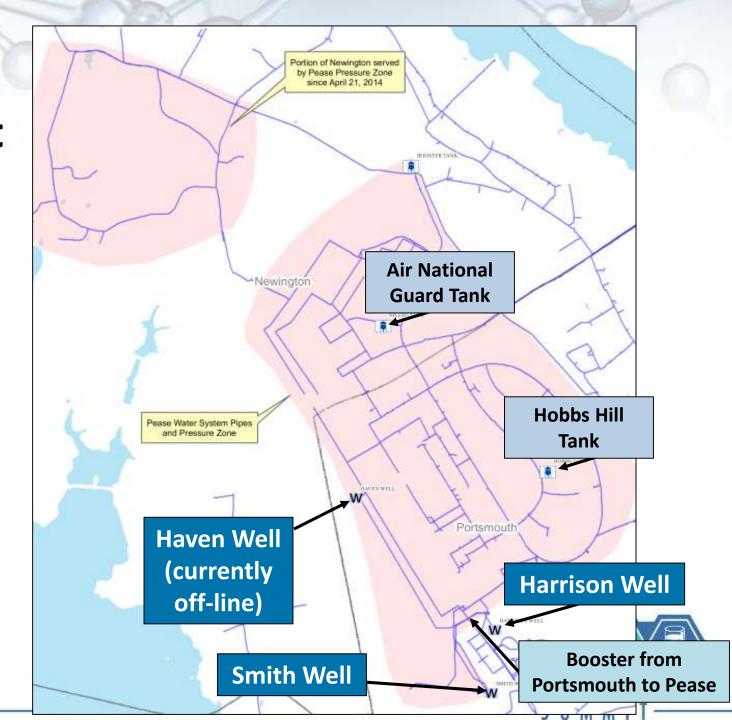
Haven Well Update

excerpt from March 12, 2016
City Council Retreat
Levenson Room
Portsmouth Public Library

Excerpts from March 2, 2016 Presentation:

Water System Responds to Perfluorochemicals: A Case Study

Brian Goetz


Deputy Director of Public Works

City of Portsmouth, New Hampshire

Pease Tradeport Water System

- 3 Wells
- 2 Storage Tanks
- Booster from Portsmouth to Pease
- 30 Miles of water main
- 0.4 to 1.0
 Million
 Gallons per
 Day Usage

Haven Well

Installed in 1875 (Haven Springs)

• Pease Air Base: 1956 to 1992

PDA/Portsmouth: 1992 to 2014

500 GPM Pump

Pease Air Base Closure - Superfund

- Eleven Record of Decisions (ROD) representing all the major Superfund cleanup decisions were completed between 1993 and 1997.
- All remedial design and construction activities for the Base have also been completed.
- Haven Well had an extensive monthly monitoring program to track any potential contaminants nearing the well.

Haven Well Water Quality August 2013

Water Quality
Met all Drinking
Water Standards
All Non Detects
"ND"

NH DPHS PHL WATER ANALYSIS LAB

29 HAZEN DR

CONCORD NH 03302

Phone: (603) 271-2994

Fax: (603) 271-2997

ANALYTICAL RESULTS

Batch ID/Form: A305509 - CHEMICAL MONITORING

Submitting Lab ID: 3000

PWS ID/Name: 1951020 - PEASE TRADE PORT - PORTSMOUTH

Report Date: 08/08/2013

Analytical Hothod 584.1 2-DBROMO-S-	ND	1.3.5-TRICHLOROBENZENE	ND	CHLOROFORM CHLOROMETHANE	ND ND	T-BUTANOL (TBA)	ND	4,4'-000	ND		NO NO	TRANS-NONACHLOR	ND
HLOROPROPANE		1.3.5-TRIMETHYLBENZENE	ND	CIS-1.2-DICHLOROETHEME	ND	T-BUTYLBENZENE	NO	4.4'-ODE	NO.	DIMETHYL PHTHALATE		TRIFLURALIN (TREFLAN)	NO
2-DIBROMOETHANE(EDB)	ND	1,3-OIOHLOROBENZENE	ND		ND	TETRACHLOROETHENE	MD	4,4'-DDT	NO	ENORN	ND		
Analysical Hothod 585		1.3-DICHLOROPROPANE	NO		ND	TETRA-HYDROFURAN(THF)	ND	ACENAPHTHENE	NO	ENDRIN ALDEHYDE	ND	Analytical Hethort 531,2	
HLORDANE	NO	1,4-DICHLOROBENZENE	ND			TOLUENE	NO	ACENAPHTHYLENE	ND	FLUORANTHENE	ND.	3-HYDROXY-CARBOFURA	A ND
XAPHENE	NO	2.2-DICHLOROPROPANE	NO	DIBROMOMETHAVE	NO	TOTAL XYLENES	NO	ALACHLOR	NO	FLUGRENE	ND	ALDICARB	ND
		2-BUTANONE/MER)	ND	DICHLORODIFLUOROMETHAN E	1 ND	TRANS-1,2 DICHLOROETHENE	E ND	ALORIN	MD		NO.	ALDICARS SULFONE	ND
Amelytical Method: 524.2		2-CHLOROTOLUENE	ND	DETHYLETHER	NO	TRANS-1.3-	NO	ALPHA CHLORDANE	NO	HEPTACHLOR	ND.	ALDICARS SULFOXIDE	NO
1.1.2- TRACHLOROETHANE	NO	2-HEXANONE	NO	DISOPROPYL ETHER (DIPE)	NO	DICHLOROPROPENE		ANTHRACENE	ND:	HEPTACHLOR EPOXIDE	NO	CARBARYL	NO
1.1-TRICHLOROETHANE	ND	2-METHOXY-2-	ND	ETHYL-T-BUTYL ETHER	NO:	TRICHLOROETHENE	ND	ATRAZINE	ND.	HEXACHLOROBENZENE	ND	CARBOFURAN	ND
1.2.2-	ND	METHYLBUTANE(TAME) 4-CHLOROTOLUENE	NO	(ETBE) ETHYLBENZENE	ND	TRICHLOROFLUOROMETHAN E	NO	BENZOWANTHRACENE	NO	HEXACHLOROCYCLOPENTADI	ND	WETHOWYL	NO
TRACHLOROETHANE		4-WETHYL-2-PENTANONE	NO	HEXACHLOROBUTACIENE	ND	VINYL CHLORIDE	NO	BENZOWAYPYRENE	NO	7.00	ND:	CIXAMYL	ND
1,2-TRICHLOROETHANE	ND	(MIBK)		ISOPROPYLBENZENE	ND	Analytical Method: 525.2		BENZO/BIFLUORANTHENE	ND	ISOPHORONE	NO	0222302222000000	
I-DICHLOROETHANE	NEO	ACETONE	ND	MIP-XYLENE	ND	2.7.346	ND	BENZOVO H I I PERVLENE	NO.	LINDANE	ND	ArralyScal Bothod: 547	
1-DICHLORGETHENE	ND	BENZENE	ND	NIP-ATLENC	NED	PENTACHLOROSIPHENYL	NU		125	METHOXYCHLOR	ND:	GLYPHOSATE	ND
1-DICHLOROPROPENE	NO	BROMOBENZENE	ND	METHYL-T-BUTYLETHER (MTBE)	ND	223,34,46HEPTACHLOROBIP HEN	ND	BENZO(K)FLUORANTHENE	ND	METOLACHLOR	ND	Analytical Nothers 185	
2.3-TRICHLOROBENZENE	ND	BROMOCHLOROMETHANE	ND	METHYLENE CHLORIDE	ND	2.23,34,58,6'OCTACHLOROBI	ND ND	ND		ND.	240	ND	
3-TRICHLOROPROPANE	NO	BROMODICH LOROMETHANE	NO	N-BUTYLBENZENE	ND	PH 2.24#-			NO	METRIBLIZIN		ACIFLUORFEN	ND
2.4-TRICHLOROGENZENE	NO	BROMOFORM	ND	N-PROPYLBENZENE	NO	TETRACHLOROBIPHENYL	NU	BUTACHLOR	ND	NAPHTHALENE	MD		
2.4-TRIMETHYLBENZENE	ND	BROMOMETHANE	NO	NAPHTHALENE	ND	2.24.45.6 HEXACHLOROBIPHE NVL	ND	CHRYSENE	NO	PENTACHLOROPHENOL	ND	DICAMBA	ND
2-DIBROMO-3-	NO	CARBON DISULFIDE	ND	D.XVI.ENE	ND	2,3-DICHLOROBIPHENYL	NO:	DI(2-ETHYLHEXYL)ADIPATE	ND	FHENANTHRENE	ND.	DINOSEB	ND
HLOROPROPANE 2-DIBROMOETHANE(EOB)	ND	CARBON TETRACHLORIDE	ND	P-ISOPROPYLTOLUENE	ND	2.4.5-TRICHLOROBIPHENYL	ND	DI-N-BUTYL PHTHALATE	ND:	PROPACHLOR	ND	PICLORAM	NO
-DICHLOROBENZENE	NO	CHLOROBENZENE	NO	BEC-BUTYLBENZENE	NO	2-CHLOROBIPHENYL	NO	DIBENZIA HIANTHRACIENE	ND.	PYREME	ND:	SILVEX	ND
2-DICHLOROETHANE	ND	CHLOROETHANE	ND	STYRENE	NO NO	2-METHYLNAPHTHALENE	ND	DIELDRIN	NO	SIMAZINE	ND	Analytical Method LACH	WT 10-100-12-2-
2-DICHLOROPROPANE	ND			DITMENE	HID							PLUGRIDE	ND

Haven Well Shutdown: Chronology of Events

- April 2014 City Contacted by EPA regarding their request that Air Force sample the Pease Wells for PFCs
- Air Force Consultant sampled all three Pease wells in mid-April 2014 for PFCs
- May 12, 2014 City staff are notified that PFC levels in Haven Well exceeded the EPA's Health Advisory Standard for PFOS
 - 2.5 ug/L (Preliminary Health Advisory = 0.2 ug/L)
- May 12, 2014 Haven Well is shut down
- Since May 12, 2014 Pease water system is supplemented with water from Portsmouth's water system (50% of demand supplied by Portsmouth)

The Key Questions:

- 1. What are these contaminants?
- 2. What are their levels?
- 3. Where did they come from?
- 4. What are the health effects?
- 5. How will the water system replace the lost water?
- 6. Have other water systems been contaminated?
- 7. What are the treatment options?

New Hampshire
Department of
Health and Human Services

Fact Sheet

Perfluorinated Chemicals (PFCs)

What are Perfluorinated Chemicals (PFCs)?

Perfluencementation (PCG) are a class of synthesis chemicals that are not forced intensity in the extraorancest. IPCS are used to make product and special contings that renies hear, oil, stains, grasses, and water. IPCS can be found in a surfery serior and water. IPCS can be found in a surfery resident including furnishes and appear resident for stain resistances, advances, food prolonging societists. Intermedistant near-took methods surfaces, and described withing simulation. IPCS takes also here used in the production of furnishing perfluencements and siPCOS, and perfluencements outforth and GPTOS, have been a soutcome become others and GPTOS, have been a soutcome become they the nor break down in the anarometers.

In most cases, PFCs are not regulated by the Submissions of Procession Agency (FPA). Sear PFCs done here so widely used over the years count people in the Limited Spotte are between to have some level of PFCs in their body. Once, PFCs have then offsetch of the a person's body (CFC) have then offsetch of the a person's body in the procession of the person in no largest law of the person in no largest being expanded to the detection.

How are people exposed to PFCs?

People are most fided to be exposed to FFCs by sensuring constantined water and fided, and possibly by using noncomer products that contain FFCs. Weekers in the observated inshorty with manufacture certain types of products can be exposed to FFCs of mask greater amounts than the grantful policy.

Do PFCs affect a person's health?

The human health effects from exposure to low levels of PPCs to the environment, especially PIOA and PIOS, are not leaves. PIOA and PIOS can remain in the body for crueistad periods of trans. In distoratory studies, astronic astronic than had been given large amount of those chemicals have been shown to have profession with their growth and development, opposituation, and liver disrupe. More resourch, in sewired its assume the harman health affects of exposure to PIOA and PIOA.

Are there health effects, either through short-term exposure to PFCs or longterm exposure to PFCs?

There are no lecture hunter hunter effects essentially with hierarchies exposure to FFOA. Astronás exposul to very high antenuts of FFOA had measured body only the action of FFOA had demand body only the action of the results in their consistent of theirarchies their consistent of their interest that the consistent of this higher than a sensal actionistic levels, they not discuss them are all their consistent of this higher than a sensal actionistic levels, they are the consistent of their higher than a result action of levels, they are the consistent of high blood pecuasars. However, these effects were not such is several other scales.

Animals given very high amounts of FFCs in fined, had note effects to the liver, delays in growth and development, and change in normal levels of thyroid hormans and 6000 fit levels.

Are there any known Concer effects from exposure to PFCs?

One large must of humans exposed to high lovels of 1970s, either through their work or this contaminated drinking water showed that exposure may be associated with remasses in hidney and sententer earlier. This association larget to be conclusively proven, Cancer types seen in minimals given large primates of PFCs were

129 Pleasant Street & Concord, NR 0381 • 809-852-3345 • rewardshaalager

1 – What are these Contaminants?

Perfluorinated Hydrocarbons – In a Lot of Everyday Products

- Furniture and carpets treated for stain resistance, adhesives, food packaging materials, heat-resistant non-stick cooking surfaces, and electrical wiring insulation.
- PFCs have also been used in the production of firefighting foams.

Fact Sheet

2 – What are their Levels?

Sample Location	Collection Date	Perfluorobutane sulfonate	Perfluorodecanoic acid	Perfluorododecanoic acid	Perfluoroheptanoic acid	Perfluorohexane sulfonate	Perfluorohexanoic acid	Perfluorononanoic acid	Perfluorooctane sulfonate (PFOS)	Perfluorooctanoic acid (PFOA)	Perfluoropentanoic acid	Perfluoroundecanoic acid
PHA (µg/L)						**	-		0.2	0.4		-
HAVEN	16-Apr-14	0.051	0.0049 J	ND)	0.12	0.83	0.33	0.017	2.5	0.35	0.27	ND
HAVEN	14-May-14	0.051	0.0043 J	ND.	0.12	0.96	0.35	0.017	2.4	0.32	0.26	ND:
HARRISON	16-Apr-14	0.002 J	ND	ND	0.0046 J	0.036	0.0087	ND	0.048	0.009	0.0079	ND
HARRISON	14-May-14	0.0019 J	ND	ND	0.0042 J	0.032	0.01	ND	0.041	0.0086	0.0084	ND
SMITH	16-Apr-14	0.00094 J	0.0044 J	0.012	0.0025 J	0.013	0.0039 J	ND	0.018	0.0035 J	0.0035 J	0.017
SMITH	14-May-14	0.00087 J	ND	ND:	0.002 J	0.013	0.004 J	ND	0.015	0.0036 J	0.0034 J	ND

Notes:

Grey text indicates the parameter was not detected.

indicates concenetration above PHA

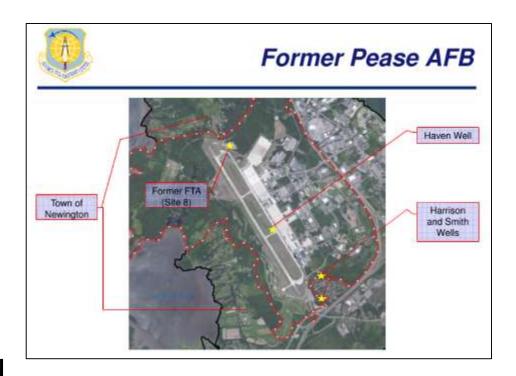
J - estimated value

all results in µg/L

ND - non detect

PHA - Provisional Health Advisory

-- indicates no established PHA


Haven Well – above the Preliminary Health Advisory (PHA) for PFOS

Harrison and Smith Wells – below the PHA for PFOS

EMERGING CONTAMINANTS

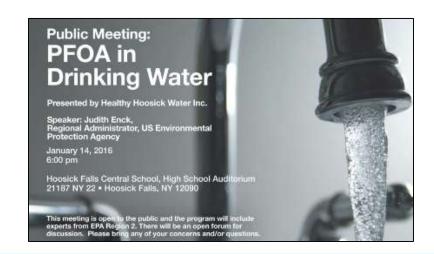
3 – Where Did They Come From?

- In 1970, the Air Force began using Aqueous Film Forming Foam (AFFF), a firefighting agent that contains PFCs, to extinguish petroleum fires.
- A few reported fires prior to 1992
- Potential releases and spills

4 – What Are the Health Effects?

New Hampshire Department of Environmental Services:

Studies have shown that nearly all people have some level of PFCs in their blood. Potential health effects from exposure to low levels of PFCs are not well understood. To date studies have been inconclusive as to whether PFCs can affect growth and development, hormone levels including thyroid hormone, liver enzyme levels, cholesterol levels, immune function or occurrence of certain types of cancer. Further research is needed to determine whether PFCs can cause health changes in humans. The EPA states that existing evidence is too limited to support a strong link between PFCs and cancer in people.


5 – How Will the Water System Replace the Loss of the Haven Well?

- Loss of the largest water source serving the Pease Tradeport:
 - Safe yield of 534 Gallons per minute (GPM) –
 769,000 Gallons per day (GPD)
- Portsmouth water system has been supplementing Pease through booster pumps:
 - Reduces the available water to Portsmouth's core water system by nearly 10%

6 – Have Other Water Systems Been Contaminated by PFCs?

- Oakdale, Minnesota 3M Manufacturing
- Newcastle, Delaware Air Base
- Paulsboro, New Jersey PFC Manufacturing
- Hoosick Falls, New York PFC Manufacturing
- Merrimack, New Hampshire PFC Manufacturing

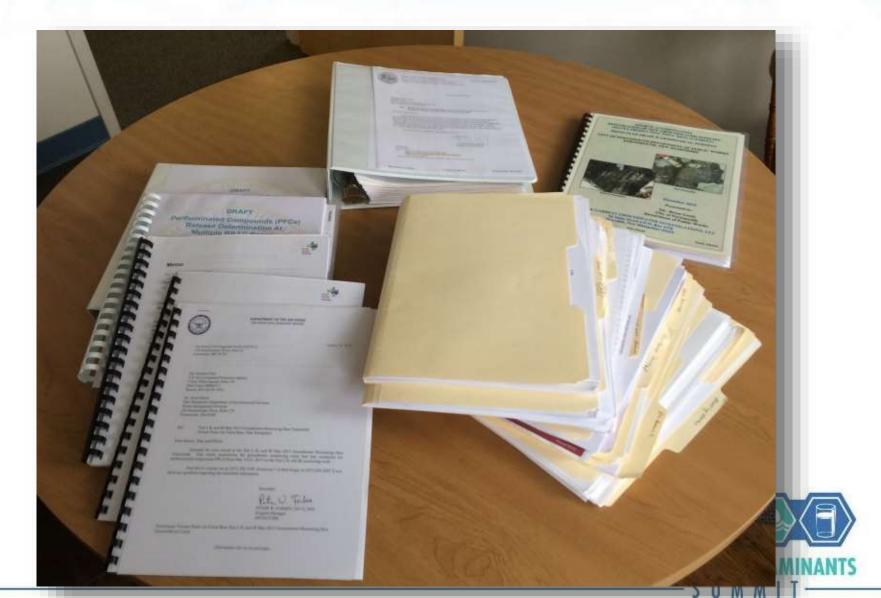
7 – What are the Treatment Options?

- Activated Carbon
 Filtration is most
 widely accepted for
 drinking water
 applications
- Membrane
 Filtration
- Anion Exchange
- Advanced
 Oxidation

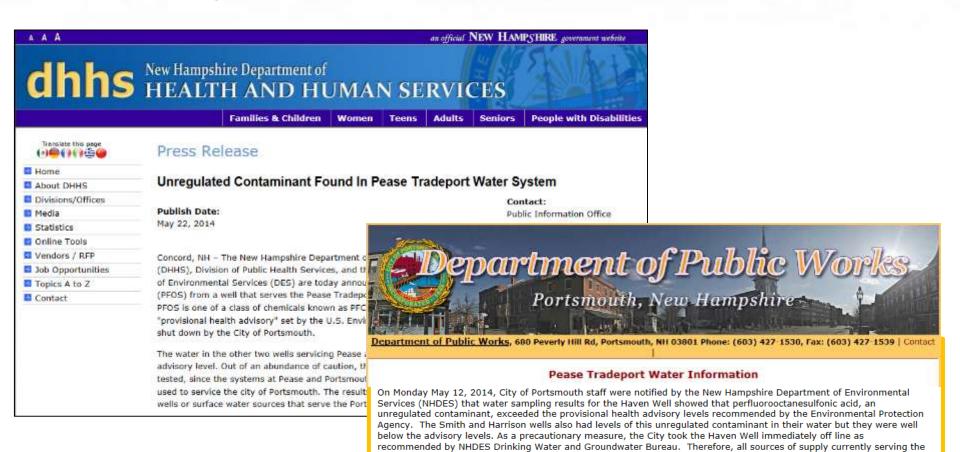
EMERGING CONTAMINANTS

May 2014:

Technical Response Team Forms


- Weekly meetings (initially) either in-person or via teleconference:
 - City of Portsmouth Staff
 - City consultants
 - Pease Development Authority
 - Environmental Protection Agency
 - New Hampshire Department of Environmental Services
 - Waste Division
 - Drinking Water and Groundwater Bureau
 - Air Force Civil Engineering
 - Air Force Consultants
 - New Hampshire Health and Human Services
 - Agency for Toxic Substances and Disease Registry (ATSDR)
 - Others, depending on topic

The Response and Action Plan


- Data Collection
- Forensic Analysis on Contamination
- Health Information
- Water System Operational Changes
 - Existing Supplies
 - Alternative Supplies
 - Treatment Options
- Public Outreach

Volumes of Information...

May 22, 2014 – Press Release

Pease Tradeport Water System are below the provisional standard

Union Leader Article - May 22, 2014

May 22, 2014 News Release and Information regarding Pease International Tradeport Water System

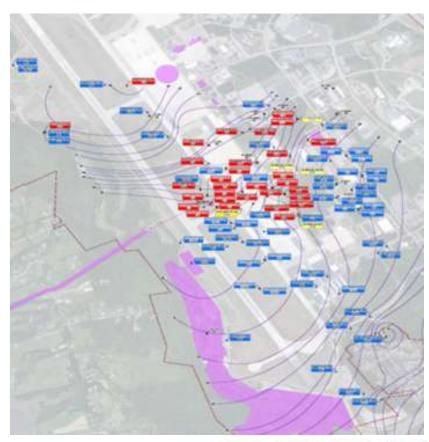
City of Portsmouth Information Regarding Pease International Tradeport Water System

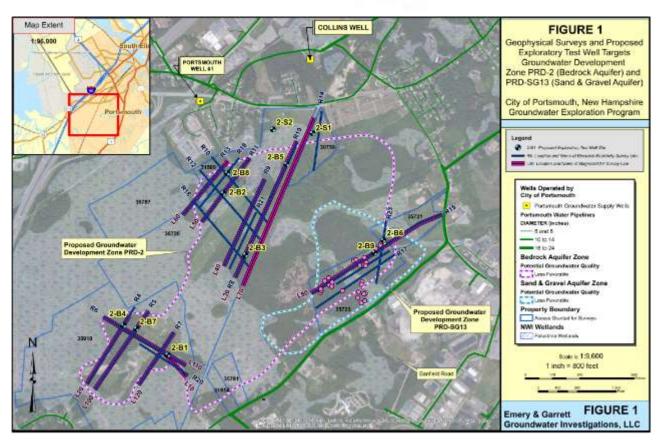
Additional information related to this issue can be found by clicking here.

2 4 111 111 11

May 28, 2014: State, Health and Water System Officials Hold First Public Meeting

Air Force Involvement


- Funding all the technical work and site monitoring
- September 2014
 agreement with City to
 fund:
 - City's technical support
 - Search for replacement groundwater source


Extensive Monitoring Program Developed

- Weekly PFC sampling of water supply wells
- Sentry well network sampling
- Installation of new sentry wells to fill data gaps
- Hydrogeological evaluations

Fall 2014 Replacement Well Study

Continued Public Outreach Throughout 2014

- City Website
 - Water System Status
 - Water Quality Monitoring Data
 - Public Meetings
- New Hampshire Department of Health and Human Services
 - Health Effects

Congressional Delegation Support for:

- 1) Treatment of Wells
- 2) Aquifer Restoration
- 3) Biomonitoring of those effected

March 2015 – Blood Testing Program Announced

May 2015 Community Advisory Board Forms 14 Meetings Held in 2015

June 17, 2015 Public Meeting – First Blood Test Results

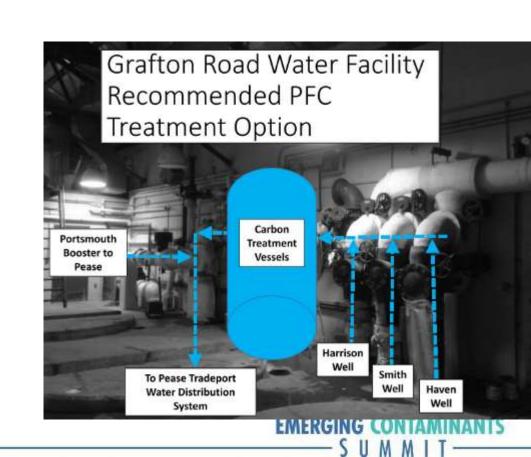
Perfluorochemical (PFC) Testing Program: Summary of the First 98 Test Results

Benjamin P. Chan, MD, MPH NH State Epidemiologist Department of Health & Human Services June 17, 2015

July 8, 2015 EPA Issues Administrative Order to Air Force:

- Treat Haven Well
- Aquifer Restoration

EPA orders Air Force to clean up contaminated


High levels of contaminant found last year

Pease well

Published 6:10 PM EDT Jul 10, 2015

September 1, 2015 Meeting with Air Force and Senator Shaheen

- City presses for treatment of all three Pease Wells
 - Haven to addressPFOS PHAexceedance
 - Smith and Harrison to demonstrate treatment and as a contingency


September 9, 2015 Community Advisory Board Pediatric Blood Testing Results

9.9.15 Community Advisory Board Haven Well Contamination

October 14, 2015 Community Advisory Board Meeting with ATSDR

- New Hampshire Department of Health and Human Services (NH DHHS) requested
 - scientific and technical assistance
 - comments on their biomonitoring protocol and
 - CDC laboratory analysis of serum samples collected in the community
- New Hampshire Department of Environmental Services (NH DES) identified
 - a need to evaluate people's exposures to Perfluorinated Chemicals (PFCs) contamination in drinking water

November 2015 Air Force Agreement to Treat All Three Pease Wells

ENVIRONMENTAL SERVICES COOPERATIVE AGREEMENT PRELIMINARY DESIGN SERVICES THE AIR FORCE CIVIL ENGINEER CENTER CITY OF PORTSMOUTH, NEW HAMPSHIRE THIS ENVIRONMENTAL SERVICES COOPERATIVE AGREEMENT NO PRIES MANARY DESIGN SERVICES (this "ESCA") is made as of the _12.ets day of November, 2015 (the "Effective Date") by and between the UNITED STATES OF AMERICA, scing by and through the AIR FORCE CIVIL ENGINEER CENTER (the "Air Force"), and the CITY OF PORTSMOUTH, NEW HAMPSHIRE (the "City"). The Air Force and City sometimes are collectively referred to in this ESCA as the "Parties." A. Pease Air Force Space was closed in 1991 and transferred to the U.S. Fish and Watelle Service and the Pease Development Authority Among the properties transferred to Passe Development Authority were those drowing water wells (Haven Well, Harrison Well, and Smith Well) which are C. Consideral with Air Force policy, the wells were tested in April 2014 for the presence of perfugrounded compounds (PFCs*). The sample from the Haven Vivil declared PFCs at 2500 namegrams per titer

Well Treatment

- Preliminary Design Complete (\$60,000)
- Within Six Months of next Air Force Agreement:
 - Piloting \$59,000
 - Harrison/Smith Carbon Filters \$837,000
 - Final Design of full treatment system upgrades \$587,000
- Construction of all treatment system upgrades (8 to 12 months)
 - Current cost estimate of \$8 to \$9 million

Looking Ahead for 2016

- Design and construction of treatment systems
- Continued monitoring of PFCs aquifer cleanup
- Spring Release of Final Round of Blood Testing
 - 471 Tested during first round
 - 1,107 Tested during second round
- Blood Testing and Biomonitoring Follow-up

Restoration Advisory Board (RAB) March 16, 2016 – First Meeting

Restoration Advisory Board (RAB) Factsheet

What is a RAB?

A restoration advisory board, or RAB, is a stakeholder group that meets regularly to discuss environmental restoration at a specific property that is currently or was formerly owned by the Department of Defense, or DOD, where the DOD oversees the environmental restoration process.

Who participates in a RAB?

A RAB provides an interactive and focused forum for interested individuals and groups to exchange information with representatives of regulatory agencies, the installation and the community.

 Brian Goetz, Deputy Director of Public Works, is the staff representative coordinating the City's Involvement

Community Assistance Panel (CAP)

- ATSDR establishing CAP in Portsmouth to address questions and concerns about health impacts related to the PFC contamination at Pease
- The CAP provides an avenue for ATSDR to inform the community of site-specific findings as they become available.
- Kim McNamara, Health Officer, is the staff representative coordinating the City's Involvement

Questions?

