ADDENDUM NUMBER 3:
Bid#10-16
South Mill Pond Tennis Courts, Leary Ball Field Lighting and Portsmouth High School Lighting
Issued: January 11, 2015

This Addendum forms part of the original document marked: Bid#10-16 South Mill Pond Courts, Leary Field Lighting and Portsmouth High School Lighting.

General Bid Clarifications

1. One construction gate is to be located on the parking lot side of the project. Location will be determined in the field.
2. The callout on sheet L5.05, detail 3 is referring to the painted line striping for the location of the hockey goal crease. The hockey goal and net are not to be included in the bid.
3. On sheet L4.01 the spot grades along the block retaining wall in the southwest corner of the tennis courts were adjusted to the other side of the wall. See attachment SK-2.

The following questions have been asked and answered.

Question 1: I could not find a supplier or model number for the basketball standards or hockey nets. Could you please supply this information?
Answer: The hockey nets and goals are not to be included in the bid. See number 2 above, under general bid clarifications. Please refer to the attached revised specification, section 02804 SITE IMPROVEMENTS for the basketball standards.

Question 2: Please confirm the limits of the windscreen in alternate #2; is it just the outer North and East facing fence runs? A highlighted plan would be helpful.
Answer: The windscreens will only be necessary on the outer North and East facing fence runs. The fencing on the South side and the West side of the courts, as well as the inner fencing will not require any windscreen.

Question 3: Please provide specs and details for the removable volleyball posts and nets.
Answer: Please refer to the attached additional specification section 02804 SITE IMPROVEMENTS for information on the volleyball posts and nets.

Question 4: Is the precast concrete segmental block retaining wall in the southwest corner of the tennis courts in base bid or just if alternate #3 is constructed?
Answer: The precast concrete segmental block retaining wall in the southwest corner will only be constructed if alternate #3 is accepted.

Question 5: In base bid, does the bituminous concrete walkway wrap around the corner at the southwest corner? Please confirm the limits of the bituminous concrete walks.
Answer: An SK drawing will be provided for this in addendum #4.

Question 6: How many project signs will be required? 01580 is unclear, please confirm the quantity.
Answer: There will be three (3) project signs required. One (1) sign will be located at the South Mill Pond tennis courts, one (1) sign will be located at Leary Ball Field and one (1) sign will be located at Portsmouth High School.

Question 7: Please provide specifications and details for the (4) basketball goals or are we to reuse the (4) that the City is salvaging?
Answer: The Salvaged basketball goals will not be used for this project. New basketball goals will be installed. Please refer to the attached additional specification, section 02804 SITE IMPROVEMENTS for the basketball standards.

Question 8: Is the chain link fence fabric to be 6-gauge core- 2” mesh or 6-gauge core- 1 ¾” mesh? Specs and details differ.
Answer: The chain link fabric shall be 6-gauge core- 1 ¾” as shown on sheet L5.03, detail 3. Please disregard the measurement given in the specifications.

Question 9: There is no erosion control shown on sheet L2.02. Is it the intent to not use any at this field?
Answer: There will be no erosion control needed at this field.

Question 10: There is no construction fence on sheet L2.02. Is it the intent to use the field fencing as construction fence?
Answer: Yes, the existing fence will serve as a construction fence during the installation the Leary Ball Field lighting.

Question 11: On sheet L2.02, the construction fence is shown going through an existing utility pole. Are we removing this pole?
Answer: We are not removing this utility pole. Please refer to the attached sheet SK -1 for the revisions.

Question 12: On sheet L3.01 the fourth ADA landing is drawn at 2’-0” however it is dimensioned at 5’-0”. Is it the intent to make the landing what ADA requires which is 5’?
Answer: On sheet L3.01, the line set 2’ from the beginning of the landing is representing the spillway, which is called out on sheet L4.01. From the spillway to the corner of the walk is at a 2% slope, meeting ADA standards. Refer to the attached sheet SK-2 for further clarification.

Question 13: I want to double check that the grading on sheet L4.01 is correct in relation to this landing being drawn incorrectly.
Answer: It is drawn correctly, the dimension is incorrect. Please refer to the attached sheet SK-2 for clarification.

Question 14: Please clarify the limits of base bid curbing. If alternate 3 is not accepted then where does this curbing end?
Answer: An SK will be provided for this in addendum #4.
Specifications

1. Add Section 02804 SITE IMPROVEMENTS
2. Section 02300 EARTHWORK- Add MUSCO Lighting Foundation Design- Attached
3. Section 02300 EARTHWORK- Add Portsmouth High School Geotechnical Report- Attached

Plans

1. Sheet L2.01 provide revisions as indicated on sheet SK-1
2. Sheet L4.01 provide revisions as indicated on sheet SK-2

Attachments

1. Specification Section 02804 SITE IMPROVEMENTS
2. SK-1
3. SK-2
4. MUSCO Lighting Foundation Design
5. Portsmouth High School Geotechnical Report

All else remains unchanged.

Please acknowledge this addendum within your proposal. Failure to do so may subject a bidder to disqualification.

End of Addendum #3
PART 1 - GENERAL

1.01 RELATED DOCUMENTS
 A. The General Documents, as listed in the Table of Contents, and applicable parts of Division 1, General Requirements shall be included in and made a part of this Section.
 B. Examine all Drawings and all other Sections of the Specifications for requirements therein affecting the work of this trade.

1.02 SCOPE OF WORK
 A. The work of this Section consist of all site improvements and related items as indicated on the Drawings and/or as specified herein and includes, but is not limited to, the following:
 1. Basketball Post, Backboard, Rim and Nets
 2. Volleyball Posts, Nets, and Ground Sleeves

1.03 RELATED WORK UNDER OTHER SECTIONS
 A. The following items of related work are specified and included in other Sections of the Specifications:
 1. Section 31 23 16 – Excavation, Borrow & Backfill
 2. Section 03 35 00 – Cast-In-Place Concrete

1.04 EXAMINATION OF CONDITIONS
 A. The Contractor shall fully inform himself of existing conditions of the site before submitting his bid, and shall be fully responsible for carrying out all site work required to fully and properly execute the work of the Contract, regardless of the conditions encountered in the actual work. No claim for extra compensation or extension of time will be allowed on account of actual conditions inconsistent with those assumed.
 B. Plans, surveys, measurements and dimensions under which the work is to be performed are believed to be correct to the best of the Landscape Architect's knowledge, but the Contractor shall have examined them for himself during the
bidding period, as no allowance will be made for any errors or inaccuracies that may be found therein.

1.05 SCHEDULING

A. The Contractor shall submit to the Landscape Architect, for approval by the Owner, a progress schedule for all work as specified herein.

1.06 QUALITY ASSURANCE

A. Materials and methods of construction shall comply with the following standards:

1. ASTM: American Society for Testing and Materials
2. ANSI: American National Standards Institute
3. FS: Federal Specifications
4. IMI: International Masonry Institute
5. PCA: Portland Cement Association

B. Qualifications of Workers: Use adequate numbers of skilled workers who are trained in the necessary crafts and who are completely familiar with the specified requirements and methods needed for the proper performance of the work of this Section.

C. Layout: After staking out the work, and before beginning final construction, obtain the Landscape Architect’s approval for layout. Contractor shall make adjustments as determined by the Landscape Architect. Landscape Architect may make adjustments to layout as is required to meet existing and proposed conditions without additional cost to the contract price.

D. The following standards including all current amendments form a part of these Specifications:

 A36 Structural Steel
 A53 Pipe, Steel, Black and Hot-Dipped, Zinc Coated, Welded and Seamless
 A120 Pipe, Steel, Black and Hot-Dipped Zinc Coated (Galvanized), Welded and Seamless, for Ordinary Uses
 A307 Carbon Steel Externally and Internally Threaded Standard Fasteners
 A325 High Strength Bolts for Structural Steel Joints
 A500 Cold Formed Welded and Seamless Carbon Steel Structural Tubing Rounds and Shapes
2. American Welding Society (AWS):
 D1.1 Structural Welding Code

3. Steel Structures Painting Council (SSPC):
 SSPC Surface Preparation Specifications

1.07 SUBMITTALS

A. Shop Drawings: Submit shop drawings in accordance with Division 1 requirements.
 1. Basketball Post, Backboard, Rim, and Nets
 2. Volleyball Posts, Nets, and Ground Sleeves

B. Product Information: Provide manufacturer’s data showing installation and limitations in use. Supply Certificates of Compliance for all materials required for fabrication and installation, certifying that each material item complies with, or exceeds, specific requirements. Work includes but is not limited to:
 1. Basketball Post, Backboard, Rim and Nets
 2. Volleyball Posts, Nets, and Ground Sleeves

PART 2 - PRODUCTS

2.01 BASKETBALL POST, BACKBOARD, RIM AND NETS

A. Backboard shall be constructed with ½” thick clear polycarbonate, contain 1/2" perforated holes, and measure 72” x 42”. Backboard shall be framed with “E” channeled aluminum extrusion and attached with stainless steel hardware. Official sized white target and shall be silk screened on the face of the backboard. Goal mounting holes (4) to be standard 5” (horizontal) x 4” (vertical) mounting centers.

B. Goal shall be Model # RB3000 front mount 18" single ring goal (5/8”), nylon net, powder coated finish.

C. Pole shall be Gooseneck Pole System, 5 ½” O.D. schedule 40 steel pipe with 6-layer galvanized finish.

D. Backboard, goal, and net shall be manufactured by True Bounce, Inc. 194 Riverside Avenue, New Bedford MA 02746, (866) 873-3715, or approved equal.
2.02 VOLLEYBALL POSTS, NETS, AND GROUND SLEEVES

A. The posts shall be 3” O.D. by 10 ½’ to 12’ foot long, schedule 40 galvanized steel posts and include High strength moveable eye hooks and pulley with stainless steel set screws and nuts, single point adjustment, and top and bottom internal drive caps for poles.

B. The net shall be 32’ x 39” #42 knotted nylon outdoor netting. The net shall be framed with 22-oz. 4" tapes, top, bottom and sides made with Triple Ultra-Violet / Mildew Protected vinyl to prevent fading and weather damage. The stitching shall be ultra violet and mildew resistant for prolonged outdoor use. Nets shall include galvanized steel aircraft cable top and bottom with protective clear vinyl coating, 1-1/8" wooden dowels; triple re-enforced netting attachment to side tapes for extra durability.

C. The ground sleeves shall be PIP 3” hard surface economy floor socket with seamless anodized aluminum construction and powder coated aluminum cap. The socket shall be approximately 18” deep.

D. Volleyball posts, nets, and ground sleeves shall be manufactured by A United Volleyball Supply, LLC. 14615 NE 91st St. Building B, Redmond, WA 98052, 1(425)-576-8835, or approved equal.

PART 3 - EXECUTION

3.01 INSTALLATION

A. The installer shall examine previous work, related work, and conditions under which this work is to be performed and notify the Contractor in writing of all deficiencies and conditions detrimental to the proper completion of this work. Beginning work means installer accepts substrates, subgrades, previous work, and conditions.

B. The Contractor shall be responsible for timing the delivery of all site improvement elements so as to minimize on-site storage time prior to installation. All stored materials must be protected from weather, careless handling and vandalism.

C. The contractor to install all elements for Basketball Post, Backboard, Rim and Nets, and Sports Bleachers per manufacturer’s instruction.

3.02 BASKETBALL POSTS

A. For new post installation, post shall be Gooseneck Pole system, 5 ½” O.D. schedule 40 steel pipe with 6-layer galvanized finish.
3.03 VOLLEYBALL POSTS, NETS, AND GROUND SLEEVES

A. The ground sleeves shall be installed per tennis post footing detail, refer to sheet L5.04 detail 2 in the plans.
B. Ground sleeve cap shall be color seal coated to match surrounding surface.

- END OF SECTION 02804 -
POLE IDENTIFICATION

<table>
<thead>
<tr>
<th>POLE DESIGNATION</th>
<th>POLE TYPE</th>
<th>PRECAST BASE TYPE</th>
<th>FIXTURE CONFIGURATION (FIX, PER XARM)</th>
<th>FIXTURE AND ACCESSORIES EPA (FT²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1-A4</td>
<td>LSS70C</td>
<td>4B</td>
<td>5 (8)</td>
<td>13.5</td>
</tr>
<tr>
<td>B2</td>
<td>LSS80B</td>
<td>SB</td>
<td>11 (8+5)</td>
<td>28.6</td>
</tr>
<tr>
<td>B3, B4</td>
<td>LSS80B</td>
<td>SB</td>
<td>10 (8+5)</td>
<td>28.0</td>
</tr>
<tr>
<td>C2</td>
<td>LSS80B</td>
<td>SB</td>
<td>13 (7+6)</td>
<td>28.5</td>
</tr>
<tr>
<td>C3</td>
<td>LSS80B</td>
<td>SB</td>
<td>7 (4+3)</td>
<td>17.5</td>
</tr>
<tr>
<td>C4</td>
<td>LSS80B</td>
<td>SB</td>
<td>8 (4+4)</td>
<td>20.0</td>
</tr>
<tr>
<td>F1, F2</td>
<td>LSS70D</td>
<td>SB</td>
<td>12 (8+4)</td>
<td>31.2</td>
</tr>
<tr>
<td>F3, F4</td>
<td>LSS80D</td>
<td>SB</td>
<td>12 (8+4)</td>
<td>31.2</td>
</tr>
<tr>
<td>P1, P2</td>
<td>LSS40A</td>
<td>1B</td>
<td>2 (2)</td>
<td>5.2</td>
</tr>
<tr>
<td>P3</td>
<td>LSS40A</td>
<td>1B</td>
<td>2 (2)</td>
<td>5.0</td>
</tr>
<tr>
<td>S1</td>
<td>LSS80D</td>
<td>SB</td>
<td>13 (7+6)</td>
<td>36.4</td>
</tr>
<tr>
<td>S2, S7</td>
<td>LSS80C</td>
<td>6B</td>
<td>18 (8+4+4)</td>
<td>39.6</td>
</tr>
<tr>
<td>S3, S6</td>
<td>LSS80D</td>
<td>SB</td>
<td>9 (6+4+4)</td>
<td>19.8</td>
</tr>
<tr>
<td>T1, T2, T3, T5</td>
<td>LSS40A</td>
<td>1B</td>
<td>2 (2)</td>
<td>4.4</td>
</tr>
<tr>
<td>T3, T4</td>
<td>LSS50A</td>
<td>2B</td>
<td>4 (4)</td>
<td>8.4</td>
</tr>
</tbody>
</table>

PRECAST BASE IDENTIFICATION

<table>
<thead>
<tr>
<th>PRECAST BASE TYPE</th>
<th>PRECAST BASE WEIGHT</th>
<th>PRECAST BASE LENGTH</th>
<th>PROJECTION ABOVE GRADE</th>
<th>STANDARD EMBEDMENT</th>
<th>OUTSIDE DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1B</td>
<td>928 LBS</td>
<td>15'-2"</td>
<td>7'-2"</td>
<td>8'-0"</td>
<td>9'-0"</td>
</tr>
<tr>
<td>2B</td>
<td>1,690 LBS</td>
<td>17'-3"</td>
<td>7'-3"</td>
<td>8'-0"</td>
<td>12'-0"</td>
</tr>
<tr>
<td>4B</td>
<td>3,490 LBS</td>
<td>22'-6"</td>
<td>8'-0"</td>
<td>14'-0"</td>
<td>16'-7"</td>
</tr>
<tr>
<td>6B</td>
<td>4,580 LBS</td>
<td>23'-11"</td>
<td>7'-11"</td>
<td>16'-0"</td>
<td>18'-2"</td>
</tr>
<tr>
<td>60</td>
<td>6,530 LBS</td>
<td>26'-11"</td>
<td>8'-1"</td>
<td>18'-0"</td>
<td>20'-0"</td>
</tr>
</tbody>
</table>

CONCRETE/REINFORCEMENT NOTES

CONCRETE SHALL COMPLY WITH THE FOLLOWING ASTM STANDARDS:
MIXTURE WITH ASTM C-64, PORTLAND CEMENT WITH ASTM C-150 TYPE I-A, AGGREGATES WITH ASTM C-33 AND BE IN CONFORMANCE WITH ACI 318.

CONCRETE SHALL BE AIR ENTRAINED (COMPLIES WITH ASTM C-260), HAVE A MAXIMUM WATER/CEMENT RATIO, w/cm = 0.43 AND HAVE A MINIMUM COMPRESSIVE STRENGTH AT 28 DAYS OF 4,000 PSI.

DESIGN SLUMP LIMITS ARE 4" MINIMUM AND 6" MAXIMUM. THE JOB SITE SLUMP MAY BE INCREASED BY THE USE OF A WATER REDUCING AIRSTENDER MEETING ASTM C494-92.

CONCRETE REINFORCEMENT SHALL COMPLY WITH ASTM A615 GRADE 60, EXCEPT TIES CAN BE OF GRADE 40 AND BE IN CONFORMANCE WITH ACI 318 & 318.

CONCRETE DRILLED PIERS MUST ATTAIN 3,000 PSI STRENGTH PRIOR TO POLE INSTALLATION AND FIXTURE MOUNTING.

THE DEPTH EQUAL TO THE PRECAST BASE EMBEDMENT SHALL BE THOROUGHLY CONSOLIDATED BY MECHANICAL VIBRATION DURING PLACEMENT.

DESIGN NOTES

DESIGN PARAMETERS:
WIND: 100 MPH (EXP. 0.1, 1.0) PER BC CODE, 2009 EDITION (ASCE 7-05).
DESIGN WIND PARAMETERS ARE AS NOTED. ACTUAL WIND SPEED AND EXPOSURE MUST BE VERIFIED FOR THE SITE BY THE PROPER GOVERNING OFFICIAL.

GEOTECHNICAL PARAMETERS:
ALLOWABLE END BEARING SOIL PRESSURE: 4,000 PSF
ALLOWABLE LATERAL BEARING PRESSURE: 0 PISFT (GRADE 1 TO -2'0"
AS PROVIDED ON PAGE 4 OF REFERENCED SOIL REPORT (BELOW 2'-0"
IN ACCORDANCE WITH THE 2009 EDITION OF THE INTERNATIONAL BUILDING CODE, CHAPTER 18.

OVER EXCAVATE 2'-0" BELOW THE BOTTOM OF THE SPREAD FOOTING TO A DEPTH OF 8'-0" BELOW GRADE. REPLACE THE OVER EXCAVATED AREA WITH COMPACTED STRUCTURAL FILL. THE STRUCTURAL FILL SHOULD BE BC, TABLE 18K.2, CLASS 3 OR BETTER AND BE COMPACTED TO 95% OF STANDARD PROCTOR (ASTM D1698). FOOTINGS MAY BEAR ON BEDROCK. OVER EXCAVATION OF BEDROCK IS NOT REQUIRED.

DESIGN SOIL PARAMETERS ARE AS NOTED. ACTUAL ALLOWABLE SOIL PARAMETERS MUST BE VERIFIED ON SITE. REFERENCE GEOTECHNICAL ENGINEERING REPORT, PROJECT NO. 21407/08.K, PREPARED BY WESTON & SAMSPSON, PEABODY, MA.

A GEOTECHNICAL ENGINEER OR REPRESENTATIVE OF THE MUSCO AND OR REQUIRED TO BE AVAILABLE AT THE TIME OF THE FOUNDATION INSTALLATION TO VERIFY THE SOIL DESIGN PARAMETERS AND TO PROVIDE ASSISTANCE IF ANY PROBLEMS ARISE IN FOUNDATION INSTALLATION.

ENCOUNTERING SOIL FORMATIONS THAT WILL REQUIRE SPECIAL DESIGN CONSIDERATIONS OR EXCAVATION PROCEDURES MAY OCCUR. POLE FOUNDATIONS WILL NEED TO BE ANALYZED ACCORDING TO THE SOIL CONDITIONS THAT EXIST. IF ANY DISCREPANCIES OR INCONSISTENCIES ARISE, NOTIFY THE ENGINEER OF SUCH DISCREPANCIES. FOUNDATIONS WILL THEN BE REVISED ACCORDINGLY. REVISIONS WILL BE THE ALTERNATIVE RECOMMENDATIONS DIRECTED BY A LICENSED ENGINEER.

ALL EXCAVATIONS MUST BE FREE OF LOOSE SOIL AND DEBRIS PRIOR TO FOUNDATION INSTALLATION AND CONCRETE BACKFILL PLACEMENT. TEMPORARY CASINGS OR DRILLERS SLURRY MAY BE USED TO STABILIZE THE EXCAVATION DURING INSTALLATION. CASINGS MUST BE REMOVED DURING CONCRETE BACKFILL PLACEMENT. CONCRETE BACKFILL MUST BE PLACED WITH A TRENCH WHEN SLURRY OR WATER IS PRESENT WITHIN THE EXCAVATION OR WHEN THE FREE DROP EXCEEDS 6'-0".

CONTRACTOR MUST BE FAMILIAR WITH THE COMPLETE SOIL INVESTIGATION REPORT AND BORING, AND CONTACT THE GEOTECHNICAL FIRM (IF NECESSARY) TO UNDERSTAND THE SOIL CONDITIONS AND THE POSSIBILITY OF GROUND WATER PUMPING AND EXCAVATION STABILIZATION OR BRACING DURING PRECAST BASE INSTALLATION AND PLACEMENT OF CONCRETE BACKFILL.

GENERAL NOTES:
FIXTURES MUST BE LOCATED TO MAINTAIN 10" MINIMUM HORIZONTAL CLEARANCE FROM ANY OBSTRUCTION. ENGINEER MUST BE NOTIFIED IF FOUNDATIONS ARE NEAR ANY RETAINING WALLS OR WITHIN 1/2 MILES OF ANY SLOPES STEEPER THAN 3:1. POLES, FIXTURES, PRECAST BASES, ELECTRICAL ITEMS AND INSTALLATION PER MUSCO LIGHTING.

I HEREBY CERTIFY THAT THIS ENGINEERING DOCUMENT WAS PREPARED BY ME OR UNDER MY DIRECT PERSONAL SUPERVISION AND THAT I AM A FULLY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF NEW HAMPSHIRE.

LICENSE NUMBER: NO. 10485
LICENSE RENEWAL DATE: JULY 31, 2016
DRAWING NO. COVERED BY THIS SEAL: C1-C4

USE OR REPRODUCTION OF THIS INFORMATION OTHER THAN ITS INTENDED PURPOSE FOR THIS PROJECT IS PROHIBITED WITHOUT WRITTEN CONSENT FROM MUSCO SPORTS LIGHTING, LLC.
POLE FOUNDATION SCHEDULE

<table>
<thead>
<tr>
<th>POLE DESIGNATION</th>
<th>FORCES (F)</th>
<th>DRILLED PIER</th>
<th>REINFORCING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MOMENT (M) FT.LBS</td>
<td>SHEAR (V) LBS</td>
<td>VERTICAL (P) LBS</td>
</tr>
<tr>
<td>A2</td>
<td>72,121</td>
<td>1,635</td>
<td>2,007</td>
</tr>
<tr>
<td>A3</td>
<td>72,121</td>
<td>1,635</td>
<td>2,007</td>
</tr>
<tr>
<td>A4</td>
<td>72,121</td>
<td>1,635</td>
<td>2,007</td>
</tr>
<tr>
<td>B2</td>
<td>140,716</td>
<td>2,596</td>
<td>3,482</td>
</tr>
<tr>
<td>B3</td>
<td>133,156</td>
<td>2,504</td>
<td>3,392</td>
</tr>
<tr>
<td>B4</td>
<td>133,156</td>
<td>2,504</td>
<td>3,392</td>
</tr>
<tr>
<td>C2</td>
<td>142,413</td>
<td>2,620</td>
<td>3,662</td>
</tr>
<tr>
<td>C3</td>
<td>106,706</td>
<td>2,209</td>
<td>3,122</td>
</tr>
<tr>
<td>C4</td>
<td>116,532</td>
<td>2,296</td>
<td>3,212</td>
</tr>
<tr>
<td>F1, F2</td>
<td>115,125</td>
<td>2,381</td>
<td>3,402</td>
</tr>
<tr>
<td>S1</td>
<td>162,459</td>
<td>2,863</td>
<td>3,662</td>
</tr>
<tr>
<td>S2</td>
<td>177,065</td>
<td>3,201</td>
<td>4,502</td>
</tr>
</tbody>
</table>

1. ASD LOAD COMBINATION (H+W).
 VERTICAL FORCE IS WEIGHT OF DRESSED POLE (DOES NOT INCLUDE PRECAST BASE WEIGHT).
 2. MINIMUM CONCRETE BACKFILL VOLUME, SITE CONDITIONS MAY REQUIRE ADDITIONAL BACKFILL.
 3. CORE DIAMETER EQUAL TO INSIDE DIAMETER OF TIES.
 4. DRILLED PIERS MUST PENETRATE 2'-0" BEYOND SOFT CLAY INTO GLACIAL TILL.

INSTALLATION NOTE (SHEET C2 POLES ONLY):

SOIL BACKFILL NOTE:
THE TOP TWO FEET OF ANNULUS SHALL BE BACKFILLED WITH SOIL, WITH A CLASSIFICATION OF CLAY SI (TABLE 1906.2) OR BETTER: COMPACTION, 95% FOR COHESIVE SOIL AND 90% FOR A COHESIONLESS SOIL BASED UPON STANDARD PROCTOR TESTING (ASTM D698).

LIGHT STRUCTURE PRECAST BASE (SEE PRECAST BASE ID, C1)

VERTICAL REINFORCEMENT (SEE FOUNDATION SCHEDULE)

#4 TIES @ 12"

DRILLED PIER DIAMETER
(SEE PRECAST SCHEDULE)

CONCRETE BACKFILL

VERTICAL REINFORCEMENT
(SEE FOUNDATION SCHEDULE)

LIGHT STRUCTURE PRECAST BASE (SEE PRECAST BASE ID, C1)

POLE FOUNDATION ELEVATION
SCALE: NOT TO SCALE

PIER DETAIL
SCALE: NOT TO SCALE
POLE FOUNDATION SCHEDULE

<table>
<thead>
<tr>
<th>POLE DESIGNATION</th>
<th>FORCES (l.t.)</th>
<th>DRILLED PIER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MOMENT (M) FT-LBS</td>
<td>SHEAR (V) LBS</td>
</tr>
<tr>
<td>A1</td>
<td>72,121</td>
<td>1,635</td>
</tr>
<tr>
<td>F3, F4</td>
<td>148,077</td>
<td>2,689</td>
</tr>
<tr>
<td>P1, P2</td>
<td>17,437</td>
<td>639</td>
</tr>
<tr>
<td>P3</td>
<td>17,200</td>
<td>653</td>
</tr>
<tr>
<td>S3, S6</td>
<td>116,914</td>
<td>2,302</td>
</tr>
<tr>
<td>S7</td>
<td>177,095</td>
<td>3,201</td>
</tr>
<tr>
<td>T1, T2, T5, T6</td>
<td>16,521</td>
<td>637</td>
</tr>
<tr>
<td>T3, T4</td>
<td>29,096</td>
<td>951</td>
</tr>
</tbody>
</table>

1. ASD LOAD COMBINATION D=99:
VERTICAL FORCE IS WEIGHT OF DRESSED POLE (DOES NOT INCLUDE PRECAST BASE WEIGHT)
2. SUSPEND PRECAST BASE "Y" OFF BOTTOM OF EXCAVATION DURING MONOLITHIC CONCRETE BACKFILL PLACEMENT AND CURING. NA = NOT APPLICABLE. SUSPENSION NOT REQUIRED.
3. MINIMUM CONCRETE BACKFILL VOLUME, SITE CONDITIONS MAY REQUIRE ADDITIONAL BACKFILL.

POLE FOUNDATION ELEVATION

SCALE: NOT TO SCALE

SOIL BACKFILL NOTE:
THE TOP TWO FEET OF ANNULUS SHALL BE BACKFILLED WITH SOIL, WITH A CLASSIFICATION OF CLASS 5 (TABLE 1068.2) OR BETTER. COMPACTION, 96% FOR COHESIVE SOIL, AND 98% FOR A COHESIONLESS SOIL BASED ON STANDARD PROCTOR TESTING (ASTM D698).

USE OR REPRODUCTION OF THIS INFORMATION OTHER THAN ITS INTENDED PURPOSE FOR THIS PROJECT IS PROHIBITED WITHOUT WRITTEN CONSENT FROM MUSCO SPORTS LIGHTING, LLC.
Pole Foundation Schedule - Spread Footing Option

<table>
<thead>
<tr>
<th>Pole Designation</th>
<th>Footing</th>
<th>Reinforcement Top & Bottom (Total Quantity - Size)</th>
<th>Diameter Inches</th>
<th>Core Dia. Inches (1.)</th>
<th>Vertical Reinforcing</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1-A4</td>
<td>9'-0" x 9'-0"</td>
<td>2'-0" (46) 10'-87's EACH WAY</td>
<td>48</td>
<td>41</td>
<td>15 - 47</td>
</tr>
<tr>
<td>B2-B4</td>
<td>12'-0" x 12'-0"</td>
<td>2'-0" (48) 12'-87's EACH WAY</td>
<td>48</td>
<td>41</td>
<td>15 - 47</td>
</tr>
<tr>
<td>C2</td>
<td>12'-0" x 12'-0"</td>
<td>2'-0" (48) 12'-87's EACH WAY</td>
<td>48</td>
<td>41</td>
<td>15 - 47</td>
</tr>
<tr>
<td>C3, C4</td>
<td>10'-0" x 10'-0"</td>
<td>2'-0" (46) 10'-87's EACH WAY</td>
<td>48</td>
<td>41</td>
<td>15 - 47</td>
</tr>
<tr>
<td>F1, F2</td>
<td>10'-0" x 10'-0"</td>
<td>2'-0" (40) 10'-87's EACH WAY</td>
<td>48</td>
<td>41</td>
<td>15 - 47</td>
</tr>
<tr>
<td>F3, F4</td>
<td>12'-0" x 12'-0"</td>
<td>2'-0" (48) 12'-87's EACH WAY</td>
<td>48</td>
<td>41</td>
<td>15 - 47</td>
</tr>
<tr>
<td>P1-P3</td>
<td>6'-0" x 6'-0"</td>
<td>2'-0" (32) 6'-86's EACH WAY</td>
<td>36</td>
<td>29</td>
<td>12 - 86</td>
</tr>
<tr>
<td>S1, S2, S7</td>
<td>12'-0" x 12'-0"</td>
<td>2'-0" (48) 12'-87's EACH WAY</td>
<td>48</td>
<td>41</td>
<td>15 - 47</td>
</tr>
<tr>
<td>S3, S6</td>
<td>10'-0" x 10'-0"</td>
<td>2'-0" (40) 10'-87's EACH WAY</td>
<td>48</td>
<td>41</td>
<td>15 - 47</td>
</tr>
<tr>
<td>T1-T6</td>
<td>6'-0" x 6'-0"</td>
<td>2'-0" (32) 6'-86's EACH WAY</td>
<td>36</td>
<td>29</td>
<td>12 - 86</td>
</tr>
</tbody>
</table>

Legend:
- **#4 Ties at 12" O.C.**
- **Vertical Pier Reinforcement (See Foundation Schedule)**
- **Light Structure Precast Base (See Precast Base Schedule)**
- **Block Out 18" x 18" Deep Socket Below Pier for 18-26 Precast Base**
- **Block Out 30" x 18" Deep Socket Below Pier for 48-68 Precast Base**

Note:
- Overexcavate any existing fill material 2'-0" below the bottom of the spread footing to a depth of 6'-0" below grade. Replace the overexcavated area with compacted structural fill. The structural fill should be ISO, Table 1868.2, Class 3 or better and be compacted to 88% of standard proctor. Footings may bear on bedrock, over excavation of bedrock is not required.

Scale: Not to scale

Diagram:
- **Pier Diameter (See Foundation Schedule)**
- **Finishing Grade**
- **Electrical Conduit by Electrical Contractor**
- **Acceptable Fill**
- **Top Reinforcement (See Foundation Schedule)**
- **Bottom Reinforcement (See Foundation Schedule)**
- **Block Out Socket in Base of Spread Footing for Precast Base to be Inserted with Second Pour for Pier.**
- **2'-0" Compacted Fill or Bedrock (See Note Below)**
- **Undisturbed Bearing Soil**

Legend:
- **Pier Diameter (See Foundation Schedule)**
- **Finished Grade**
- **Electrical Conduit by Electrical Contractor**
- **Acceptable Fill**
- **Top Reinforcement (See Foundation Schedule)**
- **Bottom Reinforcement (See Foundation Schedule)**
- **Block Out Socket in Base of Spread Footing for Precast Base to be Inserted with Second Pour for Pier.**
- **2'-0" Compacted Fill or Bedrock (See Note Below)**
- **Undisturbed Bearing Soil**

Notes:
- Core Diameter Equal to Inside Diameter of Ties.

Scale: Not to Scale
December 22, 2015

City of Portsmouth, New Hampshire
c/o Michael Moonan
Weston & Sampson
427 Main Street, 4th Floor
Worcester, Massachusetts 01608

RE: Geotechnical Engineering Report
 Proposed Light Poles at Portsmouth High School – Portsmouth, New Hampshire

INTRODUCTION

Weston & Sampson Engineers, Inc. (Weston & Sampson) is pleased to present our geotechnical engineering report for the proposed light poles at Portsmouth High School in Portsmouth, New Hampshire. Up to Twenty-eight new light poles are proposed at locations surrounding the existing Portsmouth High School athletic fields. Light poles and foundations currently exist at many of the proposed light pole locations. It is our understanding that new foundations will be required at twenty-three of the locations and existing foundations will be re-used at five locations. Borings were completed at nineteen of the proposed new foundation locations (including two alternative locations in the practice field area) as shown on the attached Soil Exploration Plans. We understand that pole heights will range between 40 ft. and 90 ft. Light pole foundations typically consist of cylindrical precast concrete bases installed in drilled shafts and backfilled with structural concrete.

SITE CONDITIONS

Surface Conditions
The Portsmouth High School Athletic Fields consist of a shared baseball and soccer field, a football field, tennis courts, and a practice field. All fields are located to the south of the school, except for the practice field, which is located to the east of the school. Wetlands border the football and shared baseball and soccer fields to the south, the baseball field to the west, south, and east, the tennis courts on all sides, and the practice field to the south, east, and north.

Based on topographic information provided on Project Plans prepared by Weston & Sampson, surface elevations in the shared baseball and soccer fields slope upward from the south towards the north between approximately El. 11 ft. and 22 ft., are relatively level surface in the baseball field between approximately El. 12 ft. and 14 ft., and are relatively level in the tennis
Subsurface Explorations
Subsurface conditions at proposed light pole foundation locations were explored by advancing twenty-one borings (B1 through B20 and B14A) to depths up to 46 ft. below the existing ground surface (BGS) at the approximate locations shown on the attached Soil Exploration Plans. The borings were completed between November 2 and 4, 2015 and on December 11, 2015 by New England Boring Contractors of Derry, NH using an ATV-mounted drill rig and hollow stem auger and drive-and-wash casing drilling methods.

Standard penetration tests (SPT) were completed in each boring using a standard 24-in. long by 1⅞-in. inside diameter (2-in. outside diameter) split spoon sampler driven 24 in. by blows from a 140-lb. winch operated safety hammer falling 30-in. per blow. Sampling intervals generally ranged from continuous (every 2 ft.) in the fill and organic soils to every 5 ft. in the underlying native soils. SPT (sampler) refusal, where noted in the attached boring logs, is defined as more than 100 hammer blows for less than six inches of sampler penetration. Auger refusal is defined as no discernable advance of the augers over a period of approximately 5 minutes.

A Weston & Sampson representative observed drilling activities in the field. Subsurface conditions encountered in our explorations are described in the following sections and in the attached Boring Logs.

Subsurface Conditions
Subsurface conditions in the approximately upper 7.5 feet was generally consistent in the borings and consisted of up to 7-inches of topsoil overlying undocumented (non-engineered) FILL to depths ranging between 2 and 7.5 ft. BGS. A layer of BURIED TOPSOIL (organics) was encountered below the fill to depths ranging between 4 and 6.5 ft. BGS in borings B4, B6, B9, and B13. Native, inorganic soil deposits below the fill and organics varied by location as discussed below.

Baseball Field – Borings B1 through B4 were performed at light pole foundation locations around the baseball field. Dense, SILTY SAND with little gravel and little clay and medium stiff to very stiff CLAYEY SILT were encountered below the fill and organics to depths ranging between approximately 7.5 and 12.5 ft. BGS. These deposits were underlain by very soft to medium stiff, moderately plastic CLAY to depths ranging between approximately 20 and 44 ft. BGS. Dense GLACIAL TILL, containing fine to coarse sand with varying amounts of gravel and silt, was encountered below the CLAY in borings B1, B2, and B4. Refusal was encountered directly below the CLAY at an approximate depth of 32 ft. BGS in boring B3.

Shared Baseball and Soccer Fields – Borings B7 through B12 and B18, B19, and B20 were performed at light pole foundation locations around the shared baseball and soccer fields. Borings B9, B11, B19, and B20 encountered similar subsurface conditions below the fill and organics as those encountered in borings around the baseball field. Borings B9, B11, and B19 encountered layers of very stiff, medium dense SAND with little gravel and trace silt, and stiff to very stiff SANDY SILTY to approximately 7.5 ft. BGS. Very soft to stiff, moderately plastic CLAY...
was encountered below these layers to depths ranging between 15 and 38 ft. BGS. Dense to very dense glacial till was encountered directly below the clay. Boring B20 was advanced to 34 ft. BGS without sampling to attempt to estimate the top of the glacial till. Gray, gravelly CLAY was encountered at 33 ft. BGS based on a change in auger resistance during drilling and was terminated at 35.5 ft. BGS due to significant heave in the augers.

Borings B7, B8, B10, B12, and B18 encountered layers of dense SAND, very stiff to stiff SANDY SILT, very stiff to hard CLAYEY SILT, and medium dense to very dense GLACIAL TILL below the fill and organics. Boring B18 was advanced through overburden soils without sampling to estimate the top of glacial till. Borings B7, B8, B10, and B12 encountered either sampler or auger refusal at depths ranging between approximately 9.5 and 21.8 ft. BGS. Boring B18 was terminated in the glacial till at 16 ft. BGS.

Tennis Courts and Practice Field – Borings B5 and B6 were performed at light pole foundation locations around the tennis courts and borings B13, B14, B14A, B15, B16, and B17 were performed at light pole foundation locations around the practice field (including alternative light pole foundation areas). Layers of hard SANDY SILT and dense to very dense GLACIAL TILL were encountered below the fill and organics in these borings. Roller bit and sampler refusals were encountered at depths of approximately 13 and 19.1 ft. BGS in borings B5 and B6, respectively. Roller bit and auger refusals were encountered in borings B14, B14A, B15, B16, and B17 at depths ranging between approximately 4.3 and 12.3 ft. BGS. Boring B14A was performed approximately 4 ft. from B14.

It could not be confirmed if the refusals encountered in the borings were on boulders, obstructions, or bedrock. Rock core sampling was not performed at refusal depths to assess the nature of the refusals.

Groundwater
Groundwater was observed in all borings, except in B14, B14A, and B15 at depths ranging between approximately 2 and 6 ft. BGS based on wet samples encountered during drilling. It should be expected that groundwater levels will fluctuate with season, variations in precipitation, construction in the area, and other factors. Perched groundwater conditions could exist close to the ground surface, especially during and after extended periods of wet weather.

GEOTECHNICAL RECOMMENDATIONS

Based on the subsurface conditions encountered in our explorations and our engineering analyses, construction of the proposed light poles is feasible following the recommendations contained herein. The primary geotechnical considerations for the light pole foundations is the presence of very soft clay to depths ranging between approximately 15 ft. and 44 ft. BGS and the possibility of bedrock above precast concrete base support depths. As previously discussed, light pole foundations typically consist of cylindrical precast concrete bases installed in drilled shafts and backfilled with structural concrete. At locations where bedrock exists above precast concrete base support depths, construction of shallow spread footings for support of the light poles will be required. The light pole foundations should be designed in accordance with the provisions of the current
edition of the Massachusetts State Building Code and the Technical Specifications provided by the light pole manufacturer.

Precast Concrete Base Support

The proposed light poles can be supported by precast concrete bases installed in drilled shafts and backfilled with concrete provided bedrock does not exist above proposed support depths. The drilled shafts should extend through the fill, buried topsoil (organics), and clay soils and at least 2 feet into the underlying native medium dense (or denser) glacial till or on bedrock. Drilled shaft excavations will require use of temporary casing and/or drilling fluid to maintain open excavations and support the surrounding ground. All loose and disturbed materials should be removed from the base of the shaft prior to placement of the precast base. Backfill around the precast base should consist of Portland cement concrete with a minimum (28 day) compressive strength of 3,000 pounds per square inch. The concrete should be placed from the bottom of the shaft using a tremie pipe during extraction of the temporary casing.

An allowable bearing pressure of 4,000 psf can be used at the base of the shaft to resist axial loads provided all loose material and slough is removed from the bored hole prior to placement of the precast light pole base and concrete backfill. Skin friction along the shaft sidewall should be ignored when calculating resistance to axial loads.

Resistance to lateral loads can be calculated using the soil parameters in the following tables. Resistance in the top two feet of foundation embedment should be ignored. Groundwater at the ground surface should be assumed.

<table>
<thead>
<tr>
<th>SAND FILL</th>
<th>CLAYEY SILT FILL</th>
<th>SILTY SAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submerged Unit Weight, lb/ft³</td>
<td>52.6</td>
<td>52.6</td>
</tr>
<tr>
<td>Soil Angle of Internal Friction, φ</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td>Unconfined compressive strength, psf</td>
<td>-</td>
<td>1,500</td>
</tr>
<tr>
<td>Coefficient of Passive Earth Pressure, K_p (Rankine)</td>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAND</th>
<th>CLAYEY SILT (Including Buried Topsoil)</th>
<th>CLAY</th>
<th>GLACIAL TILL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submerged Unit Weight, lb/ft³</td>
<td>57.6</td>
<td>52.6</td>
<td>42.6</td>
</tr>
<tr>
<td>Soil Angle of Internal Friction, φ</td>
<td>30</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unconfined compressive strength, psf</td>
<td>-</td>
<td>1500</td>
<td>100</td>
</tr>
<tr>
<td>Coefficient of Passive Earth Pressure, K_p (Rankine)</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Shallow Spread Footing Support

Construction of shallow spread footings for support of the light poles could be required at locations where bedrock is above precast concrete base support depths. All fill and organic soils should be
removed from the entire zone-of-stress influence beneath footings to expose the native, inorganic soils or bedrock. The zone-of-influence is defined by planes extending horizontally away from the outside edges of the footings for 2 ft. and then down and away at a 1H:1V slope. Footing bases should be compacted with a 700-pound vibratory plate compactor, or equivalent effort, until firm and stable. Standing water should be removed from excavations prior to placing concrete or fill. In no case shall fill or concrete be installed on frozen soils or in standing water. Compacted 1-1/2-inch crushed stone fill should be used to elevate subgrades up to bottom of footing elevations as necessary.

Backfill around spread footings should consist of Gravel conforming to the requirements of Item 304.2 of the New Hampshire Department of Transportation (NHDOT) Standard Specifications for Road and Bridge Construction. This material should be placed in 10-inch maximum loose lifts, with each lift compacted to a minimum of 95 percent of the materials maximum dry density as determined by ASTM Specification D1557. Material excavated from the footing excavation could be re-used as Gravel provided the material is dry, inorganic, and free of deleterious materials, contains less than 20 percent by weight passing the No. 200 Sieve, and is approved by the geotechnical engineer. Excavated clayey silt, silty clay, and buried topsoil materials are not considered suitable for re-use.

Footings bearing on the materials discussed above should be designed using an allowable bearing pressure of 4,000 psf. The allowable bearing pressure can be increased to 6,000 psf to resist temporary wind and seismic loads provided the resultant load eccentricities remain within the middle third of the footing. Resistance to lateral loads can be obtained by passive pressure against the sides of the footings equivalent to the pressure due to a fluid with a unit weight of 350 pounds per cubic foot (pcf), assuming the top of the fluid is 12 inches below finished grade. Lateral resistance can also be provided by friction along the bottoms of the footings assuming a footing base friction coefficient of 0.45. Footings should be embedded at least 4 ft. below the nearest proposed adjacent ground surface exposed to freezing.

LIMITATIONS

We have prepared this report for use by the City of Portsmouth and the design and construction teams for the proposed light poles on this site, only. The information herein could be used for bidding or estimating purposes but should not be construed as a warranty of subsurface conditions. We have made observations only at the aforementioned locations and only to the stated depths. These observations do not reflect soil types, strata thicknesses, water levels or seepage that may exist between observation locations. We should be consulted to observe foundation installation. We should be consulted to review final design and specifications in order to see that our recommendations are suitably followed. If any changes are made to the proposed structures, foundation types, or configurations, our recommendations may not be applicable, and we should be consulted.

The preceding recommendations should be considered preliminary, as actual soil conditions may vary. In order for our recommendations to be final, we should be retained to observe actual subsurface conditions encountered. Our observations will allow us to interpret actual conditions and adapt our recommendations if needed.
Within the limitations of scope, schedule and budget, our services have been executed in accordance with the generally accepted practices in this area at the time this report was prepared. No warranty, expressed or implied, is given.

It has been a pleasure assisting you with this project and we look forward to our continued involvement. Please call if you have any questions.

Very truly yours,

WESTON & SAMPSON, INC.

Thomas J. Strike, PE
Project Engineer

Mark P. Mitsch, PE
Senior Associate

Attachments:
Soil Exploration Plans (2 pages)
Boring Logs (24 pages)

O:\Portsmouth NH\Portsmouth HS Light Poles\Report\Geotech Letter Report - Portsmouth HS Lightpoles_revised 12.22.15.doc
Project Information
- **Project:** Portsmouth High School Light Poles
- **Location:** Portsmouth, NH
- ** CHK'D BY:** Thomas J. Strike, PE

Boring Details
- **Boring Co.:** New England Boring Contractors
- **Foreman:** Ben Cross
- **WSE Engineer:** Julie A. Eaton, EIT
- **Location:** See attached plan

Groundwater Readings
- **Date:** 11/3/15
- **Stabilization Time:** NA
- **Water at Casing:** 2 ft. +/-

Sample Information
- **Sampler:** 2 in. OD split spoon sampler (SPT) driven 24 inches
- **Casing:** Hollow stem auger
- **Size:** 2 1/4 in. inside diameter

Sample Log
<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Casing Size (blows/ft)</th>
<th>Sample</th>
<th>REC/PEN (in)</th>
<th>Depth (ft)</th>
<th>BLOWS/6"</th>
<th>Sample Description</th>
<th>Notes</th>
<th>Stratum Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14/24</td>
<td>S-1</td>
<td>0-2</td>
<td>6-15-6-10</td>
<td></td>
<td>Very stiff, gray, clayey silt fill, some fine sand, trace gravel; moist.</td>
<td></td>
<td>6" Topsoil</td>
</tr>
<tr>
<td>5</td>
<td>12/24</td>
<td>S-2</td>
<td>2-4</td>
<td>9-11-12-15</td>
<td></td>
<td>Very stiff, gray, clayey silt fill, some fine sand, little gravel, trace organics (roots); wet.</td>
<td></td>
<td>Clayey Silt Fill</td>
</tr>
<tr>
<td></td>
<td>12/24</td>
<td>S-3</td>
<td>4-6</td>
<td>9-12-20-23</td>
<td></td>
<td>Dense, gray-brown, fine to medium silty sand, little gravel, little clay; wet.</td>
<td></td>
<td>Silty Sand</td>
</tr>
<tr>
<td>10</td>
<td>15/24</td>
<td>S-4</td>
<td>10-12</td>
<td>5-5-2-3</td>
<td></td>
<td>Loose, gray, fine to medium sand, trace silt; wet. Bottom 3": gray, CLAY, trace fine sand; wet.</td>
<td></td>
<td>Clay</td>
</tr>
<tr>
<td>15</td>
<td>24/24</td>
<td>S-5</td>
<td>15-17</td>
<td>WOH/12"-2-1</td>
<td></td>
<td>Very soft, gray, CLAY, trace fine sand; wet.</td>
<td></td>
<td>Glacial Till</td>
</tr>
<tr>
<td>20</td>
<td>24/24</td>
<td>S-6</td>
<td>20-22</td>
<td>4-6-15-16</td>
<td></td>
<td>Top 21": same as above with some fine sand. Medium dense, gray, fine to coarse sandy gravel, little silt; wet.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Water level based on observation of wet sample.
2. WOH = weight of the hammer.
3. Auger grinding below 18 ft.
4. 5 ft. heave in auger at 20 ft.

General Notes:
1. The stratification lines represent the approximate boundary between soil types. Transitions may be gradual.
2. Water level readings have been made in the drill holes at times and under conditions stated on this boring log. Fluctuations in the level of groundwater may occur due to other factors than those present at the time measurements are made.

Project: Portsmouth High School Light Poles
Location: Portsmouth, NH
** CHKd By:** Thomas J. Strike, PE

Boring Co.: New England Boring Contractors
Foreman: Ben Cross
WSE Engineer: Julie A. Eaton, EIT

Date Start: 11/4/15
Date End: 11/4/15

Sampler: 2 in. OD split spoon sampler (SPT) driven 24 inches
Casing: Driven 4" casing using a 300 lb. hammer falling 30 in. and

Casing Size: 4 in. inside diameter
Other:

Depth (feet) | Casing (blows/ft) | Sample No. | REC/PEN (in) | Depth (ft) | Blows/6" | Sample Description | Notes | Stratum Description

0	5/24	S-1	15/24	0-2	5-6-9-11	Medium dense, brown, Silty Sand Fill, little gravel, trace organics (roots); moist.	1	5" Topsoil
5	0/24	S-2	0/24	2-4	19-19-21-26		2	Sand Fill
5	0/24	S-3	0/24	4-6	13-9-14-10		2	Sand Fill
10	24/24	S-4	11/24	6-8	10-12-14-19	Very stiff, gray-brown mottled, Clayey Silt; wet.	3	Clayey Silt
15	24/24	S-5	24/24	9-11	4-4-6-5	Stiff, gray-brown mottled, Clayey Silt; wet.	4	Clay
15	24/24	S-6	24/24	14-16	WOH/24"	Very soft, gray, Clay, trace fine sand; wet.	4	Clay
20	0/24	S-7	0/24	19-21	WOR/24"	No recovery.	5	Clay
20	24/24	S-8	24/24	24-26	WOR/24"	Very soft, gray, Clay, trace fine sand; wet.	5	Clay
25	24/24	S-9	24/24	29-31	WOH/24"	Same as above.	5	Clay

Granular Soils | Cohesive Soils

Blows/ft | Density | Blows/ft | Density

0-4	V. Loose	0-2	V. Soft
4-10	Loose	2-4	Soft
10-30	M. Dense	4-8	M. Stiff
30-50	Dense	8-15	Stiff
>50	V. Dense	15-30	V. Stiff

Notes:
1. Water level reading taken in hole after casing was removed.
2. Roller bit grinding between 3 and 5 ft.
3. Open hole drilling below 9 ft.
4. WOH = weight of the hammer.
5. WOR = weight of the rod.

General Notes:
1. The stratification lines represent the approximate boundary between soil types. Transitions may be gradual.
2. Water level readings have been made in the drill holes at times and under conditions stated on this boring log.
3. Fluctuations in the level of groundwater may occur due to other factors than those present at the time measurements are made.

When it's essential... it's Weston & Sampson®
REPORT OF BORING No. B2

BORING Co. New England Boring Contractors
BORING LOCATION See attached plan
FOREMAN Ben Cross
WSE ENGINEER: Julie A. Eaton, EIT
GROUND SURFACE ELEV. 13 ft. +/- DATUM NA

DATE START 11/4/15 DATE END 11/4/15

SAMPLER: 2 IN. OD SPLIT SPOON SAMPLER (SPT) DRIVEN 24 INCHES
USING A 140 lb. WINCH OPERATED SAFETY HAMMER.

CASING: DRIVEN 4" CASING USING A 300 LB. HAMMER FALLING 30 IN. AND
THE DRIVE AND WASH TECHNIQUE
CASING SIZE: 4 IN. INSIDE DIAMETER.

DEPTH (feet) CASING (blows/ft) SAMPLE SAMPLE DESCRIPTION NOTES STRATUM DESCRIPTION

35
S-10 24/24 34-36 WOH/12"-4-4 Soft, gray, CLAY, little fine sand, little silt; wet.

40
S-11 10/24 39-41 WOR/18"-2 Very soft, gray, CLAY, trace fine sand; wet.

45
S-12 8/24 44-46 16-14-19-36 Dense, gray, fine to coarse SAND, some silt, little gravel; wet.
Boring terminated at 46 ft.

50

55

60

65

GRANULAR SOILS COHESIVE SOILS NOTES:
BLOWS/FT DENSITY BLOWS/FT DENSITY
0-4 V. LOOSE 0-2 V. SOFT
4-10 LOOSE 2-4 SOFT
10-30 M. DENSE 4-8 M. STIFF
30-50 DENSE 8-15 STIFF
> 50 V. DENSE 15-30 V. STIFF

GENERAL NOTES: i) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL.

ii) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG.

FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS ARE MADE.
REPORT OF BORING No. B3

PROJECT
Portsmouth High
School Light Poles
Portsmouth, NH

SHEET OF
1 OF 1

CHKD BY
Thomas J. Strike, PE

Boring Co.: New England Boring Contractors

BORING LOCATION
See attached plan

FOREMAN
Ben Cross

WSE ENGINEER:
Julie A. Eaton, EIT

GROUND SURFACE ELEV.
12 ft. +/- DATUM NA

DATE START
11/3/15

DATE END
11/3/15

GROUNDBORING MATERIALS:

DATE
11/4/15

TIME
NA 3 ft. +/-

WATER AT CASING AT STABILIZATION TIME
NA 24 hrs.

SAMPLER: 2 IN. OD SPLIT SPOON SAMPLER (SPT) DRIVEN 24 INCHES

CASING: DRIVEN 4" CASING USING A 300 LB. HAMMER FALLING 30 IN. AND THE DRIVE AND WASH TECHNIQUE

CASING SIZE: 4 IN. INSIDE DIAMETER, OTHER:

DEPTH (feet)

CASING (blows/ft)

SAMPLE

No.

REC/PEN (in)

DEPTH (ft)

BLOWS/6"

SAMPLE DESCRIPTION

NOTES

STRATUM DESCRIPTION

GRANULAR SOILS

COHESIVE SOILS

<table>
<thead>
<tr>
<th>BLOWS/FT</th>
<th>DENSITY</th>
<th>BLOWS/FT</th>
<th>DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>V. LOOSE</td>
<td>0-2</td>
<td>V. SOFT</td>
</tr>
<tr>
<td>4-10</td>
<td>LOOSE</td>
<td>2-4</td>
<td>SOFT</td>
</tr>
<tr>
<td>10-30</td>
<td>M. DENSE</td>
<td>4-8</td>
<td>M. STIFF</td>
</tr>
<tr>
<td>30-50</td>
<td>DENSE</td>
<td>8-15</td>
<td>STIFF</td>
</tr>
<tr>
<td>> 50</td>
<td>V. DENSE</td>
<td>15-30</td>
<td>V. STIFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 30</td>
<td>HARD</td>
</tr>
</tbody>
</table>

NOTES:

2. Roller bit grinding between 3 and 5 ft.
3. Open hole drilling below 9 ft.
4. WOH = weight of the hammer.
5. WOR = weight of the rod.
6. Rollerbit refusal at 32 ft. (5 minutes grinding, 0" advance).

GENERAL NOTES:

i) The stratification lines represent the approximate boundary between soil types. Transitions may be gradual.

ii) Water level readings have been made in the drill holes at times and under conditions stated on this boring log.

Fluctuations in the level of groundwater may occur due to other factors than those present at the time measurements are made.

BORING No. B3
REPORT OF BORING No. B4

BORING LOCATION See attached plan
GROUND SURFACE ELEV. 14 ft. +/- DATUM NA

PROJECT Portsmouth High
School Light Poles
Portsmouth, NH

REPORT OF BORING No. B4

ENE Boring Contractors
BORING LOCATION: Portsmouth, NH

FOREMAN Ben Cross
WSE ENGINEER: Julie A. Eaton, EIT

SAMPLER: 2" OD SPLIT SPOON SAMPLER (SPT) DRIVEN 24 INCHES
CASING: HOLLOW STEM AUGER
CASING SIZE: 2 1/4 IN. INSIDE DIAMETER.
OTHER: See note 4

<table>
<thead>
<tr>
<th>DEPTH (feet)</th>
<th>CASING (blows/ft)</th>
<th>SAMPLE</th>
<th>DEPTH (ft)</th>
<th>BLOWS/6"</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>S-1</td>
<td>7/24</td>
<td>0-2</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>S-2</td>
<td>7/24</td>
<td>2-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S-3</td>
<td>11/24</td>
<td>4-6</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>S-4</td>
<td>1/24</td>
<td>10-12</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>S-5</td>
<td>23/24</td>
<td>15-17</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>S-6</td>
<td>24/24</td>
<td>20-22</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>S-7</td>
<td>24/24</td>
<td>25-27</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>S-8</td>
<td>24/24</td>
<td>29-31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S-9</td>
<td>24/24</td>
<td>31-33</td>
</tr>
</tbody>
</table>

SAMPLE DESCRIPTION:
- Hard, dark brown, SILTY SAND FILL, little sand, little gravel, trace organics (roots); moist.
- Very stiff, dark brown, CLAYEY SILT, little sand, little gravel, trace organics (roots); wet.
- Same as above. Bottom 7": without organics.
- Very soft, gray, CLAY, trace fine sand; wet.
- Same as above.
- Medium stiff, gray, SANDY CLAY, little silt; wet.

NOTES:
- 3" TOPSOIL
- SAND FILL
- BURIED TOPSOIL
- CLAYEY SILT
- CLAY
- SAND FILL
- BURIED TOPSOIL
- SANDY CLAY
- CLAY

GRANULAR SOILS

<table>
<thead>
<tr>
<th>BLOWS/FT</th>
<th>DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>V. LOOSE</td>
<td>0-2</td>
</tr>
<tr>
<td>LOOSE</td>
<td>2-4</td>
</tr>
<tr>
<td>M. DENSE</td>
<td>4-8</td>
</tr>
<tr>
<td>DENSE</td>
<td>8-15</td>
</tr>
<tr>
<td>V. DENSE</td>
<td>15-30</td>
</tr>
</tbody>
</table>

COHESIVE SOILS

<table>
<thead>
<tr>
<th>BLOWS/FT</th>
<th>DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>V. SOFT</td>
<td></td>
</tr>
<tr>
<td>SOFT</td>
<td></td>
</tr>
<tr>
<td>M. STIFF</td>
<td></td>
</tr>
<tr>
<td>STIFF</td>
<td></td>
</tr>
<tr>
<td>V. STIFF</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
2. Auger grinding between 3-5 ft.
3. WOH = weight of the rod and hammer.
4. Switched to Drive and Wash method: Driven 4" casing using 300 lb. hammer falling 30 in.

GENERAL NOTES:
- THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL.
- WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG. FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS ARE MADE.
<table>
<thead>
<tr>
<th>DEPTH (feet)</th>
<th>CASING (blows/ft)</th>
<th>SAMPLE</th>
<th>SAMPLE DESCRIPTION</th>
<th>NOTES</th>
<th>STRATUM DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td></td>
<td>S-10</td>
<td>24/24 34-36 9-2-4-4</td>
<td>Top 12": gray, GRAVEL, some clay, little fine sand; wet. Medium stiff, gray, CLAY, little fine sand, trace gravel; wet.</td>
<td>CLAY</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>S-11</td>
<td>16/24 39-41 8-13-22-24</td>
<td>Dense, gray, sandy GRAVEL, some silt; wet.</td>
<td>GLACIAL TILL</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Granular Soils

<table>
<thead>
<tr>
<th>BLOWS/FT</th>
<th>DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>V. LOOSE</td>
</tr>
<tr>
<td>4-10</td>
<td>LOOSE</td>
</tr>
<tr>
<td>10-30</td>
<td>M. DENSE</td>
</tr>
<tr>
<td>30-50</td>
<td>DENSE</td>
</tr>
<tr>
<td>> 50</td>
<td>V. DENSE</td>
</tr>
</tbody>
</table>

Cohesive Soils

<table>
<thead>
<tr>
<th>BLOWS/FT</th>
<th>DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2</td>
<td>V. SOFT</td>
</tr>
<tr>
<td>2-4</td>
<td>SOFT</td>
</tr>
<tr>
<td>4-8</td>
<td>M. STIFF</td>
</tr>
<tr>
<td>8-15</td>
<td>STIFF</td>
</tr>
<tr>
<td>> 30</td>
<td>HARD</td>
</tr>
</tbody>
</table>

General Notes:

i) The stratification lines represent the approximate boundary between soil types. Transitions may be gradual.

ii) Water level readings have been made in the drill holes at times and under conditions stated on this boring log. Fluctuations in the level of groundwater may occur due to other factors than those present at the time measurements are made.

BORING No. B4
REPORT OF BORING No. B5
PROJECT
Portsmouth High
School Light Poles
Portsmouth, NH

BORING LOCATION
See attached plan

FOREMAN
Ben Cross

GROUND SURFACE ELEV.
28 ft. +/- DATUM NA

WSE ENGINEER:
Julie A. Eaton, EIT

DATE START
11/4/15

DATE END
11/4/15

SAMPLER:
2 IN. OD SPLIT SPOON SAMPLER (SPT) DRIVEN 24 INCHES

CASING:
DRIVEN 4" CASING USING A 300 LB. HAMMER FALLING 30 IN. AND THE DRIVE AND WASH TECHNIQUE

CASING SIZE:
4 IN. INSIDE DIAMETER.

DEPTH (feet) CASING (blows/ft) SAMPLE No. REC/PEN (in) DEPTH (ft) BLOWS/6" SAMPLE DESCRIPTION NOTES STRATUM DESCRIPTION

0
S-1 6/24 0-2 5-19-23-10 Dense, brown, gravelly fine to coarse SAND FILL, trace silt; moist.

S-2 4/24 2-4 9-11-12-12 Medium dense, brown, gravelly, fine to coarse SAND FILL, trace silt; moist.

S-3 5/24 4-6 23-20-14-8 Hard, brown, SAND SILT, trace organics (roots), trace gravel; wet.

S-4 13/24 6-8 18-22-24-30 Dense, brown-gray, fine to coarse SAND, some gravel, some silt, trace clay; wet.

S-5 11/11 9-9.9 40-100/5" Very dense, brown, fine to coarse SAND, some gravel, some silt, trace clay; wet.

5

10

15

20

25

30

GRANULAR SOILS
COHESIVE SOILS

BLOWS/FT DENSITY BLOWS/FT DENSITY

0-4 V. LOOSE 0-2 V. SOFT

4-10 LOOSE 2-4 SOFT

10-30 M. DENSE 4-8 M. STIFF

30-50 DENSE 8-15 STIFF

> 50 V. DENSE 15-30 V. STIFF

NOTES:
1. Roller bit grinding between 3 and 4 ft.
2. Water level based on observation of wet sample.
3. Open hole drilling below 9 ft.
4. Roller bit grinding below 9.5 ft.
5. Roller bit refusal (5 minutes grinding, 0" advance) and loss of wash circulation at 13 ft.

GENERAL NOTES:
i) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL.
ii) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG.

GROUNDWATER READINGS
WATER AT CASING AT STABILIZATION TIME
DATE TIME WATER AT CASING AT STABILIZATION TIME
11/4/15 NA 3 ft. +/- NA NA

O:\Portsmouth NH\Portsmouth HS Light Poles\Field\11.2-11.4, 12.11 logs.xlsvB-19
REPORT OF BORING No. B6

PROJECT
Portsmouth High
School Light Poles
Portsmouth, NH

SHEET
1 OF 1

BORING LOCATION
See attached plan

CHKD BY
Thomas J. Strike, PE

FOREMAN
Ben Cross

GROUND SURFACE ELEV.
28 ft. +/- DATUM NA

WSE ENGINEER:
Julie A. Eaton, EIT

DATE START
11/4/15

DATE END
11/4/15

SAMPLER:
2 IN. OD SPLIT SPOON SAMPLER (SPT) DRIVEN 24 INCHES

CASING:
Using a 300 lb. hammer falling 30 in. and

CASING SIZE:
4 IN. INSIDE DIAMETER. OTHER:

DEPTH (feet)

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>REC/PEN (in)</th>
<th>DEPTH (ft)</th>
<th>BLOWS/6"</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-1</td>
<td>8/24</td>
<td>0-2</td>
<td>2-7-7-9</td>
</tr>
<tr>
<td>S-2</td>
<td>3/24</td>
<td>2-4</td>
<td>13-11-6-8</td>
</tr>
<tr>
<td>S-3</td>
<td>7/24</td>
<td>4-6</td>
<td>33-6-5-4</td>
</tr>
<tr>
<td>S-4</td>
<td>24/24</td>
<td>6-8</td>
<td>10-17-29-35</td>
</tr>
<tr>
<td>S-5</td>
<td>5/24</td>
<td>9-11</td>
<td>33-71-76-99</td>
</tr>
<tr>
<td>S-6</td>
<td>12/17</td>
<td>14-15.4</td>
<td>45-60-100/5"</td>
</tr>
<tr>
<td>S-7</td>
<td>0/1</td>
<td>19-19.1</td>
<td>100/1"*</td>
</tr>
</tbody>
</table>

SAMPLE DESCRIPTION

<table>
<thead>
<tr>
<th>DEPTH SAMPLE</th>
<th>SAMPLE DESCRIPTION</th>
<th>NOTES</th>
<th>STRATUM DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Medium dense, brown, fine to coarse, SAND FILL, little gravel, trace silt; moist.</td>
<td></td>
<td>3" TOPSOIL</td>
</tr>
<tr>
<td>5</td>
<td>Medium dense, brown, gravelly, fine to coarse SAND FILL, trace to little silt; moist.</td>
<td></td>
<td>SAND FILL</td>
</tr>
<tr>
<td>10</td>
<td>Stiff, gray-brown, CLAYEY SILT, some fine sand, trace organics (roots); wet.</td>
<td></td>
<td>BURIED TOPSOIL</td>
</tr>
<tr>
<td>15</td>
<td>Top 8": becomes hard with little organics. Dense, gray, fine to medium SAND, some silt, little gravel; wet.</td>
<td></td>
<td>GLACIAL TILL</td>
</tr>
<tr>
<td>20</td>
<td>Very dense, brown, fine to coarse sandy GRAVEL, little to some silt; wet.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Same as above.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Sampler refusal at 19.1 ft.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GROUNDWATER READINGS

<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME</th>
<th>WATER AT CASING AT STABILIZATION TIME</th>
</tr>
</thead>
</table>
| 11/4/15 | NA | 3 ft. +/- NA NA

NOTES:

- Roller bit grinding between 3 and 4 ft.
- Water level based on observation of wet sample.
- Open hole drilling below 9 ft.
- Roller bit grinding below 18 ft.

GRANULAR SOILS

<table>
<thead>
<tr>
<th>BLOWS/FT</th>
<th>DENSITY</th>
<th>BLOWS/FT</th>
<th>DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>V. LOOSE</td>
<td>0-2</td>
<td>V. SOFT</td>
</tr>
<tr>
<td>4-10</td>
<td>LOOSE</td>
<td>2-4</td>
<td>SOFT</td>
</tr>
<tr>
<td>10-30</td>
<td>M. DENSE</td>
<td>4-8</td>
<td>M. STIFF</td>
</tr>
<tr>
<td>30-50</td>
<td>DENSE</td>
<td>8-15</td>
<td>STIFF</td>
</tr>
<tr>
<td>> 50</td>
<td>V. DENSE</td>
<td>15-30</td>
<td>V. STIFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 30</td>
<td>HARD</td>
</tr>
</tbody>
</table>

COHESIVE SOILS

NOTES:

- Roller bit grinding between 3 and 4 ft.
- Water level based on observation of wet sample.
- Open hole drilling below 9 ft.
- Roller bit grinding below 18 ft.

GENERAL NOTES:

- The stratification lines represent the approximate boundary between soil types. Transitions may be gradual.
- Water level readings have been made in the drill holes at times and under conditions stated on this boring log. Fluctuations in the level of groundwater may occur due to other factors than those present at the time measurements are made.
REPORT OF BORING No. B7

PROJECT
Portsmouth High School Light Poles
Portsmouth, NH

SHEET
1 OF 1

CHKD BY
2140758.K

BORING LOCATION
See attached plan

FOREMAN
David Thompson

GROUND SURFACE ELEV.
16 ft. +/- NA

WSE ENGINEER:
Julie A. Eaton, EIT

DATE START
11/2/15

DATE END
11/2/15

GROUNDWATER READINGS

<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME</th>
<th>WATER AT CASING AT STABILIZATION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/2/15</td>
<td>NA</td>
<td>4 ft. +/- NA</td>
</tr>
</tbody>
</table>

SAMPLER:
2 IN. OD SPLIT SPOON SAMPLER (SPT) DRIVEN 24 INCHES USING A 140 lb. WINCH OPERATED SAFETY HAMMER.

CASING:
HOLLOW STEM AUGER

CASING SIZE:
2 1/4 IN. INSIDE DIAMETER.

DEPTH

<table>
<thead>
<tr>
<th>DEPTH (feet)</th>
<th>CASING SIZE (in)</th>
<th>SAMPLE</th>
<th>SAMPLE DESCRIPTION</th>
<th>NOTES</th>
<th>STRATUM DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2/4</td>
<td>S-1</td>
<td>0-2 4-3-11-9</td>
<td>Medium dense, brown, fine to coarse SAND FILL, some gravel, some silt; moist.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2/4</td>
<td>S-2</td>
<td>2-4 6-6-10-20</td>
<td>Very stiff, brown-gray mottled. SILTY CLAY FILL, some fine sand, trace gravel; moist.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>S-3</td>
<td>4-6 19-15-15-20</td>
<td>Dense, brown, fine to coarse SAND, little gravel, little silt; wet.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2/4</td>
<td>S-4</td>
<td>10-12 1-5-19-15</td>
<td>Very stiff, gray, CLAYEY SILT, some fine sand; wet. Bottom 6": gray, fine to coarse sandy GRAVEL, little silt; wet.</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2/4</td>
<td>S-5</td>
<td>15-17 6-4-7-3</td>
<td>Medium dense, gray, fine to coarse SAND, some gravel, little silt; wet.</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3/2</td>
<td>S-6</td>
<td>20-21.8 3-11-14-100/4</td>
<td>Medium dense, gray, fine to coarse SAND, some gravel, little silt; wet. Sampler refusal at 21.8 ft.</td>
<td></td>
</tr>
</tbody>
</table>

GRANULAR SOILS

<table>
<thead>
<tr>
<th>BLOWS/FT</th>
<th>DENSITY</th>
<th>BLOWS/FT</th>
<th>DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>V. LOOSE</td>
<td>0-2</td>
<td>V. SOFT</td>
</tr>
<tr>
<td>4-10</td>
<td>LOOSE</td>
<td>2-4</td>
<td>SOFT</td>
</tr>
<tr>
<td>10-30</td>
<td>M. DENSE</td>
<td>4-8</td>
<td>M. STIFF</td>
</tr>
<tr>
<td>30-50</td>
<td>DENSE</td>
<td>8-15</td>
<td>STIFF</td>
</tr>
<tr>
<td>> 50</td>
<td>V. DENSE</td>
<td>15-30</td>
<td>V. STIFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 30</td>
<td>HARD</td>
</tr>
</tbody>
</table>

COHESIVE SOILS

<table>
<thead>
<tr>
<th>BLOWS/FT</th>
<th>DENSITY</th>
<th>BLOWS/FT</th>
<th>DENSITY</th>
</tr>
</thead>
</table>

NOTES:

1. Water level based on observation of wet sample.
2. Auger grinding between 12 and 15 ft.

GENERAL NOTES:

i) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL.

ii) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG.

FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS ARE MADE.
REPORT OF BORING No. B8

BORING CO: New England Boring Contractors
BORING LOCATION: See attached plan
FOREMAN: David Thompson
GROUND SURFACE ELEV.: 15 ft. +/- DATUM NA
WSE ENGINEER: Julie A. Eaton, EIT
DATE START: 11/2/15
DATE END: 11/2/15

SAMPLER: 2 IN. OD SPLIT SPOON SAMPLER (SPT) Driven 24 INCHES
USING A 140 lb. WINCH OPERATED SAFETY HAMMER.

CASING: HOLLOW STEM AUGER
CASING SIZE: 2 1/4 IN. INSIDE DIAMETER.

<table>
<thead>
<tr>
<th>DEPTH (feet)</th>
<th>CASING (blows/ft)</th>
<th>SAMPLE</th>
<th>SAMPLE DESCRIPTION</th>
<th>NOTES</th>
<th>STRATUM DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3/24</td>
<td>S-1</td>
<td>Medium dense, brown, fine to medium SAND FILL, little gravel, little silt; moist.</td>
<td></td>
<td>3'' TOPSOIL/MULCH</td>
</tr>
<tr>
<td>5</td>
<td>13/24</td>
<td>S-2</td>
<td>Hard, brown, CLAYEY SILT, trace fine sand; moist.</td>
<td></td>
<td>SAND FILL</td>
</tr>
<tr>
<td>10</td>
<td>16/24</td>
<td>S-3</td>
<td>Hard, brown-gray mottled, CLAYEY SILT, trace fine sand; wet.</td>
<td>Auger refusal at 9.5 ft.</td>
<td>CLAYEY SILT</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GRANULAR SOILS

<table>
<thead>
<tr>
<th>BLOWS/FT</th>
<th>DENSITY</th>
<th>BLOWS/FT</th>
<th>DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>V. LOOSE</td>
<td>0-2</td>
<td>V. SOFT</td>
</tr>
<tr>
<td>4-10</td>
<td>LOOSE</td>
<td>2-4</td>
<td>SOFT</td>
</tr>
<tr>
<td>10-30</td>
<td>M. DENSE</td>
<td>4-8</td>
<td>M. STIFF</td>
</tr>
<tr>
<td>30-50</td>
<td>DENSE</td>
<td>8-15</td>
<td>STIFF</td>
</tr>
<tr>
<td>> 50</td>
<td>V. DENSE</td>
<td>15-30</td>
<td>V. STIFF</td>
</tr>
</tbody>
</table>

COHESIVE SOILS

<table>
<thead>
<tr>
<th>BLOWS/FT</th>
<th>DENSITY</th>
<th>BLOWS/FT</th>
<th>DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. Water level based on observation of wet sample.
2. Auger grinding starting at 9 ft. Auger refusal at 9.5 ft. (5 minutes grinding, 0" advance).

GENERAL NOTES:
i) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL.
ii) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG.
FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS ARE MADE.
BORING No. B9

LOCATION: Portsmouth High School Light Poles, Portsmouth, NH

** CHK'D BY:** Thomas J. Strike, PE

BORING LOCATION: See attached plan

SAMPLER: 2 IN. OD SPLIT SPOON SAMPLER (SPT) DRIVEN 24 INCHES USING A 140 lb. WINCH OPERATED SAFETY HAMMER.

CASING: HOLLOW STEM AUGER

CASING SIZE: 2 1/4 IN. INSIDE DIAMETER.

<table>
<thead>
<tr>
<th>DEPTH (feet)</th>
<th>CASING (blows/ft)</th>
<th>SAMPLE</th>
<th>DEPTH (ft)</th>
<th>BLOWS/6"</th>
<th>SAMPLE DESCRIPTION</th>
<th>NOTES</th>
<th>STRATUM DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>S-1</td>
<td>8/24</td>
<td>0-2</td>
<td>3-8-6-10</td>
<td></td>
<td>3" TOPSOIL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S-2</td>
<td>12/24</td>
<td>2-4</td>
<td>2-3-5-5</td>
<td></td>
<td>SAND FILL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S-3</td>
<td>24/24</td>
<td>4-6</td>
<td>5-10-11-20</td>
<td></td>
<td>1 BURIED TOPSOIL</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>S-4</td>
<td>24/24</td>
<td>10-12</td>
<td>1-1/12"-1</td>
<td></td>
<td>CLAYEY SILT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S-5</td>
<td>24/24</td>
<td>15-17</td>
<td>WOH/24"</td>
<td></td>
<td>CLAY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S-6</td>
<td>24/24</td>
<td>20-22</td>
<td>80-96-24-24</td>
<td></td>
<td>GLACIAL TILL</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GROUNDWATER READINGS

DATE 11/2/15 **TIME** NA **WATER AT CASING AT STABILIZATION TIME** 2 ft. +/- **NA**

GENERAL NOTES:

i) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL.

ii) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG. FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS ARE MADE.

GRANULAR SOILS

<table>
<thead>
<tr>
<th>BLOWS/FT</th>
<th>DENSITY</th>
<th>BLOWS/FT</th>
<th>DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>V. LOOSE</td>
<td>0-2</td>
<td>V. SOFT</td>
</tr>
<tr>
<td>4-10</td>
<td>LOOSE</td>
<td>2-4</td>
<td>SOFT</td>
</tr>
<tr>
<td>10-30</td>
<td>M. DENSE</td>
<td>4-8</td>
<td>M. STIFF</td>
</tr>
<tr>
<td>30-50</td>
<td>DENSE</td>
<td>8-15</td>
<td>STIFF</td>
</tr>
<tr>
<td>> 50</td>
<td>V. DENSE</td>
<td>15-30</td>
<td>V. STIFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 30</td>
<td>HARD</td>
</tr>
</tbody>
</table>

COHESIVE SOILS

1. Water level based on observation of wet sample.
2. WOH = weight of the hammer.
REPORT OF BORING No. B10

Project: Portsmouth High School Light Poles

Location: Portsmouth, NH

Checked By: Thomas J. Strike, PE

SAMPLER:
- **Type**: 2 in. OD split spoon sampler (SPT) driven 24 inches
- **Method**: Using a 140 lb. winch operated safety hammer.

CASING:
- **Type**: Hollow stem auger
- **Size**: 2 1/4 in. inside diameter

<table>
<thead>
<tr>
<th>DEPTH (feet)</th>
<th>CASING (blows/ft)</th>
<th>SAMPLE</th>
<th>NO.</th>
<th>REC/PEN (in)</th>
<th>DEPTH (ft)</th>
<th>BLOWS/6"</th>
<th>SAMPLE DESCRIPTION</th>
<th>NOTES</th>
<th>STRATUM DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>S-1</td>
<td>12/24</td>
<td>0-2</td>
<td>2.6-7.7</td>
<td></td>
<td>Medium dense, brown, Silty sand, little gravel; moist.</td>
<td>No recovery.</td>
<td>7" Topsoil</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>S-2</td>
<td>0/24</td>
<td>2-4</td>
<td>4.6-9.11</td>
<td></td>
<td>Hard, gray-brown mottled, Clayey silt, little fine sand; wet.</td>
<td></td>
<td>Silty Sand</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>S-3</td>
<td>24/24</td>
<td>4-6</td>
<td>9-15-22-18</td>
<td></td>
<td>Top 8" hard, gray, Clayey silt, some sand; wet. Very dense, gray, fine to coarse sand, some gravel; wet.</td>
<td>Auger refusal at 11.3 ft.</td>
<td>Clayey Silt</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>S-4</td>
<td>15/15</td>
<td>10-11.3</td>
<td>7-1-100/3"</td>
<td></td>
<td>Hard refusal at 11.3 ft.</td>
<td></td>
<td>Glacial Till</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GROUNDWATER READINGS
- Water level at casing at stabilization time: 4 ft. +/-

Granular Soils
- BLOWS/FT: V. Loose, 0-2 V. Soft; 0-4
- BLOWS/FT: Loose, 2-4 Soft; 4-10
- BLOWS/FT: M. Dense, 4-8 M. Stiff; 10-30
- BLOWS/FT: Dense, 8-15 Stiff; 30-50
- BLOWS/FT: V. Dense, 15-30 V. Stiff; > 50

Cohesive Soils
- BLOWS/FT: V. Loose, 0-2 V. Soft; 0-4
- BLOWS/FT: Loose, 2-4 Soft; 4-10
- BLOWS/FT: M. Dense, 4-8 M. Stiff; 10-30
- BLOWS/FT: Dense, 8-15 Stiff; 30-50
- BLOWS/FT: V. Dense, 15-30 V. Stiff; > 50

General Notes:
1. **Water level based on observation of wet sample.**
2. **Auger refusal at 11.3 ft. (5 minutes grinding, 0" advance).**

Additional Notes:
- The stratification lines represent the approximate boundary between soil types. Transitions may be gradual.
- Water level readings have been made in the drill holes at times and under conditions stated on this boring log. Fluctuations in the level of groundwater may occur due to other factors than those present at the time measurements are made.

BORING No. B10

O:\Portsmouth NH\Portsmouth HS Light Poles\Field\[11.2-11.4, 11.11 logs.xlsx]B-19
PROJECT Portsmouth High School Light Poles Portsmouth, NH

REPORT OF BORING No. B11

SHEET 1 OF 1

Boring Co. New England Boring Contractors

FOREMAN David Thompson

Boring Location See attached plan

Ground Surface Elev. 18 ft. +/- DATUM NA

WSE Engineer: Julie A. Eaton, EIT

Date Start 11/2/15 **Date End** 11/2/15

Sampler: 2 in. OD SPLIT SPOON SAMPLER (SPT) DRIVEN 24 INCHES

Casing: HOLLOW STEM AUGER

Casing Size: 2 1/4 in. inside diameter.

Date 11/2/15 **Time** NA **Water at CASING AT STABILIZATION TIME** 2 ft. +/- NA NA

Groundwater Readings

<table>
<thead>
<tr>
<th>Water Level</th>
<th>Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Level Based on Observation of Wet Sample.</td>
<td>2 ft. +/-</td>
</tr>
<tr>
<td>Water at Casing at Stabilization Time</td>
<td>NA</td>
</tr>
</tbody>
</table>

Notes:

- Water level based on observation of wet sample.
- WOH = weight of the hammer.
- WOR = weight of the rod.
- Auger grinding below 19 ft.

Granular Soils

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Casing (blows/ft)</th>
<th>Sample</th>
<th>Sample Description</th>
<th>Notes</th>
<th>Stratum Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>S-1 16/24</td>
<td>0-2</td>
<td>3-5-11-16</td>
<td>Medium dense, brown-gray, fine to medium SAND, little gravel, little silt, moist.</td>
<td>6" TOPSOIL</td>
</tr>
<tr>
<td>5</td>
<td>S-2 16/24</td>
<td>2-4</td>
<td>10-11-13-16</td>
<td>Medium dense, brown, fine to medium SAND, little gravel, trace silt, wet.</td>
<td>SAND</td>
</tr>
<tr>
<td>10</td>
<td>S-3 24/24</td>
<td>4-6</td>
<td>11-12-15-15</td>
<td>Same as above.</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>S-4 18/24</td>
<td>10-12</td>
<td>WOH/18"-1</td>
<td>Very soft, gray, CLAY; wet.</td>
<td>CLAY</td>
</tr>
<tr>
<td>20</td>
<td>S-5 12/24</td>
<td>15-17</td>
<td>WOR/6"-9-8-2</td>
<td>Medium dense, gray, fine to medium SAND, little clay; wet.</td>
<td>GLACIAL TILL</td>
</tr>
<tr>
<td>25</td>
<td>S-6 6/24</td>
<td>20-22</td>
<td>33-23-20-19</td>
<td>Dense, gray, fine to coarse SAND, some gravel, little silt; wet.</td>
<td></td>
</tr>
</tbody>
</table>

Boring terminated at 22 ft.

General Notes:

- The stratification lines represent the approximate boundary between soil types. Transitions may be gradual.
- Water level readings have been made in the drill holes at times and under conditions stated on this boring log. Fluctuations in the level of groundwater may occur due to other factors than those present at the time measurements are made.
REPORT OF BORING No. B12

PROJECT
Portsmouth High School Light Poles
Portsmouth, NH

BORING CO.
New England Boring Contractors

BORING LOCATION
See attached plan

FOREMAN
David Thompson

GROUND SURFACE ELEV.
22 ft. +/-

DATE START
11/2/15

DATE END
11/2/15

SHEET
1 OF 1

CHKD BY
Thomas J. Strike, PE

WSE ENGINEER:
Julie A. Eaton, EIT

SAMPLER:
2 IN. OD SPLIT SPOON SAMPLER (SPT) DRIVEN 24 INCHES

CASING:
HOLLOW STEM AUGER

CASING SIZE:
2 1/4 IN. INSIDE DIAMETER

DATE
11/2/15

TIME
NA

WATER AT CASING AT STABILIZATION TIME
6 ft. +/-

<table>
<thead>
<tr>
<th>DEPTH (feet)</th>
<th>CASING (blows/ft)</th>
<th>SAMPLE No.</th>
<th>REC/PEN (in)</th>
<th>DEPTH (ft)</th>
<th>BLOWS/6"</th>
<th>SAMPLE DESCRIPTION</th>
<th>NOTES</th>
<th>STRATUM DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>S-1</td>
<td>11/24</td>
<td>0-2</td>
<td>3-8-9-10</td>
<td>Medium dense, brown, SILTY SAND FILL, trace gravel; moist.</td>
<td></td>
<td>3" TOPSOIL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S-2</td>
<td>19/24</td>
<td>2-4</td>
<td>5-9-11-14</td>
<td>Medium dense, brown, SILTY SAND, trace gravel, little clay; moist.</td>
<td></td>
<td>SAND FILL</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>S-3</td>
<td>11/24</td>
<td>4-6</td>
<td>36-37-26-33</td>
<td>Very dense, brown, fine to coarse SAND, some gravel, little silt; moist.</td>
<td></td>
<td>SILTY SAND</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>S-4</td>
<td>12/18</td>
<td>10-11.5</td>
<td>15-9-65-100/0"</td>
<td>Very dense, brown, gravelly SAND, little silt; wet.</td>
<td></td>
<td>GLACIAL TILL</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Auger refusal at 11.5 ft.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GRANULAR SOILS

BLOWS/FT

<table>
<thead>
<tr>
<th>DENSITY</th>
<th>BLOWS/FT</th>
<th>DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>V. LOOSE</td>
<td>0-2</td>
</tr>
<tr>
<td>4-10</td>
<td>LOOSE</td>
<td>2-4</td>
</tr>
<tr>
<td>10-30</td>
<td>M. DENSE</td>
<td>4-8</td>
</tr>
<tr>
<td>30-50</td>
<td>DENSE</td>
<td>8-15</td>
</tr>
<tr>
<td>> 50</td>
<td>V. DENSE</td>
<td>15-30</td>
</tr>
</tbody>
</table>

COHESIVE SOILS

DENSITY

<table>
<thead>
<tr>
<th>BLOWS/FT</th>
<th>DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V. SOFT</td>
</tr>
<tr>
<td></td>
<td>SOFT</td>
</tr>
<tr>
<td></td>
<td>M. STIFF</td>
</tr>
<tr>
<td></td>
<td>STIFF</td>
</tr>
<tr>
<td></td>
<td>HARD</td>
</tr>
</tbody>
</table>

NOTES:

1. Water level measured in hole after casing was removed.
2. Auger refusal at 11.5 ft. (5 minutes grinding, 6" advance).

GENERAL NOTES:

i) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL.

ii) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG.

Fluctuations in the level of groundwater may occur due to other factors than those present at the time measurements are made.

O:\Portsmouth NH\Portsmouth HS Light Poles\Field\11-2-11-4, 12-11 logs.xlsx/B-19
Boring No. B13

Report of Boring No.

Project: Portsmouth High School Light Poles, Portsmouth, NH

Check By: Thomas J. Strike, PE

WSE Engineer: Julie A. Eaton, EIT

Boring Co.: New England Boring Contractors

Foreman: Ben Cross

Boring Location: See attached plan

Ground Surface Elev.: 28 ft. +/-

Date Start: 11/4/15

Date End: 11/4/15

Groundwater Readings

Date	**Time**	**Water at Casing**	**Stabilization Time**
11/4/15 | NA | 4 ft. +/- | NA | NA

Sampler: 2 in. OD Split Spoon Sampler (SPT) Driven 24 Inches

Casing:

Driving 4” Casing using a 300 lb. hammer falling 30 in. and

The drive and wash technique

Casing Size: 4 in. Inside Diameter

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Casing (blows/ft)</th>
<th>Sample</th>
<th>REC/PEN (in)</th>
<th>Depth (ft)</th>
<th>BLOWS/6”</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4 IN. INSIDE DIAMETER. OTHER:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>S-1 13/24 0-2 3-7-7-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>S-2 16/24 2-4 9-9-22-24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>S-3 12/24 4-6 29-29-19-34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>S-4 6/24 9-11 67-76-28-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>3" Topsoil, Sand Fill</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>3" Topsoil, Sand Fill</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>BURIED TOPSOIL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>GLACIAL TILL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Granular Soils

- **BLOWS/FT**
 - 0-4: V. Loose
 - 4-10: M. Dense
 - 10-30: M. Dense
 - 30-50: V. Dense
 - > 50: V. Dense

- **Density**
 - 0-2: V. Soft
 - 2-4: M. Stiff
 - 4-8: M. Stiff
 - 8-15: V. Stiff
 - > 30: HARD

Cohesive Soils

- **BLOWS/FT**
 - 0-2: V. Soft
 - 2-4: M. Stiff
 - 4-8: M. Stiff
 - 8-15: V. Stiff
 - > 30: HARD

Notes:

1. Water level based on observation of wet sample.
2. Open hole drilling below 4 ft.
3. Roller bit grinding below 6 ft.
4. Roller bit refusal at 12.3 ft. (5 minutes grinding, 4” advance)

General Notes:

i) The stratification lines represent the approximate boundary between soil types. Transitions may be gradual.

ii) Water level readings have been made in the drill holes at times and under conditions stated on this boring log. Fluctuations in the level of groundwater may occur due to other factors than those present at the time measurements are made.
REPORT OF BORING No. B14

SHEET 1 OF 1

PROJECT
Portsmouth High School Light Poles
Portsmouth, NH

REPORT OF BORING No. B14

SHEET 1 OF 1

PROJECT
Portsmouth High School Light Poles
Portsmouth, NH

BORING Co.
New England Boring Contractors

BORING LOCATION
See attached plan

FOREMAN
Ben Cross

GROUND SURFACE ELEV.
28 ft. +/- DATUM NA

WSE ENGINEER:
Julie A. Eaton, EIT

DATE START
11/4/15

DATE END
11/4/15

GROUNDWATER READINGS

<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME</th>
<th>WATER AT CASING AT</th>
<th>STABILIZATION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Groundwater not observed.

SAMPLER:
2 IN. OD SPLIT SPOON SAMPLER (SPT) DRIVEN 24 INCHES

CASING:
DRIVEN 4" CASING USING A 300 LB. HAMMER FALLING 30 IN. AND THE DRIVE AND WASH TECHNIQUE

CASING SIZE:
4 IN. INSIDE DIAMETER.

DEPTH (feet)

<table>
<thead>
<tr>
<th>No.</th>
<th>REC/PEN (in)</th>
<th>DEPTH (ft)</th>
<th>BLOWS/6"</th>
<th>SAMPLE DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-1</td>
<td>11/24</td>
<td>0-2</td>
<td>5-8-6-8</td>
<td>Medium dense, brown, fine to medium SAND FILL, some silt, little gravel; moist.</td>
</tr>
<tr>
<td>S-2</td>
<td>12/24</td>
<td>2-4</td>
<td>8-100/5"</td>
<td>Very dense, brown, fine to coarse SAND, some gravel, little silt; moist.</td>
</tr>
<tr>
<td>S-3</td>
<td>0/0</td>
<td>4-</td>
<td>100/0</td>
<td>No penetration.</td>
</tr>
</tbody>
</table>

GRANULAR SOILS

<table>
<thead>
<tr>
<th>DEPTH (feet)</th>
<th>BLOWS/FT</th>
<th>DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>0-2</td>
<td>V. LOOSE</td>
</tr>
<tr>
<td>4-10</td>
<td>2-4</td>
<td>LOOSE</td>
</tr>
<tr>
<td>10-30</td>
<td>4-8</td>
<td>M. DENSE</td>
</tr>
<tr>
<td>30-50</td>
<td>8-15</td>
<td>DENSE</td>
</tr>
<tr>
<td>> 50</td>
<td>15-30</td>
<td>V. DENSE</td>
</tr>
<tr>
<td></td>
<td>> 30</td>
<td>HARD</td>
</tr>
</tbody>
</table>

COHESIVE SOILS

<table>
<thead>
<tr>
<th>DEPTH (feet)</th>
<th>BLOWS/FT</th>
<th>DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 IN. INSIDE DIAMETER. OTHER:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. Casing refusal at 3 ft.
2. Roller bit grinding below 3 ft.
3. Roller bit refusal at 4.3 ft. (10 minutes grinding, 4" advance).

GENERAL NOTES:
i) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL.

ii) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG.

Fluctuations in the level of groundwater may occur due to other factors than those present at the time measurements are made.
REPORT OF BORING No. B14A

PROJECT
Portsmouth High School Light Poles
Portsmouth, NH

SHEET
1 OF 1

BORING Co. New England Boring Contractors

BORING LOCATION See attached plan

FOREMAN Ben Cross

GROUND SURFACE ELEV. 26 ft. +/-

WSE ENGINEER: Julie A. Eaton, EIT

DATE START 11/4/15

DATE END 11/4/15

CHKD BY Thomas J. Strike, PE

SAMPLER: 2 IN. OD SPLIT SPOON SAMPLER (SPT) DRIVEN 24 INCHES USING A 140 lb. WINCH OPERATED SAFETY HAMMER.

CASING: DRIVEN 4" CASING USING A 300 LB. HAMMER FALLING 30 IN. AND THE DRIVE AND WASH TECHNIQUE

CASING SIZE: 4 IN. INSIDE DIAMETER.

<table>
<thead>
<tr>
<th>DEPTH (feet)</th>
<th>CASING (blows/ft)</th>
<th>SAMPLE</th>
<th>No.</th>
<th>REC/PEN (in)</th>
<th>DEPTH (ft)</th>
<th>BLOWS/6"</th>
<th>SAMPLE DESCRIPTION</th>
<th>NOTES</th>
<th>STRATUM DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>S-1</td>
<td>0/1</td>
<td>4-4.1</td>
<td>100/1</td>
<td></td>
<td></td>
<td>No recovery.</td>
<td>1</td>
</tr>
</tbody>
</table>

Roller bit refusal at 4.5 ft.

GROUNDWATER READINGS

<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME</th>
<th>WATER AT CASING</th>
<th>STABILIZATION TIME</th>
</tr>
</thead>
</table>

GRANULAR SOILS

<table>
<thead>
<tr>
<th>BLOWS/FT</th>
<th>DENSITY</th>
<th>BLOWS/FT</th>
<th>DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>V. LOOSE</td>
<td>0-2</td>
<td>V. SOFT</td>
</tr>
<tr>
<td>4-10</td>
<td>LOOSE</td>
<td>2-4</td>
<td>SOFT</td>
</tr>
<tr>
<td>10-30</td>
<td>M. DENSE</td>
<td>4-8</td>
<td>M. STIFF</td>
</tr>
<tr>
<td>30-50</td>
<td>DENSE</td>
<td>8-15</td>
<td>STIFF</td>
</tr>
<tr>
<td>> 50</td>
<td>V. DENSE</td>
<td>15-30</td>
<td>V. STIFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 30</td>
<td>HARD</td>
</tr>
</tbody>
</table>

COHESIVE SOILS

NOTES:

1. Casing refusal at 4 ft.
2. Roller bit refusal at 4.5 ft. (5 minutes grinding, 4" advance).

GENERAL NOTES:

1. The stratification lines represent the approximate boundary between soil types. Transitions may be gradual.
2. Water level readings have been made in the drill holes at times and under conditions stated on this boring log. Fluctuations in the level of groundwater may occur due to other factors than those present at the time measurements are made.

BORING No. B14A
<table>
<thead>
<tr>
<th>DEPTH (feet)</th>
<th>CASING (blows/ft)</th>
<th>SAMPLE</th>
<th>REC/PEN (in)</th>
<th>DEPTH (ft)</th>
<th>BLOWS/6"</th>
<th>SAMPLE DESCRIPTION</th>
<th>NOTES</th>
<th>STRATUM DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>S-1</td>
<td>14/24</td>
<td>0-2</td>
<td>3-13-28-57</td>
<td>Dense, brown, gravelly, fine to coarse SAND FILL, little to some silt; moist.</td>
<td></td>
<td>4" TOPSOIL</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>S-2</td>
<td>7/24</td>
<td>2-4</td>
<td>34-34-28-22</td>
<td>Very dense, brown, sandy, coarse GRAVEL, trace silt; moist.</td>
<td></td>
<td>SAND FILL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S-3</td>
<td>10/15</td>
<td>4-5.3</td>
<td>26-68-100/3"</td>
<td>Very dense, brown, sandy, coarse GRAVEL, trace silt; moist.</td>
<td></td>
<td>GLACIAL TILL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Auger refusal at 7.5 ft.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GRANULAR SOILS

BLOWS/FT	DENSITY	BLOWS/FT	DENSITY
0-4 | V. LOOSE | 0-2 | V. SOFT
4-10 | LOOSE | 2-4 | SOFT
10-30 | M. DENSE | 4-8 | M. STIFF
30-50 | DENSE | 8-15 | STIFF
> 50 | V. DENSE | 15-30 | V. STIFF

COHESIVE SOILS

NOTES:
1. Spoon tilted north while driving from 1 ft. to 5.3 ft.
2. Auger grinding from 3.5 to 7.5 ft.
3. Slight change in grading from 6.5 ft. to 7.5 ft.
4. Auger refusal at 7.5 ft. (5 minutes grinding, less than 2" advance)

GENERAL NOTES:

i) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL.

ii) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG.

FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS ARE MADE.
REPORT OF BORING No. B16

PORTSMOUTH HIGH SCHOOL LIGHT POLES, PORTSMOUTH, NH

CHECKED BY

Thomas J. Strike, PE

BORING LOCATION

See attached plan

GROUND SURFACE ELEV.

28 ft. +/-

DATE START

12/11/15

DATE END

12/11/15

SAMPLES

2 IN. OD SPLIT SPOON SAMPLER (SPT) DRIVEN 24 INCHES USING A 140 lb. CATHEAD OPERATED SAFETY HAMMER.

CASING SIZE

2 1/4 IN. INSIDE DIAMETER.

GROUNDWATER READINGS

<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME</th>
<th>WATER AT CASING AT STABILIZATION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/11/15</td>
<td>5.3 ft. +/-</td>
<td>5.8 ft. NA</td>
</tr>
</tbody>
</table>

NOTES:

1. Auger grinding below 4.8 ft.
2. Auger refusal at 5.8 ft. (5 minutes grinding, less than 2" advance)
3. Groundwater observed in hole after drilling.
4. Bedrock and/or boulders observed in wooded area south of boring.

GRANULAR SOILS

<table>
<thead>
<tr>
<th>DEPTH (feet)</th>
<th>CASING (blows/ft)</th>
<th>SAMPLE</th>
<th>RE/PEN (in)</th>
<th>DEPTH (ft)</th>
<th>BLOWS/6"</th>
<th>SAMPLE DESCRIPTION</th>
<th>NOTES</th>
<th>STRATUM DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>S-1</td>
<td>20/24</td>
<td>0-2</td>
<td>2-6-12-12</td>
<td>Medium dense, brown, gravelly, fine to coarse SAND FILL, little to some silt; moist.</td>
<td>4" TOPSOIL</td>
<td>GLACIAL TILL</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>S-2</td>
<td>19/24</td>
<td>2-4</td>
<td>23-32-30-45</td>
<td>Very dense, brown-orange mottled, gravelly, fine to coarse SAND, some silt; moist.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>S-3</td>
<td>13/13</td>
<td>4-5.1</td>
<td>23-32-100/1"</td>
<td>Very dense, brown, gravelly, fine to coarse SAND, some silt; moist.</td>
<td>2,3,4</td>
<td></td>
</tr>
</tbody>
</table>

Auger refusal at 5.8 ft.

COHESIVE SOILS

<table>
<thead>
<tr>
<th>DEPTH (feet)</th>
<th>CASING (blows/ft)</th>
<th>SAMPLE</th>
<th>RE/PEN (in)</th>
<th>DEPTH (ft)</th>
<th>BLOWS/6"</th>
<th>SAMPLE DESCRIPTION</th>
<th>NOTES</th>
<th>STRATUM DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GENERAL NOTES:

i) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL.

ii) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG.

FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS ARE MADE.
General Information

BORING No.: B17
SHEET OF: 1
PROJECT: Portsmouth High School Light Poles
Location: Portsmouth, NH
CHKD BY: Thomas J. Strike, PE
WSE ENGINEER: Julie A. Eaton, EIT
DATE START: 12/11/15
DATE END: 12/17/15

Boring Details

- **Borings:**
 - **SAMPLER:** 2 in. OD Split Spoon Sampler (SPT), driven 24 inches
 - **CASING:** Hollow Stem Auger
 - **CASING SIZE:** 2 1/4 in. inside diameter

Groundwater Readings

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Water at Stabilization Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 ft.</td>
<td>8 ft. +/-</td>
</tr>
<tr>
<td>8 ft.</td>
<td>8.5 ft.</td>
</tr>
<tr>
<td>12 ft.</td>
<td>NA</td>
</tr>
</tbody>
</table>

Soil Description

Granular Soils:
- 0-5 ft: Medium dense, brown, gravelly, fine to coarse sand fill, little to some silt, moist.
- 5-10 ft: Medium dense, gray-brown mottled, fine to medium silty sand, little gravel, trace clay; moist.
- 10-15 ft: Very dense, brown-gray, gravel, some sand, some silt; wet.
- Auger refusal at 8.6 ft.

Cohesive Soils:

<table>
<thead>
<tr>
<th>BLOWS/FT</th>
<th>DENSITY</th>
<th>BLOWS/FT</th>
<th>DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>V. LOOSE</td>
<td>0-2</td>
<td>V. SOFT</td>
</tr>
<tr>
<td>4-10</td>
<td>LOOSE</td>
<td>2-4</td>
<td>SOFT</td>
</tr>
<tr>
<td>10-30</td>
<td>M. DENSE</td>
<td>4-8</td>
<td>M. STIFF</td>
</tr>
<tr>
<td>30-50</td>
<td>DENSE</td>
<td>8-15</td>
<td>STIFF</td>
</tr>
<tr>
<td>> 50</td>
<td>V. DENSE</td>
<td>15-30</td>
<td>V. STIFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 30</td>
<td>HARD</td>
</tr>
</tbody>
</table>

Notes

1. Bottom 6" becomes gray, without organics, trace clay.
2. Auger grinding below 7.5 ft. Auger leaning north west.
3. Groundwater observed in hole after drilling.

General Notes

- **i)** The stratification lines represent the approximate boundary between soil types. Transitions may be gradual.
- **ii)** Water level readings have been made in the drill holes at times and under conditions stated on this boring log. Fluctuations in the level of groundwater may occur due to other factors than those present at the time measurements are made.
REPORT OF BORING No. B18

PROJECT
- Portsmouth High
- School Light Poles
- Portsmouth, NH

SHEET OF

CHECKED BY
- Project No. 2140758.K
- Thomas J. Strike, PE

BORING LOCATION
- See attached plan

FOREMAN
- Walter Hockele
- GROUND SURFACE ELEV. 15 ft. +/-

WSE ENGINEER:
- Julie A. Eaton, EIT
- DATE START
- DATE END

CASING:
- Using a 140 lb. cathead operated safety hammer.

CASING SIZE:
- Hollow stem auger

GROUNDWATER READINGS

<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME</th>
<th>WATER AT CASING</th>
<th>STABILIZATION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/11/2015</td>
<td>5 ft. +/-</td>
<td>14 ft.</td>
<td>NA</td>
</tr>
</tbody>
</table>

SAMPLER:
- 2 in. od split spoon sampler (SPT) driven 24 inches
- Using a 140 lb. cathead operated safety hammer.

PROJECT
- Portsmouth High School Light Poles
- Portsmouth, NH

<table>
<thead>
<tr>
<th>DEPTH (feet)</th>
<th>CASING (blows/ft)</th>
<th>SAMPLE</th>
<th>NO.</th>
<th>REC/PEN (in)</th>
<th>DEPTH (ft)</th>
<th>BLOWS/6"</th>
<th>SAMPLE DESCRIPTION</th>
<th>NOTES</th>
<th>STRATUM DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>6" TOPSOIL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>SAND TO SILTY CLAY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td>13/24</td>
<td>14-16</td>
<td>19-24-20-18</td>
<td></td>
<td>GLACIAL TILL</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GRANULAR SOILS

<table>
<thead>
<tr>
<th>DEPTH (feet)</th>
<th>CASING (blows/ft)</th>
<th>SAMPLE</th>
<th>NO.</th>
<th>REC/PEN (in)</th>
<th>DEPTH (ft)</th>
<th>BLOWS/6"</th>
<th>SAMPLE DESCRIPTION</th>
<th>NOTES</th>
<th>STRATUM DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>6" TOPSOIL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COHESIVE SOILS

<table>
<thead>
<tr>
<th>DEPTH (feet)</th>
<th>CASING (blows/ft)</th>
<th>SAMPLE</th>
<th>NO.</th>
<th>REC/PEN (in)</th>
<th>DEPTH (ft)</th>
<th>BLOWS/6"</th>
<th>SAMPLE DESCRIPTION</th>
<th>NOTES</th>
<th>STRATUM DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>6" TOPSOIL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. Advance boring through overburden soils to estimate top of glacial till.
2. Groundwater reading taken after termination.
3. Auger change observed at ~7 ft. (Blue-gray-orange silty clay cuttings observed).
4. Auger grinding below 12.5 ft.; estimated as top of glacial till.

GENERAL NOTES:
- The stratification lines represent the approximate boundary between soil types. Transitions may be gradual.
- Water level readings have been made in the drill holes at times and under conditions stated on this boring log. Fluctuations in the level of groundwater may occur due to other factors than those present at the time measurements are made.
REPORT OF BORING No. B19

PROJECT
Portsmouth High School Light Poles, Portsmouth, NH

SHEET
1 OF 2

CHKD BY
Thomas J. Strike, PE

BORING Co.
New England Boring Contractors

FOREMAN
Walter Hockele

GROUND LOCATION
See attached plan

WSE ENGINEER:
Julie A. Eaton, EIT

GROUND SURFACE ELEV.
13 ft. +/- DATUM NA

DATE START
12/11/15

DATE END
12/17/15

SAMPLER:
2 IN. OD SPLIT SPOON SAMPLER (SPT) DRIVEN 24 INCHES

CASING:
HOLLOW STEM AUGER

CASING SIZE:
2 1/4 IN. INSIDE DIAMETER.

<table>
<thead>
<tr>
<th>DEPTH (feet)</th>
<th>CASING (blows/ft)</th>
<th>SAMPLE</th>
<th>REC/PEN (in)</th>
<th>DEPTH (ft)</th>
<th>BLOWS/6"</th>
<th>SAMPLE DESCRIPTION</th>
<th>NOTES</th>
<th>STRATUM DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>S-1</td>
<td>14/24</td>
<td>0-2</td>
<td>3-7-7-5</td>
<td>Very dense, brown, fine to coarse SAND FILL, some gravel, some silt; moist.</td>
<td></td>
<td>7" TOPSOIL</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>S-2</td>
<td>17/24</td>
<td>2-4</td>
<td>10-7-9-14</td>
<td>Stiff, dark gray, fine to medium SANDY SILT, some clay; moist. Bottom 7": becomes orange-gray.</td>
<td></td>
<td>SANDY SILT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S-3</td>
<td>16/24</td>
<td>4-6</td>
<td>11-14-9-14</td>
<td>Very stiff, orange-gray, SILTY CLAY, some fine to medium sand; wet.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>S-4</td>
<td>24/24</td>
<td>9-11</td>
<td>1/12"-1-1</td>
<td>Very soft, gray, CLAY, some silt, trace fine to medium sand; wet.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>S-5</td>
<td>24/24</td>
<td>14-16</td>
<td>WOR/6"-WOH/18"</td>
<td>Very soft, gray, CLAY, little to some silt, trace fine to medium sand; wet.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>S-6</td>
<td>24/24</td>
<td>19-21</td>
<td>WOH/24"</td>
<td>Very soft, gray, CLAY, little silt, trace fine sand; wet.</td>
<td></td>
<td>CLAY</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>S-7</td>
<td>24/24</td>
<td>24-26</td>
<td>WOH/12"-2-1</td>
<td>Very soft, gray, CLAY, some silt, little to fine to medium sand; wet.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>S-8</td>
<td>24/24</td>
<td>29-31</td>
<td>WOH/12"-5-5</td>
<td>Stiff, gray, CLAY, some silt, little to fine to medium sand; wet. Bottom 4": loose, gray, fine to medium SAND, trace clay, trace silt; wet.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>S-9</td>
<td>24/24</td>
<td>34-36</td>
<td>WOH/12"-3-1</td>
<td>Soft, gray, CLAY, little to some silt, trace fine to medium sand; wet.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GRANULAR SOILS</th>
<th>COHESIVE SOILS</th>
<th>NOTES:</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLOWS/FT</td>
<td>DENSITY</td>
<td>BLOWS/FT</td>
</tr>
<tr>
<td>0-4</td>
<td>V. LOOSE</td>
<td>0-2</td>
</tr>
<tr>
<td>4-10</td>
<td>LOOSE</td>
<td>2-4</td>
</tr>
<tr>
<td>10-30</td>
<td>M. DENSE</td>
<td>4-8</td>
</tr>
<tr>
<td>30-50</td>
<td>DENSE</td>
<td>8-15</td>
</tr>
<tr>
<td>> 50</td>
<td>V. DENSE</td>
<td>15-30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 30</td>
</tr>
</tbody>
</table>

GROUNDWATER READINGS

<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME</th>
<th>WATER AT CASING AT STABILIZATION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/11/15</td>
<td></td>
<td>2.5 ft. +/- NA NA</td>
</tr>
</tbody>
</table>

GENERAL NOTES:

i) The stratification lines represent the approximate boundary between soil types. Transitions may be gradual.

ii) Water level readings have been made in the drill holes at times and under conditions stated on this boring log. Fluxtations in the level of groundwater may occur due to other factors than those present at the time measurements are made.

New England Boring Contractors

See attached plan

Walter Hockele

Julie A. Eaton, EIT

12/11/15 12/11/15

PROJECT
Portsmouth High School Light Poles, Portsmouth, NH

PE
Thomas J. Strike

Fluvalv Poles

Field of 12.11.15 logs.xlsx

GENERAL NOTES:

i) The stratification lines represent the approximate boundary between soil types. Transitions may be gradual.

ii) Water level readings have been made in the drill holes at times and under conditions stated on this boring log. Fluxtations in the level of groundwater may occur due to other factors than those present at the time measurements are made.
<table>
<thead>
<tr>
<th>DEPTH (feet)</th>
<th>CASING SIZE: 2 1/4 IN. INSIDE DIAMETER.</th>
<th>SAMPLE</th>
<th>No.</th>
<th>REC/PEN (in)</th>
<th>DEPTH (ft)</th>
<th>BLOWS/6"</th>
<th>SAMPLE DESCRIPTION</th>
<th>STRATUM DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td></td>
<td>S-10</td>
<td>24/24</td>
<td>36-38</td>
<td>WOR/12*-5-12</td>
<td>Medium stiff, gray, CLAY, little to some silt, trace fine sand; wet. Bottom 6": gray, gravelly, fine to medium SAND, some clay, trace silt; wet.</td>
<td>6 GLACIAL TILL</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>S-11</td>
<td>12/12</td>
<td>38-39</td>
<td>13-23 (see note 6)</td>
<td>Gray, gravelly, fine to coarse SAND, little silt; wet.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GROUNDWATER READINGS

- **DATE**: 12/11/2015
- **TIME**: 2.5 ft. +/-
- **WATER AT CASING AT STABILIZATION TIME**: NA

NOTES:

- 6. Due to lack of rods, spoon only driven 12 inches.

GENERAL NOTES:

- i) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL.
- ii) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG. FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS ARE MADE.
REPORT OF BORING No. B20

BORING Co. New England Boring Contractors
BORING LOCATION See attached plan
FOREMAN Walter Hockele
GROUND SURFACE ELEV. 11 ft. +/-
WSE ENGINEER: Julie A. Eaton, EIT
DATE START 12/11/15
DATE END 12/17/15

SAMPLER: 2 IN. OD SPLIT SPOON SAMPLER (SPT) DRIVEN 24 INCHES
USING A 140 lb. CATHEAD OPERATED SAFETY HAMMER.
CASING: HOLLOW STEM AUGER
CASING SIZE: 2 1/4 IN. INSIDE DIAMETER.

<table>
<thead>
<tr>
<th>DEPTH (feet)</th>
<th>CASING (blows/ft)</th>
<th>SAMPLE</th>
<th>No.</th>
<th>REC/PEN (in)</th>
<th>DEPTH (ft)</th>
<th>BLOWS/6"</th>
<th>SAMPLE DESCRIPTION</th>
<th>NOTES</th>
<th>STRATUM DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-1</td>
<td>18/18</td>
<td>34-35.5</td>
<td>4</td>
<td>Gray, gravelly CLAY, some sand, wet.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GRANULAR SOILS

<table>
<thead>
<tr>
<th>BLOWS/FT</th>
<th>DENSITY</th>
<th>DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>V. LOOSE</td>
<td>0-2 V. SOFT</td>
</tr>
<tr>
<td>4-10</td>
<td>LOOSE</td>
<td>2-4 SOFT</td>
</tr>
<tr>
<td>10-30</td>
<td>M. DENSE</td>
<td>4-8 M. STIFF</td>
</tr>
<tr>
<td>30-50</td>
<td>DENSE</td>
<td>8-15 STIFF</td>
</tr>
<tr>
<td>> 50</td>
<td>V. DENSE</td>
<td>15-30 V. STIFF</td>
</tr>
</tbody>
</table>

COHESIVE SOILS

<table>
<thead>
<tr>
<th>BLOWS/FT</th>
<th>DENSITY</th>
<th>DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. Advance boring through overburden soils to estimate top of till or load bearing soils.
2. Groundwater reading taken after termination.
3. Auger change observed at ~4 ft. (Blue-gray-orange SILTY CLAY cuttings observed)

GENERAL NOTES:
1. THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL.
2. WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG.
 FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS ARE MADE.