GENERAL FIRE PROTECTION CODE INFORMATION

APPLICABLE LIFE SAFETY/BUILDING CODES:
2015 International Building Code (IBC) with New Hampshire Amendments
2015 International Existing Building Code (IEBC) with New Hampshire Amendments
2015 Exception to IBC/IEBC in accordance with New Hampshire Building Code
2015 NFPA 10, National Electrical Code with New Hampshire Amendments
2015 NFPA 112, Fire Protection Code as amended by NFPA 6800

AUTOMATIC SUPPRESSION SYSTEM: Fully Sprinklered

FIRE DETECTION/ALARM SYSTEM: Addressable System

SMOKE PARTITION for NFPA 101 (Section 9.7 Special Hazard Protection) on area having a degree of hazard greater than that specified in the general occupancy shall be provided.

ELECTRICAL CODE SUMMARY

APPLICABLE LIFE SAFETY/BUILDING CODES:
NFPA 70, Article 110.6(E)(5)
Where the equipment rated 800A or more and there is a door less than 2h-45' from the nearest edge of the equipment working space, the door shall open in the direction of egress and have listed panic hardware or listed fire door hardware.
- Applicable at door 120

NFPA 70, Article 708.112 Branch Circuits and Feeder Distribution Equipment
- Equipment for COPS feeder circuits (including transfer equipment, transformers, and panelboards) shall comply with (2) and (2).
- (2) Be located in accordance with a 2-hour fire resistance rating.
- Be located above the 100-year floodplain.
- Applicable at Room 213

COPS = Critical Operations Power Systems

SCALE: 1/8" = 1'-0"
CIVIL LEGEND

- Existing buildings
- Existing chain line fence
- Existing sanitary sewer line (see)
- Existing sanitary sewer line (site)
- Existing underground natural gas line
- Existing overhead utilities
- Existing overhead electric
- Existing underground electric
- Existing underground communications line
- Existing utility pole with guy
- Existing tank basins
- Existing tree
- Existing survey control point
- Existing drain valve
- Existing drain valve
- Existing drainage pipe
- Existing light pole
- Existing spot grade elevation
- Existing line
- Building line
- Exit line
- Chain line (pipe size as noted)
- Underground electric line (conduit size as noted)
- Underground line (pipe size as noted)
- Sampli pavement
- Finish grade contour line
- Finish grade spot elevation
- Catch basin
- Electric manhole
- Sign
- Drainage flow direction

CIVIL NOTES

1. Verify existing conditions and dimensions, and report any discrepancies to the contract administrator. Provide with the work only after the discrepancies have been resolved by the contract administrator.

2. The drilled locations of existing underground utilities are based on records drawings and/or field surveys which are approximate. Obtain the exact location of existing underground utilities prior to beginning work. The contractor will contact "no safe" at 1-888-244-7233 and obtain a "no safe" permit prior to commencing excavation operations on the site.

3. Protect existing systems and surfaces to remain damage resulting from the contractor's operations. Shall be removed before demolition and will be restored at no additional cost to the owner.

4. Provide a minimum of 6" of planting soil, and mulch for disturbed areas not otherwise specified.

5. Provide a pavement surface that is free of low spots and pooling areas.

6. Existing conditions are based on a topographic survey completed by the owner's site surveyor. Survey control points are located at the property boundaries.

7. Horizontal control is based on the new Hampshire state plane coordinate system, NAD 83. Vertical control is based on mean sea level.

8. Ground lines are from face of curb, face of wall, face of building and centerline of markings unless indicated on the drawing.

9. Coordinate associated electrical service work with existing utility services shall be provided in accordance with utility company standards and requirements.

CIVIL ABBREVIATIONS

ASTM: American Society for Testing and Materials
BLOK: Building
CM: Commercial
COPS: Chemical Operations Power System
CRP: Power Pole
D: Diameter
D: Diameter
ELEV: Elevation
EMERGENCY: Emergency
ED: Equal
EG: Each Way
EN: Field
FE: Finish floor elevation
FT: Feet
GA: VACANT
H: Horizontal
HS: New Hampshire Polyethylene
IC: Insulation
KD: Cable tray
KU: Insulation
L: Length
LBS: Pounds
LFT: Linear feet
MAX: Maximum
MIN: Minimum
Ms: Minimum
NAPA: National Pipe and Fitting Association
NHDEP: New Hampshire Department of Environmental Services
NHDOT: New Hampshire Department of Transportation
OCD: Outside Center
OD: Outside Diameter
OSS: Outside Setting Square
PSH: Pounds Per Square Inch
PS: PSL: Polyethylene Schedule
PVC: Polyvinyl Chloride
RAC: Reinforced
REF: Reinforcement
REG: Reinforced Concrete
SF: Square foot
SM: Square meter
SW: Square yards
T: Top of wall
TP: Trench
V: Vertical
W: Width
EROSION AND SEDIMENT CONTROL NOTES

1. During construction and demolition, prepare erosion control measures as outlined in this manual. Erosion control measures shall be installed in accordance with the "New Hampshire Storm Water Management Manual".

2. Erosion control measures shall include the following:
 a. All exposed earth areas
 b. All temporary and permanent structures
 c. All access roads and parking areas
 d. All exposed areas
 e. All exposed areas shall be protected with appropriate erosion control measures
 f. All exposed areas shall be protected with appropriate erosion control measures
 g. All exposed areas shall be protected with appropriate erosion control measures

3. Erosion control measures shall be installed as follows:
 a. All exposed earth areas shall be protected with appropriate erosion control measures
 b. All temporary and permanent structures shall be protected with appropriate erosion control measures
 c. All access roads and parking areas shall be protected with appropriate erosion control measures
 d. All exposed areas shall be protected with appropriate erosion control measures
 e. All exposed areas shall be protected with appropriate erosion control measures
 f. All exposed areas shall be protected with appropriate erosion control measures

4. Erosion control measures shall be maintained as follows:
 a. All exposed earth areas shall be protected with appropriate erosion control measures
 b. All temporary and permanent structures shall be protected with appropriate erosion control measures
 c. All access roads and parking areas shall be protected with appropriate erosion control measures
 d. All exposed areas shall be protected with appropriate erosion control measures
 e. All exposed areas shall be protected with appropriate erosion control measures
 f. All exposed areas shall be protected with appropriate erosion control measures

5. Erosion control measures shall be removed as follows:
 a. All exposed earth areas shall be protected with appropriate erosion control measures
 b. All temporary and permanent structures shall be protected with appropriate erosion control measures
 c. All access roads and parking areas shall be protected with appropriate erosion control measures
 d. All exposed areas shall be protected with appropriate erosion control measures
 e. All exposed areas shall be protected with appropriate erosion control measures
 f. All exposed areas shall be protected with appropriate erosion control measures

6. Erosion control measures shall be maintained as follows:
 a. All exposed earth areas shall be protected with appropriate erosion control measures
 b. All temporary and permanent structures shall be protected with appropriate erosion control measures
 c. All access roads and parking areas shall be protected with appropriate erosion control measures
 d. All exposed areas shall be protected with appropriate erosion control measures
 e. All exposed areas shall be protected with appropriate erosion control measures
 f. All exposed areas shall be protected with appropriate erosion control measures

7. Erosion control measures shall be removed as follows:
 a. All exposed earth areas shall be protected with appropriate erosion control measures
 b. All temporary and permanent structures shall be protected with appropriate erosion control measures
 c. All access roads and parking areas shall be protected with appropriate erosion control measures
 d. All exposed areas shall be protected with appropriate erosion control measures
 e. All exposed areas shall be protected with appropriate erosion control measures
 f. All exposed areas shall be protected with appropriate erosion control measures
1. **Typical Tree Root Ball Pit**

 - **SOIL NOT TO SCALE**

2. **Tree Root Ball Pit on Slope**

 - **SOIL NOT TO SCALE**

3. **Tree Staking and Guying**

 - **SOIL NOT TO SCALE**

4. **Trench Edge - Section**

 - **SOIL NOT TO SCALE**

Excavation Procedure

Excavate circular planting pit 3X the diameter of root ball with sides sloping inward at 2:1. Fill excavations with water and allow to percolate. Notify Property Owner Representative of unexpected water seepage or retention of water.

- Set tree with root ball 3" above surrounding finished grade. Do not break root ball during burial. Strip wire cage and other materials from top 1/4 of root ball. Cover wire cage and other materials with transparent or landscape fabric and 6" of soil.
- Water thoroughly when one-half of planting pit is filled. Place tree to grade. One-half of root ball within planting pit within 1 foot of grade. Water thoroughly. Construct trench edge and mulch as specified. Do not place mulch within 3 inches of trunk. Stabilize tree as specified.

Trench Edge Details

- Trench edge detail shall be used at all. Lends edges & at edges of mulched areas (for convenience).
- Excavation grade or grade of planting area.
- Trench edge shall create a clean separation between areas and shall create smooth, even lines (as notated on the plans).
GENERAL FOUNDATION NOTES

1. **ALL WORK MUST CONFORM TO THE REQUIREMENTS OF THE INTERNATIONAL BUILDING CODE (2018 RICE) AND OTHER CODES HAVING JURISDICTION.**

2. **It is understood by all that the geotechnical analysis and corresponding structural, dynamic analysis necessary to reduce possible vibration effects caused by the generator is not completed in the scope of services for the generator foundation. Any additional work performed on foundation guidelines from reputable sources such as those furnished by Capstone as provided by SPA. See Design Assumptions/Drawings for further description.**

DESIGN PARAMETERS

Generator Parameters shown are approximate, contractee to assume these values may be adjusted by user.

1. **Total Weight of Generator: 20,000 lbs.** The total design includes all other generator components and building but not limited to:
 - A. Permanent support frame and lift beams
 - B. Access stairways
 - C. All walkways / doors
 - D. 1000 gallon main with pump station (not shop drawing)
 - E. Stairway attachments.

2. **Generator Reel Category: IV (2018 RICE/ASME 1995.3).**

3. **Generator Enclosure Dimensions:**
 - A. LENGTH = 15'-0" - 20'-0"
 - B. WIDTH = 12'-0" - 14'-0"
 - C. HEIGHT = 13'-0" - 16'-0"

4. **Seismic Parameters:**
 - A. SB001 1.0 Site Class D
 - B. If X = 0,500
 - C. Spectral Response Coefficients (CFS):
 - 1.0 = 0.58
 - 1.5 = 0.70

5. **Seismic Design Category:**
 - A. 1.0 = 0.58 Coefficients (CFS) for non-linear structures not similar to building.**

FOUNDATIONS

Generator shall be fully detailed per drawings and design by the design engineer licensed in the state of NH or an engineer of record, excluding but not limited to: delays or defects in the building.

1. **All footing excavations are to be reviewed by hand.** All finished excavation backfilled is approved by the project manager before any concrete is placed.

2. **Grout-free structural fill below mat foundation shall conform to the following gradient:

 Grout-free structural fill below mat foundation shall conform to the following gradient:

<table>
<thead>
<tr>
<th>Height (in)</th>
<th>Max. Grout-free Fill (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. **Structural fill below and within 2'-0" of mat foundation perimeter shall be compacted in 6" lifts until grade level is reached. Foundation fill shall be compacted in accordance with ASTM D1557.**

4. **Contractor shall provide continuous drainage by mechanical means to control surface and surrounding water at required levels.**

5. **Contractor shall take necessary precautions to avoid disturbing existing utility lines which may exist below grade.**

6. **Foundation shall not bear on bedrock.**

7. **No foundations shall be placed in water or on frozen ground.**

ELECTRICAL RENOVATIONS

1 Junkins Avenue

ELECTRICAL RENOVATIONS

1 Junkins Avenue

Scale:

Date:

Dwg.:

Sheet:
CITY OF PORTSMOUTH

DESIGNED BY:

DRAWN BY:

CHECKED BY:

PROJECT:

1 Junkins Avenue
Portsmouth, NH 03801

ELECTRICAL RENOVATIONS
1 Junkins Avenue

SCALE:
AS NOTED

DATE:
06/24/2020

DWG.:

SHEET:
33

OF
85 Middle Street, Portsmouth, NH 03801 (T) 603.431.4849 (F) 603.431.1870

CITY HALL

DAP
TDP
DAP

GENERATOR FOUNDATION NOTES

SB002

SHEET:16

of 85

ND

 Generator Foundation Notes

The structural design of the generator foundation is based on the following assumptions. Please review the structural engineer's report in order to ensure that these assumptions are correct. It is assumed that the generator is subject to a balanced load of 25 New Steel columns at each corner of the generator with a span of 33 each.
<table>
<thead>
<tr>
<th>DESIGNATION</th>
<th>DESCRIPTION</th>
<th>AMP/VOLTAGE</th>
<th>AK</th>
<th>BAGS OF DESIGN</th>
<th>LEVEL NAME FIELD</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATP-01</td>
<td>AUTOMATIC TRANSFER SWITCH WITH SUPPLIED ISOLATION AND CLOSED TRANSITION ELECTRICALLY, MECHANICALLY FIELD</td>
<td>200A/3P</td>
<td>SOLID</td>
<td>CONFIRM VIA SHORT CIRCUIT STAY</td>
<td>ATP-01 (FLUIDS)</td>
<td>PROVIDE IN SECTIONS FOR FIELD ASSEMBLY, AS REQUIRED TO WASH AND POSITION.</td>
</tr>
<tr>
<td>ATP-04</td>
<td>AUTOMATIC TRANSFER SWITCH WITH SUPPLIED ISOLATION AND CLOSED TRANSITION ELECTRICALLY, MECHANICALLY FIELD</td>
<td>400A/3P</td>
<td>SOLID</td>
<td>CONFIRM VIA SHORT CIRCUIT STAY</td>
<td>ATP-04 (RED)</td>
<td>SEISMIC IMPORTANCE FACTOR P=1.5</td>
</tr>
<tr>
<td>ATP-CUPS</td>
<td>AUTOMATIC TRANSFER SWITCH WITH SUPPLIED ISOLATION AND CLOSED TRANSITION ELECTRICALLY, MECHANICALLY FIELD</td>
<td>400A/3P</td>
<td>SOLID</td>
<td>CONFIRM VIA SHORT CIRCUIT STAY</td>
<td>ATP-CUPS (BLUE)</td>
<td>SEISMIC IMPORTANCE FACTOR P=1.5</td>
</tr>
<tr>
<td>HTS-NN</td>
<td>MANUAL TRANSFER SWITCH 380KVA STEEL 35X45X50MM 120/240V</td>
<td>120/240V</td>
<td>60S</td>
<td>CONFIRM VIA SHORT CIRCUIT STAY</td>
<td>HTS-NN (RED)</td>
<td>SEISMIC IMPORTANCE FACTOR P=1.5</td>
</tr>
<tr>
<td>HTS-CUPS</td>
<td>MANUAL TRANSFER SWITCH 380KVA STEEL 35X45X50MM 120/240V</td>
<td>120/240V</td>
<td>60S5</td>
<td>CONFIRM VIA SHORT CIRCUIT STAY</td>
<td>HTS-CUPS (RED)</td>
<td>SEISMIC IMPORTANCE FACTOR P=1.5</td>
</tr>
<tr>
<td>OSW-NN</td>
<td>RECESSED SERVICE ENTRANCE SERVICE ENTRANCE FIRE</td>
<td>300A PHASE</td>
<td>120/240V</td>
<td>CONFIRM VIA SHORT CIRCUIT STAY</td>
<td>OSW-NN (BLACK)</td>
<td>SMALL ENTRANCE FIRE</td>
</tr>
<tr>
<td>PSSW</td>
<td>NON-FIXED DISCONNECT SWITCH NEW 100KVA STEEL</td>
<td>300A/3P</td>
<td>SOLID</td>
<td>CONFIRM VIA SHORT CIRCUIT STAY</td>
<td>PSSW (BLACK)</td>
<td>ABILITY TO BE LOCKED IN THE OPEN AND CLOSED POSITIONS. SEISMIC IMPORTANCE FACTOR P=1.5</td>
</tr>
<tr>
<td>EMD</td>
<td>ENCLOSED CIRCUIT BREAKER SERVICE ENTRANCE RATED</td>
<td>400A/3P</td>
<td>SOLID</td>
<td>CONFIRM VIA SHORT CIRCUIT STAY</td>
<td>EMD (RED)</td>
<td>SEISMIC IMPORTANCE FACTOR P=1.5</td>
</tr>
<tr>
<td>EDD</td>
<td>NON-FIXED DISCONNECT SWITCH NEW 100KVA STEEL</td>
<td>400A/3P</td>
<td>SOLID</td>
<td>CONFIRM VIA SHORT CIRCUIT STAY</td>
<td>EDD (RED)</td>
<td>ABILITY TO BE LOCKED IN THE OPEN AND CLOSED POSITIONS. SEISMIC IMPORTANCE FACTOR P=1.5</td>
</tr>
<tr>
<td>GMD</td>
<td>ENCLOSED CIRCUIT BREAKER SERVICE ENTRANCE RATED</td>
<td>400A/3P</td>
<td>SOLID</td>
<td>CONFIRM VIA SHORT CIRCUIT STAY</td>
<td>GMD (RED)</td>
<td>SEISMIC IMPORTANCE FACTOR P=1.5</td>
</tr>
<tr>
<td>GDD</td>
<td>NON-FIXED DISCONNECT SWITCH NEW 100KVA STEEL</td>
<td>400A/3P</td>
<td>SOLID</td>
<td>CONFIRM VIA SHORT CIRCUIT STAY</td>
<td>GDD (RED)</td>
<td>ABILITY TO BE LOCKED IN THE OPEN AND CLOSED POSITIONS. SEISMIC IMPORTANCE FACTOR P=1.5</td>
</tr>
<tr>
<td>DSL</td>
<td>WATER INJECTION ROOM, STEEL, WATER PROOF, STEEL</td>
<td>500KVA</td>
<td>3A, 4K</td>
<td>CONFIRM VIA SHORT CIRCUIT STAY</td>
<td>DSL (RED)</td>
<td>SEISMIC IMPORTANCE FACTOR P=1.5</td>
</tr>
<tr>
<td>EOD</td>
<td>PORTABLE GENERATOR</td>
<td>500KVA</td>
<td>3A, 4K</td>
<td>CONFIRM VIA SHORT CIRCUIT STAY</td>
<td>EOD (RED)</td>
<td>ABILITY TO BE LOCKED IN THE OPEN AND CLOSED POSITIONS. SEISMIC IMPORTANCE FACTOR P=1.5</td>
</tr>
<tr>
<td>EOD</td>
<td>PORTABLE GENERATOR</td>
<td>500KVA</td>
<td>3A, 4K</td>
<td>CONFIRM VIA SHORT CIRCUIT STAY</td>
<td>EOD (RED)</td>
<td>ABILITY TO BE LOCKED IN THE OPEN AND CLOSED POSITIONS. SEISMIC IMPORTANCE FACTOR P=1.5</td>
</tr>
<tr>
<td>EOD</td>
<td>PORTABLE GENERATOR</td>
<td>500KVA</td>
<td>3A, 4K</td>
<td>CONFIRM VIA SHORT CIRCUIT STAY</td>
<td>EOD (RED)</td>
<td>ABILITY TO BE LOCKED IN THE OPEN AND CLOSED POSITIONS. SEISMIC IMPORTANCE FACTOR P=1.5</td>
</tr>
</tbody>
</table>

DRAWING NOTES FOR SHEET EPS01
1. SPICE AND EXISTING BRANCH CIRCUITS AND FEEDERS TO NEW PANELBOARDS/PHASEBOARDS AS REQUIRED. FIELD INSTALL AND WASH EXISTING CONDUCTOR AND CONDUIT SECTIONS. FIELD INSTALL AND WASH NEW FEEDERS.
2. REFER TO SHEET EPS05 FOR LABELING SCHEDULE AND EQUIPMENT SCHEDULE.
3. ELECTRICAL EQUIPMENT SHALL BE RATED FOR OPERATIONAL UNTIL REPLACEMENT/EQUIPMENT INSTALLATION IS COMPLETED. OPERATIONAL RATING AND INSTALLATION.
4. REFER TO SHEET EPS05 FOR GUIDELINES FOR SITE PLAN AND EQUIPMENT LOCATIONS.
5. ELECTRICAL SERVICE CONFORM TO EXISTING PLANNING INFORMATION AND REQUIREMENTS FOR ELECTRIC SUPPLY.
6. PERFORM SHORT CIRCUIT CURRENT STUDY, COORDINATION STUDY AND CIRCUIT BREAKER STUDY FOR EQUIPMENT SHOWN IN THE DRAWING. COORDINATION FOR EXISTING EQUIPMENT AND BESI FOR FUTURE INSTALLATIONS. SHORT CIRCUIT CURRENT STUDIES SHALL BE PROVIDED.
7. ADJUST CIRCUIT BREAKER BREAKOUTS IN ACCORDANCE WITH THE COORDINATION STUDY RESULTS. COORDINATION BREAKOUTS SHALL BE PROVIDED. CIRCUIT BREAKER BREAKOUTS SHOULD BE PROVIDED.
8. PROVIDE CIRCUIT BREAKER BREAKOUTS AND CIRCUIT BREAKER BREAKOUTS IN ACCORDANCE WITH THE COORDINATION STUDY RESULTS.
9. PROVIDE SHORTS SERVICE ENTRANCE EQUIPMENT BREAKOUTS TO SHORT CIRCUIT CURRENT STUDY OF ENSURING ELECTRICAL POWER SOURCES.
10. PROVIDE SHORT CIRCUIT CURRENT STUDY OF ENSURING ELECTRICAL POWER SOURCES.
11. PROVIDE SHORT CIRCUIT CURRENT STUDY OF ENSURING ELECTRICAL POWER SOURCES.
12. PROVIDE SHORT CIRCUIT CURRENT STUDY OF ENSURING ELECTRICAL POWER SOURCES.
13. PROVIDE SPARE CONTACTS AS INDICATED ON SHEET.

DRAWING KEYS FOR SHEET EPS01
- PROVIDE SHORT CIRCUIT CURRENT STUDY OF ENSURING ELECTRICAL POWER SOURCES.
- PROVIDE SHORT CIRCUIT CURRENT STUDY OF ENSURING ELECTRICAL POWER SOURCES.
- PROVIDE SHORT CIRCUIT CURRENT STUDY OF ENSURING ELECTRICAL POWER SOURCES.
- PROVIDE SHORT CIRCUIT CURRENT STUDY OF ENSURING ELECTRICAL POWER SOURCES.
- PROVIDE SHORT CIRCUIT CURRENT STUDY OF ENSURING ELECTRICAL POWER SOURCES.
- PROVIDE SHORT CIRCUIT CURRENT STUDY OF ENSURING ELECTRICAL POWER SOURCES.
- PROVIDE SHORT CIRCUIT CURRENT STUDY OF ENSURING ELECTRICAL POWER SOURCES.
- PROVIDE SHORT CIRCUIT CURRENT STUDY OF ENSURING ELECTRICAL POWER SOURCES.
- PROVIDE SHORT CIRCUIT CURRENT STUDY OF ENSURING ELECTRICAL POWER SOURCES.
- PROVIDE SHORT CIRCUIT CURRENT STUDY OF ENSURING ELECTRICAL POWER SOURCES.
- PROVIDE SHORT CIRCUIT CURRENT STUDY OF ENSURING ELECTRICAL POWER SOURCES.
- PROVIDE SHORT CIRCUIT CURRENT STUDY OF ENSURING ELECTRICAL POWER SOURCES.
- PROVIDE SHORT CIRCUIT CURRENT STUDY OF ENSURING ELECTRICAL POWER SOURCES.
- PROVIDE SHORT CIRCUIT CURRENT STUDY OF ENSURING ELECTRICAL POWER SOURCES.
Panelboard Schedule LBA (Optional Standby)

| No | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
| |

- **Load**
- **CT Type**
- **Load**
- **Description**
- **Amps Per Phase**

Panelboard Schedule LBAE (Emergency)

| No | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
| |

- **Load**
- **CT Type**
- **Load**
- **Description**
- **Amps Per Phase**

Panelboard Schedule MDN (Optional Standby)

| No | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
| |

- **Load**
- **CT Type**
- **Load**
- **Description**
- **Amps Per Phase**

Electric Service Grounding Details

1. Comply with NEC, specifically 250.54, 250.41, and 250.64(A).
2. Provide thermal fused or corrosion-resistant compression connectors.
3. Minimum conductor size shall be #10, copper unless otherwise noted.
4. Ground rod clamp to be UL listed, suitable for direct burial, thermal help.
5. Field verify and document existing grounding connections.
6. Extend existing grounding connections to new service equipment.
7. Existing grounding connection at location of portable generator connection leave 6" of rod exposed.

Dedicated to Scale

Drawing Keynotes

- Extends and connects existing branch circuits to replacement panelboard.
- Field verify circuits, circuit breaker ratings, and loads served.
- Update panelboard switchboard as required.
- New circuit added to replacement panelboard.
- Field verify circuit breaker size.