

Civil Site Planning Environmental Engineering

133 Court Street Portsmouth, NH 03801-4413

August 23, 2021

Juliet T. H. Walker, Planning Director City of Portsmouth Municipal Complex 1 Junkins Avenue Portsmouth, New Hampshire 03801

Re: Application for Site Plan Review

"Monarch Village" Assessor's Map 297, Lot 6 3548 Lafayette Road Altus Project No. 5161

Dear Juliet,

On behalf of the Applicant, Monarch Village, LLC, Altus Engineering, Inc. respectfully submits an application for the redevelopment of the Wren's Nest Motel located at 3548 Lafayette Road. This project entails the construction of two new apartment buildings and the repurposing of existing structures into seventy-five residential apartments together with and associated accessories, utilities and drainage infrastructure.

This project also requires a Conditional Use Permit under Zoning Section 10.5B40 to allow a General Residential Development in the Gateway 1 District.

Please call me if you have any questions or need any additional information.

Sincerely,

ALTUS ENGINEERING, INC.

Erik B. Saari Vice President

ebs/5161-APP-PB-CovLtr-082321

Enclosures

eCopy: Norman Lee

Chris LaRocca Shawn Farrell John Krebs

Tel: (603) 433-2335 E-mail: Altus@altus-eng.com

"Green" Statement Assessor's Map 297 Lot 6 Monarch Village 3548 Lafayette Road Altus Project 5107

Pursuant to Section 2.5.3.1(a) of the Site Plan Review Regulations, Altus Engineering, Inc. respectfully submits the following list of the project's "green" components for the redevelopment of the Wren's Nest Motel proposed for 3548 Lafayette Road:

- All new and rehabilitated buildings will meet or exceed all applicable current energy codes.
- New site lighting will be energy efficient, dark-sky compliant LED fixtures.
- Stormwater will be directed to infiltration-based and closed drainage systems to provide appropriate treatment.
- Mini-split AC units will be used in all units to provide energy efficient cooling.
- The redevelopment proposes to reuse existing buildings to the greatest extent possible rather than demolish them.
- Mass transit in the form of the COAST bus network is located a short walk from the site.

Civil
Site Planning
Environmental
Engineering

Civil
133 Court Street
Portsmouth, NH
(603) 433-2335

"Monarch Village" 3548 Lafayette Road Portsmouth, NH Engineer's Opinion of Cost

(August 23, 2021 Plan Set)

PROJECT: 5161

Est. Qty	Unit	ITEM DESCRIPTION &	Total		
1	LS	Site Demolition	\$ 30,000.00	\$	30,000.00
1	LS	Clearing, Grubbing and Loam Stripping	\$ 5,000.00	\$	5,000.00
106	TON	Hot Bituminous Pavement	\$ 90.00	\$	9,540.00
945	SY	Concrete Sidewalk and Pads (incl. subgrade)	\$ 70.00	\$	66,150.00
1,082	CY	Gravel (NHDOT 304.2)	\$ 23.00	\$	24,886.00
541	CY	Crushed Gravel (NHDOT 304.3)	\$ 29.00	\$	15,689.00
3	CY	Riprap	\$ 25.00	\$	75.00
382	LF	6" PE Underdrain	\$ 25.00	\$	9,550.00
16	LF	6" & 8" PE Pipe (smooth interior)	\$ 30.00	\$	480.00
471	LF	12" PE Pipe (smooth interior)	\$ 40.00	\$	18,840.00
328	LF	15" PE Pipe (smooth interior)	\$ 50.00	\$	16,400.00
14	EA	4ft Dia. Catch Basin	\$ 2,500.00	\$	35,000.00
3	EA	Special Catch Basins (Leaching Drain Manhole)	\$ 3,000.00	\$	9,000.00
1	EA	Outlet Structure	\$ 2,000.00	\$	2,000.00
2	EA	Sewer Manhole	\$ 2,500.00	\$	5,000.00
5	EA	Manhole Cover and Frame	\$ 700.00	\$	3,500.00
4	EA	Bollards	\$ 200.00	\$	800.00
2	EA	Detectable Warning Devices, Cast Iron	\$ 700.00	\$	1,400.00
1,151	LF	Vertical Granite Curb	\$ 55.00	\$	63,305.00
430	LF	Sloped Granite Curb	\$ 50.00	\$	21,500.00
404	LF	6" SDR 35 Sewer Pipe	\$ 45.00	\$	18,180.00
544	LF	8" SDR 35 Sewer Pipe	\$ 55.00	\$	29,920.00
230	LF	Domestic Water Service	\$ 20.00	\$	4,600.00
538	LF	4" D.I. Water Pipe	\$ 50.00	\$	26,900.00
96	LF	6" D.I. Water Pipe	\$ 60.00	\$	5,760.00
574	LF	8" D.I. Water Pipe	\$ 70.00	\$	40,180.00
1	EA	Hydrant Assembly	\$ 4,000.00	\$	4,000.00
931	LF	SCH 40 Conduit (x4 per trench, incl. trenching and backfill)	\$ 40.00	\$	37,240.00
6	EA	Traffic Sign Type C	\$ 50.00	\$	300.00
33	LF	Wood Beam Guardrail	\$ 30.00	\$	990.00
16	EA	Concrete Base and Light Pole	\$ 3,000.00	\$	48,000.00
1	LS	Pavemnt Striping	\$ 1,000.00	\$	1,000.00
1	LS	Misc. Temp. Erosion and Sediment Control	\$ 3,000.00	\$	3,000.00
1	LS	Planted Landscape	\$ 15,000.00	\$	15,000.00

**SUBTOTAL: \$ 573,185.00

** Exclusions:

Ledge Removal, Hazardous Waste Remediation, , Traffic Control, Offsite Work, Site Construction Monitoring and

Existing Conditions – Building 1

Existing Conditions – Building 1

Existing Conditions – Building 2

Existing Conditions – Building 2

Existing Conditions – Building

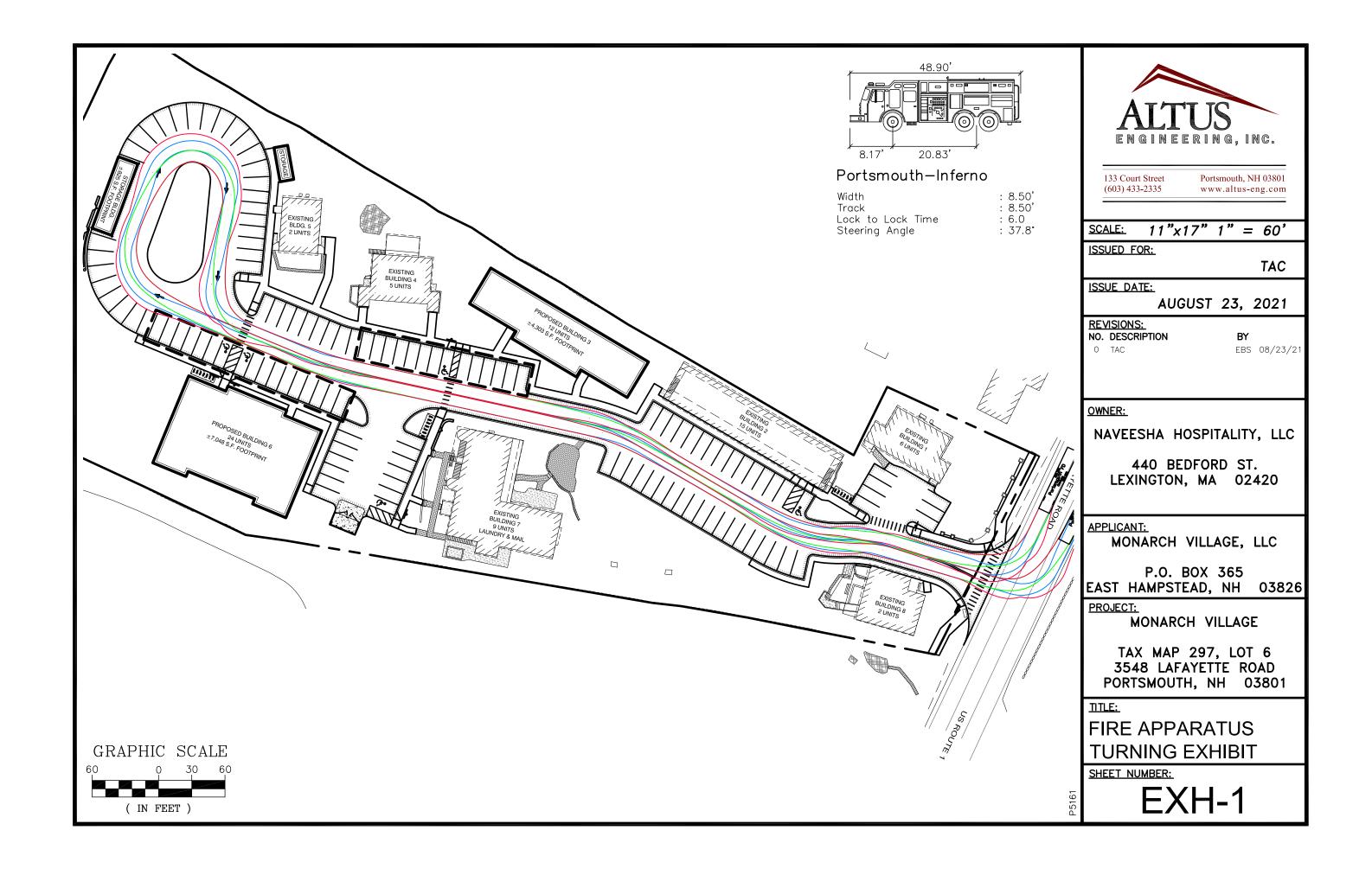
Existing Conditions – Building 4

Existing Conditions – Buildings 4 and 5 $\,$

Existing Conditions – Building 5

Existing Conditions – Building 5

Existing Conditions – Building 7


Existing Conditions – Building 8

Existing Conditions – Building 8

Existing Conditions – Cottages (to be removed)

DRAINAGE ANALYSIS

FOR

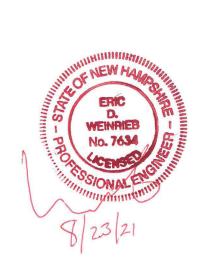
Site Redevelopment of "Monarch Village"

3548 Lafayette Road Portsmouth, NH

Tax Map 297, Lot 6

August 23, 2021

Prepared For:


Monarch Village, LLC P.O. Box 365 East Hampstead, NH 03826

Prepared By:

ALTUS ENGINEERING, INC.

133 Court Street Portsmouth, NH 03801 Phone: (603) 433-2335

Table of Contents

Section 1 Narrative

Project Description Site Overview

Site Soils

Proposed Site Design Calculation Methods

Disclaimer

Drainage Analysis

Conclusions

Section 2 Aerial Photo and USGS Map

Section 3 Drainage Analysis, Pre-Development

Section 4 Drainage Analysis, Post-Development

Section 5 NRCC Extreme Precipitation Table (Rainfall Data)

Section 6 NRCS Soils Report

Section 7 Stormwater Operations and Maintenance Plan

Section 8 Watershed Plans

Pre-Development Watershed Plan Post-Development Watershed Plan

Section 1

Narrative

PROJECT DESCRIPTION

Monarch Village, LLC is proposing to redevelop the existing Wren's Nest Motel located at 3548 Lafayette Road in Portsmouth, NH. The property is identified as Assessor's Map 297, Lot 6, is approximately 3.74 acres in size and is located in the City's Gateway 1 (G1) district. The site currently hosts number of buildings used for motel rooms, a restaurant, indoor pool, private loop roadway and parking areas surrounded by a lawn areas with a section of woodland located at the rear of the site.

The proposed project will raze a few of the smaller buildings, construct an two new buildings and repurpose the remaining structures for a total of seventy five residential apartments together with associated accessways and parking.

Runoff from the development will be directed to two separate closed drainage systems to provide stormwater mitigation. The stormwater management system proposed for the site will reduce peak flows and treat site runoff prior to discharging offsite.

Site Soils

The NRCS indicates that the subject property consists of several primary soil classifications:

26B – Windsor loamy sand, HSG A

699 – Urban-Land-Canton complex, HSG B

Pre-Development (Existing Conditions)

The pre-development site conditions reflect the existing conditions of the site, which include the existing buildings and private roadway. The current site is equipped with what appears to be a homemade drainage system that discharges to the east and southeast to a culvert the crosses US Route 1 identified as Point of Analysis #1 (POA #1) and to woodland to the west (POA #2). The Pre-Development analysis models the existing site conditions for the point of analysis.

The grades and elevations shown on the plans are based on the site survey completed by James Verra and Associates, Inc. and included in the plan set. The study pre-development area was analyzed as several subcatchments directed to the existing drainage structures.

Post-Development (Proposed Site Design)

Several of the existing buildings will be razed and new buildings with associated site improvements will be constructed. These include a new stormwater system as depicted on the attached Post-Development Watershed Plan. The same points of analysis used in the Pre-Development model (POA #'s 1 and 2) were used for comparison of the Pre and Post development conditions.

The Post-Development Watershed Plan illustrates the proposed stormwater management system. Site topography, existing features, proposed site improvements, proposed grading, drainage and erosion control measures are shown on the accompanying plans. Recommended erosion control measures are based upon the December 2008 edition of the "New Hampshire Stormwater Manual Volumes 1 through 3" prepared by NHDES and Comprehensive Environmental, Inc. as amended.

CALCULATION METHODS

The drainage study was completed using the USDA SCS TR-20 Method within the HydroCAD Stormwater Modeling System. Reservoir routing was performed with the Dynamic Storage Indication method with automated calculation of tailwater conditions. A Type III 24-hour rainfall distribution was utilized in analyzing the data for the 2, 10, 25 and 50 year - 24-hour storm events using rainfall data provided by the Northeast Regional Climate Center (NRCC). As the project site lies within a Coastal and Great Bay Community identified by NHDES Alteration of Terrain, all rainfall amounts were increased by 15% to account for potential future increases in rainfall due to climate change.

Disclaimer

Altus Engineering, Inc. notes that stormwater modeling is limited in its capacity to precisely predict peak rates of runoff and flood elevations. Results should not be considered to represent actual storm events due to the number of variables and assumptions involved in the modeling effort. Surface roughness coefficients (n), entrance loss coefficients (ke), velocity factors (kv) and times of concentration (Tc) are based on subjective field observations and engineering judgment using available data. For design purposes, curve numbers (Cn) describe the average conditions. However, curve numbers will vary from storm to storm depending on the antecedent runoff conditions (ARC) including saturation and frozen ground. Also, higher water elevations than predicted by modeling could occur if drainage channels, closed drain systems or culverts are not maintained and/or become blocked by debris before and/or during a storm event as this will impact flow capacity of the structures. Structures should be re-evaluated if future changes occur within relevant drainage areas in order to assess any required design modifications.

Drainage Analysis

A complete summary of the drainage model is included in the appendix of this report. The following table compares pre- and post-development peak rates at the Point of Analysis identified on the plans for the 2, 10, 25, and 50-year storm events:

Stormwater Modeling Summary
Peak Q (cfs) for Type III 24-Hour Storm Events

*Rainfall Intensities Reflect	2-Yr Storm	10-Yr Storm	25-Yr Storm	50-Yr Storm
15% Increase per AoT	(3.69 inch)	(5.60 inch)	(7.10 inch)	(8.50 inch)
POA #1				
Pre	3.00	5.79	8.08	9.99
Post	2.53	4.73	6.52	8.01
Change	-0.29	-0.44	-0.72	-0.98
POA #2				
Pre	1.42	2.96	4.55	6.17
Post	0.00	0.01	2.00	4.75
Change	-1.42	-2.95	-2.55	-1.42

As the above table demonstrates, the proposed peak rates of runoff will be decreased from the existing conditions for all analyzed storm events.

CONCLUSION


This proposed site redevelopment of the Wren's Nest Motel off of Lafayette Road in Portsmouth, NH will have minimal adverse effect on abutting properties and infrastructure as a result of stormwater runoff or siltation. Post-construction peak rates of runoff from the site will be lower than the existing conditions for all analyzed storm events. The new stormwater management system will also provide appropriate treatment of runoff from the entirety of the proposed impervious area. Appropriate steps will be taken to properly mitigate erosion and sedimentation through the use of temporary and permanent Best Management Practices for sediment and erosion control, including deep sump catch basins with grease hoods and infiltration-based practices.

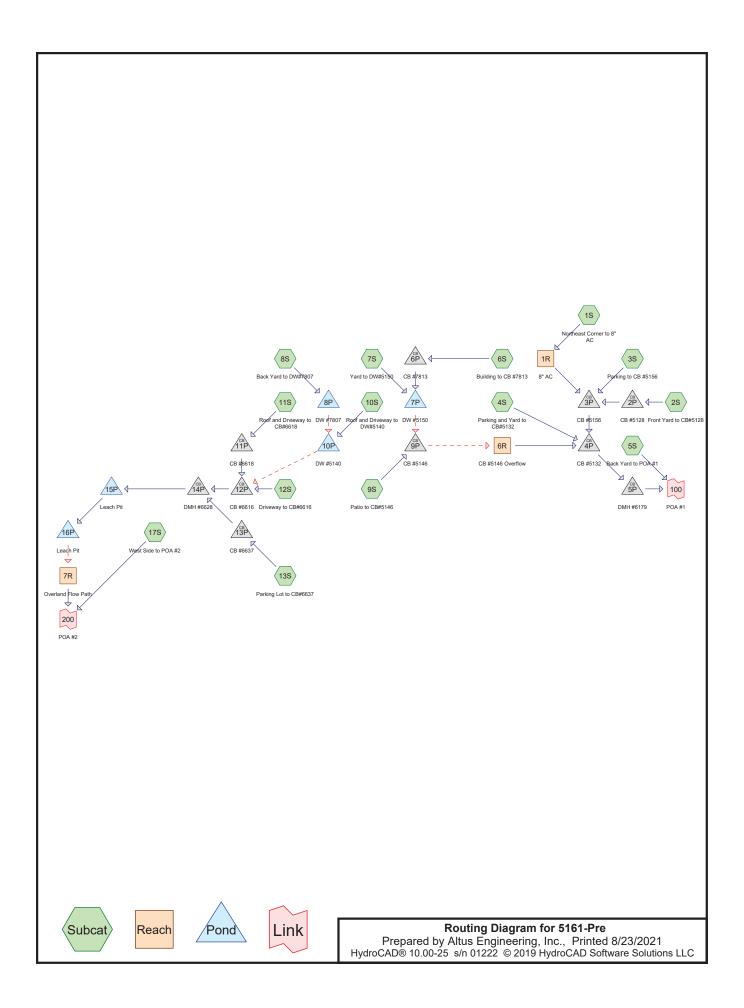
Section 2

Aerial Photo and USGS Map

Section 3

Drainage Calculations

Pre-Development


2-Year, 24-Hour Summary

10-Year, 24-Hour Complete

25-Year, 24-Hour Summary

50-Year, 24-Hour Summary

HydroCAD® 10.00-25 s/n 01222 © 2019 HydroCAD Software Solutions LLC

Time span=0.00-36.00 hrs, dt=0.05 hrs, 721 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1S: Northeast Corner to 8" Runoff Area=12,217 sf 28.05% Impervious Runoff Depth=1.13" Flow Length=199' Tc=6.0 min CN=70 Runoff=0.34 cfs 0.026 af

Subcatchment 2S: Front Yard to CB#5128 Runoff Area=8,717 sf 62.34% Impervious Runoff Depth=2.10" Flow Length=152' Tc=6.0 min CN=84 Runoff=0.48 cfs 0.035 af

Subcatchment3S: Parking to CB #5156 Runoff Area=4,667 sf 88.88% Impervious Runoff Depth=3.02" Flow Length=71' Slope=0.0183 '/' Tc=6.0 min CN=94 Runoff=0.35 cfs 0.027 af

Subcatchment 4S: Parking and Yard toRunoff Area=28,462 sf 48.73% Impervious Runoff Depth=1.71"
Flow Length=199' Tc=6.0 min CN=79 Runoff=1.28 cfs 0.093 af

Subcatchment 5S: Back Yard to POA #1 Runoff Area=3,901 sf 71.11% Impervious Runoff Depth=2.35" Flow Length=80' Tc=6.0 min CN=87 Runoff=0.24 cfs 0.018 af

Subcatchment 6S: Building to CB #7813 Runoff Area=3,002 sf 59.56% Impervious Runoff Depth=1.44" Flow Length=44' Tc=6.0 min CN=75 Runoff=0.11 cfs 0.008 af

Subcatchment 7S: Yard to DW#5150

Runoff Area=2,885 sf 38.51% Impervious Runoff Depth=0.80"
Flow Length=58' Tc=6.0 min CN=64 Runoff=0.05 cfs 0.004 af

Subcatchment 8S: Back Yard to DW#7807 Runoff Area=13,543 sf 26.09% Impervious Runoff Depth=0.49" Flow Length=71' Tc=6.0 min CN=57 Runoff=0.10 cfs 0.013 af

Subcatchment 9S: Patio to CB#5146 Runoff Area=3,939 sf 48.26% Impervious Runoff Depth=1.71" Flow Length=73' Slope=0.0150 '/' Tc=6.0 min CN=79 Runoff=0.18 cfs 0.013 af

Subcatchment 10S: Roof and Driveway to Runoff Area=3,331 sf 82.92% Impervious Runoff Depth=2.82" Flow Length=48' Tc=6.0 min CN=92 Runoff=0.24 cfs 0.018 af

Subcatchment 11S: Roof and Drvieway to Runoff Area=3,598 sf 85.52% Impervious Runoff Depth=2.82" Flow Length=68' Slope=0.0100 '/' Tc=6.0 min CN=92 Runoff=0.26 cfs 0.019 af

Subcatchment 12S: Driveway to CB#6616 Runoff Area=3,965 sf 51.63% Impervious Runoff Depth=1.79" Flow Length=90' Tc=6.0 min CN=80 Runoff=0.19 cfs 0.014 af

Subcatchment 13S: Parking Lot to

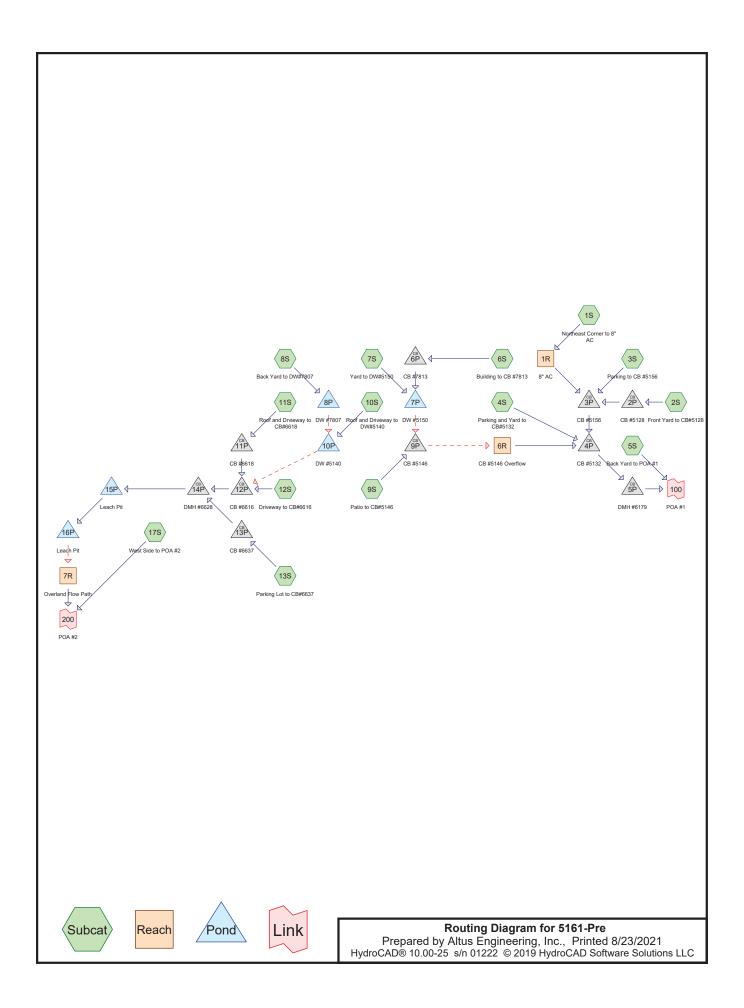
Runoff Area=23,260 sf 52.04% Impervious Runoff Depth=1.44"

Tc=0.0 min CN=75 Runoff=1.01 cfs 0.064 af

Subcatchment 17S: West Side to POA #2 Runoff Area=61,787 sf 21.51% Impervious Runoff Depth=0.16" Flow Length=383' Tc=10.3 min CN=47 Runoff=0.05 cfs 0.019 af

Reach 1R: 8" ACAvg. Flow Depth=0.23' Max Vel=3.16 fps Inflow=0.34 cfs 0.026 af 8.0" Round Pipe n=0.012 L=45.0' S=0.0100'/ Capacity=1.31 cfs Outflow=0.34 cfs 0.026 af

Reach 6R: CB #5146 OverflowAvg. Flow Depth=0.04' Max Vel=1.21 fps Inflow=0.34 cfs 0.025 af n=0.013 L=198.0' S=0.0102'/' Capacity=58.25 cfs Outflow=0.31 cfs 0.025 af


Primary=1.42 cfs 0.109 af

HydroCAD® 10.00-25 s/n 01222 © 2019 HydroCAD Software Solutions LLC

Avg. Flow Depth=0.13' Max Vel=0.87 fps Inflow=1.47 cfs 0.090 af Reach 7R: Overland Flow Path n=0.035 L=107.0' S=0.0091'/' Capacity=104.18 cfs Outflow=1.42 cfs 0.090 af Pond 2P: CB #5128 Peak Elev=51.22' Inflow=0.48 cfs 0.035 af Outflow=0.48 cfs 0.035 af Pond 3P: CB #5156 Peak Elev=51.05' Inflow=1.17 cfs 0.088 af Outflow=1.17 cfs 0.088 af Pond 4P: CB #5132 Peak Elev=50.37' Inflow=2.76 cfs 0.207 af Outflow=2.76 cfs 0.207 af Peak Elev=50.11' Inflow=2.76 cfs 0.207 af Pond 5P: DMH #6179 Outflow=2.76 cfs 0.207 af Pond 6P: CB #7813 Peak Elev=52.48' Inflow=0.11 cfs 0.008 af Outflow=0.11 cfs 0.008 af Pond 7P: DW #5150 Peak Elev=52.39' Storage=11 cf Inflow=0.16 cfs 0.013 af Discarded=0.00 cfs 0.000 af Secondary=0.16 cfs 0.012 af Outflow=0.16 cfs 0.012 af Pond 8P: DW #7807 Peak Elev=52.22' Storage=11 cf Inflow=0.10 cfs 0.013 af Discarded=0.12 cfs 0.013 af Secondary=0.00 cfs 0.000 af Outflow=0.12 cfs 0.013 af Pond 9P: CB #5146 Peak Elev=52.39' Inflow=0.34 cfs 0.025 af Outflow=0.34 cfs 0.025 af Pond 10P: DW #5140 Peak Elev=53.38' Storage=155 cf Inflow=0.24 cfs 0.018 af Discarded=0.00 cfs 0.000 af Secondary=0.24 cfs 0.015 af Outflow=0.24 cfs 0.015 af Pond 11P: CB #6618 Peak Elev=52.91' Inflow=0.26 cfs 0.019 af 4.0" Round Culvert n=0.012 L=23.0' S=0.0426 '/' Outflow=0.26 cfs 0.019 af Pond 12P: CB #6616 Peak Elev=52.57' Inflow=0.68 cfs 0.048 af 6.0" Round Culvert n=0.012 L=66.0' S=0.0312 '/' Outflow=0.68 cfs 0.048 af Peak Elev=53.92' Inflow=1.01 cfs 0.064 af Pond 13P: CB #6637 6.0" Round Culvert n=0.012 L=107.0' S=0.0154 '/' Outflow=1.01 cfs 0.064 af Pond 14P: DMH #6628 Peak Elev=51.46' Inflow=1.45 cfs 0.112 af 8.0" Round Culvert n=0.012 L=161.0' S=0.0100 '/' Outflow=1.45 cfs 0.112 af Pond 15P: Leach Pit Peak Elev=49.15' Storage=93 cf Inflow=1.45 cfs 0.112 af Discarded=0.01 cfs 0.019 af Primary=1.53 cfs 0.093 af Outflow=1.54 cfs 0.112 af Pond 16P: Leach Pit Peak Elev=49.03' Storage=119 cf Inflow=1.53 cfs 0.093 af Discarded=0.00 cfs 0.000 af Secondary=1.47 cfs 0.090 af Outflow=1.47 cfs 0.090 af Inflow=3.00 cfs 0.225 af Link 100: POA #1 Primary=3.00 cfs 0.225 af Link 200: POA #2 Inflow=1.42 cfs 0.109 af Prepared by Altus Engineering, Inc.

HydroCAD® 10.00-25 s/n 01222 © 2019 HydroCAD Software Solutions LLC

Total Runoff Area = 4.070 ac Runoff Volume = 0.372 af Average Runoff Depth = 1.10" 59.80% Pervious = 2.434 ac 40.20% Impervious = 1.636 ac

Reach 1R: 8" AC

HydroCAD® 10.00-25 s/n 01222 © 2019 HydroCAD Software Solutions LLC

Page 2

Time span=0.00-36.00 hrs, dt=0.05 hrs, 721 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1S: Northeast Corner to 8" Runoff Area=12,217 sf 28.05% Impervious Runoff Depth=2.49" Flow Length=199' Tc=6.0 min CN=70 Runoff=0.80 cfs 0.058 af Runoff Area=8,717 sf 62.34% Impervious Runoff Depth=3.82" Subcatchment 2S: Front Yard to CB#5128 Flow Length=152' Tc=6.0 min CN=84 Runoff=0.87 cfs 0.064 af Subcatchment 3S: Parking to CB #5156 Runoff Area=4,667 sf 88.88% Impervious Runoff Depth=4.90" Flow Length=71' Slope=0.0183 '/' Tc=6.0 min CN=94 Runoff=0.55 cfs 0.044 af Runoff Area=28,462 sf 48.73% Impervious Runoff Depth=3.32" Subcatchment 4S: Parking and Yard to Flow Length=199' Tc=6.0 min CN=79 Runoff=2.49 cfs 0.181 af Runoff Area=3,901 sf 71.11% Impervious Runoff Depth=4.14" Subcatchment 5S: Back Yard to POA #1 Flow Length=80' Tc=6.0 min CN=87 Runoff=0.41 cfs 0.031 af Runoff Area=3,002 sf 59.56% Impervious Runoff Depth=2.94" Subcatchment 6S: Building to CB #7813 Flow Length=44' Tc=6.0 min CN=75 Runoff=0.23 cfs 0.017 af Runoff Area=2,885 sf 38.51% Impervious Runoff Depth=1.98" Subcatchment 7S: Yard to DW#5150 Flow Length=58' Tc=6.0 min CN=64 Runoff=0.15 cfs 0.011 af Runoff Area=13,543 sf 26.09% Impervious Runoff Depth=1.44" Subcatchment 8S: Back Yard to DW#7807 Flow Length=71' Tc=6.0 min CN=57 Runoff=0.46 cfs 0.037 af Runoff Area=3,939 sf 48.26% Impervious Runoff Depth=3.32" Subcatchment 9S: Patio to CB#5146 Flow Length=73' Slope=0.0150 '/' Tc=6.0 min CN=79 Runoff=0.34 cfs 0.025 af Runoff Area=3,331 sf 82.92% Impervious Runoff Depth=4.68" Subcatchment 10S: Roof and Driveway to Flow Length=48' Tc=6.0 min CN=92 Runoff=0.39 cfs 0.030 af Runoff Area=3,598 sf 85.52% Impervious Runoff Depth=4.68" Subcatchment 11S: Roof and Drvieway to Flow Length=68' Slope=0.0100 '/' Tc=6.0 min CN=92 Runoff=0.42 cfs 0.032 af Runoff Area=3,965 sf 51.63% Impervious Runoff Depth=3.42" Subcatchment 12S: Driveway to CB#6616 Flow Length=90' Tc=6.0 min CN=80 Runoff=0.36 cfs 0.026 af Runoff Area=23,260 sf 52.04% Impervious Runoff Depth=2.94" Subcatchment 13S: Parking Lot to Tc=0.0 min CN=75 Runoff=2.12 cfs 0.131 af Runoff Area=61,787 sf 21.51% Impervious Runoff Depth=0.77" Subcatchment 17S: West Side to POA #2 Flow Length=383' Tc=10.3 min CN=47 Runoff=0.67 cfs 0.090 af

Reach 6R: CB #5146 OverflowAvg. Flow Depth=0.07' Max Vel=1.52 fps Inflow=0.72 cfs 0.053 af n=0.013 L=198.0' S=0.0102 '/' Capacity=58.25 cfs Outflow=0.69 cfs 0.053 af

8.0" Round Pipe n=0.012 L=45.0' S=0.0100 '/' Capacity=1.31 cfs Outflow=0.80 cfs 0.058 af

Avg. Flow Depth=0.38' Max Vel=3.93 fps Inflow=0.80 cfs 0.058 af

Type III 24-hr	10-yr Rainfall=5.60"
----------------	----------------------

5161-Pre Prepared by Altus Eng HydroCAD® 10.00-25 s/r	Type III 24-hr 10-yr Rainfall=5.60" gineering, Inc. Printed 8/23/2021 01222 © 2019 HydroCAD Software Solutions LLC Page 3
Reach 7R: Overland FI	ow Path Avg. Flow Depth=0.19' Max Vel=1.04 fps Inflow=3.15 cfs 0.193 af n=0.035 L=107.0' S=0.0091 '/' Capacity=104.18 cfs Outflow=2.63 cfs 0.193 af
Pond 2P: CB #5128	Peak Elev=51.47' Inflow=0.87 cfs 0.064 af Outflow=0.87 cfs 0.064 af
Pond 3P: CB #5156	Peak Elev=51.46' Inflow=2.22 cfs 0.166 af Outflow=2.22 cfs 0.166 af
Pond 4P: CB #5132	Peak Elev=50.51' Inflow=5.38 cfs 0.399 af Outflow=5.38 cfs 0.399 af
Pond 5P: DMH #6179	Peak Elev=50.21' Inflow=5.38 cfs 0.399 af Outflow=5.38 cfs 0.399 af
Pond 6P: CB #7813	Peak Elev=52.62' Inflow=0.23 cfs 0.017 af Outflow=0.23 cfs 0.017 af
Pond 7P: DW #5150	Peak Elev=52.44' Storage=11 cf Inflow=0.38 cfs 0.028 af Discarded=0.00 cfs 0.000 af Secondary=0.38 cfs 0.028 af Outflow=0.38 cfs 0.028 af
Pond 8P: DW #7807	Peak Elev=52.34' Storage=54 cf Inflow=0.46 cfs 0.037 af Discarded=0.41 cfs 0.037 af Secondary=0.00 cfs 0.000 af Outflow=0.41 cfs 0.037 af
Pond 9P: CB #5146	Peak Elev=52.44' Inflow=0.72 cfs 0.053 af Outflow=0.72 cfs 0.053 af
Pond 10P: DW #5140	Peak Elev=53.79' Storage=371 cf Inflow=0.39 cfs 0.030 af Discarded=0.00 cfs 0.000 af Secondary=2.19 cfs 0.027 af Outflow=2.19 cfs 0.027 af
Pond 11P: CB #6618	Peak Elev=67.70' Inflow=0.42 cfs 0.032 af 4.0" Round Culvert n=0.012 L=23.0' S=0.0426'/ Outflow=0.42 cfs 0.032 af
Pond 12P: CB #6616	Peak Elev=67.47' Inflow=2.57 cfs 0.085 af 6.0" Round Culvert n=0.012 L=66.0' S=0.0312'/' Outflow=2.57 cfs 0.085 af
Pond 13P: CB #6637	Peak Elev=70.28' Inflow=2.12 cfs 0.131 af 6.0" Round Culvert n=0.012 L=107.0' S=0.0154'/ Outflow=2.12 cfs 0.131 af
Pond 14P: DMH #6628	Peak Elev=61.54' Inflow=3.31 cfs 0.216 af 8.0" Round Culvert n=0.012 L=161.0' S=0.0100'/ Outflow=3.31 cfs 0.216 af
Pond 15P: Leach Pit	Peak Elev=49.73' Storage=104 cf Inflow=3.31 cfs 0.216 af Discarded=0.01 cfs 0.021 af Primary=3.18 cfs 0.195 af Outflow=3.20 cfs 0.216 af
Pond 16P: Leach Pit	Peak Elev=49.21' Storage=123 cf Inflow=3.18 cfs 0.195 af Discarded=0.00 cfs 0.000 af Secondary=3.15 cfs 0.193 af Outflow=3.15 cfs 0.193 af

Link 100: POA #1

Link 200: POA #2

Inflow=2.96 cfs 0.283 af Primary=2.96 cfs 0.283 af

Inflow=5.79 cfs 0.430 af Primary=5.79 cfs 0.430 af

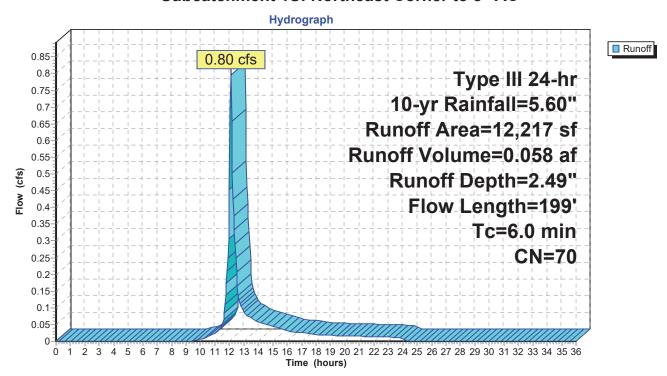
Page 4

Prepared by Altus Engineering, Inc.

HydroCAD® 10.00-25 s/n 01222 © 2019 HydroCAD Software Solutions LLC

Total Runoff Area = 4.070 ac Runoff Volume = 0.777 af Average Runoff Depth = 2.29" 59.80% Pervious = 2.434 ac 40.20% Impervious = 1.636 ac

Summary for Subcatchment 1S: Northeast Corner to 8" AC


0.80 cfs @ 12.10 hrs, Volume= 0.058 af, Depth= 2.49" Runoff

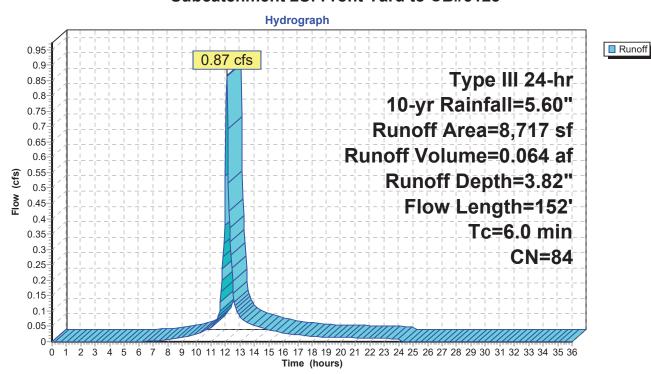
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

	А	rea (sf)	CN [Description					
*		2,260	98 F	Roof					
*		977	98 I	Impervious					
*		190	98 (Gravel					
		5,242	61 >	75% Gras	s cover, Go	ood, HSG B			
		3,548	55 V	Voods, Go	od, HSG B				
		12,217	70 V	70 Weighted Average					
		8,790	7	71.95% Pervious Area					
		3,427	2	28.05% Impervious Area					
	Тс	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	0.4	28	0.0200	1.15		Sheet Flow,			
						Smooth surfaces n= 0.011 P2= 3.69"			
	4.3	171	0.0175	0.66		Shallow Concentrated Flow,			
						Woodland Kv= 5.0 fps			
	4.7	199	Total, Increased to minimum Tc = 6.0 min						

Total, Increased to minimum Tc = 6.0 min

Subcatchment 1S: Northeast Corner to 8" AC

Summary for Subcatchment 2S: Front Yard to CB#5128

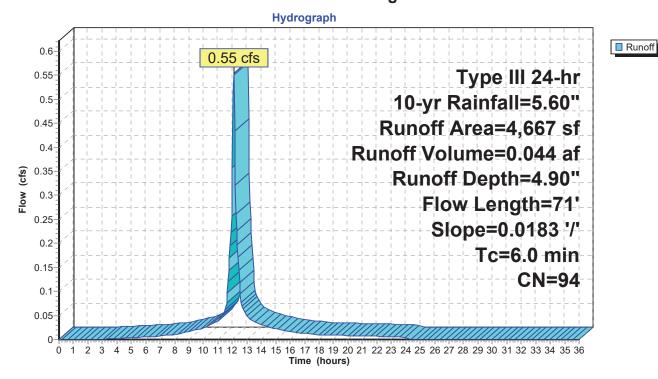

Runoff = 0.87 cfs @ 12.09 hrs, Volume= 0.064 af, Depth= 3.82"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

_	Α	rea (sf)	CN [Description					
*		244	98 F	Roof					
*		5,190	98 I	Impervious					
		3,283	61 >	>75% Grass cover, Good, HSG B					
		8,717	84 \	84 Weighted Average					
		3,283	3	37.66% Pervious Area					
		5,434	6	62.34% Impervious Area					
				_					
	Tc	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	0.4	30	0.0200	1.16		Sheet Flow,			
						Smooth surfaces n= 0.011 P2= 3.69"			
	0.7	122	0.0192	2.81		Shallow Concentrated Flow,			
_						Paved Kv= 20.3 fps			
	4.4	150	Tatal			To = 6.0 min			

1.1 152 Total, Increased to minimum Tc = 6.0 min

Subcatchment 2S: Front Yard to CB#5128

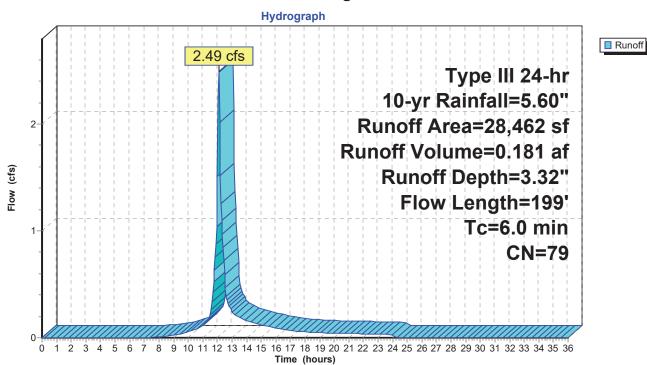

Summary for Subcatchment 3S: Parking to CB #5156

Runoff = 0.55 cfs @ 12.09 hrs, Volume= 0.044 af, Depth= 4.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

	Α	rea (sf)	CN I	Description					
*		807	98 I	Roof					
*		2,697	98 I	Impervious					
*		644	98 (Gravel					
		519	61	61 >75% Grass cover, Good, HSG B					
		4,667	94 \	94 Weighted Average					
		519		11.12% Pervious Area					
		4,148	8	88.88% Impervious Area					
	Tc	Length	Slope		Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	0.4	23	0.0183	1.06		Sheet Flow,			
						Smooth surfaces n= 0.011 P2= 3.69"			
	0.3	48	0.0183	2.75		Shallow Concentrated Flow,			
_						Paved Kv= 20.3 fps			
	0.7	71	Total,	Increased t	o minimum	Tc = 6.0 min			

Subcatchment 3S: Parking to CB #5156


Summary for Subcatchment 4S: Parking and Yard to CB#5132

Runoff = 2.49 cfs @ 12.09 hrs, Volume= 0.181 af, Depth= 3.32"

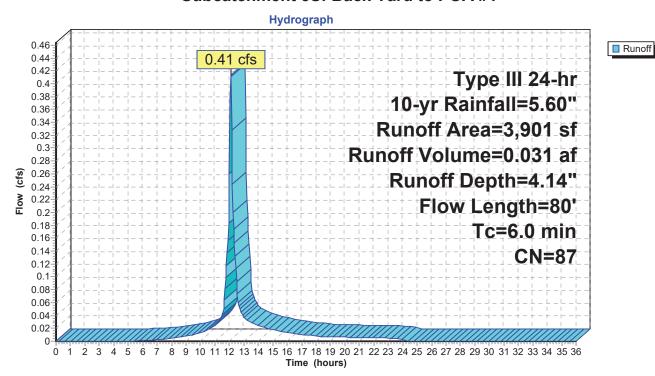
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

	Α	rea (sf)	CN E	escription						
*		3,915	98 F	Roof						
*		9,954	98 lı	Impervious						
		14,593	61 >	75% Gras	s cover, Go	ood, HSG B				
		28,462	79 V	Veighted A	verage					
14,593 51.27% Pervious Area										
		13,869	4	8.73% Imp	pervious Are	ea				
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	0.5	24	0.0100	0.84		Sheet Flow,				
						Smooth surfaces n= 0.011 P2= 3.69"				
	1.4	175	0.0112	2.15		Shallow Concentrated Flow,				
_						Paved Kv= 20.3 fps				
	1.9	199	Total, I	ncreased t	o minimum	Tc = 6.0 min				

Subcatchment 4S: Parking and Yard to CB#5132

Page 9

Summary for Subcatchment 5S: Back Yard to POA #1

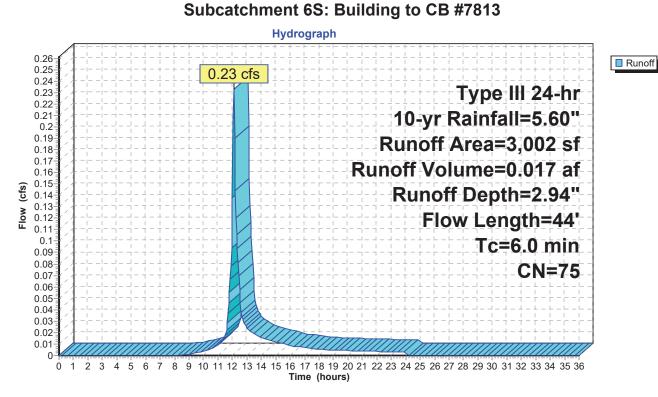

Runoff = 0.41 cfs @ 12.09 hrs, Volume= 0.031 af, Depth= 4.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

	Α	rea (sf)	CN [Description		
*		925	98 F	Roof		
*		1,849	98 I	mpervious		
		1,127	61 >	75% Gras	s cover, Go	ood, HSG B
_		3,901	87 V	Veighted A	verage	
		1,127	2	18.89% Per	vious Area	
		2,774	7	'1.11% lmp	ervious Ar	ea
				_		
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.5	34	0.0200	1.19		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.69"
	0.5	35	0.0040	1.28		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	0.1	11	0.1250	2.47		Shallow Concentrated Flow,
_						Short Grass Pasture Kv= 7.0 fps
	1 1	00	Total I	naraaaad t	a minimum	To = 6.0 min

1.1 80 Total, Increased to minimum Tc = 6.0 min

Subcatchment 5S: Back Yard to POA #1



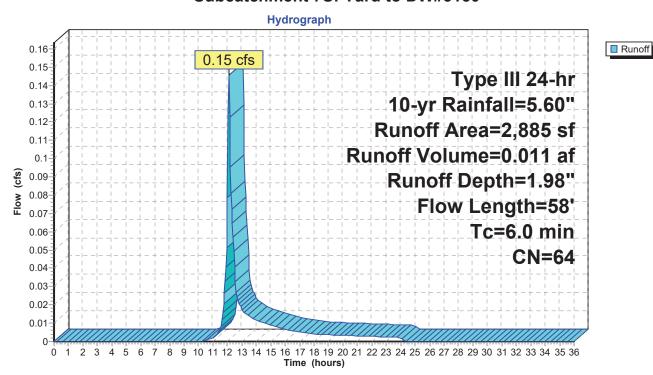
Summary for Subcatchment 6S: Building to CB #7813

Runoff = 0.23 cfs @ 12.09 hrs, Volume= 0.017 af, Depth= 2.94"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

	Α	rea (sf)	CN I	Description		
*		1,709	98	Roof		
*		79	98	Gravel		
		161	61	>75% Gras	s cover, Go	ood, HSG B
_		1,053	39 :	>75% Gras	s cover, Go	ood, HSG A
		3,002	75 \	Neighted A	verage	
		1,214	4	10.44% Per	vious Area	
		1,788	!	59.56% Imp	ervious Ar	ea
	Тс	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	2.3	21	0.0281	0.15		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.69"
	0.4	23	0.0232	1.07		Shallow Concentrated Flow,
_						Short Grass Pasture Kv= 7.0 fps
	2.7	44	Total,	Increased t	o minimum	Tc = 6.0 min

Page 11


Summary for Subcatchment 7S: Yard to DW#5150

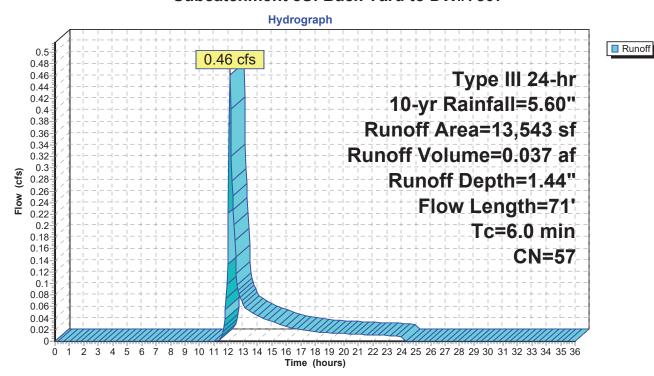
Runoff = 0.15 cfs @ 12.10 hrs, Volume= 0.011 af, Depth= 1.98"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

_	Α	rea (sf)	CN [Description			
*		398	98 F	Roof			
*		713	98 I	mpervious			
		272	61 >	75% Gras	s cover, Go	ood, HSG B	
		1,502	39 >	39 >75% Grass cover, Good, HSG A			
		2,885	64 V	64 Weighted Average			
		1,774	6	31.49% Per	vious Area		
		1,111	3	88.51% Imp	pervious Ar	ea	
				_			
	Tc	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	<u> </u>	
	1.9	18	0.0328	0.16		Sheet Flow,	
						Grass: Short n= 0.150 P2= 3.69"	
	0.7	40	0.0173	0.92		Shallow Concentrated Flow,	
						Short Grass Pasture Kv= 7.0 fps	
	26	58	Total	ncreased t	o minimum	Tc = 6.0 min	

Subcatchment 7S: Yard to DW#5150

Summary for Subcatchment 8S: Back Yard to DW#7807


Runoff = 0.46 cfs @ 12.10 hrs, Volume= 0.037 af, Depth= 1.44"

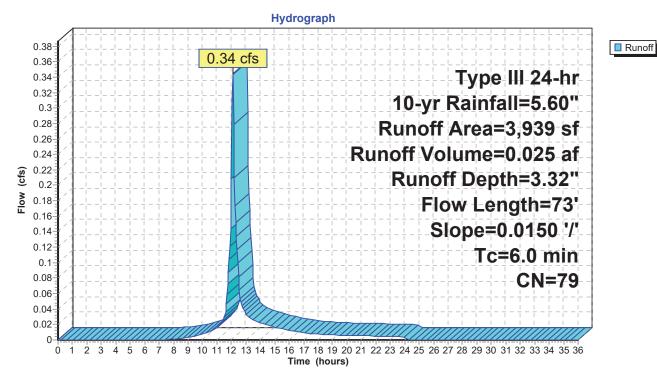
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

	Α	rea (sf)	CN E	escription		
*		2,870	98 F	Roof		
*		563	98 lı	mpervious		
*		100	98 L	.edge		
		1,702	61 >	75% Gras	s cover, Go	ood, HSG B
		8,308	39 >	75% Gras	s cover, Go	ood, HSG A
		13,543	57 V	Veighted A	verage	
		10,010	7	3.91% Per	vious Area	
		3,533	2	6.09% Imp	pervious Ar	ea
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	1.6	16	0.0369	0.16		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.69"
	1.1	55	0.0150	0.86		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps

2.7 71 Total, Increased to minimum Tc = 6.0 min

Subcatchment 8S: Back Yard to DW#7807

Page 13


Summary for Subcatchment 9S: Patio to CB#5146

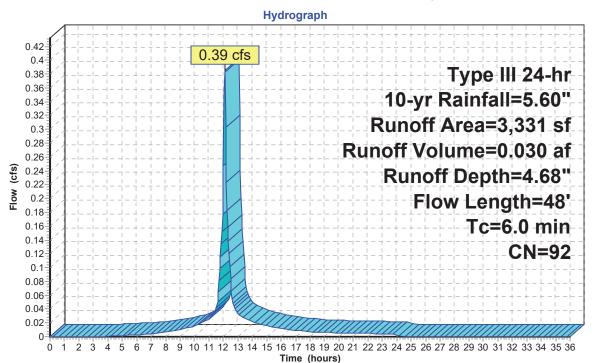
Runoff = 0.34 cfs @ 12.09 hrs, Volume= 0.025 af, Depth= 3.32"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

_	Α	rea (sf)	CN D	escription		
*		1,901	98 Ir	mpervious		
_		2,038	61 >	75% Gras	s cover, Go	ood, HSG B
		3,939	79 V	Veighted A	verage	
		2,038	5	1.74% Per	vious Area	
		1,901	4	8.26% Imp	ervious Are	ea
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.3	18	0.0150	0.93		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.69"
	0.4	55	0.0150	2.49		Shallow Concentrated Flow,
_						Paved Kv= 20.3 fps
	0.7	73	Total, I	ncreased t	o minimum	Tc = 6.0 min

Subcatchment 9S: Patio to CB#5146

Page 14


Summary for Subcatchment 10S: Roof and Driveway to DW#5140

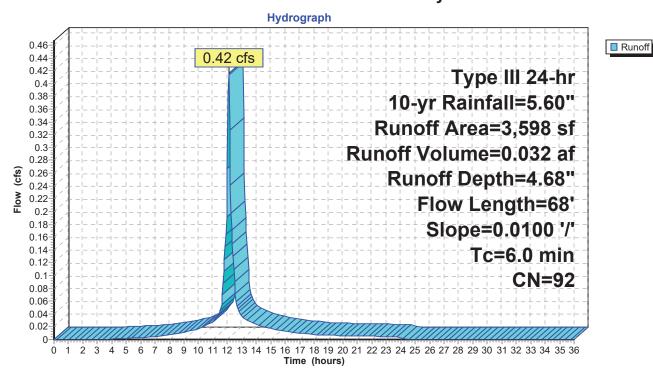
Runoff = 0.39 cfs @ 12.09 hrs, Volume= 0.030 af, Depth= 4.68"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

	Α	rea (sf)	CN	Description			
*		1,585	98	98 Roof			
*		1,177	98	Impervious			
		569	61	>75% Gras	s cover, Go	ood, HSG B	
		3,331	92	92 Weighted Average			
		569		17.08% Pervious Area			
		2,762		82.92% Impervious Area			
	Тс	Length	Slope	Velocity	Capacity	Description	
	(min)	(feet)	(ft/ft)	•	(cfs)	2000 pilon	
	0.2	11	0.0150	0.85		Sheet Flow,	
						Smooth surfaces n= 0.011 P2= 3.69"	
	0.3	37	0.0100	2.03		Shallow Concentrated Flow,	
						Paved Kv= 20.3 fps	
	0.5	48	Total	Increased t	o minimum	$T_{\rm C} = 6.0 \text{min}$	

Subcatchment 10S: Roof and Driveway to DW#5140

Runoff


Summary for Subcatchment 11S: Roof and Drvieway to CB#6618

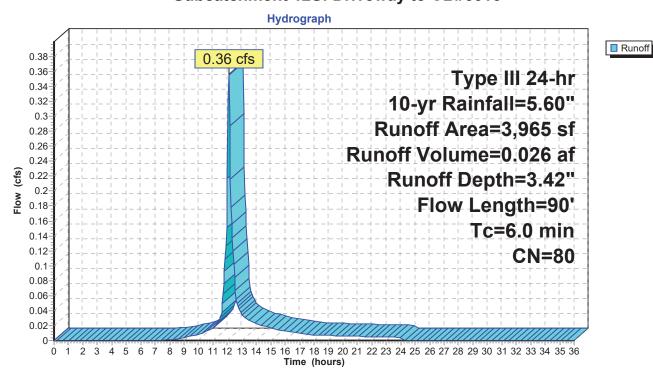
Runoff = 0.42 cfs @ 12.09 hrs, Volume= 0.032 af, Depth= 4.68"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

	Α	rea (sf)	CN [Description				
*		903	98 F	Roof				
*		2,174	98 I	mpervious				
		427	61 >	75% Gras	s cover, Go	ood, HSG B		
		94	39 >	39 >75% Grass cover, Good, HSG A				
		3,598	92 V	92 Weighted Average				
		521	1	4.48% Per	vious Area			
		3,077	3	35.52% Imp	ervious Ar	ea		
	Tc	Length	Slope	Velocity	Capacity	Description		
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	0.4	22	0.0100	0.83		Sheet Flow,		
						Smooth surfaces n= 0.011 P2= 3.69"		
	0.4	46	0.0100	2.03		Shallow Concentrated Flow,		
						Paved Kv= 20.3 fps		
	0.8	68	Total I	ncreased t	o minimum	Tc = 6.0 min		

Subcatchment 11S: Roof and Drvieway to CB#6618

Page 16


Summary for Subcatchment 12S: Driveway to CB#6616

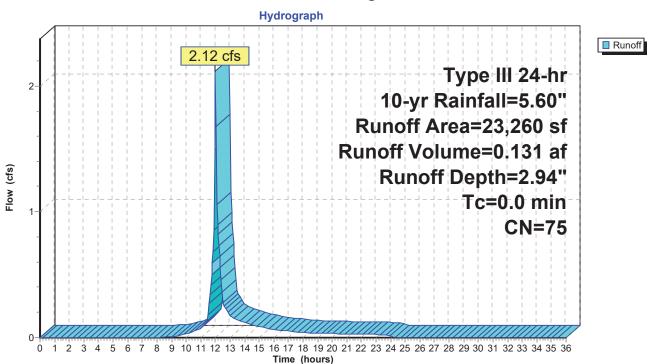
Runoff = 0.36 cfs @ 12.09 hrs, Volume= 0.026 af, Depth= 3.42"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

	Α	rea (sf)	CN D	escription		
*		2,047	98 Ir	npervious		
		1,918	61 >	75% Gras	s cover, Go	ood, HSG B
		3,965		Veighted A		
		1,918	=		vious Area	
		2,047	5	1.63% Imp	ervious Are	ea
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.5	24	0.0100	0.84		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.69"
	1.1	26	0.0034	0.41		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	0.4	40	0.0070	1.70		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	2.0	90	Total, I	ncreased t	o minimum	Tc = 6.0 min

Subcatchment 12S: Driveway to CB#6616

Page 17


Summary for Subcatchment 13S: Parking Lot to CB#6637

Runoff = 2.12 cfs @ 12.00 hrs, Volume= 0.131 af, Depth= 2.94"

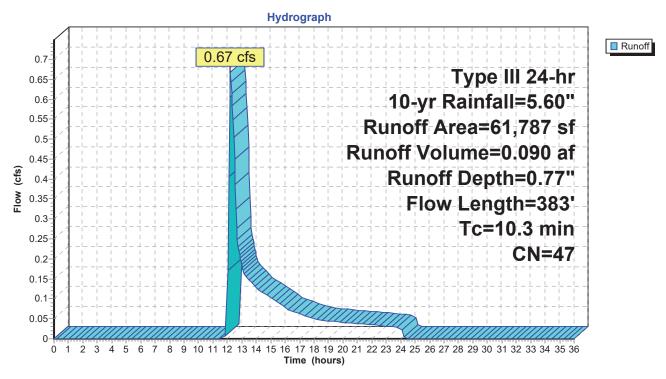
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

	Area (sf)	CN	Description
*	2,090	98	Roof
*	10,015	98	Impervious
	5,669	61	>75% Grass cover, Good, HSG B
	1,325	55	Woods, Good, HSG B
	2,787	39	>75% Grass cover, Good, HSG A
	1,374	30	Woods, Good, HSG A
	23,260	75	Weighted Average
	11,155		47.96% Pervious Area
	12,105		52.04% Impervious Area

Subcatchment 13S: Parking Lot to CB#6637

Page 18

Summary for Subcatchment 17S: West Side to POA #2


Runoff = 0.67 cfs @ 12.21 hrs, Volume= 0.090 af, Depth= 0.77"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

_	A	rea (sf)	CN E	Description		
*		1,247	98 F	Roof		
*		11,762	98 lı	mpervious		
*		62	98	Gravel		
*		220	98 L	.edge		
		97	61 >	·75% Gras	s cover, Go	ood, HSG B
		17,145	39 >	75% Gras	s cover, Go	ood, HSG A
_		31,254	30 V	Voods, Go	od, HSG A	
		61,787	47 V	Veighted A	verage	
		48,496	7	8.49% Per	vious Area	
		13,291	2	:1.51% lmp	ervious Ar	ea
	_					
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	2.8	32	0.0380	0.19		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.69"
	2.4	144	0.0208	1.01		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	1.7	110	0.0455	1.07		Shallow Concentrated Flow,
	0.4	0.7	0.0004	0.40		Woodland Kv= 5.0 fps
	3.4	97	0.0091	0.48		Shallow Concentrated Flow,
_						Woodland Kv= 5.0 fps
	10.3	383	Total			

Page 19

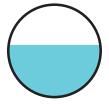
Subcatchment 17S: West Side to POA #2

Page 20

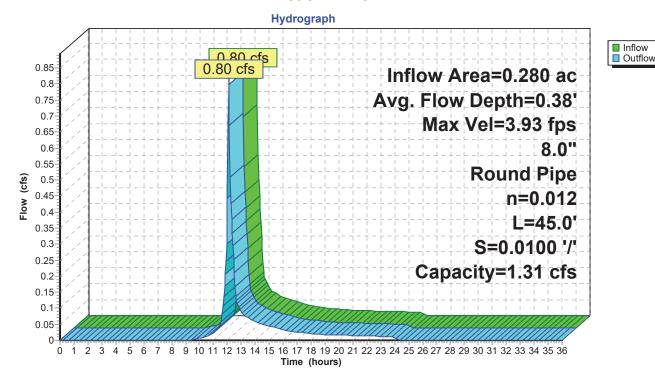
Summary for Reach 1R: 8" AC

Inflow Area = 0.280 ac, 28.05% Impervious, Inflow Depth = 2.49" for 10-yr event

Inflow = 0.80 cfs @ 12.10 hrs, Volume= 0.058 af


Outflow = 0.80 cfs @ 12.10 hrs, Volume= 0.058 af, Atten= 0%, Lag= 0.2 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs


Max. Velocity= 3.93 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.50 fps, Avg. Travel Time= 0.5 min

Peak Storage= 9 cf @ 12.10 hrs Average Depth at Peak Storage= 0.38' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.31 cfs

8.0" Round Pipe n= 0.012 Length= 45.0' Slope= 0.0100 '/' Inlet Invert= 48.97', Outlet Invert= 48.52'

Reach 1R: 8" AC

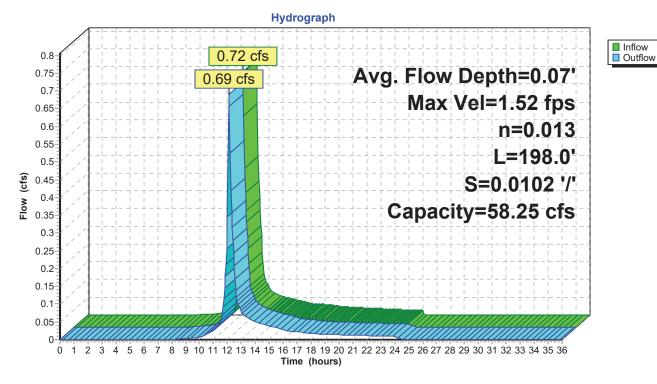
Page 21

Summary for Reach 6R: CB #5146 Overflow

Inflow = 0.72 cfs @ 12.09 hrs, Volume= 0.053 af

Outflow = 0.69 cfs @ 12.12 hrs, Volume= 0.053 af, Atten= 4%, Lag= 1.6 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs


Max. Velocity= 1.52 fps, Min. Travel Time= 2.2 min Avg. Velocity = 0.51 fps, Avg. Travel Time= 6.5 min

Peak Storage= 89 cf @ 12.12 hrs Average Depth at Peak Storage= 0.07' Bank-Full Depth= 0.50' Flow Area= 12.0 sf, Capacity= 58.25 cfs

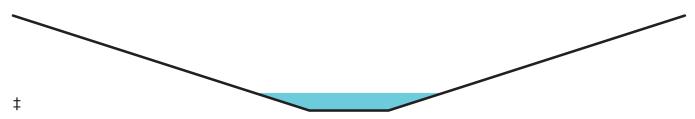
4.00' x 0.50' deep channel, n= 0.013 Asphalt, smooth Side Slope Z-value= 50.0 30.0 '/' Top Width= 44.00' Length= 198.0' Slope= 0.0102 '/' Inlet Invert= 52.31', Outlet Invert= 50.29'

Reach 6R: CB #5146 Overflow

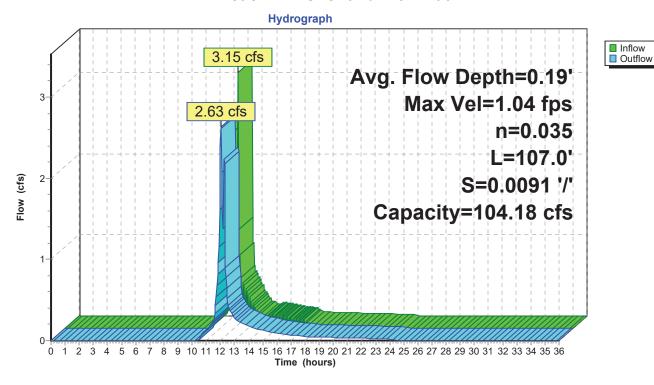
Page 22

Summary for Reach 7R: Overland Flow Path

Inflow = 3.15 cfs @ 12.25 hrs, Volume= 0.193 af


Outflow = 2.63 cfs @ 12.04 hrs, Volume= 0.193 af, Atten= 16%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs


Max. Velocity= 1.04 fps, Min. Travel Time= 1.7 min Avg. Velocity = 0.35 fps, Avg. Travel Time= 5.1 min

Peak Storage= 270 cf @ 12.04 hrs Average Depth at Peak Storage= 0.19' Bank-Full Depth= 1.00' Flow Area= 38.0 sf, Capacity= 104.18 cfs

8.00' x 1.00' deep channel, n= 0.035 Earth, dense weeds Side Slope Z-value= 30.0 '/' Top Width= 68.00' Length= 107.0' Slope= 0.0091 '/' Inlet Invert= 48.75', Outlet Invert= 47.78'

Reach 7R: Overland Flow Path

Page 23

Summary for Pond 2P: CB #5128

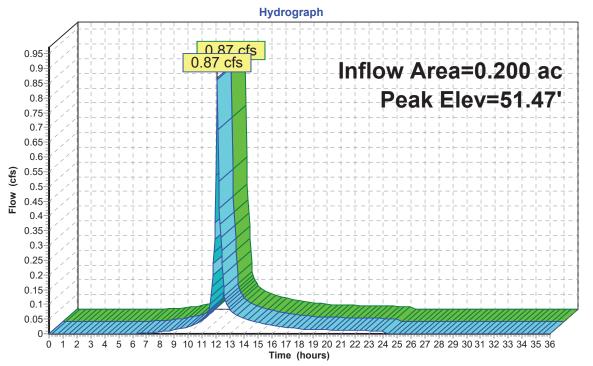
Inflow Area = 0.200 ac, 62.34% Impervious, Inflow Depth = 3.82" for 10-yr event

Inflow = 0.87 cfs @ 12.09 hrs, Volume= 0.064 af

Outflow = 0.87 cfs @ 12.09 hrs, Volume= 0.064 af, Atten= 0%, Lag= 0.0 min

Primary = 0.87 cfs @ 12.09 hrs, Volume= 0.064 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 51.47' @ 12.13 hrs


Device	Routing	Invert	Outlet Devices
#1	Primary	49.84'	6.0" Round Culvert
	•		L= 47.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 49.84 / 48.52 S= 0.0281 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.20 sf
#2	Primary	51.40'	20.0' long x 30.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=0.48 cfs @ 12.09 hrs HW=51.46' TW=51.45' (Dynamic Tailwater)

1=Culvert (Outlet Controls 0.06 cfs @ 0.31 fps)

-2=Broad-Crested Rectangular Weir (Weir Controls 0.41 cfs @ 0.33 fps)

Pond 2P: CB #5128

Printed 8/23/2021

Page 24

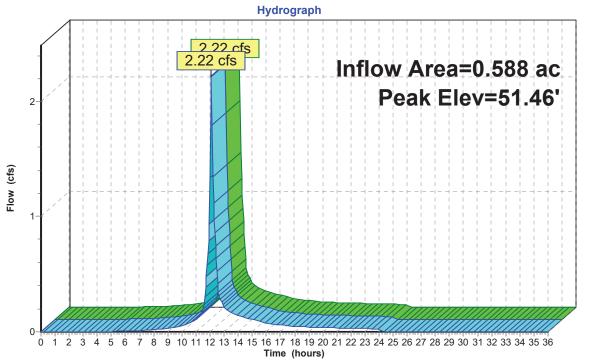
Summary for Pond 3P: CB #5156

Inflow Area = 0.588 ac, 50.81% Impervious, Inflow Depth = 3.38" for 10-yr event

Inflow 2.22 cfs @ 12.09 hrs, Volume= 0.166 af

2.22 cfs @ 12.09 hrs, Volume= Outflow 0.166 af, Atten= 0%, Lag= 0.0 min

2.22 cfs @ 12.09 hrs, Volume= 0.166 af Primary


Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 51.46' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	48.44'	8.0" Round Culvert
	,		L= 46.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 48.44 / 47.14 S= 0.0283 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.35 sf
#2	Primary	51.40'	20.0' long x 30.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=2.14 cfs @ 12.09 hrs HW=51.46' TW=50.50' (Dynamic Tailwater) -1=Culvert (Outlet Controls 1.44 cfs @ 4.12 fps)

-2=Broad-Crested Rectangular Weir (Weir Controls 0.70 cfs @ 0.63 fps)

Pond 3P: CB #5156

Page 25

Summary for Pond 4P: CB #5132

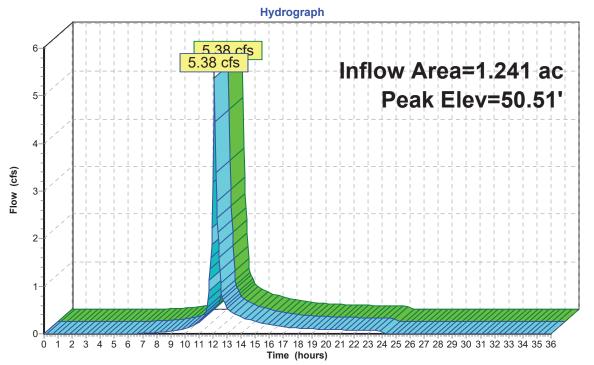
Inflow Area = 1.241 ac, 49.72% Impervious, Inflow Depth = 3.86" for 10-yr event

Inflow = 5.38 cfs @ 12.10 hrs, Volume= 0.399 af

Outflow = 5.38 cfs @ 12.10 hrs, Volume= 0.399 af, Atten= 0%, Lag= 0.0 min

Primary = 5.38 cfs @ 12.10 hrs, Volume= 0.399 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 50.51' @ 12.10 hrs


Device	Routing	Invert	Outlet Devices
#1	Primary	47.24'	8.0" Round Culvert
	-		L= 48.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 47.24 / 46.78 S= 0.0096 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.35 sf
#2	Primary	50.20'	10.0' long x 30.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=5.26 cfs @ 12.10 hrs HW=50.50' TW=50.21' (Dynamic Tailwater)

1=Culvert (Outlet Controls 0.79 cfs @ 2.25 fps)

-2=Broad-Crested Rectangular Weir (Weir Controls 4.48 cfs @ 1.48 fps)

Pond 4P: CB #5132

Printed 8/23/2021

Page 26

Summary for Pond 5P: DMH #6179

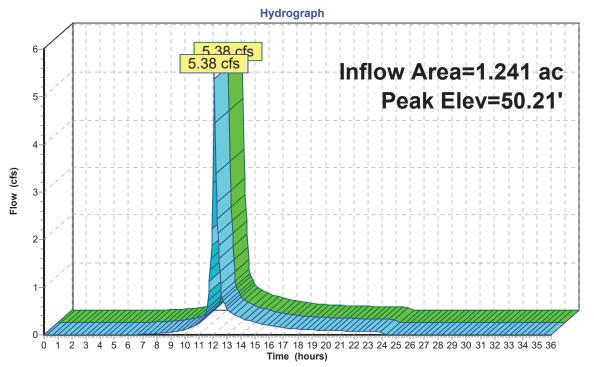
Inflow Area = 1.241 ac, 49.72% Impervious, Inflow Depth = 3.86" for 10-yr event

Inflow = 5.38 cfs @ 12.10 hrs, Volume= 0.399 af

Outflow = 5.38 cfs @ 12.10 hrs, Volume= 0.399 af, Atten= 0%, Lag= 0.0 min

Primary = 5.38 cfs @ 12.10 hrs, Volume= 0.399 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 50.21' @ 12.10 hrs


Device	Routing	Invert	Outlet Devices
#1	Primary	46.96'	8.0" Round Culvert
			L= 60.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 46.96' / 46.29' S= 0.0112 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.35 sf
#2	Primary	50.07'	20.0' long x 20.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=5.31 cfs @ 12.10 hrs HW=50.21' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Barrel Controls 2.45 cfs @ 7.02 fps)

-2=Broad-Crested Rectangular Weir (Weir Controls 2.86 cfs @ 1.01 fps)

Pond 5P: DMH #6179

Printed 8/23/2021 Page 27

Summary for Pond 6P: CB #7813

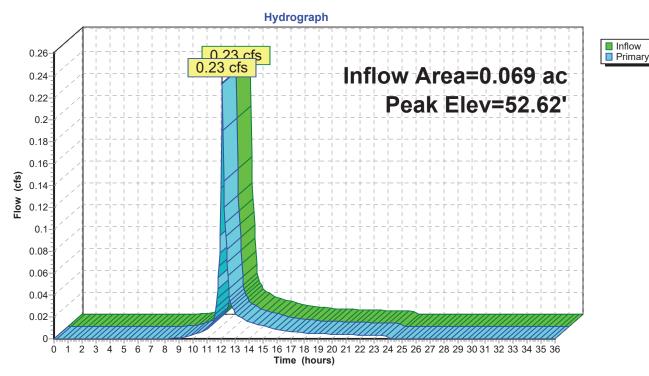
Inflow Area = 0.069 ac, 59.56% Impervious, Inflow Depth = 2.94" for 10-yr event

Inflow = 0.23 cfs @ 12.09 hrs, Volume= 0.017 af

Outflow = 0.23 cfs @ 12.09 hrs, Volume= 0.017 af, Atten= 0%, Lag= 0.0 min

Primary = 0.23 cfs @ 12.09 hrs, Volume= 0.017 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 52.62' @ 12.10 hrs


Device	Routing	Invert	Outlet Devices
#1	Primary	51.14'	4.0" Round Culvert
	,		L= 25.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 51.14 / 50.89' S= 0.0100 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.09 sf
#2	Primary	52.60'	10.0' long x 20.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=0.22 cfs @ 12.09 hrs HW=52.62' TW=52.43' (Dynamic Tailwater)

-1=Culvert (Outlet Controls 0.15 cfs @ 1.67 fps)

-2=Broad-Crested Rectangular Weir (Weir Controls 0.07 cfs @ 0.38 fps)

Pond 6P: CB #7813

Prepared by Altus Engineering, Inc.

HydroCAD® 10.00-25 s/n 01222 © 2019 HydroCAD Software Solutions LLC

Page 28

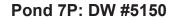
Summary for Pond 7P: DW #5150

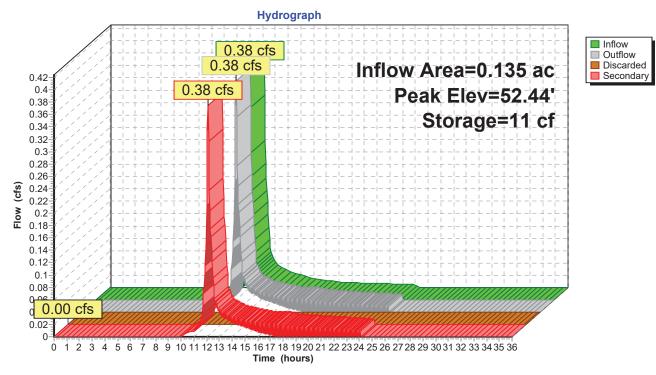
Inflow Area = 0.135 ac, 49.24% Impervious, Inflow Depth = 2.47" for 10-yr event Inflow = 0.38 cfs @ 12.10 hrs, Volume= 0.028 af

Outflow = 0.38 cfs @ 12.10 hrs, Volume= 0.028 af, Atten= 1%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 52.44' @ 12.15 hrs Surf.Area= 6 sf Storage= 11 cf

Plug-Flow detention time= 7.5 min calculated for 0.028 af (99% of inflow) Center-of-Mass det. time= 2.4 min (842.6 - 840.2)


Volume	Invert	Avail.Sto	rage Storage I	Description	
#1	49.67'	1	17 cf Custom	Stage Data (P	rismatic)Listed below (Recalc)
Elevatio (fee 49.6 52.3 53.0	t) 57 32	rf.Area (sq-ft) 4 4 16	Inc.Store (cubic-feet) 0 11 7	Cum.Store (cubic-feet) 0 11 17	
Device	Routing	Invert	Outlet Devices	i	
#1	Discarded	49.67'			r Surface area from 49.67' - 52.32'
#2	Secondary	52.32'	10.0' long x 2 Head (feet) 0.	0.0' breadth B 20 0.40 0.60	Phase-In= 0.01' broad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 70 2.64 2.63 2.64 2.64 2.63


Discarded OutFlow Max=0.00 cfs @ 0.00 hrs HW=49.67' (Free Discharge) **1=Exfiltration** (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 12.10 hrs HW=52.43' TW=52.43' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Page 29

5 20 10 1.1 juli 50 1.2 50 1.1 iuli 5 00 1.4 iuli 5 1.2 5

Page 30

Summary for Pond 8P: DW #7807

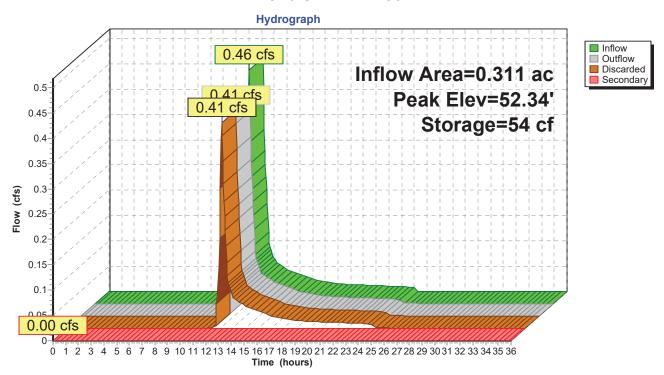
Inflow Area = 0.311 ac, 26.09% Impervious, Inflow Depth = 1.44" for 10-yr event Inflow = 0.46 cfs @ 12.10 hrs, Volume= 0.037 af

Outflow = 0.41 cfs (a) 12.15 hrs, Volume= 0.037 af, Atten= 12%, Lag= 3.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 52.34' @ 12.15 hrs Surf.Area= 584 sf Storage= 54 cf

Plug-Flow detention time= 4.2 min calculated for 0.037 af (100% of inflow) Center-of-Mass det. time= 4.3 min (880.5 - 876.2)

Volume	Invert	Avail.Sto	rage Storage	Description	
#1	49.68'	4,23	39 cf Custom	Stage Data (Pi	rismatic)Listed below (Recalc)
Elevation (fee		ırf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
49.6	38	3	0	0	
52.1	18	3	8	8	
53.0	00	3,000	1,231	1,239	
54.0	00	3,000	3,000	4,239	
Device	Routing	Invert	Outlet Device	s	
#1	Discarded	49.68'	30.000 in/hr l	Exfiltration ove	r Surface area from 49.67' - 52.47'
			Excluded Sur	face area = 0 sf	Phase-In= 0.01'
#2	Secondary	53.18'	20.0' long x	20.0' breadth B	road-Crested Rectangular Weir
			Head (feet) 0	0.20 0.40 0.60	0.80 1.00 1.20 1.40 1.60


Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Discarded OutFlow Max=0.40 cfs @ 12.15 hrs HW=52.34' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.40 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=49.68' TW=49.15' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Page 31

Pond 8P: DW #7807

Page 32

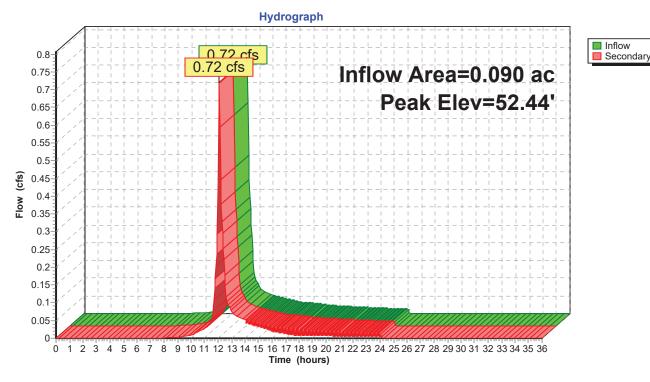
Summary for Pond 9P: CB #5146

Inflow Area = 0.090 ac, 48.26% Impervious, Inflow Depth = 6.99" for 10-yr event

Inflow = 0.72 cfs @ 12.09 hrs, Volume= 0.053 af

Outflow = 0.72 cfs @ 12.09 hrs, Volume= 0.053 af, Atten= 0%, Lag= 0.0 min

Secondary = 0.72 cfs @ 12.09 hrs, Volume= 0.053 af


Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Peak Elev= 52.44' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Secondary	52.32'	24.0" Horiz. Orifice/Grate C= 0.600
			I imited to weir flow at low heads

Secondary OutFlow Max=0.68 cfs @ 12.09 hrs HW=52.43' TW=52.38' (Dynamic Tailwater) 1=Orifice/Grate (Weir Controls 0.68 cfs @ 0.94 fps)

Pond 9P: CB #5146

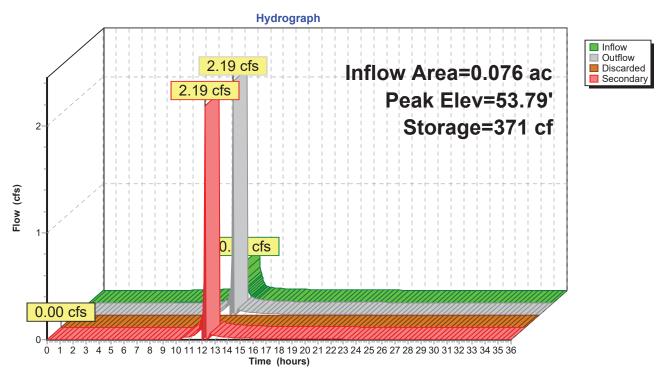
Page 33

Summary for Pond 10P: DW #5140

Inflow Area = 0.076 ac, 82.92% Impervious, Inflow Depth = 4.68" for 10-yr event Inflow = 0.39 cfs @ 12.09 hrs, Volume= 0.030 af Outflow = 2.19 cfs @ 12.25 hrs, Volume= 0.027 af, Atten= 0%, Lag= 9.7 min Discarded = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af Secondary = 2.19 cfs @ 12.25 hrs, Volume= 0.027 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 53.79' @ 12.19 hrs Surf.Area= 525 sf Storage= 371 cf

Plug-Flow detention time= 86.4 min calculated for 0.027 af (89% of inflow) Center-of-Mass det. time= 34.9 min (814.1 - 779.2)


Volume	Invert	Avail.Sto	rage Storag	e Description	
#1	49.15'	1,00	7 cf Custon	m Stage Data (Pi	rismatic)Listed below (Recalc)
Elevatio (fee 49.1 52.7	<u>st)</u>	urf.Area (sq-ft) 3 3	Inc.Store (cubic-feet) 0 11	Cum.Store (cubic-feet) 0 11	
53.0	-	116	18	28	
53.3 55.0	-	525 525	112 866	141 1,007	
33.0	, o	323	800	1,007	
Device	Routing	Invert	Outlet Devic	es	
#1	Discarded	49.15'		Exfiltration ove	r Surface area from 49.15' - 52.70' Phase-In= 0.01'
#2	Secondary	53.35'	Head (feet)	0.20 0.40 0.60	road-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 70 2.64 2.63 2.64 2.64 2.63

Discarded OutFlow Max=0.00 cfs @ 0.00 hrs HW=49.15' (Free Discharge) 1=Exfiltration (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 12.25 hrs HW=53.47' TW=66.91' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Page 34

Pond 10P: DW #5140

Page 35

Inflow

Primary

Summary for Pond 11P: CB #6618

Inflow Area = 0.083 ac, 85.52% Impervious, Inflow Depth = 4.68" for 10-yr event

Inflow = 0.42 cfs @ 12.09 hrs, Volume= 0.032 af

Outflow = 0.42 cfs @ 12.09 hrs, Volume= 0.032 af, Atten= 0%, Lag= 0.0 min

Primary = 0.42 cfs @ 12.09 hrs, Volume= 0.032 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Peak Elev= 67.70' @ 12.31 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	52.05'	4.0" Round Culvert	
			L= 23.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 52.05' / 51.07' S= 0.0426 '/' Cc= 0.900	
			n= 0.012, Flow Area= 0.09 sf	

Primary OutFlow Max=0.46 cfs @ 12.09 hrs HW=59.76' TW=57.99' (Dynamic Tailwater) 1=Culvert (Outlet Controls 0.46 cfs @ 5.23 fps)

Pond 11P: CB #6618

Page 36

Inflow

Primary

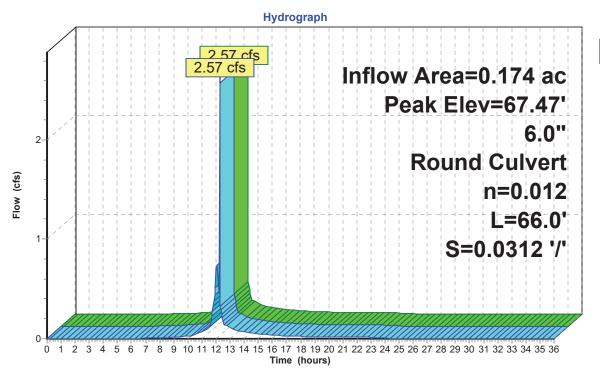
Summary for Pond 12P: CB #6616

Inflow Area = 0.174 ac, 67.75% Impervious, Inflow Depth = 5.86" for 10-yr event

Inflow = 2.57 cfs @ 12.25 hrs, Volume= 0.085 af

Outflow = 2.57 cfs @ 12.25 hrs, Volume= 0.085 af, Atten= 0%, Lag= 0.0 min

Primary = 2.57 cfs @ 12.25 hrs, Volume= 0.085 af


Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Peak Elev= 67.47' @ 12.26 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	50.92'	6.0" Round Culvert
			L= 66.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 50.92' / 48.86' S= 0.0312 '/' Cc= 0.900
			n= 0.012. Flow Area= 0.20 sf

Primary OutFlow Max=1.49 cfs @ 12.25 hrs HW=66.70' TW=61.38' (Dynamic Tailwater) 1=Culvert (Outlet Controls 1.49 cfs @ 7.59 fps)

Pond 12P: CB #6616

Page 37

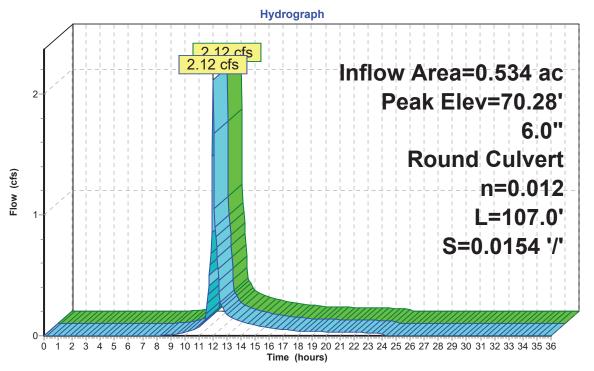
Summary for Pond 13P: CB #6637

Inflow Area = 0.534 ac, 52.04% Impervious, Inflow Depth = 2.94" for 10-yr event

Inflow = 2.12 cfs @ 12.00 hrs, Volume= 0.131 af

Outflow = 2.12 cfs @ 12.00 hrs, Volume= 0.131 af, Atten= 0%, Lag= 0.0 min

Primary = 2.12 cfs @ 12.00 hrs, Volume= 0.131 af


Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Peak Elev= 70.28' @ 12.02 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	50.46'	6.0" Round Culvert
			L= 107.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 50.46' / 48.81' S= 0.0154 '/' Cc= 0.900
			n= 0.012. Flow Area= 0.20 sf

Primary OutFlow Max=1.78 cfs @ 12.00 hrs HW=69.22' TW=58.12' (Dynamic Tailwater) 1=Culvert (Outlet Controls 1.78 cfs @ 9.06 fps)

Pond 13P: CB #6637

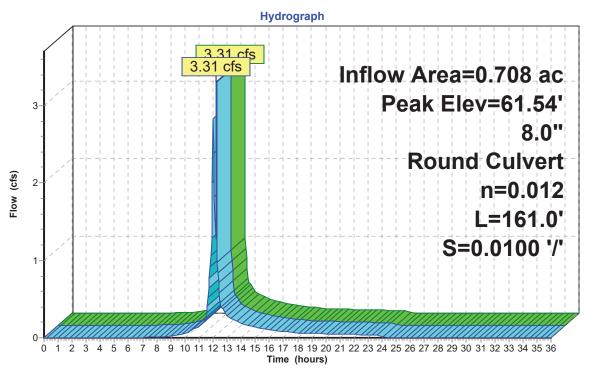
Page 38

Summary for Pond 14P: DMH #6628

Inflow Area = 0.708 ac, 55.90% Impervious, Inflow Depth = 3.66" for 10-yr event

Inflow = 3.31 cfs @ 12.25 hrs, Volume= 0.216 af

Outflow = 3.31 cfs @ 12.25 hrs, Volume= 0.216 af, Atten= 0%, Lag= 0.0 min


Primary = 3.31 cfs @ 12.25 hrs, Volume= 0.216 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 61.54' @ 12.25 hrs

evice	Routing	Invert	Outlet Devices
#1	Primary	49.40'	8.0" Round Culvert
			L= 161.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 49.40' / 47.79' S= 0.0100 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.35 sf

Primary OutFlow Max=3.18 cfs @ 12.25 hrs HW=61.17' TW=49.71' (Dynamic Tailwater) 1=Culvert (Outlet Controls 3.18 cfs @ 9.11 fps)

Pond 14P: DMH #6628

Page 39

Summary for Pond 15P: Leach Pit

Inflow Area = 0.708 ac, 55.90% Impervious, Inflow Depth = 3.66" for 10-yr event Inflow = 0.216 af

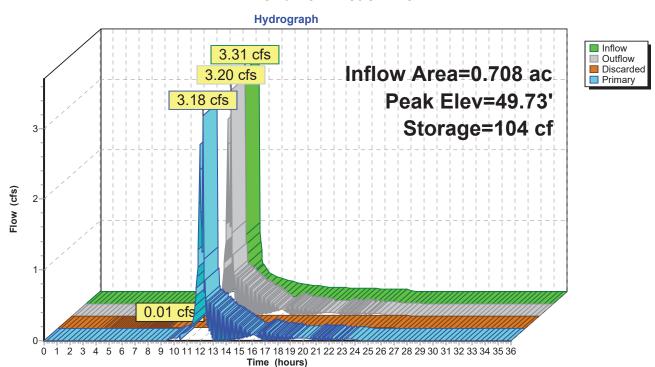
Outflow = 3.20 cfs @ 12.25 hrs, Volume= 0.216 af, Atten= 3%, Lag= 0.1 min

Discarded = 0.01 cfs @ 8.65 hrs, Volume= 0.021 af Primary = 3.18 cfs @ 12.25 hrs, Volume= 0.195 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 49.73' @ 12.25 hrs Surf.Area= 19 sf Storage= 104 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 8.4 min (823.7 - 815.2)

Volume	Invert	Avail.Storage	Storage Description
#1	44.24'	114 cf	Custom Stage Data (Prismatic)Listed below (Recalc)
	0 (1		0. 0.


Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
44.24	19	0	0
50.24	19	114	114

Device	Routing	Invert	Outlet Devices
#1	Primary	47.24'	12.0" Round Culvert L= 30.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 47.24 / 46.94 S= 0.0100 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf
#2	Discarded	44.24'	30.000 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.01 cfs @ 8.65 hrs HW=44.31' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=2.72 cfs @ 12.25 hrs HW=49.72' TW=49.20' (Dynamic Tailwater) 1=Culvert (Inlet Controls 2.72 cfs @ 3.46 fps)

Pond 15P: Leach Pit

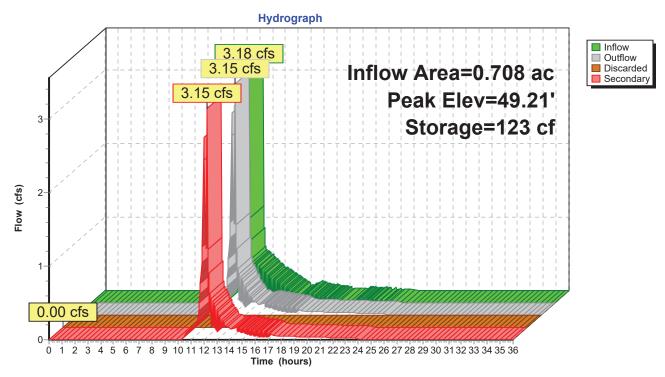
Page 41

Summary for Pond 16P: Leach Pit

Discarded = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af Secondary = 3.15 cfs @ 12.25 hrs, Volume= 0.193 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 49.21' @ 12.25 hrs Surf.Area= 19 sf Storage= 123 cf

Plug-Flow detention time= 10.9 min calculated for 0.193 af (99% of inflow) Center-of-Mass det. time= 2.8 min (809.3 - 806.4)


Volume	Invert	Avail.Stor	age Storage D	escription	
#1	42.75'	13	88 cf Custom S	Stage Data (Pi	rismatic)Listed below (Recalc)
Elevation (fee	et)	rf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
42.7	•	19	0	0	
48.7	-	19	114	114	
50.0	00	19	24	138	
Device	Routing	Invert	Outlet Devices		
#1	Discarded	42.75'			r Surface area from 42.75' - 48.75'
#2	Secondary	48.75'	4.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32		

Discarded OutFlow Max=0.00 cfs @ 0.00 hrs HW=42.75' (Free Discharge) 1=Exfiltration (Controls 0.00 cfs)

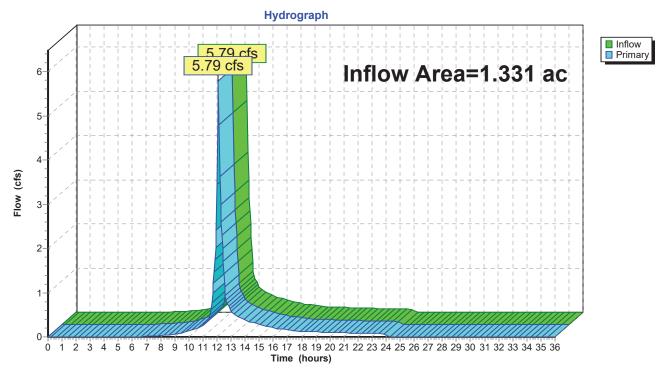
Secondary OutFlow Max=3.04 cfs @ 12.25 hrs HW=49.21' TW=48.92' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir (Weir Controls 3.04 cfs @ 1.67 fps)

Page 42

Pond 16P: Leach Pit

Page 43

Summary for Link 100: POA #1


Inflow Area = 1.331 ac, 51.16% Impervious, Inflow Depth = 3.88" for 10-yr event

Inflow = 5.79 cfs @ 12.09 hrs, Volume= 0.430 af

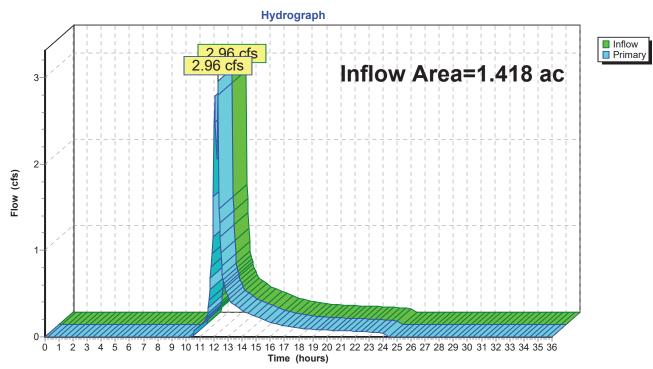
Primary = 5.79 cfs @ 12.09 hrs, Volume= 0.430 af, Atten= 0%, Lag= 0.0 min

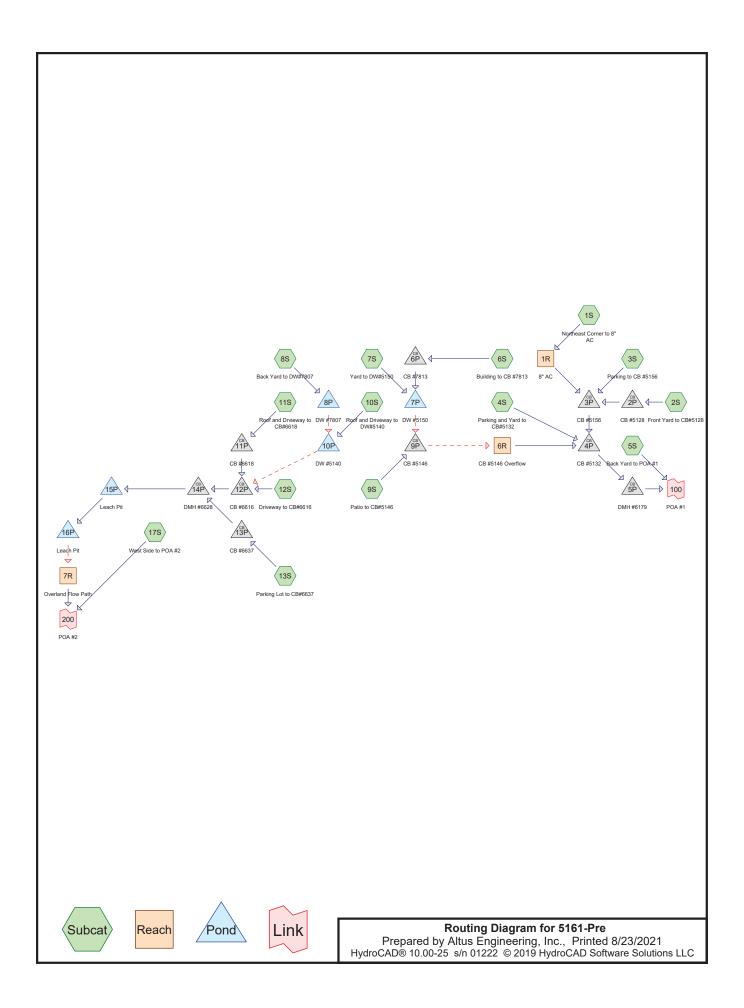
Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Link 100: POA #1

Page 44

Summary for Link 200: POA #2


Inflow Area = 1.418 ac, 21.51% Impervious, Inflow Depth = 2.39" for 10-yr event


Inflow = 2.96 cfs @ 12.27 hrs, Volume= 0.283 af

Primary = 2.96 cfs @ 12.27 hrs, Volume= 0.283 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Link 200: POA #2

Time span=0.00-36.00 hrs, dt=0.05 hrs, 721 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1S: Northeast Corner to 8" Runoff Area=12,217 sf 28.05% Impervious Runoff Depth=3.70" Flow Length=199' Tc=6.0 min CN=70 Runoff=1.19 cfs 0.087 af

Subcatchment 2S: Front Yard to CB#5128 Runoff Area=8,717 sf 62.34% Impervious Runoff Depth=5.23" Flow Length=152' Tc=6.0 min CN=84 Runoff=1.17 cfs 0.087 af

Subcatchment 3S: Parking to CB #5156 Flow Length=71' Slope=0.0183 '/' Tc=6.0 min CN=94 Runoff=0.71 cfs 0.057 af

Subcatchment 4S: Parking and Yard to Runoff Area=28,462 sf 48.73% Impervious Runoff Depth=4.68" Flow Length=199' Tc=6.0 min CN=79 Runoff=3.48 cfs 0.255 af

Subcatchment 5S: Back Yard to POA #1 Runoff Area=3,901 sf 71.11% Impervious Runoff Depth=5.58" Flow Length=80' Tc=6.0 min CN=87 Runoff=0.55 cfs 0.042 af

Subcatchment 6S: Building to CB #7813 Runoff Area=3,002 sf 59.56% Impervious Runoff Depth=4.24" Flow Length=44' Tc=6.0 min CN=75 Runoff=0.34 cfs 0.024 af

Subcatchment 7S: Yard to DW#5150

Runoff Area=2,885 sf 38.51% Impervious Runoff Depth=3.08"
Flow Length=58' Tc=6.0 min CN=64 Runoff=0.23 cfs 0.017 af

Subcatchment 8S: Back Yard to DW#7807 Runoff Area=13,543 sf 26.09% Impervious Runoff Depth=2.38" Flow Length=71' Tc=6.0 min CN=57 Runoff=0.81 cfs 0.062 af

Subcatchment 9S: Patio to CB#5146 Runoff Area=3,939 sf 48.26% Impervious Runoff Depth=4.68" Flow Length=73' Slope=0.0150 '/' Tc=6.0 min CN=79 Runoff=0.48 cfs 0.035 af

Subcatchment 10S: Roof and Driveway to Runoff Area=3,331 sf 82.92% Impervious Runoff Depth=6.15" Flow Length=48' Tc=6.0 min CN=92 Runoff=0.50 cfs 0.039 af

Subcatchment 11S: Roof and Drvieway to Runoff Area=3,598 sf 85.52% Impervious Runoff Depth=6.15" Flow Length=68' Slope=0.0100 '/' Tc=6.0 min CN=92 Runoff=0.54 cfs 0.042 af

Subcatchment 12S: Driveway to CB#6616 Runoff Area=3,965 sf 51.63% Impervious Runoff Depth=4.79" Flow Length=90' Tc=6.0 min CN=80 Runoff=0.49 cfs 0.036 af

Subcatchment 13S: Parking Lot to

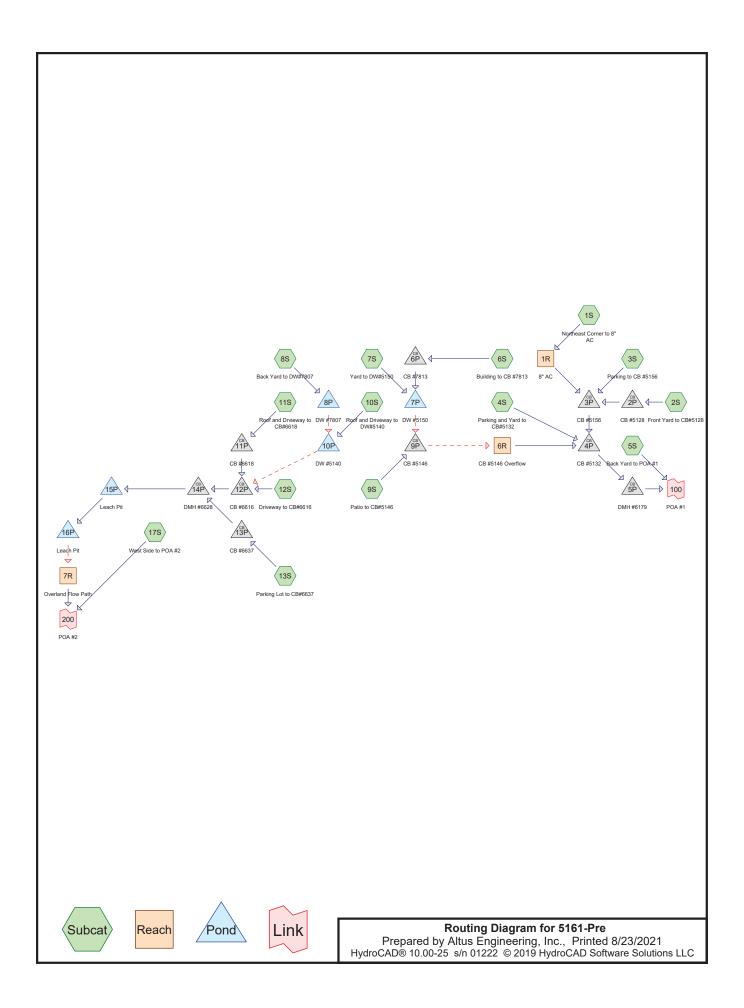
Runoff Area=23,260 sf 52.04% Impervious Runoff Depth=4.24"

Tc=0.0 min CN=75 Runoff=3.04 cfs 0.189 af

Subcatchment 17S: West Side to POA #2 Runoff Area=61,787 sf 21.51% Impervious Runoff Depth=1.46" Flow Length=383' Tc=10.3 min CN=47 Runoff=1.68 cfs 0.172 af

Reach 1R: 8" ACAvg. Flow Depth=0.50' Max Vel=4.25 fps Inflow=1.19 cfs 0.087 af 8.0" Round Pipe n=0.012 L=45.0' S=0.0100'/ Capacity=1.31 cfs Outflow=1.19 cfs 0.087 af

Reach 6R: CB #5146 OverflowAvg. Flow Depth=0.08' Max Vel=1.69 fps Inflow=1.04 cfs 0.076 af n=0.013 L=198.0' S=0.0102'/' Capacity=58.25 cfs Outflow=1.01 cfs 0.076 af


Printed 8/23/2021

Prepared by Altus Engineering, Inc.

HydroCAD® 10.00-25 s/n 01222 © 2019 HydroCAD Software Solutions LLC

Reach 7R: Overland Flo	ow Path Avg. Flow Depth=0.22' Max Vel=1.14 fps Inflow=4.43 cfs 0.279 af n=0.035 L=107.0' S=0.0091 '/' Capacity=104.18 cfs Outflow=3.56 cfs 0.279 af
Pond 2P: CB #5128	Peak Elev=51.51' Inflow=1.17 cfs 0.087 af Outflow=1.17 cfs 0.087 af
Pond 3P: CB #5156	Peak Elev=51.50' Inflow=3.08 cfs 0.231 af Outflow=3.08 cfs 0.231 af
Pond 4P: CB #5132	Peak Elev=50.60' Inflow=7.54 cfs 0.562 af Outflow=7.54 cfs 0.562 af
Pond 5P: DMH #6179	Peak Elev=50.28' Inflow=7.54 cfs 0.562 af Outflow=7.54 cfs 0.562 af
Pond 6P: CB #7813	Peak Elev=52.64' Inflow=0.34 cfs 0.024 af Outflow=0.34 cfs 0.024 af
Pond 7P: DW #5150	Peak Elev=52.47' Storage=11 cf Inflow=0.57 cfs 0.041 af Discarded=0.00 cfs 0.000 af Secondary=0.56 cfs 0.041 af Outflow=0.56 cfs 0.041 af
Pond 8P: DW #7807	Peak Elev=52.44' Storage=132 cf Inflow=0.81 cfs 0.062 af Discarded=0.66 cfs 0.062 af Secondary=0.00 cfs 0.000 af Outflow=0.66 cfs 0.062 af
Pond 9P: CB #5146	Peak Elev=52.47' Inflow=1.04 cfs 0.076 af Outflow=1.04 cfs 0.076 af
Pond 10P: DW #5140	Peak Elev=54.09' Storage=529 cf Inflow=0.50 cfs 0.039 af Discarded=0.00 cfs 0.000 af Secondary=3.46 cfs 0.036 af Outflow=3.46 cfs 0.036 af
Pond 11P: CB #6618	Peak Elev=89.78' Inflow=0.54 cfs 0.042 af 4.0" Round Culvert n=0.012 L=23.0' S=0.0426'/' Outflow=0.54 cfs 0.042 af
Pond 12P: CB #6616	Peak Elev=89.49' Inflow=3.89 cfs 0.115 af 6.0" Round Culvert n=0.012 L=66.0' S=0.0312'/' Outflow=3.89 cfs 0.115 af
Pond 13P: CB #6637	Peak Elev=92.09' Inflow=3.04 cfs 0.189 af 6.0" Round Culvert n=0.012 L=107.0' S=0.0154 '/' Outflow=3.04 cfs 0.189 af
Pond 14P: DMH #6628	Peak Elev=75.19' Inflow=4.79 cfs 0.304 af 8.0" Round Culvert n=0.012 L=161.0' S=0.0100'/' Outflow=4.79 cfs 0.304 af
Pond 15P: Leach Pit	Peak Elev=50.52' Storage=114 cf Inflow=4.79 cfs 0.304 af Discarded=0.01 cfs 0.022 af Primary=4.57 cfs 0.282 af Outflow=4.58 cfs 0.304 af
Pond 16P: Leach Pit	Peak Elev=49.32' Storage=125 cf Inflow=4.57 cfs 0.282 af Discarded=0.00 cfs 0.000 af Secondary=4.43 cfs 0.279 af Outflow=4.43 cfs 0.279 af
Link 100: POA #1	Inflow=8.08 cfs 0.603 af Primary=8.08 cfs 0.603 af
Link 200: POA #2	Inflow=4.55 cfs 0.451 af Primary=4.55 cfs 0.451 af

Total Runoff Area = 4.070 ac Runoff Volume = 1.144 af Average Runoff Depth = 3.37" 59.80% Pervious = 2.434 ac 40.20% Impervious = 1.636 ac

Time span=0.00-36.00 hrs, dt=0.05 hrs, 721 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1S: Northeast Corner to 8" Runoff Area=12,217 sf 28.05% Impervious Runoff Depth=4.90" Flow Length=199' Tc=6.0 min CN=70 Runoff=1.58 cfs 0.114 af

Subcatchment 2S: Front Yard to CB#5128 Runoff Area=8,717 sf 62.34% Impervious Runoff Depth=6.58"

Flow Length=152' Tc=6.0 min CN=84 Runoff=1.46 cfs 0.110 af

Subcatchment 3S: Parking to CB #5156 Runoff Area=4,667 sf 88.88% Impervious Runoff Depth=7.78" Flow Length=71' Slope=0.0183 '/' Tc=6.0 min CN=94 Runoff=0.86 cfs 0.069 af

Subcatchment 4S: Parking and Yard toRunoff Area=28,462 sf 48.73% Impervious Runoff Depth=5.98"
Flow Length=199' Tc=6.0 min CN=79 Runoff=4.41 cfs 0.325 af

Subcatchment 5S: Back Yard to POA #1 Runoff Area=3,901 sf 71.11% Impervious Runoff Depth=6.94" Flow Length=80' Tc=6.0 min CN=87 Runoff=0.68 cfs 0.052 af

Subcatchment 6S: Building to CB #7813 Runoff Area=3,002 sf 59.56% Impervious Runoff Depth=5.50" Flow Length=44' Tc=6.0 min CN=75 Runoff=0.43 cfs 0.032 af

Subcatchment 7S: Yard to DW#5150

Runoff Area=2,885 sf 38.51% Impervious Runoff Depth=4.18"
Flow Length=58' Tc=6.0 min CN=64 Runoff=0.32 cfs 0.023 af

Subcatchment 8S: Back Yard to DW#7807 Runoff Area=13,543 sf 26.09% Impervious Runoff Depth=3.36" Flow Length=71' Tc=6.0 min CN=57 Runoff=1.18 cfs 0.087 af

Subcatchment 9S: Patio to CB#5146 Runoff Area=3,939 sf 48.26% Impervious Runoff Depth=5.98" Flow Length=73' Slope=0.0150 '/' Tc=6.0 min CN=79 Runoff=0.61 cfs 0.045 af

Subcatchment 10S: Roof and Driveway to Runoff Area=3,331 sf 82.92% Impervious Runoff Depth=7.54" Flow Length=48' Tc=6.0 min CN=92 Runoff=0.61 cfs 0.048 af

Subcatchment 11S: Roof and Drvieway to Runoff Area=3,598 sf 85.52% Impervious Runoff Depth=7.54" Flow Length=68' Slope=0.0100 '/' Tc=6.0 min CN=92 Runoff=0.65 cfs 0.052 af

Subcatchment 12S: Driveway to CB#6616 Runoff Area=3,965 sf 51.63% Impervious Runoff Depth=6.10" Flow Length=90' Tc=6.0 min CN=80 Runoff=0.62 cfs 0.046 af

Subcatchment 13S: Parking Lot to

Runoff Area=23,260 sf 52.04% Impervious Runoff Depth=5.50"

Tc=0.0 min CN=75 Runoff=3.93 cfs 0.245 af

Subcatchment 17S: West Side to POA #2 Runoff Area=61,787 sf 21.51% Impervious Runoff Depth=2.23" Flow Length=383' Tc=10.3 min CN=47 Runoff=2.84 cfs 0.263 af

Reach 1R: 8" ACAvg. Flow Depth=0.67' Max Vel=4.27 fps Inflow=1.58 cfs 0.114 af 8.0" Round Pipe n=0.012 L=45.0' S=0.0100 '/' Capacity=1.31 cfs Outflow=1.42 cfs 0.114 af

Reach 6R: CB #5146 OverflowAvg. Flow Depth=0.09' Max Vel=1.82 fps Inflow=1.35 cfs 0.099 af n=0.013 L=198.0' S=0.0102'/' Capacity=58.25 cfs Outflow=1.31 cfs 0.099 af

Printed 8/23/2021

Prepared by Altus Engineering, Inc.

HydroCAD® 10.00-25 s/n 01222 © 2019 HydroCAD Software Solutions LLC

Reach 7R: Overland Flo	Path Avg. Flow Depth=0.24' Max Vel=1.21 fps Inflow=4.75 cfs 0.365 af n=0.035 L=107.0' S=0.0091 '/' Capacity=104.18 cfs Outflow=4.55 cfs 0.365 af
Pond 2P: CB #5128	Peak Elev=51.53' Inflow=1.46 cfs 0.110 af Outflow=1.46 cfs 0.110 af
Pond 3P: CB #5156	Peak Elev=51.52' Inflow=3.64 cfs 0.294 af Outflow=3.64 cfs 0.294 af
Pond 4P: CB #5132	Peak Elev=50.67' Inflow=9.32 cfs 0.718 af Outflow=9.32 cfs 0.718 af
Pond 5P: DMH #6179	Peak Elev=50.32' Inflow=9.32 cfs 0.718 af Outflow=9.32 cfs 0.718 af
Pond 6P: CB #7813	Peak Elev=52.65' Inflow=0.43 cfs 0.032 af Outflow=0.43 cfs 0.032 af
Pond 7P: DW #5150	Peak Elev=52.50' Storage=12 cf Inflow=0.75 cfs 0.055 af Discarded=0.00 cfs 0.000 af Secondary=0.74 cfs 0.054 af Outflow=0.74 cfs 0.054 af
Pond 8P: DW #7807	Peak Elev=52.57' Storage=282 cf Inflow=1.18 cfs 0.087 af Discarded=0.74 cfs 0.087 af Secondary=0.00 cfs 0.000 af Outflow=0.74 cfs 0.087 af
Pond 9P: CB #5146	Peak Elev=52.50' Inflow=1.35 cfs 0.099 af Outflow=1.35 cfs 0.099 af
Pond 10P: DW #5140	Peak Elev=54.51' Storage=751 cf Inflow=0.61 cfs 0.048 af Discarded=0.00 cfs 0.000 af Secondary=3.96 cfs 0.047 af Outflow=3.96 cfs 0.047 af
Pond 11P: CB #6618	Peak Elev=94.61' Inflow=0.65 cfs 0.052 af 4.0" Round Culvert n=0.012 L=23.0' S=0.0426'/' Outflow=0.65 cfs 0.052 af
Pond 12P: CB #6616	Peak Elev=94.56' Inflow=4.24 cfs 0.145 af 6.0" Round Culvert n=0.012 L=66.0' S=0.0312'/ Outflow=4.24 cfs 0.145 af
Pond 13P: CB #6637	Peak Elev=118.47' Inflow=3.93 cfs 0.245 af 6.0" Round Culvert n=0.012 L=107.0' S=0.0154'/ Outflow=3.93 cfs 0.245 af
Pond 14P: DMH #6628	Peak Elev=75.80' Inflow=4.78 cfs 0.390 af 8.0" Round Culvert n=0.012 L=161.0' S=0.0100'/ Outflow=4.78 cfs 0.390 af
Pond 15P: Leach Pit	Peak Elev=50.86' Storage=114 cf Inflow=4.78 cfs 0.390 af Discarded=0.01 cfs 0.022 af Primary=4.81 cfs 0.367 af Outflow=4.82 cfs 0.390 af
Pond 16P: Leach Pit	Peak Elev=49.35' Storage=125 cf Inflow=4.81 cfs 0.367 af Discarded=0.00 cfs 0.000 af Secondary=4.75 cfs 0.365 af Outflow=4.75 cfs 0.365 af
Link 100: POA #1	Inflow=9.99 cfs 0.770 af Primary=9.99 cfs 0.770 af
Link 200: POA #2	Inflow=6.17 cfs 0.628 af Primary=6.17 cfs 0.628 af

Prepared by Altus Engineering, Inc.

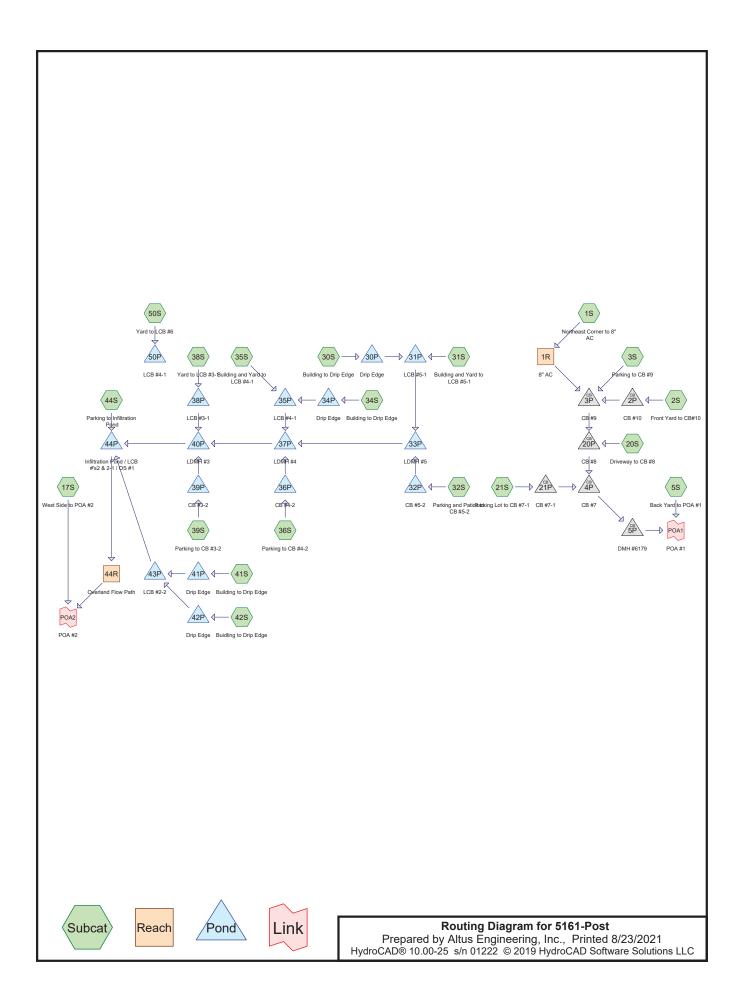
HydroCAD® 10.00-25 s/n 01222 © 2019 HydroCAD Software Solutions LLC

Total Runoff Area = 4.070 ac Runoff Volume = 1.511 af Average Runoff Depth = 4.46" 59.80% Pervious = 2.434 ac 40.20% Impervious = 1.636 ac

Section 4

Drainage Calculations

Post-Development


2-Year, 24-Hour Summary

10-Year, 24-Hour Complete

25-Year, 24-Hour Summary

50-Year, 24-Hour Summary

Tc=6.0 min CN=94 Runoff=0.30 cfs 0.023 af

HydroCAD® 10.00-25 s/n 01222 © 2019 HydroCAD Software Solutions LLC

Time span=0.00-36.00 hrs, dt=0.05 hrs, 721 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1S: Northeast Corner to 8" Runoff Area=12,050 sf 26.86% Impervious Runoff Depth=1.07" Flow Length=199' Tc=6.0 min CN=69 Runoff=0.32 cfs 0.025 af Runoff Area=6,933 sf 69.51% Impervious Runoff Depth=2.35" Subcatchment 2S: Front Yard to CB#10 Flow Length=147' Tc=6.0 min CN=87 Runoff=0.43 cfs 0.031 af Subcatchment 3S: Parking to CB #9 Runoff Area=3,144 sf 76.02% Impervious Runoff Depth=2.53" Flow Length=46' Slope=0.0181 '/' Tc=6.0 min CN=89 Runoff=0.21 cfs 0.015 af Runoff Area=10,578 sf 32.70% Impervious Runoff Depth=1.31" Subcatchment 5S: Back Yard to POA #1 Flow Length=198' Tc=6.0 min CN=73 Runoff=0.35 cfs 0.026 af Runoff Area=25,283 sf 1.63% Impervious Runoff Depth=0.00" Subcatchment 17S: West Side to POA #2 Flow Length=357' Tc=11.1 min CN=33 Runoff=0.00 cfs 0.000 af Runoff Area=4,708 sf 85.92% Impervious Runoff Depth=2.92" Subcatchment 20S: Driveway to CB #8 Flow Length=152' Tc=6.0 min CN=93 Runoff=0.35 cfs 0.026 af Subcatchment21S: Parking Lot to CB #7-1 Runoff Area=17,572 sf 63.56% Impervious Runoff Depth=2.18" Flow Length=262' Tc=9.0 min CN=85 Runoff=0.91 cfs 0.073 af Runoff Area=4,788 sf 41.52% Impervious Runoff Depth=0.75" Subcatchment 30S: Building to Drip Edge Tc=6.0 min CN=63 Runoff=0.08 cfs 0.007 af Runoff Area=2,900 sf 58.93% Impervious Runoff Depth=1.44" Subcatchment 31S: Building and Yard to Tc=6.0 min CN=75 Runoff=0.11 cfs 0.008 af Subcatchment 32S: Parking and Patios to Runoff Area=13,060 sf 68.77% Impervious Runoff Depth=2.27" Flow Length=130' Tc=6.0 min CN=86 Runoff=0.78 cfs 0.057 af Runoff Area=2,689 sf 86.09% Impervious Runoff Depth=2.82" Subcatchment 34S: Building to Drip Edge Tc=6.0 min CN=92 Runoff=0.19 cfs 0.015 af Subcatchment 35S: Building and Yard to Runoff Area=6,139 sf 23.26% Impervious Runoff Depth=0.45" Flow Length=134' Tc=6.0 min CN=56 Runoff=0.04 cfs 0.005 af Runoff Area=21,070 sf 71.36% Impervious Runoff Depth=2.35" Subcatchment 36S: Parking to CB #4-2 Flow Length=108' Tc=7.1 min CN=87 Runoff=1.26 cfs 0.095 af Subcatchment 38S: Yard to LCB #3-1 Runoff Area=4,418 sf 16.50% Impervious Runoff Depth=0.22" Flow Length=103' Tc=6.0 min CN=49 Runoff=0.01 cfs 0.002 af Runoff Area=8,038 sf 83.53% Impervious Runoff Depth=2.82" Subcatchment 39S: Parking to CB #3-2 Flow Length=67' Tc=6.0 min CN=92 Runoff=0.58 cfs 0.043 af Subcatchment41S: Building to Drip Edge Runoff Area=3,996 sf 93.09% Impervious Runoff Depth=3.02"

Runoff Area=5,707 sf 57.68% Impervious Runoff Depth=1.19" Subcatchment 42S: Builling to Drip Edge Tc=6.0 min CN=71 Runoff=0.17 cfs 0.013 af

Runoff Area=21,178 sf 81.09% Impervious Runoff Depth=2.35" **Subcatchment 44S: Parking to Infiltration** Flow Length=110' Tc=6.0 min CN=87 Runoff=1.31 cfs 0.095 af

Runoff Area=3,058 sf 28.78% Impervious Runoff Depth=0.45" Subcatchment 50S: Yard to LCB #6 Flow Length=66' Tc=6.0 min CN=56 Runoff=0.02 cfs 0.003 af

Reach 1R: 8" AC Avg. Flow Depth=0.22' Max Vel=3.09 fps Inflow=0.32 cfs 0.025 af 8.0" Round Pipe n=0.012 L=45.0' S=0.0100 '/' Capacity=1.31 cfs Outflow=0.32 cfs 0.025 af

Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af Reach 44R: Overland Flow Path n=0.035 L=114.0' S=0.0091'/' Capacity=104.51 cfs Outflow=0.00 cfs 0.000 af

Pond 2P: CB #10 Peak Elev=51.40' Inflow=0.43 cfs 0.031 af

Outflow=0.43 cfs 0.031 af

Peak Elev=51.40' Inflow=0.95 cfs 0.071 af Pond 3P: CB #9

Outflow=0.95 cfs 0.071 af

Pond 4P: CB #7 Peak Elev=51.39' Inflow=2.18 cfs 0.171 af

8.0" Round Culvert n=0.012 L=48.0' S=0.0096 '/' Outflow=2.18 cfs 0.171 af

Pond 5P: DMH #6179 Peak Elev=49.54' Inflow=2.18 cfs 0.171 af

Outflow=2.18 cfs 0.171 af

Pond 20P: CB #8 Peak Elev=51.40' Inflow=1.29 cfs 0.097 af

Outflow=1.29 cfs 0.097 af

Pond 21P: CB #7-1 Peak Elev=51.40' Inflow=0.91 cfs 0.073 af

Outflow=0.91 cfs 0.073 af

Peak Elev=51.00' Storage=0 cf Inflow=0.08 cfs 0.007 af Pond 30P: Drip Edge

Discarded=0.08 cfs 0.007 af Primary=0.00 cfs 0.000 af Outflow=0.08 cfs 0.007 af

Peak Elev=51.01' Storage=1 cf Inflow=0.19 cfs 0.015 af

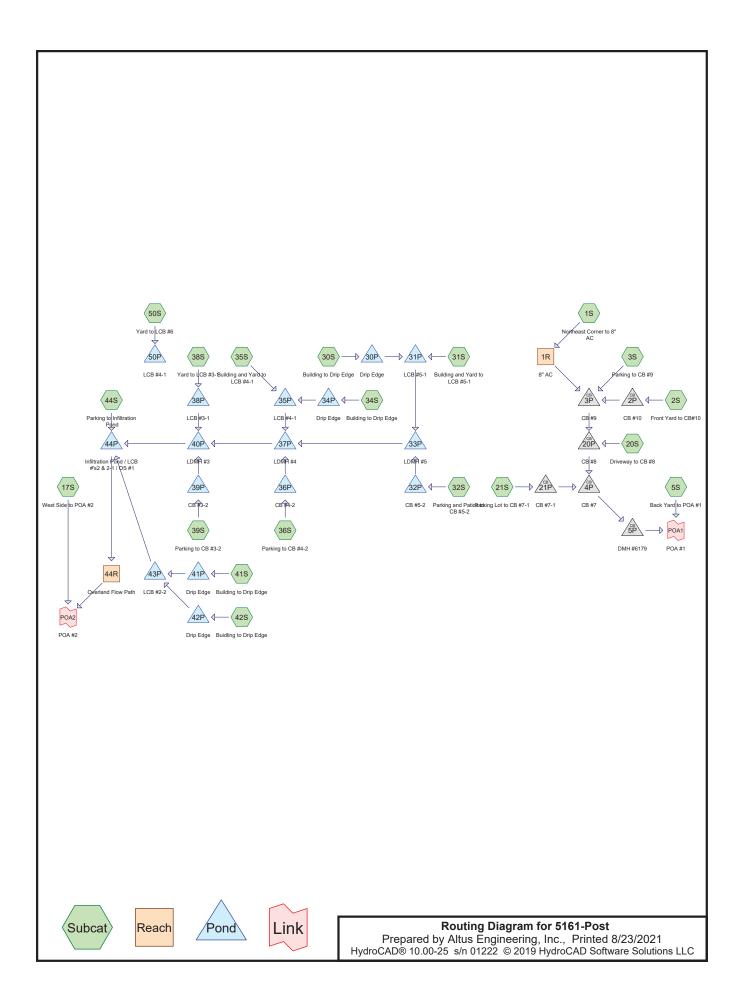
Pond 31P: LCB #5-1 Peak Elev=46.20' Storage=38 cf Inflow=0.11 cfs 0.008 af Discarded=0.06 cfs 0.008 af Primary=0.00 cfs 0.000 af Outflow=0.06 cfs 0.008 af

Pond 32P: CB #5-2 Peak Elev=48.89' Storage=7 cf Inflow=0.78 cfs 0.057 af

12.0" Round Culvert n=0.012 L=20.0' S=0.0050 '/' Outflow=0.78 cfs 0.057 af

Pond 33P: LDMH #5 Peak Elev=47.69' Storage=253 cf Inflow=0.78 cfs 0.057 af Discarded=0.46 cfs 0.057 af Primary=0.00 cfs 0.000 af Outflow=0.46 cfs 0.057 af

Pond 34P: Drip Edge Discarded=0.19 cfs 0.015 af Primary=0.00 cfs 0.000 af Outflow=0.19 cfs 0.015 af


Peak Elev=44.65' Storage=5 cf Inflow=0.04 cfs 0.005 af Pond 35P: LCB #4-1 Discarded=0.03 cfs 0.005 af Primary=0.00 cfs 0.000 af Outflow=0.03 cfs 0.005 af

Pond 36P: CB #4-2 Peak Elev=49.14' Storage=9 cf Inflow=1.26 cfs 0.095 af 12.0" Round Culvert n=0.012 L=13.0' S=0.0046 '/' Outflow=1.26 cfs 0.095 af Prepared by Altus Engineering, Inc.

HydroCAD® 10.00-25 s/n 01222 © 2019 HydroCAD Software Solutions LLC

Pond 37P: LDMH #4	Peak Elev=49.00' Storage=423 cf Inflow=1.26 cfs 0.095 af Discarded=0.38 cfs 0.082 af Primary=0.93 cfs 0.013 af Outflow=1.28 cfs 0.095 af
Pond 38P: LCB #3-1	Peak Elev=44.75' Storage=0 cf Inflow=0.01 cfs 0.002 af Discarded=0.01 cfs 0.002 af Primary=0.00 cfs 0.000 af Outflow=0.01 cfs 0.002 af
Pond 39P: CB #3-2	Peak Elev=49.00' Storage=8 cf Inflow=0.58 cfs 0.043 af 12.0" Round Culvert n=0.012 L=12.0' S=0.0050 '/' Outflow=0.58 cfs 0.043 af
Pond 40P: LDMH #3	Peak Elev=49.00' Storage=498 cf Inflow=1.44 cfs 0.057 af Discarded=0.47 cfs 0.057 af Primary=0.00 cfs 0.000 af Outflow=0.47 cfs 0.057 af
Pond 41P: Drip Edge	Peak Elev=52.34' Storage=38 cf Inflow=0.30 cfs 0.023 af Discarded=0.21 cfs 0.023 af Primary=0.00 cfs 0.000 af Outflow=0.21 cfs 0.023 af
Pond 42P: Drip Edge	Peak Elev=52.01' Storage=1 cf Inflow=0.17 cfs 0.013 af Discarded=0.17 cfs 0.013 af Primary=0.00 cfs 0.000 af Outflow=0.17 cfs 0.013 af
Pond 43P: LCB #2-2	Peak Elev=43.50' Storage=0 cf Inflow=0.00 cfs 0.000 af Discarded=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Pond 44P: Infiltration Pon	d / LCB #'s2 & 2-1 / Peak Elev=51.05' Storage=509 cf Inflow=1.31 cfs 0.095 af Discarded=1.14 cfs 0.095 af Primary=0.00 cfs 0.000 af Outflow=1.14 cfs 0.095 af
Pond 50P: LCB #4-1	Peak Elev=46.01' Storage=0 cf Inflow=0.02 cfs 0.003 af Outflow=0.02 cfs 0.003 af
Link POA1: POA #1	Inflow=2.53 cfs 0.197 af Primary=2.53 cfs 0.197 af
Link POA2: POA #2	Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af

Total Runoff Area = 4.070 ac Runoff Volume = 0.563 af Average Runoff Depth = 1.66" 47.27% Pervious = 1.924 ac 52.73% Impervious = 2.146 ac

Tc=6.0 min CN=94 Runoff=0.48 cfs 0.037 af

HydroCAD® 10.00-25 s/n 01222 © 2019 HydroCAD Software Solutions LLC

Time span=0.00-36.00 hrs, dt=0.05 hrs, 721 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1S: Northeast Corner to 8" Runoff Area=12,050 sf 26.86% Impervious Runoff Depth=2.40" Flow Length=199' Tc=6.0 min CN=69 Runoff=0.76 cfs 0.055 af Runoff Area=6,933 sf 69.51% Impervious Runoff Depth=4.14" Subcatchment 2S: Front Yard to CB#10 Flow Length=147' Tc=6.0 min CN=87 Runoff=0.74 cfs 0.055 af Subcatchment 3S: Parking to CB #9 Runoff Area=3,144 sf 76.02% Impervious Runoff Depth=4.35" Flow Length=46' Slope=0.0181 '/' Tc=6.0 min CN=89 Runoff=0.35 cfs 0.026 af Runoff Area=10,578 sf 32.70% Impervious Runoff Depth=2.76" Subcatchment 5S: Back Yard to POA #1 Flow Length=198' Tc=6.0 min CN=73 Runoff=0.77 cfs 0.056 af Runoff Area=25,283 sf 1.63% Impervious Runoff Depth=0.11" Subcatchment 17S: West Side to POA #2 Flow Length=357' Tc=11.1 min CN=33 Runoff=0.01 cfs 0.005 af Runoff Area=4,708 sf 85.92% Impervious Runoff Depth=4.79" Subcatchment 20S: Driveway to CB #8 Flow Length=152' Tc=6.0 min CN=93 Runoff=0.55 cfs 0.043 af Subcatchment21S: Parking Lot to CB #7-1 Runoff Area=17,572 sf 63.56% Impervious Runoff Depth=3.93" Flow Length=262' Tc=9.0 min CN=85 Runoff=1.62 cfs 0.132 af Runoff Area=4,788 sf 41.52% Impervious Runoff Depth=1.90" Subcatchment 30S: Building to Drip Edge Tc=6.0 min CN=63 Runoff=0.23 cfs 0.017 af Runoff Area=2,900 sf 58.93% Impervious Runoff Depth=2.94" Subcatchment 31S: Building and Yard to Tc=6.0 min CN=75 Runoff=0.23 cfs 0.016 af Subcatchment 32S: Parking and Patios to Runoff Area=13,060 sf 68.77% Impervious Runoff Depth=4.03" Flow Length=130' Tc=6.0 min CN=86 Runoff=1.36 cfs 0.101 af Runoff Area=2,689 sf 86.09% Impervious Runoff Depth=4.68" Subcatchment 34S: Building to Drip Edge Tc=6.0 min CN=92 Runoff=0.31 cfs 0.024 af Subcatchment 35S: Building and Yard to Runoff Area=6,139 sf 23.26% Impervious Runoff Depth=1.37" Flow Length=134' Tc=6.0 min CN=56 Runoff=0.20 cfs 0.016 af Runoff Area=21,070 sf 71.36% Impervious Runoff Depth=4.14" Subcatchment 36S: Parking to CB #4-2 Flow Length=108' Tc=7.1 min CN=87 Runoff=2.17 cfs 0.167 af Subcatchment 38S: Yard to LCB #3-1 Runoff Area=4,418 sf 16.50% Impervious Runoff Depth=0.89" Flow Length=103' Tc=6.0 min CN=49 Runoff=0.07 cfs 0.008 af Runoff Area=8,038 sf 83.53% Impervious Runoff Depth=4.68" Subcatchment 39S: Parking to CB #3-2 Flow Length=67' Tc=6.0 min CN=92 Runoff=0.93 cfs 0.072 af Subcatchment41S: Building to Drip Edge Runoff Area=3,996 sf 93.09% Impervious Runoff Depth=4.90"

Peak Elev=51.80' Storage=42 cf Inflow=2.17 cfs 0.167 af

12.0" Round Culvert n=0.012 L=13.0' S=0.0046 '/' Outflow=2.17 cfs 0.167 af

Pond 36P: CB #4-2

HydroCAD® 10.00-25 s/n 01222 © 2019 HydroCAD Software Solutions LLC

Runoff Area=5,707 sf 57.68% Impervious Runoff Depth=2.58" Subcatchment 42S: Builling to Drip Edge Tc=6.0 min CN=71 Runoff=0.39 cfs 0.028 af Runoff Area=21,178 sf 81.09% Impervious Runoff Depth=4.14" **Subcatchment 44S: Parking to Infiltration** Flow Length=110' Tc=6.0 min CN=87 Runoff=2.25 cfs 0.168 af Runoff Area=3,058 sf 28.78% Impervious Runoff Depth=1.37" Subcatchment 50S: Yard to LCB #6 Flow Length=66' Tc=6.0 min CN=56 Runoff=0.10 cfs 0.008 af Reach 1R: 8" AC Avg. Flow Depth=0.36' Max Vel=3.89 fps Inflow=0.76 cfs 0.055 af 8.0" Round Pipe n=0.012 L=45.0' S=0.0100 '/' Capacity=1.31 cfs Outflow=0.76 cfs 0.055 af Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af Reach 44R: Overland Flow Path n=0.035 L=114.0' S=0.0091'/' Capacity=104.51 cfs Outflow=0.00 cfs 0.000 af Pond 2P: CB #10 Peak Elev=57.53' Inflow=0.74 cfs 0.055 af Outflow=0.74 cfs 0.055 af Peak Elev=57.57' Inflow=1.84 cfs 0.136 af Pond 3P: CB #9 Outflow=1.84 cfs 0.136 af Peak Elev=57.57' Inflow=3.97 cfs 0.312 af Pond 4P: CB #7 8.0" Round Culvert n=0.012 L=48.0' S=0.0096 '/' Outflow=3.97 cfs 0.312 af Pond 5P: DMH #6179 Peak Elev=50.16' Inflow=3.97 cfs 0.312 af Outflow=3.97 cfs 0.312 af Pond 20P: CB #8 Peak Elev=57.57' Inflow=2.39 cfs 0.180 af Outflow=2.39 cfs 0.180 af Pond 21P: CB #7-1 Peak Elev=57.57' Inflow=1.62 cfs 0.132 af Outflow=1.62 cfs 0.132 af Peak Elev=51.01' Storage=1 cf Inflow=0.23 cfs 0.017 af Pond 30P: Drip Edge Discarded=0.23 cfs 0.017 af Primary=0.00 cfs 0.000 af Outflow=0.23 cfs 0.017 af Pond 31P: LCB #5-1 Peak Elev=47.30' Storage=67 cf Inflow=0.23 cfs 0.016 af Discarded=0.22 cfs 0.016 af Primary=0.00 cfs 0.000 af Outflow=0.22 cfs 0.016 af Pond 32P: CB #5-2 Peak Elev=49.21' Storage=11 cf Inflow=1.36 cfs 0.101 af 12.0" Round Culvert n=0.012 L=20.0' S=0.0050 '/' Outflow=1.36 cfs 0.101 af **Pond 33P: LDMH #5** Peak Elev=49.19' Storage=665 cf Inflow=1.36 cfs 0.101 af Discarded=0.57 cfs 0.101 af Primary=0.00 cfs 0.000 af Outflow=0.57 cfs 0.101 af Peak Elev=51.08' Storage=13 cf Inflow=0.31 cfs 0.024 af Pond 34P: Drip Edge Discarded=0.26 cfs 0.024 af Primary=0.00 cfs 0.000 af Outflow=0.26 cfs 0.024 af Peak Elev=47.26' Storage=60 cf Inflow=0.20 cfs 0.016 af Pond 35P: LCB #4-1 Discarded=0.17 cfs 0.016 af Primary=0.00 cfs 0.000 af Outflow=0.17 cfs 0.016 af

Pond 37P: LDMH #4

Peak Elev=51.77' Storage=668 cf Inflow=2.17 cfs 0.167 af
Discarded=0.50 cfs 0.131 af Primary=1.70 cfs 0.035 af Outflow=2.18 cfs 0.167 af

Peak Elev=46.00' Storage=21 cf Inflow=0.07 cfs 0.008 af

Discarded=0.05 cfs 0.008 af Primary=0.00 cfs 0.000 af Outflow=0.05 cfs 0.008 af

Pond 39P: CB #3-2 Peak Elev=51.91' Storage=45 cf Inflow=0.93 cfs 0.072 af 12.0" Round Culvert n=0.012 L=12.0' S=0.0050 '/' Outflow=0.92 cfs 0.072 af

Pond 40P: LDMH #3 Peak Elev=51.77' Storage=804 cf Inflow=2.45 cfs 0.107 af Discarded=0.58 cfs 0.094 af Primary=1.14 cfs 0.014 af Outflow=1.71 cfs 0.107 af

Pond 41P: Drip Edge

Peak Elev=52.76' Storage=91 cf Inflow=0.48 cfs 0.037 af
Discarded=0.22 cfs 0.036 af Primary=0.18 cfs 0.002 af Outflow=0.41 cfs 0.038 af

Pond 42P: Drip Edge

Peak Elev=52.42' Storage=57 cf Inflow=0.39 cfs 0.028 af

Discarded=0.25 cfs 0.028 af Primary=0.00 cfs 0.000 af Outflow=0.25 cfs 0.028 af

Pond 43P: LCB #2-2 Peak Elev=45.83' Storage=46 cf Inflow=0.18 cfs 0.002 af Discarded=0.06 cfs 0.002 af Primary=0.00 cfs 0.000 af Outflow=0.06 cfs 0.002 af

Pond 44P: Infiltration Pond / LCB #'s2 & 2-1 / Peak Elev=51.77' Storage=1,345 cf Inflow=2.87 cfs 0.181 af Discarded=1.40 cfs 0.181 af Primary=0.00 cfs 0.000 af Outflow=1.40 cfs 0.181 af

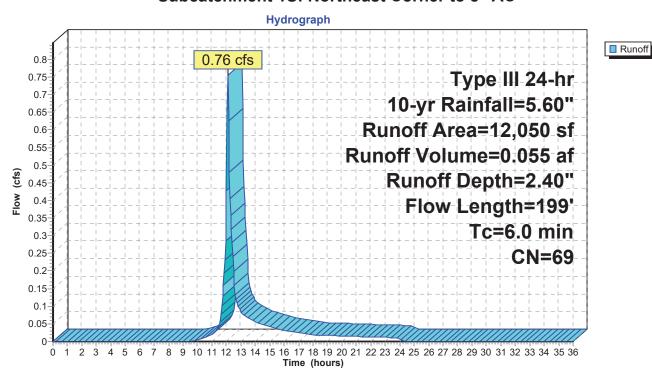
Pond 50P: LCB #4-1 Peak Elev=47.75' Storage=32 cf Inflow=0.10 cfs 0.008 af

Outflow=0.05 cfs 0.008 af

Link POA1: POA #1Inflow=4.73 cfs 0.367 af
Primary=4.73 cfs 0.367 af

Link POA2: POA #2 Inflow=0.01 cfs 0.005 af Primary=0.01 cfs 0.005 af

Total Runoff Area = 4.070 ac Runoff Volume = 1.034 af Average Runoff Depth = 3.05" 47.27% Pervious = 1.924 ac 52.73% Impervious = 2.146 ac


Summary for Subcatchment 1S: Northeast Corner to 8" AC

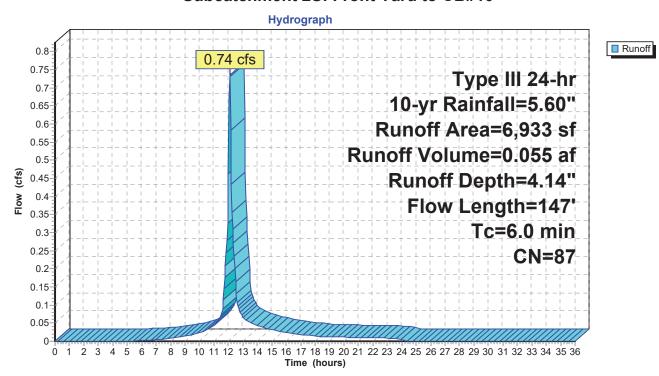
Runoff = 0.76 cfs @ 12.10 hrs, Volume= 0.055 af, Depth= 2.40"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

	А	rea (sf)	CN [Description					
*		2,260	98 F	Roof					
*		977	98 I	mpervious					
		5,265	61 >	>75% Gras	s cover, Go	ood, HSG B			
_		3,548	55 \	5 Woods, Good, HSG B					
		12,050	69 \	Weighted A	verage				
		8,813	7	73.14% Per	vious Area				
		3,237	2	26.86% Imp	ervious Ar	ea			
	Tc	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	0.4	28	0.0200	1.15		Sheet Flow,			
						Smooth surfaces n= 0.011 P2= 3.69"			
	4.3	171	0.0175	0.66		Shallow Concentrated Flow,			
_						Woodland Kv= 5.0 fps			
	4.7	199	Total,	Increased t	o minimum	Tc = 6.0 min			

Subcatchment 1S: Northeast Corner to 8" AC

Summary for Subcatchment 2S: Front Yard to CB#10


Runoff = 0.74 cfs @ 12.09 hrs, Volume= 0.055 af, Depth= 4.14"

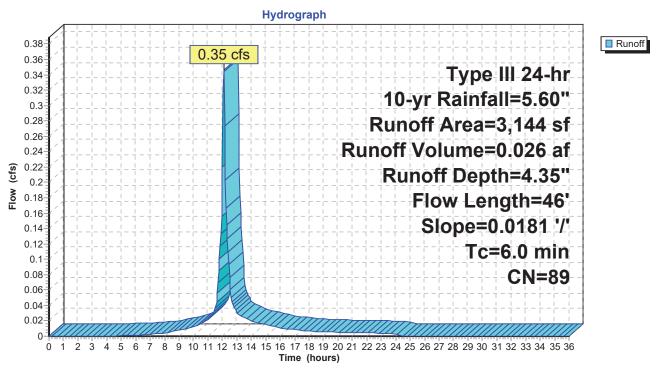
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

	Α	rea (sf)	CN E	escription		
*		262	98 F	Roof		
*		4,557	98 lı	npervious		
		2,114	61 >	75% Gras	s cover, Go	ood, HSG B
		6,933	87 V	Veighted A	verage	
		2,114	3	0.49% Per	vious Area	
		4,819	6	9.51% Imp	pervious Ar	ea
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.4	31	0.0200	1.17		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.69"
	0.5	41	0.0040	1.28		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	0.4	75	0.0232	3.09		Shallow Concentrated Flow,
_						Paved Kv= 20.3 fps
	4.0	4 4 -				T 00 :

1.3 147 Total, Increased to minimum Tc = 6.0 min

Subcatchment 2S: Front Yard to CB#10

Summary for Subcatchment 3S: Parking to CB #9


Runoff = 0.35 cfs @ 12.09 hrs, Volume= 0.026 af, Depth= 4.35"

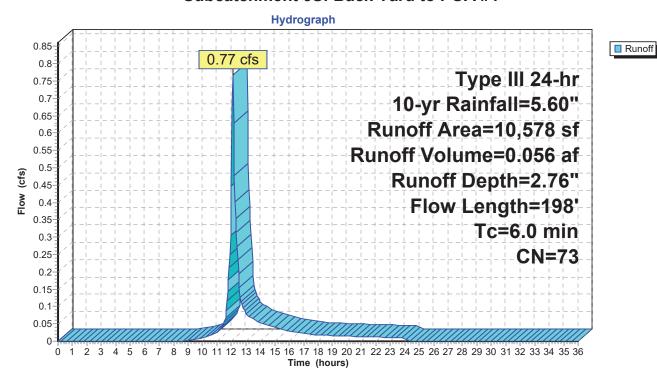
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

	Α	rea (sf)	CN I	Description					
*		667	98 I	Roof					
*		1,723	98 I	mpervious					
		754	61 :	>75% Gras	s cover, Go	ood, HSG B			
		3,144	89 \	Neighted A	verage				
		754	4	23.98% Per	vious Area				
		2,390	-	76.02% Imp	pervious Ar	ea			
	Тс	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	0.6	46	0.0181	1.22		Sheet Flow,			
						Smooth surfaces	n= 0.011	P2= 3.69"	
	0.6	46	Total	Increased t	o minimum	$T_C = 6.0 \text{ min}$		•	

otal, Increased to minimum 1c = 6.0 min

Subcatchment 3S: Parking to CB #9

Summary for Subcatchment 5S: Back Yard to POA #1

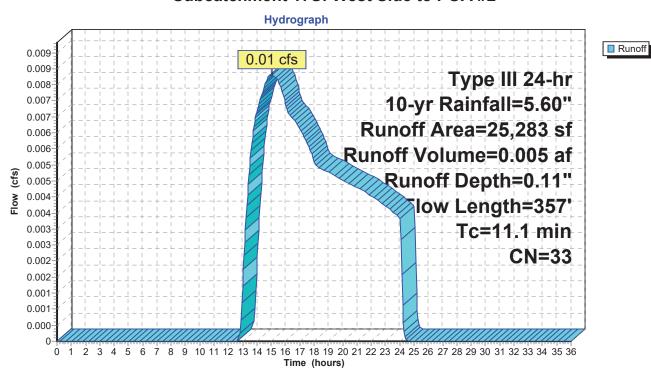

Runoff = 0.77 cfs @ 12.09 hrs, Volume= 0.056 af, Depth= 2.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

_	Α	rea (sf)	CN E	escription		
*		925	98 F	Roof		
*		2,534	98 li	mpervious		
		7,119		•	s cover, Go	ood, HSG B
		10,578	73 V	Veighted A	verage	
		7,119		0	vious Area	
		3,459	3	2.70% Imp	ervious Ar	ea
		•				
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.7	13	0.2000	0.31		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.69"
	0.7	72	0.0588	1.70		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	2.0	113	0.0175	0.93		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	2 /	100	Total I	norgaed t	o minimum	To = 6.0 min

3.4 198 Total, Increased to minimum Tc = 6.0 min

Subcatchment 5S: Back Yard to POA #1


Summary for Subcatchment 17S: West Side to POA #2

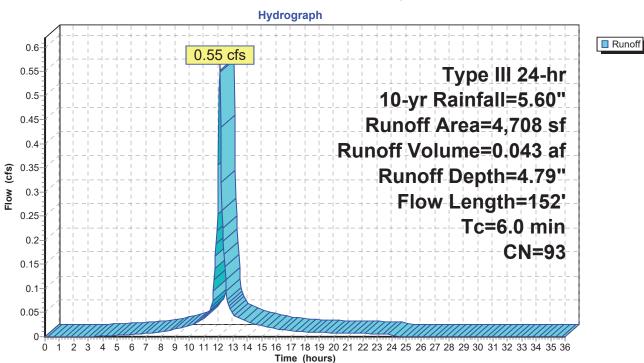
Runoff = 0.01 cfs @ 15.06 hrs, Volume= 0.005 af, Depth= 0.11"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

	Α	rea (sf)	CN [Description		
*		413	98 F	Roof		
		4,555	39 >	75% Gras	s cover, Go	ood, HSG A
		20,315			od, HSG A	
		25,283	33 \	Veighted A	verage	
		24,870		0	vious Area	
		413	1	.63% Impe	ervious Area	a
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	3.3	44	0.0500	0.22		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.69"
	4.4	216	0.0273	0.83		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	3.4	97	0.0091	0.48		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	11.1	357	Total			

Subcatchment 17S: West Side to POA #2

Summary for Subcatchment 20S: Driveway to CB #8

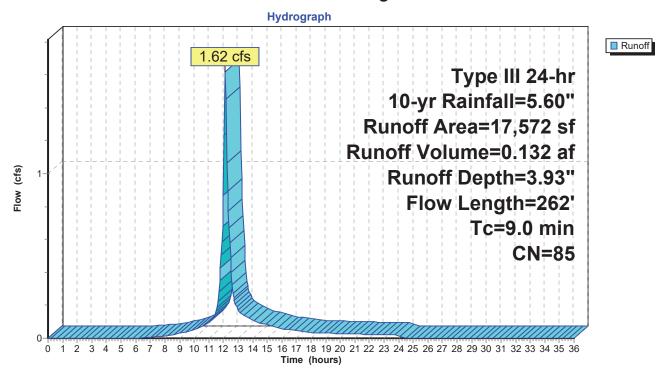

Runoff = 0.55 cfs @ 12.09 hrs, Volume= 0.043 af, Depth= 4.79"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

	Α	rea (sf)	CN I	Description		
*		879	98 I	Roof		
*		3,166	98 I	mpervious		
		663	61	>75% Gras	s cover, Go	ood, HSG B
		4,708	93 \	Weighted A	verage	
		663		14.08% Per	vious Area	
		4,045	8	35.92% Imp	ervious Ar	ea
	Тс	Length	Slope	,	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.5	39	0.0200	1.22		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.69"
	0.7	113	0.0197	2.85		Shallow Concentrated Flow,
_						Paved Kv= 20.3 fps
	1 2	152	Total	Ingragad t	a minimum	To = 6.0 min

1.2 Total, Increased to minimum Tc = 6.0 min

Subcatchment 20S: Driveway to CB #8


Summary for Subcatchment 21S: Parking Lot to CB #7-1

Runoff = 1.62 cfs @ 12.13 hrs, Volume= 0.132 af, Depth= 3.93"

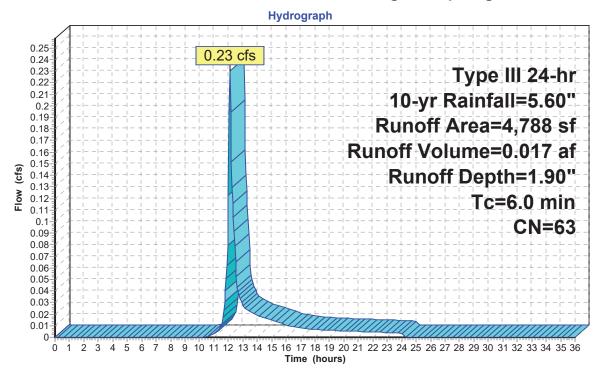
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

	Д	rea (sf)	CN E	escription			
*		2,881	98 F	Roof			
*		8,288	98 lı	npervious			
		6,403	61 >	75% Gras	s cover, Go	ood, HSG B	
		17,572	85 V	Veighted A	verage		
		6,403	3	6.44% Per	vious Area		
		11,169	6	3.56% Imp	ervious Ar	ea	
	Tc	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	6.5	50	0.0118	0.13		Sheet Flow,	
						Grass: Short n= 0.150 P2= 3.69"	
	1.6	105	0.0238	1.08		Shallow Concentrated Flow,	
						Short Grass Pasture Kv= 7.0 fps	
	0.9	107	0.0100	2.03		Shallow Concentrated Flow,	
_						Paved Kv= 20.3 fps	
	9.0	262	Total				

Subcatchment 21S: Parking Lot to CB #7-1

Runoff

HydroCAD® 10.00-25 s/n 01222 © 2019 HydroCAD Software Solutions LLC

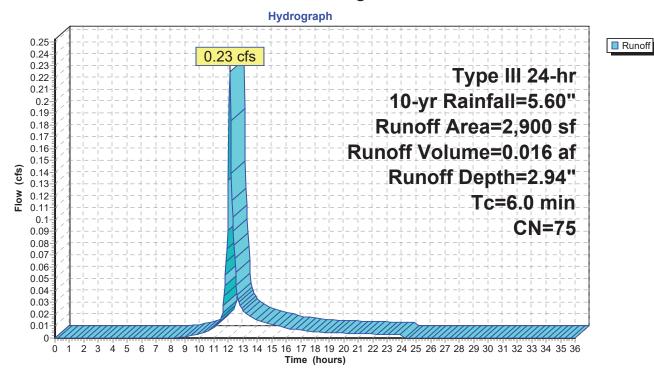

Summary for Subcatchment 30S: Building to Drip Edge

Runoff = 0.23 cfs @ 12.10 hrs, Volume= 0.017 af, Depth= 1.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

	Α	rea (sf)	CN	Description						
*		1,988	98	Roof						
_		2,800	39	>75% Gras	s cover, Go	Good, HSG A				
		4,788	63	Weighted A	Weighted Average					
		2,800		58.48% Per	vious Area	a				
		1,988		41.52% Imp	pervious Ar	rea				
	_				_					
	Tc	Length	Slop	e Velocity	Capacity	<i>Description</i>				
	(min)	(feet)	(ft/fi	(ft/sec)	(cfs)					
	6.0				•	Direct Entry				

Subcatchment 30S: Building to Drip Edge


Summary for Subcatchment 31S: Building and Yard to LCB #5-1

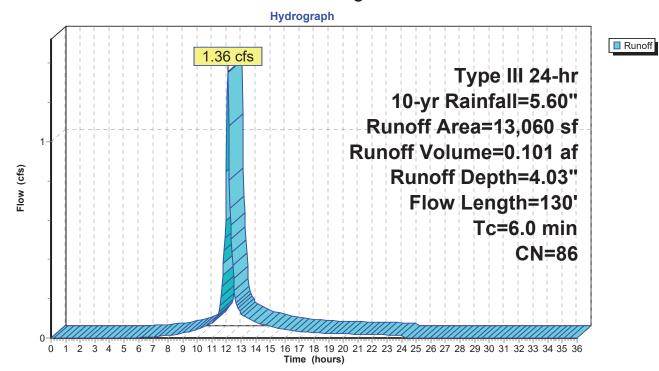
Runoff = 0.23 cfs @ 12.09 hrs, Volume= 0.016 af, Depth= 2.94"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

	A	rea (sf)	CN	Description					
*		1,709	98	Roof					
		161	61	>75% Grass cover, Good, HSG B					
		1,030	39	>75% Grass cover, Good, HSG A					
		2,900	75	Weighted Average					
		1,191		41.07% Pervious Area					
		1,709		58.93% Impervious Area					
	_								
	Тс	Length	Slop						
(ı	min)	(feet)	(ft/f	ft) (ft/sec) (cfs)					
	6.0			Direct Entry.					

Subcatchment 31S: Building and Yard to LCB #5-1

Summary for Subcatchment 32S: Parking and Patios to CB #5-2

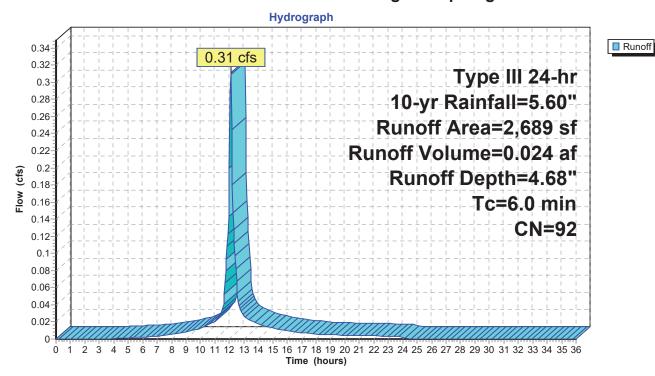

Runoff = 1.36 cfs @ 12.09 hrs, Volume= 0.101 af, Depth= 4.03"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

	Д	rea (sf)	CN E	escription						
*		1,353	98 F	98 Roof						
*		7,629	98 lı							
		3,555	61 >	75% Gras	s cover, Go	ood, HSG B				
		523	39 >	75% Gras	s cover, Go	ood, HSG A				
		13,060	86 V	86 Weighted Average						
		4,078	3	31.23% Pervious Area						
		8,982	6	8.77% Imp	pervious Ar	ea				
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	0.4	18	0.0100	0.79		Sheet Flow,				
						Smooth surfaces n= 0.011 P2= 3.69"				
	0.2	32	0.0150	2.49		Shallow Concentrated Flow,				
						Paved Kv= 20.3 fps				
	0.6	80	0.0138	2.38		Shallow Concentrated Flow,				
_						Paved Kv= 20.3 fps				
	1.2	130	Total, I	ncreased t	o minimum	Tc = 6.0 min				

otal, moroacoa to minimum ro oto mini

Subcatchment 32S: Parking and Patios to CB #5-2


Summary for Subcatchment 34S: Building to Drip Edge

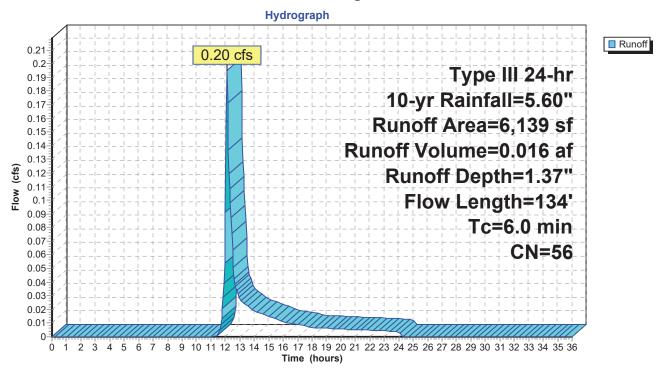
Runoff = 0.31 cfs @ 12.09 hrs, Volume= 0.024 af, Depth= 4.68"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

	Α	rea (sf)	CN	Description							
*		2,315	98	Roof							
		226	61	>75% Grass cover, Good, HSG B							
		148	39	>75% Grass cover, Good, HSG A							
		2,689	92	Weighted Average							
		374		13.91% Pervious Area							
		2,315		86.09% Impervious Area							
	_										
	Тс	Length	Slop								
(min)	(feet)	(ft/f	ft) (ft/sec) (cfs)							
	6.0			Direct Entry.							

Subcatchment 34S: Building to Drip Edge

Summary for Subcatchment 35S: Building and Yard to LCB #4-1

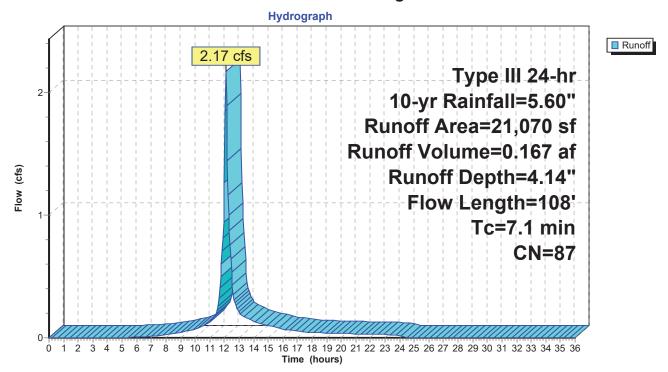

Runoff = 0.20 cfs @ 12.11 hrs, Volume= 0.016 af, Depth= 1.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

	Α	rea (sf)	CN [Description						
*		1,275	98 F	B Roof						
*		53	98 I	mpervious						
*		100	98 L	_edge						
		1,005	61 >	>75% Gras	s cover, Go	ood, HSG B				
		3,706	39 >	75% Gras	s cover, Go	ood, HSG A				
		6,139	56 V	56 Weighted Average						
		4,711	7	76.74% Per	vious Area					
		1,428	2	23.26% Imp	ervious Ar	ea				
	Тс	Length	Slope		Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	2.4	34	0.0645	0.24		Sheet Flow,				
						Grass: Short n= 0.150 P2= 3.69"				
	1.0	57	0.0175	0.93		Shallow Concentrated Flow,				
						Short Grass Pasture Kv= 7.0 fps				
	1.4	43	0.0050	0.49		Shallow Concentrated Flow,				
_						Short Grass Pasture Kv= 7.0 fps				
	4.0	404	T ()			T 00 :				

4.8 134 Total, Increased to minimum Tc = 6.0 min

Subcatchment 35S: Building and Yard to LCB #4-1

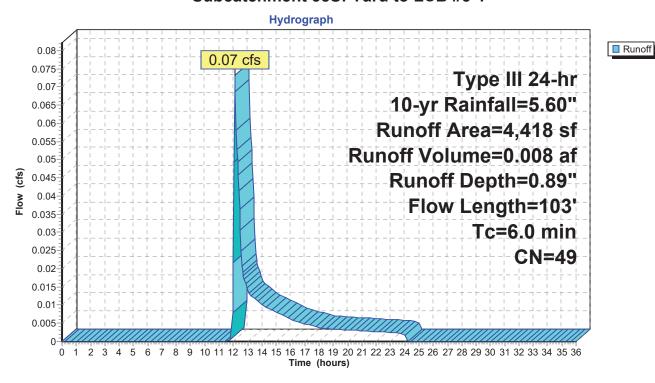

Summary for Subcatchment 36S: Parking to CB #4-2

Runoff = 2.17 cfs @ 12.10 hrs, Volume= 0.167 af, Depth= 4.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

	А	rea (sf)	CN [Description							
*		2,496	98 F	8 Roof							
*		12,539	98 I	98 Impervious							
		4,420	61 >	S1 >75% Grass cover, Good, HSG B							
		1,165		,	od, HSG B						
		450	39 >	39 >75% Grass cover, Good, HSG A							
		21,070	87 V	Veighted A	verage						
		6,035	2	28.64% Per	vious Area						
		15,035	7	'1.36% lmp	pervious Ar	ea					
	_					–					
	Tc	Length	Slope	Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	6.0	34	0.0470	0.09		Sheet Flow,					
						Woods: Light underbrush n= 0.400 P2= 3.69"					
	0.7	29	0.0100	0.70		Shallow Concentrated Flow,					
						Short Grass Pasture Kv= 7.0 fps					
	0.4	45	0.0100	2.03		Shallow Concentrated Flow,					
_						Paved Kv= 20.3 fps					
	7.1	108	Total								

Subcatchment 36S: Parking to CB #4-2

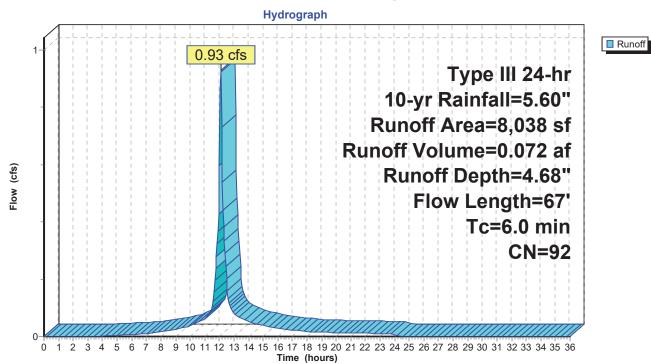

Summary for Subcatchment 38S: Yard to LCB #3-1

Runoff = 0.07 cfs @ 12.12 hrs, Volume= 0.008 af, Depth= 0.89"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

	Α	rea (sf)	CN I	Description						
*		80	98	Roof						
*		429	98	Impervious						
*		220	98 I	Ledge						
		3,689	39	· · · · · · · · · · · · · · · · · · ·						
		4,418	49 \	49 Weighted Average						
		3,689		83.50% Per	vious Area					
		729		16.50% Imp	pervious Ar	ea				
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	2.8	32	0.0378	0.19		Sheet Flow,				
						Grass: Short n= 0.150 P2= 3.69"				
	0.9	71	0.0351	1.31		Shallow Concentrated Flow,				
_						Short Grass Pasture Kv= 7.0 fps				
	3.7	103	Total,	Increased t	o minimum	Tc = 6.0 min				

Subcatchment 38S: Yard to LCB #3-1

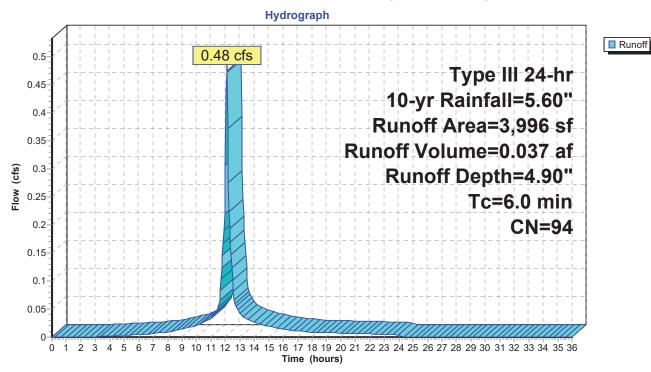

Summary for Subcatchment 39S: Parking to CB #3-2

Runoff = 0.93 cfs @ 12.09 hrs, Volume= 0.072 af, Depth= 4.68"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

	Α	rea (sf)	CN	Description						
*		429	98	Roof						
*		6,285	98	Impervious						
		1,260	61	>75% Grass cover, Good, HSG B						
_		64	39	>75% Grass cover, Good, HSG A						
		8,038	92	92 Weighted Average						
		1,324		16.47% Pervious Area						
		6,714		83.53% Imp	ervious Ar	ea				
	Тс	Length	Slope		Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	0.4	25	0.0188	1.09		Sheet Flow,				
						Smooth surfaces n= 0.011 P2= 3.69"				
	0.2	42	0.0313	3.59		Shallow Concentrated Flow,				
_						Paved Kv= 20.3 fps				
	0.6	67	Total,	Increased t	o minimum	Tc = 6.0 min				

Subcatchment 39S: Parking to CB #3-2

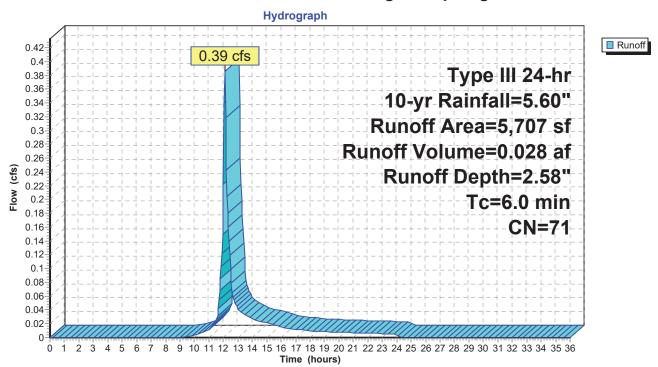

Summary for Subcatchment 41S: Building to Drip Edge

Runoff = 0.48 cfs @ 12.09 hrs, Volume= 0.037 af, Depth= 4.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

	Area	(sf)	CN	Description							
*	3,	720	98	Roof							
		23	61	>75% Grass cover, Good, HSG B							
		253	39	>75% Grass cover, Good, HSG A							
	3,	996	94	Weighted Average							
		276		6.91% Pervious Area							
	3,	720		93.09% Imp	ervious Ar	ea					
	Tc Le	ngth	Slope	Velocity	Capacity	Description					
(m	nin) (feet)	(ft/ft)	(ft/sec)	(cfs)						
	6.0					Direct Entry.					

Subcatchment 41S: Building to Drip Edge


Summary for Subcatchment 42S: Builling to Drip Edge

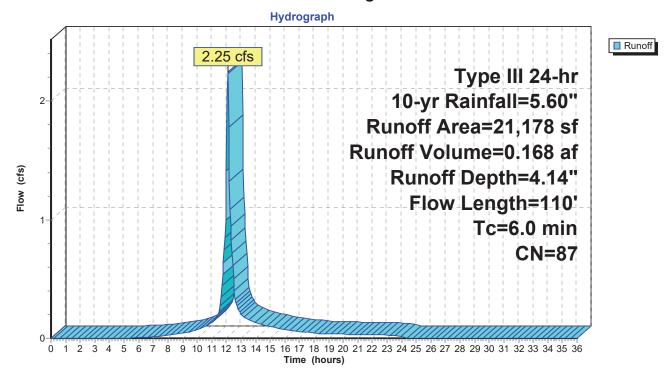
Runoff = 0.39 cfs @ 12.10 hrs, Volume= 0.028 af, Depth= 2.58"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

	Area (sf)	CN	Description							
*	3,292	98	Roof							
	64	61	>75% Gras	s cover, Go	ood, HSG B					
	147	55	Woods, Go	Woods, Good, HSG B						
	646	39	>75% Gras	>75% Grass cover, Good, HSG A						
	1,558	30	Woods, Go	Woods, Good, HSG A						
	5,707	71	1 Weighted Average							
	2,415		42.32% Per	rvious Area						
	3,292		57.68% Imp	pervious Ar	ea					
Т	c Length	Slop	e Velocity	Capacity	Description					
(mir	n) (feet)	(ft/f	t) (ft/sec)	(cfs)						
6.	.0				Direct Entry,					

Subcatchment 42S: Buidling to Drip Edge

Summary for Subcatchment 44S: Parking to Infiltration Pond

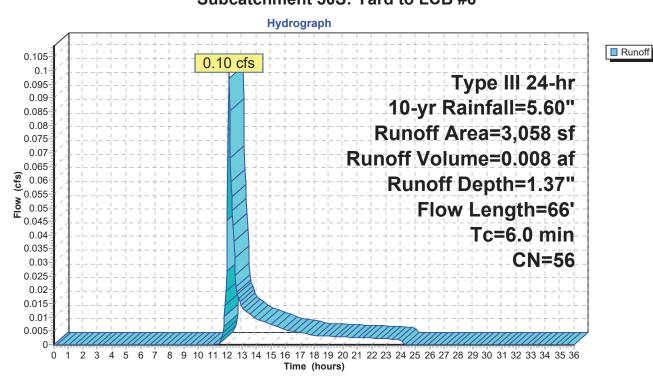

Runoff = 2.25 cfs @ 12.09 hrs, Volume= 0.168 af, Depth= 4.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

	Α	rea (sf)	CN E	escription						
*		538	98 F	98 Roof						
*		16,635	98 lı	mpervious						
		4,005	39 >	75% Gras	s cover, Go	ood, HSG A				
		21,178	87 V	Veighted A	verage					
		4,005	1	8.91% Per	vious Area					
		17,173	81.09% Impervious Area							
	·									
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	0.5	34	0.0168	1.11		Sheet Flow,				
						Smooth surfaces n= 0.011 P2= 3.69"				
	0.4	56	0.0168	2.63		Shallow Concentrated Flow,				
						Paved Kv= 20.3 fps				
	0.1	20	0.3333	4.04		Shallow Concentrated Flow,				
_						Short Grass Pasture Kv= 7.0 fps				
	1 0	110	Total I	Total Ingressed to minimum To = 6.0 min						

1.0 110 Total, Increased to minimum Tc = 6.0 min

Subcatchment 44S: Parking to Infiltration Pond


Summary for Subcatchment 50S: Yard to LCB #6

Runoff = 0.10 cfs @ 12.11 hrs, Volume= 0.008 af, Depth= 1.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=5.60"

	Α	rea (sf)	CN	Description					
*		872	98	Roof					
*		8	98	Impervious					
		2,178	39	>75% Gras	s cover, Go	ood, HSG A			
		3,058	56	56 Weighted Average					
		2,178		71.22% Per	vious Area				
		880		28.78% Impervious Area					
	Тс	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	3.8	41	0.0294	0.18		Sheet Flow,			
						Grass: Short n= 0.150 P2= 3.69"			
	0.2	25	0.0800	1.98		Shallow Concentrated Flow,			
_						Short Grass Pasture Kv= 7.0 fps			
	4.0	66	Total,	Increased t	o minimum	Tc = 6.0 min			

Subcatchment 50S: Yard to LCB #6

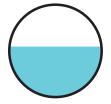
Prepared by Altus Engineering, Inc.

HydroCAD® 10.00-25 s/n 01222 © 2019 HydroCAD Software Solutions LLC

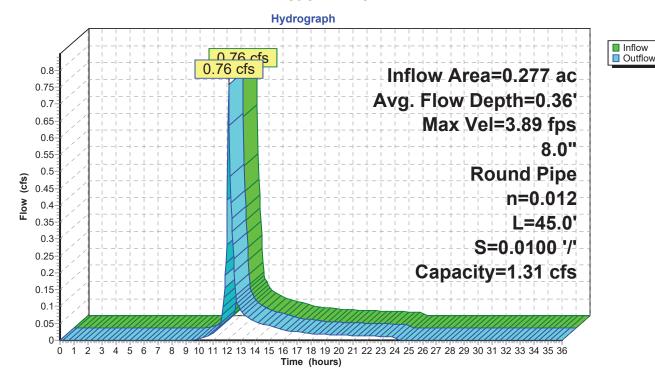
Summary for Reach 1R: 8" AC

Inflow Area = 0.277 ac, 26.86% Impervious, Inflow Depth = 2.40" for 10-yr event

Inflow = 0.76 cfs @ 12.10 hrs, Volume= 0.055 af


Outflow = 0.76 cfs @ 12.10 hrs, Volume= 0.055 af, Atten= 0%, Lag= 0.2 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs


Max. Velocity= 3.89 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.49 fps, Avg. Travel Time= 0.5 min

Peak Storage= 9 cf @ 12.10 hrs Average Depth at Peak Storage= 0.36' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.31 cfs

8.0" Round Pipe n= 0.012 Length= 45.0' Slope= 0.0100 '/' Inlet Invert= 48.97', Outlet Invert= 48.52'

Reach 1R: 8" AC

Prepared by Altus Engineering, Inc.

HydroCAD® 10.00-25 s/n 01222 © 2019 HydroCAD Software Solutions LLC

Summary for Reach 44R: Overland Flow Path

Inflow Area = 2.158 ac, 67.12% Impervious, Inflow Depth = 0.00" for 10-yr event

Inflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

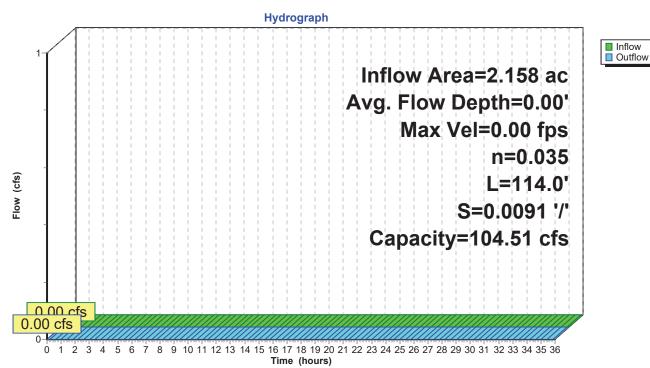
Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 0.00 hrs

Average Depth at Peak Storage= 0.00'

Bank-Full Depth= 1.00' Flow Area= 38.0 sf, Capacity= 104.51 cfs

8.00' x 1.00' deep channel, n= 0.035 Earth, dense weeds


Side Slope Z-value= 30.0 '/' Top Width= 68.00'

Length= 114.0' Slope= 0.0091 '/'

Inlet Invert= 48.85', Outlet Invert= 47.81'

Reach 44R: Overland Flow Path

Prepared by Altus Engineering, Inc.

HydroCAD® 10.00-25 s/n 01222 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 2P: CB #10

Inflow Area = 0.159 ac, 69.51% Impervious, Inflow Depth = 4.14" for 10-yr event

Inflow = 0.74 cfs @ 12.09 hrs, Volume= 0.055 af

Outflow = 0.74 cfs @ 12.09 hrs, Volume= 0.055 af, Atten= 0%, Lag= 0.0 min

Primary = 0.74 cfs @ 12.09 hrs, Volume= 0.055 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 57.53' @ 12.25 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	47.99'	12.0" Round Culvert
	•		L= 33.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 47.99 / 47.83' S= 0.0048 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf
#2	Primary	51.32'	20.0' long x 30.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=0.00 cfs @ 12.09 hrs HW=49.66' TW=50.83' (Dynamic Tailwater)

1=Culvert (Controls 0.00 cfs)

-2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 2P: CB #10

Prepared by Altus Engineering, Inc.

HydroCAD® 10.00-25 s/n 01222 © 2019 HydroCAD Software Solutions LLC

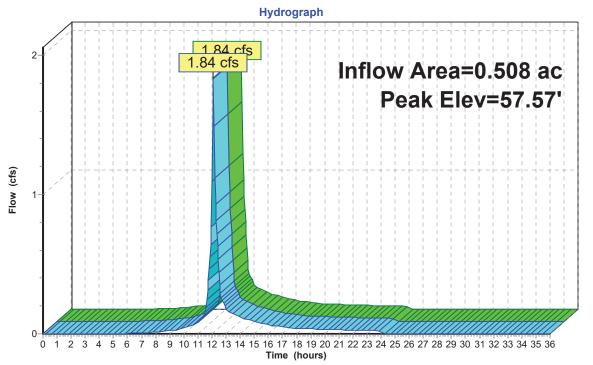
Summary for Pond 3P: CB #9

Inflow Area = 0.508 ac, 47.21% Impervious, Inflow Depth = 3.22" for 10-yr event

Inflow = 1.84 cfs @ 12.09 hrs, Volume= 0.136 af

Outflow = 1.84 cfs @ 12.09 hrs, Volume= 0.136 af, Atten= 0%, Lag= 0.0 min

Primary = 1.84 cfs @ 12.09 hrs, Volume= 0.136 af


Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 57.57' @ 12.20 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	47.72'	12.0" Round Culvert
	j		L= 32.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 47.72 / 47.56 S= 0.0050 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf
#2	Primary	50.29'	10.0' long x 20.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=0.00 cfs @ 12.09 hrs HW=50.93' TW=54.69' (Dynamic Tailwater) 1=Culvert (Controls 0.00 cfs)

—2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 3P: CB #9

Prepared by Altus Engineering, Inc.

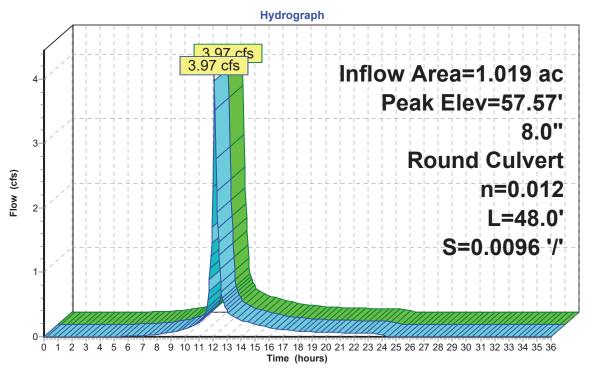
HydroCAD® 10.00-25 s/n 01222 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 4P: CB #7

Inflow Area = 1.019 ac, 57.78% Impervious, Inflow Depth = 3.67" for 10-yr event

Inflow = 3.97 cfs @ 12.10 hrs, Volume= 0.312 af

Outflow = 3.97 cfs @ 12.10 hrs, Volume= 0.312 af, Atten= 0%, Lag= 0.0 min


Primary = 3.97 cfs @ 12.10 hrs, Volume= 0.312 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 57.57' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	47.24'	8.0" Round Culvert
			L= 48.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 47.24' / 46.78' S= 0.0096 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.35 sf

Primary OutFlow Max=3.93 cfs @ 12.10 hrs HW=57.46' TW=50.16' (Dynamic Tailwater) 1=Culvert (Outlet Controls 3.93 cfs @ 11.26 fps)

Pond 4P: CB #7

Summary for Pond 5P: DMH #6179

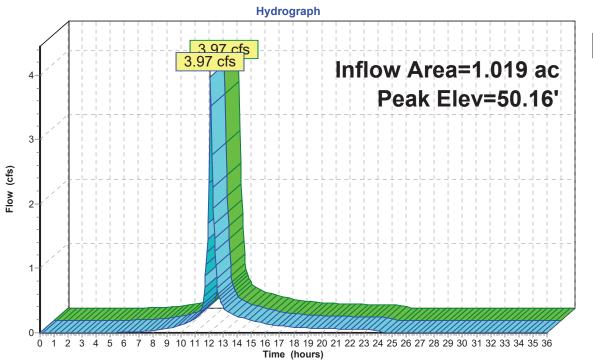
Inflow Area = 1.019 ac, 57.78% Impervious, Inflow Depth = 3.67" for 10-yr event

Inflow = 3.97 cfs @ 12.10 hrs, Volume= 0.312 af

Outflow = 3.97 cfs @ 12.10 hrs, Volume= 0.312 af, Atten= 0%, Lag= 0.0 min

Primary = 3.97 cfs @ 12.10 hrs, Volume= 0.312 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 50.16' @ 12.10 hrs


Device	Routing	Invert	Outlet Devices
#1	Primary	46.96'	8.0" Round Culvert
	•		L= 60.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 46.96' / 46.29' S= 0.0112 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.35 sf
#2	Primary	50.07'	20.0' long x 20.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=3.93 cfs @ 12.10 hrs HW=50.16' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Barrel Controls 2.43 cfs @ 6.96 fps)

-2=Broad-Crested Rectangular Weir (Weir Controls 1.50 cfs @ 0.81 fps)

Pond 5P: DMH #6179

Summary for Pond 20P: CB #8

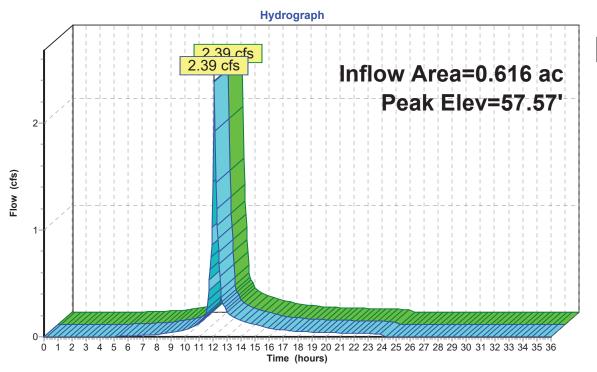
Inflow Area = 0.616 ac, 54.00% Impervious, Inflow Depth = 3.50" for 10-yr event

Inflow = 2.39 cfs @ 12.09 hrs, Volume= 0.180 af

Outflow = 2.39 cfs @ 12.09 hrs, Volume= 0.180 af, Atten= 0%, Lag= 0.0 min

Primary = 2.39 cfs @ 12.09 hrs, Volume= 0.180 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 57.57' @ 12.15 hrs


Device	Routing	Invert	Outlet Devices
#1	Primary	47.46'	12.0" Round Culvert
			L= 24.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 47.46' / 47.34' S= 0.0050 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf
#2	Primary	51.06'	40.0' long x 20.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=0.00 cfs @ 12.09 hrs HW=54.59' TW=57.18' (Dynamic Tailwater)

1=Culvert (Controls 0.00 cfs)

-2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 20P: CB #8

Summary for Pond 21P: CB #7-1

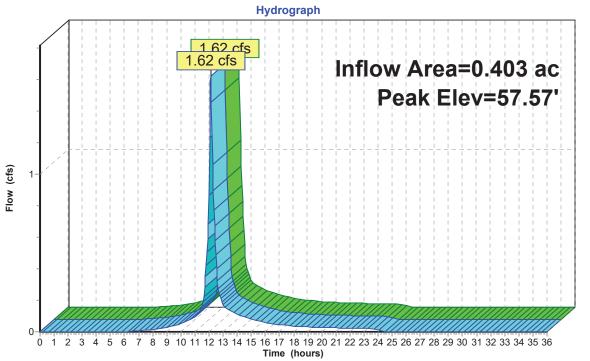
Inflow Area = 0.403 ac, 63.56% Impervious, Inflow Depth = 3.93" for 10-yr event

Inflow = 1.62 cfs @ 12.13 hrs, Volume= 0.132 af

Outflow = 1.62 cfs @ 12.13 hrs, Volume= 0.132 af, Atten= 0%, Lag= 0.0 min

Primary = 1.62 cfs @ 12.13 hrs, Volume= 0.132 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 57.57' @ 12.15 hrs


Device	Routing	Invert	Outlet Devices
#1	Primary	47.39'	12.0" Round Culvert
	j		L= 10.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 47.39' / 47.34' S= 0.0050 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf
#2	Primary	51.02'	20.0' long x 20.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=0.00 cfs @ 12.13 hrs HW=56.44' TW=56.76' (Dynamic Tailwater)

1=Culvert (Controls 0.00 cfs)

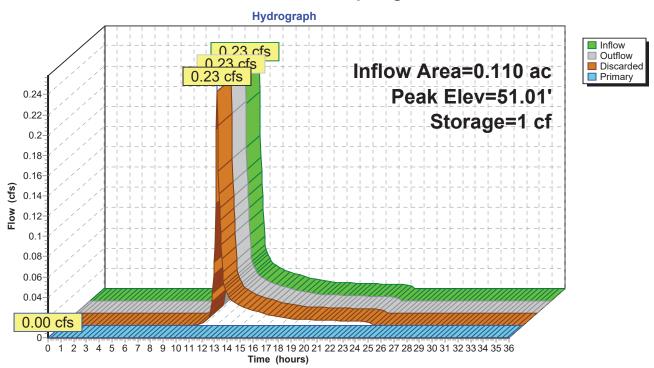
-2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 21P: CB #7-1

Summary for Pond 30P: Drip Edge

Inflow Area = 0.110 ac, 41.52% Impervious, Inflow Depth = 1.90" for 10-yr event
Inflow = 0.23 cfs @ 12.10 hrs, Volume= 0.017 af
Outflow = 0.23 cfs @ 12.10 hrs, Volume= 0.017 af, Atten= 0%, Lag= 0.1 min
Discarded = 0.23 cfs @ 12.10 hrs, Volume= 0.017 af
Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 51.01' @ 12.10 hrs Surf.Area= 398 sf Storage= 1 cf


Plug-Flow detention time= 0.1 min calculated for 0.017 af (100% of inflow) Center-of-Mass det. time= 0.1 min (859.3 - 859.2)

Volume	Invert	Avail.Stor	age Storag	e Description		
#1	51.00'	30	08 cf			
#2	51.50'	2		Round Pipe Storage		40.0% Voids
		33	4 cf Total A	Available Storage		
Elevation (fee		ırf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
51.0	00	398	0	0	398	
53.0	00	398	796	796	539	
Device	Routing	Invert	Outlet Device	es		
#1	Discarded	51.00'		Exfiltration over V	Vetted area Pha	ase-In= 0.01'
#2	Primary	51.50'	6.0" Round		dwall Kan 0 500	
			Inlet / Outlet	P, square edge head Invert= 51.50' / 48.3 low Area= 0.20 sf		

Discarded OutFlow Max=0.23 cfs @ 12.10 hrs HW=51.01' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.23 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=51.00' TW=44.20' (Dynamic Tailwater) 2=Culvert (Controls 0.00 cfs)

Pond 30P: Drip Edge

Summary for Pond 31P: LCB #5-1

Inflow Area = 0.176 ac, 48.09% Impervious, Inflow Depth = 1.11" for 10-yr event

Inflow 0.23 cfs @ 12.09 hrs, Volume= 0.016 af

Outflow 0.22 cfs @ 12.12 hrs, Volume= 0.016 af, Atten= 2%, Lag= 1.9 min

0.22 cfs @ 12.12 hrs, Volume= Discarded = 0.016 af Primary 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

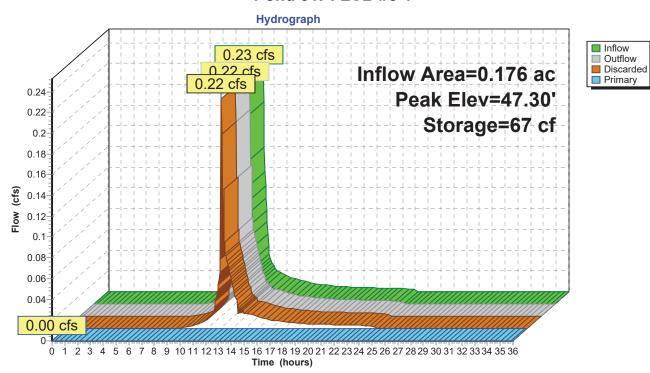
Peak Elev= 47.30' @ 12.10 hrs Surf.Area= 224 sf Storage= 67 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= 4.7 min (834.3 - 829.6)

Volume	Invert	Avail.Storage	Storage Description
#1	44.20'	79 cf	Custom Stage Data (Conic)Listed below (Recalc)
			284 cf Overall - 87 cf Embedded = 198 cf x 40.0% Voids
#2	45.20'	87 cf	Custom Stage Data (Prismatic)Listed below (Recalc) Inside #1
#3	47.25'	193 cf	Custom Stage Data (Conic)Listed below (Recalc)
			558 cf Overall - 76 cf Embedded = 482 cf x 40.0% Voids
#4	48.25'	49 cf	12.0" Round Pipe Storage Inside #3
			L= 62.0'
			76 cf Overall - 1.5" Wall Thickness = 49 cf

		407 cf Total Av	ailable Storage	
Elevation	Surf.Area	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)
44.20	38	0	0	38
51.20	38	266	266	191
52.20	4	18	284	228
Elevation	Surf.Area	Inc.Store	Cum.Store	
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	
45.20	13	0	(00010 1001)	
		-	70	
51.20	13	78	78	
52.20	4	9	87	
Elevation	Surf.Area	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)
47.25	186	0	0	186
50.25	186	558	558	331
50.25	100	330	330	331


Jevice	Routing	Invert	Outlet Devices	
#1	Discarded	44.20'	30.000 in/hr Exfiltration over Wetted area Phase-In= 0.01'	11'
#2	Primary	48.25'	12.0" Round Culvert	

L= 1.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 48.25' / 48.25' S= 0.0000 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Discarded OutFlow Max=0.20 cfs @ 12.12 hrs HW=47.30' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.20 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=44.20' TW=44.25' (Dynamic Tailwater) = Culvert (Controls 0.00 cfs)

Pond 31P: LCB #5-1

Prepared by Altus Engineering, Inc.

HydroCAD® 10.00-25 s/n 01222 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 32P: CB #5-2

Inflow Area = 0.300 ac, 68.77% Impervious, Inflow Depth = 4.03" for 10-yr event

Inflow = 1.36 cfs @ 12.09 hrs, Volume= 0.101 af

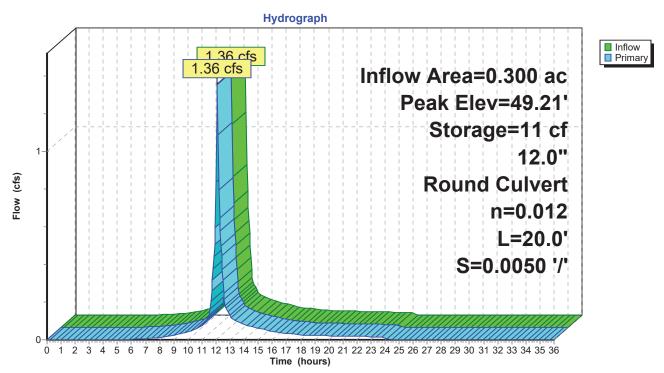
Outflow = 1.36 cfs @ 12.09 hrs, Volume= 0.101 af, Atten= 0%, Lag= 0.1 min

Primary = 1.36 cfs @ 12.09 hrs, Volume= 0.101 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Peak Elev= 49.21' @ 12.35 hrs Surf.Area= 13 sf Storage= 11 cf

Plug-Flow detention time= 0.4 min calculated for 0.101 af (100% of inflow)


Center-of-Mass det. time= 0.4 min (800.6 - 800.2)

Volume	Inv	ert Avail.S	torage	Storage D	escription	
#1	48.	35'	227 cf	Custom S	Stage Data (Pr	rismatic)Listed below (Recalc)
Elevation		Surf.Area		.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubi	c-feet)	(cubic-feet)	
48.3	35	13		0	0	
50.2	20	13		24	24	
51.2	20	4		9	33	
51.7	72	745		195	227	
Device	Routing	Inve	t Outl	et Devices		
#1	Primary	48.35		" Round C		

L= 20.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 48.35' / 48.25' S= 0.0050 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=1.33 cfs @ 12.09 hrs HW=49.08' TW=48.31' (Dynamic Tailwater) 1=Culvert (Barrel Controls 1.33 cfs @ 3.02 fps)

Pond 32P: CB #5-2

Summary for Pond 33P: LDMH #5

Inflow Area = 0.476 ac, 61.11% Impervious, Inflow Depth = 2.54" for 10-yr event

Inflow = 1.36 cfs @ 12.09 hrs, Volume= 0.101 af

Outflow = 0.57 cfs @ 12.30 hrs, Volume= 0.101 af, Atten= 58%, Lag= 12.8 min

Discarded = 0.57 cfs @ 12.30 hrs, Volume= 0.101 af Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 49.19' @ 12.30 hrs Surf.Area= 516 sf Storage= 665 cf

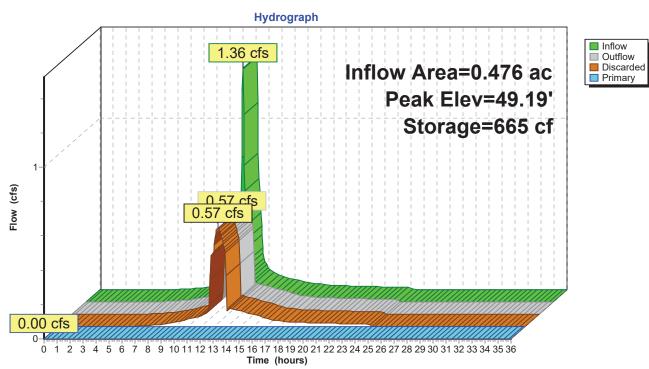
Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= 9.6 min (810.2 - 800.6)

Volume	Invert	Avail.Storage	Storage Description
#1	44.25'	117 cf	Custom Stage Data (Conic)Listed below (Recalc)
			476 cf Overall - 184 cf Embedded = 292 cf x 40.0% Voids
#2	45.25'	184 cf	Custom Stage Data (Prismatic)Listed below (Recalc) Inside #1
#3	47.00'	489 cf	Custom Stage Data (Conic)Listed below (Recalc)
			1,469 cf Overall - 246 cf Embedded = 1,223 cf x 40.0% Voids
#4	48.00'	171 cf	15.0" Round Pipe Storage Inside #3
			L= 139.0'
			246 cf Overall - 1.5" Wall Thickness = 171 cf

961 cf Total Available Storage

		00101 10101711	allable eterage	
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
44.25	64	0	0	64
51.25	64	448	448	263
52.25	4	28	476	325
Elevation	Surf.Area	Inc.Store	Cum.Store	
			_	
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	
45.25	28	0	0	
51.25	28	168	168	
52.25	4	16	184	
Elevation	Surf.Area	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)
47.00	452	0	0	452
50.25	452	1,469	1,469	697
		•	•	


Device	Routing	Invert	Outlet Devices	
#1	Discarded	44.25'	30.000 in/hr Exfiltration over Wetted area Phase-In= 0.01'	
#2	Primary	48.00'	15.0" Round Culvert	
			I - 1.01 CDD agreement benefit all Ko- 0.500	

L= 1.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 48.00' / 48.00' S= 0.0000 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf

Discarded OutFlow Max=0.57 cfs @ 12.30 hrs HW=49.19' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.57 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=44.25' TW=44.35' (Dynamic Tailwater) = Culvert (Controls 0.00 cfs)

Pond 33P: LDMH #5

Prepared by Altus Engineering, Inc.

HydroCAD® 10.00-25 s/n 01222 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 34P: Drip Edge

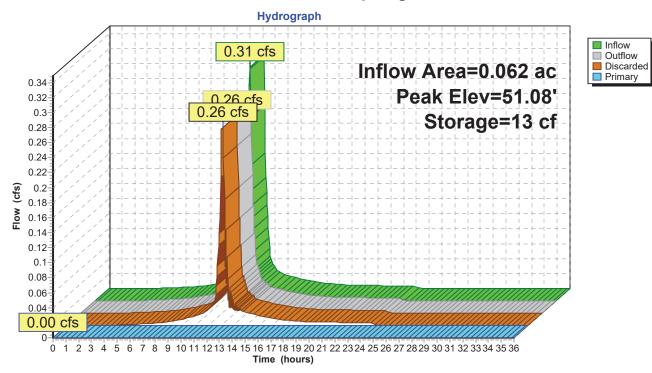
Inflow Area = 0.062 ac, 86.09% Impervious, Inflow Depth = 4.68" for 10-yr event
Inflow = 0.31 cfs @ 12.09 hrs, Volume= 0.024 af
Outflow = 0.26 cfs @ 12.15 hrs, Volume= 0.024 af, Atten= 15%, Lag= 3.7 min
Discarded = 0.026 cfs @ 12.15 hrs, Volume= 0.024 af

 Discarded =
 0.26 cfs @ 12.15 hrs, Volume=
 0.024 at

 Primary =
 0.00 cfs @ 0.00 hrs, Volume=
 0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 51.08' @ 12.14 hrs Surf.Area= 374 sf Storage= 13 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.2 min (779.4 - 779.2)


Volume	Invert	Avail.Storage	Storag	ge Description		
#1	51.00'	288 cf		om Stage Data (Cor f Overall - 28 cf Emb		
#2	51.00'	28 cf	_	Round Pipe Storag	_	(40.0% Volus
		316 cf	Total /	Available Storage		
Elevation (feet)			Store c-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
51.00 53.00		374 374	0 748	0 748	374 511	

Device	Routing	Invert	Outlet Devices
#1	Discarded	51.00'	30.000 in/hr Exfiltration over Wetted area Phase-In= 0.01'
#2	Primary	51.50'	6.0" Round Culvert
			L= 12.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 51.50' / 48.75' S= 0.2292 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.20 sf

Discarded OutFlow Max=0.26 cfs @ 12.15 hrs HW=51.07' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.26 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=51.00' TW=44.30' (Dynamic Tailwater) 2=Culvert (Controls 0.00 cfs)

Pond 34P: Drip Edge

Summary for Pond 35P: LCB #4-1

Inflow Area = 0.203 ac, 42.40% Impervious, Inflow Depth = 0.95" for 10-yr event

Inflow = 0.20 cfs @ 12.11 hrs, Volume= 0.016 af

Outflow = 0.17 cfs @ 12.17 hrs, Volume= 0.016 af, Atten= 13%, Lag= 3.9 min

Discarded = 0.17 cfs @ 12.17 hrs, Volume= 0.016 af Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 47.26' @ 12.15 hrs Surf.Area= 167 sf Storage= 60 cf

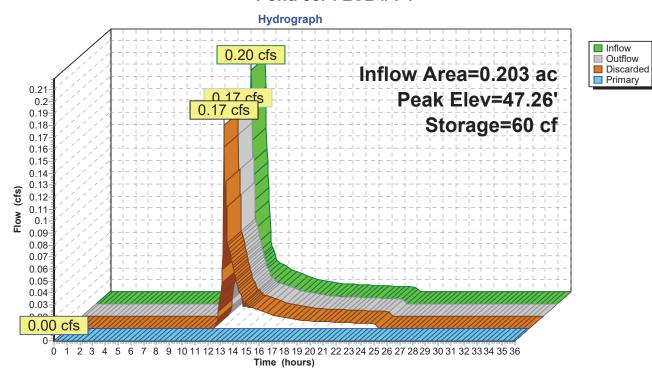
Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= 4.5 min (883.9 - 879.3)

Volume	Invert	Avail.Storage	Storage Description
#1	44.30'	79 cf	Custom Stage Data (Conic)Listed below (Recalc)
			284 cf Overall - 87 cf Embedded = 198 cf x 40.0% Voids
#2	45.30'	87 cf	Custom Stage Data (Prismatic)Listed below (Recalc) Inside #1
#3	47.25'	141 cf	Custom Stage Data (Conic)Listed below (Recalc)
			387 cf Overall - 34 cf Embedded = 353 cf x 40.0% Voids
#4	48.25'	34 cf	12.0" Round Pipe Storage Inside #3
			L= 43.0'

341 cf Total Available Storage

Elevation	Surf.Area	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)
44.30	38	0	0	38
51.30	38	266	266	191
52.30	4	18	284	228
Elevation	Surf.Area	Inc.Store	Cum.Store	
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	
45.30	13	0	0	
51.30	13	78	78	
52.30	4	9	87	
Elevation	Surf.Area	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)
47.25	129	0	0	129
50.25	129	387	387	250


Device	Routing	Invert	Outlet Devices	
#1	Discarded	44.30'	30.000 in/hr Exfiltration over Wetted area	Phase-In= 0.01'
#2	Primary	48.25'	12.0" Round Culvert	

L= 1.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 48.25' / 48.25' S= 0.0000 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Discarded OutFlow Max=0.16 cfs @ 12.17 hrs HW=47.25' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.16 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=44.30' TW=44.35' (Dynamic Tailwater) = Culvert (Controls 0.00 cfs)

Pond 35P: LCB #4-1

Summary for Pond 36P: CB #4-2

Inflow Area = 0.484 ac, 71.36% Impervious, Inflow Depth = 4.14" for 10-yr event

Inflow = 2.17 cfs @ 12.10 hrs, Volume= 0.167 af

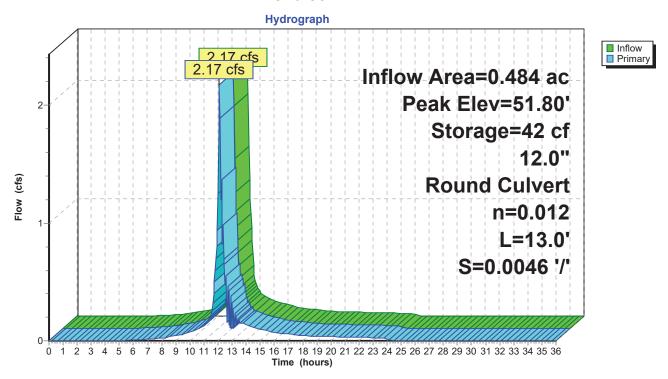
Outflow = 2.17 cfs @ 12.10 hrs, Volume= 0.167 af, Atten= 0%, Lag= 0.0 min

Primary = 2.17 cfs @ 12.10 hrs, Volume= 0.167 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Peak Elev= 51.80' @ 12.45 hrs Surf.Area= 8 sf Storage= 42 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow)


Center-of-Mass det. time= 0.5 min (798.6 - 798.1)

Volume	Inv	ert Avail.Sto	orage	Storage D	escription	
#1	48.4	12' 8	03 cf	Custom S	Stage Data (Pr	ismatic)Listed below (Recalc)
Elevatio	-	Surf.Area (sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)	
48.42	2	13	`	0	0	
51.20	0	13		36	36	
52.20	0	4		9	45	
52.7	5	2,755		759	803	
Device	Routing	Invert	Outle	et Devices		
#1	Primary	48.42'	L= 1		square edge h	neadwall, Ke= 0.500

L= 13.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 48.42' / 48.36' S= 0.0046 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=1.36 cfs @ 12.10 hrs HW=49.44' TW=49.31' (Dynamic Tailwater) 1=Culvert (Inlet Controls 1.36 cfs @ 1.73 fps)

Pond 36P: CB #4-2

Summary for Pond 37P: LDMH #4

Inflow Area = 1.163 ac, 62.11% Impervious, Inflow Depth = 1.72" for 10-yr event

Inflow = 2.17 cfs @ 12.10 hrs, Volume= 0.167 af

Outflow = 2.18 cfs @ 12.20 hrs, Volume= 0.167 af, Atten= 0%, Lag= 5.7 min

Discarded = 0.50 cfs @ 12.40 hrs, Volume= 0.131 af Primary = 1.70 cfs @ 12.20 hrs, Volume= 0.035 af

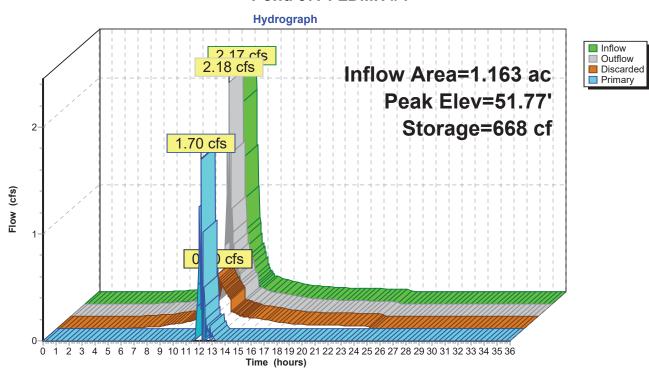
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 51.77' @ 12.40 hrs Surf.Area= 277 sf Storage= 668 cf

Plug-Flow detention time= 9.0 min calculated for 0.166 af (100% of inflow) Center-of-Mass det. time= 9.0 min (807.6 - 798.6)

Volume	Invert	Avail.Storage	Storage Description
#1	44.35'	119 cf	Custom Stage Data (Conic)Listed below (Recalc)
			476 cf Overall - 179 cf Embedded = 297 cf x 40.0% Voids
#2	45.53'	179 cf	Custom Stage Data (Prismatic)Listed below (Recalc) Inside #1
#3	47.00'	284 cf	Custom Stage Data (Conic)Listed below (Recalc)
			803 cf Overall - 93 cf Embedded = 709 cf x 40.0% Voids
#4	48.00'	93 cf	15.0" Round Pipe Storage Inside #3
			L= 76.0'

675 cf Total Available Storage

Elevation	Surf.Area	Inc.Store	Cum.Store (cubic-feet)	Wet.Area
(feet)	(sq-ft)	(cubic-feet)		(sq-ft <u>)</u>
44.35	64	0	0	64
51.35	64	448	448	263
52.35	4	28	476	325
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
45.53	28	0	0	
51.35	28	163	163	
52.35	4	16	179	
Elevation	Surf.Area	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)
47.00	247	0	0	247
50.25	247	803	803	428


Device	Routing	Invert	Outlet Devices	
#1	Discarded	44.35'	30.000 in/hr Exfiltration over Wetted area	Phase-In= 0.01'
#2	Primary	48.00'	15.0" Round Culvert	

L= 1.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 48.00' / 48.00' S= 0.0000 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf

Discarded OutFlow Max=0.50 cfs @ 12.40 hrs HW=51.73' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.50 cfs)

Primary OutFlow Max=0.00 cfs @ 12.20 hrs HW=51.41' TW=51.53' (Dynamic Tailwater) —2=Culvert (Controls 0.00 cfs)

Pond 37P: LDMH #4

Summary for Pond 38P: LCB #3-1

Inflow Area = 0.101 ac, 16.50% Impervious, Inflow Depth = 0.89" for 10-yr event

Inflow = 0.07 cfs @ 12.12 hrs, Volume= 0.008 af

Outflow = 0.05 cfs (a) 12.35 hrs, Volume= 0.008 af, Atten= 38%, Lag= 14.1 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Peak Elev= 46.00' @ 12.35 hrs Surf.Area= 38 sf Storage= 21 cf

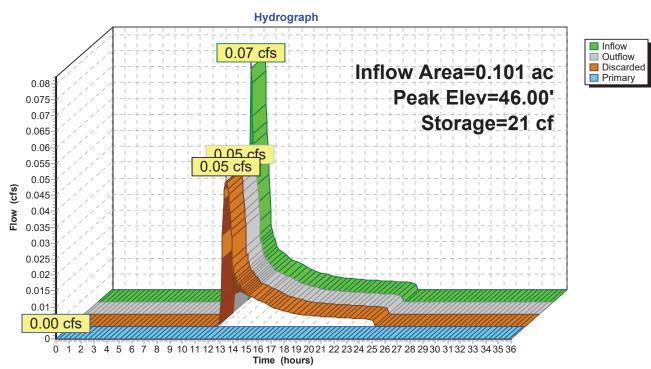
Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= 2.0 min (907.9 - 906.0)

Volume	Invert	Avail.Storage	Storage Description
#1	44.75'	79 cf	Custom Stage Data (Conic)Listed below (Recalc)
			284 cf Overall - 87 cf Embedded = 198 cf x 40.0% Voids
#2	45.75'	87 cf	Custom Stage Data (Prismatic)Listed below (Recalc) Inside #1
#3	47.25'	146 cf	Custom Stage Data (Conic)Listed below (Recalc)
			423 cf Overall - 58 cf Embedded = 365 cf x 40.0% Voids
#4	48.25'	37 cf	12.0" Round Pipe Storage Inside #3
			L= 47.0'
			58 cf Overall - 1.5" Wall Thickness = 37 cf

349 cf Total Available Storage

		01001 10101711	andbro otorago	
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
44.75	38	0	0	38
51.75	38	266	266	191
52.75	4	18	284	228
Elevation	Surf.Area	Inc.Store	Cum.Store	
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	
45.75	13	0	0	
51.75	13	78	78	
52.75	4	9	87	
Elevation	Surf.Area	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	
			-	(sq-ft)
47.25	141	0	0	141
50.25	141	423	423	267


DeviceRoutingInvertOutlet Devices#1Discarded
#244.75'30.000 in/hr Exfiltration over Wetted areaPhase-In= 0.01'
Phase-In= 0.01'
Phase-In= 0.01'

L= 1.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 48.25' / 48.25' S= 0.0000 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Discarded OutFlow Max=0.05 cfs @ 12.35 hrs HW=46.00' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.05 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=44.75' TW=45.05' (Dynamic Tailwater) = Culvert (Controls 0.00 cfs)

Pond 38P: LCB #3-1

Prepared by Altus Engineering, Inc.

HydroCAD® 10.00-25 s/n 01222 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 39P: CB #3-2

Inflow Area = 0.185 ac, 83.53% Impervious, Inflow Depth = 4.68" for 10-yr event

Inflow = 0.93 cfs @ 12.09 hrs, Volume= 0.072 af

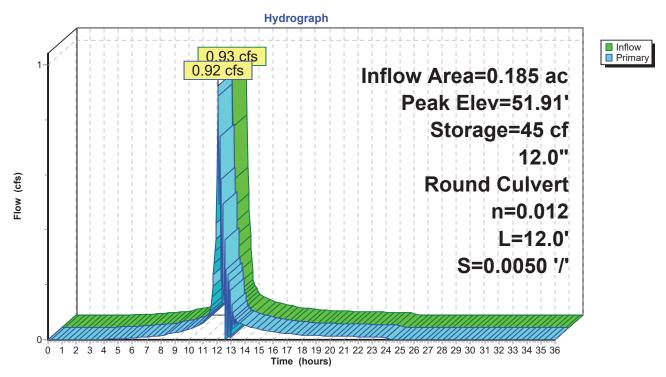
Outflow = 0.92 cfs @ 12.08 hrs, Volume= 0.072 af, Atten= 1%, Lag= 0.0 min

Primary = 0.92 cfs @ 12.08 hrs, Volume= 0.072 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Peak Elev= 51.91' @ 12.38 hrs Surf.Area= 12 sf Storage= 45 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow)


Center-of-Mass det. time= 0.9 min (780.1 - 779.2)

Volume	Inv	ert Avail.S	torage	Storage D	escription	
#1	48.4	41'	273 cf	Custom S	Stage Data (Pr	rismatic)Listed below (Recalc)
Elevatio		Surf.Area (sq-ft)		:.Store c-feet)	Cum.Store (cubic-feet)	
48.4		13	(CGDI	0	0	
51.7	75	13		43	43	
52.7	-	4		9	52	
53.0	_	521		66	118	
53.1	14	1,693		155	273	
Device	Routing	Inve	t Outl	et Devices		
#1	Primary	48.4	_	" Round C		

L= 12.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 48.41' / 48.35' S= 0.0050 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.00 cfs @ 12.08 hrs HW=49.15' TW=50.33' (Dynamic Tailwater) 1=Culvert (Controls 0.00 cfs)

Pond 39P: CB #3-2

Summary for Pond 40P: LDMH #3

Inflow Area = 1.449 ac, 61.65% Impervious, Inflow Depth = 0.89" for 10-yr event

Inflow 2.45 cfs @ 12.20 hrs, Volume= 0.107 af

Outflow 1.71 cfs @ 12.17 hrs, Volume= 0.107 af, Atten= 30%, Lag= 0.0 min

0.58 cfs @ 12.32 hrs, Volume= Discarded = 0.094 af Primary 0.014 af 1.14 cfs @ 12.17 hrs, Volume=

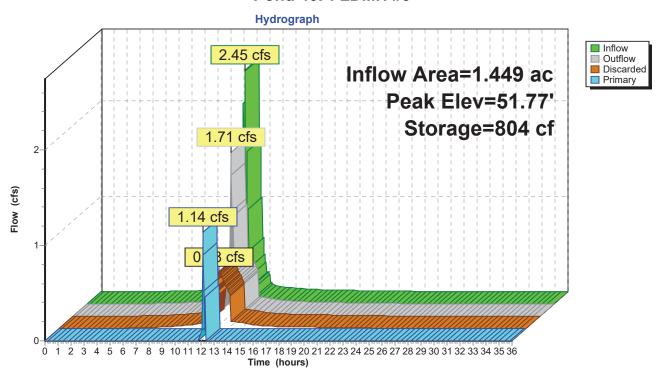
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 51.77' @ 12.32 hrs Surf.Area= 431 sf Storage= 804 cf

Plug-Flow detention time= 10.3 min calculated for 0.107 af (100% of inflow)

Center-of-Mass det. time= 9.9 min (774.5 - 764.6)

Volume	Invert	Avail.Storage	Storage Description
#1	45.05'	117 cf	Custom Stage Data (Conic)Listed below (Recalc)
			476 cf Overall - 184 cf Embedded = 292 cf x 40.0% Voids
#2	46.05'	184 cf	Custom Stage Data (Prismatic)Listed below (Recalc) Inside #1
#3	47.00'	397 cf	Custom Stage Data (Conic)Listed below (Recalc)
			1,193 cf Overall - 200 cf Embedded = 993 cf x 40.0% Voids
#4	48.00'	139 cf	15.0" Round Pipe Storage Inside #3
			L= 113.0'
			200 cf Overall - 1.5" Wall Thickness = 139 cf

		837 cf Total Ava	ailable Storage	
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
45.05	64	0	0	64
52.05	64	448	448	263
53.05	4	28	476	325
Elevation	Surf.Area	Inc.Store	Cum.Store	
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	
46.05	28	0	0	
52.05	28	168	168	
53.05	4	16	184	
Elevation	Surf.Area	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)
47.00	367	0	0	367
50.25	367	1,193	1,193	588


Device	Routing	Invert	Outlet Devices
#1	Discarded	45.05'	30.000 in/hr Exfiltration over Wetted area Phase-In= 0.01'
#2	Primary	48.00'	15.0" Round Culvert
			I - 1.01 CDD agreement benefit all Ke- 0.500

L= 1.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 48.00' / 48.00' S= 0.0000 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf

Discarded OutFlow Max=0.58 cfs @ 12.32 hrs HW=51.77' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.58 cfs)

Primary OutFlow Max=0.00 cfs @ 12.17 hrs HW=51.40' TW=51.58' (Dynamic Tailwater) 2=Culvert (Controls 0.00 cfs)

Pond 40P: LDMH #3

Summary for Pond 41P: Drip Edge

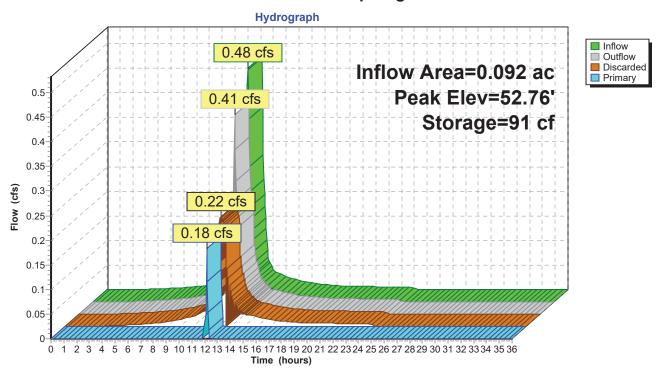
Inflow Area = 0.092 ac, 93.09% Impervious, Inflow Depth = 4.90" for 10-yr event
Inflow = 0.48 cfs @ 12.09 hrs, Volume= 0.037 af
Outflow = 0.41 cfs @ 12.15 hrs, Volume= 0.038 af, Atten= 15%, Lag= 3.9 min
Discarded = 0.022 cfs @ 12.15 hrs, Volume= 0.036 af

Discarded = 0.22 cfs @ 12.15 hrs, Volume= 0.036 af Primary = 0.18 cfs @ 12.15 hrs, Volume= 0.002 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 52.76' @ 12.15 hrs Surf.Area= 276 sf Storage= 91 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 1.2 min (771.5 - 770.4)

Volume	Invert	Avail.Storage	Storage Description
#1	52.00'	212 cf	Custom Stage Data (Conic)Listed below (Recalc)
			552 cf Overall - 22 cf Embedded = 530 cf x 40.0% Voids
#2	52.50'	22 cf	6.0" Round Pipe Storage Inside #1
			L= 110.0'
		234 cf	Total Available Storage
			<u> </u>


Elevation	Surf.Area	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)
52.00	276	0	0	276
54.00	276	552	552	394

Device	Routing	Invert	Outlet Devices
#1	Discarded	52.00'	30.000 in/hr Exfiltration over Wetted area Phase-In= 0.01'
#2	Primary	52.50'	6.0" Round Culvert
			L= 20.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 52.50' / 48.50' S= 0.2000 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.20 sf

Discarded OutFlow Max=0.22 cfs @ 12.15 hrs HW=52.76' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.22 cfs)

Primary OutFlow Max=0.18 cfs @ 12.15 hrs HW=52.76' TW=44.94' (Dynamic Tailwater) 2=Culvert (Inlet Controls 0.18 cfs @ 1.74 fps)

Pond 41P: Drip Edge

Summary for Pond 42P: Drip Edge

Inflow Area = 0.131 ac, 57.68% Impervious, Inflow Depth = 2.58" for 10-yr event
Inflow = 0.39 cfs @ 12.10 hrs, Volume= 0.028 af
Outflow = 0.25 cfs @ 12.20 hrs, Volume= 0.028 af, Atten= 35%, Lag= 6.3 min
Discarded = 0.25 cfs @ 12.20 hrs, Volume= 0.028 af

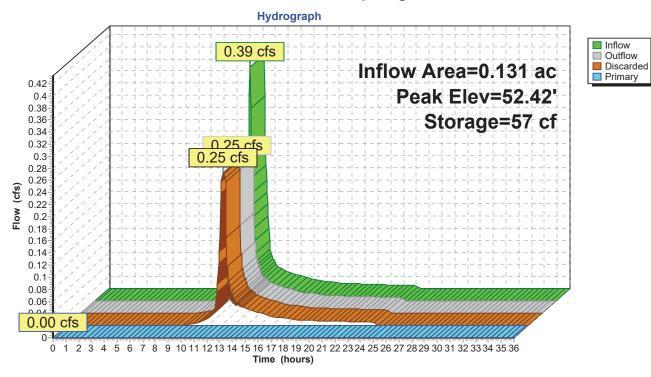
Primary = 0.25 cfs @ 12.20 hrs, Volume= 0.028 at 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 52.42' @ 12.20 hrs Surf.Area= 336 sf Storage= 57 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.8 min (840.0 - 839.3)

Volume	Invert	Avail.Storage	Storage Description
#1	52.00'	260 cf	Custom Stage Data (Conic)Listed below (Recalc)
			672 cf Overall - 22 cf Embedded = 650 cf x 40.0% Voids
#2	52.50'	22 cf	6.0" Round Pipe Storage Inside #1
			L= 110.0'
		200 (T

282 cf Total Available Storage


Elevation	Surf.Area	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)
52.00	336	0	0	336
54.00	336	672	672	466

Device	Routing	Invert	Outlet Devices
#1	Discarded	52.00'	30.000 in/hr Exfiltration over Wetted area Phase-In= 0.01'
#2	Primary	52.50'	6.0" Round Culvert
	·		L= 62.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 52.50' / 48.50' S= 0.0645 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.20 sf

Discarded OutFlow Max=0.25 cfs @ 12.20 hrs HW=52.42' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.25 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=52.00' TW=43.50' (Dynamic Tailwater) 2=Culvert (Controls 0.00 cfs)

Pond 42P: Drip Edge

Summary for Pond 43P: LCB #2-2

Inflow Area = 0.223 ac, 72.27% Impervious, Inflow Depth = 0.10" for 10-yr event

Inflow = 0.18 cfs @ 12.15 hrs, Volume= 0.002 af

Outflow = 0.06 cfs @ 12.25 hrs, Volume= 0.002 af, Atten= 66%, Lag= 5.8 min

Discarded = 0.06 cfs @ 12.25 hrs, Volume= 0.002 af Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

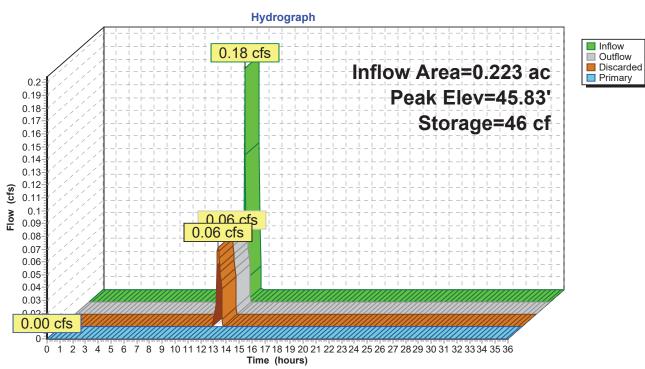
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 45.83' @ 12.25 hrs Surf.Area= 38 sf Storage= 46 cf

Plug-Flow detention time= 8.7 min calculated for 0.002 af (100% of inflow) Center-of-Mass det. time= 8.8 min (738.9 - 730.1)

Volume	Invert	Avail.Storage	Storage Description
#1	43.50'	75 cf	Custom Stage Data (Conic)Listed below (Recalc)
			274 cf Overall - 87 cf Embedded = 188 cf x 40.0% Voids
#2	44.50'	87 cf	Custom Stage Data (Prismatic)Listed below (Recalc) Inside #1
#3	47.25'	283 cf	Custom Stage Data (Conic)Listed below (Recalc)
			774 cf Overall - 68 cf Embedded = 706 cf x 40.0% Voids
#4	48.25'	68 cf	12.0" Round Pipe Storage Inside #3
			L= 86.0'

512 cf Total Available Storage

Elevation	Surf.Area	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)
43.50	38	0	0	38
50.00	38	247	247	180
51.50	4	27	274	220
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
44.50	13	0	0	
50.50	13	78	78	
51.50	4	9	87	
Elevation	Surf.Area	Inc.Store	Cum.Store (cubic-feet)	Wet.Area
(feet)	(sq-ft)	(cubic-feet)		(sq-ft)
47.25	258	0	0	258
50.25	258	774	774	429


Device	Routing	Invert	Outlet Devices	
#1	Discarded	43.50'	30.000 in/hr Exfiltration over Wetted area	Phase-In= 0.01'
#2	Primary	48.25'	12.0" Round Culvert	

L= 1.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 48.25' / 47.25' S= 1.0000 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Discarded OutFlow Max=0.06 cfs @ 12.25 hrs HW=45.83' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.06 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=43.50' TW=43.50' (Dynamic Tailwater) = Culvert (Controls 0.00 cfs)

Pond 43P: LCB #2-2

Summary for Pond 44P: Infiltration Pond / LCB #'s2 & 2-1 / OS #1

Inflow Area = 2.158 ac, 67.12% Impervious, Inflow Depth = 1.01" for 10-yr event

Inflow = 2.87 cfs @ 12.14 hrs, Volume= 0.181 af

Outflow = 1.40 cfs @ 12.27 hrs, Volume= 0.181 af, Atten= 51%, Lag= 7.5 min

Discarded = 1.40 cfs @ 12.27 hrs, Volume= 0.181 af Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 51.77' @ 12.27 hrs Surf.Area= 1,486 sf Storage= 1,345 cf

Plug-Flow detention time= 10.3 min calculated for 0.181 af (100% of inflow)

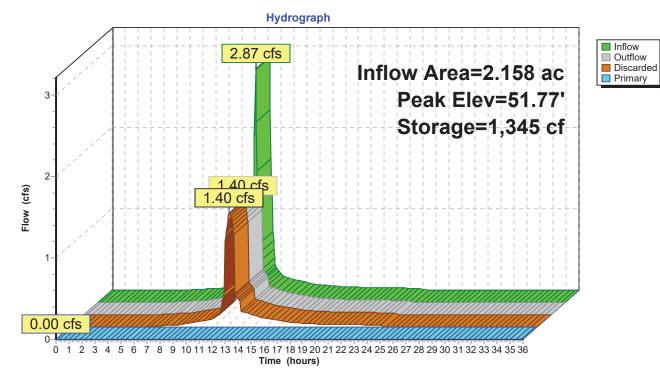
Center-of-Mass det. time= 10.3 min (802.6 - 792.3)

Volume	Invert	Avail.Storage	Storage Description
#1	43.50'	150 cf	Custom Stage Data (Conic)Listed below (Recalc) x 2
			548 cf Overall - 173 cf Embedded = 375 cf x 40.0% Voids
#2	44.50'	173 cf	Custom Stage Data (Prismatic)Listed below (Recalc) x 2 Inside #1
#3	48.25'	104 cf	Custom Stage Data (Conic)Listed below (Recalc)
			300 cf Overall - 39 cf Embedded = 261 cf x 40.0% Voids
#4	48.25'	39 cf	12.0" Round Pipe Storage Inside #3
			L= 50.0'
<u>#5</u>	51.00'	3,117 cf	Custom Stage Data (Conic)Listed below (Recalc)

3,583 cf Total Available Storage

	3	0,303 CI TOTAL AV	aliable Storage	
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
43.50	38	0	0	38
50.00	38	247	247	180
51.50	4	27	274	220
Elevation	Surf.Area	Inc.Store	Cum.Store	
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	
44.50	13	0	0	
50.50	13	78	78	
51.50	4	9	87	
Elevation	Surf.Area	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)
48.25	150	0	0	150
50.25	150	300	300	237
Elevation	Surf.Area	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)
51.00	955	0	0	955
52.00	1,449	1,193	1,193	1,464
53.00	2,440	1,923	3,117	2,467

Device	Routing	Invert	Outlet Devices
#1	Discarded	43.50'	30.000 in/hr Exfiltration over Wetted area Phase-In= 0.01'
#2	Primary	49.06'	12.0" Round Culvert
	-		L= 62.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 49.06' / 48.75' S= 0.0050 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf
#3	Device 2	52.00'	24.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads


Discarded OutFlow Max=1.40 cfs @ 12.27 hrs HW=51.76' (Free Discharge) 1=Exfiltration (Exfiltration Controls 1.40 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=43.50' TW=48.85' (Dynamic Tailwater)

2=Culvert (Controls 0.00 cfs)

3=Orifice/Grate (Controls 0.00 cfs)

Pond 44P: Infiltration Pond / LCB #'s2 & 2-1 / OS #1

Summary for Pond 50P: LCB #4-1

Inflow Area = 0.070 ac, 28.78% Impervious, Inflow Depth = 1.37" for 10-yr event

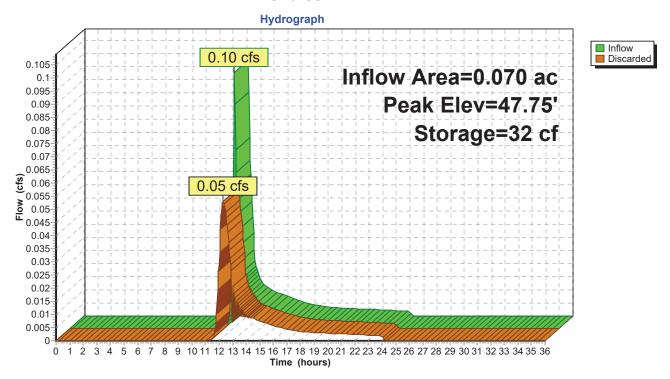
Inflow = 0.10 cfs @ 12.11 hrs, Volume= 0.008 af

Outflow = 0.05 cfs @ 12.31 hrs, Volume= 0.008 af, Atten= 46%, Lag= 12.4 min

Discarded = 0.05 cfs @ 12.31 hrs, Volume= 0.008 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Peak Elev= 47.75' @ 12.31 hrs Surf.Area= 38 sf Storage= 32 cf


Plug-Flow detention time= (not calculated: outflow precedes inflow)

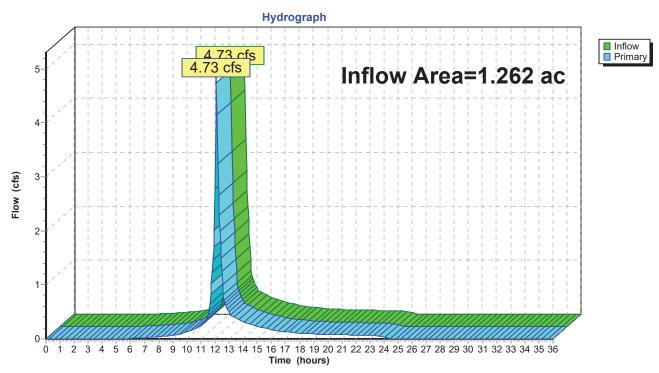
Center-of-Mass det. time= 3.0 min (882.4 - 879.3)

\	1	A		04 D			
Volume	Invert	Avail.Sto	rage	Storage D	escription		
#1	46.00'	7	79 cf	Custom S	tage Data (Co	onic)Listed bel	ow (Recalc)
							cf x 40.0% Voids
#2	47.00'	8	87 cf	Custom S	tage Data (Pr	rismatic)Listed	below (Recalc) Inside #1
		16	66 cf	Total Avai	lable Storage		
					J		
Elevation	Surf	f.Area	Inc.	Store	Cum.Store	Wet.Are	ea
(feet)		(sq-ft)	(cubic	:-feet)	(cubic-feet)	(sq-	ft)
46.00		38		0	0	(38
53.00		38		266	266	19	91
54.00		4		18	284	22	28
Elevation	Surf	f.Area	Inc.	Store	Cum.Store		
(feet)		(sq-ft)	(cubic	:-feet)	(cubic-feet)		
47.00		13		0	0		
53.00		13		78	78		
54.00		4		9	87		
Device R	outing	Invert	Outle	et Devices			
#1 D	iscarded	46.00'	30.00	00 in/hr Ex	filtration over	Wetted area	Phase-In= 0.01'

Discarded OutFlow Max=0.05 cfs @ 12.31 hrs HW=47.74' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.05 cfs)

Pond 50P: LCB #4-1

Summary for Link POA1: POA #1


Inflow Area = 1.262 ac, 52.96% Impervious, Inflow Depth = 3.49" for 10-yr event

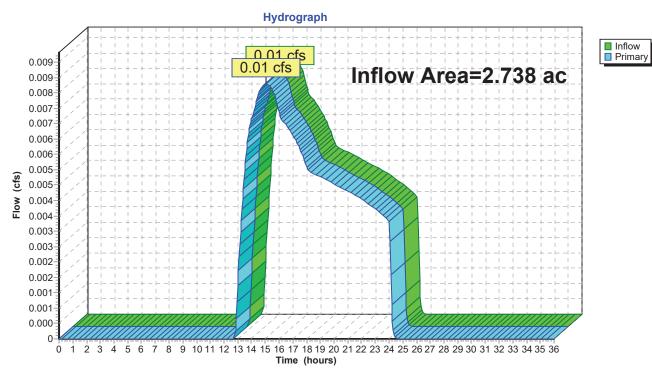
Inflow = 4.73 cfs @ 12.10 hrs, Volume= 0.367 af

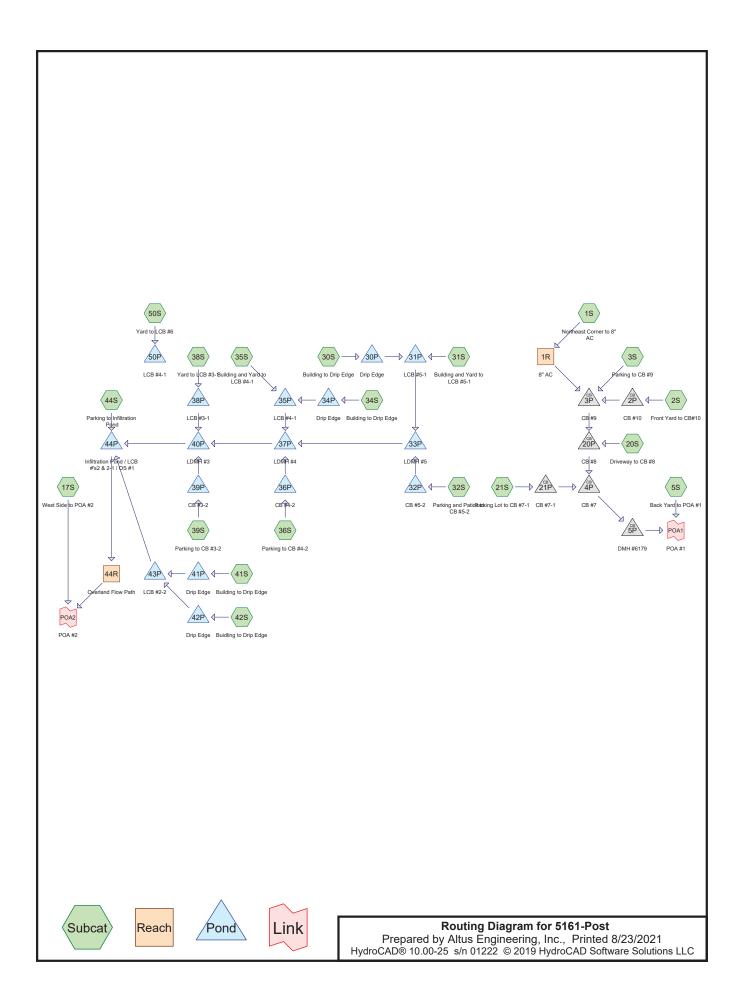
Primary = 4.73 cfs @ 12.10 hrs, Volume= 0.367 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Link POA1: POA #1

Summary for Link POA2: POA #2


Inflow Area = 2.738 ac, 53.24% Impervious, Inflow Depth = 0.02" for 10-yr event


Inflow = 0.01 cfs @ 15.06 hrs, Volume= 0.005 af

Primary = 0.01 cfs @ 15.06 hrs, Volume= 0.005 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Link POA2: POA #2

Tc=6.0 min CN=94 Runoff=0.61 cfs 0.049 af

HydroCAD® 10.00-25 s/n 01222 © 2019 HydroCAD Software Solutions LLC

Time span=0.00-36.00 hrs, dt=0.05 hrs, 721 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1S: Northeast Corner to 8" Runoff Area=12,050 sf 26.86% Impervious Runoff Depth=3.60" Flow Length=199' Tc=6.0 min CN=69 Runoff=1.14 cfs 0.083 af Runoff Area=6,933 sf 69.51% Impervious Runoff Depth=5.58" Subcatchment 2S: Front Yard to CB#10 Flow Length=147' Tc=6.0 min CN=87 Runoff=0.98 cfs 0.074 af Subcatchment 3S: Parking to CB #9 Runoff Area=3,144 sf 76.02% Impervious Runoff Depth=5.81" Flow Length=46' Slope=0.0181 '/' Tc=6.0 min CN=89 Runoff=0.46 cfs 0.035 af Runoff Area=10,578 sf 32.70% Impervious Runoff Depth=4.02" Subcatchment 5S: Back Yard to POA #1 Flow Length=198' Tc=6.0 min CN=73 Runoff=1.12 cfs 0.081 af Runoff Area=25,283 sf 1.63% Impervious Runoff Depth=0.40" Subcatchment 17S: West Side to POA #2 Flow Length=357' Tc=11.1 min CN=33 Runoff=0.07 cfs 0.019 af Runoff Area=4,708 sf 85.92% Impervious Runoff Depth=6.27" Subcatchment 20S: Driveway to CB #8 Flow Length=152' Tc=6.0 min CN=93 Runoff=0.71 cfs 0.056 af Subcatchment21S: Parking Lot to CB #7-1 Runoff Area=17,572 sf 63.56% Impervious Runoff Depth=5.35" Flow Length=262' Tc=9.0 min CN=85 Runoff=2.19 cfs 0.180 af Runoff Area=4,788 sf 41.52% Impervious Runoff Depth=2.98" Subcatchment 30S: Building to Drip Edge Tc=6.0 min CN=63 Runoff=0.37 cfs 0.027 af Runoff Area=2,900 sf 58.93% Impervious Runoff Depth=4.24" Subcatchment 31S: Building and Yard to Tc=6.0 min CN=75 Runoff=0.32 cfs 0.024 af Subcatchment 32S: Parking and Patios to Runoff Area=13,060 sf 68.77% Impervious Runoff Depth=5.46" Flow Length=130' Tc=6.0 min CN=86 Runoff=1.81 cfs 0.136 af Runoff Area=2,689 sf 86.09% Impervious Runoff Depth=6.15" Subcatchment 34S: Building to Drip Edge Tc=6.0 min CN=92 Runoff=0.40 cfs 0.032 af Subcatchment 35S: Building and Yard to Runoff Area=6,139 sf 23.26% Impervious Runoff Depth=2.28" Flow Length=134' Tc=6.0 min CN=56 Runoff=0.35 cfs 0.027 af Runoff Area=21,070 sf 71.36% Impervious Runoff Depth=5.58" Subcatchment 36S: Parking to CB #4-2 Flow Length=108' Tc=7.1 min CN=87 Runoff=2.89 cfs 0.225 af Subcatchment 38S: Yard to LCB #3-1 Runoff Area=4,418 sf 16.50% Impervious Runoff Depth=1.63" Flow Length=103' Tc=6.0 min CN=49 Runoff=0.16 cfs 0.014 af Runoff Area=8,038 sf 83.53% Impervious Runoff Depth=6.15" Subcatchment 39S: Parking to CB #3-2 Flow Length=67' Tc=6.0 min CN=92 Runoff=1.21 cfs 0.095 af Subcatchment41S: Building to Drip Edge Runoff Area=3,996 sf 93.09% Impervious Runoff Depth=6.39"

Subcatchment 42S: Building to Drip Edge Runoff Area=5,707 sf 57.68% Impervious Runoff Depth=3.81" Tc=6.0 min CN=71 Runoff=0.57 cfs 0.042 af

Subcatchment 44S: Parking to Infiltration Runoff Area=21,178 sf 81.09% Impervious Runoff Depth=5.58" Flow Length=110' Tc=6.0 min CN=87 Runoff=2.99 cfs 0.226 af

Subcatchment 50S: Yard to LCB #6 Runoff Area=3,058 sf 28.78% Impervious Runoff Depth=2.28" Flow Length=66' Tc=6.0 min CN=56 Runoff=0.18 cfs 0.013 af

Reach 1R: 8" ACAvg. Flow Depth=0.48' Max Vel=4.23 fps Inflow=1.14 cfs 0.083 af 8.0" Round Pipe n=0.012 L=45.0' S=0.0100'/ Capacity=1.31 cfs Outflow=1.14 cfs 0.083 af

Reach 44R: Overland Flow PathAvg. Flow Depth=0.16' Max Vel=0.95 fps Inflow=2.21 cfs 0.029 af n=0.035 L=114.0' S=0.0091 '/' Capacity=104.51 cfs Outflow=1.99 cfs 0.029 af

Pond 2P: CB #10 Peak Elev=63.85' Inflow=0.98 cfs 0.074 af

Outflow=0.98 cfs 0.074 af

Pond 3P: CB #9 Peak Elev=63.89' Inflow=2.57 cfs 0.192 af

Outflow=2.57 cfs 0.192 af

Pond 4P: CB #7 Peak Elev=63.99' Inflow=5.41 cfs 0.428 af

8.0" Round Culvert n=0.012 L=48.0' S=0.0096 '/' Outflow=5.41 cfs 0.428 af

Pond 5P: DMH #6179 Peak Elev=50.21' Inflow=5.41 cfs 0.428 af

Outflow=5.41 cfs 0.428 af

Pond 20P: CB #8 Peak Elev=63.90' Inflow=3.29 cfs 0.248 af

Outflow=3.29 cfs 0.248 af

Pond 21P: CB #7-1 Peak Elev=63.97' Inflow=2.19 cfs 0.180 af

Outflow=2.19 cfs 0.180 af

Pond 30P: Drip Edge Peak Elev=51.18' Storage=28 cf Inflow=0.37 cfs 0.027 af

Discarded=0.29 cfs 0.027 af Primary=0.00 cfs 0.000 af Outflow=0.29 cfs 0.027 af

Pond 31P: LCB #5-1 Peak Elev=47.73' Storage=109 cf Inflow=0.32 cfs 0.024 af Discarded=0.23 cfs 0.024 af Primary=0.00 cfs 0.000 af Outflow=0.23 cfs 0.024 af

Pond 32P: CB #5-2 Peak Elev=51.61' Storage=155 cf Inflow=1.81 cfs 0.136 af

12.0" Round Culvert n=0.012 L=20.0' S=0.0050 '/' Outflow=2.49 cfs 0.140 af

Pond 33P: LDMH #5 Peak Elev=52.52' Storage=961 cf Inflow=2.49 cfs 0.140 af

Discarded=0.72 cfs 0.135 af Primary=0.61 cfs 0.005 af Outflow=1.33 cfs 0.140 af

Pond 34P: Drip Edge

Peak Elev=51.27' Storage=51 cf Inflow=0.40 cfs 0.032 af

Discarded=0.27 cfs 0.032 af Primary=0.00 cfs 0.000 af Outflow=0.27 cfs 0.032 af

Pond 35P: LCB #4-1 Peak Elev=48.25' Storage=135 cf Inflow=0.35 cfs 0.027 af

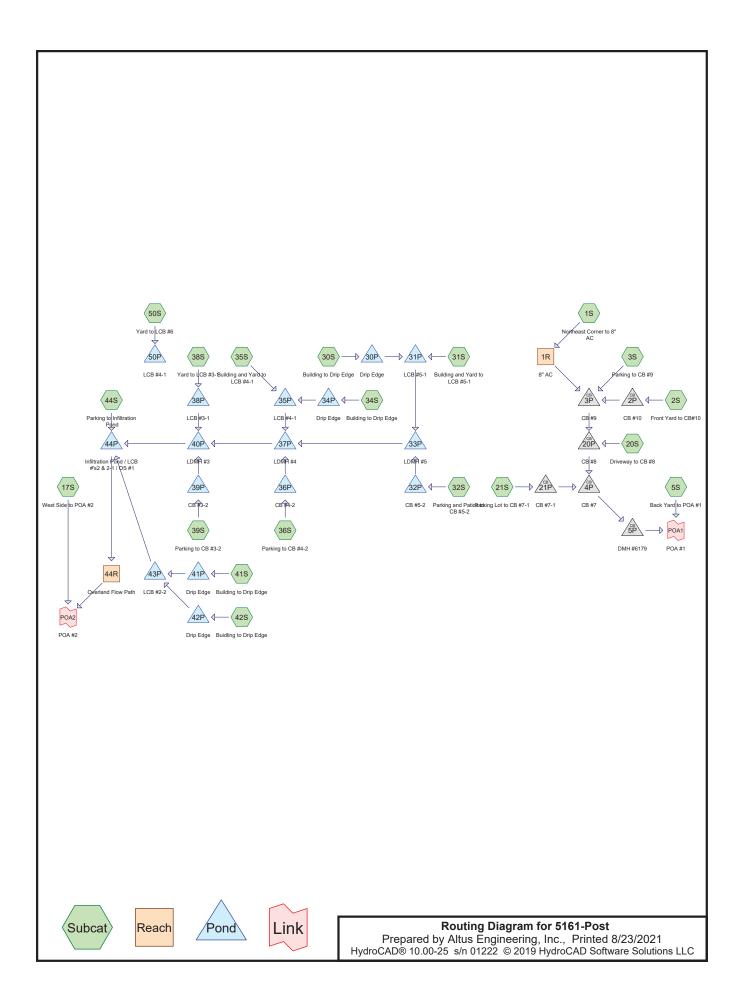
Discarded=0.20 cfs 0.027 af Primary=0.00 cfs 0.000 af Outflow=0.20 cfs 0.027 af

Pond 36P: CB #4-2 Peak Elev=52.39' Storage=132 cf Inflow=2.89 cfs 0.225 af 12.0" Round Culvert n=0.012 L=13.0' S=0.0046 '/' Outflow=2.82 cfs 0.225 af

Peak Elev=52.34' Storage=675 cf Inflow=2.82 cfs 0.230 af Pond 37P: LDMH #4 Discarded=0.52 cfs 0.165 af Primary=2.13 cfs 0.065 af Outflow=2.63 cfs 0.230 af Peak Elev=47.25' Storage=50 cf Inflow=0.16 cfs 0.014 af Pond 38P: LCB #3-1 Discarded=0.16 cfs 0.014 af Primary=0.00 cfs 0.000 af Outflow=0.16 cfs 0.014 af Peak Elev=52.33' Storage=49 cf Inflow=1.21 cfs 0.095 af Pond 39P: CB #3-2 12.0" Round Culvert n=0.012 L=12.0' S=0.0050 '/' Outflow=1.07 cfs 0.095 af Peak Elev=52.31' Storage=825 cf Inflow=3.20 cfs 0.159 af **Pond 40P: LDMH #3** Discarded=0.61 cfs 0.114 af Primary=2.94 cfs 0.045 af Outflow=3.52 cfs 0.159 af Peak Elev=52.89' Storage=110 cf Inflow=0.61 cfs 0.049 af Pond 41P: Drip Edge Discarded=0.23 cfs 0.044 af Primary=0.35 cfs 0.005 af Outflow=0.58 cfs 0.049 af Peak Elev=52.78' Storage=113 cf Inflow=0.57 cfs 0.042 af Pond 42P: Drip Edge Discarded=0.27 cfs 0.039 af Primary=0.21 cfs 0.002 af Outflow=0.48 cfs 0.042 af Peak Elev=47.65' Storage=129 cf Inflow=0.52 cfs 0.007 af Pond 43P: LCB #2-2 Discarded=0.28 cfs 0.007 af Primary=0.00 cfs 0.000 af Outflow=0.28 cfs 0.007 af Pond 44P: Infiltration Pond / LCB #'s2 & 2-1 / Peak Elev=52.23' Storage=2,010 cf Inflow=5.87 cfs 0.271 af Discarded=1.63 cfs 0.242 af Primary=2.21 cfs 0.029 af Outflow=3.84 cfs 0.271 af

Pond 50P: LCB #4-1 Peak Elev=49.83' Storage=80 cf Inflow=0.18 cfs 0.013 af

Outflow=0.08 cfs 0.013 af


Link POA1: POA #1Inflow=6.52 cfs 0.509 af
Primary=6.52 cfs 0.509 af

1 1111ary 0.02 013 0.000 ar

Link POA2: POA #2 Inflow=2.00 cfs 0.048 af

Primary=2.00 cfs 0.048 af

Total Runoff Area = 4.070 ac Runoff Volume = 1.437 af Average Runoff Depth = 4.24" 47.27% Pervious = 1.924 ac 52.73% Impervious = 2.146 ac

Tc=6.0 min CN=94 Runoff=0.74 cfs 0.059 af

HydroCAD® 10.00-25 s/n 01222 © 2019 HydroCAD Software Solutions LLC

Time span=0.00-36.00 hrs, dt=0.05 hrs, 721 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1S: Northeast Corner to 8" Runoff Area=12,050 sf 26.86% Impervious Runoff Depth=4.78" Flow Length=199' Tc=6.0 min CN=69 Runoff=1.52 cfs 0.110 af Runoff Area=6,933 sf 69.51% Impervious Runoff Depth=6.94" Subcatchment 2S: Front Yard to CB#10 Flow Length=147' Tc=6.0 min CN=87 Runoff=1.20 cfs 0.092 af Subcatchment 3S: Parking to CB #9 Runoff Area=3,144 sf 76.02% Impervious Runoff Depth=7.18" Flow Length=46' Slope=0.0181 '/' Tc=6.0 min CN=89 Runoff=0.56 cfs 0.043 af Runoff Area=10,578 sf 32.70% Impervious Runoff Depth=5.26" Subcatchment 5S: Back Yard to POA #1 Flow Length=198' Tc=6.0 min CN=73 Runoff=1.46 cfs 0.106 af Runoff Area=25,283 sf 1.63% Impervious Runoff Depth=0.80" Subcatchment 17S: West Side to POA #2 Flow Length=357' Tc=11.1 min CN=33 Runoff=0.21 cfs 0.039 af Runoff Area=4,708 sf 85.92% Impervious Runoff Depth=7.66" Subcatchment 20S: Driveway to CB #8 Flow Length=152' Tc=6.0 min CN=93 Runoff=0.86 cfs 0.069 af Subcatchment21S: Parking Lot to CB #7-1 Runoff Area=17,572 sf 63.56% Impervious Runoff Depth=6.70" Flow Length=262' Tc=9.0 min CN=85 Runoff=2.71 cfs 0.225 af Runoff Area=4,788 sf 41.52% Impervious Runoff Depth=4.07" Subcatchment 30S: Building to Drip Edge Tc=6.0 min CN=63 Runoff=0.51 cfs 0.037 af Runoff Area=2,900 sf 58.93% Impervious Runoff Depth=5.50" Subcatchment 31S: Building and Yard to Tc=6.0 min CN=75 Runoff=0.42 cfs 0.030 af Subcatchment 32S: Parking and Patios to Runoff Area=13,060 sf 68.77% Impervious Runoff Depth=6.82" Flow Length=130' Tc=6.0 min CN=86 Runoff=2.24 cfs 0.170 af Runoff Area=2,689 sf 86.09% Impervious Runoff Depth=7.54" Subcatchment 34S: Building to Drip Edge Tc=6.0 min CN=92 Runoff=0.49 cfs 0.039 af Subcatchment 35S: Building and Yard to Runoff Area=6,139 sf 23.26% Impervious Runoff Depth=3.25" Flow Length=134' Tc=6.0 min CN=56 Runoff=0.51 cfs 0.038 af Runoff Area=21,070 sf 71.36% Impervious Runoff Depth=6.94" Subcatchment 36S: Parking to CB #4-2 Flow Length=108' Tc=7.1 min CN=87 Runoff=3.55 cfs 0.280 af Subcatchment 38S: Yard to LCB #3-1 Runoff Area=4,418 sf 16.50% Impervious Runoff Depth=2.45" Flow Length=103' Tc=6.0 min CN=49 Runoff=0.26 cfs 0.021 af Runoff Area=8,038 sf 83.53% Impervious Runoff Depth=7.54" Subcatchment 39S: Parking to CB #3-2 Flow Length=67' Tc=6.0 min CN=92 Runoff=1.46 cfs 0.116 af Subcatchment41S: Building to Drip Edge Runoff Area=3,996 sf 93.09% Impervious Runoff Depth=7.78"

Runoff Area=5,707 sf 57.68% Impervious Runoff Depth=5.02" Subcatchment 42S: Builling to Drip Edge Tc=6.0 min CN=71 Runoff=0.75 cfs 0.055 af

Subcatchment 44S: Parking to Infiltration Runoff Area=21,178 sf 81.09% Impervious Runoff Depth=6.94" Flow Length=110' Tc=6.0 min CN=87 Runoff=3.67 cfs 0.281 af

Runoff Area=3,058 sf 28.78% Impervious Runoff Depth=3.25" Subcatchment 50S: Yard to LCB #6 Flow Length=66' Tc=6.0 min CN=56 Runoff=0.26 cfs 0.019 af

Reach 1R: 8" AC Avg. Flow Depth=0.67' Max Vel=4.27 fps Inflow=1.52 cfs 0.110 af 8.0" Round Pipe n=0.012 L=45.0' S=0.0100 '/' Capacity=1.31 cfs Outflow=1.33 cfs 0.110 af

Avg. Flow Depth=0.25' Max Vel=1.21 fps Inflow=5.36 cfs 0.093 af Reach 44R: Overland Flow Path n=0.035 L=114.0' S=0.0091'/' Capacity=104.51 cfs Outflow=4.62 cfs 0.093 af

Pond 2P: CB #10 Peak Elev=70.39' Inflow=1.20 cfs 0.092 af

Outflow=1.20 cfs 0.092 af

Peak Elev=70.40' Inflow=3.07 cfs 0.245 af Pond 3P: CB #9

Outflow=3.07 cfs 0.245 af

Pond 4P: CB #7 Peak Elev=70.54' Inflow=6.56 cfs 0.539 af

8.0" Round Culvert n=0.012 L=48.0' S=0.0096 '/' Outflow=6.56 cfs 0.539 af

Pond 5P: DMH #6179 Peak Elev=50.25' Inflow=6.56 cfs 0.539 af

Outflow=6.56 cfs 0.539 af

Pond 20P: CB #8 Peak Elev=70.53' Inflow=3.93 cfs 0.314 af

Outflow=3.93 cfs 0.314 af

Pond 21P: CB #7-1 Peak Elev=70.51' Inflow=2.71 cfs 0.225 af

Outflow=2.71 cfs 0.225 af

Peak Elev=51.58' Storage=95 cf Inflow=0.51 cfs 0.037 af Pond 30P: Drip Edge Discarded=0.31 cfs 0.037 af Primary=0.02 cfs 0.000 af Outflow=0.33 cfs 0.037 af

Pond 31P: LCB #5-1 Peak Elev=48.19' Storage=154 cf Inflow=0.42 cfs 0.031 af Discarded=0.25 cfs 0.031 af Primary=0.00 cfs 0.000 af Outflow=0.25 cfs 0.031 af

Pond 32P: CB #5-2 Peak Elev=51.69' Storage=204 cf Inflow=2.24 cfs 0.170 af

12.0" Round Culvert n=0.012 L=20.0' S=0.0050 '/' Outflow=4.20 cfs 0.179 af

Pond 33P: LDMH #5 Peak Elev=53.00' Storage=961 cf Inflow=4.20 cfs 0.179 af

Discarded=0.71 cfs 0.152 af Primary=1.82 cfs 0.026 af Outflow=2.53 cfs 0.179 af

Peak Elev=51.55' Storage=99 cf Inflow=0.49 cfs 0.039 af Pond 34P: Drip Edge Discarded=0.29 cfs 0.039 af Primary=0.01 cfs 0.000 af Outflow=0.29 cfs 0.039 af

Peak Elev=49.42' Storage=242 cf Inflow=0.51 cfs 0.038 af Pond 35P: LCB #4-1

Discarded=0.25 cfs 0.038 af Primary=0.00 cfs 0.000 af Outflow=0.25 cfs 0.038 af

Pond 36P: CB #4-2 Peak Elev=52.66' Storage=576 cf Inflow=3.55 cfs 0.280 af 12.0" Round Culvert n=0.012 L=13.0' S=0.0046 '/' Outflow=5.72 cfs 0.287 af

Inflow=4.75 cfs 0.131 af

Primary=4.75 cfs 0.131 af

Link POA2: POA #2

HydroCAD® 10.00-25 s/n 01222 © 2019 HydroCAD Software Solutions LLC

Pond 37P: LDMH #4	Peak Elev=53.31' Storage=675 cf Inflow=5.72 cfs 0.313 af Discarded=0.52 cfs 0.192 af Primary=5.62 cfs 0.121 af Outflow=6.14 cfs 0.313 af
Pond 38P: LCB #3-1	Peak Elev=47.71' Storage=86 cf Inflow=0.26 cfs 0.021 af Discarded=0.18 cfs 0.021 af Primary=0.00 cfs 0.000 af Outflow=0.18 cfs 0.021 af
Pond 39P: CB #3-2	Peak Elev=52.85' Storage=63 cf Inflow=1.46 cfs 0.116 af 12.0" Round Culvert n=0.012 L=12.0' S=0.0050 '/' Outflow=1.54 cfs 0.116 af
Pond 40P: LDMH #3	Peak Elev=52.80' Storage=835 cf Inflow=6.10 cfs 0.237 af Discarded=0.63 cfs 0.131 af Primary=4.30 cfs 0.106 af Outflow=4.93 cfs 0.237 af
Pond 41P: Drip Edge	Peak Elev=52.99' Storage=122 cf Inflow=0.74 cfs 0.059 af Discarded=0.23 cfs 0.051 af Primary=0.47 cfs 0.008 af Outflow=0.70 cfs 0.059 af
Pond 42P: Drip Edge	Peak Elev=52.93' Storage=137 cf Inflow=0.75 cfs 0.055 af Discarded=0.28 cfs 0.049 af Primary=0.40 cfs 0.006 af Outflow=0.68 cfs 0.055 af
Pond 43P: LCB #2-2	Peak Elev=48.79' Storage=296 cf Inflow=0.86 cfs 0.014 af Discarded=0.35 cfs 0.014 af Primary=0.00 cfs 0.000 af Outflow=0.35 cfs 0.014 af
Pond 44P: Infiltration Pon	d / LCB #'s2 & 2-1 / Peak Elev=52.41' Storage=2,326 cf Inflow=7.26 cfs 0.387 af Discarded=1.75 cfs 0.294 af Primary=5.36 cfs 0.093 af Outflow=7.11 cfs 0.387 af
Pond 50P: LCB #4-1	Peak Elev=52.13' Storage=133 cf Inflow=0.26 cfs 0.019 af Outflow=0.12 cfs 0.019 af
Link POA1: POA #1	Inflow=8.01 cfs 0.646 af Primary=8.01 cfs 0.646 af

Total Runoff Area = 4.070 ac Runoff Volume = 1.830 af Average Runoff Depth = 5.39" 47.27% Pervious = 1.924 ac 52.73% Impervious = 2.146 ac

Section 5

NRCC Extreme Precipitation Table

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Smoothing State New Hampshire

Location

Longitude 70.763 degrees West

43.072 degrees North Latitude

Elevation 0 feet

Date/Time Wed, 23 Dec 2020 12:00:25 -0500

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr	1day	2day	4day	7day	10day	
1yr	0.26	0.40	0.50	0.65	0.81	1.04	1yr	0.70	0.98	1.21	1.56	2.03	2.66	Add 15%	2.35	2.81	3.22	3.94	4.55	1yr
2yr	0.32	0.50	0.62	0.81	1.02	1.30	2yr	0.88	1.18	1.52	1.94	2.49	3.21	3.69	2.84	3.43	3.94	4.68	5.33	2yr
5yr	0.37	0.58	0.73	0.98	1.25	1.61	5yr	1.08	1.47	1.89	2.43	3.14	4.07		3.60	4.40	5.04	5.94	6.70	5yr
10yr	0.41	0.65	0.82	1.12	1.45	1.89	10yr	1.25	1.73	2.23	2.89	3.75	4.87	5.60	4.31	5.32	6.09	7.11	7.98	10yr
25yr	0.48	0.76	0.97	1.34	1.77	2.34	25yr	1.53	2.14	2.78	3.63	4.74	6.17	7.10	5.46	6.83	7.80	9.03	10.05	25yr
50yr	0.54	0.86	1.10	1.54	2.07	2.76	50yr	1.79	2.53	3.29	4.32	5.66	7.39	8.50	6.54	8.25	9.42	10.81	11.98	50yr
100yr	0.60	0.97	1.25	1.77	2.42	3.26	100yr	2.09	2.98	3.90	5.16	6.77	8.85	10.36 100 y 1	7.83	9.98	11.38	12.96	14.27	100yr
200yr	0.67	1.10	1.43	2.05	2.82	3.83	200yr	2.44	3.52	4.62	6.13	8.08	10.61	12.55 200yr	9.39	12.07	13.76	15.55	17.02	200yr
500yr	0.80	1.31	1.71	2.48	3.48	4.76	500yr	3.00	4.38	5.76	7.70	10.22	13.48	16.14 500yr	11.93	15.52	17.67	19.78	21.49	500yr

Lower Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.23	0.36	0.44	0.59	0.72	0.88	1yr	0.63	0.86	0.92	1.33	1.68	2.24	2.49	1yr	1.98	2.40	2.87	3.18	3.90	1yr
2yr	0.31	0.49	0.60	0.81	1.00	1.19	2yr	0.86	1.16	1.37	1.82	2.34	3.06	3.45	2yr	2.71	3.32	3.82	4.55	5.08	2yr
5yr	0.35	0.54	0.67	0.92	1.17	1.40	5yr	1.01	1.37	1.61	2.12	2.73	3.79	4.19	5yr	3.35	4.03	4.72	5.53	6.24	5yr
10yr	0.39	0.59	0.73	1.03	1.33	1.60	10yr	1.14	1.56	1.80	2.39	3.06	4.37	4.86	10yr	3.87	4.67	5.44	6.41	7.20	10yr
25yr	0.44	0.67	0.83	1.19	1.56	1.90	25yr	1.35	1.86	2.10	2.75	3.53	4.72	5.89	25yr	4.18	5.66	6.65	7.79	8.68	25yr
50yr	0.48	0.73	0.91	1.31	1.76	2.17	50yr	1.52	2.12	2.35	3.07	3.93	5.33	6.80	50yr	4.72	6.54	7.72	9.04	10.02	50yr
100yr	0.54	0.81	1.01	1.47	2.01	2.47	100yr	1.73	2.41	2.63	3.41	4.35	6.00	7.85	100yr	5.31	7.55	8.98	10.51	11.56	100yr
200yr	0.59	0.89	1.13	1.63	2.28	2.81	200yr	1.96	2.75	2.93	3.78	4.79	6.72	9.06	200yr	5.95	8.71	10.42	12.22	13.37	200yr
500yr	0.68	1.02	1.31	1.90	2.71	3.36	500yr	2.34	3.29	3.41	4.31	5.45	7.82	10.94	500yr	6.92	10.52	12.69	14.96	16.19	500yr

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.28	0.44	0.54	0.72	0.89	1.08	1yr	0.77	1.06	1.26	1.74	2.21	2.98	3.16	1yr	2.64	3.04	3.58	4.37	5.04	1yr
2yr	0.34	0.52	0.64	0.86	1.07	1.27	2yr	0.92	1.24	1.48	1.96	2.51	3.42	3.70	2yr	3.03	3.56	4.09	4.84	5.63	2yr
5yr	0.40	0.62	0.77	1.05	1.34	1.62	5yr	1.15	1.58	1.88	2.53	3.25	4.34	4.96	5yr	3.84	4.77	5.38	6.37	7.16	5yr
10yr	0.47	0.72	0.89	1.25	1.61	1.98	10yr	1.39	1.93	2.28	3.11	3.95	5.34	6.20	10yr	4.72	5.96	6.82	7.84	8.75	10yr
25yr	0.58	0.88	1.09	1.56	2.05	2.57	25yr	1.77	2.51	2.95	4.07	5.15	7.78	8.34	25yr	6.88	8.02	9.15	10.34	11.41	25yr
50yr	0.67	1.02	1.27	1.83	2.46	3.13	50yr	2.12	3.06	3.60	5.00	6.32	9.74	10.46	50yr	8.62	10.06	11.44	12.72	13.96	50yr
100yr	0.79	1.19	1.49	2.16	2.96	3.81	100yr	2.55	3.72	4.37	6.16	7.76	12.18	13.10	100yr	10.78	12.60	14.31	15.69	17.09	100yr
200yr	0.92	1.39	1.76	2.55	3.56	4.65	200yr	3.07	4.55	5.34	7.58	9.54	15.28	16.44	200yr	13.53	15.81	17.92	19.35	20.92	200yr
500yr	1.15	1.71	2.19	3.19	4.53	6.04	500yr	3.91	5.90	6.93	10.02	12.56	20.65	22.20	500yr	18.27	21.34	24.13	25.51	27.34	500yr

1 of 1 12/23/2020, 12:03 PM

Section 6

NRCS Soils Report

NRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Rockingham County, New Hampshire

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2 053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
Soil Map	
Soil Map	
Legend	7
Map Unit Legend	8
Map Unit Descriptions	
Rockingham County, New Hampshire	10
26B—Windsor loamy sand, 3 to 8 percent slopes	10
299—Udorthents, smoothed	11
538A—Squamscott fine sandy loam, 0 to 5 percent slopes	12
699—Urban land	13

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report

MAP LEGEND **MAP INFORMATION** The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) Spoil Area 8 1:24,000. Area of Interest (AOI) Stony Spot ۵ Soils Very Stony Spot 00 Warning: Soil Map may not be valid at this scale. Soil Map Unit Polygons 8 Wet Spot Soil Map Unit Lines Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of Other Δ Soil Map Unit Points * Special Line Features Special Point Features contrasting soils that could have been shown at a more detailed Water Features (2) Streams and Canals Borrow Pit \boxtimes Transportation Please rely on the bar scale on each map sheet for map Clay Spot 36 ---Rails measurements. \Diamond Closed Depression Interstate Highways Source of Map: Natural Resources Conservation Service Gravel Pit × US Routes Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Gravelly Spot Major Roads 0 Landfill Maps from the Web Soil Survey are based on the Web Mercator Local Roads projection, which preserves direction and shape but distorts ٨. Lava Flow Background distance and area. A projection that preserves area, such as the Marsh or swamp Aerial Photography عليه No. Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. Mine or Quarry 氽 Miscellaneous Water 0 This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Perennial Water 0 Rock Outcrop Soil Survey Area: Rockingham County, New Hampshire Survey Area Data: Version 22, May 29, 2020 Saline Spot Sandy Spot Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Severely Eroded Spot Sinkhole ٥ Date(s) aerial images were photographed: Dec 31, 2009—Jun 14. 2017 Slide or Slip Ş) Sodic Spot The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
26B	Windsor loamy sand, 3 to 8 percent slopes	3.4	20.5%
299	Udorthents, smoothed	4.4	26.7%
538A	Squamscott fine sandy loam, 0 to 5 percent slopes	1.7	10.3%
699	Urban land	7.0	42.6%
Totals for Area of Interest		16.4	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or

Custom Soil Resource Report

landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Rockingham County, New Hampshire

26B—Windsor loamy sand, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2svkf

Elevation: 0 to 1,210 feet

Mean annual precipitation: 36 to 71 inches
Mean annual air temperature: 39 to 55 degrees F

Frost-free period: 140 to 240 days

Farmland classification: Farmland of local importance

Map Unit Composition

Windsor, loamy sand, and similar soils: 85 percent

Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Windsor, Loamy Sand

Setting

Landform: Dunes, outwash plains, deltas, outwash terraces

Landform position (three-dimensional): Tread, riser

Down-slope shape: Convex, linear Across-slope shape: Convex, linear

Parent material: Loose sandy glaciofluvial deposits derived from granite and/or loose sandy glaciofluvial deposits derived from schist and/or loose sandy

glaciofluvial deposits derived from gneiss

Typical profile

O - 0 to 1 inches: moderately decomposed plant material

A - 1 to 3 inches: loamy sand Bw - 3 to 25 inches: loamy sand C - 25 to 65 inches: sand

Properties and qualities

Slope: 3 to 8 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Excessively drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very

high (1.42 to 99.90 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm) Available water capacity: Low (about 4.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2s

Hydrologic Soil Group: A

Ecological site: F144AY022MA - Dry Outwash

Hydric soil rating: No

Custom Soil Resource Report

Minor Components

Hinckley, loamy sand

Percent of map unit: 10 percent

Landform: Eskers, outwash plains, kames, deltas

Landform position (two-dimensional): Summit, shoulder, backslope

Landform position (three-dimensional): Nose slope, side slope, crest, head slope,

rise

Down-slope shape: Convex Across-slope shape: Convex, linear

Hydric soil rating: No

Deerfield, loamy sand

Percent of map unit: 5 percent

Landform: Outwash plains, terraces, deltas
Landform position (two-dimensional): Footslope
Landform position (three-dimensional): Tread, talf

Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

299—Udorthents, smoothed

Map Unit Setting

National map unit symbol: 9cmt

Elevation: 0 to 840 feet

Mean annual precipitation: 44 to 49 inches Mean annual air temperature: 48 degrees F

Frost-free period: 155 to 165 days

Farmland classification: Not prime farmland

Map Unit Composition

Udorthents and similar soils: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Udorthents

Properties and qualities

Depth to restrictive feature: More than 80 inches

Drainage class: Excessively drained Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

538A—Squamscott fine sandy loam, 0 to 5 percent slopes

Map Unit Setting

National map unit symbol: 9cp9 Elevation: 0 to 1,000 feet

Mean annual precipitation: 30 to 55 inches Mean annual air temperature: 45 to 54 degrees F

Frost-free period: 120 to 180 days

Farmland classification: Farmland of local importance

Map Unit Composition

Squamscott and similar soils: 85 percent

Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Squamscott

Setting

Landform: Marine terraces

Typical profile

H1 - 0 to 4 inches: fine sandy loam
H2 - 4 to 12 inches: loamy sand
H3 - 12 to 19 inches: fine sand
H4 - 19 to 65 inches: silt loam

Properties and qualities

Slope: 0 to 5 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Poorly drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.60 in/hr)

Depth to water table: About 0 to 12 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: High (about 9.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4w

Hydrologic Soil Group: C/D

Ecological site: F144AY019NH - Wet Lake Plain

Hydric soil rating: Yes

Minor Components

Scitico

Percent of map unit: 5 percent Landform: Marine terraces Hydric soil rating: Yes

Custom Soil Resource Report

Maybid

Percent of map unit: 5 percent Landform: Marine terraces Hydric soil rating: Yes

Eldridge

Percent of map unit: 5 percent Hydric soil rating: No

699—Urban land

Map Unit Composition

Urban land: 85 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Minor Components

Not named

Percent of map unit: 15 percent Hydric soil rating: No

Section 7

Stormwater Operations & Maintenance Plan

STORMWATER INSPECTION AND MAINTENANCE MANUAL

"Monarch Village" Assessor's Map 297, Lot 6

OWNER AT TIME OF SUBDIVISION APPROVAL: Monarch Village, LLC P.O. Box 365

East Hampstead, NH 03826

Proper inspection, maintenance, and repair are key elements in maintaining a successful stormwater management program on a developed property. Routine inspections ensure permit compliance and reduce the potential for deterioration of infrastructure or reduced water quality. The following responsible parties shall be in charge of managing the stormwater facilities:

RESPONSIBLE PARTIES:

Owner:	Monarch Village, LLC	(978) 685-0568	
	Name	Company	Phone
Inspection:	Monarch Village, LLC		(978) 685-0568
-	Name	Company	Phone
Maintenance	: Monarch Village, LLC		(978) 685-0568
	Name	Company	Phone

NOTES:

Inspection and maintenance responsibilities shall transfer to any future property owner(s).

This manual shall be updated as needed to reflect any changes related to any transfer of ownership and/or any delegation of inspection and maintenance responsibilities to another entity

LEACHING CATCH BASINS AND DRAIN MANHOLES

Function – Leaching catch basins and drain manholes allow for the infiltration of and provide treatment to runoff. Stormwater infiltration slows runoff, decreases the peak rate of discharge and promotes groundwater recharge.

Maintenance

- Inspect annually and after significant rainfall events.
- If an infiltration-based practice does not completely drain within 72-hours following a rainfall event, then a qualified professional shall be retained to assess the condition of the facility to determine measures required to restore its filtration and/or infiltration function(s), including but not limited to removal of accumulated sediments and/or replacement or reconstruction of the structure.
- Remove any obstructions, litter and accumulated sediment or debris as warranted but no less than once a year.

INFILTRATION PONDS

Function – Infiltration ponds allow for the infiltration of and provide treatment to runoff. Stormwater infiltration slows runoff, decreases the peak rate of discharge and promotes groundwater recharge.

Maintenance

- Inspect annually and after significant rainfall events.
- If an infiltration-based practice does not completely drain within 72-hours following a rainfall event, then a qualified professional shall be retained to assess the condition of the facility to determine measures required to restore its filtration and/or infiltration function(s), including but not limited to removal of accumulated sediments and/or replacement or reconstruction of the structure.
- Remove any obstructions, litter and accumulated sediment or debris as warranted but no less than once a year.
- Mowing of any grassed area in or adjacent to a raingarden, including its berm, shall be performed at least twice per year (when areas are not inundated) to keep the vegetation in vigorous condition. The cut grass shall be removed to prevent the decaying organic litter from clogging the filter media or choking other vegetation.
- Select vegetation should be maintained in healthy condition. This may include pruning, removal and replacement of dead or diseased vegetation.
- Remove any hard wood growth from pond areas, including side slopes and berms.

CULVERTS AND DRAINAGE PIPES

Function – Culverts and drainage pipes convey stormwater away from buildings, walkways, and parking areas and to surface waters or closed drainage systems.

Maintenance

- Culverts and drainage pipes shall be inspected semi-annually, or more often as needed, for accumulation of debris and structural integrity. Leaves and other debris shall be removed from the inlet and outlet to insure the functionality of drainage structures. Debris shall be disposed of on site where it will not concentrate back at the drainage structures or at a solid waste disposal facility.
- Riprap Areas Culvert outlets and inlets shall be inspected during annual maintenance and operations for erosion and scour. If scour or creek erosion is identified, the outlet owner shall take appropriate means to prevent further erosion. Increased lengths of riprap may require a NHDES Permit and/or local permit.

CATCH BASINS

Function – Catch basins collect stormwater, primarily from paved surfaces and roofs. Stormwater from paved areas often contains sediment and contaminants. Catch basin sumps serve to trap sediment, trace metals, nutrients and debris. Hooded catch basins trap hydrocarbons and floating debris.

Maintenance

- Remove leaves and debris from structure grates on an as-needed basis.
- Sumps shall be inspected and cleaned annually and any removed sediment and debris shall be disposed of at a solid waste disposal facility.

LEVEL SPREADERS AND RIP RAP OUTLETS

Function – Level spreaders and rip rap outlets covert concentrated stormwater flows into less-erosive sheet flow, minimizing erosion and maximizing the treatment capabilities of associated buffers. Vegetated buffers, either forested or meadow, slow runoff which promotes and reduces peak rates of runoff. The reduced velocities and the presence of vegetation encourage the filtration of sediment and the limited bio-uptake of nutrients.

Maintenance

- Inspect level spreaders and buffers at least annually for signs of erosion, sediment buildup, or vegetation loss.
- Inspect level for signs of condensed flows. Level spreader and rip rap shall be maintained to disperse flows evenly over level spreader.
- If a meadow buffer, provide periodic mowing as needed to maintain a healthy stand of herbaceous vegetation.
- If a forested buffer, then the buffer should be maintained in an undisturbed condition, unless erosion occurs.
- If erosion of the buffer (forested or meadow) occurs, eroded areas should be repaired and replanted with vegetation similar to the remaining buffer. Corrective action should include eliminating the source of the erosion problem and may require retrofit or reconstruction of the level spreader.
- Remove debris and accumulated sediment and dispose of properly.

LANDSCAPED AREAS - ORGANIC FERTILIZER MANAGEMENT

Function – All fertilizer used on site shall be certified organic. Organic fertilizer management involves controlling the rate, timing and method of organic fertilizer application so that the nutrients are taken up by the plants thereby reducing the chance of polluting the surface and ground waters. Organic fertilizer management can be effective in reducing the amounts of phosphorus and nitrogen in runoff from landscaped areas, particularly lawns.

Maintenance

- Have the soil tested by your landscaper or local Soil Conservation Service for nutrient requirements and follow the recommendations.
- Do not apply organic fertilizer to frozen ground.
- Clean up any organic fertilizer spills.
- Do not allow organic fertilizer to be broadcast into water bodies.
- When organically fertilizing a lawn, water thoroughly, but do not create a situation where water runs off the surface of the lawn.

LANDSCAPED AREAS - LITTER CONTROL

Function – Landscaped areas tend to filter debris and contaminates that may block drainage systems and pollute the surface and ground waters.

Maintenance

- Litter Control and lawn maintenance involves removing litter such as trash, leaves, lawn clippings, pet wastes, oil and chemicals from streets, parking lots, and lawns before materials are transported into surface waters.
- Litter control shall be implemented as part of the grounds maintenance program.

VEGETATIVE SWALES

Function – Vegetative swales filter sediment from stormwater, promote infiltration, and the uptake of contaminates. They are designed to treat runoff and dispose of it safely into the natural drainage system.

Maintenance

- Timely maintenance is important to keep a swale in good working condition. Mowing of grassed swales shall be monthly to keep the vegetation in vigorous condition. The cut vegetation shall be removed to prevent the decaying organic litter from adding pollutants to the discharge from the swale.
- Fertilizing shall be bi-annual or as recommended from soil testing.
- Inspect swales following significant rainfall events.
- Woody vegetation shall not be allowed to become established in the swales or rock riprap outlet protection and if present shall be removed.
- Accumulated debris disrupts flow and leads to clogging and erosion. Remove debris and litter as necessary.
- Inspect for eroded areas. Determine cause of erosion and correct deficiency as required. Monitor repaired areas.

DE-ICING CHEMICAL USE AND STORAGE

Function – Sand and salt are used for de-icing of drives.

Maintenance

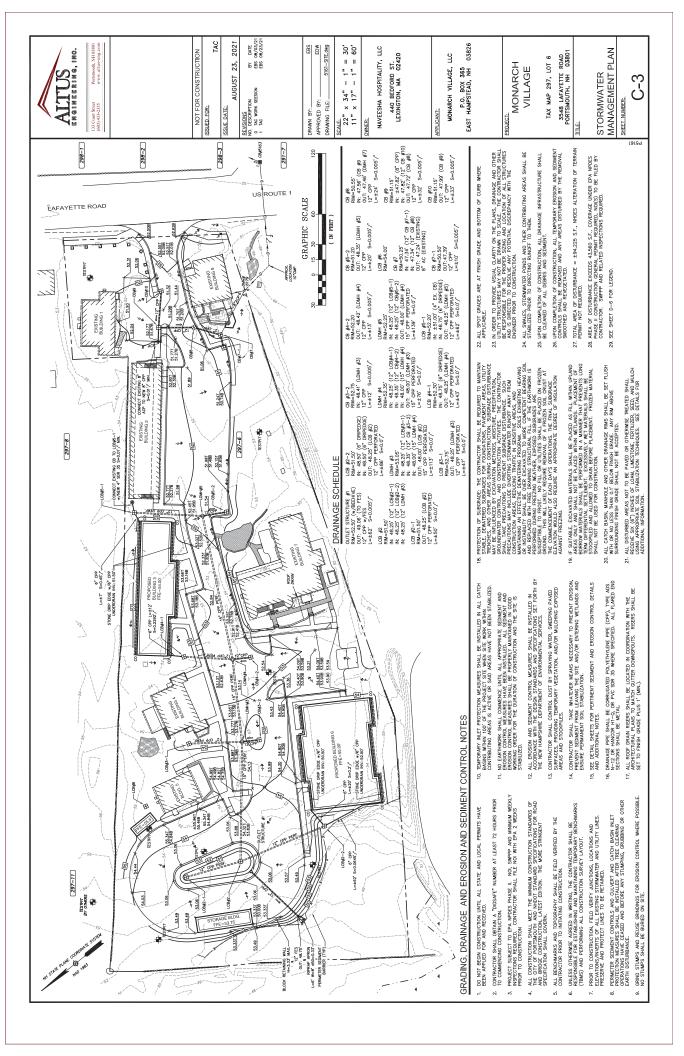
- Salt is highly water-soluble. Contamination of freshwater wetlands and other sensitive areas can occur when salt is stored in open areas. Salt piles shall be covered at all times if not stored in a shed. Runoff from stockpiles shall be contained to keep the runoff from entering the drainage system.
- When shared driveways and walks are free of snow and ice, they should be swept clean. Disposal shall be in a solid waste disposal facility.
- Salt use shall be minimized. Sand shall be used for de-icing activities when possible. Salt is highly water-soluble. Contamination of freshwater wetlands and other sensitive areas can occur when salt is stored in open areas. Owner shall not store salt piles on site.

CONTROL OF INVASIVE PLANTS

Function – Invasive plants are introduced, alien, or non-native plants, which have been moved by people from their native habitat to a new area. Some exotic plants are imported for human use such as landscaping, erosion control, or food crops. They also can arrive as "hitchhikers" among shipments of other plants, seeds, packing materials, or fresh produce. Some exotic plants become invasive and cause harm by:

- becoming weedy and overgrown;
- killing established shade trees;
- obstructing pipes and drainage systems;
- forming dense beds in water;
- lowering water levels in lakes, streams, and wetlands;
- destroying natural communities;
- promoting erosion on stream banks and hillsides; and
- resisting control except by hazardous chemical.

Maintenance

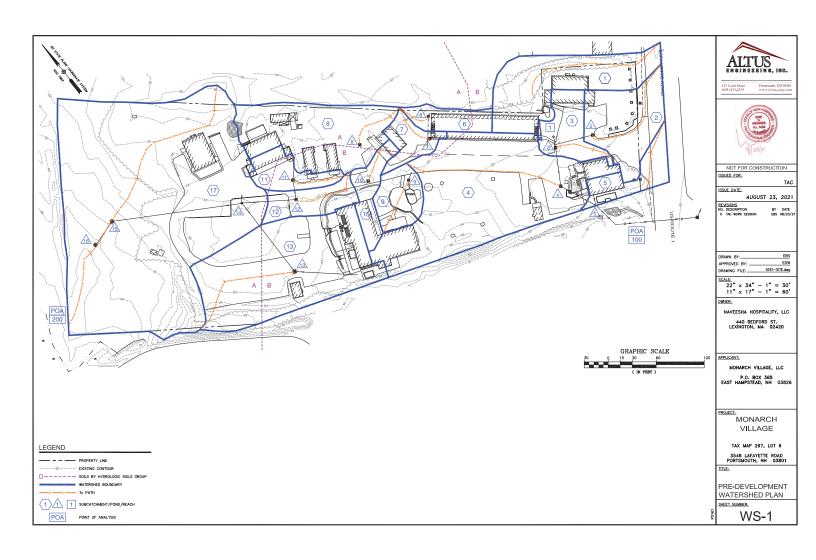

During maintenance activities, check for the presence of invasive plants and remove in a safe manner as described in the attached "Methods for Disposing Non-Native Invasive Plants" prepared by the UNH Cooperative Extension.

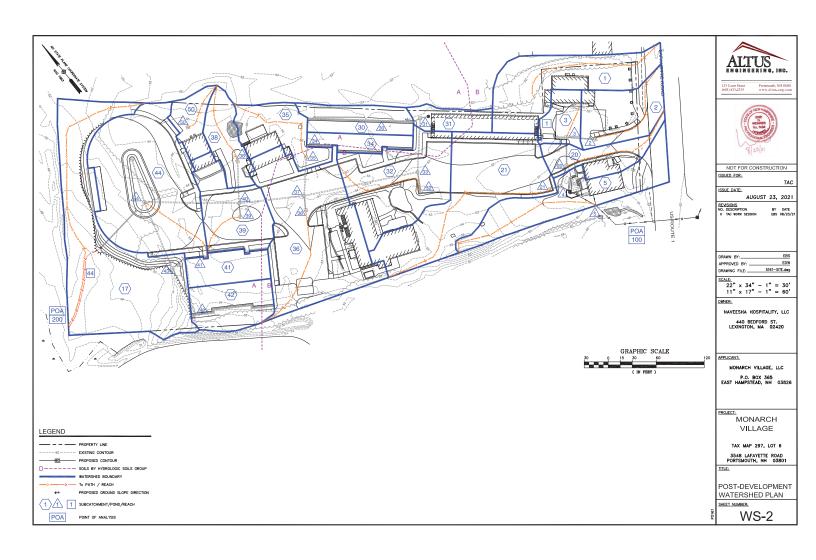
GENERAL CLEAN UP

- Upon completion of the project, the contractor shall remove all temporary stormwater structures (i.e., temporary stone check dams, silt fence, temporary diversion swales, catch basin inlet filter, etc.). Any sediment deposits remaining in place after the silt fence or filter barrier is no longer required shall be dressed to conform to the existing grade, prepared, and seeded. Remove any sediment in catch basins and clean drain pipes that may have accumulated during construction.
- Once in operation, all paved areas of the site should be swept at least once annually at the end of winter/early spring prior to significant spring rains.

STORM WATER SYSTEM OPERATION AND MAINTENANCE REPORT

			Gen	neral Information				
Pro	ject Name							
Ow	ner							
Insp	pector's Name(s)							
Insp	oector's Contact Information							
Dat	e of Inspection			Start Time:	End Time:			
	<u> </u>	m event 🔲 I	Due t	to a discharge of significant amounts of sedimen	ıt			
Not	es:							
	General Site O	uestions and	Disc	charges of Significant Amounts of Sedimo	ent			
Sub	ject	Status		Notes				
	scharge of significant amounts of whether any are observed durin			ndicated by (but is not limited to) observations of Notes/ Action taken:	f the following.			
1	Do the current site conditions re	eflect \Bullet Ye	es	Trotesy Tiettori varieti.				
	the attached site plan?		□No					
2	Is the site permanently stabilize temporary erosion and sediment controls are removed, and storm discharges from construction ac are eliminated?	t □No nwater						
3	Is there evidence of the discharge significant amounts of sediment surface waters, or conveyance seding to surface waters?	to \QNo						
		Per	mit	Coverage and Plans	1			
#	BMP/Facility	Inspec		Corrective Action Needed and Notes	Date Corrected			
	Infiltration Ponds	□Yes □No						
	Catch Basins							
	Drainage Pipes							
	Riprap Aprons	□No □Yes □No	3					
	Leaching Catch Basins and Dra Manholes		3					
	Site Vegetation	□Yes □No	3					




Section 8

Watershed Plans

Pre-Development Drainage Area Plan Post-Development Drainage Area Plan

P.O. Box 1721 • Concord, NH 03302 tel: (603) 731-8500 • fax: (866) 929-6094 • sgp@ pernaw.com

Transportation: Engineering • Planning • Design

MEMORANDUM

Ref: 2109A

Δ

To: Erik Saari, Vice President

Altus Engineering, Inc.

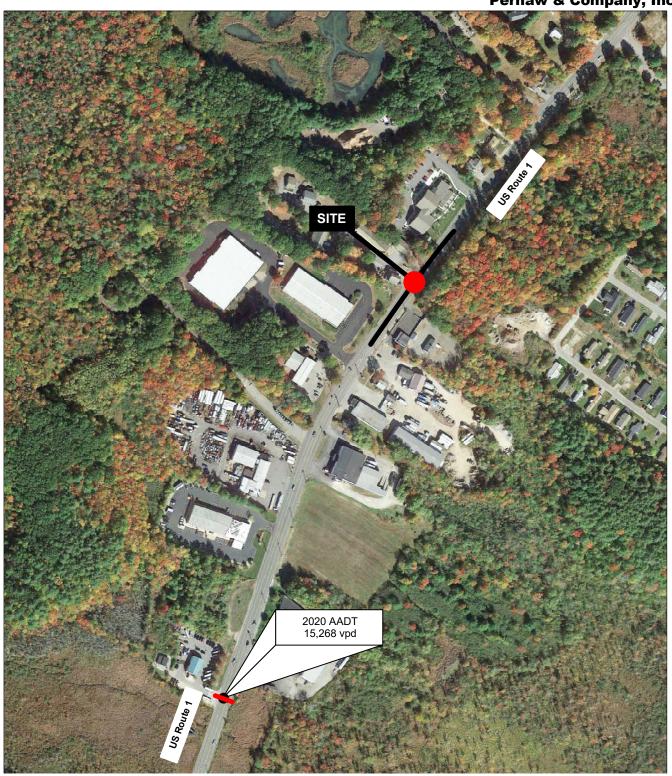
From: Stephen G. Pernaw, P.E., PTOE

Subject: Proposed Residential Development – Traffic Evaluation

Portsmouth, New Hampshire

Date: August 3, 2021

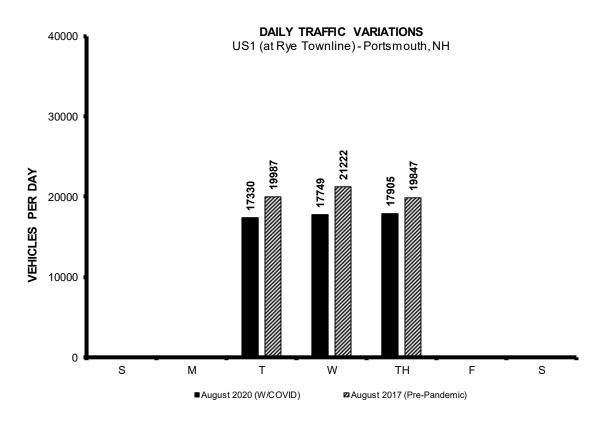
As requested, Pernaw & Company, Inc. has conducted this "Traffic Evaluation" regarding the residential development project that is proposed by Monarch Village, LLC at what is now the Wren's Nest Village Inn site on the west side of US Route 1 (US1) in Portsmouth, New Hampshire. This study evaluates the US1/Existing Site Driveway intersection in terms of traffic operations, capacity, and safety based on an analysis of 2032 Build traffic volumes. The purpose of this memorandum is to summarize our research of available traffic count data, our recent traffic counts at the subject site, the trip generation analysis for the proposed development, the post-development traffic projections, and the results of the various technical analyses. To summarize:

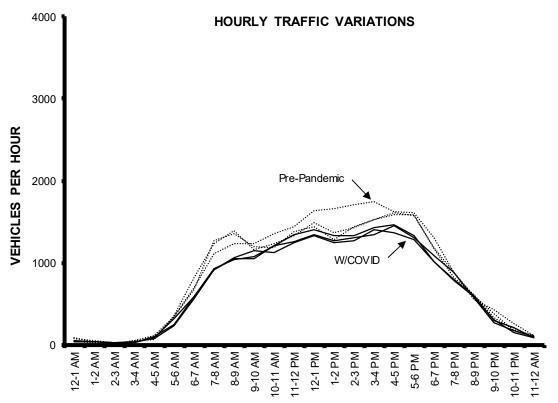

<u>Proposed Development</u> – The plan entitled "Board of Adjustment Site Plan," prepared by Altus Engineering, Inc., Sheet 1 of 1, dated April 28, 2021 shows that the proposed development will replace the 33-room inn with 75 new residential apartment units in eight buildings (proposed and existing). These buildings will be reached via a private site driveway (see Attachment 1). The existing driveway intersects the west side of US1 approximately 700-feet north of Coach Road. The location of the subject site with respect to the area roadway system and the automatic traffic recorder are shown on Figure 1.

Existing Conditions – US1 extends in a general north-south direction and provides access between Maine (northerly) and North Hampton (southerly). This road provides one travel lane in each direction for through traffic in the vicinity of the subject site. The pavement width is delineated with a continuous two-way left-turn lane and four-inch single white edge lines. A combination of paved, grass, and gravel shoulders of variable width are present along both sides of the roadway. The speed limit is posted at 45 mph in each direction in this area.

Existing Traffic Volumes – According to a short-term NHDOT traffic count conducted on US1 in August 2020, this roadway section carried an estimated Annual Average Daily Traffic (AADT) volume of approximately 15,268 vehicles per day (vpd), down from 18,297 vpd in 2019. The hourly data indicates that weekday volumes typically reached peak levels from 8:00 to 9:00 AM and from 3:00 to 4:00 or 4:00 to 5:00 PM. The diagrams on Page 3 summarize the daily and hourly variations in traffic demand on US1 in 2020 (with Covid-19) and in 2017 (prepandemic) (see Attachments 2-4).

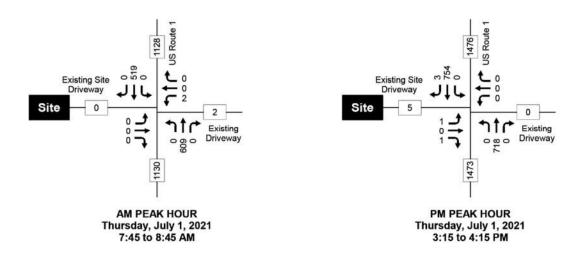
Pernaw & Company, Inc.




= AUTOMATIC TRAFFIC RECORDER LOCATION (NHDOT)

= INTERSECTION TURNING MOVEMENT COUNT LOCATION

NORTH



The raw 2021 directional traffic volume data on US1 are summarized in the diagrams below. This data shows that travel in the northbound direction is predominant during the morning peak hour, and this reverses to southbound during the evening peak hour. This pattern is indicative of the employment opportunities in the city, and the proximity of Interstate Route 95.

When compared with the 2017 NHDOT count data, it is obvious that the current traffic levels on US1 have been affected by the COVID-19 pandemic. For this reason, the subsequent post-development traffic volumes contained herein reflect the use of a separate COVID adjustment factor. The raw traffic count data is attached (see Attachments 5-13).

<u>Trip Generation</u> – To estimate the quantity of vehicle-trips that will be produced by the proposed residential apartment units, the standard trip generation rates and equations published by the Institute of Transportation Engineers¹ (ITE) were considered. More specifically, Land Use Code LUC 220 - Multifamily Housing (Low-Rise) was utilized for the proposed apartments, and LUC 320 – Motel was utilized for the former inn. The new apartments are expected to generate approximately 36 vehicle-trips (8 arrivals, 28 departures) during the AM peak hour, and 46 vehicle-trips (29 arrivals, 17 departures) during the PM peak hour, on an average weekday basis (see Attachment 14). Attachment 15 contains diagrams that show the distribution of site traffic at the US1/Existing Site Driveway intersection.

4

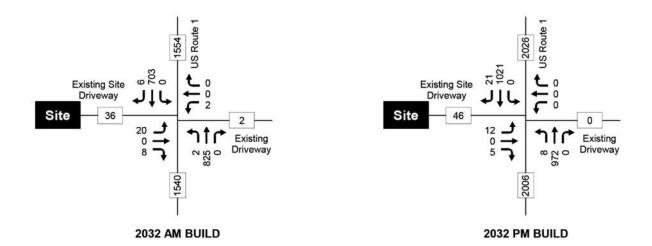

¹ Institute of Transportation Engineers, *Trip Generation*, 10th Edition (Washington, D.C., 2017)

Table 1		Trip Generation Comparison (3548 Lafayette Road - Portsmouth, New Hampshire)					
		Former Wren's Nest Village Inn ¹	Proposed Apartments ²	Net Change			
Weekday (24 Ho	our)						
	Entering	56 veh	275 veh	219 trips			
	Exiting	<u>56</u> <u>veh</u>	<u>275</u> <u>veh</u>	219 trips			
	Total	112 trips	550 trips	438 trips			
AM Peak Hour							
	Entering	5 veh	8 veh	3 trips			
	Exiting	<u>8</u> <u>veh</u>	28 <u>veh</u>	20 trips			
	Total	13 trips	36 trips	+23 trips			
PM Peak Hour							
	Entering	7 veh	29 veh	22 trips			
	Exiting	6 veh	<u>17</u> <u>veh</u>	11 trips			
	Total	13 trips	46 trips	+33 trips			

¹ ITE Land Use Code 320 - Motel w/ 33 rooms

<u>Future Build Traffic Projections</u> – The diagrams below summarize the Build traffic projections for the 2032 horizon year. These projections are based on the July 2021 traffic count data, a peak-month seasonal adjustment factor of 1.02 (see Attachment 16), a 1.0% background traffic growth rate, compounded annually (see Attachment 17), and a COVID-19 adjustment factor of 1.19 (see Attachment 18). The trip distribution analysis (see Attachment 19) indicates that the majority of site traffic (73%) are expected to travel to/from points north on US1.

² ITE Land Use Code 220 - Multifamily Housing (Low-Rise) w/ 75 apartments

Auxiliary Turn Lane Warrants Analysis

Left-Turn Treatment - The type of treatment needed to accommodate left-turning vehicles from any street or highway to an intersecting side street (or driveway) can range from no treatment, where turning volumes are low; to the provision of a bypass lane for through traffic to travel around left-turning vehicles; to the addition of a formal center turn lane used exclusively by left-turning vehicles for deceleration and storage while waiting to complete their maneuvers. Fortunately, this section of US1 is currently delineated with a continuous two-way left-turn lane.

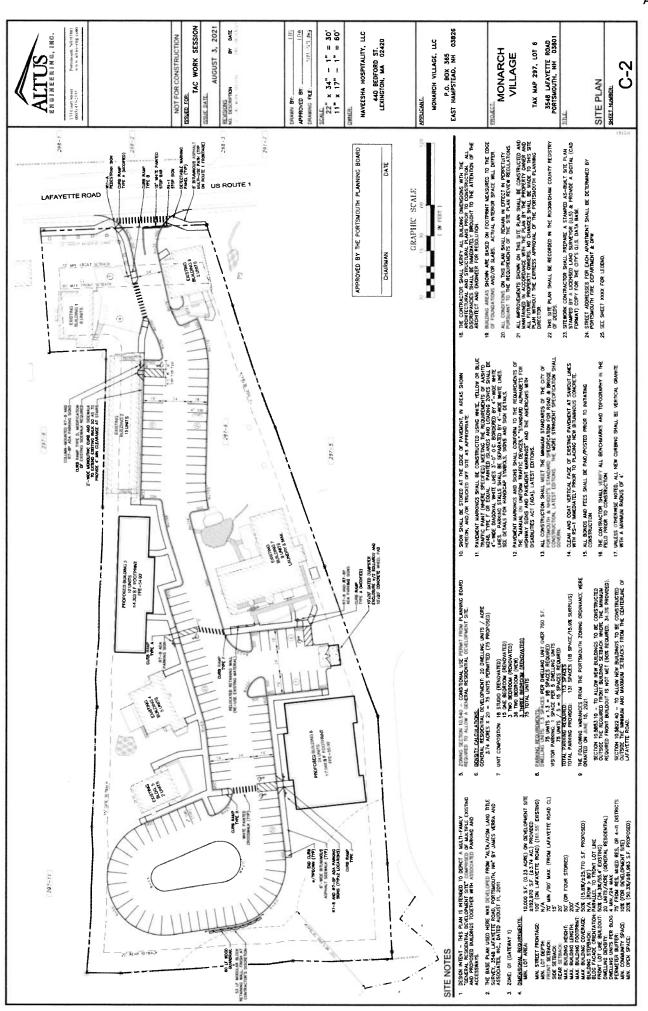
Right-Turn Treatment - The type of treatment needed to accommodate right-turning vehicles from any street or highway to any intersecting side street (or driveway) can range from a radius only, where turning volumes are low; to the provision of a short 10:1 right-turn taper; to the addition of an exclusive right-turn lane, where turning volumes and through traffic volumes are significant. Analysis of the 2022 traffic volumes contained herein using NCHRP 457 guidelines confirmed that right-turn treatment is <u>warranted</u> during the PM peak hour period at the subject intersection. The results of these analyses are summarized on Table 2 and the computations are attached (Attachments 20 & 21). It should be noted that only 13 right-turn arrivals would satisfy this criterion. At busier intersections on US1 (Constitution Avenue, West Road, etc.) right-turns occur from the through lane on a regular basis.

Minor Road Approach Treatment - The type of treatment needed to accommodate exiting vehicles from the minor-road approach at a stop-controlled intersection can range from a single lane (shared left-right lane) in low-volume conditions, to two exit lanes (exclusive left-turn lane and exclusive right-turn lane) where turning volumes and through traffic volumes are significant, to multiple exit lanes in extreme cases. The analysis is also summarized on Table 2 and shows that a single departure lane on the existing site driveway approach to US1 is sufficient for the size and type of development that is proposed (see Attachments 22 & 23).

Table 2		s Analysis Oriveway			
		2022 Openin	g Year Case	2032 Horizo	n Year Case
		AM Peak	PM Peak	AM Peak	PM Peak
II. RIGHT-TURN LANE Peak Hour Inputs	WARRANTS ANALYSIS				
Right-Tu	ırn Volume (SB)	6	21	-	-
Approa	Approach Volume (SB)		945	-	-
	Speed (mph)	45	45	-	-
Limiting Right-Tu	rn Volume (veh/h)	27	13	-	-
Add Right-Turr	n Bay?	NO	YES	-	=
III. MINOR-ROAD APP Peak Hour Inputs	ROACH GEOMETRY ANAL	<u>YSIS</u>			
Major-Road \	Volume (NB-SB)	-	-	1536	2022
% Right-Turr	ns on Minor (EB)	-	-	29	29
Minor-Road A	pproach Volume	-	-	28	17
Limiting Minor-Ro	oad Volume (veh/h)	-	-	84	43
Consider TWO	Approach Lanes?	-	-	NO	NO

Findings & Conclusions

- 1. The July 2021 traffic count conducted on US1 at the subject site revealed that approximately 1,130 vehicles were observed passing the site during the AM peak hour (7:45 to 8:45 AM) and 1,473 vehicles observed during the PM peak hour (3:15 to 4:15 PM). The predominant travel direction was northbound during the AM, and southbound during the PM.
- 2. The Wren's Nest Village Inn did not appear to be in full operation as it generated only 0 (AM) and 5 (PM) vehicle-trip during the peak hour periods.
- 3. The proposed residential apartment units are expected to generate approximately 36 (AM) and 46 (PM) vehicle-trips during the peak hour periods. The majority (73%) are expected to travel to/from points north on US1.
- 4. The 2022 PM Build traffic volumes satisfy the NCHRP guidelines for right-turn treatment with only 21 southbound right-turn arrivals. Based on the lane configuration utilized at many other busier intersections on US1 (with shared through-right lanes), it is reasonable to expect that the subject intersection will continue to function safely and efficiently with one shared travel lane on each approach to the US1/Existing Site Driveway intersection.
- 5. The available sight distances looking left and right from the site driveway approach to US1 exceed the NHDOT 400-foot guideline by a considerable margin as a result of the straight horizontal alignment of the highway in the flat terrain.


For a development project of this size and type, providing ample sight distances (looking left and right from the site driveway to US1) is the most important safety consideration. The existing site driveway should operate under stop sign control (MUTCD R1-1), and be delineated with a 12-24 inch white stop line, and a short section of four-inch double-yellow centerline to separate inbound and outbound vehicles. In short, we find that the existing lane configuration at the US1/Existing Site Driveway intersection is appropriate for the size and type of development that is proposed, and that physical modifications are not necessary.

Attachments

ATTACHMENTS

Location ID	82379021	MPO ID	
Туре	SPOT	HPMS ID	
On NHS	Yes	On HPMS	Yes
LRS ID	U0000001	LRS Loc Pt.	
SF Group	04	Route Type	
AF Group	04	Route	US 1
GF Group	E	Active	Yes
Class Dist Grp	Default	Category	3
Seas Clss Grp	Default		
WIM Group	Default		
QC Group	Default		Ī
Fnct'l Class	Other Principal Arterial	Milepost	
Located On	Lafayette Rd		
Loc On Alias	US 1 (LAFAYETTE RD) AT RYE TL		
More Detail			

AADT	AADT ②											
	Year	AADT	DHV-30	K %	D %	PA	ВС	Src				
	2020	15,268	1,462	10	51	14,192 (93%)	1,076 (7%)					
	2019	18,297 ³		10	51	16,759 (92%)	1,538 (8%)	Grown from 2018				
	2018	18,080 ³		10	51	16,671 (92%)	1,409 (8%)	Grown from 2017				
	2017	17,725	1,741	10	51	16,448 (93%)	1,277 (7%)					
	2016	22,063 ³				20,122 (91%)	1,941 (9%)	Grown from 2015				
<<	<	> >>	1-5 of 15	5								

Trave	l Demand	Model								
	Model Year	Model AADT	AM PHV	AM PPV	MD PHV	MD PPV	PM PHV	PM PPV	NT PHV	NT PPV

VOLUME COUNT								
	Date	Int	Total					
4	Thu 8/13/2020	60	17,905					
1	Wed 8/12/2020	60	17,749					
1	Tue 8/11/2020	60	17,330					
*	Thu 8/31/2017	60	19,847					
40	Wed 8/30/2017	60	21,222					
4	Tue 8/29/2017	60	19,987					
1	Fri 8/1/2014	60	25,642					
40	Thu 7/31/2014	60	25,355					
4	Wed 7/30/2014	60	25.063					

VOLUME TREND ②						
Year	Annual Growth					
2020	-17%					
2019	1%					
2018	2%					
2017	-20%					
2016	2%					
2015	3%					
2014	7%					
2011	6%					

Excel Version

eekly Volume Re	eport		AND REPORT OF THE PARTY OF THE
Location ID:	82379021	Type:	SPOT
Located On:	Lafayette Rd	:	
Direction:	2-WAY		
Community:	PORTSMOUTH	Period:	Mon 8/10/2020 - Sun 8/16/2020
AADT:	15268		

Start Time	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Avg	Graph
12:00 AM		39	44	56				46	
1:00 AM		44	33	34				37	0.2%
2:00 AM		21	26	23				23	0.1%
3:00 AM		33	29	30				31	0.2%
4:00 AM		72	83	95				83	0.5%
5:00 AM		238	317	249				268	1.5%
6:00 AM		568	586	584				579	3.3%
7:00 AM		911	928	917		-		919	5.2%
8:00 AM		(1060)	(1039)	1045				1,048	5.9%
9:00 AM		1147	1070	1052				1,090	6.2%
10:00 AM		1128	1210	1211				1,183	6.7%
11:00 AM		1247	1261	1342				1,283	7.3%
12:00 PM		1326	1342	1406				1,358	7.7%
1:00 PM	2 - 7 - 7 - 7 - 7	1244	1272	1334				1,283	7.3%
2:00 PM		1274	1312	1325				1,304	7.4%
3:00 PM		(1399)	1345	1424				1,389	7.9%
4:00 PM		1373	(1458)	(1462)				1,431	8.1%
5:00 PM		1280	1308	1325				1,304	7.4%
6:00 PM		1008	1092	1019				1,040	5.9%
7:00 PM		782	875	798				818	4.6%
8:00 PM		586	580	594				587	3.3%
9:00 PM		313	266	293				291	1.6%
10:00 PM		145	174	204				174	1.0%
11:00 PM		92	99	83				91	0.5%
Total	0	17,330	17,749	17,905	0	0	0		
24hr Total		17330	17749	17905				17,661	
AM Pk Hr		11:00	11:00	11:00					
AM Peak		1247	1261	1342				1,283	
PM Pk Hr		3:00	4:00	4:00					
PM Peak		1399	1458	1462				1,440	
% Pk Hr		8.07%	8.21%	8.17%				8.15%	

Excel Version

ekly Volume Re	port		
Location ID:	82379021	Type:	SPOT
Located On:	Lafayette Rd		
Direction:	2-WAY		
Community:	PORTSMOUTH	Period:	Mon 8/28/2017 - Sun 9/3/2017
AADT:	17725		

Start Time	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Avg	Graph
12:00 AM		82	75	38				65	
1:00 AM		43	47	29				40	0.2%
2:00 AM		18	31	17				22	0.1%
3:00 AM		47	40	54				47	0.2%
4:00 AM		69	74	114				86	0.4%
5:00 AM		360	348	343				350	1.7%
6:00 AM		820	693	672				728	3.6%
7:00 AM		1232	1115	1268				1,205	5.9%
8:00 AM		(1396)	(1238)	(1357)				1,330	6.5%
9:00 AM		1156	1236	1195				1,196	5.9%
10:00 AM		1233	1357	1183				1,258	6.2%
11:00 AM		1325	1443	1376				1,381	6.8%
12:00 PM		1490	1630	1446				1,522	7.5%
1:00 PM		1365	1663	1276				1,435	7.0%
2:00 PM		1424	1712	1436				1,524	7.5%
3:00 PM		1530	(1741)	1521				1,597	7.8%
4:00 PM		1581	1618	1614				1,604	7.9%
5:00 PM		(1592)	1609	1572				1,591	7.8%
6:00 PM		1166	1310	1186				1,221	6.0%
7:00 PM		818	882	885				862	4.2%
8:00 PM		614	552	595				587	2.9%
9:00 PM		331	432	379				381	1.9%
10:00 PM		179	260	175				205	1.0%
11:00 PM		116	116	116				116	0.6%
Total	0	19,987	21,222	19,847	0	0	0		
24hr Total		19987	21222	19847				20,352	
AM Pk Hr		8:00	11:00	11:00	anicasa.				
AM Peak		1396	1443	1376				1,405	
PM Pk Hr		5:00	3:00	4:00					
PM Peak		1592	1741	1614				1,649	
% Pk Hr		7.97%	8.20%	8.13%				8.10%	

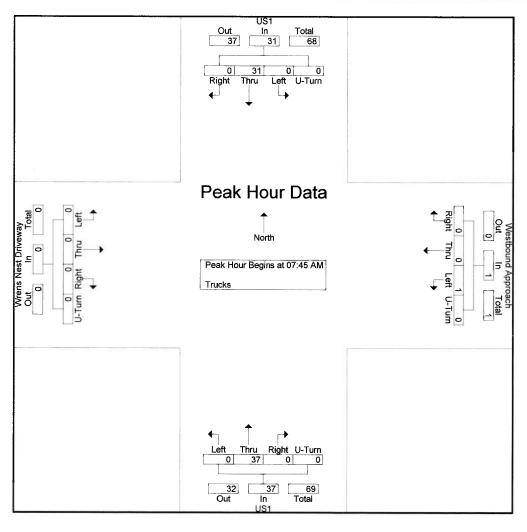
Stephen G. Pernaw & Company, Inc. P.O. Box 1721 Concord, New Hampshire 03302

File Name : 2109A_852343_07-01-2021

Site Code :

Start Date : 7/1/2021
Page No : 2

		Fr	US1 om No	orth		1	Vestbo F	ound A rom E		ch		Fr	US1 om So	uth		1	Vrens Fi	Nest I		ay	
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App Total	Right	Thru	Left	U-Tum	App. Total	Int. Total
Peak Hour Ai	nalysis	From (07:00	AM to (08:45 AM	И - Pea	k 1 of	1													
Peak Hour fo	r Entire	Inters	ection	Begins	s at 07:4	5 AM															
07:45 AM	0	137	0	Ō	137	0	0	2	0	2	0	163	0	0	163	0	0	0	0	0	302
08:00 AM	0	128	0	0	128	0	0	0	Ō	0	Ō	139	ō	ŏ	139	ŏ	ŏ	ŏ	Ö	Ô	267
08:15 AM	0	115	0	0	115	0	0	0	0	Ó	Ö	170	ō	ō	170	Ŏ	ŏ	ŏ	Õ	o	285
08:30 AM	0	139	0	0	139	0	0	0	0	0	0	137	ō	ō	137	ō	ō	ŏ	Ö	ő	276
Total Volume	0	519	Ō	0	519	0	0	2	0	2	0	609	0	0	609	0	0	0	0	0	1130
% App. Total	0	100	0	0		0	0	100	0		0	100	0	0		0	0	0	ō		
PHF	.000	.933	.000	.000	.933	.000	.000	.250	.000	.250	.000	.896	.000	.000	.896	.000	.000	.000	.000	.000	.935



Stephen G. Pernaw & Company, Inc. P.O. Box 1721 Concord, New Hampshire 03302

File Name : 2109A_852343_07-01-2021

Site Code : Start Date : 7/1/2021 Page No : 2

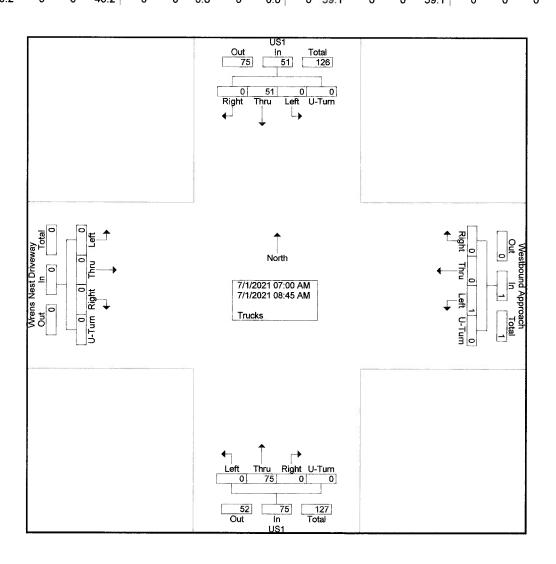
		г.	US1 om No	4.la		١	Vestbo			ch		_	US1			1	Wrens			ay	
				HUI				rom E	ası			F	om Sc	utn				rom W	est		
Start Time	Right	Thru	Left	U-Tum	App. Total	Right	Thru	Left	U-Turn	App Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
Peak Hour A	nalysis	From	07:00	AM to	08:45 AN	/I - Pea	k 1 of	1	11000												
Peak Hour fo																					
07:45 AM	0	8	0	ŏ	8	0	0	1	0	1	0	6	0	0	6	0	0	0	0	0	15
08:00 AM	0	10	0	0	10	0	0	0	Ö	Ó	0	7	Ö	ō	7	0	ō	ō	Õ	Ö	17
08:15 AM	0	7	0	0	7	0	0	0	0	0	0	14	Õ	ō	14	0	Õ	ō	Ō	Õ	21
08:30 AM	0	6	0	0	6	0	0	0	0	0	0	10	0	0	10	0	0	ō	ō	ō	16
Total Volume	0	31	0	0	31	0	0	1	0	1	0	37	0	0	37	0	0	0	0	0	69
% App. Total	0	100	0	0		0	0	100	0		0	100	0	0		0	ō	0	0		
PHF	.000	.775	.000	.000	.775	.000	.000	.250	.000	.250	.000	.661	.000	.000	.661	.000	.000	.000	.000	.000	.821

Stephen G. Pernaw & Company, Inc. P.O. Box 1721

Concord, New Hampshire 03302

Weather: Fair Collected By: MV

Job Number: 2109A Town/State: Portsmouth, New Hampshire


File Name : 2109A_852343_07-01-2021

Site Code :

Start Date : 7/1/2021

Page No : 1

									Grou	ps Printe	ed- Tru	icks									
			US1			1	Westbo	ound A	pproa	ch			US1			1	Wrens	Nest I	Drivew	ay]
		F	rom No	orth			F	rom E	ast			Fr	om Sc	outh				rom W			
Start Time	Right	Thru	Left	U-Tum	App. Total	Right	Thru	Left	U-Tum	App. Total	Right	Thru	Left	U-Tum	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
07:00 AM	0	3	0	0	3	0	0	0	0	0	0	10	0	0	10	0	0	0	0	0	13
07:15 AM	0	8	0	0	8	0	0	0	0	0	0	15	0	0	15	0	0	0	0	0	23
07:30 AM	0	4	0	0	4	0	0	0	0	0	0	7	0	0	7	o	Ó	Ō	Ō	0	11
07:45 AM	0	8	0	0	8	0	0	1	0	1	0	6	0	Ō	6	0	0	Ō	0	0	15
Total	0	23	0	0	23	0	0	1	0	1	0	38	0	0	38	0	0	0	0	0	62
08:00 AM	0	10	0	0	10	0	0	0	0	0	0	7	0	0	7	0	0	0	0	0	17
08:15 AM	0	7	0	0	7	0	Ō	ō	Ō	Ō	0	14	Ö	Õ	14	ō	ŏ	ō	0	0	21
08:30 AM	0	6	0	0	6	0	0	0	Ō	Õ	ō	10	Õ	Õ	10	ő	ñ	Ö	Õ	Ô	16
08:45 AM	0	5	0	Ō	5	0	ō	ō	ō	Õ	ō	6	ō	Õ	6	o o	ŏ	Õ	Ô	ñ	11
Total	0	28	0	0	28	0	0	0	0	0	0	37	0	0	37	0	0	0	0	0	65
Grand Total	0	51	0	0	51	0	0	1	0	1	0	75	0	0	75	0	0	0	0	0	127
Apprch %	0	100	0	0		0	0	100	0		0	100	0	0		0	Ō	Ō	Ō		
Total %	0	40.2	0	0	40.2	0	0	0.8	0	0.8	0	59.1	ñ	ñ	59 1	l ñ	Ō	ñ	ō	0	

Stephen G. Pernaw & Company, Inc.

P.O. Box 1721 Concord, New Hampshire 03302

Weather: Fair Collected By: MV Job Number: 2109A

Trucks

% Trucks

0 51 0

0

51

0

0

1

Town/State: Portsmouth, New Hampshire

File Name : 2109A_852343_07-01-2021

Site Code : Start Date : 7/1/2021

Page No : 1

								G	roups F	Printed-	Cars -	Trucks	3								
			US1			1	Westbo	ound A	pproad	ch			US1			1	Vrens	Nest [Drivewa	ay	
		Fr	om No	orth			F	rom E	ast			Fr	om So	outh				rom W		•	
Start Time	Right	Thru	Left	U-Tum	App. Total	Right	Thru	Left	U-Turn	App Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
07:00 AM	2	76	0	0	78	0	0	0	0	0	0	109	0	0	109	0	0	1	0	1	188
07:15 AM	0	92	0	0	92	0	0	0	0	0	2	125	0	0	127	0	0	0	0	0	219
07:30 AM	0	103	0	0	103	0	0	0	0	0	0	140	0	0	140	1	Ō	ō	ō	1	244
07:45 AM	0	137	0	0	137	0	0	2	0	2	0	163	0	0	163	0	0	0	ō	Ó	302
Total	2	408	0	0	410	0	0	2	0	2	2	537	0	0	539	1	0	1	0	2	953
						50					_				-					_	000
MA 00:80	0	128	0	0	128	0	0	0	0	0	0	139	0	0	139	0	0	0	0	0	267
08:15 AM	0	115	0	0	115	0	0	0	0	0	0	170	0	0	170	0	0	0	0	0	285
08:30 AM	0	139	0	0	139	0	0	0	0	0	0	137	0	0	137	Ō	Ō	ō	Õ	Õ	276
08:45 AM	0	155	0	0	155	0	0	0	0	0	0	142	0	0	142	Ö	Ö	Ö	Õ	Õ	297
Total	0	537	0	0	537	0	0	0	0	0	0	588	0	0	588	0	0	0	0	0	1125
	10					-	_	_	8578	-50				-	000		·	Ŭ	·	ŭ	1120
Grand Total	2	945	0	0	947	0	0	2	0	2	2	1125	0	0	1127	1	0	1	0	2	2078
Apprch %	0.2	99.8	0	0		0	0	100	0		0.2	99.8	0	0		50	0	50	0		
Total %	0.1	45.5	0	0	45.6	0	0	0.1	Ó	0.1	0.1	54.1	ō	Ö	54.2	0	ō	0	Ŏ	0.1	
Cars	2	894	0	0	896	0	0	1	0	1	2	1050	0	0	1052	1	0	1	0	2	1951
% Cars	100	94.6	0	0	94.6	0	0	50	0	50	100	93.3	ō	ō	93.3	100	Ö	100	ŏ	100	93.9
																			•		

1

0

75

0

0

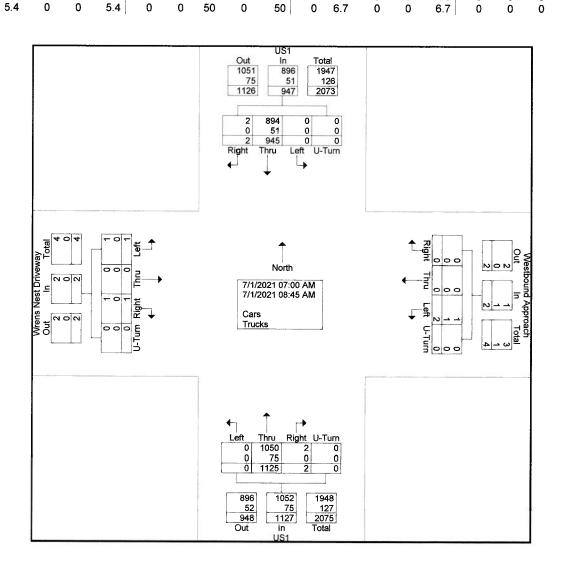
75

0

0

0

0

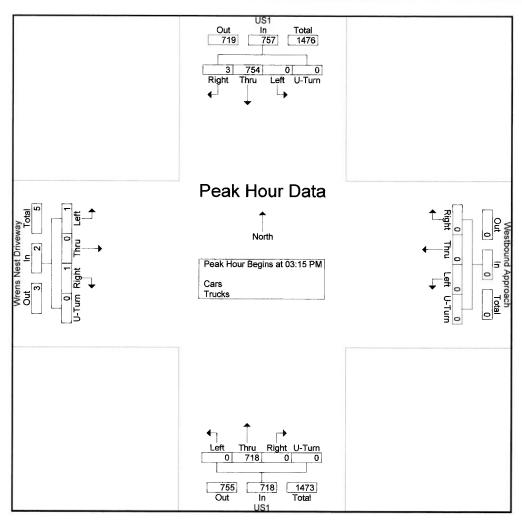

0

Ō

127

6.1

0



Stephen G. Pernaw & Company, Inc. P.O. Box 1721 Concord, New Hampshire 03302

File Name: 2109A_852343_07-01-2021

Site Code : Start Date : 7/1/2021 Page No : 3

		Fı	US1 rom No	orth		1	Vestbo	ound A		ch		Fı	US1 om Sc	uth		1	Vrens Fi	Nest I		ay	
Start Time	Right		Left	U-Tum	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Tum	App. Total	Int. Total
Peak Hour A	nalysis	From	03:00	PM to	05:45 PN	И - Pea	k 1 of	1													
Peak Hour fo																					
03:15 PM	0	185	0	Ō	185	0	0	0	0	0	0	196	0	0	196	0	0	0	0	0	381
03:30 PM	1	199	0	0	200	0	0	0	0	0	0	181	Ō	Ō	181	1	Ō	1	Ō	2	383
03:45 PM	0	183	0	0	183	0	0	0	0	Ō	Ö	160	ō	Õ	160	ò	Ö	Ö	ŏ	ō	343
04:00 PM	2	187	0	0	189	0	0	0	0	0	0	181	0	0	181	ō	ō	ō	ō	Ō	370
Total Volume	3	754	0	0	757	0	0	0	0	0	0	718	0	0	718	1	0	1	0	2	1477
% App. Total	0.4	99.6	0	0		0	0	0	0		0	100	0	0		50	0	50	ō		
PHF	.375	.947	.000	.000	.946	.000	.000	.000	.000	.000	.000	.916	.000	.000	.916	.250	.000	.250	.000	.250	.964

0

0

Stephen G. Pernaw & Company, Inc.

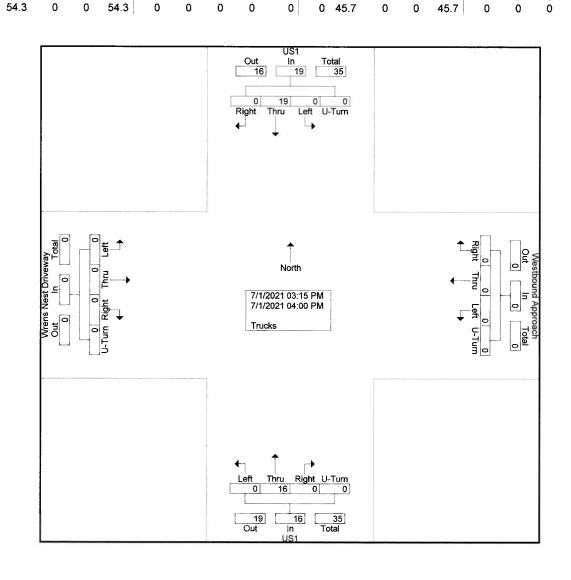
P.O. Box 1721 Concord, New Hampshire 03302

Weather: Fair Collected By: MV Job Number: 2109A

Total %

0

Town/State: Portsmouth, New Hampshire


File Name: 2109A_852343_07-01-2021

Site Code :

Start Date : 7/1/2021

Page No : 1

									Grou	ps Printe	ed- Tru	cks									
		Fr	US1 om No	orth			Westbo	ound A		ch		Fr	US1 om So	outh		1	Vrens Fi	Nest I		ay	
Start Time	Right	Thru	Left	U-Turn	App Total	Right	Thru	Left	U-Tum	App Total	Right	Thru	Left	U-Turn	App Total	Right	Thru	Left	U-Tum	App. Total	Int. Total
03:15 PM	0	6	0	0	6	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	8
03:30 PM	0	6	0	0	6	0	0	0	0	0	0	9	0	0	9	0	0	0	0	0	15
03:45 PM	0	2	0	0	2	0	0	0	0	0	0	1	0	0	1	0	Ō	Ö	0	Ŏ	3
Total	0	14	0	0	14	0	0	0	0	0	0	12	0	0	12	0	0	0	0	0	26
04:00 PM	0	5	0	0	5	0	0	0	0	0	0	4	0	0	4	0	0	0	0	0	9
Grand Total	0	19	0	0	19	0	0	0	0	0	0	16	Ō	Ö	16	Ō	ō	ō	Ö	Ö	35
Apprch %	0	100	0	0		0	0	0	0		0	100	ō	Ö		0	ō	ō	ō	•	

Stephen G. Pernaw & Company, Inc. P.O. Box 1721

Concord, New Hampshire 03302

Weather: Fair Collected By: MV

Job Number: 2109A Town/State: Portsmouth, New Hampshire

File Name : 2109A_852343_07-01-2021

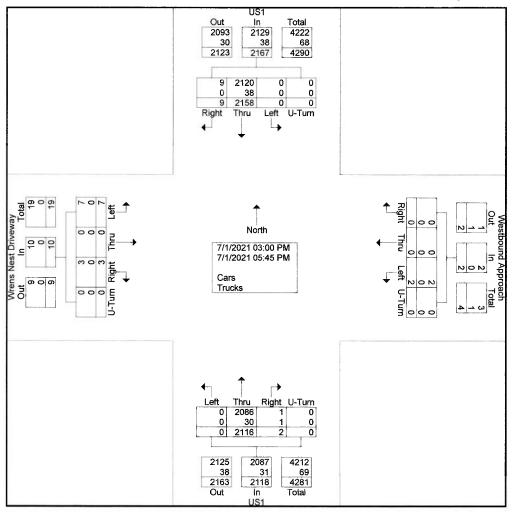
Site Code :

Start Date : 7/1/2021

Page No : 1

Groups Printed- Cars - Trucks

		_	US1	9		1	Vestbo			ch			US1			1	Vrens			ау	
		-	om No	orth				rom E	ast				om So					om W			
Start Time	Right	Thru	Left	U-Turn	App Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
03 00 PM	0	161	0	0	161	0	0	0	0	0	0	152	0	0	152	0	0	1	0	1	314
03:15 PM	0	185	0	0	185	0	0	0	0	0	0	196	0	0	196	0	0	0	0	0	381
03:30 PM	1	199	0	0	200	0	0	0	0	0	0	181	0	0	181	1	0	1	0	2	383
03:45 PM	0	183	0	0	183	0	0	0	0	0	0	160	0	0	160	0	0	0	0	0	343
Total	1	728	0	0	729	0	0	0	0	0	0	689	0	0	689	1	0	2	0	3	1421
04:00 PM	2	187	0	0	189	0	0	0	0	0	0	181	0	0	181	0	0	0	0	0	370
04:15 PM	0	200	0	0	200	0	0	0	0	0	2	171	0	0	173	1	0	1	0	2	375
04:30 PM	0	190	0	0	190	0	0	0	0	0	0	174	0	0	174	0	0	0	0	0	364
04:45 PM	1_	174	0	0	175	0	0	2	0	2	0	165	0	0	165	1	0	0	0	1	343
Total	3	751	0	0	754	0	0	2	0	2	2	691	0	0	693	2	0	1	0	3	1452
05:00 PM	0	180	0	0	180	0	0	0	0	0	0	212	0	0	212	0	0	1	0	1	393
05:15 PM	3	188	0	0	191	0	0	0	0	0	0	184	0	0	184	0	0	1	0	1	376
05:30 PM	0	169	0	0	169	0	0	0	0	0	0	182	0	0	182	0	0	1	0	1	352
05:45 PM	2	142	0	0	144	0	0	0	0	0	0	158	0	0	158	0	0	1	0	1	303
Total	5	679	0	0	684	0	0	0	0	0	0	736	0	0	736	0	0	4	0	4	1424
Grand Total	9	2158	0	0	2167	0	0	2	0	2	2	2116	0	0	2118	3	0	7	0	10	4297
Apprch %	0.4	99.6	0	0		0	0	100	0		0.1	99.9	0	0		30	0	70	0		
Total %	0.2	50.2	0	0	50.4	0	0	0	0	0	0	49.2	0	0	49.3	0.1	0	0.2	0	0.2	
Cars	9	2120	0	0	2129	0	0	2	0	2	1	2086	0	0	2087	3	0	7	0	10	4228
% Cars	100	98.2	0	0	98.2	0	0	100	0	100	50	98.6	0	0	98.5	100	0	100	0	100	98.4
Trucks	0	38	0	0	38	0	0	0	0	0	1	30	0	0	31	0	0	0	0	0	69
% Trucks	0	1.8	0	0	1.8	0	0	0	0	0	50	1.4	0	0	1.5	0	0	0	0	0	1.6


Stephen G. Pernaw & Company, Inc.

P.O. Box 1721 Concord, New Hampshire 03302

File Name: 2109A_852343_07-01-2021

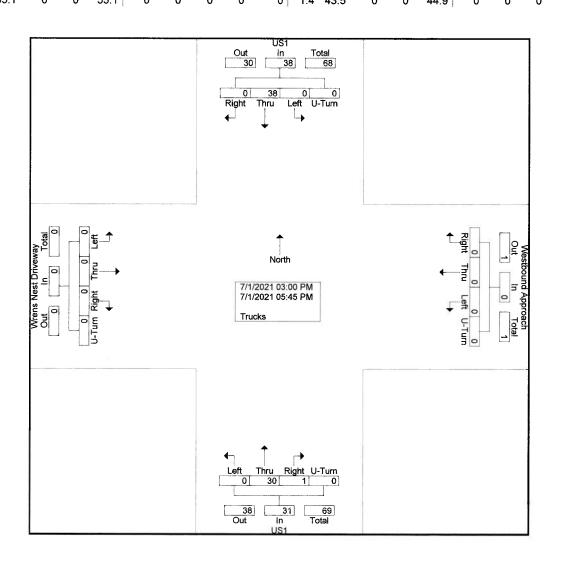
Site Code : Start Date : 7/1/2021

Page No : 2

Stephen G. Pernaw & Company, Inc. P.O. Box 1721

Concord, New Hampshire 03302

Weather: Fair Collected By: MV Job Number: 2109A


Town/State: Portsmouth, New Hampshire

File Name: 2109A_852343_07-01-2021

Site Code :

Start Date : 7/1/2021
Page No : 1

		F	US1 om No	orth		١	Nestbo F	ound A rom E		ch		Fr	US1 om Sc	outh		۷	Vrens Fr	Nest E om W		ay	
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Tum	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Tota
03:00 PM	0	2	0	0	2	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	3
03:15 PM	0	6	0	0	6	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	8
03:30 PM	0	6	0	0	6	0	0	0	0	0	0	9	0	0	9	0	0	0	0	0	15
03:45 PM	0	2	0	0	2	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	3
Total	0	16	0	0	16	0	0	0	0	0	0	13	0	0	13	0	0	0	0	0	29
04:00 PM	0	5	0	0	5	0	0	0	0	0	0	4	0	0	4	0	0	0	0	0	_ g
04:15 PM	0	5	0	0	5	0	0	0	0	0	1	4	0	0	5	0	0	0	0	0	10
04:30 PM	0	1	0	0	1	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	3
04:45 PM	0	7	0	0	7	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	8
Total	0	18	0	0	18	0	0	0	0	0	1	11	0	0	12	0	0	0	0	0	30
05:00 PM	0	1	0	0	1	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	2
05:15 PM	0	2	0	0	2	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	4
05:30 PM	0	1	0	0	1	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	3
05:45 PM	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1
Total	0	4	0	0	4	0	0	0	0	Ō	0	6	0	0	6	0	0	0	0	0	10
Grand Total	0	38	0	0	38	0	0	0	0	0	1	30	0	0	31	0	0	0	0	0	69
Apprch %	0	100	0	0		0	0	0	0		3.2	96.8	0	0		0	0	0	0		
Total %	0	55.1	0	0	55.1	0	0	0	0	0	1.4	43.5	0	0	44.9	0	0	0	0	0	

<u>Т</u>

Source: Institute of Transportation Engineers, Trip Generation Manual 10th Edition

Custom rate used for selected time period.

TRIP GENERATION 10, TRAFFICWARE, LLC

Trip Generation Summary

Alternative: 3548 Lafayette Road, Portsmouth, NH

Phase:

Project:

6/22/2021 Analysis Date:

Open Date: 6/22/2021

Weekday PM Peak Hour of Adjacent Street Traffic

Weekday AM Peak Hour of Adjacent Street Traffic

* Total

29

36

28

36

 $\overline{}$

0 4 0

36

0 5

9

329

331

0

0

0

0

 $\overline{}$

23

59 2

7

46

9

Ĕ

Total 5

Enter

3

ω

EX

*

Total 11

EX

Enter

*

55

26

Weekday Average Daily Trips

Enter 2

ω

549

274

275

36

13

0

0

999 0

329

331

0 0

0 0

Total Weekday AM Peak Hour of Adjacent Street Traffic Internal Capture = 0 Percent Total Weekday PM Peak Hour of Adjacent Street Traffic Internal Capture = 3 Percent

Total Weekday Average Daily Trips Internal Capture = 0 Percent

Volume Added to Adjacent Streets

Pass-By Trips

Unadjusted Volume

Internal Capture Trips

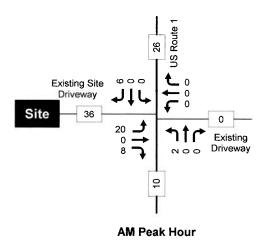
Dwelling Units

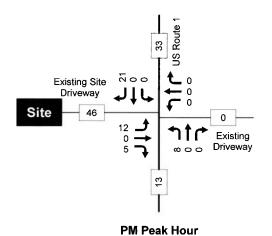
Rooms

33

ITE Land Use MOTEL 1

320


LOW-RISE 1


220

75

Pernaw & Company, Inc

Year 2019 Monthly Data - Urban

		Adjustn	nent to
Month	ADT	Average	Peak
Jan	11,431	1.12	1.23
Feb	11,848	1.08	1.18
Mar	12,141	1.06	1.15
Apr	12,860	1.00	1.09
May	13,551	0.95	1.03
Jun	13,785	0.93	1.02
Jul	13,942	0.92	1.01
Aug	14,016	0.92	1.00
Sep	13,379	0.96	1.05
Oct	13,339	0.96	1.05
Nov	12,265	1.05	1.14
Dec	11,496	1.12	1.22

Year 2018 Monthly Data - Urban

		Adjustr	nent to
<u>Month</u>	ADT	Average	Peak
Jan	11,282	1.13	1.24
Feb	11,848	1.08	1.18
Mar	11,828	1.08	1.18
Apr	12,491	1.02	1.12
May	13,587	0.94	1.03
Jun	13,911	0.92	1.00
Jul	13,765	0.93	1.01
Aug	13,945	0.92	1.00
Sep	13,168	0.97	1.06
Oct	13,367	0.96	1.04
Nov	12,215	1.05	1.14
Dec	11,963	1.07	1.17

Year 2017 Monthly Data - Urban

		Adjusti	ment to
<u>Month</u>	ADT	Average	Peak
Jan	12254	1.21	1.33
Feb	13494	1.10	1.21
Mar	14,335	1.03	1.14
Apr	15004	0.99	1.09
May	15547	0.95	1.05
Jun	16310	0.91	1.00
Jul	15523	0.95	1.05
Aug	15974	0.93	1.02
Sep	15546	0.95	1.05
Oct	15104	0.98	1.08
Nov	14,544	1.02	1.12
Dec	14151	1.05	1.15

July To Peak-Month Factor	1.02	
---------------------------	------	--

August	Ta	Dook	Month	Easter	1 01	
Auuusi	ഥ	TEAK.	-1416361617	racior	71 11 1	

STEPHEN G. PERNAW & COMPANY, INC.

PROJECT: Proposed Residential Development, Portsmouth, New Hampshire

NUMBER: 2109A COUNT STATION: 82379021

HISTORICAL GROWTH CALCULATIONS

LOCATION: US1 (at Rye Townline) - Portsmouth, NH

CASE: AADT

ARITHMETIC PROJECTIONS

YEAR	AADT			PROJE	CTIONS
		Regression (Output:		
2016	22063	Constant	2226791.5	2021	15211
2017	17725	Std Err of Y Est	1782.4049	2022	14117
2018	18080	R Squared	0.4851527	2023	13023
2019	18297	No. of Observations	4	2024	11928
		Degrees of Freedom	2	2025	10834
				2026	9740
		X Coefficient	-1094.3	2027	8645
		Std Err of Coef.	797.11569	2028	7551
				2029	6457
				2030	5363
				2031	4268

RATE = -1094 VPD/YEAR

GEOMETRIC PROJECTIONS

YEAR	AADT	Ln AADT			PROJE	ECTIONS
			Regression O	utput:		
2016	22063	10.00166	Constant	119.13115	2021	15690
2017	17725	9.78273	Std Err of Y Est	0.090459	2022	14863
2018	18080	9.80256	R Squared	0.4726824	2023	14079
2019	18297	9.81449	No. of Observations	4	2024	13337
			Degrees of Freedom	2	2025	12634
					2026	11967
			X Coefficient	-0.0541664	2027	11336
			Std Err of Coef.	0.0404545	2028	10739
					2029	10173
					2030	9636
					2031	9128

CONCLUSION: USE 1%/YEAR

RATE = -5.3 % / YEAR

CALCULATION SHEET

Project:	Residential Development	Job Number:	2109A
Calculated By:	SGP	Date:	7/14/2021
Checked By:	CA	Date:	7/14/2021
Sheet No:	1	Of:	1
Subject:	COVID-19 Adjustment Fact	or	

			TITI						
∋iver	n:								
_		short term	traffic count (St	ation 9237002	1) on US Pouto	1 (at Puo Tou	unline) Dorton	outh NIL	
1. 1	T		verage weekday			i (at Rye Tov	vniine) - Portsir	outn, NA	
	-					-			
_	-		verage weekday		oo i vpa				
-			rate = 1.0% per	year					
	D. Pea	ak Month Fa	actor = 1.01						
2. (Calcula		gust volume (w/c		August 2017				
	-	20352 X	(1.01 ⁴ X 1.01=	21,390					
3. C	Calcula		gust volume (w/0		gust 2020				
		17661 X	1.01 X 1.01 =	18,016					
3. (Calcula	te Covid Fa							
		August 20	021 estimate w/o	Covid =	21,390	1.19			
		August 20	21 actual volum	e w/Covid	= 18,016				

TRIP DISTRIBUTION ANALYSIS - Portsmouth, New Hampshire

A. Work Destination Report - Where Workers are Employed Who Live in Portsmouth, New Hampshire

		Gate	Gateway %	Gateway	Gateway Allocation	
		Rt 1 N	Rt 1 S	Rt 1 N	Rt 1 S	
	Count					
Portsmouth city (Rockingham, NH)	4,293	0.90	0.10	3864	429	4293
Dover city (Strafford, NH)	563	1.00		563	0	563
Manchester city (Hillsborough, NH)	433		1.00	0	433	433
Exeter town (Rockingham, NH)	385		1.00	0	385	385
Boston city (Suffolk, MA)	381	0.50	0.50	191	191	382
Newington town (Rockingham, NH)	380	06.0	0.10	342	38	380
Durham town (Strafford, NH)	301	1.00		301	0	301
Hampton town (Rockingham, NH)	275		1.00	0	275	275
Nashua city (Hillsborough, NH)	236		1.00	0	236	236
Rochester city (Strafford, NH)	212	1.00		212	0	212
	7459			5473	1987	7460
				73.4%	26.6%	100%
				73	27	100

Stephen G. Pernaw & Company, Inc.

Figure 2 - 6. Guideline for determining the need for a major-road right-turn bay at a two-way stop-controlled intersection.

INPUT									
2-lane roadw ay									
Variable	Value	L 140				1000	44.5		
Major-road speed, mph:	45	150 1/4				Add	Add right - turn bay	ay	
Major-road volume (one direction), veh/h:	642		_						
Right-turn volume, veh/h:	ဖ	96 'əu	A DA CHARLES AND A DESCRIPTION OF THE PARTY						
		nulo 8		The state of the s	AND				
OUTPUT		.V m							
Variable	Value	Tui	A MARIE REMANDE EN RAMERE (A RAPID À ACTION DE LOS ESS.	A port and prompts on the part of the property of the contract	e e constante de monte de particular de la constante de la con				***
Limiting right-turn volume, veh/h:	27								
Guidance for determining the need for a major-road		l gi							
right-turn bay for a 2-lane roadway:		H		4					Π
Do NOT add right-turn bay.		200	400	009	800	1000	1000 1200 1400	1400	1600
			Major-	Major-Road Volume (one direction), veh/h	lume (o	ne direct	ion), veł	h/د	

Stephen G. Pernaw & Company, Inc.

Figure 2 - 6. Guideline for determining the need for a major-road right-turn bay at a two-way stop-controlled intersection.

		140 The hard the house have	120			08	09	40		707	0	200 400 600 800 1000 1200 1400	Major-Road Volume (one direction), veh/h
		Value	/ Ч €	945	ne 24	injo	V m	Value	- 14	giS	4		
INPUT	2-lane roadw ay ▼	Variable	Major-road speed, mph:	Major-road volume (one direction), veh/h:	Right-turn volume, veh/h:		ООТРОТ	Variable	Limiting right-turn volume, veh/h:	Guidance for determining the need for a major-road	right-turn bay for a 2-lane roadway:	Add right-turn bay.	

Stephen G. Pernaw & Company, Inc.

Figure 2 - 4. Guideline for determining minor-road approach geometry at two-way stop-controlled intersections.

	ш
	II
	ш
	ш
	ш
	ш
	II
	ш
	ш
	ш
	ш
	ш
	ı
	11
_	
_	
,	
_	
٦.	
_	
_	11
_	ш
_	
_	ш
	_

	200		000		0000		200		100	One approach lane	0
/alue	1536	29%	28	p əuc	y/u o) əu	Value	84 10/	p	60	 -10	
	Aajor-road volume (total of both directions), veh/h:	Percentage of right-turns on minor road, %:	Ainor-road volume (one direction), veh/h:		OUTPUT	Variable	Limiting minor-road volume (one direction), veh/h:	Guidance for determining minor-road approach geometry:	ONE approach lane is o.k.		

Consider two approach lanes

Variable	Value
Limiting minor-road volume (one direction), veh/h:	84
Guidance for determining minor-road approach geometry:	
ONE approach lane is o.k.	

CALIBRATION CONSTANTS

800

900

400

200 0

One approach lane is o.k.

Major-Road Volume (total of both directions), veh/h

Minor Road	Critical gap, s:	Critical gap, s: Follow-up gap, s:
Right-turn capacity, veh/h:	6.2	3.3
Left-turn and through capacity, veh/h:	6.5	4.0

^{*} according to Table 17 - 5 of the HCM

Stephen G. Pernaw & Company, Inc.

Figure 2 - 4. Guideline for determining minor-road approach geometry at two-way stop-controlled intersections.

Н
\equiv
Ω
Z

Variable		Value		
Major-road volume (total of both directions), veh/h:	veh/h:	2022	200	
Percentage of right-turns on minor road, %:		29%	Consider two approach lanes	ر ر
Minor-road volume (one direction), veh/h:		17	ect.	
OUTPUT				
Variable		Value	19v	
Limiting minor-road volume (one direction), veh/h:	eh/h:	43		
Guidance for determining minor-road approach geom	roach geometry:		(pi	
ONE approach lane is o.k.	ne is o.k.		90	
			One approach lane is o.k.	
			200 400 600 800 1000 1200 1400 1600 1800 2000	00 2000
CALIBRATION CONSTANTS			Major-Road Volume (total of both directions), veh/h	h/h
Minor Road	Critical gap, s:	Follow-up gap, s:		
Right-turn capacity, veh/h:	6.2	3.3		
Left-turn and through capacity, veh/h:	6.5	4.0		

* according to Table 17 - 5 of the HCM

City of Portsmouth, New Hampshire Site Plan Application Checklist

This site plan application checklist is a tool designed to assist the applicant in the planning process and for preparing the application for Planning Board review. A pre-application conference with a member of the planning department is strongly encouraged as additional project information may be required depending on the size and scope. The applicant is cautioned that this checklist is only a guide and is not intended to be a complete list of all site plan review requirements. Please refer to the Site Plan review regulations for full details.

Applicant Responsibilities (Section 2.5.2): Applicable fees are due upon application submittal along with required attachments. The application shall be complete as submitted and provide adequate information for evaluation of the proposed site development. Waiver requests must be submitted in writing with appropriate justification.

Name of Owner/Applicant:	Naveesha Holdings, LLC (Owner) Monarch Village, LLC (Applicant)	Date Submitte	ed: 08/23/21	
Phone Number: (978) 685-05	568 E-mail	:nlee@ncsne.com	n	
Site Address: 3548 Lafayette	Road		Map: Lot:6	
Zoning District: Gateway 1	Lot area:	162,970 so	q. ft.	

	Application Requirements			
V	Required Items for Submittal	Item Location (e.g. Page or Plan Sheet/Note #)	Waiver Requested	
Ž	Fully executed and signed Application form. (2.5.2.3)	Viewpoint	N/A	
Ž	All application documents, plans, supporting documentation and other materials provided in digital Portable Document Format (PDF). (2.5.2.8)	Viewpoint	N/A	

	Site Plan Review Application Required Information			
Ø	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested	
X	Statement that lists and describes "green" building components and systems. (2.5.3.1A)	Green Statement		
X	Gross floor area and dimensions of all buildings and statement of uses and floor area for each floor. (2.5.3.1B)	Sheet C2	N/A	
X	Tax map and lot number, and current zoning of all parcels under Site Plan Review. (2.5.3.1C)	Sheet EX-1, Note 2	N/A	
Ď	Owner's name, address, telephone number, and signature. Name, address, and telephone number of applicant if different from owner. (2.5.3.1D)	Cover Sheet	N/A	

	Site Plan Review Application Required Information			
Ø	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested	
X	Names and addresses (including Tax Map and Lot number and zoning districts) of all direct abutting property owners (including properties located across abutting streets) and holders of existing conservation, preservation or agricultural preservation restrictions affecting the subject property. (2.5.3.1E)	Sheets EX-1 and EX-2	N/A	
X	Names, addresses and telephone numbers of all professionals involved in the site plan design. (2.5.3.1F)	Cover Sheet	N/A	
X	List of reference plans. (2.5.3.1G)	Sheet EX-1	N/A	
	List of names and contact information of all public or private utilities servicing the site. (2.5.3.1H)	Sheet C-4, Note 10	N/A	

	Site Plan Specifications			
Ø	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested	
X	Full size plans shall not be larger than 22 inches by 34 inches with match lines as required, unless approved by the Planning Director. Submittals shall be a minimum of 11 inches by 17 inches as specified by Planning Dept. staff. (2.5.4.1A)	Required on all plan sheets	N/A	
X	Scale: Not less than 1 inch = 60 feet and a graphic bar scale shall be included on all plans. (2.5.4.1B)	Required on all plan sheets	N/A	
X	GIS data should be referenced to the coordinate system New Hampshire State Plane, NAD83 (1996), with units in feet. (2.5.4.1C)	Sheets EX-1 and EX-2	N/A	
X	Plans shall be drawn to scale. (2.5.4.1D)	Required on all plan sheets	N/A	
X	Plans shall be prepared and stamped by a NH licensed civil engineer. (2.5.4.1D)	All required sheets	N/A	
X	Wetlands shall be delineated by a NH certified wetlands scientist and so stamped. (2.5.4.1E)	Sheets EX-1 and EX-2	N/A	
X	Title (name of development project), north point, scale, legend. (2.5.4.2A)	All sheets	N/A	
X	Date plans first submitted, date and explanation of revisions. (2.5.4.2B)	All sheets	N/A	
X	Individual plan sheet title that clearly describes the information that is displayed. (2.5.4.2C)	Required on all plan sheets	N/A	
X	Source and date of data displayed on the plan. (2.5.4.2D)	Sheets EX-1 and EX-2	N/A	

	Site Plan Specifications		
Ø	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested
X	A note shall be provided on the Site Plan stating: "All conditions on this Plan shall remain in effect in perpetuity pursuant to the requirements of the Site Plan Review Regulations." (2.5.4.2E)	Sheet C-2, Note 21	N/A
	Plan sheets submitted for recording shall include the following notes: a. "This Site Plan shall be recorded in the Rockingham County Registry of Deeds." b. "All improvements shown on this Site Plan shall be constructed and maintained in accordance with the Plan by the property owner and all future property owners. No changes shall be made to this Site Plan without the express approval of the Portsmouth Planning Director." (2.13.3)	Sheet C-2, Notes 22 & 23	N/A
	Plan sheets showing landscaping and screening shall also include the following additional notes: a. "The property owner and all future property owners shall be responsible for the maintenance, repair and replacement of all required screening and landscape materials." b. "All required plant materials shall be tended and maintained in a healthy growing condition, replaced when necessary, and kept free of refuse and debris. All required fences and walls shall be maintained in good repair." c. "The property owner shall be responsible to remove and replace dead or diseased plant materials immediately with the same type, size and quantity of plant materials as originally installed, unless alternative plantings are requested, justified and approved by the Planning Board or Planning Director." (2.13.4)	Pending	N/A

	Site Plan Specifications – Required Exhibit	s and Data	
V	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested
	1. Existing Conditions: (2.5.4.3A)		
X	a. Surveyed plan of site showing existing natural and built features;	Sheets EX-1 and EX-2	
	b. Zoning boundaries;	N/A (no close boundary)	
X	c. Dimensional Regulations;	Sheet C-2	
X	d. Wetland delineation, wetland function and value assessment;	Sheet C-2	
	e. SFHA, 100-year flood elevation line and BFE data.	N/A	
	2. Buildings and Structures: (2.5.4.3B)		
X	 a. Plan view: Use, size, dimensions, footings, overhangs, 1st fl. elevation; 	Sheets C-2 and C-3	
\mathbf{x}	 Elevations: Height, massing, placement, materials, lighting, façade treatments; 	Elevations	
X	c. Total Floor Area;	Sheet C-2	
X	d. Number of Usable Floors;	Sheet C-2	
X	e. Gross floor area by floor and use.	Sheet C-2	
	3. Access and Circulation: (2.5.4.3C)		
X	a. Location/width of access ways within site;	Sheet C-2	
X	 b. Location of curbing, right of ways, edge of pavement and sidewalks; 	Sheet C-2	
X	 Location, type, size and design of traffic signing (pavement markings); 	Sheet C-2	
X	d. Names/layout of existing abutting streets;	Sheet C-2	
X	e. Driveway curb cuts for abutting prop. and public roads;	Sheet C-2	
	f. If subdivision; Names of all roads, right of way lines and easements noted;	N/A	
X	g. AASHTO truck turning templates, description of minimum vehicle allowed being a WB-50 (unless otherwise approved by TAC).	Fire Truck provided	
	4. Parking and Loading: (2.5.4.3D)		
X	 a. Location of off street parking/loading areas, landscaped areas/buffers; 	Sheet C-2	
X	b. Parking Calculations (# required and the # provided).	Sheet C-2, Note 8	
	5. Water Infrastructure: (2.5.4.3E)		
X	 Size, type and location of water mains, shut-offs, hydrants & Engineering data; 	Sheet C-5	
	b. Location of wells and monitoring wells (include protective radii).	N/A	
	6. Sewer Infrastructure: (2.5.4.3F)		
X	 Size, type and location of sanitary sewage facilities & Engineering data. 	Sheets C-5 and C-6	
	7. Utilities: (2.5.4.3G)		
X	a. The size, type and location of all above & below ground utilities;	Sheet C-5	
X	 Size type and location of generator pads, transformers and other fixtures. 	Sheet C-5	

	Site Plan Specifications – Required Exhibits	and Data	
Ø	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested
	8. Solid Waste Facilities: (2.5.4.3H)		
X	a. The size, type and location of solid waste facilities.	Sheet C-2	
	9. Storm water Management: (2.5.4.3I)		
K	a. The location, elevation and layout of all storm-water drainage.	Sheet C-3	
	10. Outdoor Lighting: (2.5.4.3J)		
X	 a. Type and placement of all lighting (exterior of building, parking lot and any other areas of the site) and; b. photometric plan. 	Sheet C-6	
X	11. Indicate where dark sky friendly lighting measures have been implemented. (10.1)	Sheet C-6	
	12. Landscaping: (2.5.4.3K)		
X	 a. Identify all undisturbed area, existing vegetation and that which is to be retained; 	Sheet C-2	
	b. Location of any irrigation system and water source.	N/A	
	13. Contours and Elevation: (2.5.4.3L)		
X	a. Existing/Proposed contours (2 foot minimum) and finished grade elevations.	Sheet C-3	
	14. Open Space: (2.5.4.3M)		
X	a. Type, extent and location of all existing/proposed open space.	Sheet C-2	
	15. All easements, deed restrictions and non-public rights of ways. (2.5.4.3N)	N/A	
X	Location of snow storage areas and/or off-site snow removal. (2.5.4.30)	Sheet C-2	
	17. Character/Civic District (All following information shall be included): (2.5.4.3Q)	N/A	
	a. Applicable Building Height (10.5A21.20 & 10.5A43.30);		
	b. Applicable Special Requirements (10.5A21.30);		
	c. Proposed building form/type (10.5A43);		
	d. Proposed community space (10.5A46).		

	Other Required Information			
V	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested	
X	Traffic Impact Study or Trip Generation Report, as required. (Four (4) hardcopies of the full study/report and Six (6) summaries to be submitted with the Site Plan Application) (3.2.1-2)	Traffic Study attached		
X	Indicate where Low Impact Development Design practices have been incorporated. (7.1)	Green Statement		
	Indicate whether the proposed development is located in a wellhead protection or aquifer protection area. Such determination shall be approved by the Director of the Dept. of Public Works. (7.3.1)	N/A		
	Indicate where measures to minimize impervious surfaces have been implemented. (7.4.3)	Site Plan		
X	Calculation of the maximum effective impervious surface as a percentage of the site. (7.4.3.2)	Stormwater Management Plan		
X	Stormwater Management and Erosion Control Plan. (Four (4) hardcopies of the full plan/report and Six (6) summaries to be submitted with the Site Plan Application) (7.4.4.1)	Stormwater Management Plan attached		

	Final Site Plan Approval Required Information			
Ø	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested	
X	All local approvals, permits, easements and licenses required, including but not limited to: a. Waivers; b. Driveway permits; c. Special exceptions; d. Variances granted; e. Easements; f. Licenses. (2.5.3.2A)	Cover Sheet		
	 Exhibits, data, reports or studies that may have been required as part of the approval process, including but not limited to: a. Calculations relating to stormwater runoff; b. Information on composition and quantity of water demand and wastewater generated; c. Information on air, water or land pollutants to be discharged, including standards, quantity, treatment and/or controls; d. Estimates of traffic generation and counts pre- and post-construction; e. Estimates of noise generation; f. A Stormwater Management and Erosion Control Plan; g. Endangered species and archaeological / historical studies; h. Wetland and water body (coastal and inland) delineations; i. Environmental impact studies. (2.5.3.2B) 	Stormwater Plan Sheet C-4 N/A Traffic Analysis N/A Stormwater Mgmt. Plan N/A Sheets EX-1 and EX-2 N/A		

	Final Site Plan Approval Required Information			
Ø	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested	
	A document from each of the required private utility service providers indicating approval of the proposed site plan and indicating an ability to provide all required private utilities to the site. (2.5.3.2D)	Pending (Eversource and Unitil)		
X	A list of any required state and federal permit applications required for the project and the status of same. (2.5.3.2E)	Cover Sheet		

Applicant's Signature:	D. D.	ate:

MONARCH VILLAGE Residential Redevelopment

3548 Lafayette Road Portsmouth, New Hampshire

Owner:

NAVEESHA HOSPITALITY, LLC

440 Bedford St. Lexington, MA 02420 (603) 396-6017

Applicant:

MONARCH VILLAGE, LLC

P.O. Box 365

East Hampstead, NH 03826

(603) 396-6017

Surveyor:

James Verra and Associates, Inc.

LAND SURVEYORS

101 Shattuck Way, Suite 8 Newington, New Hampshire 03801—7876 Voice 603.436.3557 Fax 603.436.8339

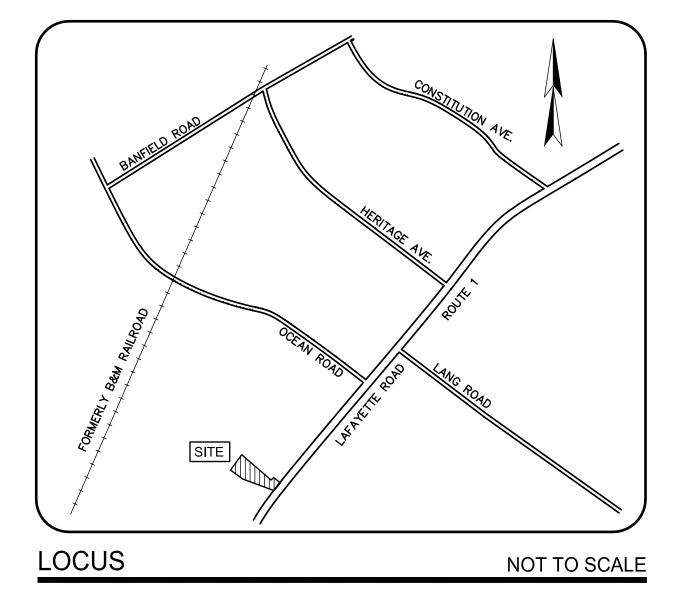
Soil Scientist: MICHAEL CUOMO, CWS

6 York Pond Road York, ME 03909 (207) 363-4532

Lighting Consultant:

Landscape Architect:

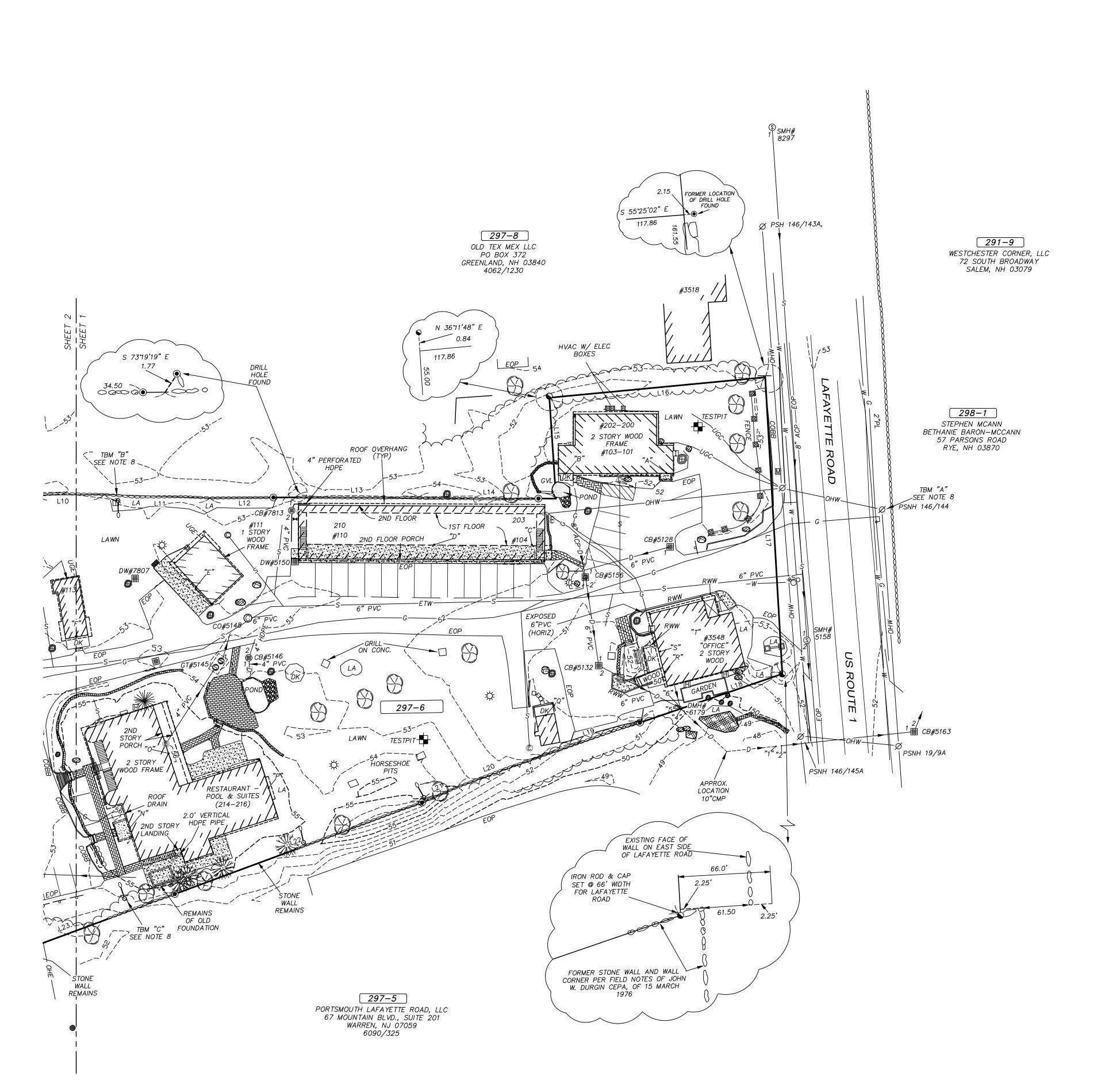
Architect:



P 603-431-2808 | F 603-431-2809

Assessor's Parcel 297, Lot 6 ISSUED FOR TAC

Plan Issue Date:


AUGUST 23, 2021

Sheet Index Title	Sheet No.:	Rev.	Date
Preliminary Existing Conditions Plan	EX-1	0	_
Preliminary Conditions Plan Demolition Plan	EX-2 C-1	0	_
Site Plan	C-1 $C-2$	0	08/23/21 08/23/21
Stormwater Management Plan	C - 3	1	08/23/21
Utility Plan	C-4	1	08/23/21
Sewer Plan and Profile	C-5	Ο	08/23/21
Lighting Plan	C-6	Ο	08/23/21
(reserved)	_	_	_
Detail Sheet	D-1	0	08/23/21
Detail Sheet	D-2	0	08/23/21
Detail Sheet	D - 3	0	08/23/21
Detail Sheet	D-4	Ο	08/23/21
Detail Sheet	D-5	Ο	08/23/21
Detail Sheet	D-6	Ο	08/23/21
Detail Sheet	D - 7	Ο	08/23/21
Building Elevations	_	_	
Building Elevations	_	_	_

Permit Summary:	Submitted	Received
Portsmouth Zoning Board Portsmouth Site Plan Review NHDOT Driveway Permit NHDES Wastewater Discharge	04/28/21 08/23/21 08/23/21 To be submitted	06/15/21 - - -
EPA Notice of Intent	By Contractor 14 days	prior to construction

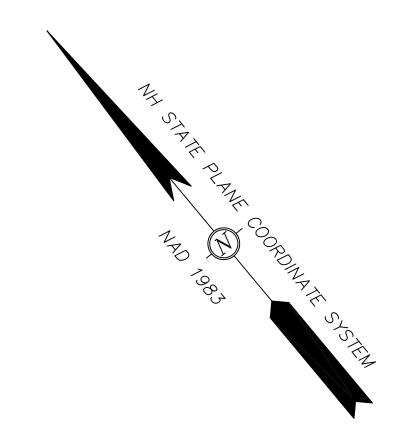
2090

NOTES:

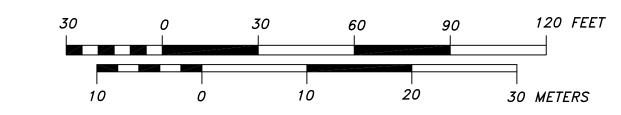
1. OWNER OF RECORD......NAVEESHA HOSPITALITY, LLC.
ADDRESS........440 BEDFORD STREET, LEXINGTON, MA 02420
DEED REFERENCE........5230/888
TAX SHEET / LOT.......297-06

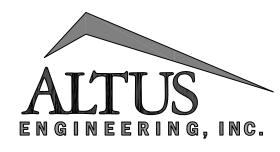
FRONT YARD SETBACK.....80'*
SIDE YARD SETBACK......20'
REAR YARD SETBACK......15'

- 3. THE RELATIVE ERROR OF CLOSURE WAS LESS THAN 1 FOOT IN 15,000 FEET.
- 4. THE LOCATION OF ALL UNDERGROUND UTILITIES SHOWN HEREON ARE APPROXIMATE AND ARE BASED UPON THE FIELD LOCATION OF ALL VISIBLE STRUCTURES (IE CATCH BASINS, MANHOLES, WATER GATES ETC.) AND INFORMATION COMPILED FROM PLANS PROVIDED BY UTILITY COMPANIES AND GOVERNMENTAL AGENCIES. ALL CONTRACTORS SHOULD NOTIFY, IN WRITING, SAID AGENCIES PRIOR TO ANY EXCAVATION WORK AND CALL DIG—SAFE @ 1—888—DIG—SAFE.
- 5. HORIZONTAL DATUM: NAD 1983 ESTABLISHED BY SURVEY GRADE GPS OBSERVATION AND NGS "OPUS" SOLUTION. REFERENCE FRAME: NAD83 (2011)(EPOCH: 2010.0000), US SURVEY FOOT.
- VERTICAL DATUM: NAVD 1988. PRIMARY BENCHMARK: CITY OF PORTSMOUTH "ROBE"
 6. CONTRACTOR TO VERIFY SITE BENCHMARKS BY LEVELING BETWEEN 2 BENCHMARKS
 PRIOR TO THE ESTABLISHMENT OF ANY GRADES OR ELEVATIONS. DISCREPANCIES ARE TO
 BE REPORTED TO JAMES VERRA AND ASSOCIATES, INC..
- 7. THE PARCEL SHOWN HEREON LIES WITHIN ZONE X (AREA OF MINIMAL FLOOD HAZARD)
 AS IDENTIFIED ON FLOOD INSURANCE RATE MAP, ROCKINGHAM COUNTY, NEW HAMPSHIRE,
 MAP NUMBER 33015C0295F, EFFECTIVE DATE 1/29/2021 BY THE FEDERAL EMERGENCY
 MANAGEMENT AGENCY.
- 8. DESCRIPTIONS OF THE SITE BENCHMARKS:
- TBM"A": LARGE SURVEY NAIL SET IN UTILITY POLE # 1.0' ABOVE GRADE ELEVATION=52.48


TBM"B": LARGE SURVEY NAIL SET IN UTILITY POLE # 1.0' ABOVE GRADE ELEVATION=54.15

TBM"C": LARGE SURVEY NAIL SET IN UTILITY POLE # 1.0' ABOVE GRADE ELEV.=54.71


- 9. THE LOCATION OF WATER, SEWER AND DRAIN LINES OUTSIDE THE BUILDINGS COULD NOT BE DETERMINED.
- 10. LAFAYETTE ROAD LAID OUT AS 4 RODS (66') WIDE IN 1824 PER BOOK 1 PAGE 260 ROCKINGHAM COUNTY RECORDS.
- 11. THERE IS AN 8" FORCE MAIN RUNNING ALONG THE WESTERLY SIDE OF LAFAYETTE ROAD AS SHOWN ON THE CITY OF PORTSMOUTH GIS MAP (NOT FIELD LOCATED).
- 12. THE 6" PVC SEWER LINE SHOWN HEREON WAS PROTRACTED FROM A PLAN
 ENTITLED "WREN'S NEST MOTEL, PORTSMOUTH, NH" PREPARED BY MCKENZIE
 ENGINEERING CO., INC. DATED 9/11/1986, REVISED TO 10/8/99. THE SEWER LINE
 WAS NOT FIELD LOCATED BY JAMES VERRA AND ASSOCIATES, INC.


REFERENCE PLANS:

1. ALTA/ACSM LAND TITLE SURVEY, 3548 LAFAYETTE ROAD, PORTSMOUTH, N.H.
ASSESSOR'S PARCEL: 297-6, OWNER: NAVEESHA HOSPITALITY, LLC. BY JAMES VERRA
AND ASSOCIATES, INC. DATED 8/11/20211, NOT RECORDED.

PRELIMINARY
SUBJECT TO CHANGE

133 COURT STREET PORTSMOUTH, NH 03801 (603) 433-2335 www.ALTUS-ENG.com

JAMES VERRA & ASSOCIATES, INC.

LAND SURVEYORS

101 SHATTUCK WAY - SUITE 8 NEWINGTON, N.H. 03801- 7876 603-436-3557

JOB NO: 23401-A

15D 50D

ISSUED FOR:

ENGINEERING DESIGN

ISSUE DATE:

PRELIMINARY

DATE

JVA PRELIMINARY

REVISIONS
NO. DESCRIPTION

O CLIENT REVIEW

 DRAWN BY:
 GTD

 APPROVED BY:
 JV

 DRAWING FILE:
 23401-A.DWG

APPLICANT:

MONARCH VILLAGE, LLC.
PO BOX 365

EAST HAMPSTEAD, NH 03826

OWNER:

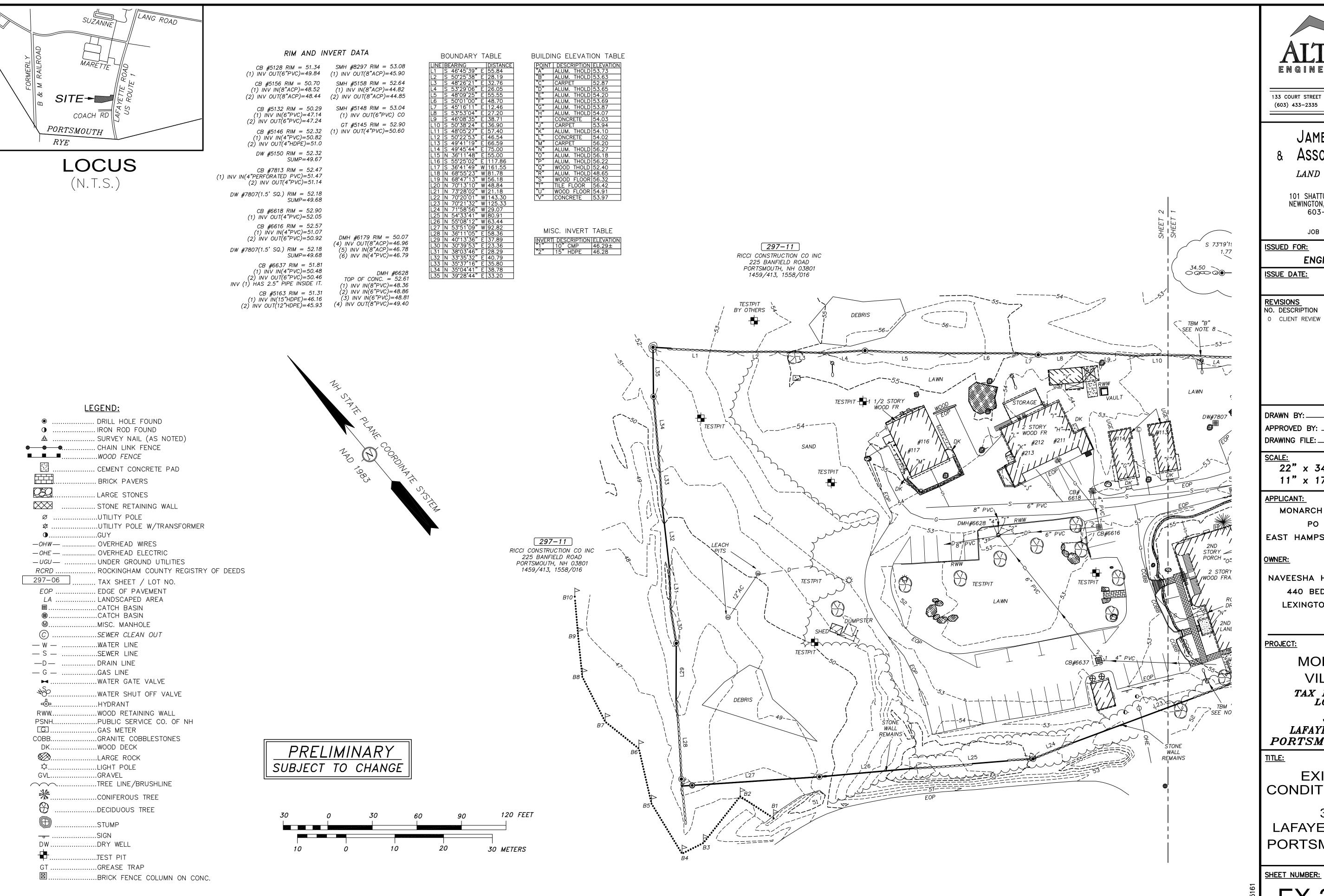
NAVEESHA HOSPITALITY, LLC.

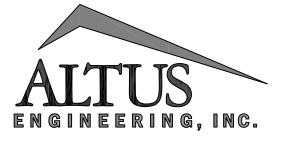
440 BEDFORD STREET

LEXINGTON, MA 02420

PROJECT:

MONARCH
VILLAGE
TAX MAP 297,
LOT 06
3548
LAFAYETTE ROAD


PORTSMOUTH, NH


TITLE:

EXISTING
CONDITIONS PLAN
3548
LAFAYETTE ROAD
PORTSMOUTH, NH

SHEET NUMBER: 1 OF 2

EX-1

133 COURT STREET PORTSMOUTH, NH 03801 (603) 433-2335 www.ALTUS-ENG.com

JAMES VERRA & ASSOCIATES, INC.

LAND SURVEYORS

101 SHATTUCK WAY - SUITE 8 NEWINGTON, N.H. 03801- 7876 603-436-3557

JOB NO: 23401-A

ISSUED FOR:

ENGINEERING DESIGN

ISSUE DATE:

<u>REVISIONS</u> NO. DESCRIPTION

DATE JVA PRELIMINARY

PRELIMINARY

GTD DRAWN BY: _ APPROVED BY: . 23401-A.DWG DRAWING FILE: .

 $22" \times 34" - 1" = 30"$ $11" \times 17" - 1" = 60"$

APPLICANT:

MONARCH VILLAGE, LLC. PO BOX 365

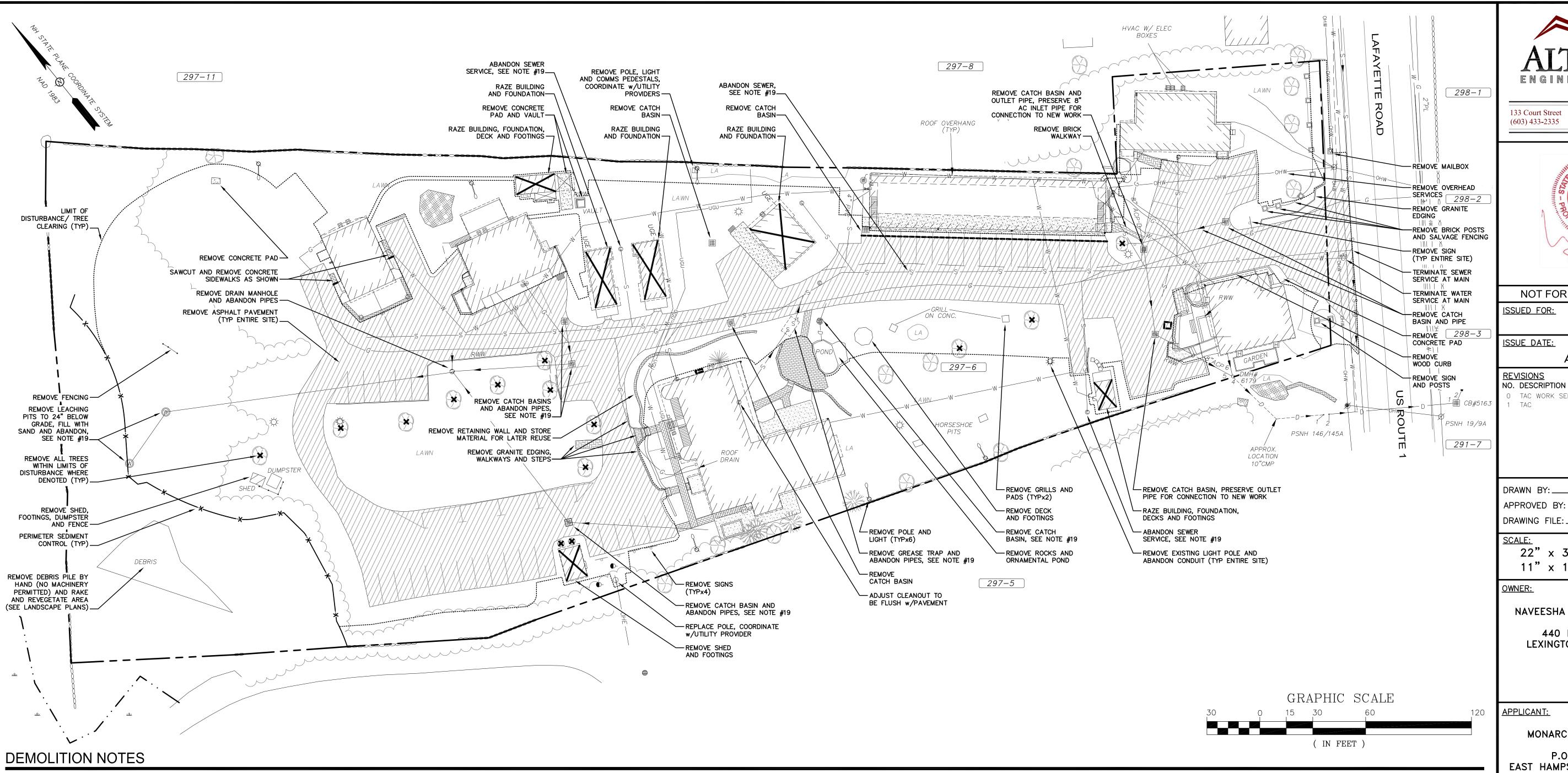
EAST HAMPSTEAD, NH 03826

OWNER:

NAVEESHA HOSPITALITY, LLC. 440 BEDFORD STREET LEXINGTON, MA 02420

PROJECT:

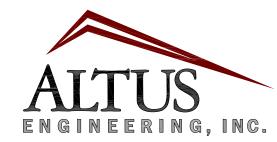
MONARCH **VILLAGE** TAX MAP 297, LOT 06 *3548* LAFAYETTE ROAD PORTSMOUTH, NH


TITLE:

EXISTING CONDITIONS PLAN

3548 LAFAYETTE ROAD PORTSMOUTH, NH

SHEET NUMBER: 2 OF 2


EX-2

- CITY DEMOLITION PERMIT REQUIRED PRIOR TO ANY BUILDING DEMOLITION ACTIVITIES. CONTRACTOR IS NOTIFIED THAT THIS PERMIT PROCESS MAY REQUIRE A 30-DAY LEAD TIME.
- 2. CONTRACTOR SHALL SAFELY SECURE THE SITE AND WORK LIMITS WITH SECURITY FENCING WHICH SHALL BE LOCKED DURING NON-WORK HOURS.
- 3. CONTRACTOR SHALL PRESERVE AND PROTECT ALL EXISTING UTILITIES SCHEDULED TO REMAIN.
- 4. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE TIMELY NOTIFICATION OF ALL PARTIES, CORPORATIONS, COMPANIES, INDIVIDUALS AND STATE AND LOCAL AUTHORITIES OWNING AND/OR HAVING JURISDICTION OVER ANY UTILITIES RUNNING TO, THROUGH OR ACROSS AREAS TO BE DISTURBED BY DEMOLITION AND/OR CONSTRUCTION ACTIVITIES WHETHER OR NOT SAID UTILITIES ARE SUBJECT TO DEMOLITION, RELOCATION, MODIFICATION AND/OR CONSTRUCTION.
- 5. ALL UTILITY DISCONNECTIONS/DEMOLITIONS/RELOCATIONS SHALL BE COORDINATED BETWEEN THE CONTRACTOR, ALL APPROPRIATE UTILITY COMPANIES, PORTSMOUTH DPW AND ABUTTING PROPERTY OWNERS. UNLESS OTHERWISE SPECIFIED, THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL RELATED EXCAVATION, TRENCHING AND BACKFILLING.
- 6. WHERE SPECIFIED TO REMAIN, MANHOLE RIMS, CATCH BASIN GRATES, VALVE COVERS, HANDHOLES, ETC. SHALL BE ADJUSTED TO FINISH GRADE UNLESS OTHERWISE SPECIFIED.
- 7. SEE EROSION CONTROL PLANS FOR EROSION AND SEDIMENT CONTROL MEASURES THAT SHALL BE IN PLACE PRIOR TO DEMOLITION ACTIVITIES.

- 8. ALL MATERIALS SCHEDULED FOR DEMOLITION OR REMOVAL ON PRIVATE PROPERTY SHALL BECOME THE PROPERTY OF THE CONTRACTOR UNLESS OTHERWISE SPECIFIED.
- 9. ALL MATERIAL SCHEDULED TO BE REMOVED SHALL BE LEGALLY DISPOSED OF IN ACCORDANCE WITH ALL LOCAL, STATE AND FEDERAL REGULATIONS/CODES.
- 10. WATER: PORTSMOUTH DPW, JIM TOW, (603) 427-1530.
- 11. TELECOMMUNICATIONS: FAIRPOINT, JOE CONSIDINE, (603) 427-5525.
- 12. CABLE: COMCAST, MIKE COLLINS, (603) 679-5695, EXT. 1037.
- 13. ELECTRICAL: EVERSOURCE, MICHAEL BUSBY, (603) 332-4227, EXT. 5555334.
- 14. GAS: UNITIL, DAVID BEAULIEU, (603) 294-5144.
- 15. CONTRACTOR TO CONTACT PORTSMOUTH DPW A MINIMUM OF TWO WEEKS PRIOR TO ANY DEMOLITION TO COORDINATE ALL WORK CONCERNING DISCONNECTION/DEMOLITION OF ANY PROPOSED WATER AND SEWER LINE IMPROVEMENTS.
- 16. ALL WATER MAIN AND SERVICE DISCONNECTIONS SHALL CONFORM TO PORTSMOUTH DPW STANDARDS.
- 17. NO BURNING SHALL BE PERMITTED PER LOCAL REGULATIONS.
- 18. HAZARDOUS MATERIALS ENCOUNTERED DURING DEMOLITION AND CONSTRUCTION ACTIVITIES SHALL BE ABATED IN STRICT ACCORDANCE WITH ALL APPLICABLE STATE AND LOCAL REGULATIONS.

- 19. EXISTING UTILITIES TO BE DISCONTINUED SHALL BE ABANDONED IN PLACE UNLESS OTHERWISE NOTED TO BE REMOVED OR ENCOUNTERED DURING THE INSTALLATION OF NEW WORK.
- 20. SHOULD GROUNDWATER BE ENCOUNTERED DURING EXCAVATION, APPROPRIATE BEST MANAGEMENT PRACTICES SHALL BE EMPLOYED TO ENSURE SEDIMENT LADEN WATER IS NOT DISCHARGED INTO THE CITY DRAINAGE SYSTEM. A DISCHARGE PERMIT SHALL BE OBTAINED PRIOR TO DISCHARGING GROUNDWATER.
- 21. THIS PLAN IS INTENDED TO PROVIDE MINIMUM GUIDELINES FOR THE DEMOLITION OF EXISTING SITE FEATURES. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE REMOVAL OF ALL BUILDINGS, PAVEMENT, CONCRETE, CURBING, SIGNS, POLES, UTILITIES, FENCES, VEGETATION AND OTHER EXISTING FEATURES AS NECESSARY TO FULLY CONSTRUCT THE PROJECT.
- 22. SEE SHEET D-6 FOR LEGEND.

133 Court Street Portsmouth, NH 03801 (603) 433-2335 www.altus-eng.com

NOT FOR CONSTRUCTION

AUGUST 23, 2021

TAC

BY DATE EBS 08/03/2 EBS 08/23/2

DRAWN BY: APPROVED BY: ___ 5161-SITE.dwg DRAWING FILE:

 $22" \times 34" - 1" = 30"$ $11" \times 17" - 1" = 60"$

NAVEESHA HOSPITALITY, LLC

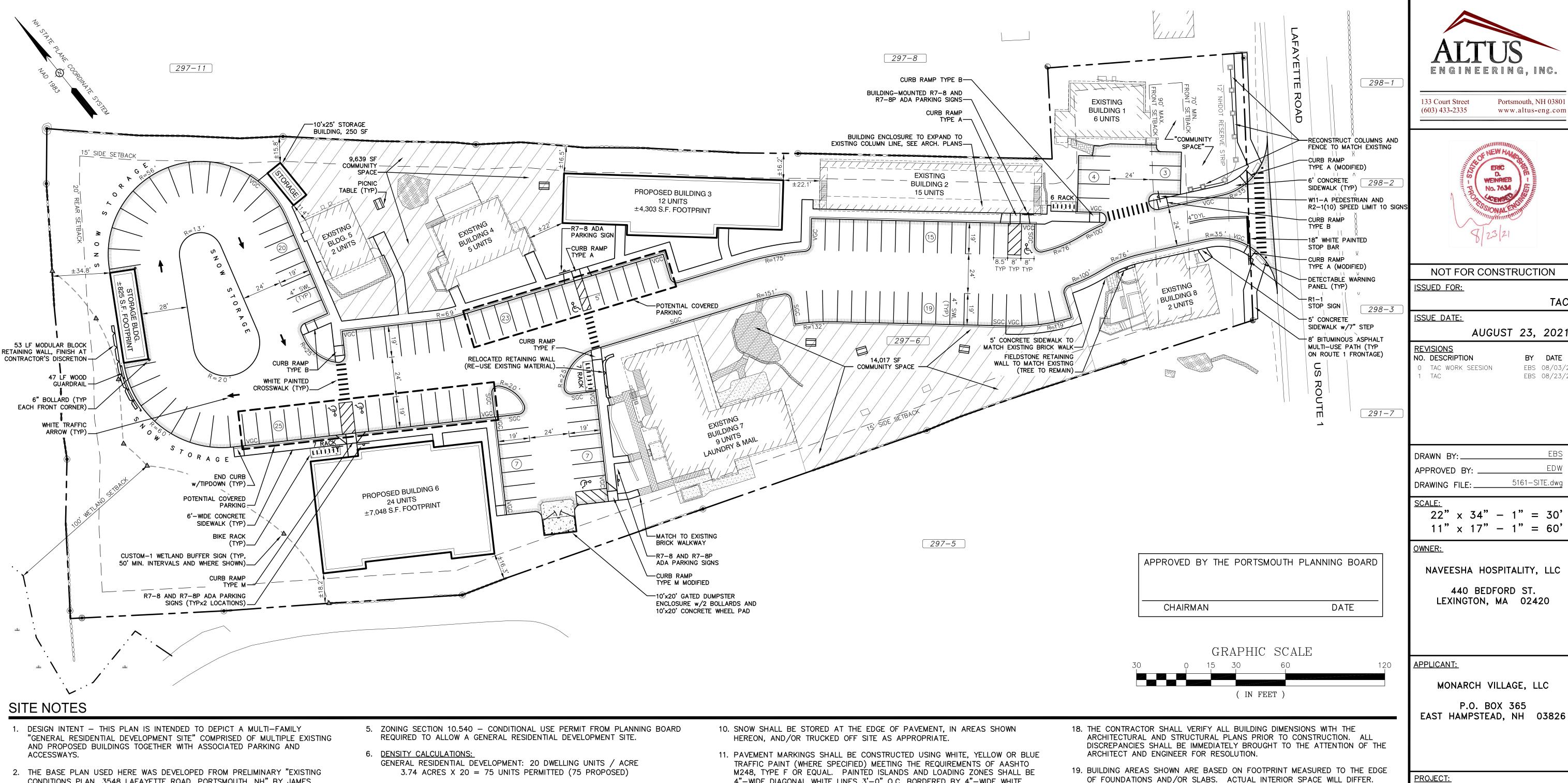
440 BEDFORD ST. LEXINGTON, MA 02420

MONARCH VILLAGE, LLC

P.O. BOX 365

EAST HAMPSTEAD, NH 03826

PROJECT:


MONARCH **VILLAGE**

TAX MAP 297, LOT 6

3548 LAFAYETTE ROAD PORTSMOUTH, NH 03801

DEMOLITION PLAN

SHEET NUMBER:

- CONDITIONS PLAN, 3548 LAFAYETTE ROAD, PORTSMOUTH, NH" BY JAMES VERRA AND ASSOCIATES, INC., NOT YET DATED.
- 3. ZONE: G1 (GATEWAY 1)
- 4. <u>DIMENSIONAL REQUIREMENTS:</u>

MIN. LOT AREA: 10,000 S.F. (0.23 ACRE) ON DEVELOPMENT SITE ±162,970 S.F. (±3.74 AC.) PROVIDED 100' (ON LAFAYETTE ROAD) (161.55' EXISTING) MIN. STREET FRONTAGE: MIN. LOT DEPTH: 70' MIN./90' MAX. (FROM LAFAYETTE ROAD CL) FRONT SETBACK: SIDE SETBACK: REAR SETBACK:

50' (OR FOUR STORIES) MAX. BUILDING HEIGHT:

MAX. BUILDING LENGTH: 200'

MAX. BUILDING FOOTPRINT: N/A MAX. BUILDING COVERAGE: 50% (16.7%/±27,214 S.F. PROPOSED) **BUILDING STEPBACK:** N/A (ROW > 60') BLDG FACADE ORIENTATION: PARALLEL TO FRONT LOT LINE FRONT LOT LINE BUILDOUT: 50% (34.3%/55.4' EXISTING)

DWELLING DENSITY: PERIMETER BUFFER: MIN. COMMUNITY SPACE:

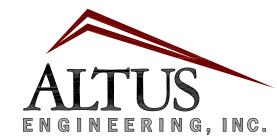
MIN. OPEN SPACE:

20 UNITS/ACRE (GENERAL RESIDENTIAL) DWELLING UNITS PER BLDG: 24 MAX. (APARTMENT BUILDING) 75' FROM RES, MIXED RES, 4-L1 DIST. (N/A) 10% (14.5%/±23,656 S.F. PROVIDED) 20% (44.2%/±71,987 S.F. PROPOSED)

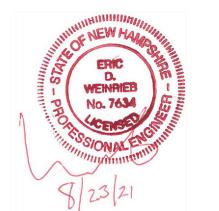
- 7. UNIT COMPOSITION: 18 STUDIO (RENOVATED) 15 ONE BEDROOM (RENOVATED)
 - 3 TWO BEDROOM (RENOVATED) 36 TWO BEDROOM (NEW) 3 THREE BEDROOM (RENOVATED) 75 TOTAL UNITS
- 8. PARKING REQUIREMENTS: DWELLING UNITS: 1.3 SPACES PER DWELLING UNIT OVER 750 S.F.

75 UNITS \times 1.3 = 98 SPACES REQUIRED VISITOR PARKING: 1 SPACE PER 5 DWELLING UNITS 75 UNITS / 5 = 15 SPACES REQUIRED TOTAL PARKING REQUIRED: 113 SPACES

TOTAL PARKING PROVIDED: 123 SPACES (10 SPACE/8.8% SURPLUS)


9. THE FOLLOWING VARIANCES FROM THE PORTSMOUTH ZONING ORDINANCE WERE GRANTED ON JUNE 15, 2021:

SECTION 10.5B53.10 — TO ALLOW NEW BUILDINGS TO BE CONSTRUCTED OUTSIDE THE REQUIRED FRONT BUILDING SETBACK WHERE THE MINIMUM REQUIRED FRONT BUILDOUT IS NOT MET (50% REQUIRED, 34.3% PROVIDED).


SECTION 10.5B22.40 - TO ALLOW NEW BUILDINGS TO BE CONSTRUCTED OUTSIDE THE MINIMUM AND MAXIMUM SETBACKS FROM THE CENTERLINE OF LAFAYETTE ROAD.

- 4"-WIDE DIAGONAL WHITE LINES 3'-0" O.C. BORDERED BY 4"-WIDE WHITE LINES. PARKING STALLS SHALL BE SEPARATED BY 4"-WIDE WHITE LINES. SEE DETAILS FOR HANDICAP SYMBOLS, SIGNS AND SIGN DETAILS.
- 12. PAVEMENT MARKINGS AND SIGNS SHALL CONFORM TO THE REQUIREMENTS OF THE "MANUAL ON UNIFORM TRAFFIC DEVICES," "STANDARD ALPHABETS FOR HIGHWAY SIGNS AND PAVEMENT MARKINGS" AND THE AMERICANS WITH DISABILITIES ACT (ADA), LATEST EDITIONS.
- 13. ALL CONSTRUCTION SHALL MEET THE MINIMUM STANDARDS OF THE CITY OF PORTSMOUTH & NHDOT'S STANDARD SPECIFICATION FOR ROAD & BRIDGE CONSTRUCTION, LATEST EDITIONS. THE MORE STRINGENT SPECIFICATION SHALL GOVERN.
- 14. CLEAN AND COAT VERTICAL FACE OF EXISTING PAVEMENT AT SAWCUT LINES WITH RS-1 IMMEDIATELY PRIOR TO PLACING NEW BITUMINOUS CONCRETE.
- 15. ALL BONDS AND FEES SHALL BE PAID/POSTED PRIOR TO INITIATING CONSTRUCTION.
- 16. THE CONTRACTOR SHALL VERIFY ALL BENCHMARKS AND TOPOGRAPHY IN THE FIELD PRIOR TO CONSTRUCTION.
- 17. UNLESS OTHERWISE NOTED, ALL NEW CURBING SHALL BE VERTICAL GRANITE WITH A MINIMUM RADIUS OF 4'.

- OF FOUNDATIONS AND/OR SLABS. ACTUAL INTERIOR SPACE WILL DIFFER.
- 20. ALTUS ENGINEERING, INC. MAKES NO WARRANTY REGARDING THE ADA COMPLIANCE OF ANY EXISTING BUILDINGS OR SITE ELEMENTS THAT ARE SCHEDULED TO REMAIN.
- 21. ALL CONDITIONS ON THIS PLAN SHALL REMAIN IN EFFECT IN PERPETUITY PURSUANT TO THE REQUIREMENTS OF THE SITE PLAN REVIEW REGULATIONS.
- 22. ALL IMPROVEMENTS SHOWN ON THIS SITE PLAN SHALL BE CONSTRUCTED AND MAINTAINED IN ACCORDANCE WITH THE PLAN BY THE PROPERTY OWNER AND ALL FUTURE PROPERTY OWNERS. NO CHANGES SHALL BE MADE TO THIS SITE PLAN WITHOUT THE EXPRESS APPROVAL OF THE PORTSMOUTH PLANNING
- 23. THIS SITE PLAN SHALL BE RECORDED IN THE ROCKINGHAM COUNTY REGISTRY OF DEEDS.
- 24. SITEWORK CONTRACTOR SHALL PREPARE A STAMPED AS-BUILT SITE PLAN STAMPED BY A LICENSED LAND SURVEYOR (LLS) & PROVIDE A DIGITAL (CAD FORMAT) COPY FOR THE CITY'S G.I.S. DATA BASE.
- 25. STREET/MAILING ADDRESSES FOR EACH APARTMENT SHALL BE DETERMINED BY PORTSMOUTH FIRE DEPARTMENT & DPW.
- 26. SEE SHEET D-6 FOR LEGEND.

Portsmouth, NH 03801 133 Court Street (603) 433-2335 www.altus-eng.com

NOT FOR CONSTRUCTION

AUGUST 23, 2021

TAC

NO. DESCRIPTION BY DATE O TAC WORK SEESION EBS 08/03/2 EBS 08/23/2

DRAWN BY: APPROVED BY: ___ 5161-SITE.dwg DRAWING FILE:.

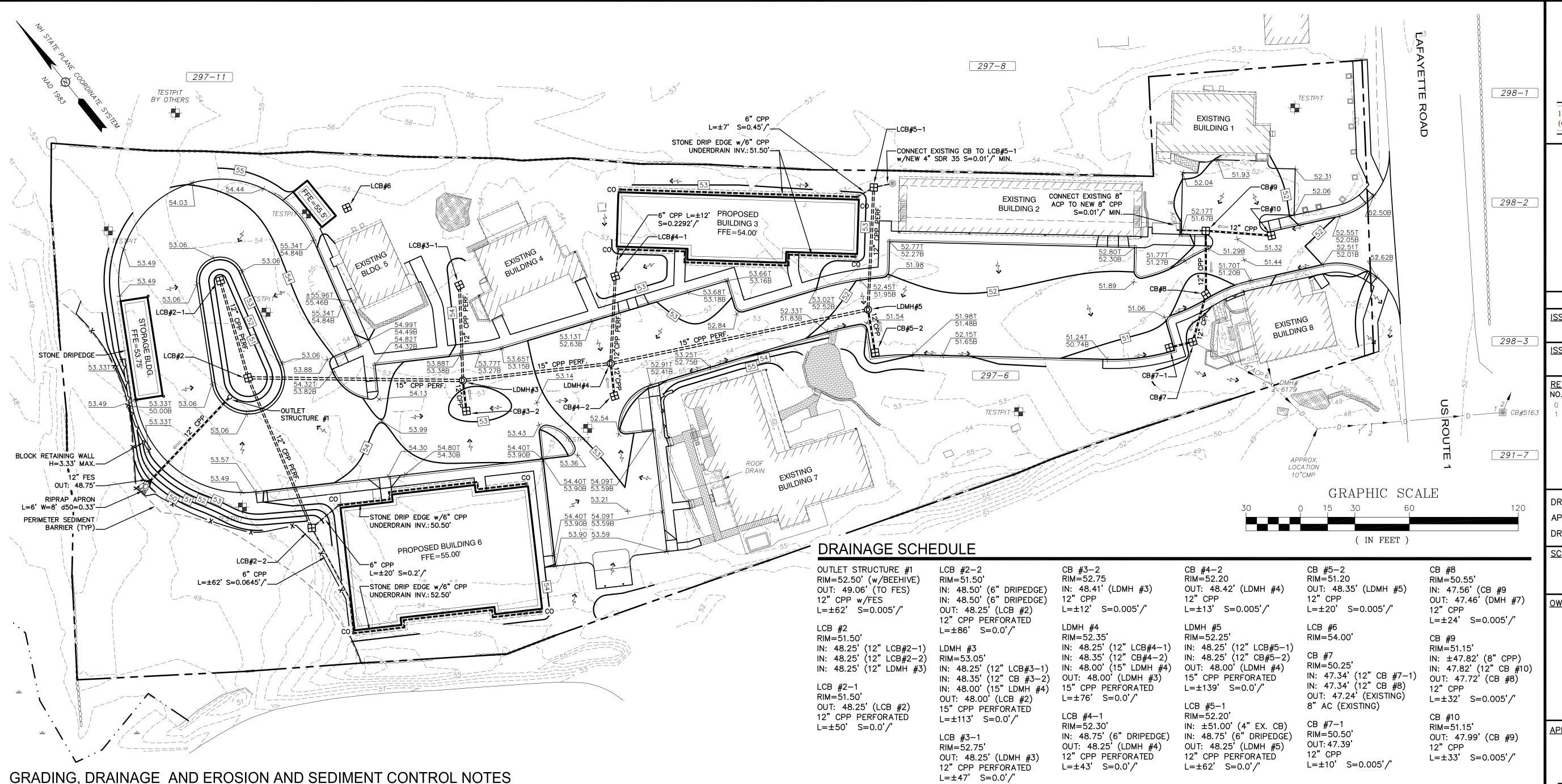
 $22" \times 34" - 1" = 30"$ $11" \times 17" - 1" = 60"$

NAVEESHA HOSPITALITY, LLC

440 BEDFORD ST. LEXINGTON, MA 02420

MONARCH VILLAGE, LLC

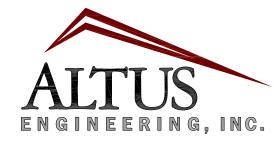
P.O. BOX 365


MONARCH **VILLAGE**

TAX MAP 297, LOT 6

3548 LAFAYETTE ROAD PORTSMOUTH, NH 03801

SITE PLAN


SHEET NUMBER:

- 1. DO NOT BEGIN CONSTRUCTION UNTIL ALL STATE AND LOCAL PERMITS HAVE BEEN APPLIED FOR AND RECEIVED.
- 2. CONTRACTOR SHALL OBTAIN A "DIGSAFE" NUMBER AT LEAST 72 HOURS PRIOR TO COMMENCING CONSTRUCTION.
- 3. PROJECT SUBJECT TO EPA NPDES PHASE II. NOI, SWPPP AND MINIMUM WEEKLY INSPECTIONS REQUIRED. CONTRACTOR SHALL FILE NOI WITH EPA 2 WEEKS PRIOR TO CONSTRUCTION
- 4. ALL CONSTRUCTION SHALL MEET THE MINIMUM CONSTRUCTION STANDARDS OF THE CITY OF PORTSMOUTH AND NHDOT STANDARD SPECIFICATIONS FOR ROAD AND BRIDGE CONSTRUCTION, LATEST EDITION. THE MORE STRINGENT SPECIFICATION SHALL GOVERN.
- 5. ALL BENCHMARKS AND TOPOGRAPHY SHALL BE FIELD VERIFIED BY THE CONTRACTOR PRIOR TO INITIATING CONSTRUCTION.
- 6. UNLESS OTHERWISE AGREED IN WRITING, THE CONTRACTOR SHALL BE RESPONSIBLE FOR ESTABLISHING AND MAINTAINING TEMPORARY BENCHMARKS (TBMS) AND PERFORMING ALL CONSTRUCTION SURVEY LAYOUT.
- 7. PRIOR TO CONSTRUCTION, FIELD VERIFY JUNCTIONS, LOCATIONS AND ELEVATIONS/INVERTS OF ALL EXISTING STORMWATER AND UTILITY LINES. PRESERVE AND PROTECT LINES TO BE RETAINED.
- 8. PERIMETER SEDIMENT CONTROLS AND CULVERT AND CATCH BASIN INLET PROTECTION MEASURES SHALL BE INSTALLED AFTER TREE CLEARING OPERATIONS HAVE CEASED AND BEFORE ANY STUMPING, GRUBBING OR OTHER EARTH DISTURBANCE.
- 9. GRIND STUMPS AND REUSE GRINDINGS FOR EROSION CONTROL WHERE POSSIBLE. NO STUMPS SHALL BE BURIED ON SITE.

- 10. TEMPORARY INLET PROTECTION MEASURES SHALL BE INSTALLED IN ALL CATCH BASINS WITHIN 100' OF THE PROJECT SITE WHEN SITE WORK WITHIN CONTRIBUTING AREAS IS ACTIVE OR SAID AREAS HAVE NOT BEEN STABILIZED.
- 11. NO EARTHWORK SHALL COMMENCE UNTIL ALL APPROPRIATE SEDIMENT AND EROSION CONTROL MEASURES HAVE BEEN INSTALLED. ALL SEDIMENT AND EROSION CONTROL MEASURES SHALL BE PROPERLY MAINTAINED IN GOOD WORKING ORDER FOR THE DURATION OF CONSTRUCTION AND THE SITE IS STABILIZED.
- 12. ALL EROSION AND SEDIMENT CONTROL MEASURES SHALL BE INSTALLED IN ACCORDANCE WITH THE DESIGN STANDARDS AND SPECIFICATIONS SET FORTH BY THE NEW HAMPSHIRE DEPARTMENT OF ENVIRONMENTAL SERVICES.
- 13. CONTRACTOR SHALL CONTROL DUST BY SPRAYING WATER, SWEEPING PAVED SURFACES, PROVIDING TEMPORARY VEGETATION, AND/OR MULCHING EXPOSED AREAS AND STOCKPILES.
- 14. CONTRACTOR SHALL TAKE WHATEVER MEANS NECESSARY TO PREVENT EROSION, PREVENT SEDIMENT FROM LEAVING THE SITE AND/OR ENTERING WETLANDS AND ENSURE PERMANENT SOIL STABILIZATION.
- 15. SEE DETAIL SHEETS FOR PERTINENT SEDIMENT AND EROSION CONTROL DETAILS AND ADDITIONAL NOTES.
- 16. DRAINAGE PIPE SHALL BE CORRUGATED POLYETHYLENE PIPE (CPP), TYPE ADS N-12 OR HANCOR H1-Q, OR PVC SDR 35 WHERE SPECIFIED. ALL FLARED END SECTIONS SHALL BE METAL.
- 17. ALL ROOF DRAIN RISERS SHALL BE LOCATED IN COORDINATION WITH THE ARCHITECTURAL PLANS TO MATCH GUTTER DOWNSPOUTS. RISERS SHALL BE SET TO FINISH GRADE PLUS 1' (MIN.).
- 18. PROTECTION OF SUBGRADE: THE CONTRACTOR SHALL BE REQUIRED TO MAINTAIN STABLE, DEWATERED SUBGRADES FOR FOUNDATIONS, PAVEMENT AREAS, UTILITY TRENCHES, AND OTHER AREAS DURING CONSTRUCTION. SUBGRADE DISTURBANCE MAY BE INFLUENCED BY EXCAVATION METHODS, MOISTURE, PRECIPITATION, GROUNDWATER CONTROL, AND CONSTRUCTION ACTIVITIES. THE CONTRACTOR SHALL TAKE PRECAUTIONS TO PREVENT SUBGRADE DISTURBANCE. SUCH PRECAUTIONS MAY INCLUDE DIVERTING STORMWATER RUNOFF AWAY FROM CONSTRUCTION AREAS, REDUCING TRAFFIC IN SENSITIVE AREAS, AND MAINTAINING AN EFFECTIVE DEWATERING PROGRAM. SOILS EXHIBITING HEAVING OR INSTABILITY SHALL BE OVER EXCAVATED TO MORE COMPETENT BEARING SOIL AND REPLACED WITH FREE DRAINING STRUCTURAL FILL. IF THE EARTHWORK IS PERFORMED DURING FREEZING WEATHER, EXPOSED SUBGRADES ARE SUSCEPTIBLE TO FROST. NO FILL OR UTILITIES SHALL BE PLACED ON FROZEN GROUND. THIS WILL LIKELY REQUIRE REMOVAL OF A FROZEN SOIL CRUST AT THE COMMENCEMENT OF EACH DAY'S OPERATIONS. THE FINAL SUBGRADE ELEVATION WOULD ALSO REQUIRE AN APPROPRIATE DEGREE OF INSULATION AGAINST FREEZING.
- 19. IF SUITABLE, EXCAVATED MATERIALS SHALL BE PLACED AS FILL WITHIN UPLAND AREAS ONLY AND SHALL NOT BE PLACED WITHIN WETLANDS. PLACEMENT OF BORROW MATERIALS SHALL BE PERFORMED IN A MANNER THAT PREVENTS LONG TERM DIFFERENTIAL SETTLEMENT. EXCESSIVELY WET MATERIALS SHALL BE STOCKPILED AND ALLOWED TO DRAIN BEFORE PLACEMENT. FROZEN MATERIAL SHALL NOT BE USED FOR CONSTRUCTION.
- 20. ALL CATCH BASIN, MANHOLE AND OTHER DRAINAGE RIMS SHALL BE SET FLUSH WITH OR NO LESS THAN 0.1' BELOW FINISH GRADE. ANY RIM ABOVE SURROUNDING FINISH GRADE SHALL NOT BE ACCEPTED.
- 21. ALL DISTURBED AREAS NOT TO BE PAVED OR OTHERWISE TREATED SHALL RECEIVE SIX (6") INCHES OF LOAM, LIMESTONE, FERTILIZER, SEED, AND MULCH USING APPROPRIATE SOIL STABILIZATION TECHNIQUES. SEE DETAILS FOR ADDITIONAL INFORMATION.

- 22. ALL SPOT GRADES ARE AT FINISH GRADE AND BOTTOM OF CURB WHERE APPLICABLE.
- 23. IN ORDER TO PROVIDE VISUAL CLARITY ON THE PLANS, DRAINAGE AND OTHER UTILITY STRUCTURES MAY NOT BE DRAWN TO SCALE. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE PROPER SIZING AND LOCATION OF ALL STRUCTURES AND IS DIRECTED TO RESOLVE ANY POTENTIAL DISCREPANCY WITH THE ENGINEER PRIOR TO CONSTRUCTION.
- 24. ALL SWALES, STORMWATER PONDS AND THEIR CONTRIBUTING AREAS SHALL BE STABILIZED PRIOR TO DIRECTING RUNOFF TO THEM.
- 25. UPON COMPLETION OF CONSTRUCTION, ALL DRAINAGE INFRASTRUCTURE SHALL BE CLEANED OF ALL DEBRIS AND SEDIMENT.
- 26. UPON COMPLETION OF CONSTRUCTION, ALL TEMPORARY EROSION AND SEDIMENT CONTROLS SHALL BE REMOVED AND ANY AREAS DISTURBED BY THE REMOVAL SMOOTHED AND REVEGETATED.
- 27. TOTAL AREA OF DISTURBANCE = $\pm 94,225$ S.F., NHDES ALTERATION OF TERRAIN PERMIT NOT REQUIRED.
- 28. AREA OF DISTURBANCE EXCEEDS 43,560 S.F., COVERAGE UNDER EPA NPDES PHASE II CONSTRUCTION GENERAL PERMIT REQUIRED, NOI(S) TO BE FILED BY CONTRACTOR. SWPPP AND RELATED INSPECTIONS REQUIRED.
- 29. SEE SHEET D-6 FOR LEGEND.

133 Court Street Portsmouth, NH 03801 (603) 433-2335 www.altus-eng.com

NOT FOR CONSTRUCTION

ISSUED FOR: TAC

ISSUE DATE:

AUGUST 23, 2021

REVISIONS
NO. DESCRIPTION

O TAC WORK SEESION
1 TAC

BY DATE

EBS 08/03/21

EBS 08/23/21

DRAWN BY: ______EBS

APPROVED BY: _____EDW

DRAWING FILE: ____5161-SITE.dwg

SCALE:

22" × 34" - 1" = 30'

11" × 17" - 1" = 60'

OWNER:

NAVEESHA HOSPITALITY, LLC

440 BEDFORD ST. LEXINGTON, MA 02420

APPLICANT:

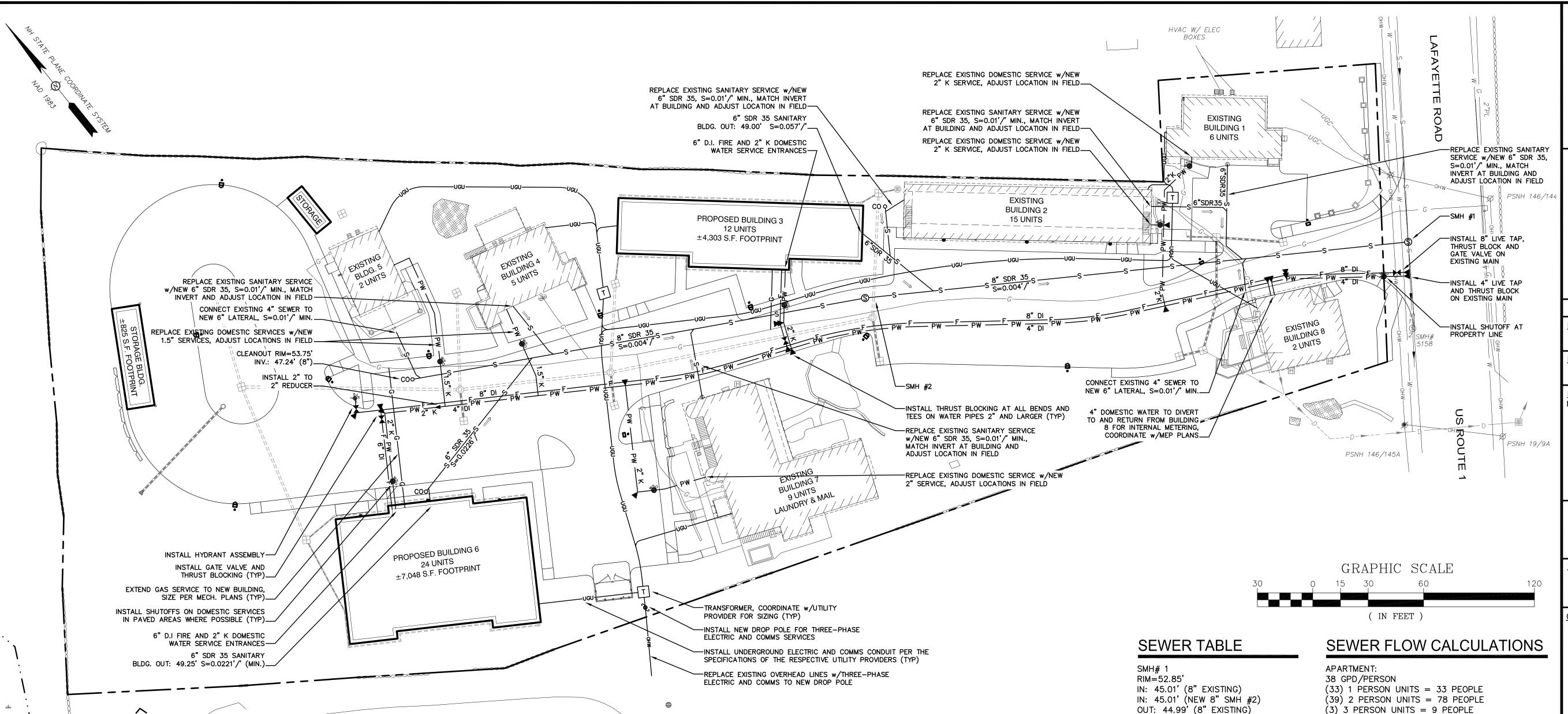
MONARCH VILLAGE, LLC

P.O. BOX 365 EAST HAMPSTEAD, NH 03826

PROJECT:

MONARCH VILLAGE

TAX MAP 297, LOT 6


3548 LAFAYETTE ROAD PORTSMOUTH, NH 03801

TITLE:

STORMWATER
MANAGEMENT PLAN

SHEET NUMBER:

C-3

UTILITY NOTES

- 1. THE LOCATION OF ALL EXISTING UNDERGROUND UTILITIES SHOWN HEREON ARE APPROXIMATE AND ARE BASED UPON THE FIELD LOCATION OF ALL VISIBLE STRUCTURES (IE. CATCH BASINS, MANHOLES, WATER GATES, ETC.) AND INFORMATION COMPILED FROM PLANS PROVIDED BY UTILITY PROVIDERS AND GOVERNMENTAL AGENCIES. AS SUCH, THEY ARE NOT INCLUSIVE AS OTHER UTILITIES AND UNDERGROUND STRUCTURES THAT ARE NOT SHOWN ON THE PLANS MAY EXIST. THE ENGINEER, SURVEYOR AND OWNER ACCEPT NO RESPONSIBILITY FOR POTENTIAL INACCURACIES IN THE PLAN AND/OR UNFORESEEN CONDITIONS. THE CONTRACTOR SHALL NOTIFY, IN WRITING, SAID AGENCIES, UTILITY PROVIDERS, CITY OF PORTSMOUTH DPW AND OWNER'S AUTHORIZED REPRESENTATIVE AND CALL DIG SAFE AT 1 (800) DIG—SAFE AT LEAST SEVENTY—TWO (72) HOURS PRIOR TO ANY EXCAVATION WORK.
- 2. PRIOR TO CONSTRUCTION, IT IS THE CONTRACTOR'S RESPONSIBILITY TO LOCATE AND FIELD VERIFY JUNCTIONS, LOCATIONS AND ELEVATIONS/INVERTS OF ALL EXISTING AND PROPOSED STORMWATER AND UTILITY LINES. CONFLICTS SHALL BE ANTICIPATED AND ALL EXISTING LINES TO BE RETAINED SHALL BE PROTECTED. ANY DAMAGE DONE TO EXISTING UTILITIES SHALL BE REPAIRED AND, IF NECESSARY, EXISTING UTILITIES SHALL BE RELOCATED AT NO EXTRA COST TO THE OWNER. ALL CONFLICTS SHALL BE RESOLVED WITH THE INVOLVEMENT OF THE ENGINEER, DPW AND APPROPRIATE UTILITIES.
- 3. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE POSTING OF ALL BONDS AND PAYMENT OF ALL TAP, TIE—IN AND CONNECTION FEES.
- 4. ALL ROAD/LANE CLOSURES OR OTHER TRAFFIC INTERRUPTIONS SHALL BE COORDINATED WITH NHDOT, THE PORTSMOUTH POLICE DEPARTMENT AND DPW AT LEAST TWO WEEKS PRIOR TO COMMENCING RELATED CONSTRUCTION.
- 5. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL TRENCHING, BEDDING, BACKFILL & COMPACTION FOR ALL UTILITY TRENCHING IN ADDITION TO ALL CONDUIT INSTALLATION AND COORDINATION OF ALL REQUIRED INSPECTIONS.

- ALL TRENCHING, PIPE LAYING AND BACKFILLING SHALL CONFORM TO FEDERAL OSHA AND CITY REGULATIONS.
- 7. ALL CONSTRUCTION SHALL MEET THE MINIMUM CONSTRUCTION STANDARDS OF THE CITY OF PORTSMOUTH AND NHDOT STANDARD SPECIFICATIONS FOR ROADS AND BRIDGES, LATEST EDITION. THE MORE STRINGENT SPECIFICATION SHALL GOVERN.
- 8. SEE ARCHITECTURAL/MECHANICAL DRAWINGS FOR EXACT LOCATIONS & ELEVATIONS OF UTILITY CONNECTIONS AT BUILDING. COORDINATE ALL WORK WITHIN FIVE (5) FEET OF BUILDINGS WITH BUILDING CONTRACTOR AND ARCHITECTURAL/MECHANICAL DRAWINGS. ALL CONFLICTS AND DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF THE ENGINEER IMMEDIATELY AND PRIOR TO COMMENCING RELATED WORK.
- 9. FINAL UTILITY LOCATIONS TO BE COORDINATED BETWEEN THE ARCHITECT, CONTRACTOR, APPROPRIATE UTILITY COMPANIES AND THE PORTSMOUTH DPW.
- 10. UTILITY PROVIDERS AND CONTACTS:
- WATER & SEWER: PORTSMOUTH DPW, JIM TOW, (603) 427—1530.
- GAS: UNITIL, DAVID BEAULIEU, (603) 294-5144.
- TELECOMMUNICATIONS: CONSOLIDATED, JOE CONSIDINE, (603) 427-5525.
 CABLE: COMCAST, MIKE COLLINS, (603) 679-5695, EXT. 1037.
 ELECTRICAL: EVERSOURCE, MICHAEL BUSBY, (603) 332-4227, EXT.

5555334. ALL ELECTRIC CONDUIT INSTALLATION SHALL BE INSPECTED BY

EVERSOURCE PRIOR TO BACKFILL, 48-HOUR MINIMUM NOTICE REQUIRED.

- 11. DETECTABLE WARNING TAPE SHALL BE PLACED OVER THE ENTIRE LENGTH OF ALL BURIED UTILITIES, COLORS PER THE RESPECTIVE UTILITY PROVIDERS.
- 12. CONTRACTOR TO PROVIDE BOLLARDS AT SERVICE ENTRANCES PER THE SPECIFICATIONS OF THE RESPECTIVE UTILITY PROVIDERS.

- 13. ALL WATER MAIN AND SERVICE INSTALLATIONS SHALL BE CONSTRUCTED AND TESTED PER PORTSMOUTH DPW STANDARDS AND SPECIFICATIONS. ALL OTHER UTILITIES SHALL BE TO THE STANDARDS AND SPECIFICATIONS OF THE RESPECTIVE UTILITY PROVIDERS.
- 14. WHERE WATER LINES CROSS, RUN ADJACENT TO OR ARE WITHIN 5' OF STORM DRAINAGE PIPES OR STRUCTURES, 2"-THICK CLOSED CELL RIGID BOARD INSULATION SHALL BE INSTALLED FOR FROST PROTECTION.
- 15. PER PORTSMOUTH DPW SPECIFICATIONS, ALL NEW WATERLINES SHALL BE WRAPPED WITH A WATER TIGHT POLYETHYLENE WRAPPING FOR THEIR FULL LENGTH, ALL DOMESTIC WATER SERVICES SHALL BE PROVIDED WITH BACKFLOW PREVENTERS AND ALL JOINTS SHALL HAVE THREE (3) WEDGES PER JOINT.
- 16. WATER AND SANITARY SEWER LINES SHALL BE LOCATED AT LEAST 10' HORIZONTALLY FROM EACH OTHER. WHERE CROSSING, 18" MINIMUM VERTICAL CLEARANCE SHALL BE PROVIDED WITH WATER INSTALLED OVER SEWER.
- 17. SEE ARCHITECTURAL/MECHANICAL DRAWINGS FOR EXACT LOCATIONS & ELEVATIONS OF UTILITY CONNECTIONS AT BUILDINGS. COORDINATE ALL WORK WITHIN FIVE (5) FEET OF BUILDINGS WITH BUILDING CONTRACTOR AND ARCHITECTURAL/MECHANICAL DRAWINGS. ALL CONFLICTS AND DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF THE ENGINEER IMMEDIATELY PRIOR TO COMMENCING RELATED WORK.
- 18. FIRE ALARM PANELS SHALL BE MONITORED THROUGH A THIRD—PARTY SECURITY COMPANY. CONTRACTOR SHALL COORDINATE PANEL LOCATIONS AND INTERCONNECTIONS WITH CITY FIRE DEPT. AND ARCHITECT.
- 19. ALL MEANS, METHODS, MATERIALS AND INSTALLATION OF NEW SEWER LATERALS SHALL BE APPROVED AND WITNESSED BY PORTSMOUTH DPW PRIOR TO BACKFILLING.

20. APPLICANT SHALL HAVE A SITE SURVEY CONDUCTED BY A RADIO COMMUNICATIONS CARRIER APPROVED BY THE CITY'S COMMUNICATION DIVISION. THE RADIO COMMUNICATIONS CARRIER MUST BE FAMILIAR AND CONVERSANT WITH THE POLICE AND RADIO CONFIGURATION. IF THE SITE SURVEY INDICATES IT IS NECESSARY TO INSTALL A SIGNAL REPEATER EITHER ON OR NEAR THE PROPOSED PROJECT, THOSE COSTS SHALL BE THE RESPONSIBILITY OF THE PROPERTY OWNER. THE APPLICANT SHALL BE REQUIRED TO PAY FOR THE SITE SURVEY WHETHER OR NOT THE SURVEY INDICATES A REPEATER IS NECESSARY. THE OWNER SHALL COORDINATE WITH THE SUPERVISOR OF RADIO COMMUNICATIONS FOR THE CITY. THE SURVEY SHALL BE COMPLETED AND THE REPEATER, IF DETERMINED IT IS REQUIRED, SHALL BE INSTALLED PRIOR TO THE ISSUANCE OF CERTIFICATE OF OCCUPANCY.

RECOVERY", 5TH EDITION

 $120 \times 38 \text{ GPD/PERSON} = 4,560 \text{ GPD TOTAL}$

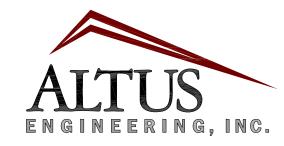
*AVERAGE DAILY PER CAPITA FLOW CALCULATED

FROM METCALF & EDDY/AECOM "WASTEWATER

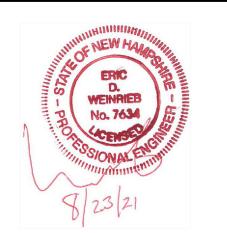
ENGINEERING TREATMENT AND RESOURCE

- 21. CONTRACTOR/OWNER SHALL PROVIDE DPW WITH DETAILS OF TEMPORARY & PERMANENT GROUNDWATER DEWATERING DESIGN IF NECESSARY.
- 22. THE APPLICANT OR ASSIGNS SHALL AGREE TO PAY FOR THE SERVICES OF A THIRD-PARTY OVERSIGHT ENGINEER, TO BE SELECTED BY THE CITY, TO MONITOR THE INSTALLATION OF UTILITIES INCLUDING SEWER, WATER AND DRAINAGE
- 23. THE APPLICANT SHALL ENTER INTO A MAINTENANCE AGREEMENT WITH THE PORTSMOUTH DPW FOR THE PROPOSED FIRE HYDRANT AND FLUSHING.
- 24. A HYDRANT FLOW TEST SHALL BE CONDUCTED EVERY FIVE YEARS IN COORDINATION WITH PORTSMOUTH DPW WATER DIVISION.
- 25. SITE SHALL BE SUBJECT TO A BLANKET EASEMENT FOR THE BENEFIT OF THE CITY OF PORTSMOUTH FOR THE PURPOSE OF WATER VALVE AND HYDRANT ACCESS AND WATER SYSTEM LEAK DETECTION.

26. SEE SHEET D-6 FOR LEGEND.


SMH #2 RIM=51.85'

8" SDR 35


IN: 46.55' (8" CLEANOUT)

OUT: 46.45' (TO SMH #1)

 $L=\pm 288'$ S=0.004'/

133 Court Street Portsmouth, NH 03801 (603) 433-2335 www.altus-eng.com

NOT FOR CONSTRUCTION

ISSUED FOR:

ISSUE DATE:

O TAC WORK SEESION

AUGUST 23, 2021

TAC

EBS 08/03/2

EBS 08/23/2

REVISIONS
NO. DESCRIPTION BY DATE

DRAWN BY: ______EBS

APPROVED BY: ______EDW

DRAWING FILE: _____5161-SITE.dwg

OWNER:

NAVEESHA HOSPITALITY, LLC

440 BEDFORD ST. LEXINGTON, MA 02420

APPLICANT:

MONARCH VILLAGE, LLC

P.O. BOX 365

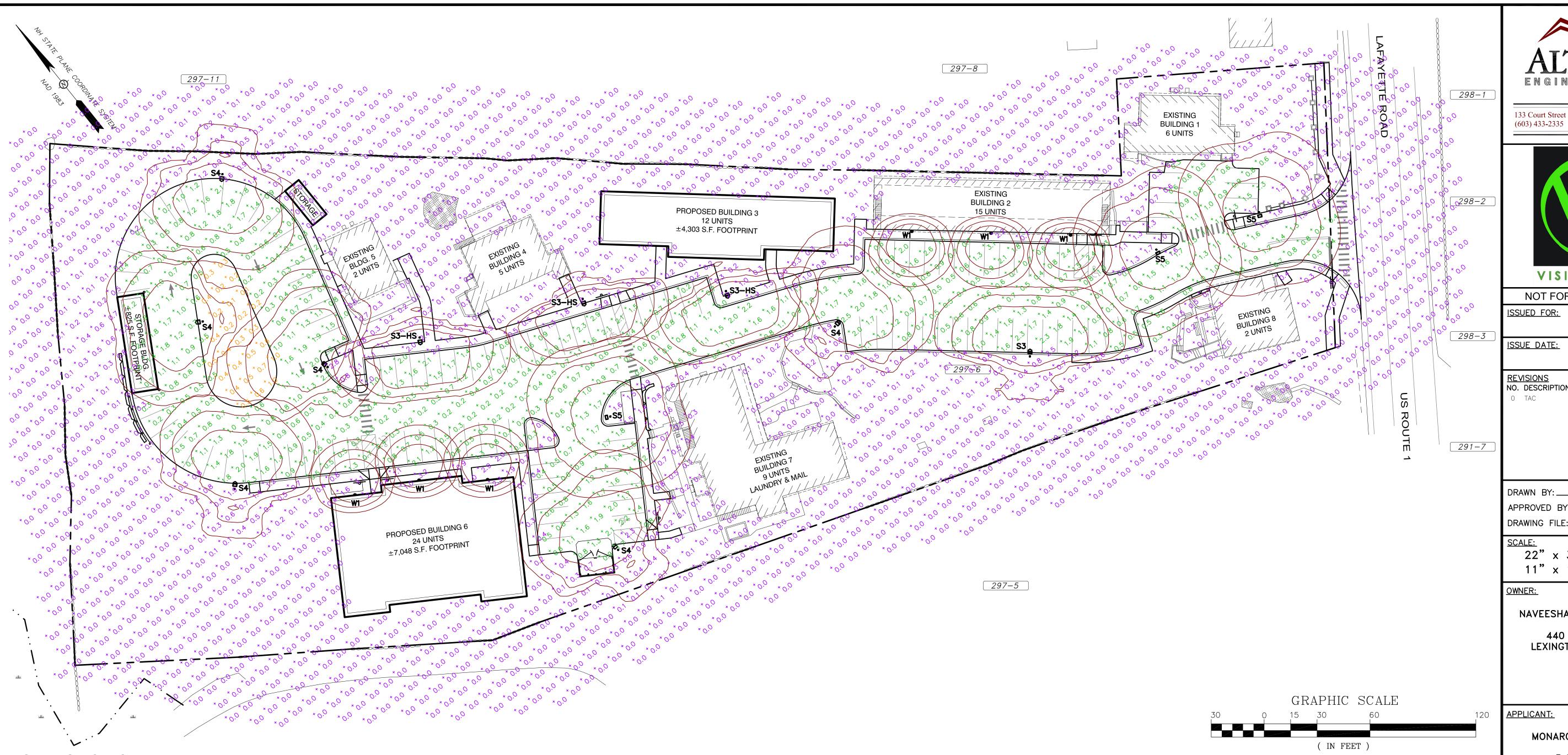
EAST HAMPSTEAD, NH 03826

PROJECT:

MONARCH VILLAGE

TAX MAP 297, LOT 6

3548 LAFAYETTE ROAD PORTSMOUTH, NH 03801


TTLE:

UTLITIES PLAN

SHEET NUMBER:

C-4

LIGHTING NOTES

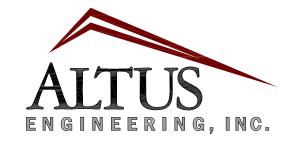
- 1. SITE ELECTRICAL CONTRACTOR SHALL COORDINATE LOCATION OF UNDERGROUND UTILITIES, AND DRAINAGE BEFORE INSTALLING POLE BASES.
- 2. DETECTABLE WARNING TAPE SHALL BE PLACED OVER THE ENTIRE LENGTH OF ALL BURIED UTILITIES, COLORS PER THE RESPECTIVE UTILITY PROVIDERS.
- 3. LIGHTING CONDUIT SHALL BE PVC SCH 40.
- 4. ALL LIGHTING MATERIALS AND WORKMANSHIP SHALL CONFORM TO THE NATIONAL ELECTRICAL CODE AND LOCAL REGULATIONS.
- 5. ALL LIGHTING FIXTURES SHALL BE FULL CUT-OFF AND 3000K COLOR TEMPERATURE SO AS TO BE DARK-SKY COMPLIANT.
- 6. CONTRACTOR SHALL COORDINATE WITH ARCHITECT AND BUILDING ELECTRICAL CONTRACTOR FOR ALL SITE ELECTRICAL WORK INCLUDING BUT NOT LIMITED TO ALL SERVICE ENTRANCES/EXITS, RISERS, CIRCUITRY, METERS, SUB-METERS,
- 7. COORDINATE WITH ARCHITECTURAL PLANS FOR ALL BUILDING-MOUNTED FIXTURES, TYPES, LOCATIONS AND WIRING.

- 8. LUMINAIRE DATA IS TESTED TO INDUSTRY STANDARDS UNDER LABORATORY CONDITIONS. OPERATING VOLTAGE AND NORMAL MANUFACTURING TOLERANCES OF LAMP BALLAST AND LUMINAIRE MAY AFFECT FIELD RESULTS.
- 9. THIS LIGHTING DESIGN IS BASED ON LIMITED INFORMATION PROVIDED BY VISIBLE LIGHT, INC., 24 STICKNEY TERRACE, SUITE 6, HAMPTON, NH 03842. FIELD DEVIATIONS MAY SIGNIFICANTLY AFFECT PREDICTED PERFORMANCE. PRIOR TO INSTALLATION, CRITICAL SITE INFORMATION (POLE LOCATIONS, ORIENTATION, MOUNTING HEIGHT, CIRCUITRY, ETC.) SHALL BE COORDINATED BETWEEN THE CONTRACTOR, ARCHITECT AND SPECIFIER.

Statistics

Description

Parking Lot


Outside of Parking

Island

Symbol

10. SEE DETAIL SHEETS FOR FIXTURE CUT SHEETS AND POLE BASE DETAIL.

E3						Schedule										
BLE						Symbol	Label	QTY	Manufacturer	Catalog Number	Description	Lamp	Filename	Lumens per Lamp	LLF	Distribution
0							S3	1	Lithonia Lighting	DSXO LED P2 30K T3M MVOLT SPA DDBXD with SSS 14 4C DM19AS DDBXD	DSX0 LED Area Fixture; mounted at 16ft (14ft pole on 2ft base)	LED	DSX0_LED_P2_ 30K_T3M_ MVOLT.ies	•	5416.359	TYPE III, MEDIUM, BUG RATING: B1 - U0 - G2
							S3- HS	3	99	DSXO LED P2 30K T3M MVOLT HS SPA DDBXD with SSS 14 4C DM19AS DDBXD	DSX0 LED Area Fixture with houseside shield; mounted at 16ft (14ft pole on 2ft base)	LED	DSX0_LED_P2_ 30K_T3M_ MVOLT_HS.ies	4389	4388.992	TYPE III, SHORT, BUG RATING: B1 - U0 - G1
							S4	6	Lithonia Lighting		DSX0 LED Area Fixture with houseside shield; mounted at 16ft (14ft pole on 2ft base)	LED	DSX0_LED_P2_ 30K_TFTM_ MVOLT.ies	5576		TYPE III, SHORT, BUG RATING: B1 - U0 - G2
Symbol	Avg	Max	Min	May (Min	Avg/Min		S5	3	Lithonia Lighting	DSXO LED P2 30K T5M MVOLT SPA DDBXD with SSS 14 4C DM19AS DDBXD	DSX0 LED Area Fixture; mounted at 18ft (14ft pole on 2ft base)	LED	DSX0_LED_P2_ 30K_T5M_ MVOLT.ies	5789		TYPE VS, BUG RATING: B3 - U0 - G1
	<u> </u>	1.0 fc		· ·	4.0:1			6	Lithonia	ARC1 LED P3 30K	ARC1 LED WITH P2	LED	ARC1_LED_P2	2035	2034.867	TYPE III,
		3.2 fc			N/A		W1		Lighting		PERFORMANCE PACKAGE; mounted at 14ft		_30K.ies			VERY SHORT, BUG RATING: B1 - U0 -
+	1.0 fc	3.1 fc	0.2 fc	15.5:1	5.0:1											GI C

www.altus-eng.com

NOT FOR CONSTRUCTION

AUGUST 23, 2021

TAC

NO. DESCRIPTION

BY DATE EBS 08/23/2

APPROVED BY: ___ 5161-SITE.dwg DRAWING FILE: _

 $22" \times 34" - 1" = 30"$ $11" \times 17" - 1" = 60"$

NAVEESHA HOSPITALITY, LLC 440 BEDFORD ST. LEXINGTON, MA 02420

MONARCH VILLAGE, LLC

P.O. BOX 365 EAST HAMPSTEAD, NH 03826

PROJECT:

MONARCH **VILLAGE**

TAX MAP 297, LOT 6

3548 LAFAYETTE ROAD PORTSMOUTH, NH 03801

LIGHTING PLAN

SHEET NUMBER:

C-6

SEDIMENT AND EROSION CONTROL NOTES

PROJECT NAME AND LOCATION

3548 LAFAYETTE ROAD PORTSMOUTH, NEW HAMPSHIRE TAX MAP 297 LOT 6

LATITUDE: 43°02'17" N LONGITUDE: 70°48'00" W

OWNER/APPLICANT: MONARCH VILLAGE, LLC P.O. BOX 365 EAST HAMPSTEAD, NH 03826

DESCRIPTION

The project consists of the conversion of an existing motel to long-term rental units and the construction of two new apartment buildings together with associated site improvements.

DISTURBED AREA

The total area to be disturbed for the development is $\pm 94,225$ S.F. (± 2.16 acres).

PROJECT PHASING

The proposed demolition, conversion and construction of buildings along with associated utilities will be completed in one phase.

NAME OF RECEIVING WATER

The site drains over land to unnamed wetlands tributary to Packer Boa & Berry's Brook.

SEQUENCE OF MAJOR ACTIVITIES

- 1. Install temporary erosion control measures including perimeter controls, stabilized construction entrance and inlet sediment filters as noted on the plan. All temporary erosion control measures shall be maintained in good working condition for the duration of the project.
- 2. Remove landscaping and trees, strip loam and stockpile. 3. Demolish existing site features, buildings, utilities, etc. as shown on Demolition Plan. 4. Construct building foundations.
- 5. Rough grade site including placement of borrow materials.
- Construct new buildings and associated improvements.
- 7. Construct drainage structures, culverts, utilities & pavement base course materials.
- 8. Install base course paving & curbing.
- 9. Install top course paving and sidewalks. 10. Loam (6" min) and seed on all disturbed areas not paved or otherwise stabilized.

- 12. When all construction activity is complete and site is stabilized, remove all temporary erosion control measures and any sediment that has been trapped by these devices.

TEMPORARY EROSION & SEDIMENT CONTROL AND STABILIZATION **PRACTICES**

All work shall be in accordance with state and local permits. Work shall conform to the practices described in the "New Hampshire Stormwater Manual, Volumes 1 - 3", issued December 2008, as amended. As indicated in the sequence of Major Activities, perimeter controls shall be installed prior to commencing any clearing or grading of the site. Structural controls shall be installed concurrently with the applicable activity. Once construction activity ceases permanently in an area and permanent measures are established, perimeter controls shall be removed.

During construction, runoff will be diverted around the site with stabilized channels where possible. Sheet runoff from the site shall be filtered through appropriate perimeter controls. All storm drain inlets shall be provided with inlet protection measures.

Temporary and permanent vegetation and mulching is an integral component of the erosion and sedimentation control plan. All areas shall be inspected and maintained until vegetative cover is established. These control measures are essential to erosion prevention and also reduce costly rework of graded and shaped areas.

Temporary vegetation shall be maintained in these areas until permanent seeding is applied. Additionally, erosion and sediment control measures shall be maintained until permanent vegetation is

INSTALLATION, MAINTENANCE AND INSPECTION PROCEDURES FOR TEMPORARY EROSION AND SEDIMENT CONTROL MEASURES

A. GENERAL

These are general inspection and maintenance practices that shall be used to implement the

- 1. The smallest practical portion of the site shall be denuded at one time.
- 2. All control measures shall be inspected at least once each week and following any storm event of 0.5 inches or greater.
- 3. All measures shall be maintained in good working order; if a repair is necessary, it will be initiated within 24 hours. 4. Built-up sediment shall be removed from perimeter barriers when it has reached one-third
- the height of the barrier or when "bulges" occur.
- 5. All diversion dikes shall be inspected and any breaches promptly repaired. 6. Temporary seeding and planting shall be inspected for bare spots, washouts, and unhealthy
- 7. The owner's authorized engineer shall inspect the site on a periodic basis to review compliance with the Plans.
- 8. An area shall be considered stable if one of the following has occurred:
- a. Base coarse gravels have been installed in areas to be paved;
- b. A minimum of 85% vegetated growth as been established;
- c. A minimum of 3 inches of non-erosive material such as stone of riprap has been installed: — or —
- d. Erosion control blankets have been properly installed. 9. The length of time of exposure of area disturbed during construction shall not exceed 45
- days.
- B. MULCHING

Mulch shall be used on highly erodible soils, on critically eroding areas, on areas where conservation of moisture will facilitate plant establishment, and where shown on the plans.

- 1. Timing In order for mulch to be effective, it must be in place prior to major storm events. There are two (2) types of standards which shall be used to assure this: a. Apply mulch prior to any storm event. This is applicable when working within 100 feet of wetlands. It will be necessary to closely monitor weather predictions, usually by contacting the National Weather Service in Concord, to have adequate warning of
- b. Required Mulching within a specified time period. The time period can range from 21 to 28 days of inactivity on a area, the length of time varying with site conditions. Professional judgment shall be used to evaluate the interaction of site conditions (soil erodibility, season of year, extent of disturbance, proximity to sensitive resources, etc.) and the potential impact of erosion on adjacent areas to choose an appropriate time restriction.
- 2. Guidelines for Winter Mulch Application -

Rate per 1,000 s.f. Hay or Straw

Wood Chips or

Bark Mulch

significant storms.

70 to 90 lbs.

460 to 920 lbs.

Used mostly with trees and shrubs.

<u>Use and Comments</u>

with plantings.

Must be dry and free

from mold. May be used

INSTALLATION, MAINTENANCE AND INSPECTION PROCEDURES FOR TEMPORARY EROSION AND SEDIMENT CONTROL MEASURES (CONTINUED)

Jute and Fibrous As per manufacturer Matting (Erosion Specifications Blanket

Crushed Stone Spread more than Effective in controlling 1/4" to 1-1/2" dia. 1/2" thick wind and water erosion.

2" thick (min)

* The organic matter content is between 80 and 100%, dry weight basis. * Particle size by weight is 100% passina a 6"screen and a minimum of 70 %, maximum of 85%, passing a 0.75" screen. *The organic portion needs to be fibrous and elongated. *Large portions of silts, clays or fine sands are not acceptable in the mix.

water courses and other Control

* Soluble salts content is less than 4.0 mmhos/cm *The pH should fall between 5.0 and 8.0.

Used in slope areas,

- 3. Maintenance All mulches must be inspected periodically, in particular after rainstorms, to check for rill erosion. If less than 90% of the soil surface is covered by mulch, additional mulch shall be immediately applied.
- C. PERMANENT SEEDING -

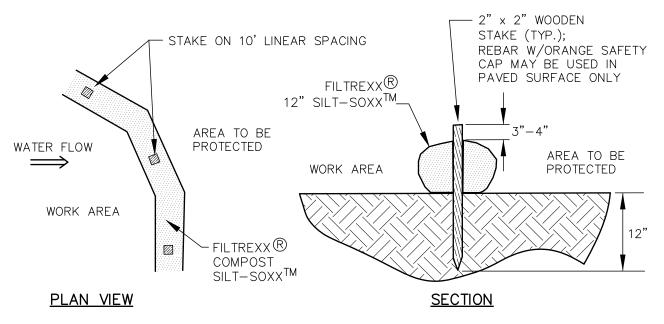
Erosion Control Mix

- 1. Bedding stones larger than $1\frac{1}{2}$, trash, roots, and other debris that will interfere with seeding and future maintenance of the area should be removed. Where feasible, the soil should be tilled to a depth of 5" to prepare a seedbed and mix fertilizer into the soil.
- 2. Fertilizer lime and fertilizer should be applied evenly over the area prior to or at the time of seeding and incorporated into the soil. Kinds and amounts of lime and organic fertilizer should be based on an evaluation of soil tests. When a soil test is not available, the following minimum amounts should be applied:

Agricultural Limestone @ 100 lbs. per 1,000 s.f. 10-20-20 organic fertilizer @ 12 lbs. per 1,000 s.f.

3. Seed Mixture (recommended):

Туре	Lbs. / Acre	Lbs. / 1,000
Tall Fescue Creeping Red Fescue	24 24	0.55 0.55
 Total	48	1.10

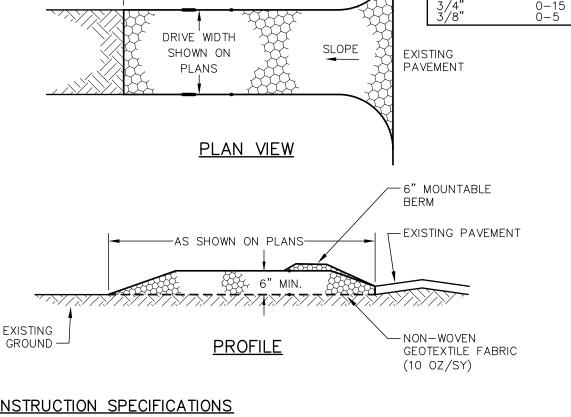

Seed Mixture (For slope embankments): Grass Seed: Provide fresh, clean, new-crop seed complying with tolerance for purity and germination established by Official Seed Analysts of North America. Provide seed mixture composed of grass species, proportions and minimum percentages of purity, germination, and maximum percentage of weed seed, as specified:

	Min.	Min.	Kg./Hectare
Type	Purity (%)	Germination (%) (Lbs/Acre)
Creeping Red Fescue (c)	96	85	45 (40)
Perennial Rye Grass (a)	98	90	35 (30)
Redtop	95	80	5 (5)
Alsike Clover	97	90(e)	5 (5)
			Total 90 (80)

- a. Ryegrass shall be a certified fine—textured variety such as Pennfine, Fiesta, Yorktown, Diplomat, or equal.
- b. Fescue varieties shall include Creeping Red and/or Hard Reliant, Scaldis, Koket, or
- 4. Sodding sodding is done where it is desirable to rapidly establish cover on a disturbed area. Sodding an area may be substituted for permanent seeding procedures anywhere on site. Bed preparation, fertilizing, and placement of sod shall be performed according to the S.C.S. Handbook. Sodding is recommended for steep sloped areas, areas immediately adjacent to sensitive water courses, easily erodible soils (fine sand/silt), etc.

WINTER CONSTRUCTION NOTES

- 1. All proposed vegetated areas which do not exhibit a minimum of 85% vegetative growth by October 15th, or which are disturbed after October 15th, shall be stabilized by seeding and installing erosion control blankets on slopes greater than 3:1, and elsewhere seeding and placing 3 to 4 tons of mulch per acre, secured with anchored netting. The installation of erosion control blankets or mulch and netting shall not occur over accumulated snow or on frozen ground and shall be completed in advance of thaw or spring melt events;
- 2. All ditches or swales which do not exhibit a minimum of 85% vegetative growth by October 15th, or which are disturbed after October 15th, shall be stabilized temporarily with stone or erosion control blankets appropriate for the design flow conditions; and
- 3. After November 15th, incomplete road or parking surfaces where work has stopped for the winter season shall be protected with a minimum of 3 inches of crushed gravel per NHDOT


. SILTSOXX MAY BY USED IN PLACE OF SILT FENCE OR OTHER SEDIMENT BARRIERS.

2. ALL MATERIAL TO MEET FILTREXX SPECIFICATIONS. 3. SILTSOXX COMPOST/SOIL/ROCK/SEED FILL MATERIAL SHALL BE ADJUSTED AS NECESSARY TO MEET THE

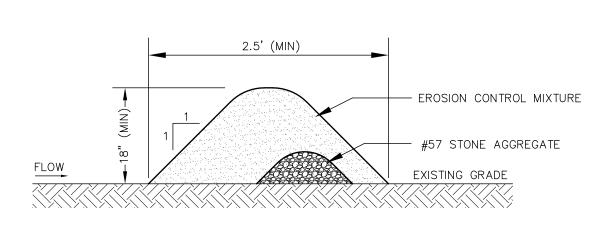
REQUIREMENTS OF THE SPECIFIC APPLICATION. 4. ALL SEDIMENT TRAPPED BY SILTSOXX SHALL BE DISPOSED OF PROPERLY.

TUBULAR SEDIMENT BARRIER

NOT TO SCALE

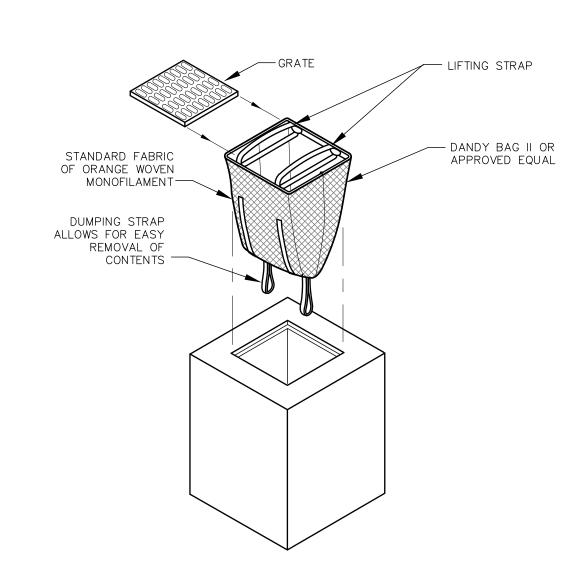
— AS SHOWN ON PLANS —

STONE GRADATION TABLE


BY WEIGHT

SIEVE SIZE

CONSTRUCTION SPECIFICATIONS

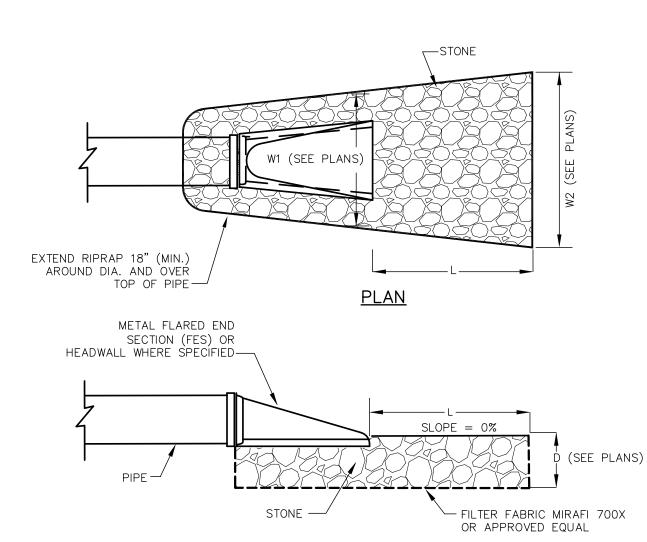

- 1. STONE SIZE NHDOT STANDARD STONE SIZE #4 SECTION 703 OF NHDOT STANDARD.
- 2. LENGTH DETAILED ON PLANS (50 FOOT MINIMUM).
- 3. <u>THICKNESS</u> SIX (6) INCHES (MINIMUM).
- 4. WIDTH FULL DRIVE WIDTH UNLESS OTHERWISE SPECIFIED.
- 5. <u>FILTER FABRIC</u> MIRAFI 600X OR EQUAL APPROVED BY ENGINEER.
- SURFACE WATER CONTROL ALL SURFACE WATER THAT IS FLOWING TO OR DIVERTED TOWARD THE CONSTRUCTION ENTRANCE SHALL BE PIPED BENEATH THE ENTRANCE. IF PIPING IS IMPRACTICAL, A BERM WITH 5:1 SLOPES THAT CAN BE CROSSED BY VEHICLES MAY BE SUBSTITUTED FOR THE PIPE.
- 7. MAINTENANCE THE ENTRANCE SHALL BE MAINTAINED IN A CONDITION WHICH WILL PREVENT $\overline{\mathsf{IRACKING}}$ OR $\overline{\mathsf{FLOWING}}$ OF SEDIMENT ONTO PUBLIC RIGHTS—OF—WAY. THIS WILL REQUIRE PERIODIC TOP DRESSING WITH ADDITIONAL STONE OR ADDITIONAL LENGTH AS CONDITIONS DEMAND AND REPAIR AND/OR CLEANOUT OF ANY MEASURES USED TO TRAP SEDIMENT. ALL SEDIMENT SPILLED, DROPPED, WASHED OR TRACKED ONTO PUBLIC RIGHTS-OF-WAY MUST BE REMOVED IMMEDIATELY.
- WHEELS SHALL BE CLEANED TO REMOVE MUD PRIOR TO ENTRANCE ONTO PUBLIC RIGHTS-OF-WAY. WHEN WASHING IS REQUIRED, IT SHALL BE DONE ON AN AREA STABILIZED WITH STONE WHICH DRAINS INTO AN APPROVED SEDIMENT TRAPPING DEVICE.
- 9. STABILIZED CONSTRUCTION EXITS SHALL BE INSTALLED AT ALL ENTRANCES TO PUBLIC RIGHTS-OF-WAY, AT LOCATIONS SHOWN ON THE PLANS, AND/OR WHERE AS DIRECTED BY THE

STABILIZED CONSTRUCTION EXIT NOT TO SCALE

- 1. ORGANIC FILTER BERMS MAY BE UTILIZED IN LIEU OF SILT FENCE OR OTHER SEDIMENT BARRIERS.
- 2. THE EROSION CONTROL MIXTURE USED IN FILTER BERMS SHALL BE A WELL-GRADED MIX OF PARTICLE SIZES THAT MAY CONTAIN ROCKS LESS THAN 4" IN DIAMETER, STUMP GRINDINGS, SHREDDED OR COMPOSTED BARK, AND/OR ACCEPTABLE MANUFACTURED PRODUCTS AND SHALL BE FREE OF REFUSE, PHYSICAL CONTAMINANTS AND MATERIAL TOXIC TO PLANT GROWTH. EROSION CONTROL MIXTURE SHALL MEET THE FOLLOWING STANDARDS:
- a) THE ORGANIC CONTENT SHALL BE 80-100% OF DRY WEIGHT.
- b) PARTICLE SIZE BY WEIGHT SHALL BE 100% PASSING A 6" SCREEN, AND 70-85% PASSING A 0.75" SCREEN.
- c) THE ORGANIC PORTION SHALL BE FIBROUS AND ELONGATED.
- d) LARGE PORTIONS OF SILTS, CLAYS, OR FINE SANDS SHALL NOT BE INCLUDED IN THE MIXTURE. e) SOLUBLE SALTS CONTENT SHALL BE >4.0mmhos/cm.
- f) THE pH SHALL BE BETWEEN 5.0 AND 8.0.
- 3. ORGANIC FILTER BERMS SHALL BE INSTALLED ALONG A RELATIVELY LEVEL CONTOUR. IT MAY BE NECESSARY TO CUT TALL GRASSES OR WOODY VEGETATION TO AVOID CREATING VOIDS AND BRIDGES THAT WOULD ENABLE FINES TO WASH UNDER THE BERM.
- 4. ON SLOPES LESS THAN 5%, OR AT THE BOTTOM OF SLOPES NO STEEPER THAN 3:1 AND UP TO 20' LONG, THE BERM SHALL BE A MINIMUM OF 12" HIGH (AS MEASURED ON THE UPHILL SIDE) AND A MINIMUM OF 36" WIDE. ON LONGER AND/OR STEEPER SLOPES, THE BERM SHALL BE TALLER AND WIDER TO ACCOMMODATE THE POTENTIAL FOR ADDITIONAL RUNOFF (MAXIMUM HEIGHT SHALL NOT EXCEED 2').
- 5. FROZEN GROUND, OUTCROPS OF BEDROCK, AND VERY ROOTED FORESTED AREAS PRESENT THE MOST PRACTICAL AND EFFECTIVE LOCATIONS FOR ORGANIC FILTER BERMS. OTHER BMP'S SHOULD BE USED AT LOW POINTS OF CONCENTRATED RUNOFF, BELOW CULVERT OUTLET APRONS, AROUND CATCH BASINS, AND AT THE BOTTOM OF STEEP PERIMETER SLOPES THAT HAVE A LARGE CONTRIBUTING
- 6. SEDIMENT SHALL BE REMOVED FROM BEHIND THE FILTER BERMS WHEN IT HAS ACCUMULATED TO ONE HALF THE ORIGINAL HEIGHT OF THE BERM.
- 7. ORGANIC FILTER BERMS MAY BE LEFT IN PLACE ONCE THE SITE IS STABILIZED PROVIDED ANY SEDIMENT DEPOSITS TRAPPED BY THEM ARE REMOVED AND DISPOSED OF PROPERLY.
- 8. FILTER BERMS ARE PROHIBITED AT THE BASE OF SLOPES STEEPER THAN 8% OR WHERE THERE IS FLOWING WATER WITHOUT THE SUPPORT OF ADDITIONAL MEASURES SUCH AS SILTFENCE.

ORGANIC FILTER BERM NOT TO SCALE

INSTALLATION AND MAINTENANCE:


INSTALLATION: REMOVE THE GRATE FROM CATCH BASIN. IF USING OPTIONAL OIL ABSORBENTS; PLACE ABSORBENT PILLOW IN UNIT. STAND GRATE ON END. MOVE THE TOP LIFTING STRAPS OUT OF THE WAY AND PLACE THE GRATE INTO CATCH BASIN INSERT SO THE GRATE IS BELOW THE TOP STRAPS AND ABOVE THE LOWER STRAPS. HOLDING THE LIFTING DEVICES, INSERT THE GRATE INTO THE INLET.

MAINTENANCE: REMOVE ALL ACCUMULATED SEDIMENT AND DEBRIS FROM VICINITY OF THE UNIT AFTER EACH STORM EVENT. AFTER EACH STORM EVENT AND AT REGULAR INTERVALS, LOOK INTO THE CATCH BASIN INSERT. IF THE CONTAINMENT AREA IS MORE THAN 1/3 FULL OF SEDIMENT, THE UNIT MUST BE EMPTIED. TO EMPTY THE UNIT, LIFT THE UNIT OUT OF THE INLET USING THE LIFTING STRAPS AND REMOVE THE GRATE. IF USING OPTIONAL ABSORBENTS; REPLACE ABSORBENT WHEN NEAR SATURATION.

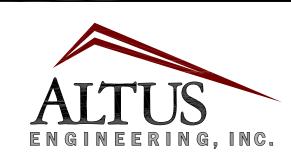
UNACCEPTABLE INLET PROTECTION METHOD:

A SIMPLE SHEET OF GEOTEXTILE UNDER THE GRATE IS NOT ACCEPTABLE.

STORM DRAIN INLET PROTECTION

<u>MAINTENANCE</u>

THE OUTLET PROTECTION SHOULD BE CHECKED AT LEAST ANNUALLY AND AFTER EVERY MAJOR STORM. IF THE RIPRAP HAS BEEN DISPLACED, UNDERMINED OR DAMAGED, IT SHOULD BE REPAIRED IMMEDIATELY. THE CHANNEL IMMEDIATELY BELOW THE OUTLET SHOULD BE CHECKED TO SEE THAT EROSION IS NOT OCCURRING. THE DOWNSTREAM CHANNEL SHOULD BE KEPT CLEAR OF OBSTRUCTIONS SUCH AS FALLEN TREES, DEBRIS, AND SEDIMENT THAT COULD CHANGE FLOW PATTERNS AND/OR TAILWATER DEPTHS ON THE PIPES. REPAIRS MUST BE CARRIED OUT IMMEDIATELY TO AVOID ADDITIONAL DAMAGE TO THE OUTLET PROTECTION APRON.


SECTION

CONSTRUCTION SPECIFICATIONS

- 1. THE SUBGRADE FOR THE FILTER MATERIAL, GEOTEXTILE FABRIC, AND RIPRAP SHALL BE PREPARED TO THE LINES AND GRADES SHOWN ON THE PLANS.
- 2. THE ROCK OR GRAVEL USED FOR FILTER OR RIPRAP SHALL CONFORM TO THE SPECIFIED GRADATION. 3. GEOTEXTILE FABRICS SHALL BE PROTECTED FROM PUNCTURE OR TEARING DURING THE PLACEMENT OF THE ROCK RIPRAP. DAMAGED AREAS IN THE FABRIC SHALL BE REPAIRED BY PLACING A PIECE OF FABRIC OVER THE DAMAGED AREA OR BY COMPLETE REPLACEMENT OF THE FABRIC. ALL
- OVERLAPS REQUIRED FOR JOINING TWO PIECES OF FABRIC SHALL BE A MINIMUM OF 12 INCHES. 4. STONE FOR THE RIP RAP MAY BE PLACED BY EQUIPMENT AND SHALL BE CONSTRUCTED TO THE FULL LAYER THICKNESS IN ONE OPERATION AND IN SUCH A MANNER AS TO PREVENT SEGREGATION OF THE STONE SIZES.

RIPRAP OUTLET PROTECTION

NOT TO SCALE

133 Court Street Portsmouth, NH 03801 (603) 433-2335 www.altus-eng.com

NOT FOR CONSTRUCTION

ISSUED FOR:

ISSUE DATE: AUGUST 23, 2021

REVISIONS NO. DESCRIPTION

O TAC

BY DATE EBS 08/23/2

TAC

EBS DRAWN BY: EDW APPROVED BY: ___ 5161-DS.dwg DRAWING FILE:.

SCALE: NOT TO SCALE

OWNER:

NOT TO SCALE

NAVEESHA HOSPITALITY, LLC

440 BEDFORD ST.

LEXINGTON. MA 02420

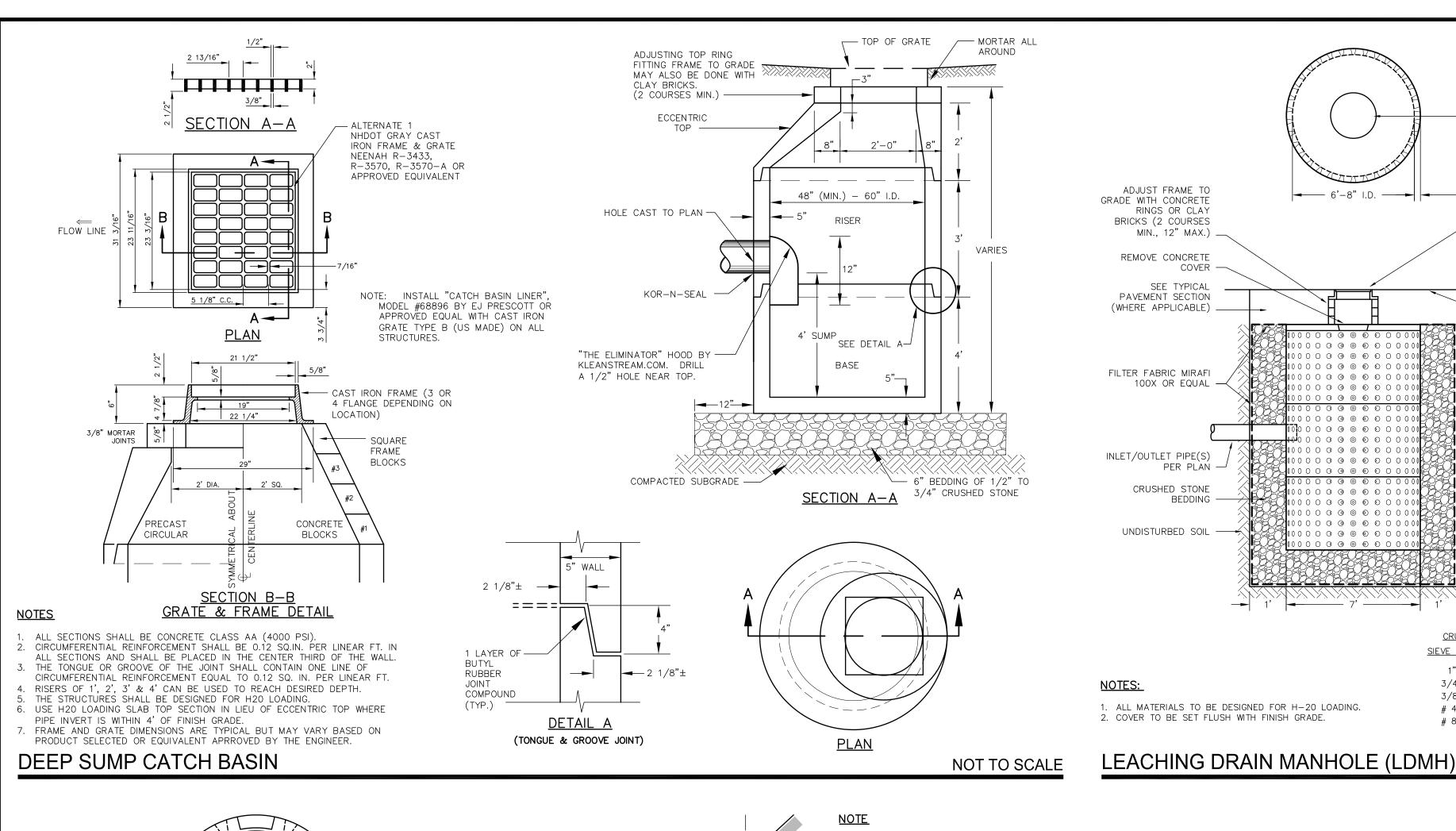
<u>APPLICANT:</u>

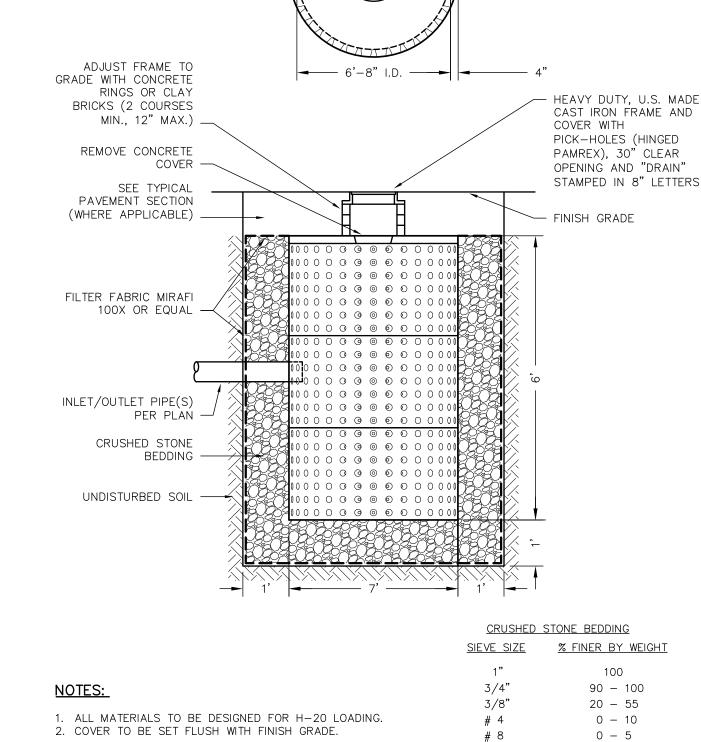
MONARCH VILLAGE, LLC

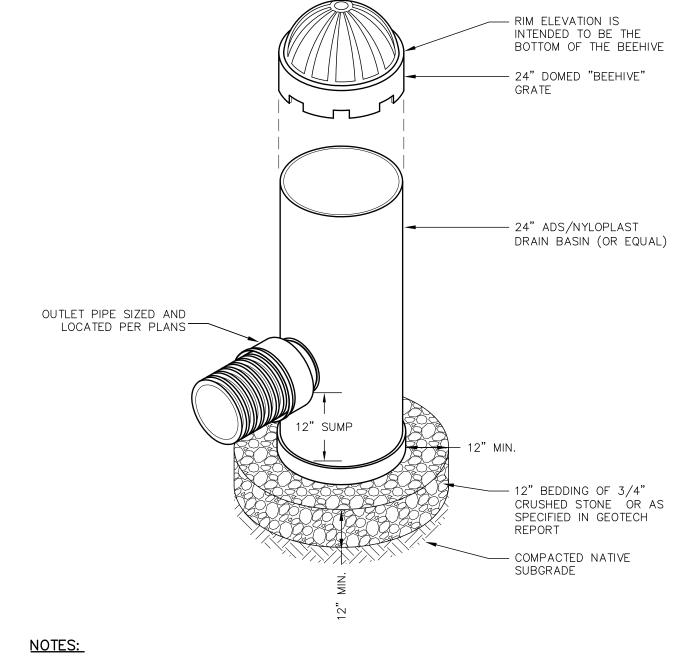
P.O. BOX 365 EAST HAMPSTEAD, NH 03826

<u>PROJECT:</u>

MONARCH **VILLAGE**


TAX MAP 297, LOT 6


3548 LAFAYETTE ROAD PORTSMOUTH, NH 03801


DETAIL SHEET

SHEET NUMBER:

D -

- 1. FRAMES AND GRATES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05.
- 2. DRAIN BASIN TO BE CUSTOM MANUFACTURED ACCORDING TO PLAN AND DETAILS.
- 3. DRAINAGE CONNECTION STUB JOINT TIGHTNESS SHALL CONFORM TO ASTM D3212 FOR CORRUGATED HDPE, N-12HP AND PVC SEWER.
- 4. INLINE DRAIN TO BE PVC DIAMETER AS SPECIFIED AND AS MANUFACTURED BY
- ADS OR APPROVED EQUAL.
- 5. THE CONTRACTOR SHALL INSTALL THE DRAIN BASIN PER THE MANUFACTURER'S RECOMMENDATIONS AND AS SHOWN ON THE DRAWINGS.

OUTLET STRUCTURE #1

NOT TO SCALE DRAWING FILE:

133 Court Street

(603) 433-2335

ISSUED FOR:

ISSUE DATE:

<u>REVISIONS</u>

DRAWN BY:

SCALE:

OWNER:

<u>APPLICANT:</u>

APPROVED BY: ___

NO. DESCRIPTION

Portsmouth, NH 03801

www.altus-eng.com

TAC

BY DATE

EBS 08/23/2

EBS

EDW

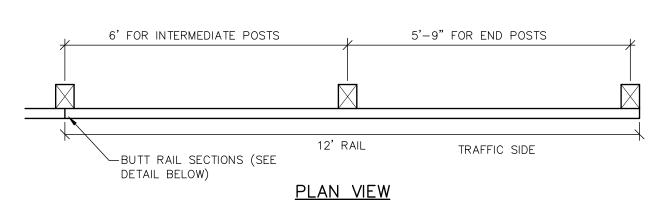
5161-DS.dwg

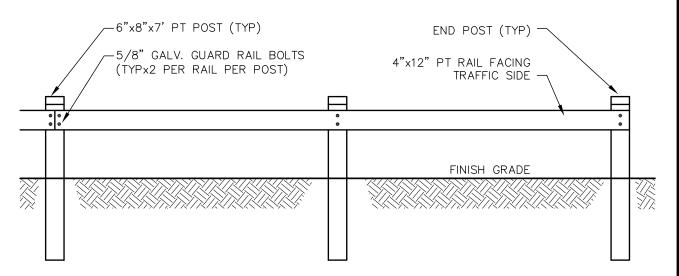
NOT TO SCALE

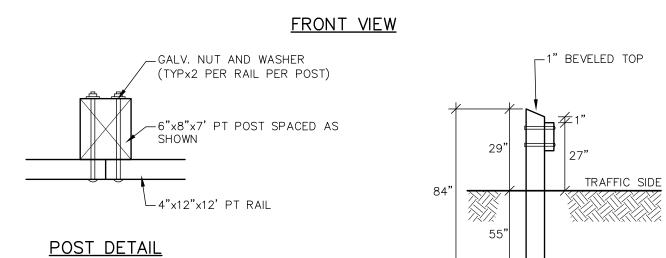
NAVEESHA HOSPITALITY, LLC

440 BEDFORD ST.

LEXINGTON, MA 02420


MONARCH VILLAGE, LLC


P.O. BOX 365


EAST HAMPSTEAD, NH 03826

NOT FOR CONSTRUCTION

AUGUST 23, 2021

30" DRAIN

MANHOLE COVER

100

NOT TO SCALE

- - ALL POST AND RAIL MATERIAL SHALL BE PRESSURE TREATED (PT).
 - 2. BOLT LENGTH IS DETERMINED BY 8" POST AND RAIL THICKNESS
 - 3. ALL MATERIAL TO MEET OR EXCEED NHDOT SECTION 606 GUARDRAIL.

WOOD BEAM GUARDRAIL

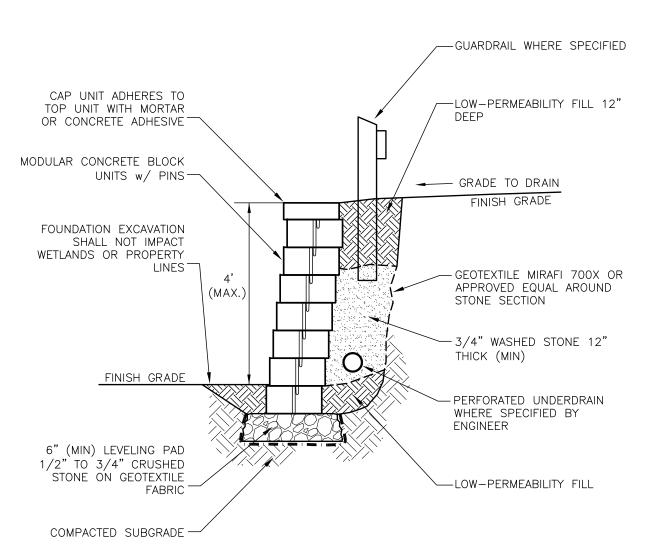
PLUS 1 INCH FOR NUT AND WASHER.

NOT TO SCALE

PROJECT: MONARCH

VILLAGE

TAX MAP 297, LOT 6


3548 LAFAYETTE ROAD PORTSMOUTH, NH 03801

TITLE:

DETAIL SHEET

SHEET NUMBER:

D - 2

NOTES:

STRUCTURAL ENGINEER.

THE CONTRACTOR SHALL EXTEND THE WIDTH

4" THICK BED OF 3/4"-2"

AT OWNER'S DISCRETION

- 3/4" CRUSHED STONE

NON-WOVEN FILTER FABRIC

6" CPP PERFORATED PIPE WRAPPED

NOT TO SCALE

FINISH GRADE

IN FILTER FABRIC WHERE SPECIFIED

-WALL-MOUNTED DOWNSPOUT (SEE ARCH. PLANS FOR LOCATIONS AND FINISH)

-4" OR 6" CPP OR PVC RISER SET

6" (MIN.) ABOVE FINISH GRADE

-4" OR 6" 90° ELBOW (INVERT

-TO DRAINAGE PIPE OR STRUCTURE

AND PIPE SIZE MAY VARY)

(LENGTH, SLOPE, DEPTH AND

INVERTS VARY, SEE PLANS)

AT SIDES AND BOTTOM

FOUNDATION

-2" (MIN.) OVERLAP

6" REVEAL (MIN.)

ROUND RIVER STONÉ, COLOR

OF THE DRIP STRIP AT BUILDING JOGS AS

REQUIRED TO CATCH ALL ROOF RUN OFF

- 1. TYPICAL MODULAR BLOCK SHALL BE PRECAST CONCRETE MEASURING APPROXIMATELY 16"x12"x6". OTHER BLOCK SIZES MAY BE APPROVED BY THE ENGINEER UPON REQUEST. CAP UNITS SHALL BE
- PER THE STANDARDS OF THE SELECTED MANUFACTURER. 2. BLOCK MANUFACTURER SHALL BE APPROVED BY THE ENGINEER PRIOR TO INSTALLATION.
- 3. WALL SHALL BE INSTALLED PER THE REQUIREMENTS OF THE MANUFACTURER. 4. WALL HEIGHT SHALL NOT EXCEED 4' WITHOUT DESIGN DRAWINGS STAMPED BY A PROFESSIONAL
- 5. LOCKING PINS MAY OR MAY NOT BE REQUIRED BASED ON THE WALL MANUFACTURER APPROVED BY THE ENGINEER.
- 6. WALL SHALL BE EMBEDDED BELOW EXISTING GRADE THE DEPTH OF AT LEAST ONE BLOCK UNLESS OTHERWISE SPECIFIED BY THE WALL MANUFACTURER.
- 7. WALL BATTER SHALL BE PER THE MANUFACTURER'S SPECIFICATIONS. 8. BLOCK FINISH SHALL BE AT THE DISCRETION OF THE OWNER.
- 9. MODULAR BLOCK RETAINING WALL SHALL BE VERSA-LOK RETAINING WALL SYSTEMS (OR APPROVED
- 10. ANY WALL OVER 4' IN HEIGHT SHALL BE DESIGNED BY A NH REGISTERED PROFESSIONAL ENGINEER
- WHO SHALL PROVIDE STAMPED DRAWINGS TO THE CONTRACTOR PRIOR TO CONSTRUCTION.

MODULAR BLOCK RETAINING WALL

NOT TO SCALE

CONCRETE: 4.000 PSI AFTE 28 DAYS. MATERIALS SHALL WITHSTAND H-20 LOADING AT TRAFFIC METAL EDGE -LAWN OR -PLANTING BED PLAN VIEW - CAST IRON FRAME AND GRATE → 24" OPENING → SET IN MORTAR BRICK, 2 COURSES MIN. 12" MAX. 6" CPP SOLID -DISCHARGE PIPE WHERE SPECIFIED STONE DRIP EDGE INLETS/OUTLETS EXTERIOR FACE OF AS SPECIFIED

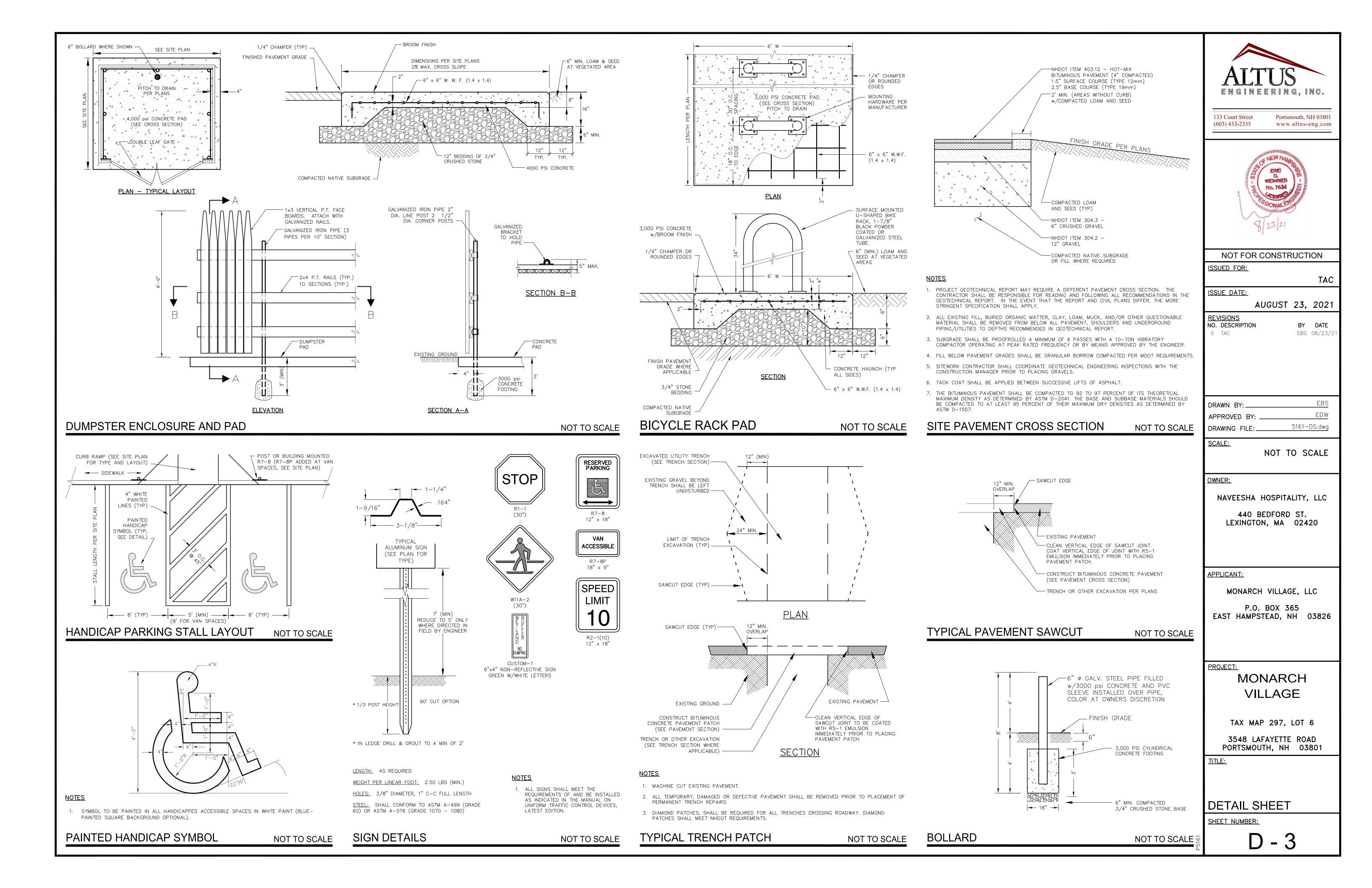
. TO ACCOMMODATE A 24" CAST

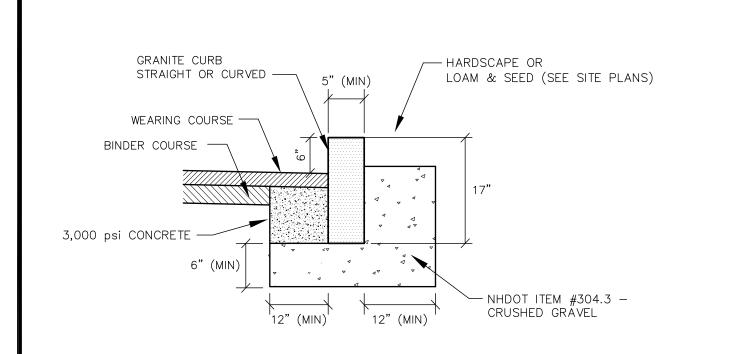
IRON FRAME AND GRATE. GRATE OPENING MAY BE

OFFSET OR CENTERED IN

STRUCTURE TOP.

FILTER FABRIC MIRAFI 700X OR APPROVED EQUAL 3/4" CRUSHED STONE, 12" AROUND SIDES AND BOTTOM


SECTION VIEW LEACHING CATCH BASIN (LCB)


NOT TO SCALE

EXTERIOR ROOF DRAIN CONNECTION NOT TO SCALE

PT POSTS SHALL BE RATED FOR GROUND CONTACT.

SIDE VIEW

RADIUS 1. SEE PLANS FOR CURB LOCATION.

	6"	LOAM & SEED (SEE SITE PLANS)
6" FINISH GRADE		GRANITE CURB
6" SEE PAVEMENT CROSS SECTION 6" COMPACTED CRUSHED GRAVEL		12"
NHDOT ITEM #304.3		-3,000 psi CONCRETE WITH CONCRETE BRICK SUPPORTS
COMPACTED NA SUBGRADE OR	TIVE	_

<u>NOTES</u>

- 1. SEE SITE PLAN FOR LIMITS OF CURBING
- 2. ADJOINING STONES OF STRAIGHT CURB LAID ON CURVES SHALL HAVE THE SAME OR APPROXIMATELY THE SAME LENGTH
- 3. MINIMUM LENGTH OF STRAIGHT CURB STONES = 18"
- 4. MAXIMUM LENGTH OF STRAIGHT CURB STONES = 8'
- 5. MAXIMUM LENGTH OF STRAIGHT CURB STONES LAID ON CURVES -SEE CHART

RADIUS FOR STONES WITH SQUARE JOINTS	MAXIMUM LENGTH
16'-28' 29'-41' 42'-55'	1'-6" 2' 3'
42 - 55	ا <u>،</u>

69'-82'

83'-96'

97'-110'

OVER 110'

- SLOPE VARIES 1.5% MAX. CROSS SLOPE ---F ROADWAY CROSS SECTION DETAIL FINISH GRADE 3" BITUMINOUS WALK 1" 9.5mm HOT MIX ASPHALT (75 GYRATION DESIGN) -2" 12.5mm HOT MIX ASPHALT (50 GYRATION DESIGN) 8" COMPACTED CRUSHED GRAVEL NHDOT ITEM #304.3 COMPACTED NATIVE SUBGRADE -VERTICAL GRANITE CURB (WHERE SPECIFIED)

WIDTH PER PLAN

EXTEND GRAVELS 6" MIN. BEYOND SIDEWALK, LOAM WILL BE LESS THAN

1. JOINTS IN CONCRETE SIDEWALKS SHALL CONFORM TO THE TYPES AND LOCATIONS SHOWN IN THE

REVEAL AS —

REINFORCING

COMPACTED NATIVE SUBGRADE EXISTING OR RESET VERTICAL

SPECIFIED (SEE CURB DETAIL)

HEAVY-DUTY CONCRETE PAVEMENT DETAIL

CONCRETE SIDEWALK

BITUMINOUS SIDEWALK

9" COMPACTED CRUSHED GRAVEL MDOT TYPE "A"

GRANITE CURB WHERE

SPECIFIED

4"-THICK CONCRETE WALK -

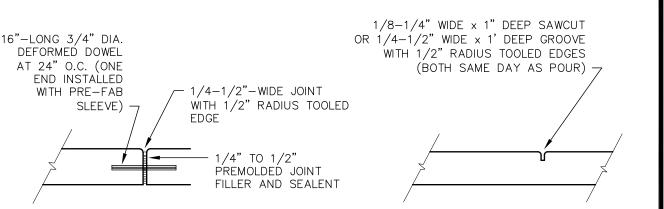
4,000 PSI AIR ENTRAINED

CONCRETE WITH POLY-FIBER

6" THICK IN THESE LOCATIONS (TYP.)

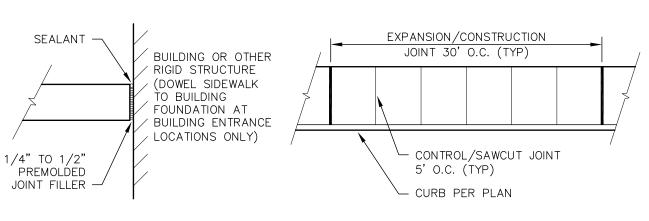
WIDTH PER PLAN

SMOOTH TROWEL

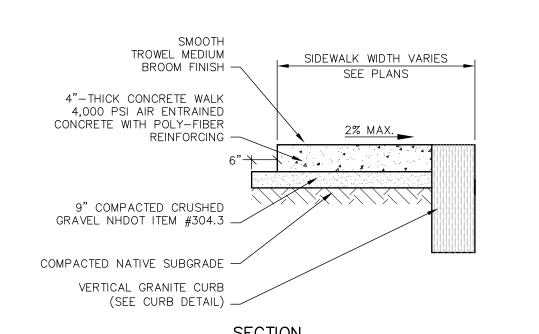

MEDIUM BROOM

EDGES

NOT TO SCALE


NOT TO SCALE

FINISH w/TOOLED


EXPANSION/CONSTRUCTION JOINT

CONTROL/SAWCUT JOINT

ISOLATION JOINT

<u>PLAN</u>

- ELIMINATE GRANITE CURB

WHERE SIDEWALK IS FLUSH

PAVEMENT PER

PLANS-

CONCRETE SIDEWALK DETAIL

| PER PLANS

FLUSH CURB AT RAMP DETAIL

- CURB TAPER TO MATCH

TRANSITION CURB PER

RAMP DETAIL (TYP)

VERTICAL

GRANITE CURB NOT TO SCALE

FLUSH CURB LIP REVEAL

SIDEWALK, RAMP AND

AND DETAILS

6"-WIDE (MIN) THICKENED CONCRETE EDGE TO

EXTEND 18" (MIN) BELOW

FINISH GRADÈ

SUBGRADE PER PLANS

AT RAMP END SHALL NOT

EXCEED 1/4" WITH BEVEL

NOT TO SCALE

EBS DRAWN BY: EDW APPROVED BY: 5161-DS.dwg DRAWING FILE:

NOT FOR CONSTRUCTION

AUGUST 23, 2021

Portsmouth, NH 03801

www.altus-eng.com

TAC

BY DATE

EBS 08/23/2

133 Court Street

(603) 433-2335

ISSUED FOR:

ISSUE DATE:

<u>REVISIONS</u>

O TAC

NO. DESCRIPTION

SCALE:

NOT TO SCALE

OWNER:

NAVEESHA HOSPITALITY, LLC

440 BEDFORD ST. LEXINGTON, MA 02420

APPLICANT:

MONARCH VILLAGE, LLC

P.O. BOX 365

EAST HAMPSTEAD, NH 03826

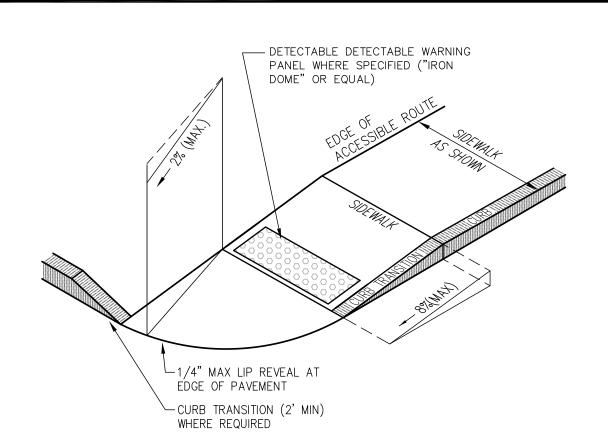
PROJECT:

MONARCH **VILLAGE**

TAX MAP 297, LOT 6

3548 LAFAYETTE ROAD PORTSMOUTH, NH 03801

DETAIL SHEET


SHEET NUMBER:

D-4

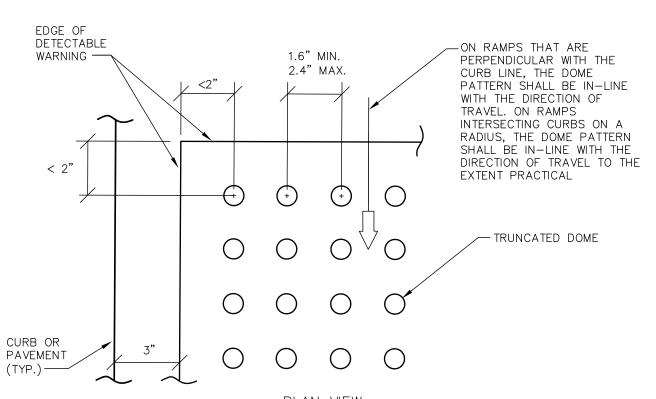
SLOPED GRANITE CURB

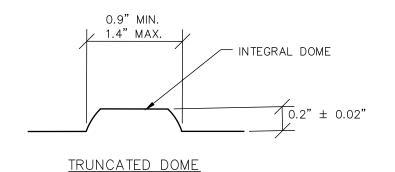
NOT TO SCALE

NOT TO SCALE

NOT TO SCALE

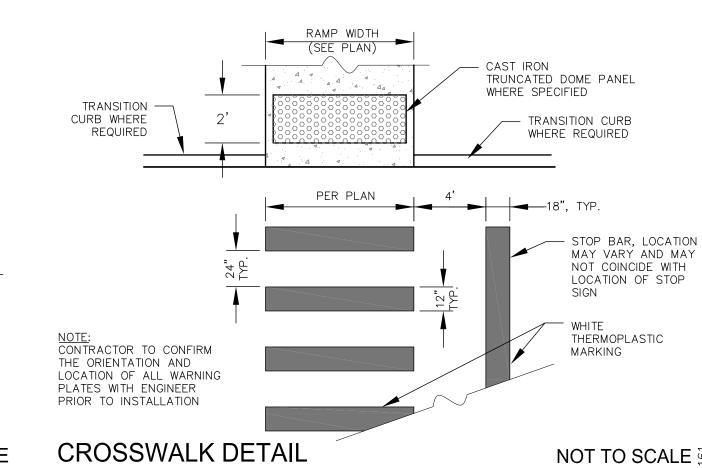
MAX. LENGTH

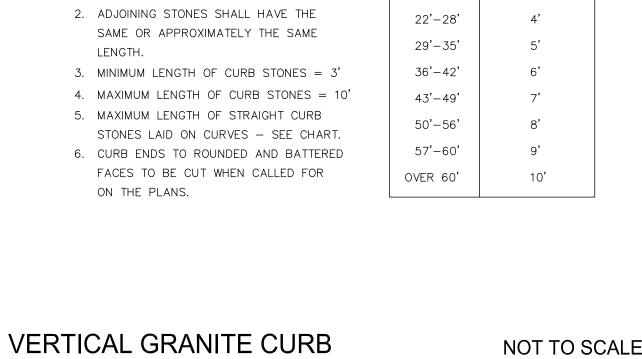

NOTES APPLICABLE TO ALL CURB RAMPS:

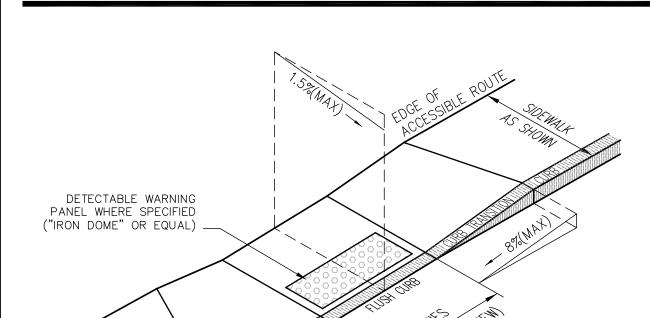

CURB RAMP (TYPE 'B')

- 1. THE MAXIMUM ALLOWABLE CROSS SLOPE OF AN ACCESSIBLE ROUTE (SIDEWALK) AND CURB SHALL
- 2. THE MAXIMUM ALLOWABLE RUNNING SLOPE OF AN ACCESSIBLE ROUTE EXCLUDING CURB RAMPS SHALL BE 5%.
- 3. THE MAXIMUM ALLOWABLE RUNNING SLOPE OF AN ACCESSIBLE ROUTE (SIDEWALK) CURB RAMP SHALL BE 8.3% FOR A MAXIMUM ELEVATION CHANGE OF 6".
- 4. CURB TREATMENT VARIES, SEE PLANS FOR CURB TYPE.
- 5. BASE OF RAMP SHALL BE GRADED TO PREVENT THE PONDING OF WATER.
- 6. SEE CONCRETE SIDEWALK SECTION FOR RAMP CONSTRUCTION.
- 7. ALL CURB RAMPS SHALL BE CONSTRUCTED IN ACCORDANCE WITH AMERICANS WITH DISABILITIES ACT (ADA) AND ALL APPLICABLE CODES.
- 8. FLUSH CURB SECTIONS SHALL HAVE A MAXIMUM LIP REVEAL OF 1/4" WITH A BEVEL AT THE EDGE
- 9. EDGES OF SIDEWALK FOOTINGS ALONG FLUSH CURBS SHALL BE HAUNCHED SO AS TO EXTEND TO A MINIMUM DEPTH OF 1' BELOW FINISH GRADE.
- 10. NO RAMP SHALL BE LESS THAN 4' IN WIDTH.
- 11. CURB RAMPS SHALL HAVE A FLAT 2% MAX LANDING AT THE TOP AND BOTTOM OF THE RAMPS WHEN THERE IS A CHANGE IN DIRECTION.

CURB RAMP NOTES


NOT TO SCALE





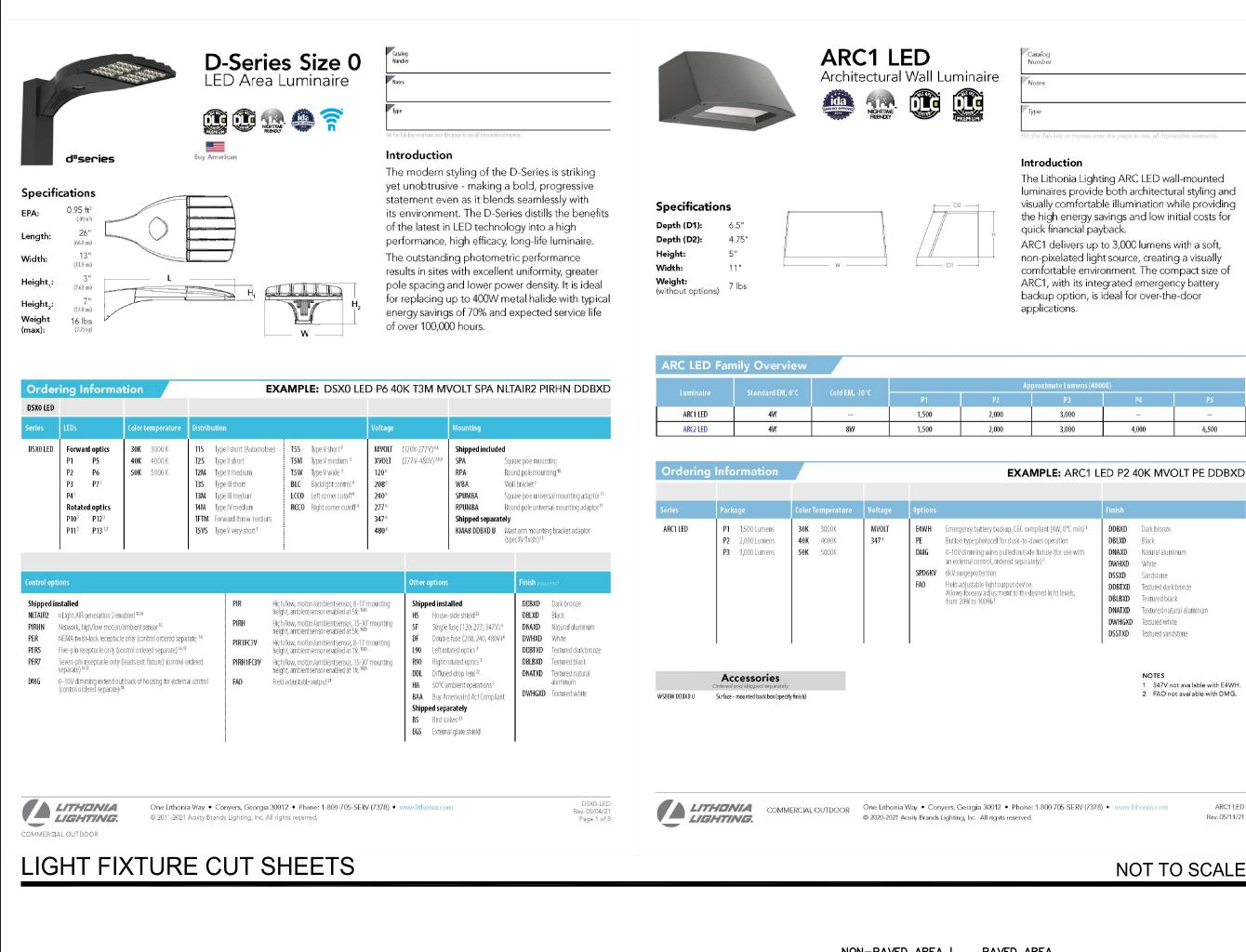
- 1. BASE-TO-BASE SPACING SHALL BE 0.65" MINIMUM BETWEEN DOMES.
- 2. ALL SIDEWALK CURB RAMPS SHALL HAVE DETECTABLE WARNING SURFACES THAT EXTEND THE FULL WIDTH OF THE RAMP AND 2' DEPTH IN THE DIRECTION OF TRAVEL.
- 3. THE TOP WIDTH OF THE DOME SHALL BE A MINIMUM OF 50% AND A MAXIMUM OF 65% OF THE
- 4. WARNING PANELS TO BE CAST IRON ("IRON DOME" OR EQUAL).
- 5. PANEL SHALL BE INSTALLED SO THAT THE EDGE 3" FROM THE CURB LINE OR GUTTER.

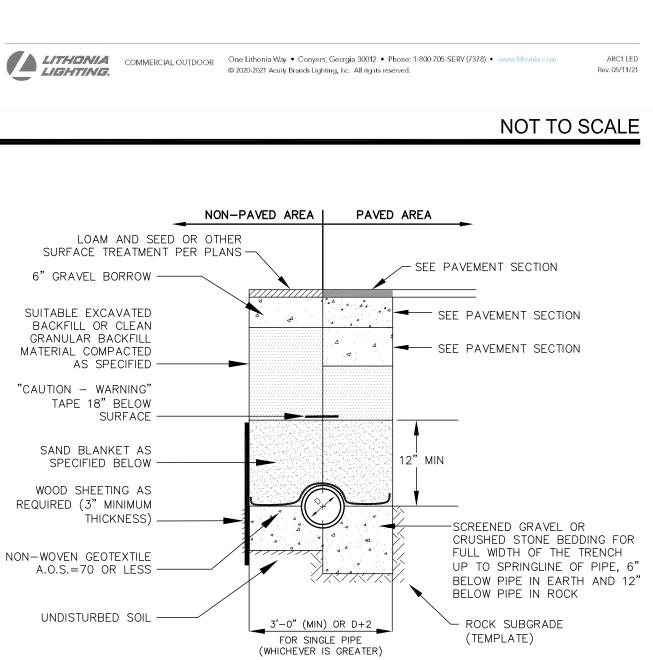
DETECTABLE WARNING PANEL

CURB RAMP (TYPE 'A')

ADA-COMPLIANT CAST IRON DETECTABLE WARNING PANEL WHERE SPECIFIED ("IRON DOME"

CURB RAMP (TYPE 'M')


NOT TO SCALE


OR APPROVED EQUAL)

NOT TO SCALE

<u>Plan view</u>

NOTES:

— PAVEMENT OR

LANDSCAPING

— 12" CLEAN SAND

- 3/4" CRUSHED STONE

- PERFORATED PVC

OR CPP PIPE

- 1. BACKFILL MATERIAL BELOW PAVED OR CONCRETE AREAS, BEDDING MATERIAL, AND SAND BLANKET SHALL BE COMPACTED TO NOT LESS THAN 95% OF AASHTO T 99, METHOD C. SUITABLE BACKFILL MATERIAL BELOW LOAM AREAS SHALL BE COMPACTED TO NOT LESS THAN 90% OF AASHTO T 99,
- 2. INSULATE GRAVITY SEWER AND FORCEMAINS WHERE THERE IS LESS THAN 5'-0" OF COVER WITH 2" THICK CLOSED CELL RIGID BOARD INSULATION, 18" ON EACH SIDE OF PIPE.
- 3. MAINTAIN 12" MINIMUM HORIZONTAL SEPARATION AND WIDEN TRENCH ACCORDINGLY IF MULTIPLE PIPES ARE IN TRENCH.

SAND	BLANKET/BARRIER	SCREENED GRAVEL (OR CRUSHED STONE BEDDING*
SIEVE SIZE	% FINER BY WEIGHT	SIEVE SIZE	% PASSING BY WEIGHT
1/2" 200	90 – 100 0 – 15	1" 3/4" 3/8" # 4 # 8	100 90 - 100 20 - 55 0 - 10 0 - 5

DRAINAGE TRENCH

SURFACE TREATMENT PER PLANS - SEE PAVEMENT SECTION SEE PAVEMENT SECTION - SEE PAVEMENT SECTION 5' COVER (MIN) (7' COVER MAX) — CAUTION TAPE READING "CAUTION WATER LINE BURIED BELOW" SUITABLE EXCAVATED BACKFILL OR CLEAN SUITABLE EXCAVATED BACKFILL MATERIAL, OR GRANULAR BACKFILL MATERIAL COMPACTED GRANULAR MATERIAL AS SPECIFIED -WHERE SPECIFIED, COMPACTED IN 12" LIFTS TO 95% STANDARD PROCTOR MAXIMUM DENSITY. TYPE "K" COPPER OR CTS PLASTIC WATER SERVICE OR HDPE DR 11 WATER MAIN AS SPECIFIED SAND BLANKET 6" BELOW PIPE IN 6" NOMINAL (12" IN LEDGE) EARTH AND 12" BELOW PIPE IN LEDGE 3' (MIN)

-BOND GROUND ROD TO LIGHT STANDARD AND EACH RACEWAY WITH #8CU MIN.

-FOUR 3/4"x24" ANCHOR BOLTS

BURR THREADS AFTER SETTING POLE

√4 #3 TIES AT 6" ON CENTER √4 #5 VERTICAL, EQUALLY SPACED

TO WITHIN 10' OF NEXT PIER

RIGID STEEL

- RIGID STEEL ELBOW

3" CLEARANCE

18" MIN.

BOLT VIEW

NON-PAVED AREA | PAVED AREA

PLAN VIEW

ANCHOR RODS (4 REQ'D.) 7

SECTION

BOLT TEMPLATE BY POLE MANUFACTURER

GROUT AFTER POLE IS SET AND PLUMBED

RIGID STEEL CONDUIT - EXTEND MIN. 10'-0" OUT OF PIER.

USE STEEL TO PVC CONNECTOR, THEN RUN PVC

-5/8" Ø MIN. COPPER CLAD STEEL GROUND ROD

-5/8"ø GROUND ROD

-RIGID STEEL CONDUIT -

— FOUNDATION

NOT TO SCALE

LEVEL

SIZE VARIES

- SCHEDULE 40 PVC

MÍN. 2'-0" BELOW BOTTOM OF PIER

-3 #3 TIES AT 12" ON CENTER

CONCRETE TO BE 4000 PSI

─ BASE PLATE

— LIGHT POLE BASE

SEE BOLT VIEW -

3/4" CHAMFER -

2" CLEARANCE—

CONCRETE FOUNDATION -

BASE PLATE OPENING -

HEX NUTS (4 REQ'D.)

PLAIN WASHERS

(4 REQ'D.) -

FINISH GRADE PLAIN WASHERS

(4 REQ'D.) —

HEX NUTS

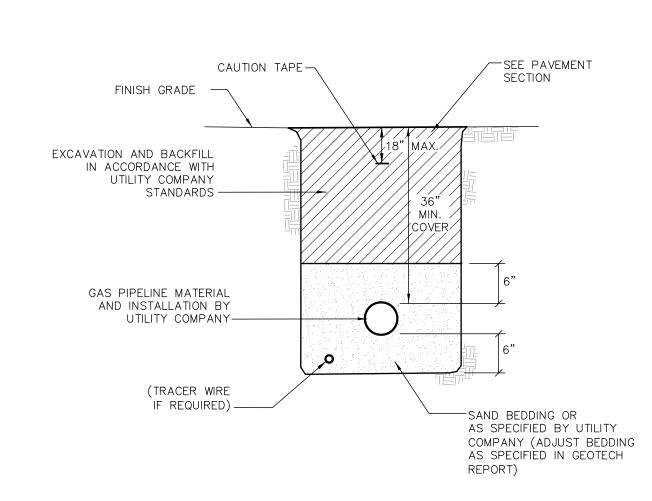
(4 REQ'D.)

LIGHT POLE BASE DETAIL

1" THICK GROUT AFTER

PLUMBED —

6" COMPACTED LOAM

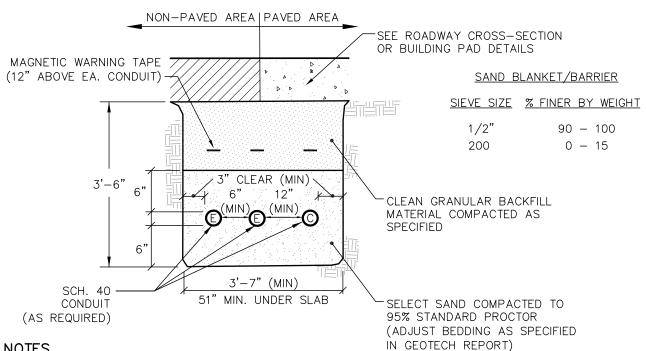

AND SEED OR OTHER

BOLT TEMPLATE BY

SAND BLANKET/BARRIER SIEVE SIZE % FINER BY WEIGHT 1/2" 90 - 100 200 0 - 15

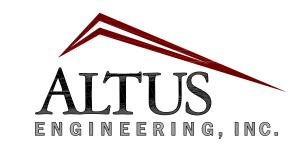
- 1. BACKFILL MATERIAL BELOW PAVED OR CONCRETE AREAS, BEDDING MATERIAL, AND SAND BLANKET SHALL BE COMPACTED TO NOT LESS THAN 95% OF AASHTO T 99, METHOD C. SUITABLE BACKFILL MATERIAL BELOW LOAM AREAS SHALL BE COMPACTED TO NOT LESS THAN 90% OF AASHTO T 99,
- 2. ALL TRENCHING AND BACKFILL SHALL CONFORM WITH THE STANDARDS OF THE KITTERY WATER

NOT TO SCALE


SIEVE SIZE % FINER BY WEIGHT 1/2" 90 - 100 200 0 - 15

SAND BLANKET/BARRIER

- 1. CONTRACTOR TO COORDINATE WITH UTILITY COMPANY AND PROVIDE ALL EXCAVATION, COMPACTION AND BACKFILL FOR PIPE INSTALLATION.
- 2. BACKFILL MATERIAL BELOW PAVED OR CONCRETE AREAS, BEDDING MATERIAL, AND SAND BLANKET SHALL BE COMPACTED TO NOT LESS THAN 95% OF AASHTO T 99, METHOD C. SUITABLE BACKFILL MATERIAL BELOW LOAM AREAS SHALL BE COMPACTED TO NOT LESS THAN 90% OF AASHTO T 99, METHOD C


GAS TRENCH

NOT TO SCALE

- 1. ALL CONDUIT IS TO BE SCHEDULE 40 PVC, ELECTRICAL GRADE, GRAY IN COLOR AND INSTALLED PER THE MANUFACTURER'S RECOMMENDATIONS. A 10-FOOT HORIZONTAL SECTION OF RIGID GALVANIZED STEEL CONDUIT WILL BE REQUIRED AT EACH SWEEP, UNLESS IN THE OPINION OF THE SERVICE PROVIDER DESIGNER, THE SWEEP-PVC JOINT IS NOT SUBJECT TO FAILURE DURING PULLING OF THE CABLE. ALL JOINTS ARE TO BE WATERTIGHT.
- 2. ALL 90 DEGREE SWEEPS WILL BE MADE WITH RIGID GALVANIZED STEEL WITH A MINIMUM RADIUS OF 36 INCHES FOR PRIMARY CABLES AND 24 INCHES FOR SECONDARY CABLES.
- 3. BACKFILL MAY BE MADE WITH EXCAVATED MATERIAL OR COMPARABLE, UNLESS MATERIAL IS DEEMED UNSUITABLE BY SERVICE PROVIDER. BACKFILL SHALL BE FREE OF FROZEN LUMPS, ROCKS, DEBRIS, AND RUBBISH. ORGANIC MATERIAL SHALL NOT BE USED AS BACKFILL. BACKFILL SHALL BE IN 6-INCH LAYERS AND THOROUGHLY COMPACTED.
- 4. A SUITABLE PULLING STRING, CAPABLE OF 300 POUNDS OF PULL, MUST BE INSTALLED IN THE CONDUIT BEFORE SERVICE PROVIDER IS NOTIFIED TO INSTALL CABLE. THE STRING SHOULD BE BLOWN INTO THE CONDUIT AFTER THE RUN IS ASSEMBLED TO AVOID BONDING THE STRING TO THE CONDUIT. A MINIMUM OF TWENTY-FOUR (24") INCHES OF ROPE SLACK SHALL REMAIN AT THE END OF EACH DUCT. PULL ROPE SHALL BE INSTALLED IN ALL CONDUIT FOR FUTURE PULLS. PULL ROPE SHALL BE NYLON ROPE HAVING A MINIMUM TENSILE STRENGTH OF THREE HUNDRED (300#) LBS.
- 5. SERVICE PROVIDER SHALL BE GIVEN THE OPPORTUNITY TO INSPECT ALL CONDUIT PRIOR TO BACKFILL THE CONTRACTOR IS RESPONSIBLE FOR ALL REPAIRS SHOULD SERVICE PROVIDER BE UNABLE TO INSTALL ITS CABLE IN A SUITABLE MANNER.
- 6. TYPICAL CONDUIT SIZES ARE 3-INCH FOR SINGLE PHASE PRIMARY AND SECONDARY VOLTAGE CABLES, 4-INCH FOR THREE PHASE SECONDARY, AND 5-INCH FOR THREE PHASE PRIMARY. HOWEVER, SERVICE PROVIDERS MAY REQUIRE DIFFERENT NUMBERS, TYPES AND SIZES OF CONDUIT THAN THOSE SHOWN HERE. THE CONTRACTOR SHALL BE RESPONSIBLE FOR VERIFYING ALL CONDUIT THAN THOSE SHOWN HERE. THE CONTRACTOR SHALL BE RESPONSIBLE FOR VERIFYING SIZES, TYPES AND NUMBERS WITH EACH SERVICE PROVIDER PRIOR TO ORDERING THEM.
- 7. ROUTING OF CONDUIT, LOCATION OF MANHOLES, TRANSFORMERS, CABINETS, HANDHOLES, ETC., SHALL BE DETERMINED BY SERVICE PROVIDER DESIGN PERSONNEL. THE CONTRACTOR SHALL COORDINATE WITH ALL SERVICE PROVIDERS PRIOR TO THE INSTALLATION OF ANY CONDUIT.
- 8. ALL CONDUIT INSTALLATIONS MUST CONFORM TO THE CURRENT EDITION OF THE NATIONAL ELECTRIC SAFETY CODE, STATE AND LOCAL CODES AND ORDINANCES, AND WHERE APPLICABLE, THE NATIONAL ELECTRIC CODE. WHERE REQUIRED BY UTILITY PROVIDER, CONDUIT SHALL BE SUPPORTED IN PLACE USING PIPE STANCHIONS PLACED EVERY FIVE (5') FEET ALONG THE CONDUIT RUN.
- 9. UNDER A BUILDING SLAB THE CONDUIT SHALL BE ENCASED IN 8" OF CONCRETE ON ALL SIDES. 10. ALL CONDUIT TERMINATIONS SHALL BE CAPPED TO PREVENT DEBRIS FROM ENTERING CONDUIT.

ELECTRIC / COMMUNICATION TRENCH NOT TO SCALE

Portsmouth, NH 03801 133 Court Street (603) 433-2335 www.altus-eng.com

NOT FOR CONSTRUCTION

NO. DESCRIPTION

ISSUE DATE:

ISSUED FOR:

AUGUST 23, 2021

<u>REVISIONS</u>

EBS 08/23/2

TAC

BY DATE

EBS DRAWN BY: EDW APPROVED BY: ___ 5161-DS.dwg DRAWING FILE:

SCALE:

NOT TO SCALE

NAVEESHA HOSPITALITY, LLC

440 BEDFORD ST. LEXINGTON, MA 02420

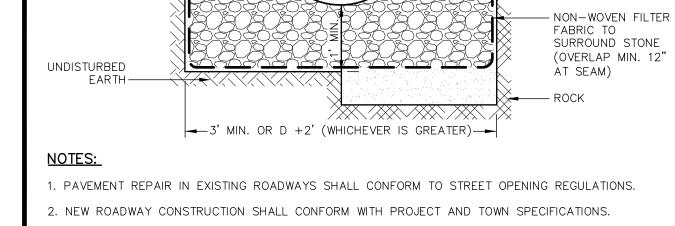
<u>APPLICANT:</u>

MONARCH VILLAGE, LLC

P.O. BOX 365 EAST HAMPSTEAD, NH 03826

PROJECT:

MONARCH VILLAGE


TAX MAP 297, LOT 6

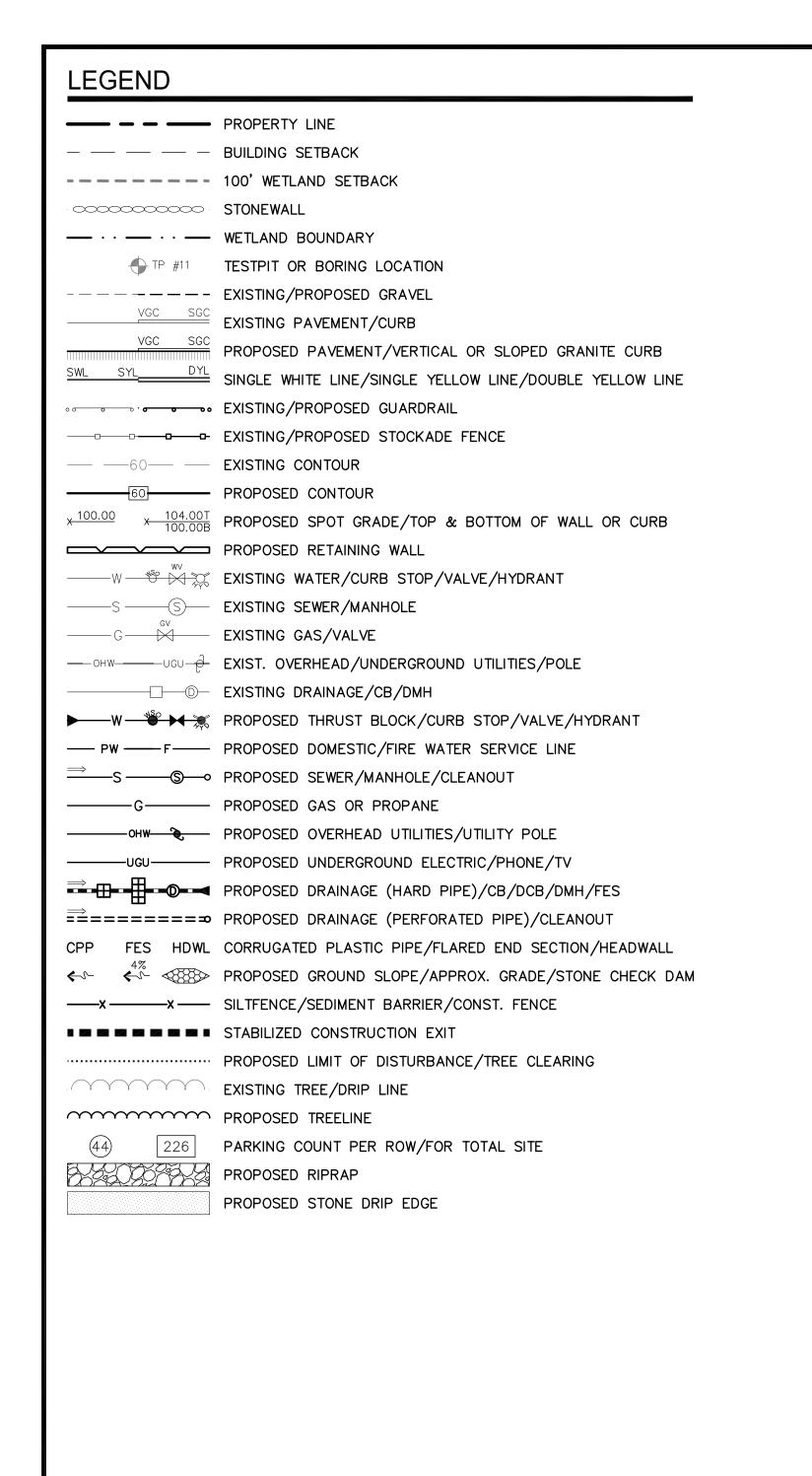
3548 LAFAYETTE ROAD PORTSMOUTH, NH 03801

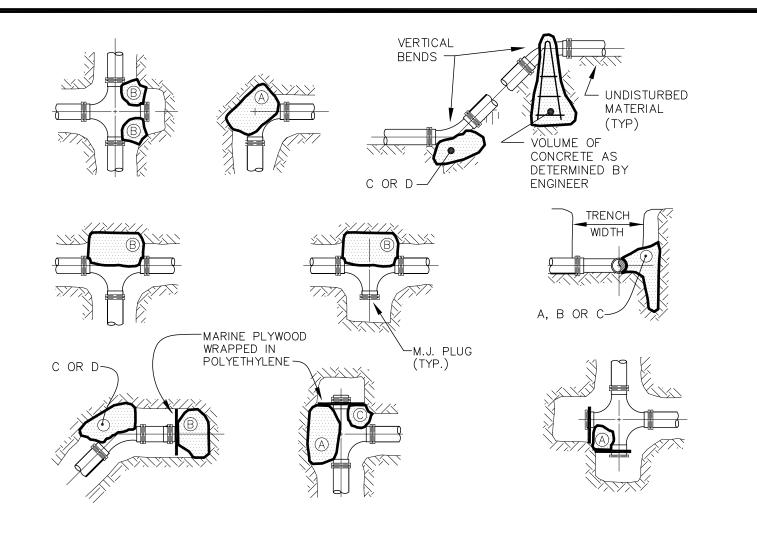
DETAIL SHEET

SHEET NUMBER:

D - 5

3. ALL MATERIALS ARE TO BE COMPACTED TO 95% OF ASTM D-1557.


PERFORATED PIPE DRAIN TRENCH NOT TO SCALE


NOT TO SCALE

* EQUIVALENT TO STANDARD STONE SIZE #67 -

SECTION 703 OF NHDOT STANDARD SPECIFICATIONS

WATER MAIN TRENCH

0 psi							
150	R	EACTION		PIPE SIZE			
П Ш		TYPE	4"	6"	8"	10"	12"
TEST PRESSURE	A B C D E	90° 180° 45° 22-1/2° 11-1/4°	0.89 0.65 0.48 0.25 0.13	2.19 1.55 1.19 0.60 0.30	3.82 2.78 2.12 1.06 0.54	11.14 8.38 6.02 3.08 1.54	17.24 12.00 9.32 4.74 2.38

NOTES

- 1. POUR THRUST BLOCKS AGAINST UNDISTURBED MATERIAL. WHERE TRENCH WALL HAS BEEN DISTURBED, EXCAVATE LOOSE MATERIAL AND EXTEND THRUST BLOCK TO UNDISTURBED MATERIAL.
- 2. NO JOINTS SHALL BE COVERED WITH CONCRETE. POLYETHYLENE (6 MIL) SHALL BE PLACED AROUND FITTINGS PRIOR TO CONCRETE PLACEMENT.
- 3. ON BENDS AND TEES, EXTEND THRUST BLOCKS FULL LENGTH OF FITTING.
- 4. PLACE BOARD IN FRONT OF ALL PLUGS BEFORE POURING THRUST BLOCKS. WHERE M.J. PIPE IS USED, M.J. PLUG WITH RETAINER GLAND MAY BE SUBSTITUTED FOR END BLOCKINGS.

3' MAX.

THRUST BLOCKING

EDGE OF PAVEMENT-

VALVE BOX —

CONCRETE SUPPORT

CRADLE —

THREADED RODS (TYP)

NOT TO SCALE

-INDICATOR POST

- HYDRANT SHALL BE KENNEDY

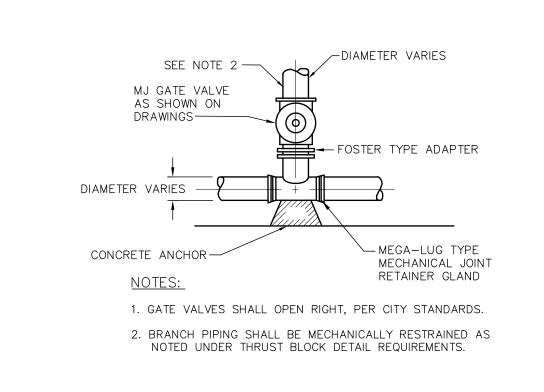
TO CITY OF PORTSMOUTH'S

-THRUST BLOCK

-CRUSHED STONE

- HYDRANT DRAIN SHALL

BE PLUGGED


- CONCRETE

SITTING BLOCK

K-81A GUARDIAN WITH A

5-1/4" VALVE OPENING. HYDRANT SHALL BE PAINTED

SPECIFICATIONS.

- CORPORATION STOP AS

APPROVED BY CITY OF PORTSMOUTH

-WATER MAIN

1'-0" MIN.

CORP. STOP (FORD OR APPROVED EQUAL)

1.5" (TYP.) TYPE "K" COPPÈR SÉRVICE LINE

VALVE BOX (TYP.)

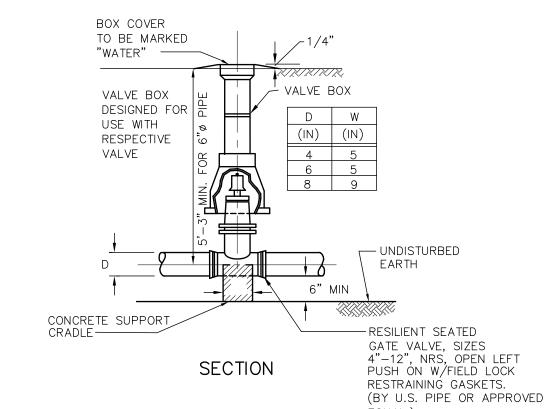
CONSTRUCTION ACTIVITIES.

CURB STOP W/2-1/2" C.I.

- WATER MAIN

WATER SERVICE CONNECTION

(FORD OR APPROVED EQUAL) —


NOTE: ALL CURB AND CORP. STOPS TO

NOTE: ALL MATERIALS AND SPECIFICATIONS SHALL CONFORM TO CITY OF PORTSMOUTH WATER DEPARTMENT STANDARDS

AND REQUIREMENTS. VERIFY PRIOR TO BEGINNING ANY

BE COMPRESSION-JOINT TYPE.

TEE & GATE VALVE ASSEMBLY DETAIL NOT TO SCALE

WATER VALVE DETAIL

CONTRACT LIMIT

EDGE OF

PAVEMENT

CAP & WITNESS

AT OR BEYOND

CONTRACT LIMIT

AS SHOWN ON

THE PLANS.

TYPE "K" SOFT COPPER

SERVICE (SIZE DEPENDENT ON

BUILDING LOCATION AND USE)

- GOOSENECK

NOT TO SCALE

| 1' MIN. |

133 Court Street Portsmouth, NH 03801 (603) 433-2335 www.altus-eng.com

NOT FOR CONSTRUCTION

TAC

ISSUED FOR:

ISSUE DATE:

AUGUST 23, 2021

<u>REVISIONS</u> NO. DESCRIPTION

BY DATE EBS 08/23/2

EBS DRAWN BY:. EDW APPROVED BY: ___ 5161-DS.dwg DRAWING FILE: _

SCALE:

NOT TO SCALE

NAVEESHA HOSPITALITY, LLC

440 BEDFORD ST. LEXINGTON, MA 02420

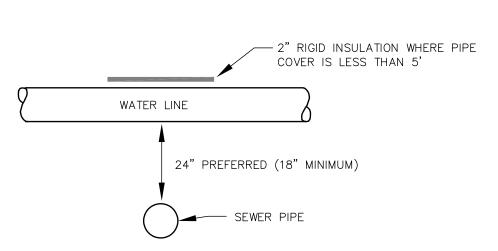
APPLICANT:

MONARCH VILLAGE, LLC

P.O. BOX 365 EAST HAMPSTEAD, NH 03826

PROJECT:

MONARCH **VILLAGE**


TAX MAP 297, LOT 6

3548 LAFAYETTE ROAD PORTSMOUTH, NH 03801

DETAIL SHEET

SHEET NUMBER:

D - 6

<u>NOTES</u>

- 1. A MINIMUM HORIZONTAL DISTANCE OF 10 FEET SHALL BE MAINTAINED BETWEEN WATER AND SEWER MAINS. A MINIMUM VERTICAL DISTANCE WITH WATER ABOVE SEWER SHALL BE MAINTAINED.
- 2. SEWER PIPE JOINTS SHALL BE LOCATED A MINIMUM OF 6 FEET HORIZONTALLY FROM WATER MAIN.
- 3. IF THE REQUIRED CONFIGURATION CANNOT BE MET, THE SEWER MAIN SHALL BE CONSTRUCTED TO MEET THE NHDES REQUIREMENTS FOR FORCE MAIN CONSTRUCTION.

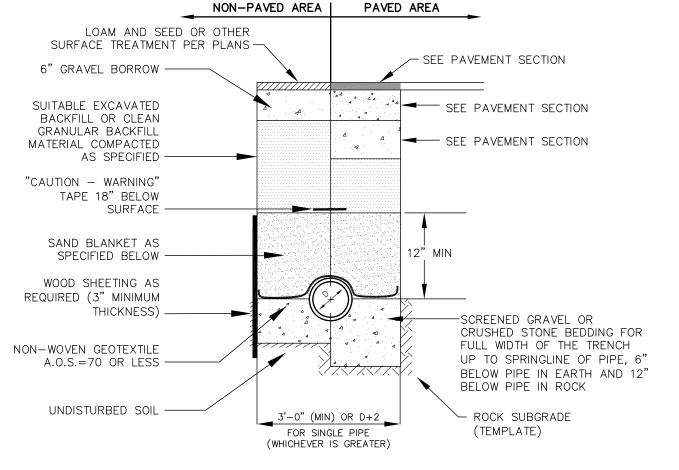
WATER MAIN / SEWER CROSSING

NOT TO SCALE

1. HYDRANT INSTALLATION AND OPERATION TO CONFORM TO REGULATIONS OF THE CITY OF PORTSMOUTH WATER & FIRE DEPARTMENTS.

— 6" M.J. RESILIENT SEALED GATE VALVE

CONFORMING TO THE CITY OF PORTSMOUTH WATER DEPARTMENT REQUIREMENTS


5' MIN.

2. GATE VALVES & HYDRANTS TO OPEN RIGHT (CLOCKWISE).

FIRE HYDRANT

NOT TO SCALE

EQUAL.) NOT TO SCALE

- 1. BACKFILL MATERIAL BELOW PAVED OR CONCRETE AREAS, BEDDING MATERIAL, AND SAND BLANKET SHALL BE COMPACTED TO NOT LESS THAN 95% OF AASHTO T 99, METHOD C. SUITABLE BACKFILL MATERIAL BELOW LOAM AREAS SHALL BE COMPACTED TO NOT LESS THAN 90% OF AASHTO T 99,
- 2. INSULATE GRAVITY SEWER AND FORCEMAINS WHERE THERE IS LESS THAN 5'-0" OF COVER WITH 2" THICK CLOSED CELL RIGID BOARD INSULATION, 18" ON EACH SIDE OF PIPE.
- 3. MAINTAIN 12" MINIMUM HORIZONTAL SEPARATION AND WIDEN TRENCH ACCORDINGLY IF MULTIPLE PIPES ARE IN TRENCH.

SAND	BLANKET/BARRIER	SCREENED GRAVEL	OR CRUSHED STONE BEDDING*
SIEVE SIZE	% FINER BY WEIGHT	SIEVE SIZE	% PASSING BY WEIGHT
1/2" 200	90 - 100 0 - 15	1" 3/4" 3/8" # 4 # 8	100 90 - 100 20 - 55 0 - 10 0 - 5

* EQUIVALENT TO STANDARD STONE SIZE #67 -SECTION 703 OF NHDOT STANDARD SPECIFICATIONS

STANDARD TRENCH NOTES

- ORDERED EXCAVATION OF UNSUITABLE MATERIAL BELOW GRADE: BACKFILL AS STATED IN THE TECHNICAL SPECIFICATIONS OR AS SHOWN ON THE DRAWING.
- 2. BEDDING: SCREENED GRAVEL AND/OR CRUSHED STONE FREE FROM CLAY, LOAM, ORGANIC MATTER AND MEETING THE GRADATION SHOWN IN THE TRENCH DETAIL. WHERE ORDERED BY THE ENGINEER TO STABILIZE THE BASE, SCREENED GRAVEL OR CRUSHED STONE 1-1/2 INCH TO 1/2 INCH SHALL BE USED.
- 3. SAND BLANKET: CLEAN SAND FREE FROM ORGANIC MATTER MEETING THE GRADATION SHOWN IN THE TRENCH DETAIL. BLANKET MAY BE REPLACED WITH BEDDING MATERIAL FOR CAST-IRON, DUCTILE IRON, AND REINFORCED CONCRETE PIPE PROVIDED THAT NO STONE LARGER THAN 2" IS IN CONTACT WITH THE PIPE AND THE GEOTEXTILE IS RELOCATED ACCORDINGLY.
- 4. SUITABLE MATERIAL: IN ROADS, ROAD SHOULDERS, WALKWAYS AND TRAVELED WAYS, SUITABLE MATERIAL FOR TRENCH BACKFILL SHALL BE THE NATURAL MATERIAL EXCAVATED DURING THE COURSE OF CONSTRUCTION, BUT SHALL EXCLUDE DEBRIS, PIECES OF PAVEMENT, ORGANIC MATTER, TOP SOIL, ALL WET OR SOFT MUCK, PEAT, OR CLAY, ALL EXCAVATED LEDGE MATERIAL, ALL ROCKS OVER 6 INCHES IN LARGEST DIMENSION, AND ANY MATERIAL WHICH, AS DETERMINED BY THE ENGINEER, WILL NOT PROVIDE SUFFICIENT SUPPORT OR MAINTAIN THE COMPLETED CONSTRUCTION IN A STABLE CONDITION. IN CROSS COUNTRY CONSTRUCTION, SUITABLE MATERIAL SHALL BE AS DESCRIBED ABOVE, EXCEPT THAT THE ENGINEER MAY PERMIT THE USE OF TOP SOIL, LOAM, MUCK, OR PEAT, IF SATISFIED THAT THE COMPLETED CONSTRUCTION WILL BE ENTIRELY STABLE AND PROVIDED THAT EASY ACCESS TO THE SEWER FOR MAINTENANCE AND POSSIBLE RECONSTRUCTION WILL BE PRESERVED.
- 5. BASE COURSE AND PAVEMENT SHALL MEET THE REQUIREMENTS OF THE NEW HAMPSHIRE DEPARTMENT OF TRANSPORTATION'S LATEST EDITION OF THE STANDARD SPECIFICATIONS FOR HIGHWAYS AND BRIDGES - DIVISIONS 300 AND 400 RESPECTIVELY.
- 6. SHEETING, IF REQUIRED: WHERE SHEETING IS PLACED ALONGSIDE THE PIPE AND EXTENDS BELOW MID-DIAMETER, IT SHALL BE CUT OFF AND LEFT IN PLACE TO AN ELEVATION 1 FOOT ABOVE THE TOP OF PIPE. WHERE SHEETING IS ORDERED BY THE ENGINEER TO BE LEFT IN PLACE, IT SHALL BE CUT OFF AT LEAST 3 FEET BELOW FINISHED GRADE, BUT NOT LESS THAT 1 FOOT ABOVE THE TOP OF THE PIPE.
- 7. W = MAXIMUM ALLOWABLE TRENCH WIDTH TO A PLANE 12 INCHES ABOVE THE PIPE. FOR PIPES 15 INCHES NOMINAL DIAMETER OR LESS, W SHALL BE NO MORE THAN 36 INCHES. FOR PIPES GREATER THAN 15 INCHES IN NOMINAL DIAMETER, W SHALL BE 24 INCHES PLUS PIPE OUTSIDE DIAMETER (O.D.) ALSO, W SHALL BE THE PAYMENT WIDTH FOR LEDGE EXCAVATION AND FOR ORDERED EXCAVATION BELOW GRADE.
- 8. FOR CROSS COUNTRY CONSTRUCTION, BACKFILL, FILL AND/OR LOAM SHALL BE MOUNDED TO A HEIGHT OF 6 INCHES ABOVE THE ORIGINAL GROUND SURFACE.
- 9. CONCRETE FOR ENCASEMENT SHALL CONFORM TO THE NEW HAMPSHIRE DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS STANDARD SPECIFICATION REQUIREMENTS FOR CLASS A (3000#) CONCRETE AS FOLLOWS:

CEMENT: 6.0 BAGS PER CUBIC YARD WATER: 5.75 GALLONS PER BAG CEMENT MAXIMUM SIZE OF AGGREGATE: 1 INCH

CONCRETE ENCASEMENT IS NOT ALLOWED FOR PVC PIPE.

- 10. CONCRETE FULL ENCASEMENT: IF FULL ENCASEMENT IS UTILIZED, DEPTH OF CONCRETE BELOW PIPE SHALL BE 1/4 I.D. (4" MINIMUM). BLOCK SUPPORT SHALL BE SOLID CONCRETE BLOCKS.
- 11. NEW HAMPSHIRE DEPARTMENT OF ENVIRONMENTAL SERVICES DESIGN STANDARDS REQUIRE TEN FEET (10') SEPARATION BETWEEN WATER AND SEWER. REFER TO TOWN'S STANDARD SPECIFICATIONS FOR METHODS OF PROTECTION IN AREAS THAT CANNOT MEET THESE REQUIREMENTS.

NOT TO SCALE

SEWER MANHOLE DETAIL B

OF MANHOLE

MORTAR

INTERNAL CLAMP

ANODIZED ALUMINUM -

INSIDE FACE

OF MANHOLE

SEWER MANHOLE DETAIL A

BITUMASTIC

NOTE: ALL GASKETS, SEALANTS, MORTAR, ETC. SHALL BE

STAINLESS STEEL STRAP

INSTALLED IN ACCORDANCE WITH MANUFACTURERS

NOT TO SCALE

APPROVED PRFFORMED

KENT SEAL NO. 2

75% OF THE JOINT CAVITY.

THE AMOUNT OF SEALANT SHALL

BE SUFFICIENT TO FILL AT LEAST

RUBBER-LIKE

KOR-N-SEAL BOOT

BITUMASTIC SEALANT

RAM-NEK

CLEANOUT

AREAS ONLY

CLEANOUT RIM MAY BE

ABOVE FINISH GRADE IN

SET AT ELEVATIONS

CERTAIN APPLICATIONS -

LANDSCAPE AREA -

MANHOLE, FOR TRAFFIC

NOT TO SCALE

PROVIDE: -ZURN Z-1400 CLEAN OUTS IN

LANDSCAPED AREAS

NON-TRAFFIC AREAS & SIDEWALKS

-7URN Z-1449 CLEAN OUTS IN

ZURN Z-1400 HD CLEAN OUTS IN

STATION" TYPE MANHOLE, OPW

- ASPHALT OR CONCRETE PAVING

CLEAN OUT LOCATIONS MARKED

C.O. ON GRADING & UTILITY PLANS

(PHONE: 513-870-3100)

SEE PLANS AND DETAILS

TRAFFIC AREAS WITH A "SERVICE

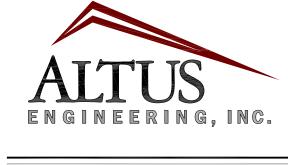
#104 A12 - DOVER CORP./OPW DIV.

CLEAN OUT PLUG, 3" BELOW PAVING

SEWER TRENCH

MANHOLE NOTES:

- 1. IT IS THE INTENTION OF THE NHDES THAT THE MANHOLE, INCLUDING ALL COMPONENT PARTS, HAVE ADEQUATE SPACE, STRENGTH AND LEAKPROOF QUALITIES CONSIDERED NECESSARY BY THE COMMISSION FOR THE INTENDED SERVICE. SPACE REQUIREMENTS AND CONFIGURATIONS, SHALL BE AS SHOWN ON THE DRAWING. MANHOLES MAY BE AN ASSEMBLY OF PRECAST SECTIONS, WITH OR WITHOUT STEEL REINFORCEMENT, WITH ADEQUATE JOINTING, OR CONCRETE CAST MONOLITHICALLY IN PLACE WITH OR WITHOUT REINFORCEMENT IN ANY APPROVED MANHOLE. THE COMPLETE STRUCTURE SHALL BE OF SUCH MATERIAL AND QUALITY AS TO WITHSTAND LOADS OF 8 TONS (H-20 LOADING) WITHOUT FAILURE AND PREVENT LEAKAGE IN EXCESS OF ONE GALLON PER DAY PER VERTICAL FOOT OF MAN-HOLE CONTINUOUSLY FOR THE LIFE OF THE STRUCTURE, A PERIOD GENERALLY IN EXCESS OF 25 YEARS IS TO BE UNDERSTOOD IN BOTH CASES.
- 2. BARRELS AND CONE SECTIONS SHALL BE PRECAST REINFORCED.
- 3. PRECAST CONCRETE BARREL SECTIONS, CONES AND BASES SHALL CONFORM TO ASTM C478.
- 4. LEAKAGE TEST SHALL BE PERFORMED IN ACCORDANCE WITH THE TOWN'S STANDARD SPECIFICATIONS AND WITH NHDES Env-Wg 704.17.
- 5. INVERTS AND SHELVES MANHOLES SHALL HAVE A BRICK PAVED SHELF AND INVERT CONSTRUCTED TO CONFORM TO THE SIZE OF PIPE AND FLOW AT CHANGES IN DIRECTION. THE INVERTS SHALL BE LAID OUT IN CURVES, OF THE LONGEST RADIUS POSSIBLE TANGENT TO THE CENTER LINE OF THE SEWER PIPES. SHELVES SHALL BE CONSTRUCTED TO THE ELEVATION OF THE HIGHEST PIPE CROWN AND SLOPE TO DRAIN TOWARD THE FLOWING THROUGH CHANNEL. UNDERLAYMENT OF INVERT AND SHELF SHALL CONSIST OF BRICK MASONRY. BRICK MASONRY SHALL CONFORM WITH ASTM C32.
- 6. MORTAR MORTAR USED FOR MANHOLE CONSTRUCTION SHALL CONFORM WITH NHDES Env-Wa 704.13.
- 7. FRAMES AND COVERS MANHOLE FRAMES AND COVERS SHALL CONFORM WITH ASTM A48/48M, BE OF HEAVY DUTY DESIGN AND PROVIDE A 30-INCH CLEAR OPENING. A 3-INCH (MINIMUM HEIGHT) LETTER "S" FOR SEWERS OR "D" FOR DRAINS SHALL BE PLAINLY CAST INTO THE CENTER OF EACH
- 8. <u>BEDDING</u> SCREENED GRAVEL AND/OR CRUSHED STONE FREE FROM CLAY, LOAM, ORGANIC MATTER AND MEETING ASTM C33.


100% PASSING 1 INCH SCREEN 0-10% PASSING #4 SIEVE 90-100% PASSING 3/4 INCH SCREEN 0-5% PASSING #8 SIEVE

- 20- 55% PASSING 3/8 INCH SCREEN WHERE ORDERED BY THE ENGINEER TO STABILIZE THE BASE, SCREENED GRAVEL OR CRUSHED STONE 1-1/2" TO 1/2" SHALL BE USED.
- 9. <u>CONCRETE</u> FOR DROP SUPPORT SHALL CONFORM TO THE REQUIREMENT FOR CLASS A (3000 LBS.) CONCRETE OF THE NEW HAMPSHIRE DEPARTMENT OF TRANSPORTATION STANDARD SPECIFICATIONS AS FOLLOWS:

CEMENT 6.0 BAGS PER CUBIC YARD 5.75 GALLONS PER BAG CEMENT MAXIMUM SIZE OF AGGREGATE 1 INCH 9.

- 10. FLEXIBLE JOINT A FLEXIBLE JOINT SHALL BE PROVIDED WITHIN THE FOLLOWING DISTANCES: PVC PIPE - 60"
 - RCP & CI PIPE ALL SIZES 48"
 - AC & VC PIPE UP THROUGH 12" DIAMETER 18" AC & VC PIPE - LARGER THAN 12" DIAMETER - 36"
- 11. SHALLOW MANHOLE IN LIEU OF A CONE SECTION, WHEN MANHOLE DEPTH IS LESS THAN 6 FEET, A

REINFORCED CONCRETE SLAB COVER MAY BE USED HAVING AN ECCENTRIC ENTRANCE OPENING AND CAPABLE OF SUPPORTING H-20 LOADS.

133 Court Street (603) 433-2335

Portsmouth, NH 03801 www.altus-eng.com

NOT FOR CONSTRUCTION

<u>ISSUED FOR:</u>

ISSUE DATE:

AUGUST 23, 2021

<u>REVISIONS</u> NO. DESCRIPTION

BY DATE EBS 08/23/2

TAC

EBS DRAWN BY: EDW APPROVED BY: 5161-DS.dwg DRAWING FILE:

SCALE:

NOT TO SCALE

NAVEESHA HOSPITALITY, LLC

440 BEDFORD ST. LEXINGTON, MA 02420

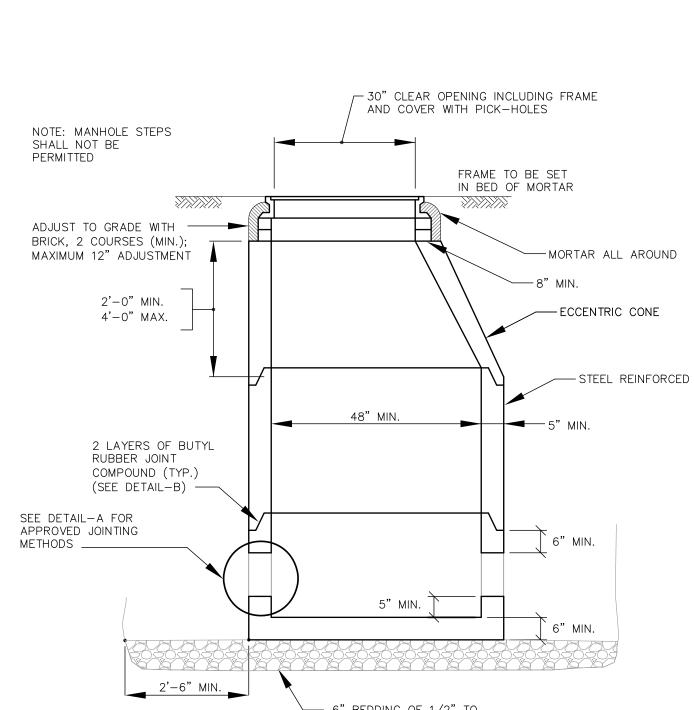
APPLICANT:

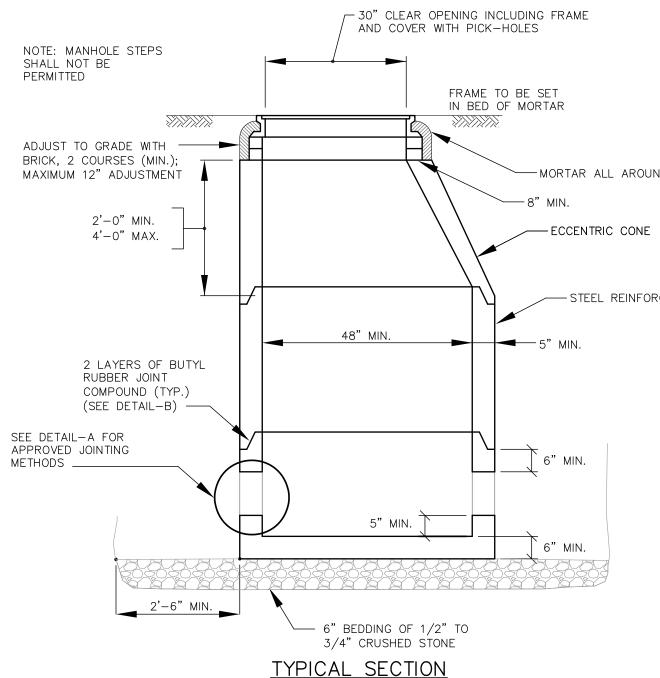
MONARCH VILLAGE, LLC

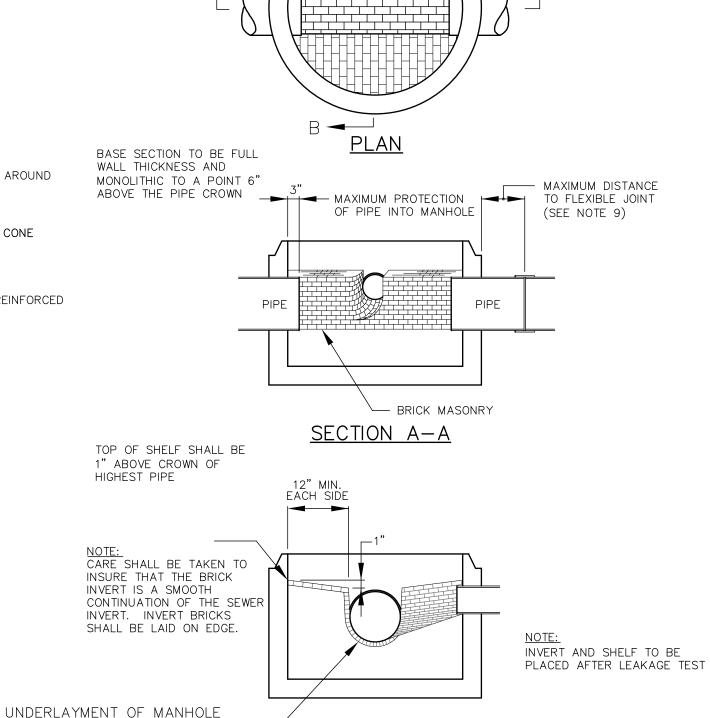
P.O. BOX 365 EAST HAMPSTEAD, NH 03826

PROJECT:

MONARCH **VILLAGE**


TAX MAP 297, LOT 6


3548 LAFAYETTE ROAD PORTSMOUTH, NH 03801


TITLE:

DETAIL SHEET

SHEET NUMBER:

INVERT AND SHELF SHALL SECTION B-B

RUBBER-LIKE FLEXIBLE SLEEVE

PIPE

KOR-N-SEAL JOINT SLEEVE

(OR EQUAL)

INSTALLED IN ACCORDANCE WITH MANUFACTURERS

NOTE: ALL GASKETS, SEALANTS, MORTAR, ETC. SHALL BE

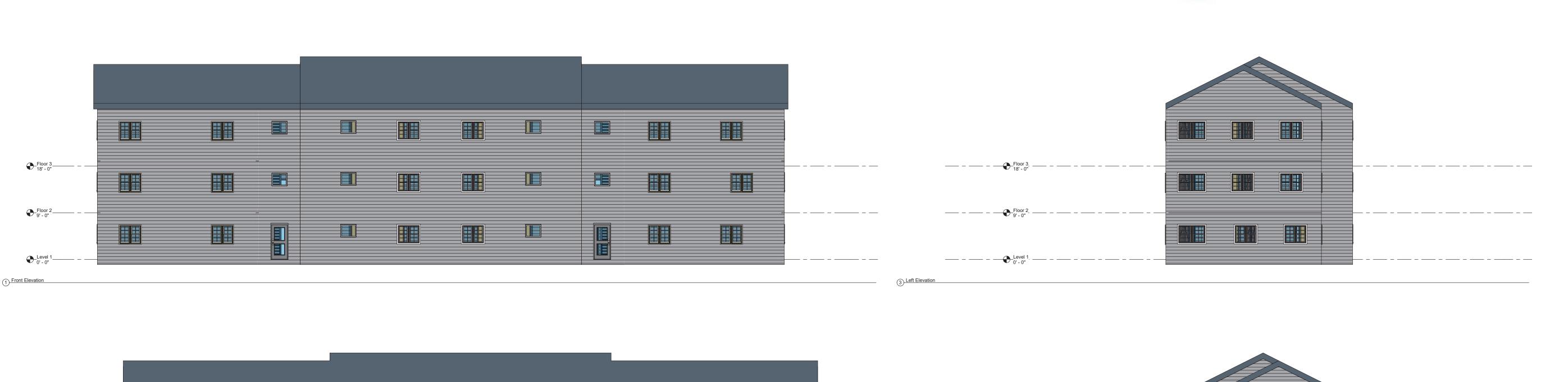
WRITTEN INSTRUCTIONS.

STAINLESS STEEL STRAP

LOCK-JOINT FLEXIBLE MANHOLE SLEEVE (OR EQUAL)

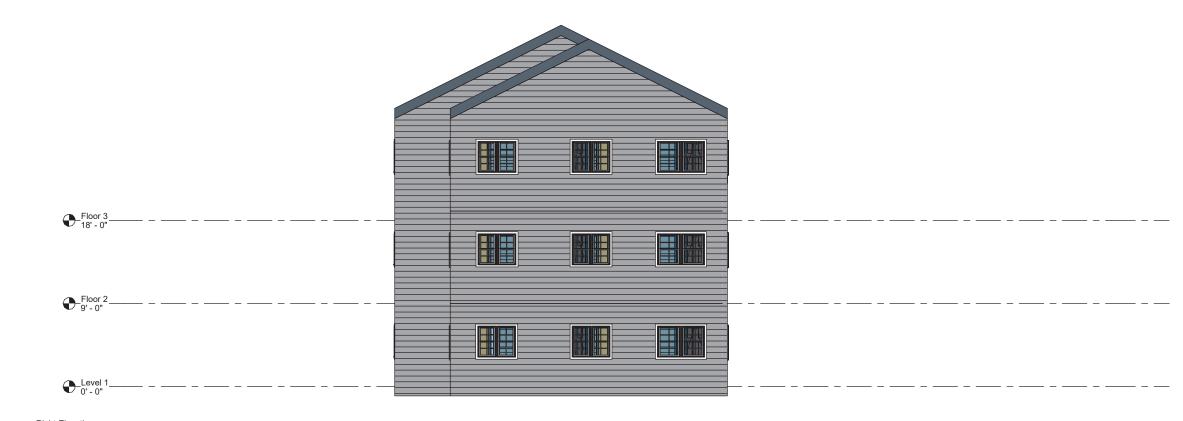
NOT TO SCALE

SEWER MANHOLE


BE BRICK MASONRY.

NOT TO SCALE

D - 7



Back Elevation

