

L-0700-019 January 9, 2020

Mr. Dexter Legg, Chair City of Portsmouth Planning Board 1 Junkins Avenue Portsmouth, New Hampshire 03801

Re: Lonza Biologics G2E– Proposed Parking Expansion Site Plan Review Application

Dear Chairman Legg:

On behalf of Lonza Biologics, we are pleased to submit the following information to support a request to the Planning Board for a recommendation for approval to the Pease Development Authority (PDA) for Site Plan Review for proposed exterior improvements along Goose Bay Drive in the rear of its existing facility that is located at 101 International Drive:

- One (1) copy of the PDA Application for Site Review dated December 23, 2019;
- One (1) copy of the Owner Authorization dated December 23, 2019;
- One (1) full size & one (1) half size copies of the Site Plan Set revised January 9, 2020;
- One (1) copy of the Drainage Analysis Memorandum revised January 9, 2020;
- One (1) CD containing digital copies of the above listed materials

The proposed project is located at 101 International Drive which is identified as Map 305 Lot 6 on the City of Portsmouth Tax Maps. The proposed project includes parking expansions at three (3) different locations on site. The work at each location, referenced as the Northern, Eastern, and Western Expansions, can be summarized as follows:

- Northern Expansion: twenty-two (22) proposed parking spaces with drainage improvements and driveway access, including a rain garden to collect and treat runoff.
- Eastern Expansion: eighteen (18) proposed parking spaces along the existing access road and drainage improvements including deep sump catch basins with oil separator hoods which discharge to a Contech Jellyfish stormwater filtration unit that will provide treatment before tying into the existing stormwater management system.
- Western Expansion: twenty (20) proposed parking spaces built out from the existing lot, relocation of two (2) light poles, and drainage improvements including a deep sump catch basin with oil separator hood tied to an underground infiltration system.

On January 7, 2020 the project received a recommendation of approval from the Technical Advisory Committee (TAC) with the following stipulations:

1. Plans shall be updated to include two more additional ADA spaces, closest to the building entrance, as required by standards.

The number of required ADA parking spaces have been calculated by considering the garage and surface parking lots as two separate parking facilities. This makes the total required number of ADA spaces 15. There are 11 existing ADA spaces on site and an additional 4 ADA spaces have been added to the plans.

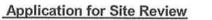
2. Plans shall be updated to show replacement trees along the road where new parking is proposed, consistent with those that are planned for the opposite side of the road.

Trees have been added to the plans along Goose Bay Drive to replace the trees being removed as part of this project. Tree species have been chosen to match the trees planned for the opposite side of the road.

3. The applicant shall verify if there is a stand pipe in the garage and coordinate with the Fire Department on requirements for access.

The parking garage two stand pipes one adjacent to each stair well, one in the north corner and one in the south corner. The fire department connections for the stand pipes are located at the entrance to the garage along Goose Bay Drive and the exit of the garage on the International Drive side. The proposed northern parking expansion area does not limit or change the fire departments access to these connection points. An e-mail was sent to Deputy Chief Howe on January 9, 2020 to confirm the Fire Department is satisfied with their access.

On December 19, 2019, the PDA Board granted conceptual approval for these improvements. On January 7, 2020, the Technical Advisory Committee (TAC) voted to recommend Site Plan Review approval. We respectfully request to be placed on the Planning Board meeting agenda for January 16, 2020. If you have any questions or need any additional information, please contact Patrick Crimmins by phone at (603) 433-8818 or by email at <u>pmcrimmins@tighebond.com</u>.


Sincerely, TIGHE & BOND, INC.

Patrick M. Crimmins, PE Senior Project Manager

Cc: Lonza Biologics (via email) Pease Development Authority

Neil A. Hansen, PE Project Engineer

Pease Development Authority 55 International Drive, Portsmouth, NH 03801, (603) 433-6088

For PDA Use Only				
Date Submitted:	Municipal Review:	Fee:	_	
Application Complete:	Date Forwarded:	Paid:	Check #:	_

Applicant Information

Applicant: Lonza Biologics, Inc.	Agent: Tighe & Bond, Inc.	
Address: 101 International Drive	Address: 177 Corporate Drive	
Portsmouth, NH 03801	Portsmouth, NH 03801	
Business Phone: 603-334-6100	Business Phone: 603-433-8818	
Mobile Phone:	Mobile Phone:	
Fax:	Fax:	

Site Information

Portsmouth Tax Map:	305	Lot #: 0006	Zone: Airport, Business, Commercial	
Site Address / Location	: 101 Inte	ernational Drive,	Portsmouth, NH 03801	
Site Address / Location	:		Area of On-site Wetlands:	

Activity Information

Change of Use:	Yes []	No [X]	Existing Use: Office/Research/Manufacturing
				Proposed Use: Office/Research/Manufacturing
Description of Project	t .	Th	ne propose	ed project consists of the construction of 60 additional parking
		sp	aces to su	pport the existing facilities operations. The spaces are in three
		sej	parate are	as throughout the property. The northern expansion area will be
		tre	ated with	a proposed raingarden, and the western and eastern expansion
		are	eas will co	nnect to the existing drainage system.
			-	

All above information shall be shown on a site plan submitted with this application. Provide 3 full size hard copies and one PDF copy of all application materials as well as one half-size set of drawings to PDA. Applicant shall supply additional copies as may be required by applicable municipality. Refer to Chapter 400 of PDA land Use Controls for additional information.

Certification

N:\Engineer\ ApplicationforSiteReview.xlsx

Owner's/Agent Letter of Authorization

This letter is to authorize <u>Tighe & Bond, Inc.</u> (Civil Engineer), to represent and submit on behalf of <u>Lonza Biologics, Inc.</u> (Applicant), applications and materials in all site design and permitting matters for the proposed project at 101 International Drive in Portsmouth, New Hampshire. This project includes the construction of parking expansion areas at three (3) different locations on site. and associated site and stormwater improvements. This authorization shall relate to those activities that are required for local, state and federal permitting for the above project and include any required signatures for those applications.

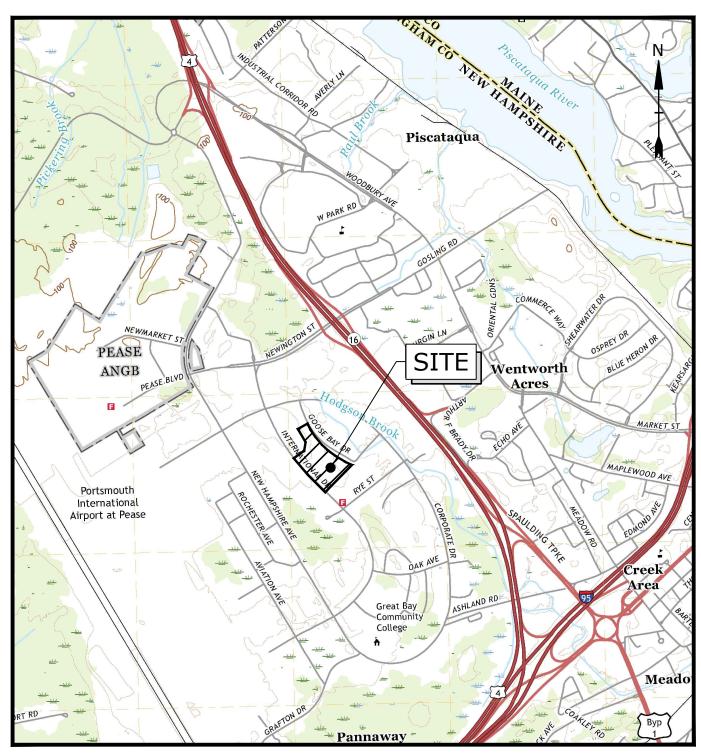
Signature

Meller

Date

MARK

DEC 19 Date


(L-0700-019 (eng auth form).docx)

PROPOSED PARKING EXPANSION LONZA BIOLOGICS **101 INTERNATIONAL DRIVE** PORTSMOUTH, NEW HAMPSHIRE DECEMBER 23, 2019 LAST REVISED: JANUARY 9, 2020

LIST OF DRAWINGS				
SHEET NO.	SHEET TITLE	LAST REVISED		
	COVER SHEET	01/09/2020		
C-101	OVERALL EXISTING CONDITIONS AND DEMOLITION NOTES	01/09/2020		
C-101.1	EXISTING CONDITIONS AND DEMOLITION PLAN	01/09/2020		
C-102	OVERALL SITE PLAN AND GENERAL NOTES	01/09/2020		
C-102.1	SITE PLAN	01/09/2020		
C-103	GRADING, DRAINAGE, EROSION CONTROL, AND UTILITIES PLAN	01/09/2020		
C-501	EROSION CONTROL NOTES AND DETAILS SHEET	01/09/2020		
C-502	DETAILS SHEET	01/09/2020		
C-503	DETAILS SHEET	01/09/2020		
C-504	DETAILS SHEET	01/09/2020		
C-505	DETAILS SHEET	01/09/2020		

LIST OF PERMITS					
LOCAL	STATUS	DATE			
SITE PLAN REVIEW PERMIT					

T&B PROJECT NO: L-0700-019

LESSOR:

OWNER:

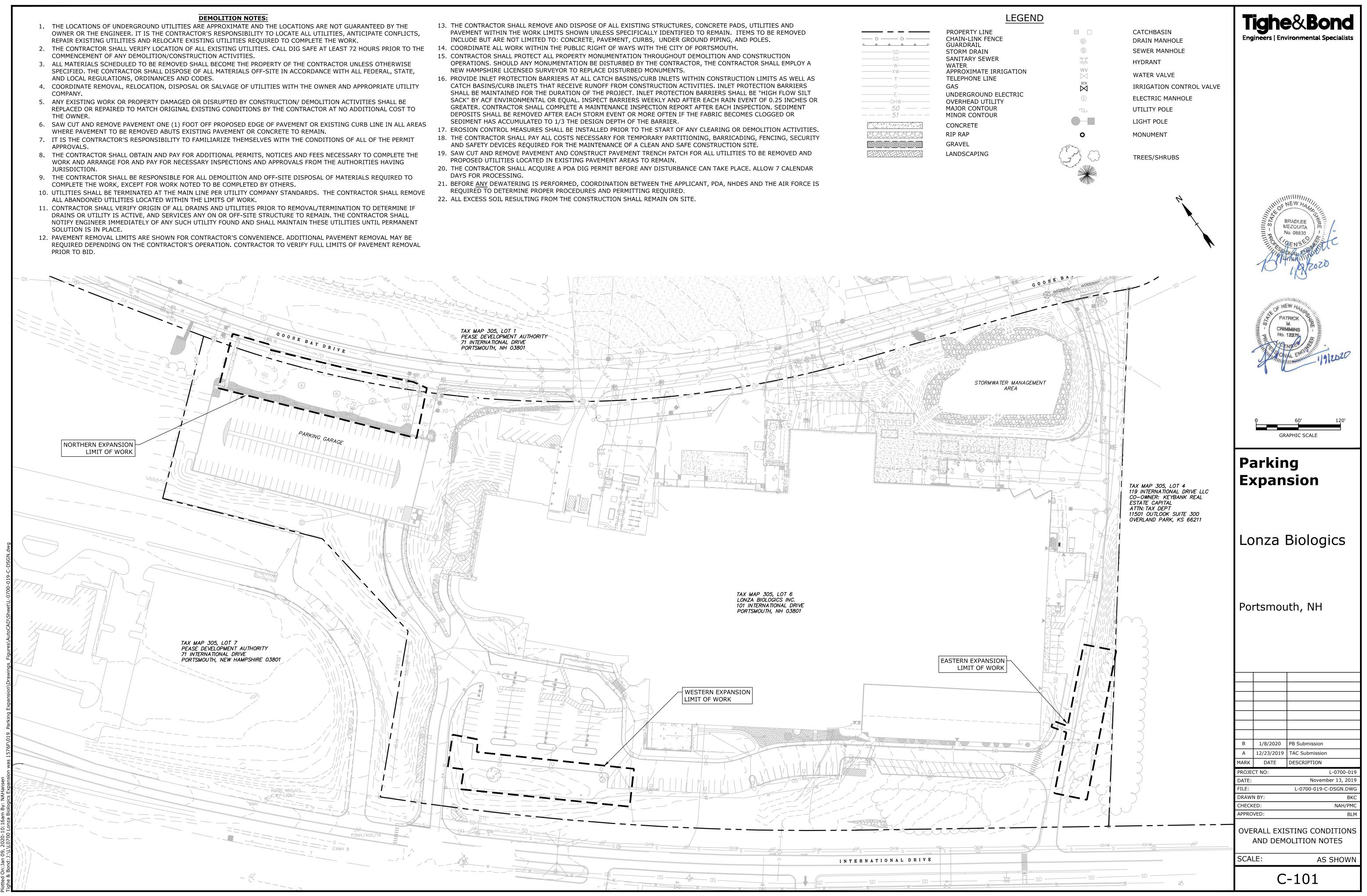
CIVIL ENGINEER:

SURVEYOR:

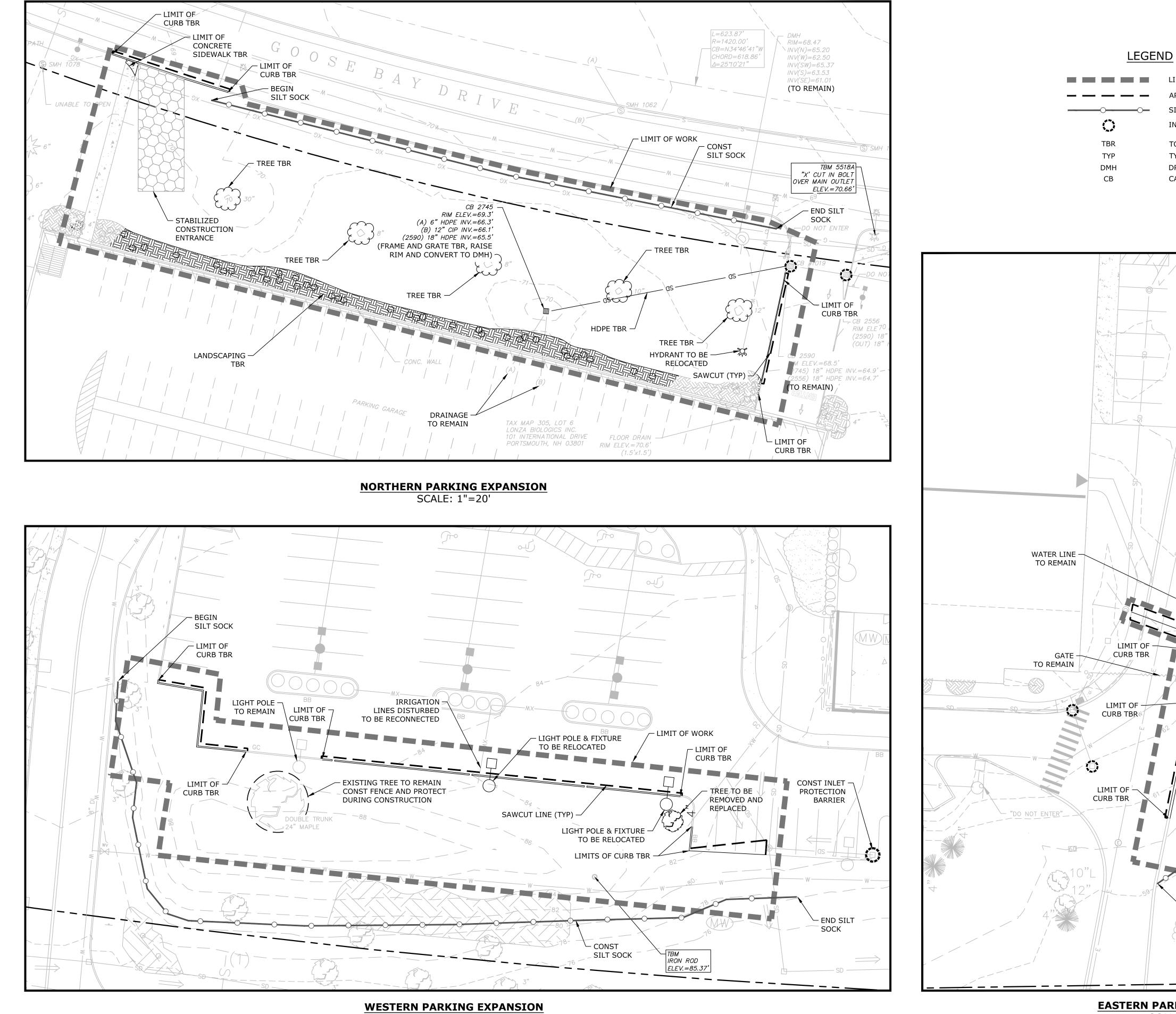
LOCATION MAP SCALE: 1" = 2,000'

PEASE DEVELOPMENT AUTHORITY 55 INTERNATIONAL DRIVE PORTSMOUTH, NEW HAMPSHIRE 03801

LONZA BIOLOGICS **101 INTERNATIONAL DRIVE**

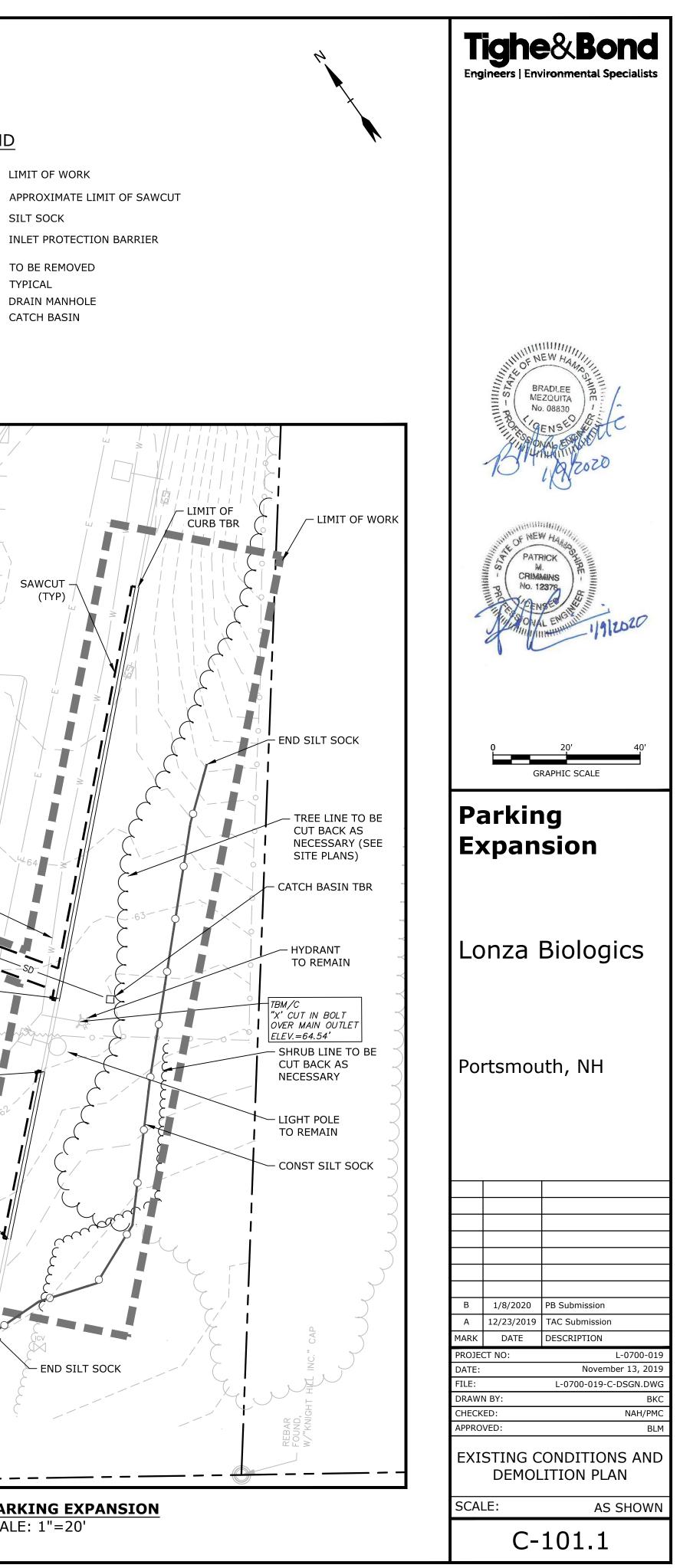

PORTSMOUTH, NH 03801

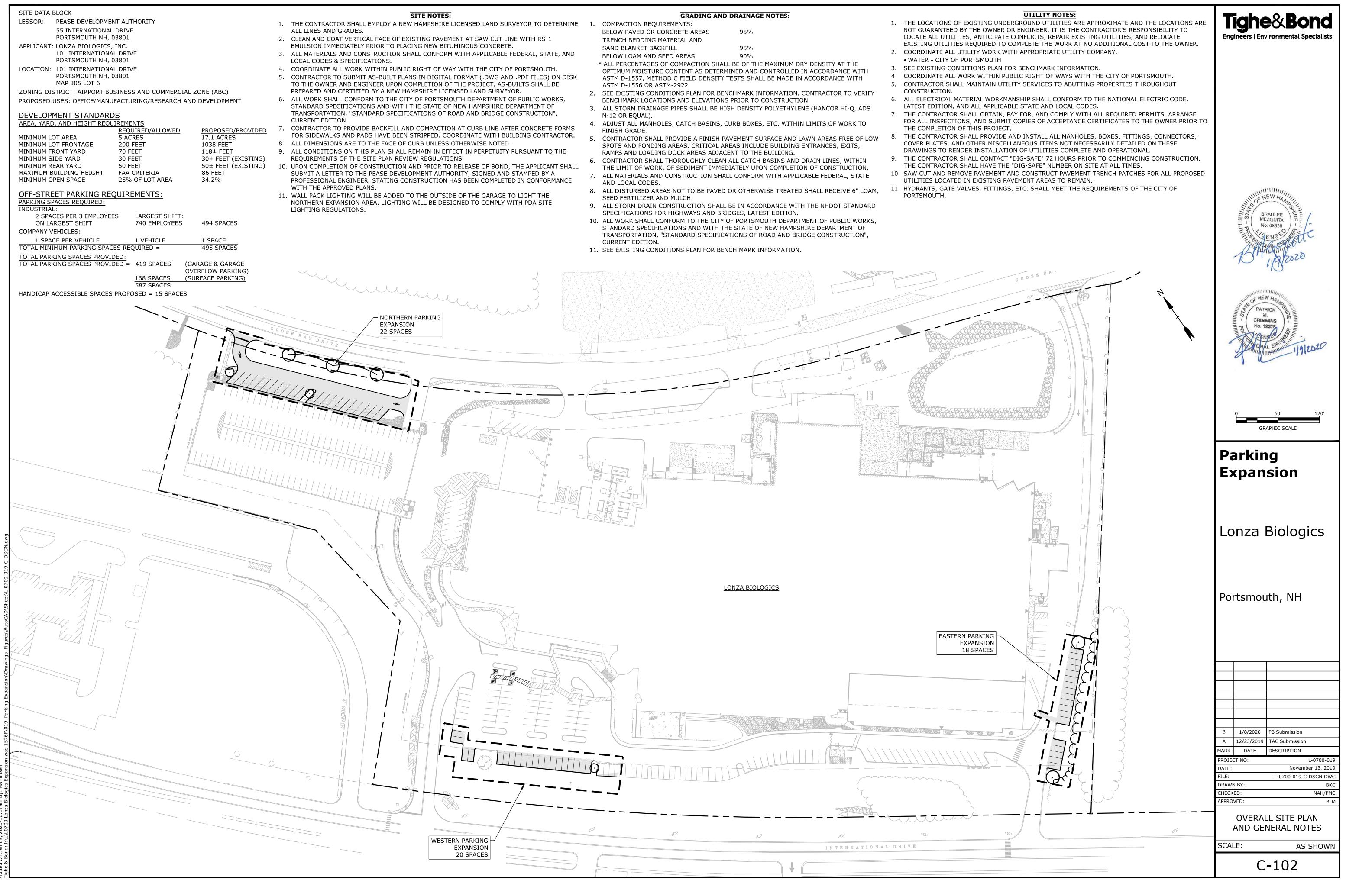
Tiahe&Bond

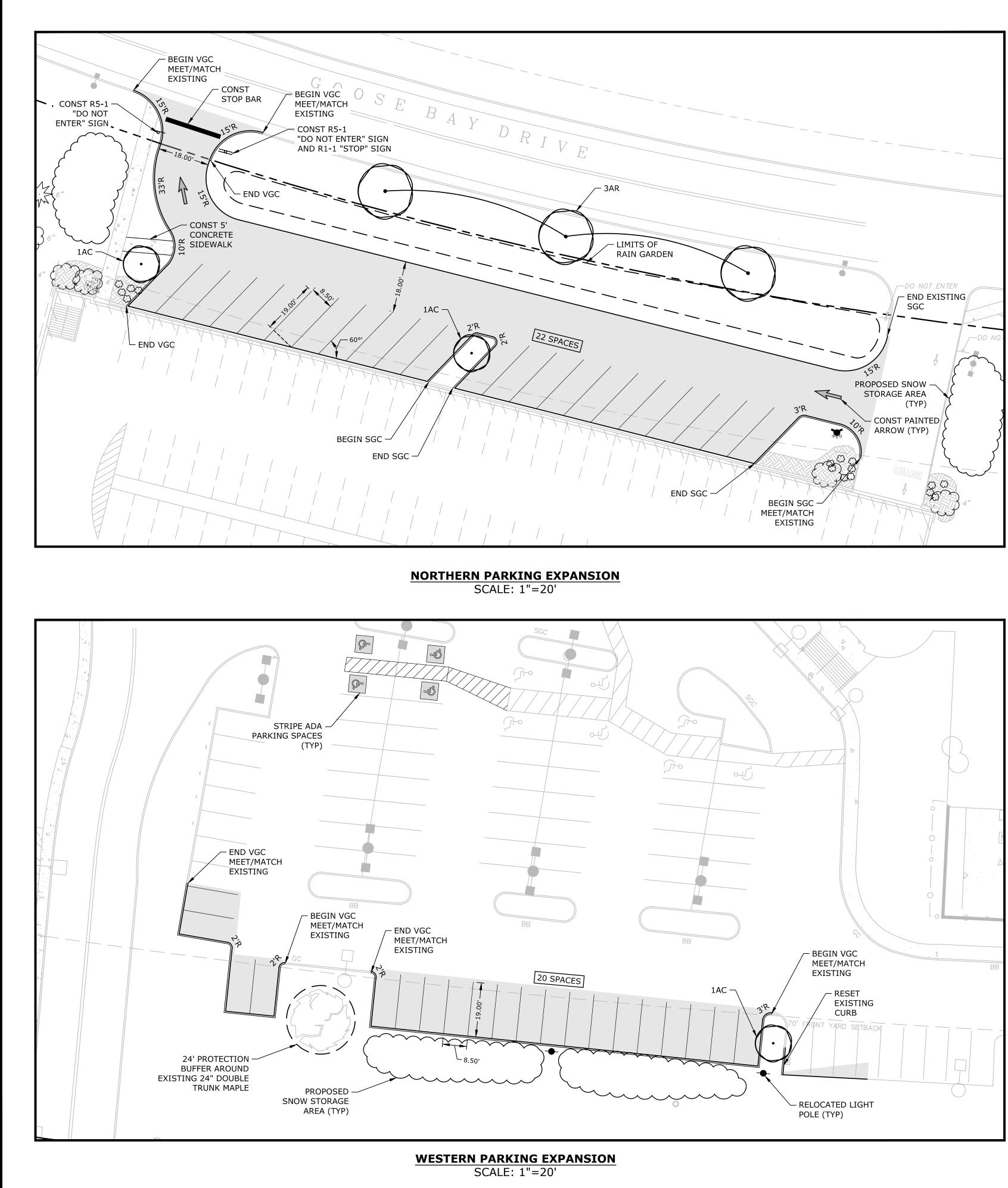

177 CORPORATE DRIVE PORTSMOUTH, NEW HAMPSHIRE 03801

DOUCET SURVEY, INC. 102 KENT PLACE NEWMARKET, NEW HAMPSHIRE 03857

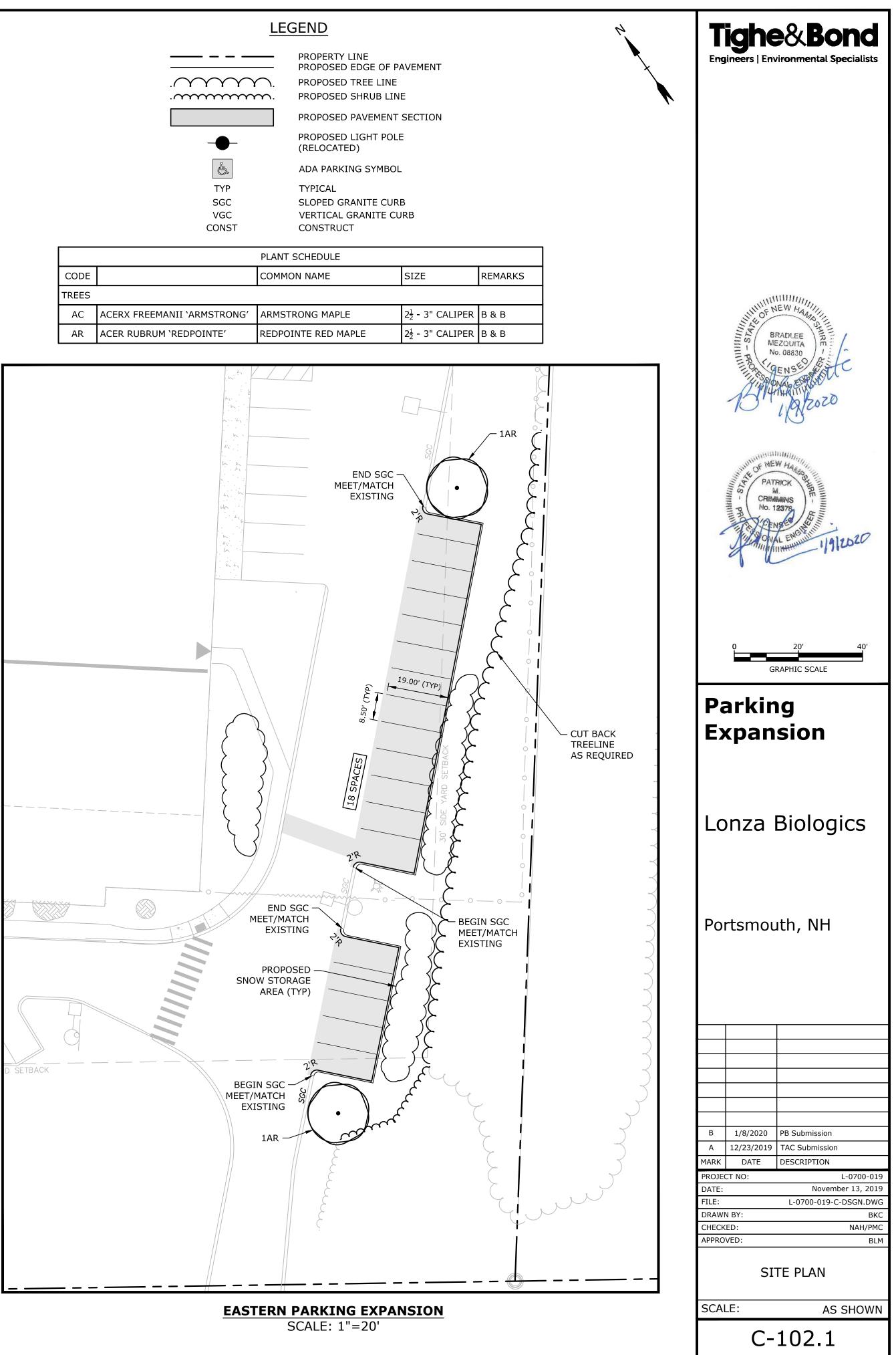
PB SUBMISSION COMPLETE SET 11 SHEETS

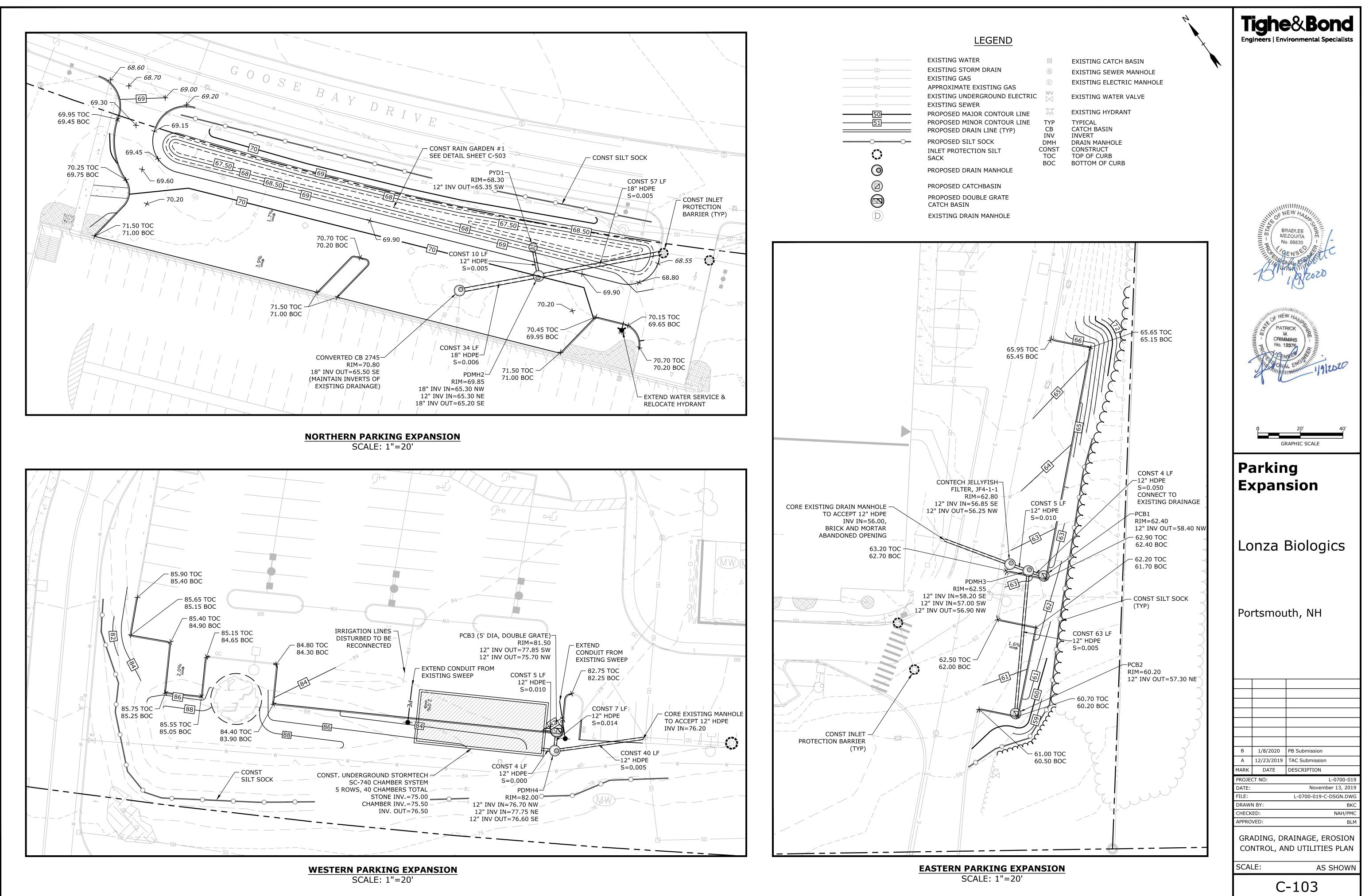


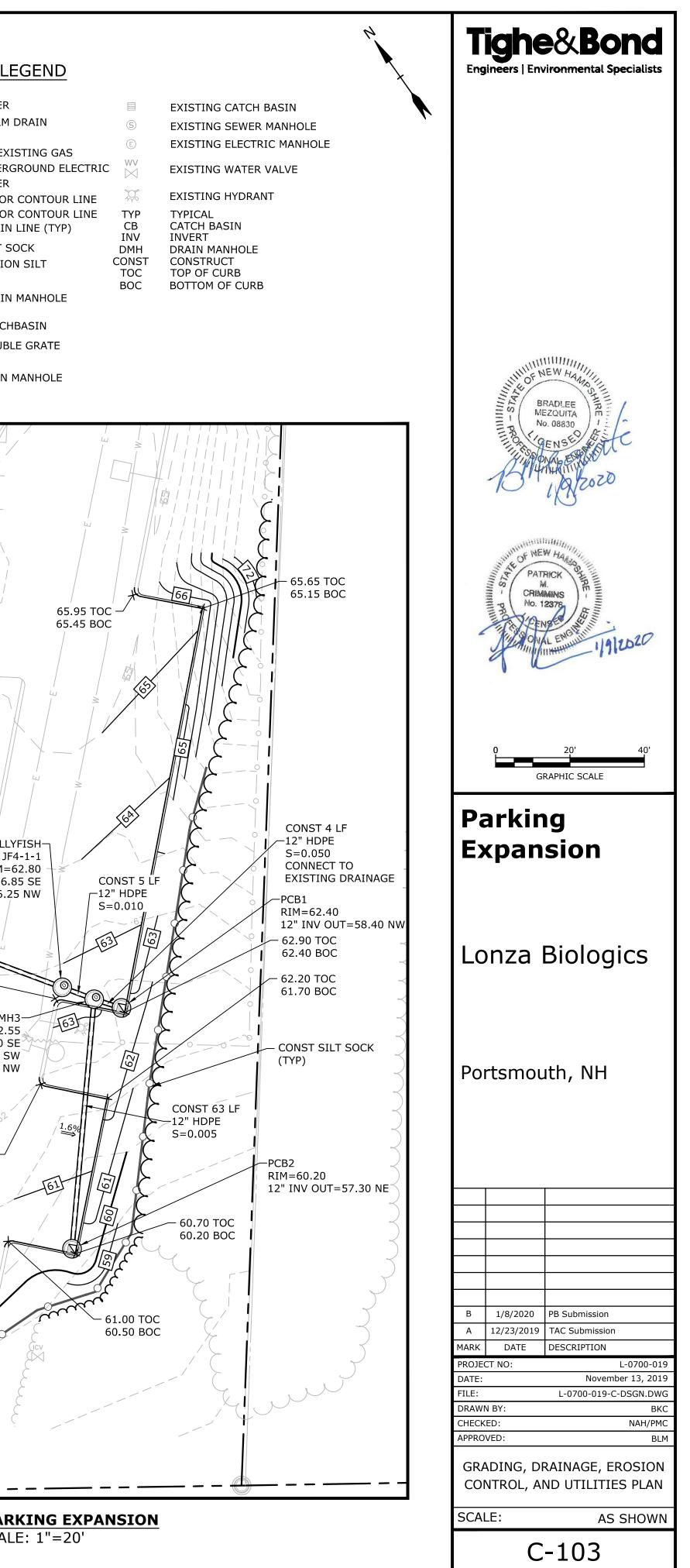

o		- 0 -		
.0	0		0	
	—S	D		
	S	S		
	V	V		
	X	W		
	1			
	(
		-		
		-		
	OH	W		
	- 5	0 -		
	- — 5	1 —		_
19 ⁻⁰			.4	1
4~				ļ
81	LEL	K	BL	
7/ 10/2/				1



SCALE: 1"=20'


EASTERN PARKING EXPANSION SCALE: 1"=20'





9/20 09,

PROJECT LESSOR:	PEASE DEVELOPMENT AUTHORITY	 B. MULCHING. 4. ALL AREAS SHALL BE STABILIZED WITHIN 45 I
	55 INTERNATIONAL DRIVE PORTSMOUTH, NH 03801	5. WHEN CONSTRUCTION ACTIVITY PERMANENTL OF NEARBY SURFACE WATERS OR DELINEATED
PROJECT APPLICANT:	LONZA BIOLOGICS 101 INTERNATIONAL DRIVE	WITHIN SEVEN (7) DAYS OR PRIOR TO A RAIN CEASES PERMANENTLY IN AN THESE AREAS, S
PROJECT ADDRESS:	PORTSMOUTH, NH 03801 101 INTERNATIONAL DRIVE	BARRIERS AND ANY EARTH/DIKES SHALL BE R ESTABLISHED.
PROJECT LATITUDE:	PORTSMOUTH, NH 03801	 DURING CONSTRUCTION, RUNOFF WILL BE DIV DIKES, PIPING OR STABILIZED CHANNELS WH
PROJECT LONGITUDE		WILL BE FILTERED THROUGH SILT FENCES, MU SOCKS. ALL STORM DRAIN BASIN INLETS SHA
PROJECT DESCRIPT	ION CT INCLUDES THE EXPANSION OF EXISTING PARKING FACILITIES AT	AND TRASH RACKS. THE SITE SHALL BE STABI
LONZA BIOLOGICS, A ADDITIONAL IMPERVI	S WELL AS DRAINAGE IMPROVEMENTS TO SUPPORT SOME OF THE OUS SURFACES.	DUST CONTROL: 1. THE CONTRACTOR SHALL BE RESPONSIBLE TO
DISTURBED AREA		CONSTRUCTION PERIOD. 2. DUST CONTROL METHODS SHALL INCLUDE, BU
	BE DISTURBED IS APPROXIMATELY 0.96 ACRES.	EXPOSED AREAS, COVERING LOADED DUMP TF MULCHING.
	TICS INTENSITY SOIL SURVEY PREPARED BY GOVE ENVIRONMENTAL SERVICES, 15, THE SITE SOILS VARY FROM WELL DRAINED TO VERY POORLY	3. DUST CONTROL MEASURES SHALL BE UTILIZED DUST FROM THE SITE TO ABUTTING AREAS.
DRAINED.		STOCKPILES: 1. LOCATE STOCKPILES A MINIMUM OF 50 FEET A
NAME OF RECEIVIN STORM WATER RUNO	<u>G WATERS</u> FF WILL ULTIMATELY DISCHARGE INTO HODGSON BROOK.	CULVERTS. 2. ALL STOCKPILES SHOULD BE SURROUNDED W
	QUENCE OF MAJOR ACTIVITIES:	MEASURES PRIOR TO THE ONSET OF PRECIPIT 3. PERIMETER BARRIERS SHOULD BE MAINTAINE
 CUT AND CLEAR ⁻ CONSTRUCT TEM 	REES. PORARY AND PERMANENT SEDIMENT, EROSION AND DETENTION CONTROL	TO ACCOMMODATE THE DELIVERY AND REMOV INTEGRITY OF THE BARRIER SHOULD BE INSPE
TO ANY EARTH M	ION, SEDIMENT AND DETENTION MEASURES SHALL BE INSTALLED PRIOR DVING OPERATIONS THAT WILL INFLUENCE STORMWATER RUNOFF SUCH	4. PROTECT ALL STOCKPILES FROM STORMWATE CONTROL MEASURES SUCH AS BERMS, SILT S
AS: • NEW COI		PREVENT MIGRATION OF MATERIAL BEYOND T
	S OF CONSTRUCTION SITE TO RECEIVING WATERS	OFF SITE VEHICLE TRACKING: 1. THE CONTRACTOR SHALL CONSTRUCT STABILI
CONSTRU CONSTRU ALL PERMANENT	ICTION DURING LATE WINTER AND EARLY SPRING DITCHES, SWALES, DETENTION, RETENTION AND SEDIMENTATION BASINS	ANY EXCAVATION ACTIVITIES.
	D USING THE VEGETATIVE AND NON-STRUCTURAL BMPS PRIOR TO	VEGETATION: 1. TEMPORARY GRASS COVER:
4. CLEAR AND DISP		A. SEEDBED PREPARATION:a. APPLY FERTILIZER AT THE RATE OF 600 I
6. GRADE AND GRA	ZED WITHIN 72 HOURS OF ACHIEVING FINISHED GRADE.	LIMESTONE (EQUIVALENT TO 50 PERCEN RATE OF THREE (3) TONS PER ACRE;
7. BEGIN PERMANEN	T AND TEMPORARY SEEDING AND MULCHING. ALL CUT AND FILL SLOPES AND MULCHED WITHIN 72 HOURS OF ACHIEVING FINISHED GRADE.	 B. SEEDING: a. UTILIZE ANNUAL RYE GRASS AT A RATE
8. DAILY, OR AS RE	QUIRED, CONSTRUCT TEMPORARY BERMS, DRAINS, DITCHES, PERIMETER DL MEASURES, SEDIMENT TRAPS, ETC., MULCH AND SEED AS REQUIRED.	 WHERE THE SOIL HAS BEEN COMPACTED SOIL TO A DEPTH OF TWO (2) INCHES B
	AND/OR BASINS SHALL BE USED AS NECESSARY TO CONTAIN RUNOFF	c. APPLY SEED UNIFORMLY BY HAND, CYCL INCLUDING SEED AND FERTILIZER). HYE
10. FINISH PAVING A	L ROADWAYS AND PARKING LOTS.	BE LEFT ON SOIL SURFACE. SEEDING RA
12. COMPLETE PERMA	NTAIN ALL EROSION AND SEDIMENT CONTROL MEASURES. NENT SEEDING AND LANDSCAPING. SEDIMENTS FROM COLLECTOR DEVICES AS APPROPRIATE AND THEN	C. MAINTENANCE: a. TEMPORARY SEEDING SHALL BE PERIOD
	ARY EROSION CONTROL MEASURES.	THE SOIL SURFACE SHOULD BE COVERE
		EROSION OR SEDIMENTATION IS APPARI TEMPORARY MEASURES USED IN THE IN
2. THE PROJECT IS	ON SEQUENCE MUST LIMIT THE DURATION AND AREA OF DISTURBANCE. O BE MANAGED IN A MANNER THAT MEETS THE REQUIREMENTS AND	DAMS, ETC.). 2. VEGETATIVE PRACTICE:
	30:53 AND CHAPTER AGR 3800 RELATIVE TO INVASIVE SPECIES.	A. FOR PERMANENT MEASURES AND PLANTING a. LIMESTONE SHALL BE THOROUGHLY INC
	ITROL MEASURES AND PRACTICES SHALL CONFORM TO THE "NEW	OF THREE (3) TONS PER ACRE IN ORDER b. FERTILIZER SHALL BE SPREAD ON THE T
CONSTRUCTION"	MWATER MANUAL VOLUME 3: EROSION AND SEDIMENT CONTROLS DURING PREPARED BY THE NHDES.	SURFACE. FERTILIZER APPLICATION RAT 10-20-20 FERTILIZER;
DRAWINGS FOR E	DRK OR SOIL DISTURBANCE, CONTRACTOR SHALL SUBMIT SHOP ROSION CONTROL MEASURES AS REQUIRED IN THE PROJECT MANUAL.	c. SOIL CONDITIONERS AND FERTILIZER SI RATES AND SHALL BE THOROUGHLY WOR
	ALL INSTALL TEMPORARY EROSION CONTROL BARRIERS, INCLUDING HAY ES, MULCH BERMS, SILT SACKS AND SILT SOCKS AS SHOWN IN THESE	UNTIL THE SURFACE IS FINELY PULVERIZ COMPACTED TO AN EVEN SURFACE CONF
DRAWINGS AS TH	E FIRST ORDER OF WORK. PROTECTION SHALL BE INSTALLED IN ALL EXISTING AND PROPOSED	GRADES WITH APPROVED ROLLERS WEIG POUNDS PER INCH OF WIDTH;
CATCH BASIN INI OF THE PROJECT.	ETS WITHIN THE WORK LIMITS AND BE MAINTAINED FOR THE DURATION	d. SEED SHALL BE SOWN AT THE RATE SHO CALM, DRY DAY, PREFERABLY BY MACHI
5. PERIMETER CONT	ROLS INCLUDING SILT FENCES, MULCH BERM, SILT SOCK, AND/OR HAY HALL BE MAINTAINED FOR THE DURATION OF THE PROJECT UNTIL	WORKMEN. IMMEDIATELY BEFORE SEED HALF THE SEED SHALL BE SOWN IN ONE
NON-PAVED AREA	S HAVE BEEN STABILIZED. S SHALL REMOVE AND PROPERLY DISPOSE OF ALL TEMPORARY EROSION	ANGLES TO THE ORIGINAL DIRECTION. I A DEPTH NOT OVER 1/4 INCH AND ROLL
CONTROL DEVICE	S UPON COMPLETION OF CONSTRUCTION. REAS NOT OTHERWISE BEING TREATED SHALL RECEIVE 6" LOAM, SEED	OVER 100 POUNDS PER LINEAR FOOT OF e. HAY MULCH SHALL BE APPLIED IMMEDIA
AND FERTILIZER.	T PROTECTION AND PERIMETER CONTROLS WEEKLY AND AFTER EACH RAIN	f. THE SURFACE SHALL BE WATERED AND WITHOUT WASHING AWAY THE SOIL, UN
STORM OF 0.25 I	ICH OR GREATER. REPAIR/MODIFY PROTECTION AS NECESSARY TO	AREAS WHICH ARE NOT SATISFACTORIL
HEIGHT.	ENCY OF FILTER. REPLACE ALL FILTERS WHEN SEDIMENT IS 1/3 THE FILTER	AND ALL NOXIOUS WEEDS REMOVED; g. THE CONTRACTOR SHALL PROTECT AND
	SION CONTROL BLANKETS ON ALL SLOPES STEEPER THAN 3:1.	ACCEPTED; h. A GRASS SEED MIXTURE CONTAINING T RE ADDUIED AT THE INDICATED DATE:
	E CONSIDERED STABLE WHEN ONE OF THE FOLLOWING HAS OCCURRED:	BE APPLIED AT THE INDICATED RATE: SEED MIX APPL
B. A MINIMUM OF	GRAVELS HAVE BEEN INSTALLED IN AREAS TO BE PAVED; 85% VEGETATED GROWTH HAS BEEN ESTABLISHED; 2" OF NON EDOSIVE MATERIAL SUCH AS STONE OR DIDDAR HAS BEEN	CREEPING RED FESCUE 20 LE TALL FESCUE 20 LE
INSTALLED;	3" OF NON-EROSIVE MATERIAL SUCH AS STONE OR RIPRAP HAS BEEN	REDTOP 2 LBS IN NO CASE SHALL THE WEED CONTENT
E. IN AREAS TO E	ROL BLANKETS HAVE BEEN PROPERLY INSTALLED.; E PAVED, "STABLE" MEANS THAT BASE COURSE GRAVELS MEETING THE	SEED SHALL COMPLY WITH STATE AND F NO LATER THAN SEPTEMBER 15. IN NO (
ITEM 304.2 HA	S OF NHDOT STANDARD FOR ROAD AND BRIDGE CONSTRUCTION, 2016, VE BEEN INSTALLED.	 DORMANT SEEDING (SEPTEMBER 15 TO FIRST A. FOLLOW PERMANENT MEASURES SLOPE, LI
A. ALL PROPOSED	ATION PRACTICES: VEGETATED AREAS THAT DO NOT EXHIBIT A MINIMUM OF 85 PERCENT	REQUIREMENTS. APPLY SEED MIXTURE AT INDICATED FOR PERMANENT MEASURES.
SHALL BE STA	ROWTH BY OCTOBER 15, OR WHICH ARE DISTURBED AFTER OCTOBER 15, BILIZED BY SEEDING AND INSTALLING EROSION CONTROL BLANKETS ON	CONCRETE WASHOUT AREA:
SLOPES GREAT	ER THAN 3:1, AND SEEDING AND PLACING 3 TO 4 TONS OF MULCH PER D WITH ANCHORED NETTING, ELSEWHERE. THE INSTALLATION OF	1. THE FOLLOWING ARE THE ONLY NON-STORM NON-STORMWATER DISCHARGES ARE PROHIE
EROSION CON	ROL BLANKETS OR MULCH AND NETTING SHALL NOT OCCUR OVER SNOW OR ON FROZEN GROUND AND SHALL BE COMPLETED IN ADVANCE	A. THE CONCRETE DELIVERY TRUCKS SHALL, FACILITIES AT THEIR OWN PLANT OR DISP.
OF THAW OR S	PRING MELT EVENTS; OR SWALES WHICH DO NOT EXHIBIT A MINIMUM OF 85 PERCENT	B. IF IT IS NECESSARY, SITE CONTRACTOR SH AND DESIGN FACILITIES TO HANDLE ANTIC
VEGETATIVE G	ROWTH BY OCTOBER 15, OR WHICH ARE DISTURBED AFTER OCTOBER 15, BILIZED TEMPORARILY WITH STONE OR EROSION CONTROL BLANKETS	C. CONTRACTOR SHALL LOCATE WASHOUT AF DRAINS, SWALES AND SURFACE WATERS (
APPROPRIATE	FOR THE DESIGN FLOW CONDITIONS; BER 15, INCOMPLETE ROAD OR PARKING SURFACES, WHERE WORK HAS	D. INSPECT WASHOUT FACILITIES DAILY TO D
STOPPED FOR	THE WINTER SEASON, SHALL BE PROTECTED WITH A MINIMUM OF 3	WHEN MATERIALS NEED TO BE REMOVED.
CONTINUE TH	JSHED GRAVEL PER NHDOT ITEM 304.3, OR IF CONSTRUCTION IS TO OUGH THE WINTER SEASON BE CLEARED OF ANY ACCUMULATED SNOW	ALLOWABLE NON-STORMWATER DISCHARGES
	HALL BE INITIATED ON ALL LOAM STOCKPILES, AND DISTURBED AREAS,	 FIRE HYDRANT FLUSHING; WATERS USED TO WASH VEHICLES WHERE D
CALENDAR DAYS	CTION ACTIVITY SHALL NOT OCCUR FOR MORE THAN TWENTY-ONE (21) BY THE FOURTEENTH (14TH) DAY AFTER CONSTRUCTION ACTIVITY HAS	 WATER USED TO CONTROL DUST; POTABLE WATER INCLUDING UNCONTAMINATION
USED INCLUDE:	TEMPORARILY CEASED IN THAT AREA. STABILIZATION MEASURES TO BE	 ROUTINE EXTERNAL BUILDING WASH DOWN V PAVEMENT WASH WATERS WHERE DETERGEN
A. TEMPORARY S	EDING;	 8. UNCONTAMINATED AIR CONDITIONING/COMP 9. UNCONTAMINATED GROUND WATER OR SPRIN
		10. FOUNDATION OR FOOTING DRAINS WHICH AR

THIN 45 DAYS OF INITIAL DISTURBANCE. MANENTLY OR TEMPORARILY CEASES WITHIN 100 FEET INEATED WETLANDS, THE AREA SHALL BE STABILIZED A RAIN EVENT. ONCE CONSTRUCTION ACTIVITY AREAS, SILT FENCES, MULCH BERMS, HAY BALE ALL BE REMOVED ONCE PERMANENT MEASURES ARE

LL BE DIVERTED AROUND THE SITE WITH EARTH NELS WHERE POSSIBLE. SHEET RUNOFF FROM THE SITE NCES, MULCH BERMS, HAY BALE BARRIERS, OR SILT ETS SHALL BE PROVIDED WITH FLARED END SECTIONS BE STABILIZED FOR THE WINTER BY NOVEMBER 15.

SIBLE TO CONTROL DUST THROUGHOUT THE

LUDE, BUT BE NOT LIMITED TO SPRINKLING WATER ON

DUMP TRUCKS LEAVING THE SITE, AND TEMPORARY

UTILIZED SO AS TO PREVENT THE MIGRATION OF

50 FEET AWAY FROM CATCH BASINS, SWALES, AND

INDED WITH TEMPORARY EROSION CONTROL

PRECIPITATION. INTAINED AT ALL TIMES, AND ADJUSTED AS NEEDED D REMOVAL OF MATERIALS FROM THE STOCKPILE. THE BE INSPECTED AT THE END OF EACH WORKING DAY. RMWATER RUN-OFF USING TEMPORARY EROSION , SILT SOCK, OR OTHER APPROVED PRACTICE TO

EYOND THE IMMEDIATE CONFINES OF THE STOCKPILES.

STABILIZED CONSTRUCTION ENTRANCE(S) PRIOR TO

OF 600 POUNDS PER ACRE OF 10-10-10. APPLY PERCENT CALCIUM PLUS MAGNESIUM OXIDE) AT A

A RATE OF 40 LBS/ACRE;

MPACTED BY CONSTRUCTION OPERATIONS, LOOSEN ICHES BEFORE APPLYING FERTILIZER, LIME AND SEED; ID, CYCLONE SEEDER, OR HYDROSEEDER (SLURRY ER). HYDROSEEDINGS, WHICH INCLUDE MULCH, MAY DING RATES MUST BE INCREASED 10% WHEN

PERIODICALLY INSPECTED. AT A MINIMUM, 95% OF COVERED BY VEGETATION. IF ANY EVIDENCE OF S APPARENT, REPAIRS SHALL BE MADE AND OTHER THE INTERIM (MULCH, FILTER BARRIERS, CHECK

LANTINGS:

HLY INCORPORATED INTO THE LOAM LAYER AT A RATE I ORDER TO PROVIDE A PH VALUE OF 5.5 TO 6.5; IN THE TOP LAYER OF LOAM AND WORKED INTO THE ION RATE SHALL BE 800 POUNDS PER ACRE OF

LIZER SHALL BE APPLIED AT THE RECOMMENDED HLY WORKED INTO THE LOAM. LOAM SHALL BE RAKED PULVERIZED, SMOOTH AND EVEN, AND THEN CE CONFORMING TO THE REQUIRED LINES AND ERS WEIGHING BETWEEN 4-1/2 POUNDS AND 5-1/2

ATE SHOWN BELOW. SOWING SHALL BE DONE ON A Y MACHINE, BUT IF BY HAND, ONLY BY EXPERIENCED RE SEEDING, THE SOIL SHALL BE LIGHTLY RAKED. ONE I IN ONE DIRECTION AND THE OTHER HALF AT RIGHT CTION. IT SHALL BE LIGHTLY RAKED INTO THE SOIL TO ND ROLLED WITH A HAND ROLLER WEIGHING NOT FOOT OF WIDTH;

MMEDIATELY AFTER SEEDING AS INDICATED ABOVE; ED AND KEPT MOIST WITH A FINE SPRAY AS REQUIRED, SOIL, UNTIL THE GRASS IS WELL ESTABLISHED. ANY ACTORILY COVERED WITH GRASS SHALL BE RESEEDED,

CT AND MAINTAIN THE SEEDED AREAS UNTIL

INING THE FOLLOWING SEED REQUIREMENTS SHALL

APPLICATION RATE

20 LBS/ACRE

20 LBS/ACRE 2 LBS/ACRE

ONTENT EXCEED ONE (1) PERCENT BY WEIGHT. ALL TE AND FEDERAL SEED LAWS. SEEDING SHALL BE DONE IN NO CASE SHALL SEEDING TAKE PLACE OVER SNOW. O FIRST SNOWFALL):

LOPE, LIME, FERTILIZER AND GRADING URE AT TWICE THE INDICATED RATE. APPLY MULCH AS

STORMWATER DISCHARGES ALLOWED. ALL OTHER PROHIBITED ON SITE:

SHALL, WHENEVER POSSIBLE, USE WASHOUT OR DISPATCH FACILITY;

CTOR SHALL DESIGNATE SPECIFIC WASHOUT AREAS LE ANTICIPATED WASHOUT WATER;

HOUT AREAS AT LEAST 150 FEET AWAY FROM STORM ATERS OR DELINEATED WETLANDS; ILY TO DETECT LEAKS OR TEARS AND TO IDENTIFY

HERE DETERGENTS ARE NOT USED;

AMINATED WATER LINE FLUSHING;

DOWN WHERE DETERGENTS ARE NOT USED; TERGENTS ARE NOT USED; G/COMPRESSOR CONDENSATION; R SPRING WATER;

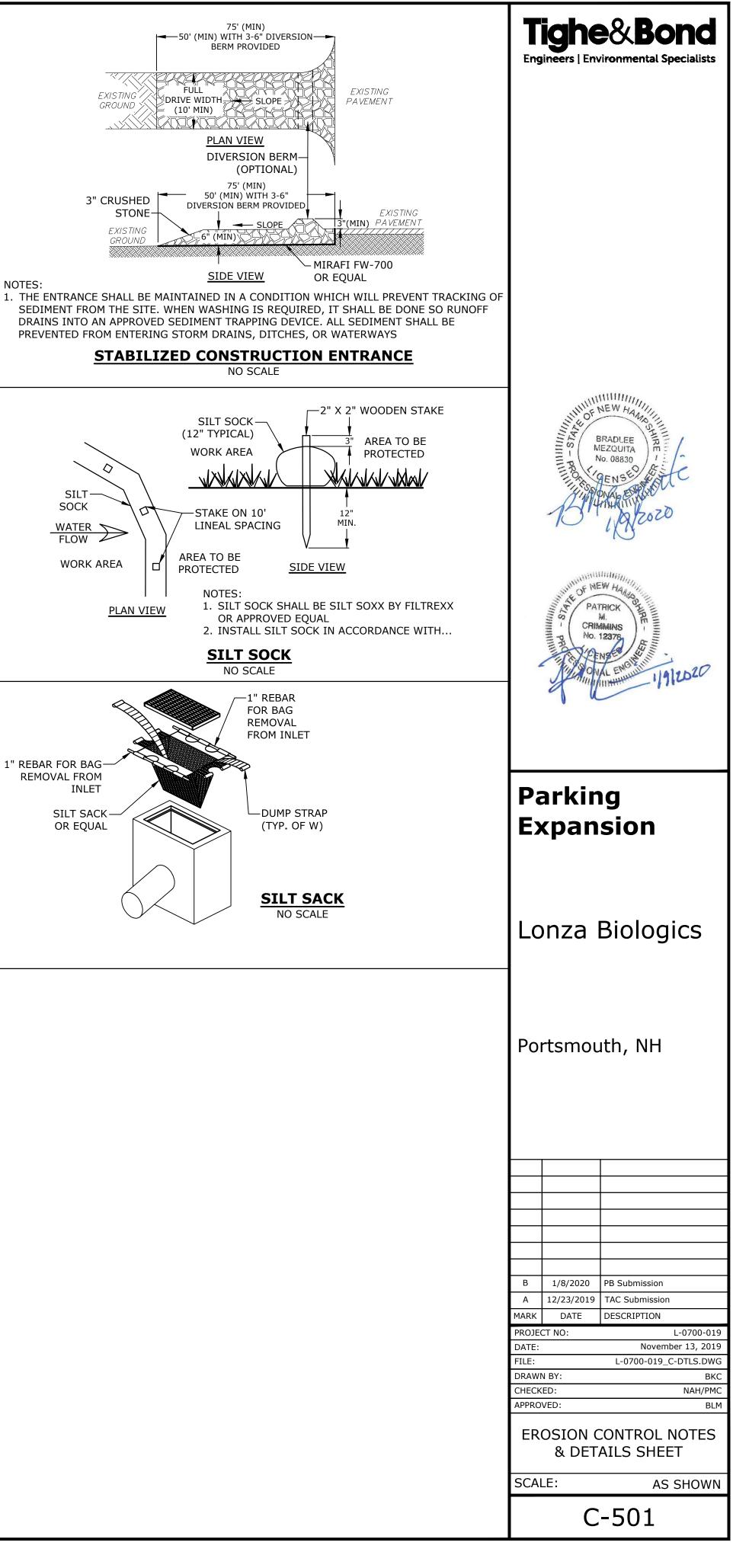
HICH ARE UNCONTAMINATED;

11. UNCONTAMINATED EXCAVATION DEWATERING; 12. LANDSCAPE IRRIGATION.

WASTE DISPOSAL WASTE MATERIAL

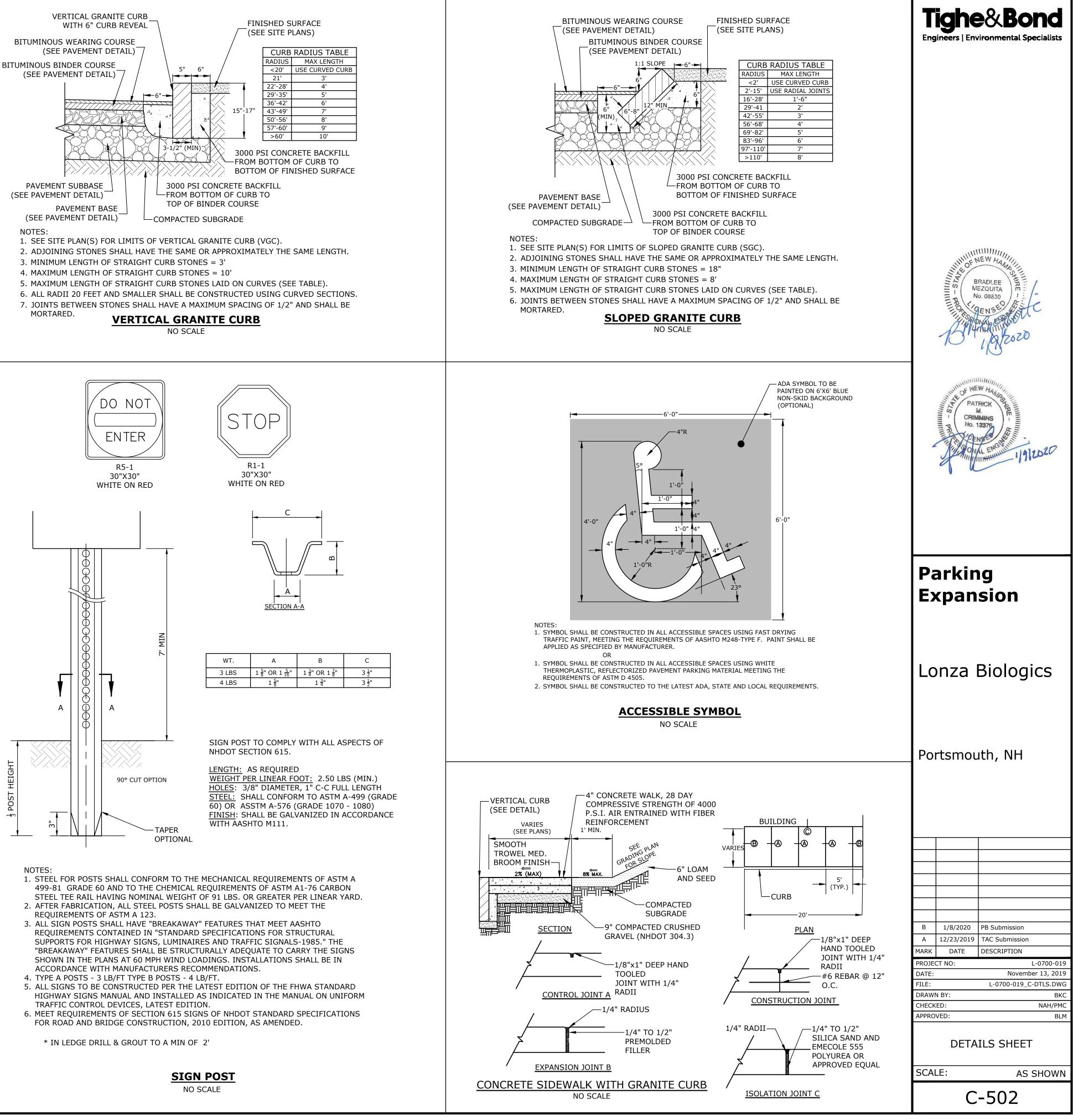
- A. ALL WASTE MATERIALS SHALL BE COLLECTED AND STORED IN SECURELY LIDDED RECEPTACLES. ALL TRASH AND CONSTRUCTION DEBRIS FROM THE SITE SHALL BE DEPOSITED IN A DUMPSTER;
- B. NO CONSTRUCTION WASTE MATERIALS SHALL BE BURIED ON SITE;
- C. ALL PERSONNEL SHALL BE INSTRUCTED REGARDING THE CORRECT PROCEDURE FOR WASTE DISPOSAL BY THE SUPERINTENDENT.
- HAZARDOUS WASTE: A. ALL HAZARDOUS WASTE MATERIALS SHALL BE DISPOSED OF IN THE MANNER SPECIFIED BY LOCAL OR STATE REGULATION OR BY THE MANUFACTURER; B. SITE PERSONNEL SHALL BE INSTRUCTED IN THESE PRACTICES BY THE SUPERINTENDENT.
- 3. SANITARY WASTE: A. ALL SANITARY WASTE SHALL BE COLLECTED FROM THE PORTABLE UNITS A MINIMUM OF ONCE PER WEEK BY A LICENSED SANITARY WASTE MANAGEMENT CONTRACTOR.

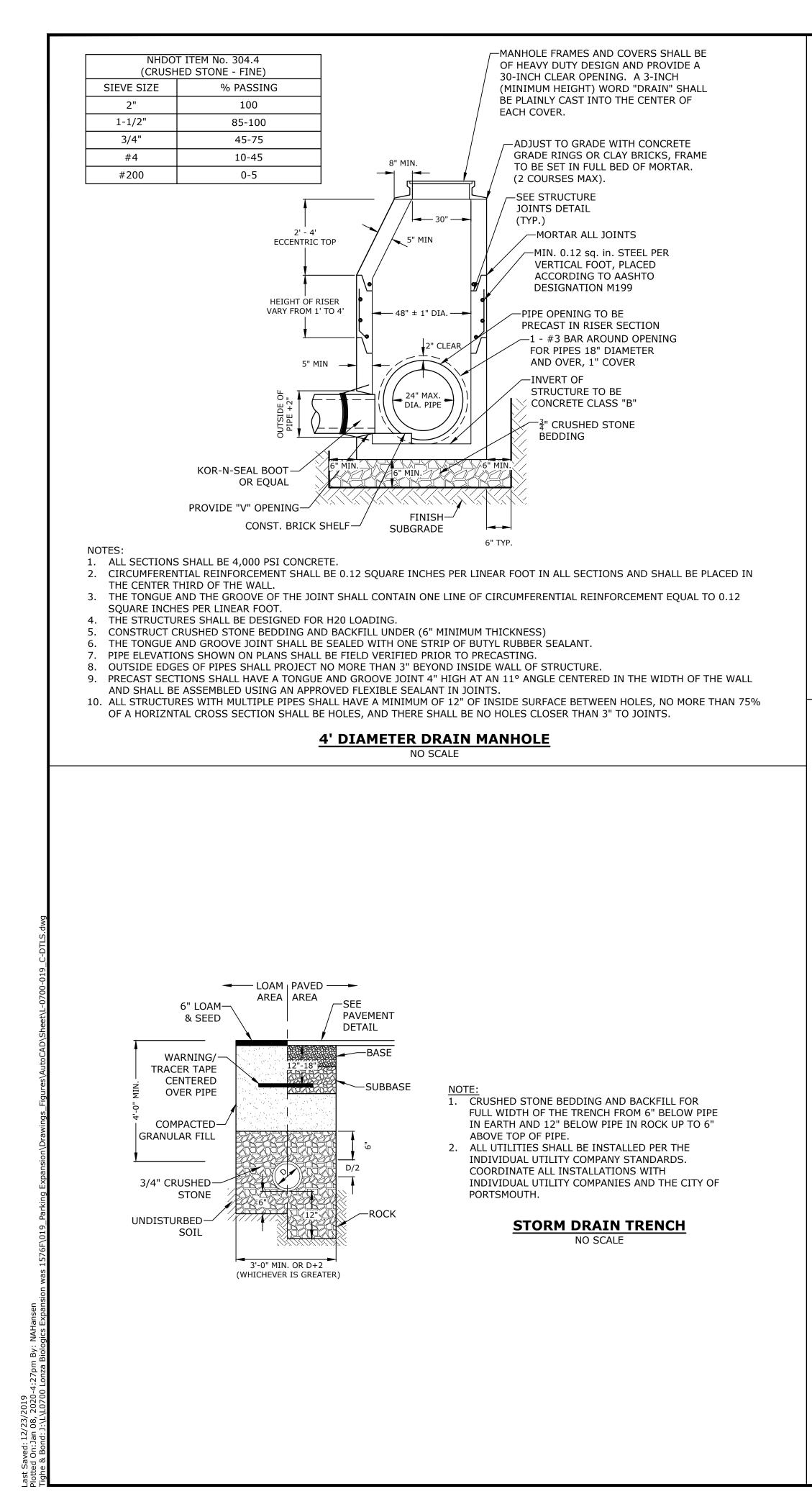
SPILL PREVENTION

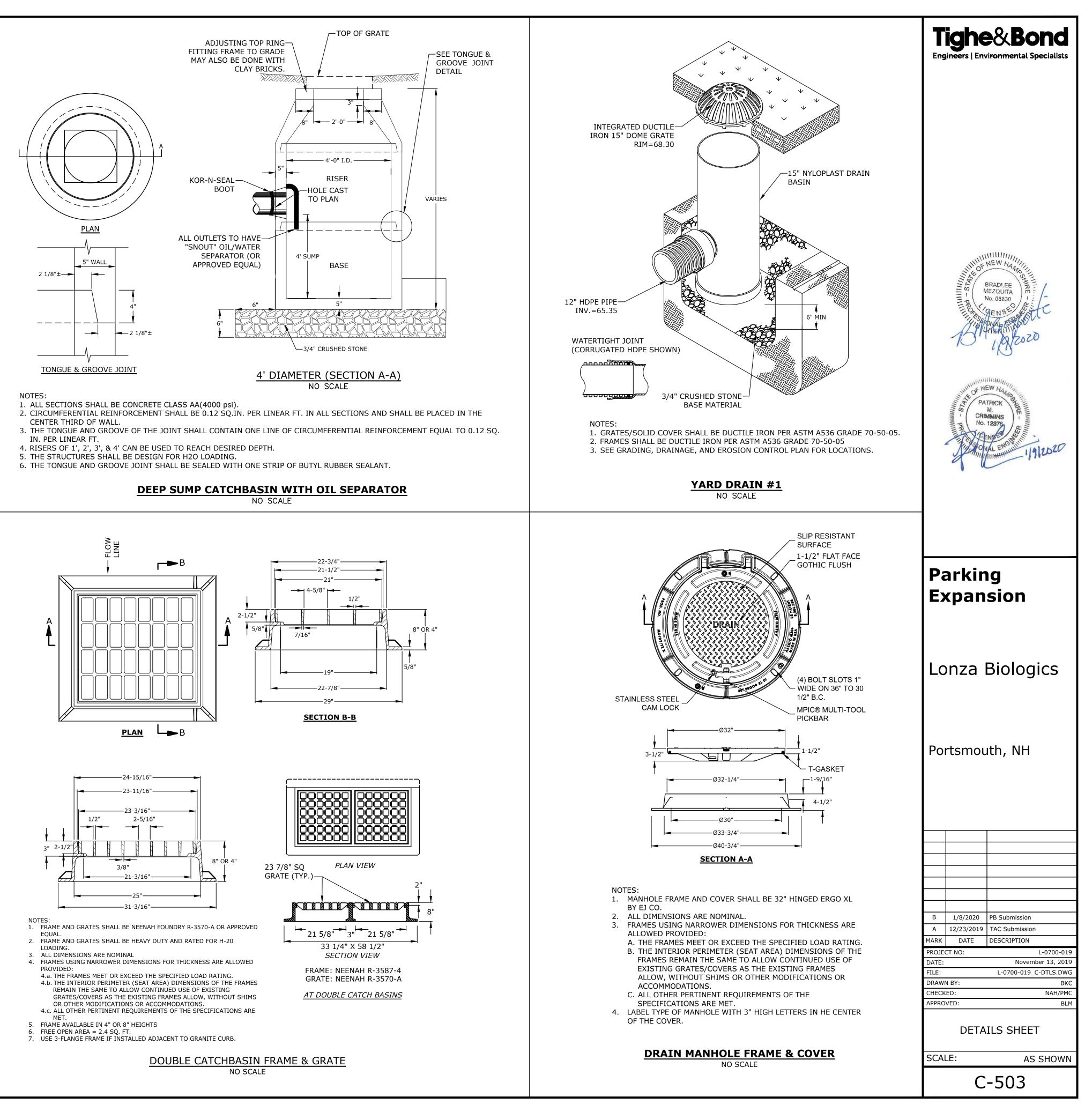

- CONTRACTOR SHALL BE FAMILIAR WITH SPILL PREVENTION MEASURES REQUIRED BY LOCAL, STATE AND FEDERAL AGENCIES. AT A MINIMUM, CONTRACTOR SHALL FOLLOW THE BEST MANAGEMENT SPILL PREVENTION PRACTICES OUTLINED BELOW.
- 2. THE FOLLOWING ARE THE MATERIAL MANAGEMENT PRACTICES THAT SHALL BE USED TO REDUCE THE RISK OF SPILLS OR OTHER ACCIDENTAL EXPOSURE OF MATERIALS AND SUBSTANCES DURING CONSTRUCTION TO STORMWATER RUNOFF:
- A. GOOD HOUSEKEEPING THE FOLLOWING GOOD HOUSEKEEPING PRACTICE SHALL BE FOLLOWED ON SITE DURING CONSTRUCTION: a. ONLY SUFFICIENT AMOUNTS OF PRODUCTS TO DO THE JOB SHALL BE STORED ON
- SITE b. ALL MATERIALS STORED ON SITE SHALL BE STORED IN A NEAT, ORDERLY MANNER IN THEIR PROPER (ORIGINAL IF POSSIBLE) CONTAINERS AND, IF POSSIBLE, UNDER A
- ROOF OR OTHER ENCLOSURE; c. MANUFACTURER'S RECOMMENDATIONS FOR PROPER USE AND DISPOSAL SHALL BE
- FOLLOWED; d. THE SITE SUPERINTENDENT SHALL INSPECT DAILY TO ENSURE PROPER USE AND DISPOSAL OF MATERIALS
- e. SUBSTANCES SHALL NOT BE MIXED WITH ONE ANOTHER UNLESS RECOMMENDED BY THE MANUFACTURER;
- f. WHENEVER POSSIBLE ALL OF A PRODUCT SHALL BE USED UP BEFORE DISPOSING OF THE CONTAINER. Β. HAZARDOUS PRODUCTS - THE FOLLOWING PRACTICES SHALL BE USED TO REDUCE THE
- RISKS ASSOCIATED WITH HAZARDOUS MATERIALS: g. PRODUCTS SHALL BE KEPT IN THEIR ORIGINAL CONTAINERS UNLESS THEY ARE NOT RESEALABLE;
- h. ORIGINAL LABELS AND MATERIAL SAFETY DATA SHALL BE RETAINED FOR IMPORTANT PRODUCT INFORMATION;
- i. SURPLUS PRODUCT THAT MUST BE DISPOSED OF SHALL BE DISCARDED ACCORDING TO THE MANUFACTURER'S RECOMMENDED METHODS OF DISPOSAL C. PRODUCT SPECIFIC PRACTICES - THE FOLLOWING PRODUCT SPECIFIC PRACTICES SHALL BE FOLLOWED ON SITE:
- a. PETROLEUM PRODUCTS:
- ALL ON SITE VEHICLES SHALL BE MONITORED FOR LEAKS AND RECEIVE REGULAR PREVENTIVE MAINTENANCE TO REDUCE LEAKAGE;
- PETROLEUM PRODUCTS SHALL BE STORED IN TIGHTLY SEALED CONTAINERS WHICH ARE CLEARLY LABELED. ANY ASPHALT BASED SUBSTANCES USED ON SITE SHALL BE APPLIED ACCORDING TO THE MANUFACTURER'S RECOMMENDATIONS.
- b. FERTILIZERS: FERTILIZERS USED SHALL BE APPLIED ONLY IN THE MINIMUM AMOUNTS DIRECTED BY THE SPECIFICATIONS;
- ONCE APPLIED FERTILIZER SHALL BE WORKED INTO THE SOIL TO LIMIT EXPOSURE TO STORMWATER; STORAGE SHALL BE IN A COVERED SHED OR ENCLOSED TRAILERS. THE CONTENTS
- OF ANY PARTIALLY USED BAGS OF FERTILIZER SHALL BE TRANSFERRED TO A SEALABLE PLASTIC BIN TO AVOID SPILLS. c. PAINTS:
- ALL CONTAINERS SHALL BE TIGHTLY SEALED AND STORED WHEN NOT REQUIRED FOR USE;
- EXCESS PAINT SHALL NOT BE DISCHARGED TO THE STORM SEWER SYSTEM; EXCESS PAINT SHALL BE DISPOSED OF PROPERLY ACCORDING TO MANUFACTURER'S INSTRUCTIONS OR STATE AND LOCAL REGULATIONS.
- SPILL CONTROL PRACTICES IN ADDITION TO GOOD HOUSEKEEPING AND MATERIAL MANAGEMENT PRACTICES DISCUSSED IN THE PREVIOUS SECTION, THE FOLLOWING PRACTICES SHALL BE FOLLOWED FOR SPILL PREVENTION AND CLEANUP:
- a. MANUFACTURER'S RECOMMENDED METHODS FOR SPILL CLEANUP SHALL BE CLEARLY POSTED AND SITE PERSONNEL SHALL BE MADE AWARE OF THE PROCEDURES AND THE LOCATION OF THE INFORMATION AND CLEANUP SUPPLIES;
- b. MATERIALS AND EOUIPMENT NECESSARY FOR SPILL CLEANUP SHALL BE KEPT IN THE MATERIAL STORAGE AREA ON SITE. EQUIPMENT AND MATERIALS SHALL INCLUDE BUT NOT BE LIMITED TO BROOMS, DUSTPANS, MOPS, RAGS, GLOVES, GOGGLES, KITTY LITTER, SAND, SAWDUST AND PLASTIC OR METAL TRASH CONTAINERS SPECIFICALLY FOR THIS PURPOSE:
- c. ALL SPILLS SHALL BE CLEANED UP IMMEDIATELY AFTER DISCOVERY;
- d. THE SPILL AREA SHALL BE KEPT WELL VENTILATED AND PERSONNEL SHALL WEAR APPROPRIATE PROTECTIVE CLOTHING TO PREVENT INJURY FROM CONTACT WITH A HAZARDOUS SUBSTANCE:
- e. SPILLS OF TOXIC OR HAZARDOUS MATERIAL SHALL BE REPORTED TO THE
- APPROPRIATE LOCAL, STATE OR FEDERAL AGENCIES AS REQUIRED; f. THE SITE SUPERINTENDENT RESPONSIBLE FOR DAY-TO-DAY SITE OPERATIONS SHALL BE THE SPILL PREVENTION AND CLEANUP COORDINATOR.
- E. VEHICLE FUELING AND MAINTENANCE PRACTICE: a. CONTRACTOR SHALL MAKE AN EFFORT TO PERFORM EQUIPTMENT/VEHICAL FUELING
- AND MAINTENANCE AT AN OFF-SITE FACILITY; b. CONTRACTOR SHALL PROVIDE AN ON-SITE FUELING AND MAINTENANCE AREA THAT IS
- CLEAN AND DRY; c. IF POSSIBLE THE CONTRACTOR SHALL KEEP AREA COVERED;
- d. CONTRACTOR SHALL KEEP A SPILL KIT AT THE FUELING AND MAINTENANCE AREA;
- e. CONTRACTOR SHALL REGULARLY INSPECT VEHICLES FOR LEAKS AND DAMAGE;
- f. CONTRACTOR SHALL USE DRIP PANS, DRIP CLOTHS, OR ABSORBENT PADS WHEN REPLACING SPENT FLUID.

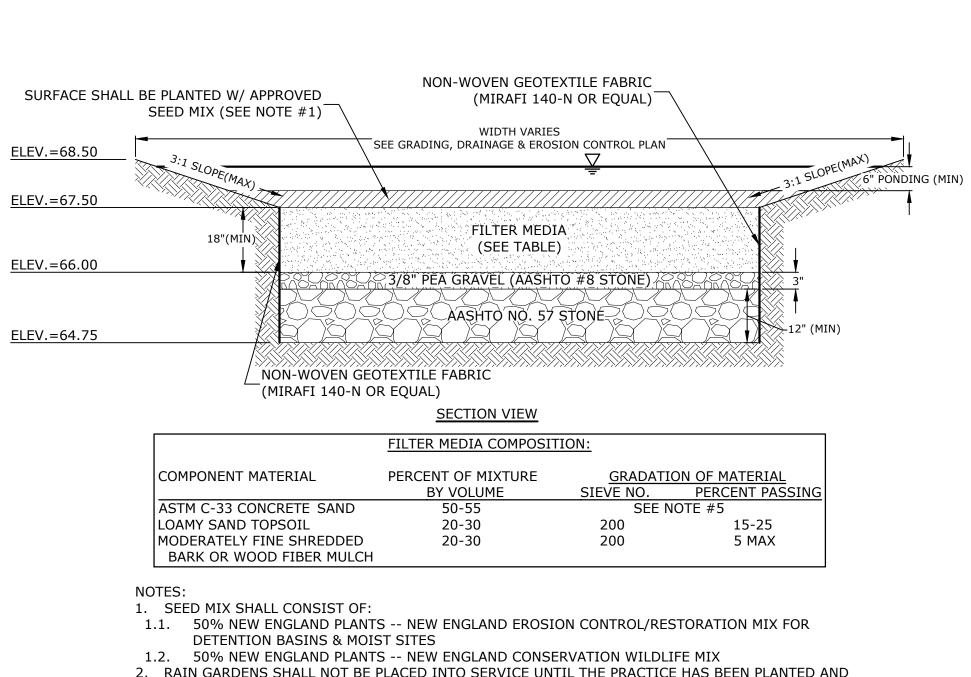
EROSION CONTROL OBSERVATIONS AND MAINTENANCE PRACTICES

THE FOLLOWING REPRESENTS THE GENERAL OBSERVATION AND REPORTING PRACTICES THAT SHALL BE FOLLOWED AS PART OF THIS PROJECT: 1. OBSERVATIONS OF THE PROJECT SHALL BE MADE BY THE CONTRACTOR AT LEAST ONCE A


- WEEK OR WITHIN 24 HOURS OF A STORM 0.25 INCHES OR GREATER; AN OBSERVATION REPORT SHALL BE MADE AFTER EACH OBSERVATION AND DISTRIBUTED
- TO THE ENGINEER, THE OWNER, AND THE CONTRACTOR; 3. A REPRESENTATIVE OF THE SITE CONTRACTOR, SHALL BE RESPONSIBLE FOR MAINTENANCE AND REPAIR ACTIVITIES;
- 4. IF A REPAIR IS NECESSARY, IT SHALL BE INITIATED WITHIN 24 HOURS OF REPORT.

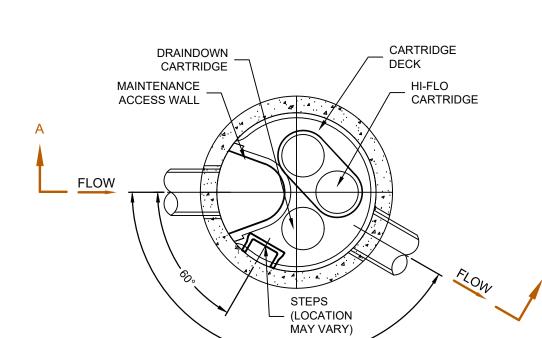

NOTES:



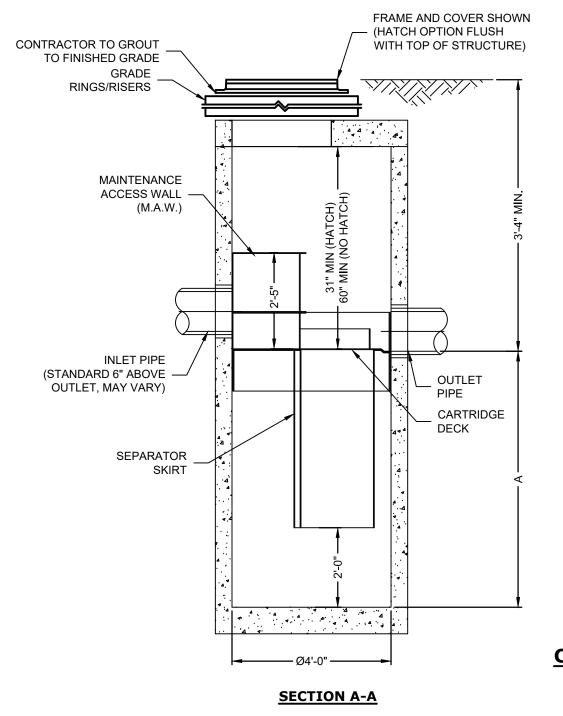

1" REBAR FOR BAG **REMOVAL FROM**

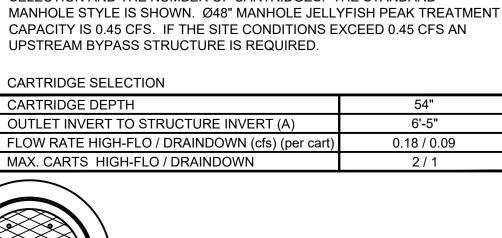
	FILTER MEDIA COMPOSIT	<u>ION:</u>	
COMPONENT MATERIAL	PERCENT OF MIXTURE	GRADATI	ON OF MATERIAL
	BY VOLUME	SIEVE NO.	PERCENT PASSING
ASTM C-33 CONCRETE SAND	50-55	SEE N	OTE #5
LOAMY SAND TOPSOIL	20-30	200	15-25
MODERATELY FINE SHREDDED	20-30	200	5 MAX
BARK OR WOOD FIBER MULCH			

2. RAIN GARDENS SHALL NOT BE PLACED INTO SERVICE UNTIL THE PRACTICE HAS BEEN PLANTED AND ITS CONTRIBUTING AREAS HAVE BEEN FULLY STABILIZED.


3. DO NOT TRAFFIC EXPOSED SOIL SURFACES WITH CONSTRUCTION EQUIPMENT. CONTRACTOR SHALL KEEP ALL EXCAVATION EQUIPMENT OUTSIDE OF THE LIMIT OF THE RAIN GARDEN.

4. SEE GRADING, DRAINAGE & EROSION CONTROL PLAN FOR LOCATIONS, LAYOUTS, AND ELEVATIONS.


5. THE SAND PORTION OF THE FILTER MEDIA SHALL MEET THE FOLLOWING GRADATION (ASTM C-33):


SIEVE SIZE	PERCENT PASSING	AASHTC	#8 STONE	AASHTO	#57 STONE
3/8"	100	(#8	to 3/8")	(#4	4 to 1")
#4	95-100	SIEVE SIZE	% PASSING	SIEVE SIZE	% PASSING
#8	80-100	1/2"	100	1-1/2"	100
#16	50-85	3/8"	85-100	1"	95-100
#30	25-60	#4	10-30	1/2"	25-60
#50	5-30	#8	0-10	#4	0-10
#100	0-10	#16	0-5	#8	0-5
#100	0 10				

RAIN GARDEN #1 NO SCALE

STRUCTU WATER QI # OF CAR CARTRIDO

FRAME AND COVER (DIAMETER VARIES) N.T.S.

GENERAL NOTES

- 1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE.
- REQUIREMENTS OF PROJECT.
- AND BE CAST WITH THE CONTECH LOGO.
- FACTOR DESIGN METHOD.
- PROJECT BID DATE, OR AS DIRECTED BY THE ENGINEER OF RECORD.

INSTALLATION NOTES

- CONSIDERATIONS AND SHALL BE SPECIFIED BY ENGINEER OF RECORD. B. CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT
- AND SET THE STRUCTURE (LIFTING CLUTCHES PROVIDED)
- D. CONTRACTOR TO TAKE APPROPRIATE MEASURES TO PROTECT CARTRIDGES FROM
- CONSTRUCTION-RELATED EROSION RUNOFF. CARTRIDGE INSTALLATION WITH SITE STABILIZATION AT (866) 740-3318.

CONTECH JELLYFISH JF4-1-1

NO SCALE

JELLYFISH TREATMENT CAPACITY IS A FUNCTION OF THE CARTRIDGE SELECTION AND THE NUMBER OF CARTRIDGES. THE STANDARD

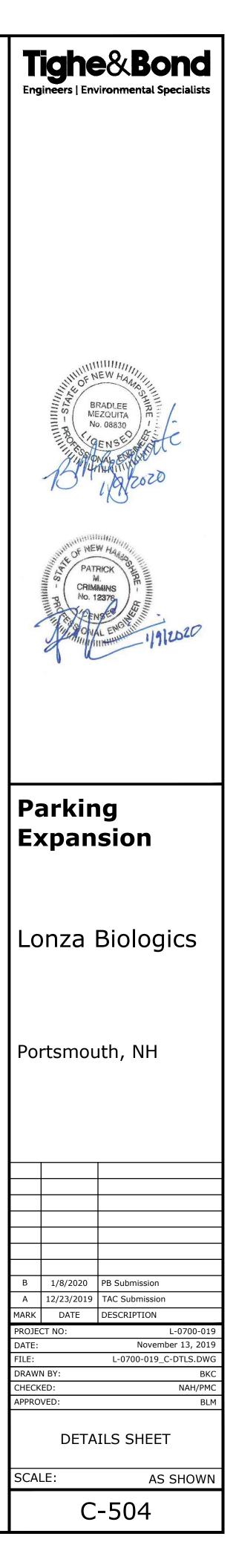
	54"
ERT (A)	6'-5"
(cfs) (per cart)	0.18 / 0.09
١	2/1

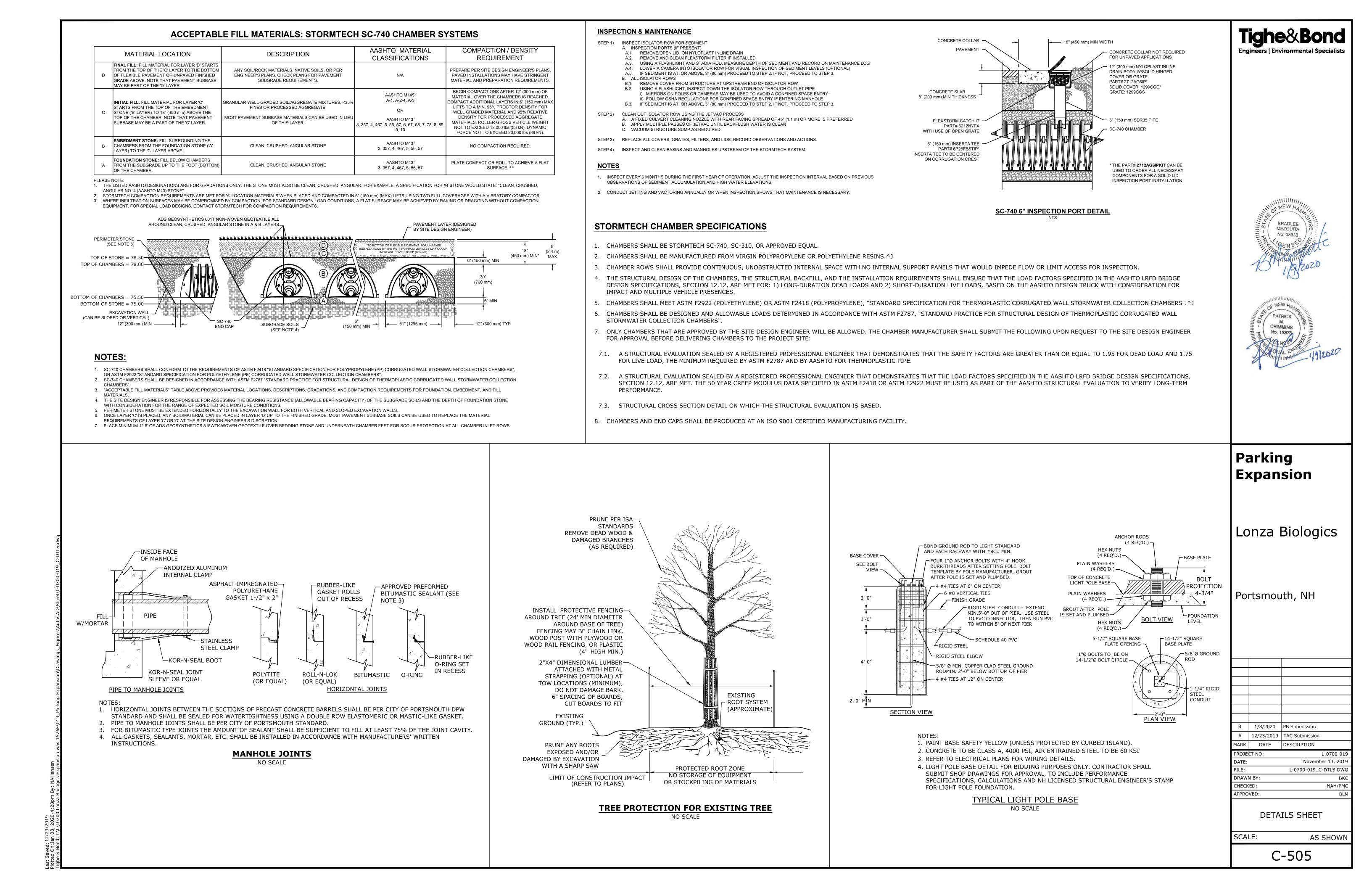
SITE SPECIFIC DATA REQUIREMENTS	
IRE ID	4'
UALITY FLOW RATE (cfs)	0.14
TRIDGES REQUIRED (HF / DD)	(1/1)
GE SIZE	54"

2. FOR SITE SPECIFIC DRAWINGS WITH DETAILED STRUCTURE DIMENSIONS AND WEIGHT, PLEASE CONTACT YOUR CONTECH ENGINEERED SOLUTIONS REPRESENTATIVE. www.ContechES.com 3. JELLYFISH WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS DRAWING. CONTRACTOR TO CONFIRM STRUCTURE MEETS

4. STRUCTURE SHALL MEET AASHTO HS-20 OR PER APPROVING JURISDICTION REQUIREMENTS, WHICHEVER IS MORE STRINGENT, ASSUMING EARTH COVER OF 0' - 3', AND GROUNDWATER ELEVATION AT, OR BELOW, THE OUTLET PIPE INVERT ELEVATION. ENGINEER OF RECORD TO CONFIRM ACTUAL GROUNDWATER ELEVATION. CASTINGS SHALL MEET AASHTO M306 LOAD RATING

5. STRUCTURE SHALL BE PRECAST CONCRETE CONFORMING TO ASTM C-478 AND AASHTO LOAD


6. NO PRODUCT SUBSTITUTIONS SHALL BE ACCEPTED UNLESS SUBMITTED 10 DAYS PRIOR TO


A. ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN

C. CONTRACTOR WILL INSTALL AND LEVEL THE STRUCTURE, SEALING THE JOINTS, LINE ENTRY AND

EXIT POINTS (NON-SHRINK GROUT WITH APPROVED WATERSTOP OR FLEXIBLE BOOT)

E. CARTRIDGE INSTALLATION, BY CONTECH, SHALL OCCUR ONLY AFTER SITE HAS BEEN STABILIZED AND THE JELLYFISH UNIT IS CLEAN AND FREE OF DEBRIS. CONTACT CONTECH TO COORDINATE

Drainage Analysis

То:	City of Portsmouth Planning Board
FROM:	Neil A. Hansen, PE Patrick M. Crimmins, PE
Сору:	Lonza Biologics
Date: Last Revised:	December 23, 2019 January 9, 2020

1.0 Project Description

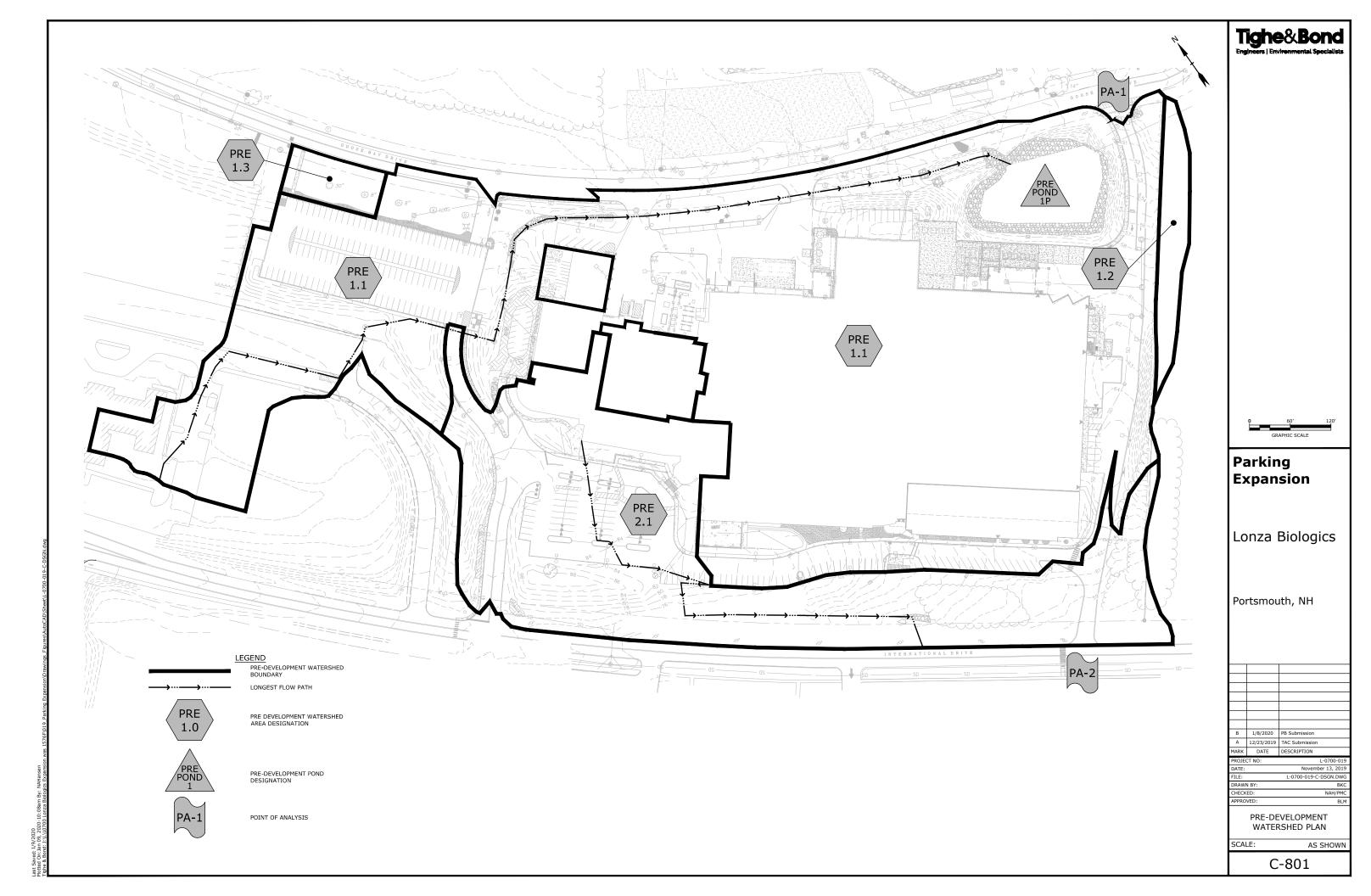
The proposed project is located at 101 International Drive which is identified as Map 305 Lot 6 on the City of Portsmouth Tax Maps. The proposed project includes parking expansions at three (3) different locations on site. The work at each location, referenced as the Northern, Eastern, and Western Expansions, can be summarized as follows:

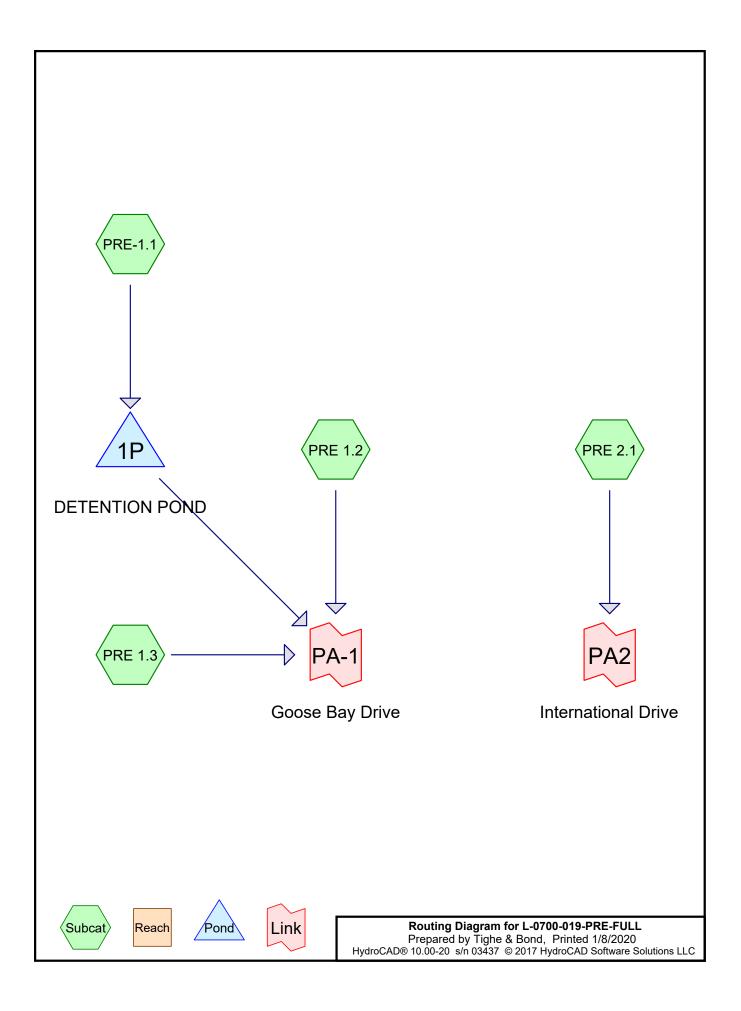
- Northern Expansion: twenty-two (22) proposed parking spaces with drainage improvements and driveway access, including a rain garden to collect and treat runoff.
- Eastern Expansion: eighteen (18) proposed parking spaces along the existing access road and drainage improvements including deep sump catch basins with oil separator hoods which discharge to a Contech Jellyfish stormwater filtration unit that will provide treatment before tying into the existing stormwater management system.
- Western Expansion: twenty (20) proposed parking spaces built out from the existing lot, relocation of two (2) light poles, and drainage improvements including a deep sump catch basin with oil separator hood tied to an underground infiltration system.

The proposed project will be adding 15,348 SF of impervious area to the existing 13.75-acre watershed. The existing watershed is 67.70% impervious. The additional impervious surfaces will account for a 2.6% increase. Runoff from the proposed surfaces will be directed to stormwater treatment systems prior to entering the existing on-site drainage system. A rain garden is proposed to treat runoff from the additional impervious area of the northern parking expansion. Runoff from the eastern and western parking expansions are proposed to be treated by Contech Jellyfish Filter filtration systems.

2.0 Drainage Analysis

The stormwater management systems for each of the proposed expansions have been designed to provide stormwater treatment for the additional impervious area, as well as an equivalent amount of existing untreated impervious area as required by the Pease Development Authority (PDA) (Table 2.0).


Table 2.0 – Treatment Area Requirements					
Proposed Impervious Area 15,348 sf					
Impervious Required to be Treated (2x Proposed)	30,696 sf				
Proposed Treated Impervious Area	37,266 sf				


The sub-watershed areas that direct runoff to the proposed stormwater management systems were analyzed to determine the respective Water Quality Volume (WQV) or Water Quality Flow (WQF) required to size each of the systems. The full site was also analyzed for the preand post-development peak runoff rates for the 2-year, 10-year, 25-year and 50-year storm events.

2.1 Peak Rate Comparisons

The following table summarizes and compares the pre- and post-development peak runoff rates for the 2-year, 10-year, 25-year and 50-year storm events at each point of analysis. Point of Analysis 1 (PA1) is located along Goose Bay Drive and Point of Analysis 2 (PA2) is located along International Drive.

Table 2.1 – Comparison of Pre- and Post- Development Flows								
Point of Analysis	Pre/ Post 2-Year Storm (cfs)	Pre/ Post 10-Year Storm (cfs)	Pre/ Post 25-Year Storm (cfs)	Pre/ Post 50-Year Storm (cfs)				
PA1	3.04/ 2.99	7.89/ 7.79	14.62/ 14.50	24.10/ 24.06				
PA2	6.04/ 4.58	13.37/ 11.99	19.62/ 18.24	25.67/ 23.94				

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
8.235	61	>75% Grass cover, Good, HSG B (PRE 1.2, PRE 1.3, PRE 2.1, PRE-1.1)
1.861	98	Paved parking, HSG B (PRE 2.1)
9.592	98	Unconnected pavement, HSG B (PRE 1.3, PRE-1.1)
19.688	83	TOTAL AREA

L-0700-019-PRE-FULL

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
19.688	HSG B	PRE 1.2, PRE 1.3, PRE 2.1, PRE-1.1
0.000	HSG C	
0.000	HSG D	
0.000	Other	
19.688		TOTAL AREA

L-07	00-01	19-PR	E-FL	

Prepared by Tighe & Bond

HydroCAD® 10.00-20 s/n 03437 © 2017 HydroCAD Software Solutions LLC

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPRE 1.2:	Runoff Area=14,829 sf 0.00% Impervious Runoff Depth>0.44" Tc=11.4 min CN=61 Runoff=0.09 cfs 0.013 af
SubcatchmentPRE 1.3:	Runoff Area=10,047 sf 4.03% Impervious Runoff Depth>0.48" Tc=5.0 min CN=62 Runoff=0.09 cfs 0.009 af
SubcatchmentPRE 2.1:	Runoff Area=213,064 sf 38.06% Impervious Runoff Depth>1.09" Tc=5.0 min CN=75 Runoff=6.04 cfs 0.446 af
SubcatchmentPRE-1.1:	Runoff Area=619,660 sf 67.36% Impervious Runoff Depth>1.83" Flow Length=1,573' Tc=9.6 min CN=86 Runoff=26.69 cfs 2.172 af
Pond 1P: DETENTION POND	Peak Elev=44.28' Storage=46,969 cf Inflow=26.69 cfs 2.172 af Outflow=3.00 cfs 1.951 af
Link PA-1: Goose Bay Drive	Inflow=3.04 cfs 1.973 af Primary=3.04 cfs 1.973 af
Link PA2: International Drive	Inflow=6.04 cfs 0.446 af Primary=6.04 cfs 0.446 af
Total Duraff Area - 40	COO as Dunoff Valume = 0.020 of Average Dunoff Double = 4.04

Total Runoff Area = 19.688 ac Runoff Volume = 2.639 af Average Runoff Depth = 1.61" 41.83% Pervious = 8.235 ac 58.17% Impervious = 11.453 ac

L-0700-019-PRE-FULL	Туре
Prepared by Tighe & Bond	
HydroCAD® 10.00-20 s/n 03437 © 2017 HydroCAD Softw	are Solutions LLC

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPRE 1.2:	Runoff Area=14,829 sf 0.00% Impervious Runoff Depth>1.28" Tc=11.4 min CN=61 Runoff=0.38 cfs 0.036 af
SubcatchmentPRE 1.3:	Runoff Area=10,047 sf 4.03% Impervious Runoff Depth>1.35" Tc=5.0 min CN=62 Runoff=0.34 cfs 0.026 af
SubcatchmentPRE 2.1:	Runoff Area=213,064 sf 38.06% Impervious Runoff Depth>2.33" Tc=5.0 min CN=75 Runoff=13.37 cfs 0.952 af
SubcatchmentPRE-1.1:	Runoff Area=619,660 sf 67.36% Impervious Runoff Depth>3.33" Flow Length=1,573' Tc=9.6 min CN=86 Runoff=47.95 cfs 3.950 af
Pond 1P: DETENTION POND	Peak Elev=45.95' Storage=81,979 cf Inflow=47.95 cfs 3.950 af Outflow=7.72 cfs 3.557 af
Link PA-1: Goose Bay Drive	Inflow=7.89 cfs 3.619 af Primary=7.89 cfs 3.619 af
Link PA2: International Drive	Inflow=13.37 cfs 0.952 af Primary=13.37 cfs 0.952 af
Total Dunoff Area - 40	000 as Dunoff Valuma = 4.004 af Average Dunoff Douth = 2.02

Total Runoff Area = 19.688 ac Runoff Volume = 4.964 af Average Runoff Depth = 3.03" 41.83% Pervious = 8.235 ac 58.17% Impervious = 11.453 ac

Prepared by Tighe & Bond HydroCAD® 10.00-20 s/n 03437 © 2017 HydroCAD Software Solutions LLC

Summary for Subcatchment PRE 1.2:

Runoff = 0.38 cfs @ 12.18 hrs, Volume= 0.036 af, Depth> 1.28"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=4.86"

Area (sf)	CN	Description				
14,829	61	>75% Grass cover, Good, HSG B				
14,829		100.00% Pe	ervious Are	ea		
Tc Length (min) (feet)	Slope (ft/ft)					
11.4				Direct Entry,		

Summary for Subcatchment PRE 1.3:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.34 cfs @ 12.09 hrs, Volume= 0.026 af, Depth> 1.35"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=4.86"

Ar	rea (sf)	CN I	Description				
	405	98	Jnconnecte	ed pavemer	nt, HSG B		
	9,642	61 3	>75% Gras	s cover, Go	ood, HSG B		
·	10,047	62	Neighted A	verage			
	9,642	ę	95.97% Pervious Area				
	405	4	4.03% Impervious Area				
	405		100.00% Unconnected				
_				.			
Тс	Length	Slope		Capacity	Description		
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)			
5.0					Direct Entry,		

Summary for Subcatchment PRE 2.1:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 13.37 cfs @ 12.08 hrs, Volume= 0.952 af, Depth> 2.33"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=4.86"

L-0700-019-PRE-FULL

 Type III 24-hr
 10-YR Rainfall=4.86"

 Printed
 1/8/2020

 LC
 Page 2

Prepared by Tighe & Bond HydroCAD® 10.00-20 s/n 03437 © 2017 HydroCAD Software Solutions LLC

Area (sf)	CN	Description				
81,083	98	Paved park	ing, HSG B	3		
131,981	61	>75% Gras	s cover, Go	ood, HSG B		
213,064	75	Weighted A	Weighted Average			
131,981		61.94% Per	61.94% Pervious Area			
81,083		38.06% Imp	38.06% Impervious Area			
Tc Length (min) (feet)	Slop (ft/	,	Capacity (cfs)	Description		
5.0				Direct Entry,		

Summary for Subcatchment PRE-1.1:

Runoff = 47.95 cfs @ 12.14 hrs, Volume= 3.950 af, Depth> 3.33"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=4.86"

_	A	rea (sf)	CN D	escription		
	4	17,403	98 U	nt, HSG B		
_	202,257 61 >75% Grass cover, God					bod, HSG B
	6	19,660		Veighted A		
		02,257	-	-	rvious Area	
		17,403			pervious Ar	
	4	17,403	1	00.00% U	nconnected	1
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
_	2.9	36	0.0560	0.21		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.20"
	2.2	348	0.0170	2.65		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	0.5	391	0.0410	12.04	21.27	
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
	1.0	203	0.0390	3.27	22.91	n= 0.013 Corrugated PE, smooth interior
	1.0	203	0.0390	3.27	22.91	Channel Flow, Area= 7.0 sf Perim= 23.5' r= 0.30'
						n= 0.040 Earth, cobble bottom, clean sides
	2.3	450	0.0050	3.21	2.52	
	2.0	-00	0.0000	0.21	2.02	12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
						n= 0.013 Corrugated PE, smooth interior
	0.7	145	0.0390	3.27	22.91	Channel Flow,
		-	-			Area= 7.0 sf Perim= 23.5' r= 0.30'
						n= 0.040 Earth, cobble bottom, clean sides
_	9.6	1 573	Total			

9.6 1,573 Total

Summary for Pond 1P: DETENTION POND

Inflow Area =	14.225 ac, 67.36% Impervious, Inflow	Depth > 3.33" for 10-YR event
Inflow =	47.95 cfs @ 12.14 hrs, Volume=	3.950 af
Outflow =	7.72 cfs @ 12.70 hrs, Volume=	3.557 af, Atten= 84%, Lag= 33.8 min
Primary =	7.72 cfs @ 12.70 hrs, Volume=	3.557 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 45.95' @ 12.70 hrs Surf.Area= 22,067 sf Storage= 81,979 cf Flood Elev= 48.00' Surf.Area= 25,450 sf Storage= 130,998 cf

Plug-Flow detention time= 193.6 min calculated for 3.557 af (90% of inflow) Center-of-Mass det. time= 145.8 min (953.7 - 807.9)

Volume	Inver	t Avail.Sto	rage Storage D	Description	
#1	41.75	5' 130,99	98 cf Custom	Stage Data (Pri	smatic)Listed below (Recalc)
Floveti			In a Ctarra	Curra Starra	
Elevatio		Surf.Area	Inc.Store	Cum.Store	
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)	
41.7		16,151	0	0	
42.0		16,633	4,098	4,098	
43.2		18,948	21,349	25,447	
43.7		20,008	10,713	36,159	
44.(20,491	5,062	41,222	
44.2	25	20,632	5,140	46,362	
45.8	30	21,243	32,453	78,815	
46.0	00	22,371	4,361	83,177	
46.8	30	23,603	18,390	101,566	
48.0	00	25,450	29,432	130,998	
Device	Routing	Invert	Outlet Devices		
#1	Primary	39.00'	24.0" Round	Culvert	
					onforming to fill, Ke= 0.500
					5.75' S= 0.0050 '/' Cc= 0.900
					s & connections, Flow Area= 3.14 sf
#2	Device 1	41.75'		ice/Grate C= C	
#3	Device 1	43.75'		ice/Grate C= C	
#4	Device 1	44.25'		ice/Grate C= C	
#5	Device 1	44.25'		ice/Grate C= C	
#6	Device 1	46.80'		Horiz. Orifice/G	
,, 0	201100 1	10.00		flow at low head	
Primary	OutFlow	Max=7 72 cfs (ຈີ 12.70 hrs HW	/=45.95' TW=0	00' (Dynamic Tailwater)

Primary OutFlow Max=7.72 cfs @ 12.70 hrs HW=45.95' TW=0.00' (Dynamic Tailwater)

- -1=Culvert (Passes 7.72 cfs of 23.29 cfs potential flow)
- **2=Orifice/Grate** (Orifice Controls 3.30 cfs @ 9.46 fps)
- -3=Orifice/Grate (Orifice Controls 1.32 cfs @ 6.72 fps)
- -4=Orifice/Grate (Orifice Controls 1.96 cfs @ 5.62 fps)
- -5=Orifice/Grate (Orifice Controls 1.14 cfs @ 5.79 fps)

-6=Orifice/Grate (Controls 0.00 cfs)

Summary for Link PA-1: Goose Bay Drive

Inflow Area =	14.797 ac, 6	64.82% Impervious,	Inflow Depth > 2.9	94" for 10-YR event
Inflow =	7.89 cfs @	12.63 hrs, Volume	e= 3.619 af	
Primary =	7.89 cfs @	12.63 hrs, Volume	e= 3.619 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Summary for Link PA2: International Drive

Inflow Area =		4.891 ac, 38.06% Impervious, Inflow Depth > 2.33" for 10-YR even	t
Inflow	=	13.37 cfs @ 12.08 hrs, Volume= 0.952 af	
Primary	=	13.37 cfs @ 12.08 hrs, Volume= 0.952 af, Atten= 0%, Lag= 0.0) min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

L-0700-019-PRE-FULL	
Prepared by Tighe & Bond	

 Type III 24-hr
 25-YR Rainfall=6.16"

 Printed
 1/8/2020

 LC
 Page 1

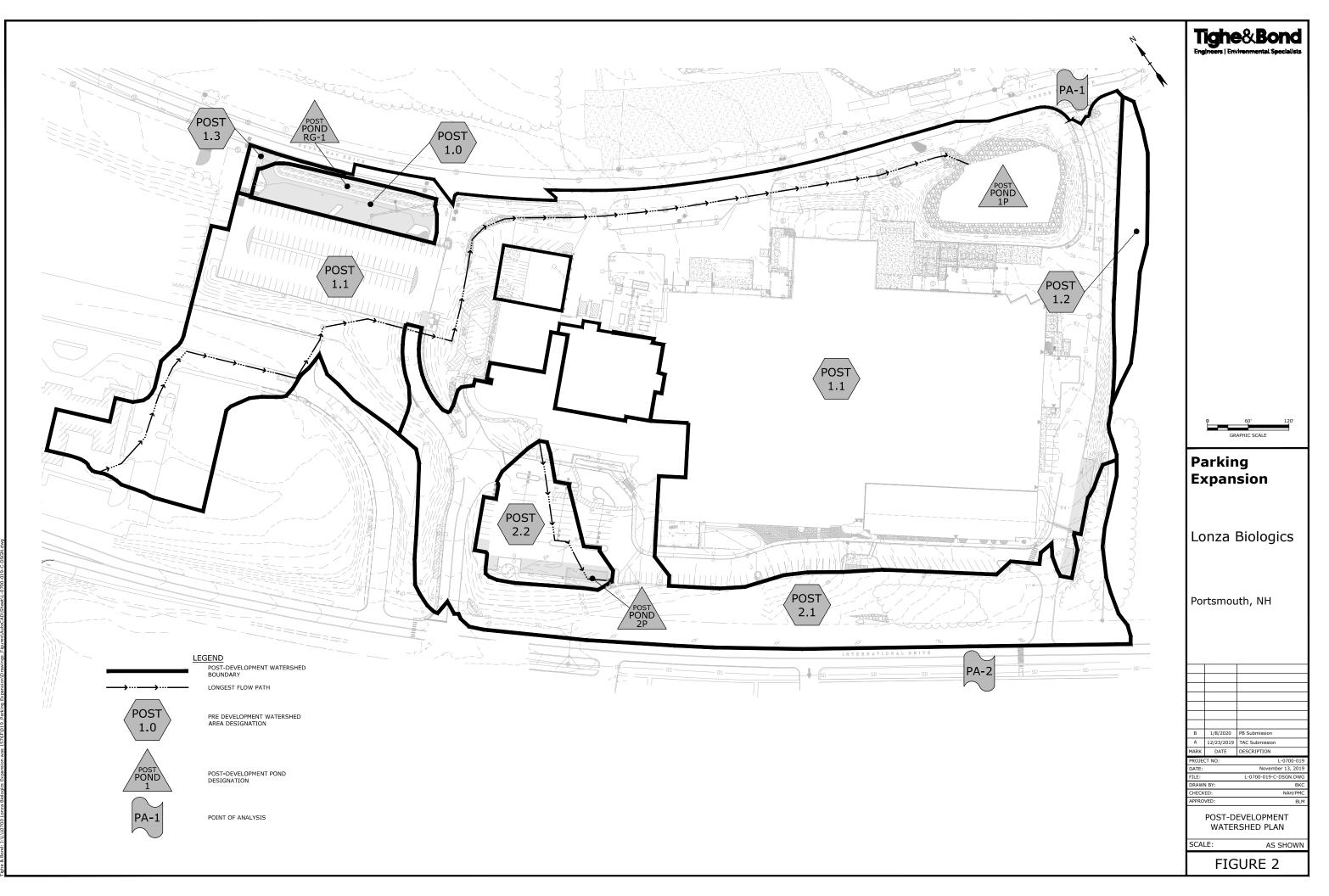
HydroCAD® 10.00-20 s/n 03437 © 2017 HydroCAD Software Solutions LLC

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

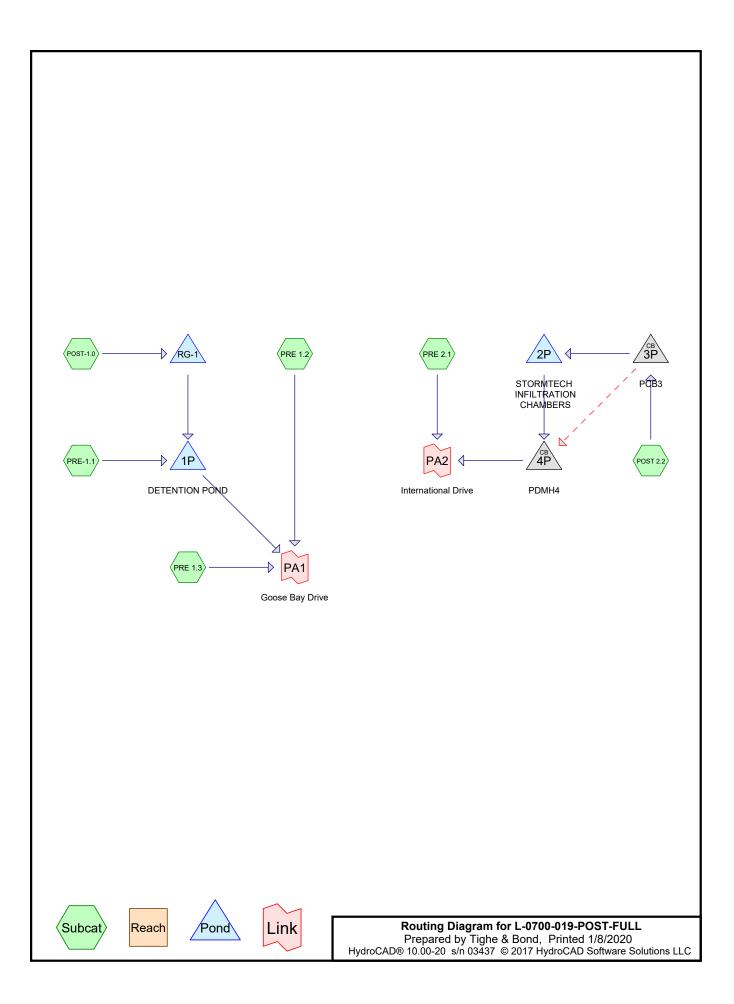
SubcatchmentPRE 1.2:	Runoff Area=14,829 sf 0.00% Impervious Runoff Depth>2.11" Tc=11.4 min CN=61 Runoff=0.67 cfs 0.060 af
SubcatchmentPRE 1.3:	Runoff Area=10,047 sf 4.03% Impervious Runoff Depth>2.20" Tc=5.0 min CN=62 Runoff=0.58 cfs 0.042 af
SubcatchmentPRE 2.1:	Runoff Area=213,064 sf 38.06% Impervious Runoff Depth>3.42" Tc=5.0 min CN=75 Runoff=19.62 cfs 1.393 af
SubcatchmentPRE-1.1:	Runoff Area=619,660 sf 67.36% Impervious Runoff Depth>4.56" Flow Length=1,573' Tc=9.6 min CN=86 Runoff=64.74 cfs 5.400 af
Pond 1P: DETENTION POND	Peak Elev=47.17' Storage=110,308 cf Inflow=64.74 cfs 5.400 af Outflow=14.29 cfs 4.884 af
Link PA-1: Goose Bay Drive	Inflow=14.62 cfs 4.986 af Primary=14.62 cfs 4.986 af
Link PA2: International Drive	Inflow=19.62 cfs 1.393 af Primary=19.62 cfs 1.393 af
Total Bunoff Area - 10	699 an Burnoff Volume = 6 905 of Average Burnoff Donth = 4 20

Total Runoff Area = 19.688 ac Runoff Volume = 6.895 af Average Runoff Depth = 4.20" 41.83% Pervious = 8.235 ac 58.17% Impervious = 11.453 ac

L-07	00-0	19-F	PRE-	FUI	L
	00-0	12-1			


Prepared by Tighe & Bond

HydroCAD® 10.00-20 s/n 03437 © 2017 HydroCAD Software Solutions LLC


Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPRE 1.2:	Runoff Area=14,829 sf 0.00% Impervious Runoff Depth>2.97" Tc=11.4 min CN=61 Runoff=0.97 cfs 0.084 af
SubcatchmentPRE 1.3:	Runoff Area=10,047 sf 4.03% Impervious Runoff Depth>3.08" Tc=5.0 min CN=62 Runoff=0.82 cfs 0.059 af
SubcatchmentPRE 2.1:	Runoff Area=213,064 sf 38.06% Impervious Runoff Depth>4.48" Tc=5.0 min CN=75 Runoff=25.67 cfs 1.827 af
SubcatchmentPRE-1.1:	Runoff Area=619,660 sf 67.36% Impervious Runoff Depth>5.72" Flow Length=1,573' Tc=9.6 min CN=86 Runoff=80.46 cfs 6.786 af
Pond 1P: DETENTION POND	Peak Elev=47.92' Storage=129,038 cf Inflow=80.46 cfs 6.786 af Outflow=23.49 cfs 6.178 af
Link PA-1: Goose Bay Drive	Inflow=24.10 cfs 6.322 af Primary=24.10 cfs 6.322 af
Link PA2: International Drive	Inflow=25.67 cfs 1.827 af Primary=25.67 cfs 1.827 af
Total Dunoff Area - 40	600 as Dunoff Valuma = 0.757 of Average Dunoff Douth = 5.24

Total Runoff Area = 19.688 ac Runoff Volume = 8.757 af Average Runoff Depth = 5.34" 41.83% Pervious = 8.235 ac 58.17% Impervious = 11.453 ac

.ast Saved: 1/9/2020 Plotted On:Jan 09, 2020-10:07am By: NAHanse

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
343,131	61	>75% Grass cover, Good, HSG B (POST 2.2, POST-1.0, PRE 1.2, PRE 1.3, PRE 2.1, PRE-1.1)
92,104	98	Paved parking, HSG B (POST 2.2, POST-1.0, PRE 2.1)
422,368	98	Unconnected pavement, HSG B (PRE 1.3, PRE-1.1)
857,603	83	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(sq-ft)	Group	Numbers
0	HSG A	
857,603	HSG B	POST 2.2, POST-1.0, PRE 1.2, PRE 1.3, PRE 2.1, PRE-1.1
0	HSG C	
0	HSG D	
0	Other	
857,603		TOTAL AREA

Prepared by Tighe & Bond

HydroCAD® 10.00-20 s/n 03437 © 2017 HydroCAD Software Solutions LLC

 Type III 24-hr
 2-YR Rainfall=3.20"

 Printed
 1/8/2020

 .C
 Page 4

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPOST 2.2:	Runoff Area=26,313 sf 81.98% Impervious Runoff Depth>2.26" Tc=5.0 min CN=91 Runoff=1.58 cfs 4,949 cf
SubcatchmentPOST-1.0:	Runoff Area=16,866 sf 57.80% Impervious Runoff Depth>1.54" Tc=5.0 min CN=82 Runoff=0.70 cfs 2,160 cf
SubcatchmentPRE 1.2:	Runoff Area=14,829 sf 0.00% Impervious Runoff Depth>0.44" Tc=11.4 min CN=61 Runoff=0.09 cfs 547 cf
SubcatchmentPRE 1.3:	Runoff Area=2,771 sf 28.11% Impervious Runoff Depth>0.64" Tc=5.0 min UI Adjusted CN=66 Runoff=0.04 cfs 148 cf
SubcatchmentPRE 2.1:	Runoff Area=183,591 sf 33.11% Impervious Runoff Depth>0.98" Tc=5.0 min CN=73 Runoff=4.58 cfs 15,022 cf
SubcatchmentPRE-1.1:	Runoff Area=613,233 sf 68.75% Impervious Runoff Depth>1.83" Flow Length=1,573' Tc=9.6 min CN=86 Runoff=26.42 cfs 93,629 cf
Pond 1P: DETENTION POND	Peak Elev=44.26' Storage=46,500 cf Inflow=26.42 cfs 93,629 cf Outflow=2.96 cfs 84,142 cf
Pond 2P: STORMTECHINFIL Dis	TRATION Peak Elev=77.07' Storage=2,146 cf Inflow=1.58 cfs 4,949 cf carded=0.04 cfs 2,025 cf Primary=0.32 cfs 1,433 cf Outflow=0.35 cfs 3,458 cf
Pond 3P: PCB3	Peak Elev=77.08' Inflow=1.58 cfs 4,949 cf Primary=1.58 cfs 4,949 cf Secondary=0.00 cfs 0 cf Outflow=1.58 cfs 4,949 cf
Pond 4P: PDMH4	Peak Elev=76.93' Inflow=0.32 cfs 1,433 cf 12.0" Round Culvert n=0.013 L=40.0' S=0.0050 '/' Outflow=0.32 cfs 1,433 cf
Pond RG-1:	Peak Elev=67.89' Storage=1,127 cf Inflow=0.70 cfs 2,160 cf Discarded=0.04 cfs 1,515 cf Primary=0.00 cfs 0 cf Outflow=0.04 cfs 1,515 cf
Link PA1: Goose Bay Drive	Inflow=2.99 cfs 84,837 cf Primary=2.99 cfs 84,837 cf
Link PA2: International Drive	Inflow=4.58 cfs 16,455 cf Primary=4.58 cfs 16,455 cf

Total Runoff Area = 857,603 sf Runoff Volume = 116,455 cf Average Runoff Depth = 1.63" 40.01% Pervious = 343,131 sf 59.99% Impervious = 514,472 sf

Prepared by Tighe & Bond

HydroCAD® 10.00-20 s/n 03437 © 2017 HydroCAD Software Solutions LLC

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPOST 2.2:	Runoff Area=26,313 sf 81.98% Impervious Runoff Depth>3.84" Tc=5.0 min CN=91 Runoff=2.63 cfs 8,429 cf
SubcatchmentPOST-1.0:	Runoff Area=16,866 sf 57.80% Impervious Runoff Depth>2.95" Tc=5.0 min CN=82 Runoff=1.34 cfs 4,149 cf
SubcatchmentPRE 1.2:	Runoff Area=14,829 sf 0.00% Impervious Runoff Depth>1.28" Tc=11.4 min CN=61 Runoff=0.38 cfs 1,584 cf
SubcatchmentPRE 1.3:	Runoff Area=2,771 sf 28.11% Impervious Runoff Depth>1.63" Tc=5.0 min UI Adjusted CN=66 Runoff=0.12 cfs 377 cf
SubcatchmentPRE 2.1:	Runoff Area=183,591 sf 33.11% Impervious Runoff Depth>2.17" Tc=5.0 min CN=73 Runoff=10.66 cfs 33,192 cf
SubcatchmentPRE-1.1:	Runoff Area=613,233 sf 68.75% Impervious Runoff Depth>3.33" Flow Length=1,573' Tc=9.6 min CN=86 Runoff=47.45 cfs 170,262 cf
Pond 1P: DETENTION POND	Peak Elev=45.92' Storage=81,334 cf Inflow=47.45 cfs 170,836 cf Outflow=7.67 cfs 153,885 cf
Pond 2P: STORMTECHINFILT Disc	RATION Peak Elev=77.65' Storage=2,693 cf Inflow=2.63 cfs 8,428 cf arded=0.04 cfs 2,239 cf Primary=1.51 cfs 4,480 cf Outflow=1.55 cfs 6,719 cf
Pond 3P: PCB3	Peak Elev=77.76' Inflow=2.63 cfs 8,429 cf Primary=2.63 cfs 8,428 cf Secondary=0.00 cfs 0 cf Outflow=2.63 cfs 8,428 cf
Pond 4P: PDMH4	Peak Elev=77.39' Inflow=1.51 cfs 4,480 cf 12.0" Round Culvert n=0.013 L=40.0' S=0.0050 '/' Outflow=1.51 cfs 4,480 cf
Pond RG-1: Dis	Peak Elev=68.31' Storage=1,913 cf Inflow=1.34 cfs 4,149 cf scarded=0.05 cfs 2,315 cf Primary=0.32 cfs 574 cf Outflow=0.37 cfs 2,889 cf
Link PA1: Goose Bay Drive	Inflow=7.79 cfs 155,846 cf Primary=7.79 cfs 155,846 cf
Link PA2: International Drive	Inflow=11.99 cfs 37,672 cf Primary=11.99 cfs 37,672 cf

Total Runoff Area = 857,603 sf Runoff Volume = 217,994 cf Average Runoff Depth = 3.05" 40.01% Pervious = 343,131 sf 59.99% Impervious = 514,472 sf

Summary for Subcatchment POST 2.2:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 2.63 cfs @ 12.07 hrs, Volume= 8,429 cf, Depth> 3.84"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=4.86"

Are	a (sf)	CN	Description		
2	1,572	98	Paved park	ing, HSG B	3
	4,741	61	>75% Ġras	s cover, Go	ood, HSG B
26	6,313	91	Weighted A	verage	
4	4,741		18.02% Pe	rvious Area	3
2	1,572		81.98% Imp	pervious Ar	rea
Tc L (min)	_ength (feet)	Slope (ft/ft)		Capacity (cfs)	Description
5.0					Direct Entry,

Summary for Subcatchment POST-1.0:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.34 cfs @ 12.08 hrs, Volume= 4,149 cf, Depth> 2.95"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=4.86"

A	rea (sf)	CN	Description			
	9,749	98	Paved park	ing, HSG B	}	
	7,117	61	>75% Gras	s cover, Go	ood, HSG B	
	16,866	82	Weighted A	verage		
	7,117		42.20% Per	vious Area		
	9,749	:	57.80% Imp	pervious Ar	ea	
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description	
5.0					Direct Entry,	

Summary for Subcatchment PRE 1.2:

Runoff = 0.38 cfs @ 12.18 hrs, Volume= 1,584 cf, Depth> 1.28"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=4.86"

 Type III 24-hr
 10-YR Rainfall=4.86"

 Printed
 1/8/2020

 LC
 Page 2

Prepared by Tighe & Bond		
HydroCAD® 10.00-20 s/n 03437	© 2017 HydroCAD Software Solutions LLC	

Area	(sf) (CN D	escription			
14,	829	61 >7	75% Grass	s cover, Go	bod, HSG B	
14,	829	1(00.00% Pe	ervious Are	a	
	ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
11.4					Direct Entry,	

Summary for Subcatchment PRE 1.3:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.12 cfs @ 12.09 hrs, Volume= 377 cf, Depth> 1.63"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=4.86"

A	rea (sf)	CN	Adj Des	cription			
	779	98		Jnconnected pavement, HSG B			
	1,992	61	>75	>75% Grass cover, Good, HSG B			
	2,771	71	66 Wei	ghted Avera	age, UI Adjusted		
	1,992		71.8	9% Perviou	is Area		
	779		28.2	11% Impervi	ous Area		
	779		100	.00% Uncor	nected		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)		Description		
5.0					Direct Entry,		

Summary for Subcatchment PRE 2.1:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 10.66 cfs @ 12.08 hrs, Volume= 33,192 cf, Depth> 2.17"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=4.86"

Area	a (sf)	CN I	Description				
60),783	98	Paved park	ing, HSG B	3		
122	2,808	61 :	>75% Grass cover, Good, HSG B				
183	3,591	73	Neighted A	verage			
122	2,808	66.89% Pervious Area					
60	0,783		33.11% Imp	pervious Ar	rea		
	ength	Slope	,	Capacity	Description		
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)			
5.0					Direct Entry,		

Summary for Subcatchment PRE-1.1:

Runoff = 47.45 cfs @ 12.14 hrs, Volume= 170,262 cf, Depth> 3.33"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=4.86"

_	А	rea (sf)	CN D	escription		
		21,589			ed pavemer	
_	1	91,644	61 >	75% Gras	s cover, Go	bod, HSG B
	6	13,233	86 V	Veighted A	verage	
	1	91,644	3	1.25% Pei	vious Area	
	4	21,589	6	8.75% Imp	pervious Ar	ea
	4	21,589	1	00.00% U	nconnected	1
	Тс	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	2.9	36	0.0560	0.21		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.20"
	2.2	348	0.0170	2.65		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	0.5	391	0.0410	12.04	21.27	
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
						n= 0.013 Corrugated PE, smooth interior
	1.0	203	0.0390	3.27	22.91	,
						Area= 7.0 sf Perim= 23.5' r= 0.30'
						n= 0.040 Earth, cobble bottom, clean sides
	2.3	450	0.0050	3.21	2.52	
						12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
						n= 0.013 Corrugated PE, smooth interior
	0.7	145	0.0390	3.27	22.91	Channel Flow,
						Area= 7.0 sf Perim= 23.5' r= 0.30'
_						n= 0.040 Earth, cobble bottom, clean sides
	06	1 572	Total			

9.6 1,573 Total

Summary for Pond 1P: DETENTION POND

Inflow Area =	630,099 sf, 68.46% Impervious,	Inflow Depth > 3.25" for 10-Y	R event
Inflow =	47.45 cfs @ 12.14 hrs, Volume=	170,836 cf	
Outflow =	7.67 cfs @ 12.71 hrs, Volume=	153,885 cf, Atten= 84%, L	ag= 34.2 min
Primary =	7.67 cfs @ 12.71 hrs, Volume=	153,885 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 45.92' @ 12.71 hrs Surf.Area= 21,902 sf Storage= 81,334 cf Flood Elev= 48.00' Surf.Area= 25,450 sf Storage= 130,998 cf

Plug-Flow detention time= 193.9 min calculated for 153,885 cf (90% of inflow) Center-of-Mass det. time= 146.2 min (954.1 - 807.9) L-0700-019-POST-FULL Prepared by Tighe & Bond

Type III 24-hr 10-YR Rainfall=4.86" Printed 1/8/2020 HydroCAD® 10.00-20 s/n 03437 © 2017 HydroCAD Software Solutions LLC Page 4

Volume	Inver	t Avail.Sto	rage Storage	Description	
#1	41.75			Stage Data (Prismatic)Listed below (Recalc)	
Elevatio	n c	Surf.Area	Inc.Store	Cum.Store	
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)	
41.7	,	16,151	0	0	
42.0	-	16,633	4,098	4,098	
43.2		18,948	21,349	25,447	
43.7		20,008	10,713	36,159	
44.0		20,491	5,062	41,222	
44.2		20,632	5,140	46,362	
45.8	30	21,243	32,453	78,815	
46.0	00	22,371	4,361	83,177	
46.8		23,603	18,390	101,566	
48.0	00	25,450	29,432	130,998	
Dovice	Pouting	Invort	Outlet Device		
Device	Routing	Invert			
#1	Primary	39.00'	24.0" Round	P, end-section conforming to fill, Ke= 0.500	
				r, end-section comonning to hin, Re= 0.500	
				crete pipe, bends & connections, Flow Area= 3.14	٩f
#2	Device 1	41.75'		fice/Grate C= 0.600	51
#3	Device 1	43.75'		fice/Grate C= 0.600	
#4	Device 1			fice/Grate $C = 0.600$	
#5	Device 1	44.25'		fice/Grate C= 0.600	
#6	Device 1	46.80'	19.0" x 19.0"	Horiz. Orifice/Grate C= 0.600	
			Limited to wei	r flow at low heads	
Primary OutFlow Max=7.67 cfs @ 12.71 hrs HW=45.92' TW=0.00' (Dynamic Tailwater) 1=Culvert (Passes 7.67 cfs of 23.25 cfs potential flow) 2=Orifice/Grate (Orifice Controls 3.29 cfs @ 9.43 fps) 3=Orifice/Grate (Orifice Controls 1.31 cfs @ 6.67 fps) 4=Orifice/Grate (Orifice Controls 1.94 cfs @ 5.56 fps)					

-5=Orifice/Grate (Orifice Controls 1.13 cfs @ 5.73 fps)

-6=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond 2P: STORMTECH INFILTRATION CHAMBERS

[80] Warning: Exceeded Pond 3P by 0.07' @ 11.95 hrs (0.99 cfs 355 cf)

Inflow Area =	26,313 sf, 81.98% Impervious,	Inflow Depth > 3.84" for 10-YR event
Inflow =	2.63 cfs @ 12.07 hrs, Volume=	8,428 cf
Outflow =	1.55 cfs @ 12.17 hrs, Volume=	6,719 cf, Atten= 41%, Lag= 6.1 min
Discarded =	0.04 cfs @ 8.80 hrs, Volume=	2,239 cf
Primary =	1.51 cfs @ 12.17 hrs, Volume=	4,480 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 77.65' @ 12.19 hrs Surf Area= 1,530 sf Storage= 2,693 cf Flood Elev= 78.50' Surf.Area= 1,530 sf Storage= 3,244 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow)

Prepared by Tighe & Bond HydroCAD® 10.00-20 s/n 03437 © 2017 HydroCAD Software Solutions LLC

Center-of-Mass det. time= 49.3 min (835.7 - 786.4)

Volume	Invert	Avail.Storage	Storage Description
#1A	75.00'	1,406 cf	25.25'W x 60.58'L x 3.50'H Field A
		·	5,353 cf Overall - 1,838 cf Embedded = 3,516 cf x 40.0% Voids
#2A	75.50'	1,838 cf	ADS_StormTech SC-740 +Cap x 40 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			5 Rows of 8 Chambers
		3,244 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	75.00'	1.000 in/hr Exfiltration over Surface area
#2	Primary	76.70'	12.0" Round Culvert
			L= 20.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 76.70' / 76.40' S= 0.0150 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Discarded OutFlow Max=0.04 cfs @ 8.80 hrs HW=75.04' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.04 cfs)

Primary OutFlow Max=1.48 cfs @ 12.17 hrs HW=77.64' TW=77.38' (Dynamic Tailwater) ←2=Culvert (Inlet Controls 1.48 cfs @ 1.93 fps)

Summary for Pond 3P: PCB3

Inflow Area =	26,313 sf, 81.98% Impervious,	Inflow Depth > 3.84" for 10-YR event
Inflow =	2.63 cfs @ 12.07 hrs, Volume=	8,429 cf
Outflow =	2.63 cfs @ 12.07 hrs, Volume=	8,428 cf, Atten= 0%, Lag= 0.0 min
Primary =	2.63 cfs @ 12.07 hrs, Volume=	8,428 cf
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 77.76' @ 12.20 hrs Flood Elev= 81.85'

Device	Routing	Invert	Outlet Devices
#1	Primary	75.70'	12.0" Round Culvert
			L= 5.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 75.70' / 75.65' S= 0.0100 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Secondary	77.85'	12.0" Round Culvert
			L= 7.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 77.85' / 77.75' S= 0.0143 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.61 cfs @ 12.07 hrs HW=77.54' TW=77.36' (Dynamic Tailwater)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=75.70' TW=76.60' (Dynamic Tailwater) -2=Culvert (Controls 0.00 cfs)

Summary for Pond 4P: PDMH4

[57] Hint: Peaked at 77.39' (Flood elevation advised)

Inflow Area	ı =	26,313 sf, 81.98% Impervious, Inflow Depth = 2.04" for 10-YR event
Inflow	=	1.51 cfs @ 12.17 hrs, Volume= 4,480 cf
Outflow	=	1.51 cfs @ 12.17 hrs, Volume= 4,480 cf, Atten= 0%, Lag= 0.0 min
Primary	=	1.51 cfs @ 12.17 hrs, Volume= 4,480 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 77.39' @ 12.17 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	76.60'	12.0" Round Culvert L= 40.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 76.60' / 76.40' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.50 cfs @ 12.17 hrs HW=77.38' TW=0.00' (Dynamic Tailwater) -1=Culvert (Barrel Controls 1.50 cfs @ 3.13 fps)

Summary for Pond RG-1:

Inflow Area =	16,866 sf, 57.80% Impervious,	Inflow Depth > 2.95" for 10-YR event
Inflow =	1.34 cfs @ 12.08 hrs, Volume=	4,149 cf
Outflow =	0.37 cfs @ 12.47 hrs, Volume=	2,889 cf, Atten= 72%, Lag= 23.7 min
Discarded =	0.05 cfs @ 12.47 hrs, Volume=	2,315 cf
Primary =	0.32 cfs @ 12.47 hrs, Volume=	574 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 68.31' @ 12.47 hrs Surf.Area= 2,200 sf Storage= 1,913 cf Flood Elev= 68.50' Surf.Area= 2,479 sf Storage= 2,365 cf

Plug-Flow detention time= 250.4 min calculated for 2,889 cf (70% of inflow) Center-of-Mass det. time= 155.2 min (971.3 - 816.1)

Volume	Invert	Avail.Storage	Storage Description
#1	64.75'	2,365 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Prepared by Lighe	& Bond					
HydroCAD® 10.00-20	s/n 03437	© 2017 H	ydroCAD	Software	Solutions L	L

Elevation (feet)	Surf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
64.75	963	0.0	0	0
66.00	963	40.0	482	482
67.50	963	10.0	144	626
68.00	1,757	100.0	680	1,306
68.50	2,479	100.0	1,059	2,365

Device	Routing	Invert	Outlet Devices
#1	Discarded	64.75'	1.000 in/hr Exfiltration over Surface area
#2	Primary	65.35'	12.0" Round Culvert
	·		L= 10.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 65.35' / 65.30' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#3	Device 2	68.30'	11.1" x 11.1" Horiz. Orifice/Grate C= 0.600

Discarded OutFlow Max=0.05 cfs @ 12.47 hrs HW=68.30' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.05 cfs)

Primary OutFlow Max=0.28 cfs @ 12.47 hrs HW=68.30' TW=45.77' (Dynamic Tailwater) 2=Culvert (Passes 0.28 cfs of 5.93 cfs potential flow) -3=Orifice/Grate (Orifice Controls 0.28 cfs @ 0.33 fps)

Summary for Link PA1: Goose Bay Drive

Inflow Are	a =	647,699 sf, 66.72% Impervious, Inflow Depth > 2.89" for 10-YR event	
Inflow	=	7.79 cfs @ 12.64 hrs, Volume= 155,846 cf	
Primary	=	7.79 cfs @ 12.64 hrs, Volume= 155,846 cf, Atten= 0%, Lag= 0.0 min	۱

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Summary for Link PA2: International Drive

Inflow Are	a =	209,904 sf, 39.23% Impervious, Inflow Depth > 2.15" for 10-YR event
Inflow	=	11.99 cfs @ 12.09 hrs, Volume= 37,672 cf
Primary	=	11.99 cfs @ 12.09 hrs, Volume= 37,672 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Prepared by Tighe & Bond

HydroCAD® 10.00-20 s/n 03437 © 2017 HydroCAD Software Solutions LLC

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPOST 2.2:	Runoff Area=26,313 sf 81.98% Impervious Runoff Depth>5.11" Tc=5.0 min CN=91 Runoff=3.44 cfs 11,208 cf
SubcatchmentPOST-1.0:	Runoff Area=16,866 sf 57.80% Impervious Runoff Depth>4.13" Tc=5.0 min CN=82 Runoff=1.87 cfs 5,808 cf
SubcatchmentPRE 1.2:	Runoff Area=14,829 sf 0.00% Impervious Runoff Depth>2.11" Tc=11.4 min CN=61 Runoff=0.67 cfs 2,605 cf
SubcatchmentPRE 1.3:	Runoff Area=2,771 sf 28.11% Impervious Runoff Depth>2.56" Tc=5.0 min UI Adjusted CN=66 Runoff=0.19 cfs 591 cf
SubcatchmentPRE 2.1:	Runoff Area=183,591 sf 33.11% Impervious Runoff Depth>3.22" Tc=5.0 min CN=73 Runoff=15.93 cfs 49,256 cf
SubcatchmentPRE-1.1:	Runoff Area=613,233 sf 68.75% Impervious Runoff Depth>4.56" Flow Length=1,573' Tc=9.6 min CN=86 Runoff=64.07 cfs 232,795 cf
Pond 1P: DETENTION POND	Peak Elev=47.16' Storage=110,252 cf Inflow=64.82 cfs 234,717 cf Outflow=14.24 cfs 212,381 cf
Pond 2P: STORMTECHINFILTRA Discarde	FION Peak Elev=78.10' Storage=2,998 cf Inflow=3.08 cfs 10,830 cf d=0.04 cfs 2,370 cf Primary=1.94 cfs 6,687 cf Outflow=1.98 cfs 9,057 cf
Pond 3P: PCB3 Primary=3	Peak Elev=78.26' Inflow=3.44 cfs 11,208 cf .08 cfs 10,830 cf Secondary=0.53 cfs 378 cf Outflow=3.44 cfs 11,208 cf
Pond 4P: PDMH4 12.0	Peak Elev=77.70' Inflow=2.44 cfs 7,064 cf Round Culvert n=0.013 L=40.0' S=0.0050 '/' Outflow=2.44 cfs 7,064 cf
Pond RG-1: Discarde	Peak Elev=68.36' Storage=2,035 cf Inflow=1.87 cfs 5,808 cf d=0.05 cfs 2,460 cf Primary=1.02 cfs 1,922 cf Outflow=1.07 cfs 4,382 cf
Link PA1: Goose Bay Drive	Inflow=14.50 cfs 215,577 cf Primary=14.50 cfs 215,577 cf
Link PA2: International Drive	Inflow=18.24 cfs 56,320 cf Primary=18.24 cfs 56,320 cf

Total Runoff Area = 857,603 sf Runoff Volume = 302,261 cf Average Runoff Depth = 4.23" 40.01% Pervious = 343,131 sf 59.99% Impervious = 514,472 sf

Prepared by Tighe & Bond

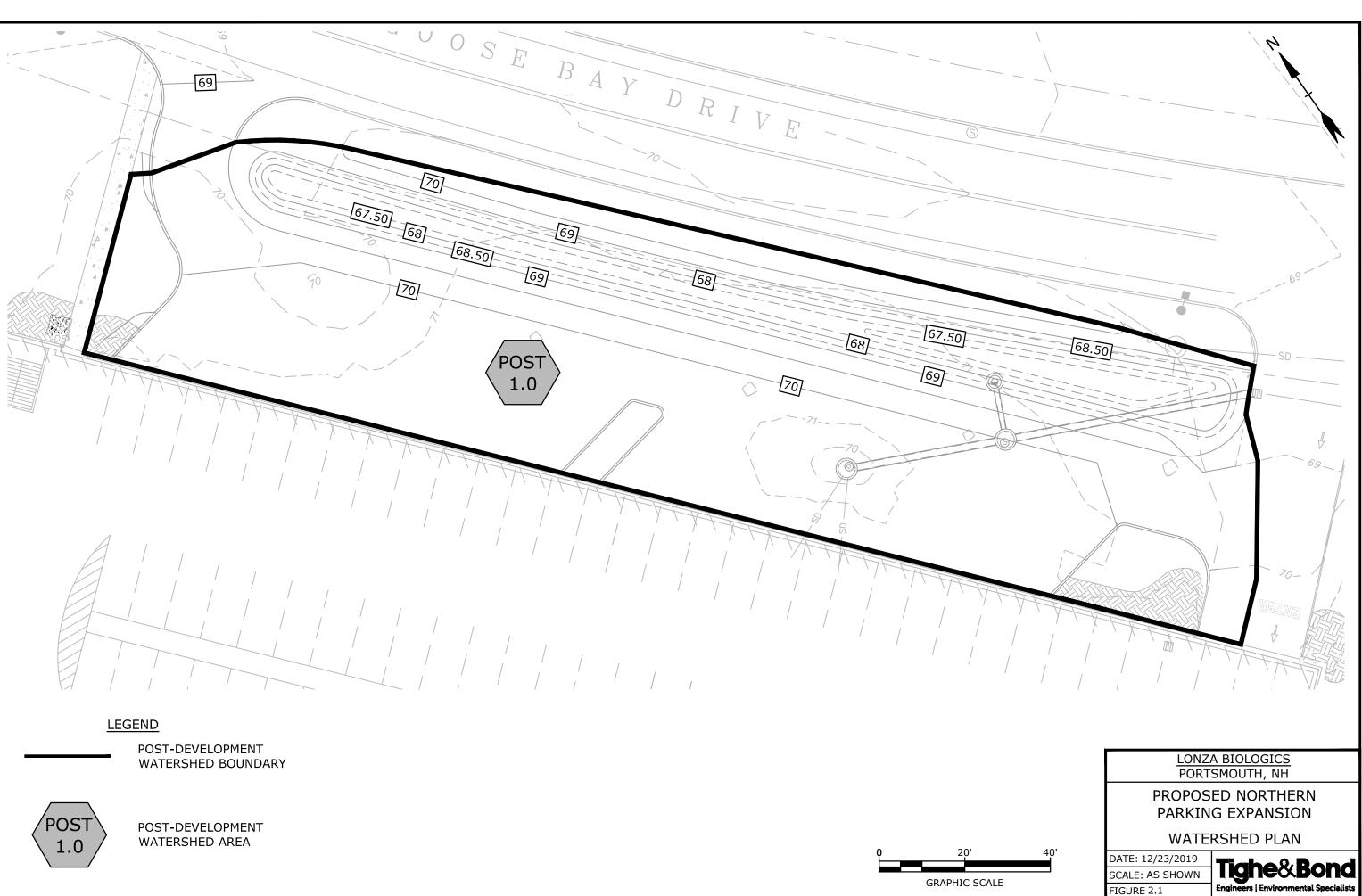
HydroCAD® 10.00-20 s/n 03437 © 2017 HydroCAD Software Solutions LLC

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPOST 2.2:	Runoff Area=26,313 sf 81.98% Impervious Runoff Depth>6.31" Tc=5.0 min CN=91 Runoff=4.20 cfs 13,835 cf
SubcatchmentPOST-1.0:	Runoff Area=16,866 sf 57.80% Impervious Runoff Depth>5.27" Tc=5.0 min CN=82 Runoff=2.36 cfs 7,407 cf
SubcatchmentPRE 1.2:	Runoff Area=14,829 sf 0.00% Impervious Runoff Depth>2.97" Tc=11.4 min CN=61 Runoff=0.97 cfs 3,673 cf
SubcatchmentPRE 1.3:	Runoff Area=2,771 sf 28.11% Impervious Runoff Depth>3.50" Tc=5.0 min UI Adjusted CN=66 Runoff=0.26 cfs 809 cf
SubcatchmentPRE 2.1:	Runoff Area=183,591 sf 33.11% Impervious Runoff Depth>4.26" Tc=5.0 min CN=73 Runoff=21.07 cfs 65,204 cf
SubcatchmentPRE-1.1:	Runoff Area=613,233 sf 68.75% Impervious Runoff Depth>5.72" Flow Length=1,573' Tc=9.6 min CN=86 Runoff=79.63 cfs 292,522 cf
Pond 1P: DETENTION POND	Peak Elev=47.94' Storage=129,430 cf Inflow=81.23 cfs 295,804 cf Outflow=23.60 cfs 269,516 cf
Pond 2P: STORMTECHINFILTRATI Discarded=0	ON Peak Elev=78.41' Storage=3,191 cf Inflow=3.16 cfs 12,724 cf 0.04 cfs 2,471 cf Primary=2.00 cfs 8,451 cf Outflow=2.04 cfs 10,922 cf
Pond 3P: PCB3 Primary=3.16	Peak Elev=78.52' Inflow=4.20 cfs 13,835 cf cfs 12,724 cf Secondary=1.26 cfs 1,112 cf Outflow=4.20 cfs 13,835 cf
Pond 4P: PDMH4 12.0"	Peak Elev=78.12' Inflow=3.20 cfs 9,563 cf Round Culvert n=0.013 L=40.0' S=0.0050 '/' Outflow=3.20 cfs 9,563 cf
Pond RG-1: Discarded:	Peak Elev=68.46' Storage=2,257 cf Inflow=2.36 cfs 7,407 cf =0.06 cfs 2,572 cf Primary=1.63 cfs 3,282 cf Outflow=1.68 cfs 5,854 cf
Link PA1: Goose Bay Drive	Inflow=24.06 cfs 273,997 cf Primary=24.06 cfs 273,997 cf
Link PA2: International Drive	Inflow=23.94 cfs 74,767 cf Primary=23.94 cfs 74,767 cf

Total Runoff Area = 857,603 sf Runoff Volume = 383,450 cf Average Runoff Depth = 5.37" 40.01% Pervious = 343,131 sf 59.99% Impervious = 514,472 sf

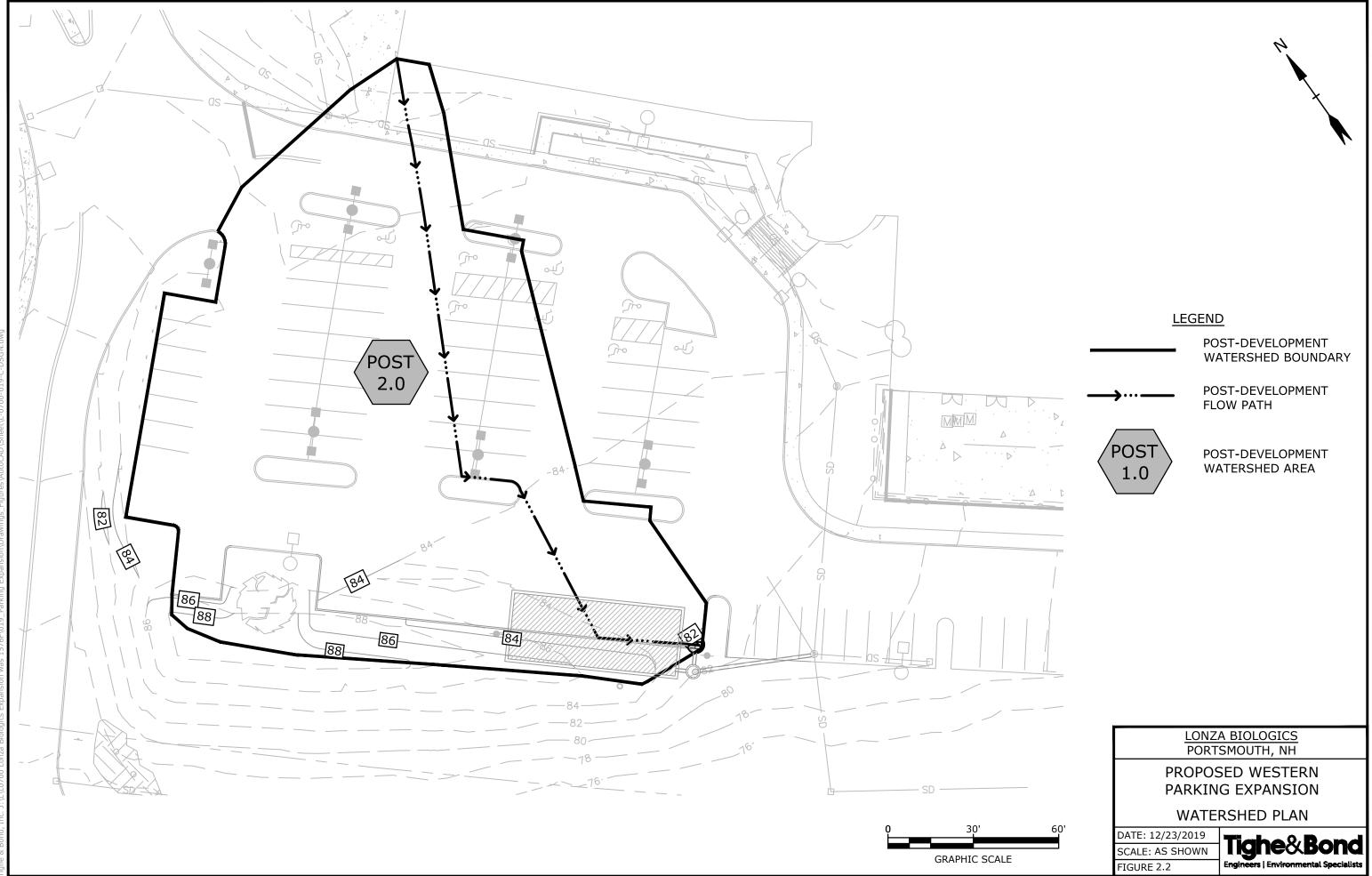
2.2 Stormwater Treatment


The stormwater management system has been designed to provide stormwater treatment to meet NHDES AoT Regulations as required by the Pease Development Authority. Stormwater treatment for each development area is detailed Sections 2.2.1 through 2.2.3.

2.2.1 Northern Expansion

Runoff generated from the proposed impervious area within the northern expansion area will be treated by a proposed rain garden. The rain garden has been sized in order to treat the Water Quality Volume (WQV), as referenced in Table 2.2.1. The subcatchment area and rain garden footprint within this expansion can be referenced in Figure 2.1.

Table 2.2.1 - Treatment Area Proposed Rain Garden Water Quality Volume Calculations		
VARIABLE	DESCRIPTION	VALUE
Р	1 Inch of Rainfall	1 inch
А	Total Area Draining to Design Structure	0.39 AC
Ai	Impervious Area Draining to Design Structure	0.22 AC
I	% Impervious Area Draining to Design Structures	57%
Rv	Runoff Coefficient, $Rv = 0.05 + (0.9*I)$	0.56
WQV	Water Quality Volume, WQV = P*A*Rv	789 CF
v	Volume of Storage ¹	1,416 CF


¹Storage above the filter media but below the overflow invert, as well as filter media void space

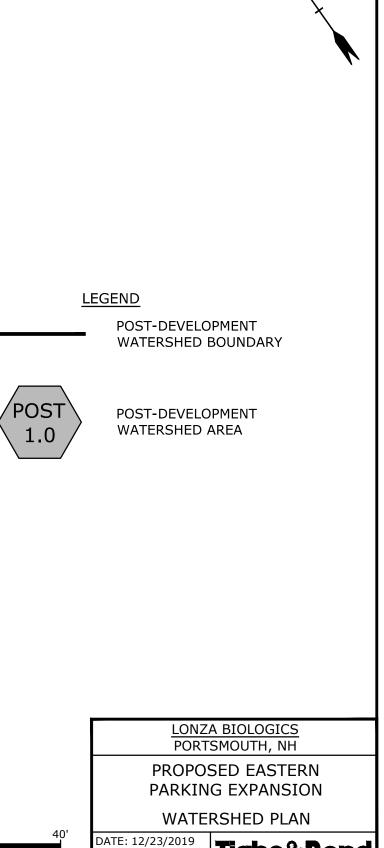
2.2.2 Western Expansion

Runoff generated from both the proposed and existing impervious areas within the Western Expansion will be captured in a new deep sump catch basin with oil separator hood which will be tied to an underground infiltration system to provide stormwater treatment and to mitigate additional flows generated by the new pavement. The underground Stormtech chamber system has been sized to treat the Water Quality Volume (WQV), as referenced in Table 2.2.2. The subcatchment area for this expansion can be referenced in Figure 2.2.

Table 2.2.2 - Treatment Area Proposed Underground Chamber System		
Water Quality Volume Calculations		
VARIABLE	DESCRIPTION	VALUE
Р	1 Inch of Rainfall	1 inch
A	Total Area Draining to Design Structure	0.60 AC
Ai	Impervious Area Draining to Design Structure	0.49 AC
I	% Impervious Area Draining to Design Structures	82%
Rv	Runoff Coefficient, $Rv = 0.05 + (0.9*I)$	0.79
WQV	Water Quality Volume, WQV = P*A*Rv	1,710 CF
v	Volume of Storage ¹	1,742 CF

2.2.3 Eastern Expansion

Runoff generated from both proposed and existing impervious areas within the Eastern Expansion will be treated by a Contech Jellyfish Filter filtration system. The Jellyfish Filter was sized to treat the Water Quality Flow (WQF), as shown in Table 2.2.3. The Jellyfish Filter Design Summary prepared by Contech Engineered Solutions is also provided. The subcatchment area for this expansion can be referenced in Figure 2.3.


Table 2.2.3 - Treatment Area Proposed Filtration System Water Quality Flow Calculations		
VARIABLE	DESCRIPTION	VALUE
Р	1 Inch of Rainfall	1 inch
А	Total Area Draining to Design Structure	0.16 AC
Ai	Impervious Area Draining to Design Structure	0.13 AC
I	% Impervious Area Draining to Design Structures	84%
Rv	Runoff Coefficient, $Rv = 0.05 + (0.9*I)$	0.80
WQV	Water Quality Volume, WQV = P*A*Rv	467 cf
Тс	Time of Concentration (min.)	5.0
q _u	Unit Peak Discharge (cfs/mi ² /in)	700
WQF	Total Treatment Flow, WQF = WQV*q _u	0.141 cfs

Project Name: Lonza Biologics					
Site Designation:	Eastern Parking Expansion	Date:	11/25/19		
County or Independent City:	Portsmouth	Designer:	DRA		
State:	NH	0			
Flow Based Data:					
Water Quality Flow (cfs)			0.14		
Total Drainage Area, A (ac)			0.16		
Post Development Impervious Area	I, A _I (ac)		0.13		
Pervious Area, A _P (ac)			0.03		
Impervious Runoff Coefficient, Rv			0.95		
Pervious Runoff Coefficient, Rv			0.25		
% Impervious		81%			
Runoff Coefficient, Rc		0.82			
Flow Based Filter Sizing:					
Filter Type			Jellyfish		
Filter Type Structure Type			Jellyfish Manhole		
Filter Type Structure Type Cartridge Length			5		
Structure Type			Manhole		
Structure Type			Manhole		
Structure Type Cartridge Length			Manhole 54''		
Structure Type Cartridge Length # Hi-Flo Cartridges Required			Manhole 54'' 1		
Structure Type Cartridge Length # Hi-Flo Cartridges Required # Draindown Cartridges Required			Manhole 54'' 1 1		

20' GRAPHIC SCALE

SCALE: AS SHOWN FIGURE 2.3 Tighe&Bond Engineers | Environmental Specialists

3.0 Conclusion

The proposed project will result in a reduction in post-development peak runoff rates from the pre-development condition. The impervious areas resulting from the proposed project and an equivalent amount of existing impervious area will be treated as required by the Pease Development Authority. The proposed raingarden, underground infiltration system and stormwater filtration system will treat the surface runoff from the three expansion areas prior to discharging to the existing on-site stormwater system.