DRAINAGE ANALYSIS SITE DEVELOPMENT

MAP 154, LOT 2 BREWERY LANE PORTSMOUTH, NH For

CHINBURG PROPERTIES / PORTSMOUTH WEST END DEVELOPMENT, LLC

February 12, 2018

Revised: March 19, 2018

Revised April 17, 2018

Ambit Engineering, Inc.

Civil Engineers and Land Surveyors 200 Griffin Road, Unit 3 Portsmouth, NH 03801 Phone: 603.430.9282; Fax: 436.2315 E-mail: jlm@ambitengineering.com

TABLE OF CONTENTS

DRAINAGE ANALYSIS

Introduction	1
Methodology	2
Site Specific Information	2
Drainage Analysis	3
Stormwater Quality BMP	6
Peak Flow Rates	7
Channel Protection	7
Conclusion	8

APPENDIX A

- 1. Operation and Maintenance Plan
- 2. BMP Worksheets
- 3. Complete Results of Drainage Analysis Calculations from the HydroCAD Program Analysis
- 4. Plan of Existing Subcatchments W1
- 5. Plan of Proposed Subcatchments W2
- 6. Extreme Precipitation Table, Northeast Regional Climate Center, Cornell University

EXECUTIVE SUMMARY

In a recent review by the Planning Board, it was suggested that the hydrologic modeling consider the "Extreme Precipitation" values from The Northeast Regional Climate Center (Cornell University) be as used for modeling purposes. These values have been used and are included in this report.

This analysis is meant to be used by Town officials, the developer, builders, earthwork contractors and other interested parties to better understand the assumptions and intent of the drainage management and treatment scheme. This drainage analysis examines and compares the existing and proposed conditions stormwater drainage patterns for a Site Development on Brewery Lane in the City of Portsmouth, at Assessor's Map 154, Lot 2. The total lot size is 5.03 acres including areas of off-site watershed that flows onto the parcel and is included in the drainage analysis. Because of the project size, the applicant is required to obtain an NHDES Alteration of Terrain permit which require that stormwater runoff be treated prior to its discharge off the property. This will be achieved by the use of stormwater treatment BMP's and best management practices.

The "existing" conditions site plan show the condition immediately before development (i.e., as it exists today). Runoff amounts from this existing state are a function of the land cover, vegetation and soils; together those factors produce what is known as the Curve Number. The "existing" or pre-developed curve number for the area consisting of one subcatchments is 97. Typically, highly developed areas with a substantial amount impervious area will have curve numbers approaching 90, whereas undisturbed or undeveloped areas can have curve numbers as low as 30 if the soils are well-drained and covered with forest. The proposed development's curve number decreases to 93. Because we have reduced the total amount of impervious surface on the site, the chance of an increase in runoff is very low. For this reason, only treatment practices are proposed at this time to meet State permitting requirements (Alteration of Terrain).

Because the overall impervious surface area has been decreased in the proposed condition, peak rates of runoff can be maintained without on site detention. However,

the runoff will require treatment. Deep sump catch basins with water quality elbows will provide secondary stormwater treatment. Primary treatment will be achieved by the use of two filtration systems and an "Environment 21" (V2B1 Model #6) system. The filtration systems treat runoff by filtering it through a layer of engineered soil that removes pollutants through filtering and absorption. The rate of outflow through these ponds is primarily a function of the filter media porosity and the perforated underdrain within that filter media. The two filtration systems are located inside of the islands within the parking lot on the north side of the site. The water quality unit will be located within the community patio in front of the building. A NHDES Alteration of Terrain permit application will be filed for the project because the disturbed areas will exceed 100,000 square-feet.

Treatment of stormwater runoff is required for the "first-flush" runoff (or Water Quality Volume) and is defined by NHDES as a continuous storm with a rainfall of 1". Statistically, 90% of all storm events in the State of New Hampshire in any given year produce 1" or less rainfall during a 24 hour period. These storms are assumed to carry the majority of the pollutants associated with stormwater runoff. The water quality volume (WQV) is calculated based on this small storm and that volume is treated in the BMP (in this case the filter ponds). Larger storms are also passed through these BMP's but since the majority of the pollutants have already been removed there is no need to treat the entire volume of runoff. For these storms, the volume above and beyond the water quality volume is "by-passed" through the outlet structure untreated.

There is one design point on this parcel which are used to compare pre and postdeveloped runoff amounts. The design point is labeled DP1 and is located within a drain manhole within the intersection of Jewell Court and Brewery Lane.

The 2, 10, 25 and 50 year, 24 hour storm events are used to compare the peak runoff amounts at the design point.

The following table summarizes the pre and post developed peak runoff flows at the one Design Point:

Comparison of Pre and Post Developed Discharge Rates

Design Point	Existing	Proposed	Change
	2 yr/10 yr/25 yr/50 yr	2 yr/10 yr/25 yr/50 yr	2 yr/10 yr/25 yr/50 yr
	Peak Flow	Peak Flow	Peak Flow
	(cfs)	(cfs)	(cfs)
DP1	18.0/27.6/35.2/42.2	15.7/25.3/32.7/39.6	-2.3/-2.3/-2.5/-2.6

As the above chart shows, flows are either maintained or reduced in the proposed condition. The following table summarizes the pre and post developed stormwater volumes at the Design Point:

Comparison of Pre and Post Developed Stormwater Volumes

Design Point	Existing	Proposed	Change
	2 yr/10 yr/25 yr/50 yr	2 yr/10 yr/25 yr/50 yr	2 yr/10 yr/25 yr/50 yr
	Volume (af)	Volume (af)	Volume (af)
DP1	1.1/1.8/2.3/2.7	0.9/1.5/2.0/02.5	-0.2/-0.3/-0.3/-0.2

As the above table shows, volumes are either maintained or reduced at the Design Point. This meets Alteration of Terrain Permit requirements as well as City of Portsmouth requirements.

DRAINAGE ANALYSIS SITE DEVELOPMENT

MAP 154, LOT 2 125, 155 & 145 BREWERY LANE PORTSMOUTH, NH For

CHINBURG PROPERTIES / PORTSMOUTH WEST END DEVELOPMENT, LLC

INTRODUCTION

In a recent review by the Planning Board, it was suggested that the hydrologic modeling consider the "Extreme Precipitation" values from The Northeast Regional Climate Center (Cornell University) be as used for modeling purposes. These values have been used and are included in this report.

This drainage report is designed to assist the owner, planning board, contractor, regulatory reviewer, and others in understanding the impact of the proposed development project on local surface water runoff and quality. The project site is shown on City of Portsmouth Assessor's Map 154 as Lot 2. The proposed project is for the redevelopment of a 4.7-acre parcel for additional residential use.

This report includes information about the existing site and the proposed development as necessary to analyze stormwater runoff treatment and management. The report includes maps of existing and proposed subcatchments and calculations of runoff. The report will provide a brief narrative description of the storm water runoff and describe numerically and graphically the surface water runoff patterns for this site. Proposed stormwater management and treatment structures and methods will also be described. To fully understand the proposed site development the reader should review plans W1 and W2 which graphically show the assumptions used in the HydroCAD stormwater model (Note: these plans are not meant to be used for construction purposes).

In order to maintain or reduce developed peak-runoff amounts to pre-developed levels, the applicants will have to provide for detention of runoff. This will be achieved by the use of two filtration systems and a water quality unit (WQU). The filtration basins treat runoff by filtering it through a layer of engineered soil that removes pollutants through filtering and absorption. The rate of outflow through these basins is primarily a function of the filter media porosity. The two filtration systems are located inside of the islands within the parking lot on the north side of the site. The water quality unit will be located within the community patio in front of the building. A NHDES Alteration of Terrain permit application will be filed for the project because the disturbed areas will exceed 100,000 square-feet.

Treatment of stormwater runoff is required for the "first-flush" runoff (or Water Quality Volume) and is defined by NHDES as a continuous storm with a rainfall of 1". Statistically, 90% of all storm events in the State of New Hampshire in any given year produce 1" or less rainfall during a 24-hour period. These storms are assumed to carry the majority of the pollutants associated with stormwater runoff. The water quality volume (WQV) is calculated based on this small storm and that volume is treated in the BMP (in this case the filter ponds). Larger storms are also passed through these BMP's (or should be) but since the majority of the pollutants have already been removed there is no need to treat the entire volume of runoff. For larger storms, the volume above and beyond the water quality volume is "by-passed" through the outlet structure untreated.

METHODOLOGY

This report uses the US Soil Conservation Service Method for prediction of storm water runoff. The SCS method is published in The National Engineering Handbook, Section 4 "Hydrology", in Technical Release No. 20, (TR-20) "Computer Program for Project Formulation Hydrology", and Technical Release-55 (TR-55) "Urban Hydrology for Small Watersheds". This report uses the HydroCAD program, written by Applied Microcomputer Systems, Chocorua, N.H., to apply these methods. Rainfall data are taken from the Extreme Precipitation Tables published by the Northeast Climate Center.

SITE SPECIFIC INFORMATION

Located on Brewery Lane in Portsmouth, this site the location of a former DPW garage and two brick structures.

The site is bound by Cheverolet ave to the southeast, Brewery Lane to the northwest, Plaza 800 to the southwest and existing Malt House buildings to the northeast.

The majority of Soils on this site are of the Urban Land "Canton Complex". These soils can be described as being well-drained. A waiver is requested from the requirement for a site specific soil report as is required by State Alteration of Terrain permitting, because the soil is "made" land.

DRAINAGE ANALYSIS

In a recent review by the Planning Board, it was suggested that the hydrologic modeling consider the "Extreme Precipitation" values from The Northeast Regional Climate Center (Cornell University) be as used for modeling purposes. These values have been used and are included in this report.

This drainage analysis consists of two sections, an analysis of the stormwater runoff from the site in the existing condition, and an analysis of the stormwater runoff from the same area with the proposed development. Areas and drainage information were taken from an existing condition plan and site topographic map prepared by this office. Soils information was taken from the Soil Conservation Service (SCS) Web Soil Survey. Vegetative cover information was determined by on-site inspection as well as aerial orthophotography.

There is one discharge point identified for analysis of stormwater runoff for this project. This is the same point in the existing and proposed conditions. This discharge point is located inside an existing drain manhole within the intersection of Brewery Lane and Jewell Court.

Existing or Pre-Developed Site Runoff

In order to study the site in greater detail, design closed systems and estimate peak stormwater runoff, it is necessary to divide the site into watershed subcatchments. There is a single subcatchment in the existing analysis. The design point is an existing drain manhole (DMH 4) located in the intersection of Brewery Lane and Jewell Court. The large majority of these discharges are sheet flow.

Subcatchment Summaries

Subcatchment ES1*: This Subcatchment comprises 100% of the total area including runoff from offsite (5.035 ac). Existing groundcover is largely impervious surfaces consisting of paved parking and rooftops with some small areas of compacted gravel surface. Runoff from this subcatchment flows to the municipal drainage system along Jewett Court.

*Runoff volumes are based on the 2-year storm event for comparison purposes only.

The following table summarizes the existing subcatchments. The hydrologic modeling consider the "Extreme Precipitation" values from The Northeast Regional Climate Center (Cornell University) be as used for modeling purposes.

The total rainfall amounts for the 2, 10, 25 and 50-year storm are 3.69", 5.60", 7.10" and 8.50". These are the rainfall amounts promulgated by NHDES and are taken from the Northeast Regional Climate Center website. They represent extreme precipitation + 15%.

Table 1: Existing Watershed Subcatchment Runoff Results.

Subcatchment	Area	Tc min.	CN	2 Year	10 Year	25 Year	50 Year
	Sf			Peak cfs	Peak cfs	Peak cfs	Peak cfs
ES1	219,330	5.0	97	18.0	27.6	35.2	42.2

Consistent with TR-55 methodology, a minimum Time of Concentration of 5.0 minutes was set in the HydroCAD modeling software. See "Plan of Proposed Subcatchments" – W1.

Proposed or Post-Developed Site Runoff

There are eight subcatchments in the proposed analysis including runoff from off site. The same Design Point is utilized for the developed state. Subcatchments PS1, PS2, PS3, PS4, PS5, PS6, PS7 and PS8 all flow to Discharge Point 1 (DP1).

The following is a description of the various subcatchments:

- Subcatchment PS1 is the northwest corner of the lot and represents an existing building on site, a small amount of landscaping, sidewalk and pavement within Brewery Lane. Flow from this subcatchment discharges directly to design point DP1.
- Subcatchment PS2 represents the majority of runoff from the rear of the building in PS1 as well as pavement, sidewalk and landscaping. The flow from this subcatchment is captured and treated in Filter Pond #1.
- Subcatchment PS2a represents offsite rooftop runoff that will be captured in a swale/underdrain system that will bypass the onsite treatment.
- Subcatchment PS3 is the northwest corner of the lot and is largely pavement with smaller amounts of sidewalk and landscape area. The flow from this subcatchment is captured and treated in Filter Pond #2.
- Subcatchment PS3a represents offsite rooftop runoff that will be captured in a swale/underdrain system that will bypass the onsite treatment.
- Subcatchement PS4 is the located in the southwest corner of the property and represents runoff from an existing building on site, a small amount of landscaping, sidewalk and pavement within Brewery Lane. Flow from this subcatcheent discharges directly to design point DP1.
- Subcatchment PS5 is contains the majority of the area for the entire lot and is comprised of the entire rooftop from the proposed sidewalk, pavement and landscaped areas. Runoff from this subcatchment will be treated in a Water Quaility Unit (WQU) located within the community patio in the front of the building.

Subcatchment PS5A is contains sidewalk, pavement and landscaped areas.

Subcatchment PS5B is contains sidewalk, pavement and landscaped areas.

- Subcatchment PS5C is contains the majority of the area for the entire entire rooftop from the proposed building.
- Subcatchement PS6 is located along Cheverolet Avenue to the rear of the proposed building and is comprised of pavement, sidewalk and landscaped area.

Subcatchement PS7 is located adjacent to the parking lot of Plaza 800 and is comprised of pavement, sidewalk and landscaped area.

Subcatchments PS8 represent runoff from a small part of the property that flows to proposed catch basin PCB2.

All proposed subcatchments flow to and are analyzed at design point DP 1 (DMH 4).

Subcatchment	Area	Tc min *	Weighted	2 Year Peak	10 Year Peak	25 Year Peak	50 Year Peak
	Sf		CN	cfs	cfs	cfs	cfs
PS1	7,157	5.0	97	0.6	0.9	1.1	1.4
PS2a	20,584	5.0	93	1.6	2.5	3.2	3.9
PS2b	11,747	5.0	94	0.9	1.4	1.8	2.2
PS3a	19,589	5.0	94	1.5	2.4	3.1	3.7
PS3b	40,960	5.0	92	3.0	4.9	6.3	7.7
PS4	12,006	5.0	94	0.9	1.5	1.9	2.3
PS5	34,260	5.0	91	2.5	4.0	5.2	6.4
PS5A	9,298	5.0	97	0.8	1.2	1.5	1.8
PS5B	13,605	5.0	92	1.0	1.6	2.1	2.5
PS5C	18,430	5.0	98	1.5	2.3	3.0	3.6
PS6	20,527	5.0	88	1.3	2.3	3.0	3.7
PS7	8,740	5.0	94	0.7	1.1	1.4	1.7
PS8	2,398	5.0	94	0.2	0.3	0.4	0.5
Totals							

Table 2: Proposed or Developed Conditions

See "Plan of Proposed Subcatchments" – W2.

*Consistent with TR-55 methodology, a minimum Time of Concentration of 5.0 minutes was set in the HydroCAD modeling software.

**By inspection, the Time of Concentration for several small subcatchments was "Direct Entered" with a Tc of 5.0 minutes.

Stormwater Quality BMP's

We understand the City is in process of generating requirements for stormwater treatment, the applicant is preparing an NHDES Alteration of Terrain (NHDES AoT) permit application and is required to treat stormwater runoff as part of that approval process.

The State recognizes many different "BMP's" (best management practices) for purposes of treating stormwater runoff. This project proposes several different BMPs to accomplish the goals of the Alteration of Terrain permit:

- Filtration Basins are proposed for several reasons: a) The runoff can be filtered.
 b) Filter ponds provide good treatment and cooling of stormwater runoff and c)
 Filter ponds can be designed to regulate outflow so that channel protection
 requirements are met. On this site, filtration ponds have been chosen for their
 ease of construction, maintenance and cost.
- 2. Environment 21 V2B1 Model #6.

Peak Flow Rates

One of the main goals of any stormwater runoff analysis has to do with maintaining peak runoff amounts to pre-developed levels. The following table summarizes and compares the peak runoff amounts for the existing and proposed conditions, at the Design Point:

Comparison of Pre and Post Developed Discharge Rates

Design Point	Existing	Proposed	Change
	2 yr/10 yr/25 yr/50 yr	2 yr/10 yr/25 yr/50 yr	2 yr/10 yr/25 yr/50 yr
	Peak Flow	Peak Flow	Peak Flow
	(cfs)	(cfs)	(cfs)
DP1	18.0/27.6/35.2/42.2	15.7/25.3/32.7/39.6	-2.3/-2.3/-2.5/-2.6

<u>Discussion</u>: The design of the stormwater management system is such that no increases in peak flow are seen at the design point.

Channel Protection Requirements

Meeting the Channel Protection Requirements (Env-Wq 1507-05) for this project was achieved at design point DP1.

The following table summarizes the pre and post developed stormwater volumes at the five Design Point:

Comparison of Pre and Post Developed Stormwater Volumes

Design Point	Existing	Proposed	Change
	2 yr/10 yr/25 yr/50 yr	2 yr/10 yr/25 yr/50 yr	2 yr/10 yr/25 yr/50 yr
	Volume (af)	Volume (af)	Volume (af)
DP1	1.1/1.8/2.3/2.7	0.9/1.5/2.0/02.5	-0.2/-0.3/-0.3/-0.2

<u>Discussion</u>: As the above table shows, volumes are either maintained or reduced for all subcatchments. This meets Alteration of Terrain Permit requirements as well as requirements of the City of Portsmouth.

Conclusion

The new development can be built without increasing the risk of flooding or erosion onto neighboring properties or overburdening the existing City of Portsmouth stormwater system. Given the results of the preceding analysis and compliance with known state and city requirements noted above, it is our opinion that this project will not have downstream impact to the existing storm drain system.

INSPECTION & MAINTENANCE PLAN FOR

Chinburg Properties / Portsmouth West End Development, LLC

Site Redevelopment

125 Brewery Lane

Portsmouth, NH

Introduction

The intent of this plan is to provide Chingurg Properties / Portsmouth West End Devleopment, LLC (herein referred to as "owner") with a list of procedures that document the inspection and maintenance requirements of the stormwater management system for this development. Specifically, the detention ponds, infiltration system and associated structures on the project site (collectively referred to as the "Stormwater Management System").

The following inspection and maintenance program is necessary to keep the stormwater management system functioning properly. These measures will also help minimize potential environmental impacts. By following the enclosed procedures, the owner will be able to maintain the functional design of the stormwater management system and maximize its ability to remove sediment and other contaminants from site generated stormwater runoff.

Annual Report

The owner shall prepare an annual Inspection & Maintenance Report. The report shall include a summary of the system's maintenance and repair by transmission of the Inspection & Maintenance Log and other information as required. A copy of the report shall be delivered annually to the City of Portsmouth Code Enforcement Officer.

Inspection & Maintenance Checklist/Log

The following pages contain a Stormwater Management System Inspection & Maintenance Checklist and a blank copy of the Stormwater Management System Inspection & Maintenance Log. These forms are provided to the owner as a guideline for performing the inspection and maintenance of the Stormwater Management System. This is a guideline and should be periodically reviewed for conformance with current practice and standards.

STORMWATER MANAGEMENT SYSTEM COMPONENTS

The Stormwater Management System is designed to mitigate both the quantity and quality of sitegenerated stormwater runoff. As a result, the design includes the following elements:

Non-Structural BMP's

Non-Structural best management practices (BMP's) include temporary and permanent measures that typically require less labor and capital inputs and are intended to provide protection against erosion of soils. Examples of non-structural BMP's on this project include but are not limited to: temporary and permanent mulching, temporary and permanent grass cover, trees, shrubs and ground covers, miscellaneous landscape plantings, dust control, tree protection, topsoiling, sediment barriers, and a stabilized construction entrance.

Structural BMP's

Structural BMP's are more labor and capital intensive structures or installations that require more specialized personnel to install. Examples on this project include but are not limited to: storm drains, the micro detention ponds and associated outlet control structures, and the infiltration trench system.

Inspection and Maintenance Requirements

The following summarizes the inspection and maintenance requirements for the various BMP's that may be found on this project.

- 1. **Grassed areas:** After each rain event of 0.5" or more during a 24 hour period, inspect grassed areas for signs of disturbance, such as erosion. If damaged areas are discovered, immediately repair the damage. Repairs may include adding new topsoil, lime, seed, fertilizer and mulch.
- 2. Plantings: Planting and landscaping (trees, shrubs) shall be monitored bi-monthly during the first year to insure viability and vigorous growth. Replace dead or dying vegetation with new stock and make adjustments to the conditions that caused the dead or dying vegetation. During dryer times of the year, provide weekly watering or irrigation during the establishment period of the first year. Make the necessary adjustments to ensure long-term health of the vegetated covers, i.e. provide more permanent mulch or compost or other means of protection.
- **3.** Storm Drain Structures (POCS): Monitor drain inlets and outlets for excessive accumulation of sediments or missing stone/riprap. Remove sediments as required.
- 4. Filtration Basin: After acceptance of the Filtration Basin, perform the following inspections on a semi-annual basis or after significant rainfall events (10 year, 24 hour storms, or back to back 2 year, 24 hour storms):
 - a. Monitor Filtration Basin for 72 hours following a rain storm. If the Filtration Basin fails to fully drain within this period time, the engineered soil may have become plugged. Inspect for other causes of blockage. If it's determined that the soil has become plugged and is no longer functioning as engineered, then replacement of soils shall be required. Contractor shall use care in removing soil around tree roots. An airspade shall be used to remove soils around tree roots.
 - **b.** Monitor for excessive or concentrated accumulations of debris, or excessive erosion. Remove debris as required.

- c. Monitor the outfall structure for problems with clogged pipes. Repair or remove clogs as required, and determine cause of clogging. Pipes should be inspected annually and after every major rainstorm. Broken or damaged pipes should be repaired or replaced as necessary.
- d. Monitor side slopes of ponds for damages or erosion—repair as necessary.
- e. Monitor turf health and keep protected from fire, grazing, traffic and dense weed growth. Lime and fertilizer should be applied as necessary to promote good growth as determined by soil tests. Mowing the vegetated areas of the basin should be carried out as necessary.
- **f.** Sediment accumulation should be continually checked in the basin. Sediment should be removed as it is discovered. Particularly if it has accumulated near the outlet of the basin.
- **g.** The outlet control structure should be inspected annually and after every major rainstorm. The outlet control structure has within it a weir structure with various size orifices for controlling flow out of the basin. These orifices should be kept clear and unclogged. Any sediment or debris that has built up inside the outlet control structure should be removed when discovered.
- h. The use of sand shall be prohibited and the use of salt shall be limited.

Invasive Species

Monitor Stormwater Management System for signs of invasive species growth. If caught earlier enough, their eradication is much easier. The most likely places where invasions start are in wetter, disturbed soils or detention ponds. Species such as phragmites and purple loose-strife are common invaders in these wetter areas. If they are found then the owner shall contact a wetlands scientist with experience in invasive species control to implement a plan of action to eradicate the invaders. Measures that do not require the application of chemical herbicides should be the first line of defense.

Stormwater Management System Inspection & Maintenance Checklist for Post Construction Condition—for Chinburg Properties / Portsmouth West End Devlopment, 125 Brewery Lane, Portsmouth, NH

BMP/System Component	Minimum Inspection Frequency	Minimum Inspection Requirements	Maintenance/Cleanout Threshold
Closed Drainage System			
Drainage Pipes	Yearly	Check for sediment clogging, or soiled runoff.	Clean entire drainage system and remove all sediments if discovered in piping.
Filtration Basin	2 X Annually	Check for sediment clogging, excessive weed growth and standing water	Remove any weeds, trash, debris and accumulated sediment. If trench does not drain within 72 hours following a rain event, a qualified professional should assess the condition of the facility to determine restoration measures.
Environment 21 V2B1 Model #6	See Attached	See Attached	See Attached
Annual Report	Yearly	Prepare Annual Report, including all Inspection & Maintenance Logs. Provide to Town (if required).	N/A

	Performed By						
ortsmouth, NH	Date of	Maintenance					
tsmouth West End Devlopment, 125 Brewery Lane, Po	Problems Noted, Required Maintenance	(List Items/Comments)					
urg Properties / Po	Inspector						
ce Log-for Chinb	Date	Inspected					
spection & Maintenan	BMP/System	Component					

Ins

Stormwater Management System Maintenance Summary

Data Sheets

V2B1® SYSTEM MAINTENANCE

1.0 REQUIRED MAINTENANCE FREQUENCY

- 1.1 The required maintenance practice for the V2B1® System is to initially plan on quarterly inspections and an annual pump-out. After experience is gained, the schedule may be more accurately determined.
- 1.2 It is recommended that the V2B1® System should be pumped out when the sediment storage depth in the first structure is at 50% of the design sediment storage depth. Refer to the project design package for the design sediment storage depth.
- 1.3 Oil Sheen and floating debris are retained in the first two chambers of the V2B1® System. Annual accumulation is estimated at less than 0.50 inches; however, it is dependent on the site.

2.0 CONDITIONS THAT CAUSE THE NEED FOR MAINTENANCE

- 2.1 The most common cause of poor performance of the V2B1® System is lack of maintenance. The V2B1® System removes pollution from the environment and, if this pollution is not routinely removed from V2B1® System, the effectiveness of the V2B1® System could be compromised. The following are things that trigger the need for maintenance and the consequences of not completing said maintenance.
 - 2.1.1 Sediment build-up in the chambers As the sediment level increases past the recommended maintenance interval, less sediment will be removed from the runoff. Additionally, a large storm could cause entrainment of some of the sediment that was previously captured.
 - 2.1.2 Excess floatables in the chambers Similar to sediment buildup, floatables (oil and litter) build up risking the capture of additional floatables.

- 2.1.3 Obstructed piping/baffles If the piping or baffles become obstructed due to improper maintenance (timely removal of obstructions), flooding may occur upstream of the V2B1® System.
- 2.1.4 As with most buried structures, the access covers could be moved out of position during extreme flooding conditions.
- 2.2 In addition to the V2B1® System internal inspections, frequent site inspections should be conducted. These frequent site inspections are recommended as visual only and do not require tools, equipment, or removal of the access covers. Things to look for during these inspections are signs of flooding at catch basins upstream of the V2B1® System, unexpected loss of outlet flow, out of place access covers, and downstream pollution (oil sheen, litter, etc.).

3.0 ACCESS POINTS AND REQUIRED INSPECTION

- 3.1 Maintenance access is through access frames (rings), with covers, which are provided in the V2B1® System roof.
- 3.2 The floatables observation and sediment depth measurement are obtained by removal of the covers and access through the access frames of the V2B1® System.
- 3.3 Illuminate the water surface in the first stage of the V2B1® System while gently stirring the floatables to estimate the depth of the floatables. Obtain a sample of the floatables, water, or sediment, if required, to determine disposal. The depth of the oil sheen and floatable debris will typically be less than one inch and may be skimmed from the surface prior to the pump-out of the sediment. Organic debris that has become waterlogged and settled to the floor is expected to be present in relatively small quantities that will be removed during the pump-out of the mineral sediment.

- 3.4 Inspect all surfaces, which can be seen, of the V2B1® System for wear (e.g., cracking, spalling, etc.). Also, examine the inlet and elbow pipes for wear, blockage, and damage (cracks, etc.). Report signs of degradation to the proper authorities (i.e., property owner, municipality, etc.) as required,
- 3.5 Lower a measuring rod into the first chamber of the V2B1® System until a slight resistance is noticed. The measuring rod is now at the top of the sediment pile. Obtain a measurement by sighting the measure increments on the rod to a point on the access frame. Repeat this several times at different locations of the sediment pile in the first chamber of the V2B1® System to verify the measurement. This is Measurement A.
- 3.6 While the measuring rod is on top of the sediment pile, force it down through the sediment pile using a twisting motion until the measuring rod reaches the floor of the chamber (verify the expected elevation using the project submittal drawings). Obtain a measurement by sighting the measure increments on the rod to the same point on the access frame as was used in Step 3.5. This is Measurement B.
- 3.7 Refer to the Environment 21 system specific design package for the design sediment storage depth. This is measurement C.
- 3.8 Plug the numbers obtained from the previous three steps into the following equation to obtain the percent full sediment depth of the first chamber of the V2B1® System:

((B – A)/C) * 100

- 3.9 Complete Steps 3.2 through 3.8 for all chambers of the V2B1® System.
- 3.10 Contact the following for approval and notification of the intent to pump out the V2B1® System.
 - 3.10.1 Obtain permission from the property owner to pump out the contents of the V2B1® System.

- 3.10.2 Verify the disposal requirements with the local regulatory agency.
- 3.10.3 Contract with an approved vendor to pump out the V2B1® System. If the pump-out will be completed without a contracted vendor, go to Step 3.11, otherwise go to Step 3.16.
- 3.11 Obtain a standard truck-mounted sewer and catch basin cleaner with proper pump-out equipment (e.g., positive displacement rotary lobe vacuum pump). This equipment will be used for Steps 3.12 through 3.15.
- 3.12 Remove the floatables and hydrocarbons from the first chamber of the V2B1® System. Segregate this waste as required.
- 3.13 Remove the standing water and sediment from the first chamber of the V2B1® System. Segregate this waste as required.
- 3.14 Wash down the interior surface of the first chamber of the V2B1® System using a clean water supply. Suction the chamber while washing it. Break up and suspend into the rinse water any solids found in the chamber and verify all solids have been removed.
- 3.15 Repeat Steps 3.12 through 3.14 for the remaining chambers of the V2B1® System.
- 3.16 Using a flood light inspect all visible surfaces of the V2B1® System. Check for wear (e.g., cracking, spalling, etc.) on the surfaces. In addition, examine the inlet and elbow pipes for wear, blockage, and damage (e.g., cracks, etc.). Report signs of degradation to the proper authorities (i.e., owner, municipality, etc.) as required.
- 3.17 Refill the V2B1® System, with clean water, to the inlet/outlet pipe invert elevation.
- 3.18 Properly dispose of the waste removed from the V2B1® System.

- 3.19 Verify that no personnel, tools, or equipment are in the V2B1® System.
- 3.20 Inspect the access frames and covers for damage (e.g., cracks, deformations, etc.).
- 3.21 Clear the access frames of any extraneous material and carefully replace the covers using proper lifting and rigging techniques and equipment. Verify that the covers are properly seated.
- 3.22 Remove all tools, equipment, and material used in the inspection/pump-out. Verify that the work area is returned to the pre-work or better condition.
- 3.23 Complete an inventory of all tools and equipment used for the inspection/pump-out accounting for lost, damaged, or stolen tools or equipment.
- 3.24 Maintenance is a very important aspect in keeping the V2B1® System performance up to par. Attachment A "V2B1® SYSTEM MAINTENANCE DATA SHEET" is provided and should be used to document the maintenance performed on the V2B1® System.
- 3.25 Provide a copy of the "V2B1® SYSTEM MAINTENANCE DATA SHEET" to the owner, required government agencies, and Environment 21 LLC.

4.0 IMPORTANT ASPECTS

- 4.1 Safety is a priority and the most stringent of regulations (OSHA, local, etc.) should be followed while performing maintenance on the V2B1® System.
- 4.2 An advantage of the design of the V2B1® System is that all of the maintenance may be completed without personnel entry into the V2B1® System. In the remote chance that an entry into the V2B1®

System is needed, refer to regulations (OSHA, Confined Space, local, etc.) for requirements and definitions.

- 4.3 A running inventory of all tools and equipment used for completion of this procedure should be maintained while performing maintenance on the V2B1® System.
- 4.4 The V2B1® System is normally equipped with cast iron access frames and vented covers to provide approach to all chambers. The accesses are normally at ground level so the work area should be staged properly to prevent anyone or anything from inadvertently falling through any of the accesses of the V2B1® System.
- 4.5 After maintenance is complete on the V2B1® System, the access covers must be set securely in place, all materials and equipment should be removed, and the area should be cleared of slip and trip hazards.
- 4.6 This document and the project specific data capture the requirements for maintenance of the V2B1® System. Any additional maintenance and product information may be obtained by calling Environment 21, LLC at 800-809-2801.

5.0 **REQUIRED EQUIPMENT**

- 5.1 The recommended tools/equipment for completing the work outlined in this procedure include but are not limited to a flood light, proper lifting and rigging equipment, hose that supplies clean water with sufficient pressure (≥ 40 psi) and volume (≥ 5 GPM), and a rigid measuring rod (increments in inches marked on the rod) that will reach the floor of the V2B1® System and still extend a minimum of 2' above the access frames.
- 5.2 Environment 21, LLC should be contacted if any repairs are required so that the system will be restored to proper operation.

٢	
-	
P	
Ĵ	
N	
- 2	
Ş	
5	
-	
-	
Ç	

PLOI BOX 55	Clobal Stormwater Solutions S5 East Pembroke NY 14056 100 400 550 Fire 1-555 a 15-400 100 400 200 Fire 1-555 Fire 1	Darates
	V2B1 SYSTEM MAINTENANCE DATA SHEET	
SITE NAME:		
LOCATION:	INSTALLATION DATE:	
OWNER NAME:		AST INS.? Y N
ADDRESS:	PHONE NUMBER	
CITY:	STATE ZIP COD	
SITE STATUS:		
DATE:	TIME SITE CONDITIONS	

www.env21.com enveng@env21.com				
Inspection Frequency Key: A=annual; M=	SIT monthl	E INSPE y; S=af	CTION ter majo	r storms
Inspection Items	Frequency Inspection	lnspected)	Maintenance Needed? (Yes/No)	Comments/Descriptions
Debris Removal				
Adjacent area free of debris?	Σ			
Inlets and Outlets free of debris?	Σ			
Facility (internally) free of debris?	Σ			
Vegetation				
Surrounding area fullly stabilized (no				
evidence of eroding material into				
proprietary BMP)				
Grass mowed?	Σ			
Water retention where required				
Water holding chambers at normal				
pool?	٤			
Evidence of erosion?				
Sediment Deposition				
20% full?	A			

Structural Components			
Any evidence of structural			
deterioration?	۲		
Grates in good condition	۲		
Spalling or cracking of structural parts?	۲		
Outlet/Overflow Spillway	۲		
Other	8		
Noticeable odors?	۲		
Evidence of flow bypassing facility?	A	3	

			l
			ï
	Ë	2	
	Ċ	-	
	đ	5	
1	۶	_	
	2	-	
i	≻	-	
	7	5	
	ς,	,	
(_)	
(-)	
) 5	
(5	
(ううう	
		うううう	
C		うううう	
C		ううううつ	
C		ううううつこ	

Unacceptable
Overall Condition of Facility:

Technology That Separates S **Q** ΞĮ YES V2B1® SYSTEM INSPECTION ANY VISIBLE CRACKS/SPALLING/DAMAGE ANY VISIBLE CRACKS/SPALLING/DAMAGE Ironments Global Stormwater Solutions ANY VISIBLE DISPLACEMENT/LEAKS LOCAL AGENCIES NOTIFIED AS REQUIRED. ANY VISIBLE CRACKS/DAMAGE P.O. Box 55 | East Pembroke | NY 14056 www.env21.com | enveng@env21.con ANY VISIBLE SURFACE WEAR ANY VISIBLE OBSTRUCTIONS OWNER NOTIFIED AS REQUIRED. **ANY VISIBLE LEAKS** STRUCTURE PIPING

(ay	e	NIFO Global	Stormwate	ent solution	L7 2							
6	P.O. H	Box 55 East Pr Per 1 800 605 25 Jenv21.com 6	embroke NY 1 Invergeenv21	14056 -816-4701				echnolo	ogy Th	at Sepa	arates	
FRAMES	COVERS									YES	QN	Î
	ANY VISI	IBLE CRA(CKS/DAN	AGE								
	ANY VISI	IBLE SEAT	SURFACE	OBSTR	UCTIO	NS						
	COVERS	PROPERI	LY SEATEC	0								
								LOATABL				
DATE	SEDIM	VENT PILE	DEPTH	OIL SH	EEN YI	S/NO		DEPTH		PUMF	OUT REQ	UIRED
	1st	2nd	3rd	1st	2nd	3rd	1st	2nd	3rd		YES/NO	
		SAMPLED										
DATE		YES/NO					•••	SAMPLE R	ESULTS			
	1st	2nd	3rd		1st			2nd			3rd	
						[
The next	routine i	nspectior	n is schec	luled fo	or appi	oximat	ely:				11	

NOTE: 1st, 2nd, and 3rd refer to the V2B1 chambers.

(DATE)

	logy That Separates
environments Global Stormwater Solutions	P.O. Box 55 East Pembroke NY 14056 Prone 1 400-405-2601 Fax 1-565 815-4701 www.env21.com enveng@env21.com
(Le	

WORK COMPLETION	(
ALL CAST IRON COVERS HAVE BEEN PROPERLY REPLACED.		
NO HAZARDOUS CONDITIONS EXIST AS A RESULT OF THE MAINTENANCE WORK.		
all PPE, tools, and equipment have been inventoried and removed from the site.		
THE WORK AREA HAS BEEN RETURNED TO A SAFE PRE-WORK CONDITION.		
all notifications have been made, as required, that the work is completed.		
Corrective Actions Taken:		Ĩ
INSPECTED BY: (signature)		Î Î

INSPECTED BY: (printed)_

Type/Node Name:

FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.07)

POCS1

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable

Yes		Have you reviewed the restrictions on unlined systems outlined in Env-We	q 1508.07(a)?
0.47	ac	A = Area draining to the practice	
0.37	ac	$A_I =$ Impervious area draining to the practice	
0.79	decimal	I = percent impervious area draining to the practice, in decimal form	
0.76	unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
0.36	ac-in	WQV=1" x Rv x A	
1,294	cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
324	cf	25% x WQV (check calc for sediment forebay volume)	
971	cf	75% x WQV (check calc for surface sand filter volume)	A
Sedime	ntation	Method of Pretreatment? (not required for clean or roof runoff)	
324	cf	V_{SED} = sediment forebay volume, if used for pretreatment	$\leftarrow \geq 25\% WQV$
1,511	sf	A_{SA} = surface area of the practice	
-	iph	$I_{DESIGN} = design infiltration rate^{1}$	
Yes	Yes/No	If I_{DESIGN} is < 0.50 iph, has an underdrain been provided?	
141	hours	$T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$	← ≤ 72-hrs
14.00	feet	E_{FC} = elevation of the bottom of the filter course material ²	
12.75	feet	E_{UD} = invert elevation of the underdrain (UD), if applicable	
11.67	feet	E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation	of the test pit)
10.17	feet	E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation	n of the test pit)
1.25	feet	$D_{FC \text{ to UD}} = \text{depth to UD from the bottom of the filter course}$	← ≥ 1'
3.83	feet	$D_{FC \text{ to } ROCK}$ = depth to bedrock from the bottom of the filter course	← ≥ 1'
2.33	feet	$D_{FC \text{ to SHWT}} = \text{depth to SHWT from the bottom of the filter course}$	← ≥ 1'
14.75	ft	Peak elevation of the 50-year storm event (infiltration can be used in a	nalysis)
15.50	ft	Elevation of the top of the practice	
YES	1.	50 peak elevation \leq Elevation of the top of the practice	← yes
If a surface	e sand filte	er or underground sand filter is proposed:	
YES	ac	Drainage Area check.	← < 10 ac
	cf	$V = volume of storage^3$ (attach a stage-storage table)	$\leftarrow \geq 75\%$ WQV
	inches	$D_{FC} = $ filter course thickness	← 18", or 24" if within GPA
Sheet		Note what sheet in the plan set contains the filter course specification	
	Yes/No	Access grate provided?	← yes

(a)

If a bioretention area is proposed:

inches

YES	ac	Drainage Area no larger than 5 ac?	← yes
	cf	V = volume of storage ³ (attach a stage-storage table)	← ≥WQV
	inches	$D_{FC} =$ filter course thickness	← 18", or 24" if within GPA
Sheet	:	Note what sheet in the plan set contains the filter course specification	
	:1	Pond side slopes	← <u>>3</u> :1
Sheet	t	Note what sheet in the plan set contains the planting plans and surface	cover
If porous	pavement	is proposed:	
		Type of pavement proposed (concrete? Asphalt? Pavers? Etc)	
	acres	A_{SA} = surface area of the pervious pavement	1000
1.0	:1	ratio of the contributing area to the pervious surface area	← 5:1
	inches	D = filter course thickness	← 12", or 18" if

within GPA Sheet Note what sheet in the plan set contains the filter course spec. ← 304.1 sand

1. Rate of the limiting layer (either the filter course or the underlying soil). See Env-Wq 1504.14 for guidance on determining the infiltration rate.

2. See lines 34, 40 and 48 for required depths of filter media.

 $D_{FC} =$ filter course thickness

3. Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet stucture, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.

Designer's Notes:

NHDES Alteration of Terrain

Last Revised: December 2017

Type/Node Name:

FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.07)

POCS2

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable

Yes	Have you reviewed the restrictions on unlined systems outlined in Env	-Wq 1508.07(a)?
0.45 ac	A = Area draining to the practice	
0.37 ac	A_{I} = Impervious area draining to the practice	
0.82 decima	I = percent impervious area draining to the practice, in decimal form	n
0.79 unitiess	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
0.36 ac-in	WQV=1" x Rv x A	
1,290 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
323 cf	25% x WQV (check calc for sediment forebay volume)	
968 cf	75% x WQV (check calc for surface sand filter volume)	
Sedimentation	Method of Pretreatment? (not required for clean or roof runoff)	
323 cf	V_{SED} = sediment forebay volume, if used for pretreatment	$\leftarrow \geq 25\% WQV$
2,683 sf	A_{SA} = surface area of the practice	
- iph	$I_{DESIGN} = design infiltration rate^{1}$	
Yes Yes/No	If I_{DESIGN} is < 0.50 iph, has an underdrain been provided?	
- hours	$T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$	← ≤ 72-hrs
13.00 feet	E_{FC} = elevation of the bottom of the filter course material ²	
11.75 feet	E_{UD} = invert elevation of the underdrain (UD), if applicable	
10.97 feet	E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevat	ion of the test pit)
8.80 feet	E_{ROCK} = elevation of bedrock (if none found, enter the lowest eleva	tion of the test pit)
1.25 feet	$D_{FC \text{ to } UD}$ = depth to UD from the bottom of the filter course	← ≥ 1'
4.20 feet	$D_{FC \text{ to } ROCK}$ = depth to bedrock from the bottom of the filter course	← ≥ 1'
2.03 feet	$D_{FC \text{ to SHWT}}$ = depth to SHWT from the bottom of the filter course	← ≥ 1'
14.24 ft	Peak elevation of the 50-year storm event (infiltration can be used i	n analysis)
14.50 ft	Elevation of the top of the practice	
YES	50 peak elevation \leq Elevation of the top of the practice	← yes
If a surface sand f	ilter or underground sand filter is proposed:	
YES ac	Drainage Area check.	← < 10 ac
cf	V = volume of storage ³ (attach a stage-storage table)	← ≥ 75%WQV
inches	$D_{FC} = filter course thickness$	← 18", or 24" if within GPA
Sheet	Note what sheet in the plan set contains the filter course specification	on
Yes/No	Access grate provided?	← yes

If a bioretention area is proposed:

inches

YES	ac	Drainage Area no larger than 5 ac?	← yes
	cf	V = volume of storage ³ (attach a stage-storage table)	← ≥WQV
	inches	$D_{FC} = $ filter course thickness	← 18", or 24" if within GPA
Sheet		Note what sheet in the plan set contains the filter course specification	
	:1	Pond side slopes	← <u>>3</u> :1
Sheet		Note what sheet in the plan set contains the planting plans and surface	cover
If porous p	avement is	s proposed:	
		Type of pavement proposed (concrete? Asphalt? Pavers? Etc)	
	acres	A_{SA} = surface area of the pervious pavement	
1.0	:1	ratio of the contributing area to the pervious surface area	← 5:1

 Merce
 Merce
 Merce
 within GPA

 Sheet
 Note what sheet in the plan set contains the filter course spec.
 \leftarrow 304.1 sand

 1
 Pate of the limiting layer (either the filter course or the underlying seil). See Fire We 1504.14 fire a idea of the set of the limiting layer (either the filter course or the underlying seil).

1. Rate of the limiting layer (either the filter course or the underlying soil). See Env-Wq 1504.14 for guidance on determining the infiltration rate.

2. See lines 34, 40 and 48 for required depths of filter media.

 $D_{FC} =$ filter course thickness

3. Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet stucture, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.

Designer's Notes:

NHDES Alteration of Terrain

Last Revised: December 2017

← 12", or 18" if

FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.07)

Type/Node Name:

ENV 21

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable

Yes		Have you reviewed the restrictions on unlined systems outlined in Env-W	q 1508.07(a)?				
0.79	ac	A = Area draining to the practice					
0.54	ac	A_{I} = Impervious area draining to the practice					
0.68	decimal	I = percent impervious area draining to the practice, in decimal form					
0.67	unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)					
0.53	ac-in	WQV=1" x Rv x A					
1,908	cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")					
477	cf	25% x WQV (check calc for sediment forebay volume)					
1,431	cf	75% x WQV (check calc for surface sand filter volume)					
		Method of Pretreatment? (not required for clean or roof runoff)					
	cf	V_{SED} = sediment forebay volume, if used for pretreatment	$\leftarrow \geq 25\% WQV$				
	sf	A_{SA} = surface area of the practice					
	iph	$I_{\text{DESIGN}} = \text{design infiltration rate}^1$					
	Yes/No	If I_{DESIGN} is < 0.50 iph, has an underdrain been provided?					
	hours	$T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$	← ≤ 72-hrs				
	feet	E_{FC} = elevation of the bottom of the filter course material ²					
	feet	E_{UD} = invert elevation of the underdrain (UD), if applicable					
	feet	E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation	of the test pit)				
	feet	E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation	n of the test pit)				
	feet	$D_{FC to UD}$ = depth to UD from the bottom of the filter course	← ≥1'				
	feet	$D_{FC \text{ to } ROCK}$ = depth to bedrock from the bottom of the filter course	← ≥ 1'				
	feet	$D_{FC \text{ to SHWT}} = \text{depth to SHWT from the bottom of the filter course}$	← ≥ 1'				
	ft	Peak elevation of the 50-year storm event (infiltration can be used in a	nalysis)				
	ft	Elevation of the top of the practice	• /				
		50 peak elevation \leq Elevation of the top of the practice	← yes				
If a surfac	e sand filte	r or underground sand filter is proposed:					
YES	ac	Drainage Area check.	← < 10 ac				
	cf	V = volume of storage ³ (attach a stage-storage table)	$\leftarrow \geq 75\% WQV$				
	inches	$D_{FC} = filter course thickness$	← 18", or 24" if within GPA				
Sheet		Note what sheet in the plan set contains the filter course specification	-				
	Yes/No	Access grate provided?	← yes				
If a bioret	ention area	a is proposed:					
-------------	---	---	-----------------------------	--	--	--	--
YES	YES ac Drainage Area no larger than 5 ac?						
	cf	V = volume of storage ³ (attach a stage-storage table)	$\leftarrow \geq WQV$				
	inches	D_{FC} = filter course thickness	← 18", or 24" if within GPA				
Sheet		_Note what sheet in the plan set contains the filter course specification					
	:1	Pond side slopes	← <u>>3</u> :1				
Sheet		lote what sheet in the plan set contains the planting plans and surface cover					
If porous	pavement i	is proposed:					
		Type of pavement proposed (concrete? Asphalt? Pavers? Etc)					
	acres	A_{SA} = surface area of the pervious pavement					
1.0	:1	ratio of the contributing area to the pervious surface area	← 5:1				
	inches	$D_{FC} = $ filter course thickness	← 12", or 18" if within GPA				
Sheet		Note what sheet in the plan set contains the filter course spec.	← 304.1 sand				

1. Rate of the limiting layer (either the filter course or the underlying soil). See Env-Wq 1504.14 for guidance on determining the infiltration rate.

2. See lines 34, 40 and 48 for required depths of filter media.

3. Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet stucture, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.

Designer's Notes:

NHDES Alteration of Terrain

Last Revised: December 2017

Area Listing (selected nodes)

Are	a CN	Description
(acres	5)	(subcatchment-numbers)
1.10	4 74	>75% Grass cover, Good, HSG C (PS1, PS2a, PS2b, PS3a, PS3b, PS4, PS5,
		PS5A, PS5B, PS6, PS7, PS8)
2.02	4 98	Paved parking, HSG C (PS1, PS2a, PS3a, PS3b, PS4, PS5, PS5A, PS5B, PS6,
		PS7, PS8)
1.57	7 98	Roofs, HSG C (PS1, PS2b, PS3b, PS4, PS5, PS5C, PS6, PS7)
0.32	9 98	Sidewalks, HSG C (PS1, PS2a, PS4, PS5, PS5A, PS5B, PS6, PS7)
5.03	4 93	TOTAL AREA

Soil Listing (selected nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
5.034	HSG C	PS1, PS2a, PS2b, PS3a, PS3b, PS4, PS5, PS5A, PS5B, PS5C, PS6, PS7, PS8
0.000	HSG D	
0.000	Other	
5.034		TOTAL AREA

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
 0.000	0.000	1.104	0.000	0.000	1.104	>75% Grass cover, Good	PS1, PS2a, PS2b,
							PS3a, PS3b,
							PS4,
							PS5,
							PS5A,
							PS5B,
							PS6,
							PS7,
							PS8
0.000	0.000	2.024	0.000	0.000	2.024	Paved parking	PS1,
							PS2a,
							PS3a,
							PS3b,
							PS4,
							PS5,
							PS5A,
							PS5B,
							PS6,
							PS7,
						- /	PS8
0.000	0.000	1.577	0.000	0.000	1.577	Roofs	PS1,
							PS2b,
							PS3b,
							PS4,
							PS5,
							PS5C,
							PS6,
							PS7
0.000	0.000	0.329	0.000	0.000	0.329	Sidewalks	PS1,
							PS2a,
							PS4,
							PS5,
							PS5A,
							PS5B,
							PS6,
							PS7
0.000	0.000	5.034	0.000	0.000	5.034	TOTAL AREA	

Ground Covers (selected nodes)

Proposed Conditions Prepared by Ambit Engineering, Inc. HydroCAD® 10.00 s/n 00801 © 2013 HydroCAD Software Solutions LLC

1.5	N	L. L	0	1	01		Diama AA/ alth	11.1.1.1.1	La stata 🖅 🗆
Line#	Node	In-Invert	Out-Invert	Length	Slope	n	Diam/width	Height	Inside-Fill
	Number	(feet)	(feet)	(feet)	(ft/ft)		(inches)	(inches)	(inches)
1	1P	8.17	7.87	106.0	0.0028	0.012	36.0	0.0	0.0
2	3P	10.00	9.52	43.0	0.0112	0.013	24.0	0.0	0.0
3	4P	9.40	8.20	46.0	0.0261	0.013	24.0	0.0	0.0
4	5P	8.25	8.18	104.0	0.0007	0.012	36.0	0.0	0.0
5	6P	14.00	11.80	109.0	0.0202	0.013	12.0	0.0	0.0
6	7P	11.70	11.60	9.0	0.0111	0.013	12.0	0.0	0.0
7	9P	10.20	10.11	18.0	0.0050	0.013	24.0	0.0	0.0
8	10P	7.85	7.49	45.0	0.0080	0.013	36.0	0.0	0.0
9	12P	10.90	10.10	40.0	0.0200	0.013	24.0	0.0	0.0
10	14P	11.00	10.30	46.0	0.0152	0.013	24.0	0.0	0.0
11	15P	13.50	13.50	65.0	0.0000	0.013	12.0	0.0	0.0
12	16P	13.00	13.00	75.0	0.0000	0.013	12.0	0.0	0.0
13	CB 5D	10.24	9.87	37.0	0.0100	0.013	12.0	0.0	0.0
14	DMH 4A	7.85	7.74	23.0	0.0048	0.012	36.0	0.0	0.0
15	DMH A6	8.50	8.41	44.0	0.0020	0.012	24.0	0.0	0.0
16	ENV 21	9.00	8.90	10.0	0.0100	0.013	18.0	0.0	0.0
17	PCB-BH	10.20	10.10	34.0	0.0029	0.013	12.0	0.0	0.0
18	PDMH 1	10.04	9.15	78.0	0.0114	0.013	12.0	0.0	0.0
19	PDMH 2	9.05	8.49	196.0	0.0029	0.013	24.0	0.0	0.0
20	PDMH 3	7.48	6.94	110.0	0.0049	0.012	36.0	0.0	0.0

Pipe Listing (selected nodes)

Proposed Conditions	Type III 24-hr 2 Year Storm Rainfall=3.69"
Prepared by Ambit Engineering, Inc.	Printed 3/19/2018
HydroCAD® 10.00 s/n 00801 © 2013 HydroCAD Software Solu	itions LLC Page 6

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment PS1:	Runoff Area=7,157 sf 95.88% Impervious Runoff Depth=3.34" Tc=5.0 min CN=97 Runoff=0.6 cfs 0.046 af
Subcatchment PS2a:	Runoff Area=20,584 sf 77.98% Impervious Runoff Depth=2.92" Tc=5.0 min CN=93 Runoff=1.6 cfs 0.115 af
Subcatchment PS2b:	Runoff Area=11,747 sf 83.79% Impervious Runoff Depth=3.02" Tc=5.0 min CN=94 Runoff=0.9 cfs 0.068 af
Subcatchment PS3a:	Runoff Area=19,589 sf 82.66% Impervious Runoff Depth=3.02" Tc=5.0 min CN=94 Runoff=1.5 cfs 0.113 af
Subcatchment PS3b:	Runoff Area=40,960 sf 73.37% Impervious Runoff Depth=2.82" Tc=5.0 min CN=92 Runoff=3.0 cfs 0.221 af
Subcatchment PS4:	Runoff Area=12,006 sf 85.32% Impervious Runoff Depth=3.02" Tc=5.0 min CN=94 Runoff=0.9 cfs 0.069 af
Subcatchment PS5:	Runoff Area=34,260 sf 68.76% Impervious Runoff Depth=2.72" Tc=5.0 min CN=91 Runoff=2.5 cfs 0.178 af
Subcatchment PS5A:	Runoff Area=9,298 sf 93.79% Impervious Runoff Depth=3.34" Tc=5.0 min CN=97 Runoff=0.8 cfs 0.059 af
Subcatchment PS5B:	Runoff Area=13,605 sf 74.26% Impervious Runoff Depth=2.82" Tc=5.0 min CN=92 Runoff=1.0 cfs 0.073 af
Subcatchment PS5C: PS5 Ro	of Runoff Area=18,430 sf 100.00% Impervious Runoff Depth=3.46" Tc=5.0 min CN=98 Runoff=1.5 cfs 0.122 af
Subcatchment PS6:	Runoff Area=20,527 sf 57.17% Impervious Runoff Depth=2.44" Tc=5.0 min CN=88 Runoff=1.3 cfs 0.096 af
Subcatchment PS7:	Runoff Area=8,740 sf 85.26% Impervious Runoff Depth=3.02" Tc=5.0 min CN=94 Runoff=0.7 cfs 0.051 af
Subcatchment PS8:	Runoff Area=2,398 sf 81.98% Impervious Runoff Depth=3.02" Tc=5.0 min CN=94 Runoff=0.2 cfs 0.014 af
Reach 3R: Swale	Avg. Flow Depth=0.49' Max Vel=1.60 fps Inflow=3.9 cfs 0.289 af n=0.030 L=380.0' S=0.0050 '/' Capacity=16.9 cfs Outflow=3.5 cfs 0.289 af
Pond 1P: DMH A19	Peak Elev=9.92' Inflow=7.4 cfs 0.585 af 36.0'' Round Culvert n=0.012 L=106.0' S=0.0028 '/' Outflow=7.4 cfs 0.585 af
Pond 3P: PCB3	Peak Elev=11.04' Inflow=4.9 cfs 0.402 af 24.0" Round Culvert n=0.013 L=43.0' S=0.0112 '/' Outflow=4.9 cfs 0.402 af

Proposed Conditions Prepared by Ambit Engin HydroCAD® 10.00 s/n 00801	Type III 24-hr 2 Year Storm Rainfall=3.69' eering, Inc. Printed 3/19/2018 © 2013 HydroCAD Software Solutions LLC Page 7
Pond 4P: PCB7	Peak Elev=10.47' Inflow=5.9 cfs 0.475 at 24.0" Round Culvert n=0.013 L=46.0' S=0.0261 '/' Outflow=5.9 cfs 0.475 at
Pond 5P: DMH 4B	Peak Elev=9.92' Inflow=1.5 cfs 0.110 at 36.0" Round Culvert n=0.012 L=104.0' S=0.0007 '/' Outflow=1.5 cfs 0.110 at
Pond 6P: PCB1	Peak Elev=14.61' Inflow=1.3 cfs 0.096 at 12.0" Round Culvert n=0.013 L=109.0' S=0.0202 '/' Outflow=1.3 cfs 0.096 at
Pond 7P: PCB2	Peak Elev=12.47' Inflow=1.5 cfs 0.110 at 12.0" Round Culvert n=0.013 L=9.0' S=0.0111 '/' Outflow=1.5 cfs 0.110 at
Pond 9P: PCB4	Peak Elev=10.82' Inflow=1.6 cfs 0.115 at 24.0" Round Culvert n=0.013 L=18.0' S=0.0050 '/' Outflow=1.6 cfs 0.115 at
Pond 10P: PCB5	Peak Elev=9.64' Inflow=13.6 cfs 1.060 at 36.0" Round Culvert n=0.013 L=45.0' S=0.0080 '/' Outflow=13.6 cfs 1.060 at
Pond 12P: POCS2	Peak Elev=11.42' Inflow=1.5 cfs 0.113 at 24.0" Round Culvert n=0.013 L=40.0' S=0.0200 '/' Outflow=1.5 cfs 0.113 at
Pond 14P: POCS1	Peak Elev=11.52' Inflow=1.6 cfs 0.115 at 24.0'' Round Culvert n=0.013 L=46.0' S=0.0152 '/' Outflow=1.6 cfs 0.115 at
Pond 15P: 2 - 12" PERFOR	ATED UNDERDRAIN Peak Elev=14.21' Inflow=1.6 cfs 0.115 at 2.0" Round Culvert x 2.00 n=0.013 L=65.0' S=0.0000 '/' Outflow=1.6 cfs 0.115 at
Pond 16P: 2 - 12" PERFOR	ATED UNDERDRAIN Peak Elev=13.72' Inflow=1.5 cfs 0.113 at 2.0" Round Culvert x 2.00 n=0.013 L=75.0' S=0.0000 '/' Outflow=1.5 cfs 0.113 at
Pond CB 5D: CB 5D	Peak Elev=10.74' Inflow=0.7 cfs 0.051 at 12.0" Round Culvert n=0.013 L=37.0' S=0.0100 '/' Outflow=0.7 cfs 0.051 at
Pond DMH 4: DP 1	Inflow=15.7 cfs 1.225 at Primary=15.7 cfs 1.225 at
Pond DMH 4A: DMH 4A	Peak Elev=9.82' Inflow=11.3 cfs 0.885 at 36.0" Round Culvert n=0.012 L=23.0' S=0.0048 '/' Outflow=11.3 cfs 0.885 at
Pond DMH A6: DMH A6	Peak Elev=9.88' Inflow=4.0 cfs 0.300 at 24.0" Round Culvert n=0.012 L=44.0' S=0.0020 '/' Outflow=4.0 cfs 0.300 at
Pond ENV 21: ENV 21	Peak Elev=9.92' Inflow=2.5 cfs 0.178 at 18.0" Round Culvert n=0.013 L=10.0' S=0.0100 '/' Outflow=2.5 cfs 0.178 at
Pond PCB-BH: PCB-BH	Peak Elev=11.89' Inflow=3.5 cfs 0.289 at 12.0" Round Culvert n=0.013 L=34.0' S=0.0029 '/' Outflow=3.5 cfs 0.289 at
Pond PDMH 1: PDMH 1	Peak Elev=10.46' Inflow=0.7 cfs 0.051 at 12.0'' Round Culvert n=0.013 L=78.0' S=0.0114 '/' Outflow=0.7 cfs 0.051 at

Proposed Conditions	Type III 24-hr 2 Year Storm Rainfall=	3.69"
Prepared by Ambit Engineering, Inc	c. Printed 3/19	/2018
HydroCAD® 10.00 s/n 00801 © 2013 Hy	/droCAD Software Solutions LLC P	<u>age 8</u>
Pond PDMH 2: PDMH 2	Peak Elev=9.52' Inflow=0.7 cfs 0.0	051 af
24.0" F	Round Culvert n=0.013 L=196.0' S=0.0029 '/' Outflow=0.7 cfs 0.0	051 af
Pond PDMH 3: PDMH 3	Peak Elev=9.13' Inflow=14.2 cfs 1.1	110 af
36.0" Re	ound Culvert n=0.012 L=110.0' S=0.0049 '/' Outflow=14.2 cfs 1.	110 af
Total Runoff Area = 5	.034 ac Runoff Volume = 1.225 af Average Runoff Depth = 21.93% Pervious = 1.104 ac 78.07% Impervious = 3.9	2.92" 30 ac

Summary for Subcatchment PS1:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.6 cfs @ 12.07 hrs, Volume= 0.046 af, Depth= 3.34"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2 Year Storm Rainfall=3.69"

A	rea (sf)	CN	Description			
	1,344	98	Paved park	ing, HSG C		
*	544	98	Sidewalks,	HŠG C		
	4,974	98	Roofs, HSC	θC		
	295	74	>75% Gras	s cover, Go	od, HSG C	
	7,157	97	Weighted A	verage		
	295		4.12% Perv	vious Area		
	6,862		95.88% Imp	pervious Are	ea	
Tc	Length	Slop	e Velocity	Capacity	Description	
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)		
5.0					Direct Entry,	

Subcatchment PS1:

Summary for Subcatchment PS2a:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.6 cfs @ 12.07 hrs, Volume= 0.115 af, Depth= 2.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2 Year Storm Rainfall=3.69"

Area (sf)	CN	Description						
15,319	98	Paved park	Paved parking, HSG C					
* 733	98	Sidewalks,	HŠG C					
4,532	74	>75% Gras	s cover, Go	bod, HSG C				
20,584	93	Weighted A	verage					
4,532		22.02% Per	vious Area	I				
16,052		77.98% Imp	pervious Ar	ea				
Tc Length	Slop	e Velocity	Capacity	Description				
(min) (feet)	(ft/f	t) (ft/sec)	(cfs)					
5.0				Direct Entry,				
			Subca	tchment PS2a:				
			Hydro	ograph				
					Runoff			
	1.6 cfs			Type III 24-hr				
				2 Year Storm Rainfall=3.69"				
				Runoff Area=20,584 sf				
1				Runoff Volume=0.115 af				
				Runoff Depth=2.92"				
(C)				Tc=5.0 min				
б				CN=93				

Summary for Subcatchment PS2b:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.9 cfs @ 12.07 hrs, Volume= 0.068 af, Depth= 3.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2 Year Storm Rainfall=3.69"

A	rea (sf)	CN	Description			
	9,843	98	Roofs, HSC	€C		
	1,904	74	>75% Gras	s cover, Go	ood, HSG C	
	11,747	94	Weighted A	verage		
	1,904		16.21% Pe	rvious Area		
	9,843		83.79% Imp	pervious Are	ea	
_				•		
IC	Length	Slop	e Velocity	Capacity	Description	
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)		
5.0					Direct Entry,	

Subcatchment PS2b:

Summary for Subcatchment PS3a:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.5 cfs @ 12.07 hrs, Volume= 0.113 af, Depth= 3.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2 Year Storm Rainfall=3.69"

Area (sf)	CN	Description					
16,192	98	Paved park	Paved parking, HSG C				
3,397	74	>75% Gras	>75% Grass cover, Good, HSG C				
19,589	94	Weighted A	Veighted Average				
3,397		17.34% Per	17.34% Pervious Area				
16,192		82.66% Imp	82.66% Impervious Area				
Tc Length	Slop	e Velocity	Capacity	Description			
(min) (feet)	(ft/	ft) (ft/sec)	(cfs)				

Direct Entry,

Subcatchment PS3a:

Summary for Subcatchment PS3b:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 3.0 cfs @ 12.07 hrs, Volume= 0.221 af, Depth= 2.82"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2 Year Storm Rainfall=3.69"

Summary for Subcatchment PS4:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.9 cfs @ 12.07 hrs, Volume= 0.069 af, Depth= 3.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2 Year Storm Rainfall=3.69"

	Area (sf)	CN	Description						
	4,504	98	Paved parking, HSG	С					
*	2,085	98	Sidewalks, HSG C	Sidewalks, HSG C					
	3,654	98	Roofs, HSG C						
	1,763	74	>75% Grass cover,	Good, HSG C					
	12,006	94	Weighted Average						
	1,763		14.68% Pervious Ar	ea					
	10,243		85.32% Impervious	Area					
Г	Fc Length	Slop	e Velocity Capaci	y Description					
(mi	n) (feet)	(ft/	i) (ft/sec) (cfs	3					
_	•								

5.0

Direct Entry,

Subcatchment PS4:

Summary for Subcatchment PS5:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 2.5 cfs @ 12.07 hrs, Volume= 0.178 af, Depth= 2.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2 Year Storm Rainfall=3.69"

	Area (sf)	CN	Description	Description					
	21,695	98	Paved parkir	ng, HSG C					
*	310	98	Sidewalks, H	Sidewalks, HSG C					
	1,551	98	Roofs, HSG	oofs, HSG C					
	10,704	74	>75% Grass	s cover, Go	od, HSG C				
	34,260	91	Weighted Av	verage					
	10,704		31.24% Per	vious Area					
	23,556		68.76% Impe	ervious Are	ea				
٦	C Length	Slop	e Velocity	Capacity	Description				
(mi	n) (feet)	(ft/	t) (ft/sec)	(cfs)	•				

5.0

Direct Entry,

Subcatchment PS5:

Summary for Subcatchment PS5A:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.8 cfs @ 12.07 hrs, Volume= 0.059 af, Depth= 3.34"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2 Year Storm Rainfall=3.69"

	Area (sf)	CN	Description						
	7,491	98	Paved parking, HSG C	aved parking, HSG C					
*	1,230	98	Sidewalks, HSG C						
	577	74	>75% Grass cover, Good, HSG C						
	9,298	97	Weighted Average						
	577		6.21% Pervious Area						
	8,721		93.79% Impervious Area						
_									
Т	c Length	Slop	e Velocity Capacity Description						
(mir	n) (feet)	(ft/	t) (ft/sec) (cfs)						

Direct Entry,

Subcatchment PS5A:

Summary for Subcatchment PS5B:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.0 cfs @ 12.07 hrs, Volume= 0.073 af, Depth= 2.82"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2 Year Storm Rainfall=3.69"

	Area (sf) CN	Description				
	7,275	5 98	Paved park	ing, HSG C	C		
*	2,828	3 98	Sidewalks,	HSG C			
	3,502	2 74	>75% Gras	s cover, Go	ood, HSG C		
	13,605	5 92	92 Weighted Average				
	3,502	2	25.74% Pei	rvious Area	a		
	10,103	3	74.26% Impervious Area				
	Tc Lengt	th Slo	pe Velocity	Capacity	Description		
	(min) (fee	t) (ft/	(ft) (ft/sec)	(cfs)			
	5.0				Direct Entry,		
				Subcat	itchment PS5B:		

Summary for Subcatchment PS5C: PS5 Roof

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.5 cfs @ 12.07 hrs, Volume= 0.122 af, Depth= 3.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2 Year Storm Rainfall=3.69"

Summary for Subcatchment PS6:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.3 cfs @ 12.07 hrs, Volume= 0.096 af, Depth= 2.44"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2 Year Storm Rainfall=3.69"

	Area (sf)	CN	Description						
	6,762	98	Paved parking, HSG C						
*	2,312	98	Sidewalks, HŠG C						
	2,662	98	Roofs, HSG C	oofs, HSG C					
	8,791	74	>75% Grass cover, Good, HSG C						
	20,527	88	Weighted Average	-					
	8,791		42.83% Pervious Area						
	11,736		57.17% Impervious Area						
-	Tc Length	Slop	be Velocity Capacity Description						
(mi	in) (feet)	(ft/	ft) (ft/sec) (cfs)	_					

5.0

Direct Entry,

Subcatchment PS6:

Summary for Subcatchment PS7:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.7 cfs @ 12.07 hrs, Volume= 0.051 af, Depth= 3.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2 Year Storm Rainfall=3.69"

Area (sf)	CN	Description					
410	98	aved parking, HSG C					
4,272	98	idewalks, HSG C					
2,770	98	oofs, HSG C					
1,288	74	>75% Grass cover, Good, HSG C					
8,740	94	Weighted Average	_				
1,288		14.74% Pervious Area					
7,452		85.26% Impervious Area					
Tc Length in) (feet)	Slop (ft/i	be Velocity Capacity Description ft) (ft/sec) (cfs)					
	Area (sf) 410 4,272 2,770 1,288 8,740 1,288 7,452 Tc Length in) (feet)	Area (sf) CN 410 98 4,272 98 2,770 98 1,288 74 8,740 94 1,288 7,452 Tc Length Slop in) (feet) (ft/i	Area (sf)CNDescription41098Paved parking, HSG C4,27298Sidewalks, HSG C2,77098Roofs, HSG C1,28874>75% Grass cover, Good, HSG C8,74094Weighted Average1,28814.74% Pervious Area7,45285.26% Impervious AreaTcLengthSlopeVelocityCapacityDescriptionin)(ft/ft)(ft/sec)(cfs)				

5.0

Direct Entry,

Subcatchment PS7:

Summary for Subcatchment PS8:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.2 cfs @ 12.07 hrs, Volume= 0.014 af, Depth= 3.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2 Year Storm Rainfall=3.69"

A	rea (sf)	CN	Description					
	1,966	98	Paved park	ing, HSG C	;			
	432	74	>75% Gras	75% Grass cover, Good, HSG C				
	2,398	94	Weighted A	verage				
	432		18.02% Pe	18.02% Pervious Area				
	1,966		81.98% lm	pervious Are	ea			
Тс	l enath	Slon	e Velocity	Canacity	Description			
(min)	(foot)	010p (ft/f		Capacity (cfs)	Description			
		(וער		(015)				
50					Direct Entry.			

Subcatchment PS8:

Summary for Reach 3R: Swale

 Inflow Area =
 1.210 ac, 75.70% Impervious, Inflow Depth =
 2.86"
 for 2 Year Storm event

 Inflow =
 3.9 cfs @
 12.07 hrs, Volume=
 0.289 af

 Outflow =
 3.5 cfs @
 12.12 hrs, Volume=
 0.289 af, Atten=

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Max. Velocity= 1.60 fps, Min. Travel Time= 3.9 min Avg. Velocity = 0.47 fps, Avg. Travel Time= 13.4 min

Peak Storage= 828 cf @ 12.12 hrs Average Depth at Peak Storage= 0.49' Bank-Full Depth= 1.00' Flow Area= 7.0 sf, Capacity= 16.9 cfs

2.00' x 1.00' deep channel, n= 0.030 Earth, grassed & winding Side Slope Z-value= 5.0 '/' Top Width= 12.00' Length= 380.0' Slope= 0.0050 '/' Inlet Invert= 17.15', Outlet Invert= 15.25'

Reach 3R: Swale

Summary for Pond 1P: DMH A19

[57] Hint: Peaked at 9.92' (Flood elevation advised)[80] Warning: Exceeded Pond 5P by 0.19' @ 12.05 hrs (4.7 cfs 0.103 af)

Inflow Area	a =	2.498 ac, 73	3.41% Impe	rvious,	Inflow D)epth =	2.81"	for 2	Year	Storm	event
Inflow	=	7.4 cfs @	12.09 hrs,	Volume	Э=	0.585	af				
Outflow	=	7.4 cfs @	12.09 hrs,	Volume	9 =	0.585	af, A	tten= 0%	%, La	g= 0.0	min
Primary	=	7.4 cfs @	12.09 hrs,	Volume	e=	0.585	af				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 9.92' @ 12.17 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	8.17'	36.0" Round Culvert L= 106.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 8.17' / 7.87' S= 0.0028 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 7.07 sf

Primary OutFlow Max=2.9 cfs @ 12.09 hrs HW=9.77' TW=9.72' (Dynamic Tailwater) -1=Culvert (Outlet Controls 2.9 cfs @ 1.09 fps)

Pond 1P: DMH A19

Summary for Pond 3P: PCB3

[57] Hint: Peaked at 11.04' (Flood elevation advised)

Inflow Area	a =	1.660 ac, 7	7.58% Impe	rvious, l	nflow De	epth =	2.91"	for 2 Y	ear Storm event
Inflow	=	4.9 cfs @	12.10 hrs,	Volume=	=	0.402	af		
Outflow	=	4.9 cfs @	12.10 hrs,	Volume=	=	0.402	af, Att	en= 0%,	Lag= 0.0 min
Primary	=	4.9 cfs @	12.10 hrs,	Volume=	=	0.402	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 11.04' @ 12.12 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	10.00'	24.0" Round Culvert L= 43.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 10.00' / 9.52' S= 0.0112 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=4.6 cfs @ 12.10 hrs HW=11.03' TW=10.46' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 4.6 cfs @ 4.11 fps)

Summary for Pond 4P: PCB7

[57] Hint: Peaked at 10.47' (Flood elevation advised)

Inflow Area	a =	1.972 ac, 77	7.06% Impe	rvious, I	Inflow De	epth =	2.89"	for 2	Year Storm event
Inflow	=	5.9 cfs @	12.10 hrs,	Volume=	=	0.475	af		
Outflow	=	5.9 cfs @	12.10 hrs,	Volume=	=	0.475	af, At	ten= 0%	o, Lag= 0.0 min
Primary	=	5.9 cfs @	12.10 hrs,	Volume=	=	0.475	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 10.47' @ 12.12 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	9.40'	24.0" Round Culvert L= 46.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 9.40' / 8.20' S= 0.0261 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=5.1 cfs @ 12.10 hrs HW=10.46' TW=9.79' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 5.1 cfs @ 4.42 fps)

Pond 4P: PCB7

Summary for Pond 5P: DMH 4B

[57] Hint: Peaked at 9.92' (Flood elevation advised)

Inflow Are	a =	0.526 ac, 5	9.77% Impe	rvious, Inflow	Depth =	2.50"	for 2 Ye	ar Storm event
Inflow	=	1.5 cfs @	12.07 hrs,	Volume=	0.110	af		
Outflow	=	1.5 cfs @	12.07 hrs,	Volume=	0.110	af, Atte	en= 0%,	Lag= 0.0 min
Primary	=	1.5 cfs @	12.07 hrs,	Volume=	0.110	af		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 9.92' @ 12.22 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	8.25'	36.0" Round Culvert L= 104.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 8.25' / 8.18' S= 0.0007 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 7.07 sf

Primary OutFlow Max=0.0 cfs @ 12.07 hrs HW=9.50' TW=9.69' (Dynamic Tailwater)

Summary for Pond 6P: PCB1

[57] Hint: Peaked at 14.61' (Flood elevation advised)

Inflow Are	a =	0.471 ac, 57	7.17% Impe	rvious, Inf	low Depth =	2.44"	for 2 Ye	ear Storm event
Inflow	=	1.3 cfs @	12.07 hrs,	Volume=	0.096	af		
Outflow	=	1.3 cfs @	12.07 hrs,	Volume=	0.096	af, Att	en= 0%,	Lag= 0.0 min
Primary	=	1.3 cfs @	12.07 hrs,	Volume=	0.096	af		
Routing by	y Dyn-Sto	r-Ind method	, Time Spar	n= 0.00-72.	00 hrs, dt= 0	.05 hrs		

Peak Elev= 14.61' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	14.00'	12.0" Round Culvert L= 109.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 14.00' / 11.80' S= 0.0202 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.3 cfs @ 12.07 hrs HW=14.60' TW=12.45' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 1.3 cfs @ 2.64 fps)

Pond 6P: PCB1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Summary for Pond 7P: PCB2

[57] Hint: Peaked at 12.47' (Flood elevation advised)

Inflow Area	a = 0	0.526 ac, 59	9.77% Impe	rvious, Inflow	Depth =	2.50"	for 2 Ye	ear Storm event
Inflow	=	1.5 cfs @	12.07 hrs,	Volume=	0.110	af		
Outflow	=	1.5 cfs @	12.07 hrs,	Volume=	0.110	af, At	ten= 0%,	Lag= 0.0 min
Primary	=	1.5 cfs @	12.07 hrs,	Volume=	0.110	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 12.47' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	11.70'	12.0" Round Culvert L= 9.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 11.70' / 11.60' S= 0.0111 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.5 cfs @ 12.07 hrs HW=12.45' TW=9.50' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 1.5 cfs @ 3.24 fps)

Pond 7P: PCB2

Summary for Pond 9P: PCB4

[57] Hint: Peaked at 10.82' (Flood elevation advised)

Inflow Area	a =	0.473 ac, 7	7.98% Impe	rvious, Inflow	/ Depth =	2.92"	for 2 Y	ear Storm event
Inflow	=	1.6 cfs @	12.07 hrs,	Volume=	0.115	af		
Outflow	=	1.6 cfs @	12.07 hrs,	Volume=	0.115	af, A	tten= 0%	, Lag= 0.0 min
Primary	=	1.6 cfs @	12.07 hrs,	Volume=	0.115	af		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 10.82' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	10.20'	24.0" Round Culvert L= 18.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 10.20' / 10.11' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=1.5 cfs @ 12.07 hrs HW=10.81' TW=9.54' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 1.5 cfs @ 2.79 fps)

Pond 9P: PCB4

Summary for Pond 10P: PCB5

[57] Hint: Peaked at 9.64' (Flood elevation advised)

Inflow Area	a =	4.394 ac, 76	6.62% Impe	rvious, Inflo	w Depth =	2.89"	for 2 Y	ear Storm event
Inflow	=	13.6 cfs @	12.08 hrs,	Volume=	1.060) af		
Outflow	=	13.6 cfs @	12.08 hrs,	Volume=	1.060) af, Att	en= 0%,	Lag= 0.0 min
Primary	=	13.6 cfs @	12.08 hrs,	Volume=	1.060) af		
Routing by	v Dyn-Sto	r-Ind method,	Time Spar	n= 0.00-72.00	0 hrs, dt= 0	.05 hrs		

Peak Elev= 9.64' @ 12.11 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	7.85'	36.0" Round Culvert L= 45.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 7.85' / 7.49' S= 0.0080 '/' Cc= 0.900 n= 0.013 Concrete pipe, bends & connections, Flow Area= 7.07 sf

Primary OutFlow Max=11.8 cfs @ 12.08 hrs HW=9.58' TW=9.11' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 11.8 cfs @ 4.03 fps)

Pond 10P: PCB5

Summary for Pond 12P: POCS2

[57] Hint: Peaked at 11.42' (Flood elevation advised)

Inflow Area	a =	0.450 ac, 82	2.66% Impe	rvious, Inflov	v Depth =	3.02"	for 2 Y	ear Storm event
Inflow	=	1.5 cfs @	12.07 hrs,	Volume=	0.113	af		
Outflow	=	1.5 cfs @	12.07 hrs,	Volume=	0.113	af, A	tten= 0%	, Lag= 0.0 min
Primary	=	1.5 cfs @	12.07 hrs,	Volume=	0.113	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 11.42' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	10.90'	24.0" Round Culvert L= 40.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 10.90' / 10.10' S= 0.0200 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=1.3 cfs @ 12.07 hrs HW=11.41' TW=10.97' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 1.3 cfs @ 3.13 fps)

Pond 12P: POCS2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Summary for Pond 14P: POCS1

[57] Hint: Peaked at 11.52' (Flood elevation advised)

Inflow Area	a =	0.473 ac, 7	7.98% Impe	rvious, Inflov	v Depth =	2.92"	for 2 Ye	ear Storm event
Inflow	=	1.6 cfs @	12.07 hrs,	Volume=	0.115	af		
Outflow	=	1.6 cfs @	12.07 hrs,	Volume=	0.115	af, A	tten= 0%,	Lag= 0.0 min
Primary	=	1.6 cfs @	12.07 hrs,	Volume=	0.115	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 11.52' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	11.00'	24.0" Round Culvert L= 46.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 11.00' / 10.30' S= 0.0152 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=1.5 cfs @ 12.07 hrs HW=11.50' TW=10.81' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 1.5 cfs @ 2.42 fps)

Pond 14P: POCS1

Summary for Pond 15P: 2 - 12" PERFORATED UNDERDRAIN

[57] Hint: Peaked at 14.21' (Flood elevation advised)

Inflow Area	a =	0.473 ac, 7	7.98% Impe	ervious,	Inflow I	Depth =	2.92	2" for	2 Ye	ear Storm	event
Inflow	=	1.6 cfs @	12.07 hrs,	Volume	<u>)</u> =	0.115	af				
Outflow	=	1.6 cfs @	12.07 hrs,	Volume	<u>)</u> =	0.115	af,	Atten=	0%,	Lag= 0.0	min
Primary	=	1.6 cfs @	12.07 hrs,	Volume) =	0.115	af			-	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 14.21' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	13.50'	12.0" Round Culvert X 2.00 L= 65.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 13.50' / 13.50' S= 0.0000 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.5 cfs @ 12.07 hrs HW=14.20' TW=11.50' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 1.5 cfs @ 1.80 fps)

Summary for Pond 16P: 2 - 12" PERFORATED UNDERDRAIN

[57] Hint: Peaked at 13.72' (Flood elevation advised)

Inflow Area	a =	0.450 ac, 82	2.66% Impe	rvious, Inflow	Depth =	3.02"	for 2 Y	ear Storm event
Inflow	=	1.5 cfs @	12.07 hrs,	Volume=	0.113	af		
Outflow	=	1.5 cfs @	12.07 hrs,	Volume=	0.113	af, At	ten= 0%,	Lag= 0.0 min
Primary	=	1.5 cfs @	12.07 hrs,	Volume=	0.113	af		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 13.72' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	13.00'	12.0" Round Culvert X 2.00 L= 75.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 13.00' / 13.00' S= 0.0000 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.5 cfs @ 12.07 hrs HW=13.70' TW=11.41' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 1.5 cfs @ 1.74 fps)

Summary for Pond CB 5D: CB 5D

[57] Hint: Peaked at 10.74' (Flood elevation advised)

Inflow Area =	0.201 ac, 85.26% Impervious, Inflow D	Depth = 3.02" for 2 Year Storm event
Inflow =	0.7 cfs @ 12.07 hrs, Volume=	0.051 af
Outflow =	0.7 cfs @ 12.07 hrs, Volume=	0.051 af, Atten= 0%, Lag= 0.0 min
Primary =	0.7 cfs @ 12.07 hrs, Volume=	0.051 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 10.74' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	10.24'	12.0" Round Culvert L= 37.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 10.24' / 9.87' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.6 cfs @ 12.07 hrs HW=10.72' TW=10.45' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 0.6 cfs @ 2.40 fps)

Pond CB 5D: CB 5D
Summary for Pond DMH 4: DP 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	5.034 ac, 78	3.07% Impe	rvious,	Inflow Depth =	2.92	2" for 2 Ye	ear Storm	event
Inflow	=	15.7 cfs @	12.08 hrs,	Volume	e= 1.225	af			
Primary	=	15.7 cfs @	12.08 hrs,	Volume	e= 1.225	af,	Atten= 0%,	Lag= 0.0	min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Pond DMH 4: DP 1

Summary for Pond DMH 4A: DMH 4A

[57] Hint: Peaked at 9.82' (Flood elevation advised)[80] Warning: Exceeded Pond DMH A6 by 0.01' @ 12.10 hrs (0.8 cfs 0.003 af)

Inflow Area	a =	3.708 ac, 75	5.46% Impe	rvious,	Inflow	Depth =	2.87	7" for	2 Ye	ear Storr	n event
Inflow	=	11.3 cfs @	12.08 hrs,	Volume) =	0.885	af				
Outflow	=	11.3 cfs @	12.08 hrs,	Volume) =	0.885	af,	Atten=	0%,	Lag= 0.	0 min
Primary	=	11.3 cfs @	12.08 hrs,	Volume	e=	0.885	af				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 9.82' @ 12.14 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	7.85'	36.0'' Round Culvert L= 23.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 7.85' / 7.74' S= 0.0048 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 7.07 sf

Primary OutFlow Max=6.4 cfs @ 12.08 hrs HW=9.69' TW=9.59' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 6.4 cfs @ 2.01 fps)

Pond DMH 4A: DMH 4A

Summary for Pond DMH A6: DMH A6

[57] Hint: Peaked at 9.88' (Flood elevation advised)

Inflow Area	a =	1.210 ac, 79	9.68% Impe	rvious, Inflow	Depth =	2.98"	for 2 Ye	ear Storm event
Inflow	=	4.0 cfs @	12.07 hrs,	Volume=	0.300	af		
Outflow	=	4.0 cfs @	12.07 hrs,	Volume=	0.300	af, Atte	en= 0%,	Lag= 0.0 min
Primary	=	4.0 cfs @	12.07 hrs,	Volume=	0.300	af		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 9.88' @ 12.18 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	8.50'	24.0" Round Culvert L= 44.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 8.50' / 8.41' S= 0.0020 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf

Primary OutFlow Max=1.2 cfs @ 12.07 hrs HW=9.66' TW=9.63' (Dynamic Tailwater) ☐ 1=Culvert (Outlet Controls 1.2 cfs @ 0.93 fps)

Pond DMH A6: DMH A6

Summary for Pond ENV 21: ENV 21

[57] Hint: Peaked at 9.92' (Flood elevation advised)

Inflow Area	a =	0.787 ac, 68	3.76% Impe	rvious, Inflow	Depth =	2.72"	for 2 Ye	ear Storm event
Inflow	=	2.5 cfs @	12.07 hrs,	Volume=	0.178	af		
Outflow	=	2.5 cfs @	12.07 hrs,	Volume=	0.178	af, Att	en= 0%,	Lag= 0.0 min
Primary	=	2.5 cfs @	12.07 hrs,	Volume=	0.178	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 9.92' @ 12.21 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	9.00'	18.0" Round Culvert L= 10.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 9.00' / 8.90' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=1.9 cfs @ 12.07 hrs HW=9.85' TW=9.66' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 1.9 cfs @ 2.64 fps)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Summary for Pond PCB-BH: PCB-BH

[57] Hint: Peaked at 11.89' (Flood elevation advised)

Inflow Area	= ^	.210 ac,	75	.70% Impe	rvious,	Inflow	Depth =	2.8	6" for	2 Y	ear Storn	n event
Inflow -	=	3.5 cfs (@ [.]	12.12 hrs,	Volume) =	0.289	af				
Outflow =	=	3.5 cfs (ā '	12.12 hrs,	Volume) =	0.289	af,	Atten=	0%,	Lag= 0.	0 min
Primary =	=	3.5 cfs (<u>@</u> '	12.12 hrs,	Volume) =	0.289	af			-	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 11.89' @ 12.12 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	10.20'	12.0" Round Culvert L= 34.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 10.20' / 10.10' S= 0.0029 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=3.4 cfs @ 12.12 hrs HW=11.85' TW=11.03' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 3.4 cfs @ 4.35 fps)

Pond PCB-BH: PCB-BH

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Summary for Pond PDMH 1: PDMH 1

[57] Hint: Peaked at 10.46' (Flood elevation advised)

Inflow Area	a =	0.201 ac, 8	5.26% Impe	ervious, Inflov	w Depth =	3.02"	for 2 Ye	ear Storm event
Inflow	=	0.7 cfs @	12.07 hrs,	Volume=	0.051	af		
Outflow	=	0.7 cfs @	12.07 hrs,	Volume=	0.051	af, At	ten= 0%,	Lag= 0.0 min
Primary	=	0.7 cfs @	12.07 hrs,	Volume=	0.051	af		
	_							

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 10.46' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	10.04'	12.0" Round Culvert L= 78.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 10.04' / 9.15' S= 0.0114 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.7 cfs @ 12.07 hrs HW=10.45' TW=9.49' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 0.7 cfs @ 2.17 fps)

Pond PDMH 1: PDMH 1

Time (hours)

Summary for Pond PDMH 2: PDMH 2

[57] Hint: Peaked at 9.52' (Flood elevation advised)

Inflow Area	a = (0.201 ac, 85	5.26% Impervi	ous, Inflow	Depth =	3.02"	for 2 Ye	ear Storm event		
Inflow	=	0.7 cfs @	12.07 hrs, Vo	olume=	0.051	af				
Outflow	=	0.7 cfs @	12.07 hrs, Vo	olume=	0.051	af, Atte	en= 0%,	Lag= 0.0 min		
Primary	=	0.7 cfs @	12.07 hrs, Vo	olume=	0.051	af				
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs										

Peak Elev= 9.52' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	9.05'	24.0" Round Culvert L= 196.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 9.05' / 8.49' S= 0.0029 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=0.6 cfs @ 12.07 hrs HW=9.49' TW=9.10' (Dynamic Tailwater) ☐ 1=Culvert (Outlet Controls 0.6 cfs @ 1.62 fps)

Pond PDMH 2: PDMH 2

Summary for Pond PDMH 3: PDMH 3

[57] Hint: Peaked at 9.13' (Flood elevation advised)

Inflow Area	a =	4.595 ac, 77	7.00% Impe	rvious, Inf	flow Depth =	2.90" fc	or 2 Year Storm even	nt
Inflow	=	14.2 cfs @	12.08 hrs,	Volume=	1.110	af		
Outflow	=	14.2 cfs @	12.08 hrs,	Volume=	1.110	af, Atten	= 0%, Lag= 0.0 min	
Primary	=	14.2 cfs @	12.08 hrs,	Volume=	1.110	af	-	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 9.13' @ 12.08 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	7.48'	36.0" Round Culvert L= 110.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 7.48' / 6.94' S= 0.0049 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 7.07 sf

Primary OutFlow Max=13.8 cfs @ 12.08 hrs HW=9.11' TW=0.00' (Dynamic Tailwater) -1=Culvert (Barrel Controls 13.8 cfs @ 5.12 fps)

Pond PDMH 3: PDMH 3

Proposed Conditions	Type III 24-hr 10 Year Storm Rainfall=5.60"
Prepared by Ambit Engineering, Inc.	Printed 3/19/2018
HydroCAD® 10.00 s/n 00801 © 2013 HydroCAD Software Sol	lutions LLC Page 44

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment PS1:	Runoff Area=7,157 sf 95.88% Impervious Runoff Depth=5.25" Tc=5.0 min CN=97 Runoff=0.9 cfs 0.072 af
Subcatchment PS2a:	Runoff Area=20,584 sf 77.98% Impervious Runoff Depth=4.79" Tc=5.0 min CN=93 Runoff=2.5 cfs 0.189 af
Subcatchment PS2b:	Runoff Area=11,747 sf 83.79% Impervious Runoff Depth=4.90" Tc=5.0 min CN=94 Runoff=1.4 cfs 0.110 af
Subcatchment PS3a:	Runoff Area=19,589 sf 82.66% Impervious Runoff Depth=4.90" Tc=5.0 min CN=94 Runoff=2.4 cfs 0.184 af
Subcatchment PS3b:	Runoff Area=40,960 sf 73.37% Impervious Runoff Depth=4.68" Tc=5.0 min CN=92 Runoff=4.9 cfs 0.366 af
Subcatchment PS4:	Runoff Area=12,006 sf 85.32% Impervious Runoff Depth=4.90" Tc=5.0 min CN=94 Runoff=1.5 cfs 0.113 af
Subcatchment PS5:	Runoff Area=34,260 sf 68.76% Impervious Runoff Depth=4.57" Tc=5.0 min CN=91 Runoff=4.0 cfs 0.299 af
Subcatchment PS5A:	Runoff Area=9,298 sf 93.79% Impervious Runoff Depth=5.25" Tc=5.0 min CN=97 Runoff=1.2 cfs 0.093 af
Subcatchment PS5B:	Runoff Area=13,605 sf 74.26% Impervious Runoff Depth=4.68" Tc=5.0 min CN=92 Runoff=1.6 cfs 0.122 af
Subcatchment PS5C: PS5 Roof	Runoff Area=18,430 sf 100.00% Impervious Runoff Depth=5.36" Tc=5.0 min CN=98 Runoff=2.3 cfs 0.189 af
Subcatchment PS6:	Runoff Area=20,527 sf 57.17% Impervious Runoff Depth=4.24" Tc=5.0 min CN=88 Runoff=2.3 cfs 0.167 af
Subcatchment PS7:	Runoff Area=8,740 sf 85.26% Impervious Runoff Depth=4.90" Tc=5.0 min CN=94 Runoff=1.1 cfs 0.082 af
Subcatchment PS8:	Runoff Area=2,398 sf 81.98% Impervious Runoff Depth=4.90" Tc=5.0 min CN=94 Runoff=0.3 cfs 0.022 af
Reach 3R: Swale n=0.03	Avg. Flow Depth=0.62' Max Vel=1.83 fps Inflow=6.3 cfs 0.477 af 0 L=380.0' S=0.0050 '/' Capacity=16.9 cfs Outflow=5.7 cfs 0.477 af
Pond 1P: DMH A19 36.0" Ro	Peak Elev=10.59' Inflow=12.0 cfs 0.971 af und Culvert n=0.012 L=106.0' S=0.0028 '/' Outflow=12.0 cfs 0.971 af
Pond 3P: PCB3 24.0"	Peak Elev=11.44' Inflow=8.0 cfs 0.660 af Round Culvert n=0.013 L=43.0' S=0.0112 '/' Outflow=8.0 cfs 0.660 af

Proposed Conditions Prepared by Ambit Enginee HydroCAD® 10.00 s/n 00801 (Type III 24-hr 10 Year Storm Rainfall=5.60' ering, Inc. Printed 3/19/2018 ک 2013 HydroCAD Software Solutions LLC Page 45
Pond 4P: PCB7	Peak Elev=10.95' Inflow=9.5 cfs 0.782 at 24.0'' Round Culvert n=0.013 L=46.0' S=0.0261 '/' Outflow=9.5 cfs 0.782 at
Pond 5P: DMH 4B	Peak Elev=10.59' Inflow=2.6 cfs 0.189 at 36.0'' Round Culvert n=0.012 L=104.0' S=0.0007 '/' Outflow=2.6 cfs 0.189 at
Pond 6P: PCB1	Peak Elev=14.86' Inflow=2.3 cfs 0.167 at 12.0'' Round Culvert n=0.013 L=109.0' S=0.0202 '/' Outflow=2.3 cfs 0.167 at
Pond 7P: PCB2	Peak Elev=12.79' Inflow=2.6 cfs 0.189 at 12.0" Round Culvert n=0.013 L=9.0' S=0.0111 '/' Outflow=2.6 cfs 0.189 at
Pond 9P: PCB4	Peak Elev=11.00' Inflow=2.5 cfs 0.189 at 24.0" Round Culvert n=0.013 L=18.0' S=0.0050 '/' Outflow=2.5 cfs 0.189 at
Pond 10P: PCB5	Peak Elev=10.27' Inflow=21.9 cfs 1.741 at 36.0" Round Culvert n=0.013 L=45.0' S=0.0080 '/' Outflow=21.9 cfs 1.741 at
Pond 12P: POCS2	Peak Elev=11.64' Inflow=2.4 cfs 0.184 at 24.0" Round Culvert n=0.013 L=40.0' S=0.0200 '/' Outflow=2.4 cfs 0.184 at
Pond 14P: POCS1	Peak Elev=11.66' Inflow=2.5 cfs 0.189 at 24.0" Round Culvert n=0.013 L=46.0' S=0.0152 '/' Outflow=2.5 cfs 0.189 at
Pond 15P: 2 - 12" PERFORA 12.	TED UNDERDRAIN Peak Elev=14.42' Inflow=2.5 cfs 0.189 at 0" Round Culvert x 2.00 n=0.013 L=65.0' S=0.0000 '/' Outflow=2.5 cfs 0.189 at
Pond 16P: 2 - 12" PERFORA 12.	TED UNDERDRAIN Peak Elev=13.92' Inflow=2.4 cfs 0.184 at 0" Round Culvert x 2.00 n=0.013 L=75.0' S=0.0000 '/' Outflow=2.4 cfs 0.184 at
Pond CB 5D: CB 5D	Peak Elev=10.88' Inflow=1.1 cfs 0.082 at 12.0" Round Culvert n=0.013 L=37.0' S=0.0100 '/' Outflow=1.1 cfs 0.082 at
Pond DMH 4: DP 1	Inflow=25.3 cfs 2.008 at Primary=25.3 cfs 2.008 at
Pond DMH 4A: DMH 4A	Peak Elev=10.48' Inflow=18.3 cfs 1.459 at 36.0" Round Culvert n=0.012 L=23.0' S=0.0048 '/' Outflow=18.3 cfs 1.459 at
Pond DMH A6: DMH A6	Peak Elev=10.54' Inflow=6.4 cfs 0.488 at 24.0" Round Culvert n=0.012 L=44.0' S=0.0020 '/' Outflow=6.4 cfs 0.488 at
Pond ENV 21: ENV 21	Peak Elev=10.58' Inflow=4.0 cfs 0.299 at 18.0" Round Culvert n=0.013 L=10.0' S=0.0100 '/' Outflow=4.0 cfs 0.299 at
Pond PCB-BH: PCB-BH	Peak Elev=13.60' Inflow=5.7 cfs 0.477 at 12.0" Round Culvert n=0.013 L=34.0' S=0.0029 '/' Outflow=5.7 cfs 0.477 at
Pond PDMH 1: PDMH 1	Peak Elev=10.58' Inflow=1.1 cfs 0.082 at 12.0'' Round Culvert n=0.013 L=78.0' S=0.0114 '/' Outflow=1.1 cfs 0.082 at

Proposed Conditions	Type II	l 24-hr 10 Y	ear Storm Rainfa	ll=5.60"
Prepared by Ambit Engine	ering, Inc.		Printed 3/	19/2018
HydroCAD® 10.00 s/n 00801	© 2013 HydroCAD Software Solutions LL	C	I	<u> Page 46</u>
Pond PDMH 2: PDMH 2		Peak Elev=9.	81' Inflow=1.1 cfs	0.082 af
	24.0" Round Culvert n=0.013 L=196	.0' S=0.0029 '	/' Outflow=1.1 cfs	0.082 af
Pond PDMH 3: PDMH 3	ł	Peak Elev=9.6	8' Inflow=22.9 cfs	1.823 af
	36.0" Round Culvert n=0.012 L=110.0)' S=0.0049 '/'	Outflow=22.9 cfs	1.823 af
Total Runo	f Area = 5.034 ac Runoff Volume = 2 21.93% Pervious = 1.1	.008 af Aver 04 ac 78.0	age Runoff Depth 7% Impervious = (a = 4.79" 3.930 ac

Summary for Subcatchment PS1:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.9 cfs @ 12.07 hrs, Volume= 0.072 af, Depth= 5.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Year Storm Rainfall=5.60"

A	rea (sf)	CN	Description						
	1,344	98	Paved park	ing, HSG C					
*	544	98	Sidewalks,	HŠG C					
	4,974	98	Roofs, HSG	G C					
	295	74	>75% Gras	s cover, Go	od, HSG C				
	7,157	57 97 Weighted Average							
	295		4.12% Pervious Area						
	6,862		95.88% Imp	ervious Are	a				
Тс	Length	Slop	e Velocity	Capacity	Description				
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)					
5.0					Direct Entry,				

Subcatchment PS1:

Summary for Subcatchment PS2a:

[49] Hint: Tc<2dt may require smaller dt

Runoff 2.5 cfs @ 12.07 hrs, Volume= 0.189 af, Depth= 4.79" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Year Storm Rainfall=5.60"

	Ai	rea (sf)	CN	Description		
		15,319	98	Paved park	ing, HSG C	0
*		733	98	Sidewalks,	HSG C	
		4,532	74	>75% Gras	s cover, Go	ood, HSG C
		20,584	93	Weighted A	verage	
		4,532		22.02% Per	vious Area	a
		16,052		77.98% Imp	pervious Are	rea
	Тс	Length	Slop	e Velocity	Capacity	Description
((min)	(feet)	(ft/f	t) (ft/sec)	(cfs)	
	5.0					Direct Entry,
					Subca	atchment PS2a:

Summary for Subcatchment PS2b:

[49] Hint: Tc<2dt may require smaller dt

Runoff 1.4 cfs @ 12.07 hrs, Volume= 0.110 af, Depth= 4.90" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Year Storm Rainfall=5.60"

AI	rea (sf)	CN	Description					
	9,843	98	Roofs, HSC	oofs, HSG C				
	1,904	74	>75% Gras	s cover, Go	ood, HSG C			
	11,747	94	Weighted A	verage				
	1,904	1,904 16.21% Pervious Area						
	9,843		83.79% Impervious Area					
Тс	Length	Slop	e Velocity	Capacity	Description			
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)				
50					Direct Entry			

Direct Entry,

Subcatchment PS2b:

Summary for Subcatchment PS3a:

Page 50

[49] Hint: Tc<2dt may require smaller dt

Runoff 2.4 cfs @ 12.07 hrs, Volume= 0.184 af, Depth= 4.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Year Storm Rainfall=5.60"

Are	a (sf)	CN	Description						
16	6,192	98	Paved park	aved parking, HSG C					
	3,397	74	>75% Gras	s cover, Go	ood, HSG C				
19	9,589	9 94 Weighted Average							
3	3,397		17.34% Pervious Area						
16	6,192		82.66% Imp	pervious Are	ea				
Tc L	.ength	Slop	e Velocity	Capacity	Description				
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)					

Direct Entry,

Subcatchment PS3a:

[49] Hint: Tc<2dt may require smaller dt

Runoff 4.9 cfs @ 12.07 hrs, Volume= 0.366 af, Depth= 4.68"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Year Storm Rainfall=5.60"

A	vrea (sf)	CN	Description					
	24,825	98	Roofs, HSC	ЭС				
	10,906	74	>75% Gras	75% Grass cover, Good, HSG C				
	5,229	98	Paved park	ing, HSG C	, ,			
	40,960	92	92 Weighted Average					
	10,906		26.63% Pervious Area					
	30,054		73.37% Imp	pervious Are	ea			
Тс	Length	Slop	e Velocity	Capacity	Description			
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)				
F 0					Diss of Fisters			

5.0

Direct Entry,

Subcatchment PS3b:

Summary for Subcatchment PS4:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.5 cfs @ 12.07 hrs, Volume= 0.113 af, Depth= 4.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Year Storm Rainfall=5.60"

	Area (sf)	CN	Description			
	4,504	98	Paved parki	ing, HSG C		
*	2,085	98	Sidewalks,	HŠG C		
	3,654	98	Roofs, HSG	i C		
	1,763	74	>75% Grass	s cover, Go	od, HSG C	
	12,006	94	Weighted A	verage		
	1,763		14.68% Per	vious Area		
	10,243		85.32% Imp	ervious Are	ea	
	Tc Length	Slop	e Velocity	Capacity	Description	
(r	nin) (feet)	(ft/	ft) (ft/sec)	(cfs)		

5.0

Direct Entry,

Subcatchment PS4:

Summary for Subcatchment PS5:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 4.0 cfs @ 12.07 hrs, Volume= 0.299 af, Depth= 4.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Year Storm Rainfall=5.60"

	Area (sf)	CN	Description	_
	21,695	98	Paved parking, HSG C	-
*	310	98	Sidewalks, HSG C	
	1,551	98	Roofs, HSG C	
	10,704	74	>75% Grass cover, Good, HSG C	
	34,260	91	Weighted Average	-
	10,704		31.24% Pervious Area	
	23,556		68.76% Impervious Area	
(m	Tc Length	Slop (ft/	be Velocity Capacity Description ft) (ft/sec) (cfs)	

5.0

Direct Entry,

Subcatchment PS5:

Summary for Subcatchment PS5A:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.2 cfs @ 12.07 hrs, Volume= 0.093 af, Depth= 5.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Year Storm Rainfall=5.60"

	Area (sf)	CN	Description						
	7,491	98	Paved park	ing, HSG C					
*	1,230	98	Sidewalks,	HŠG C					
	577	74	>75% Gras	s cover, Go	od, HSG C				
	9,298	97	Weighted A	verage					
	577		6.21% Perv	6.21% Pervious Area					
	8,721		93.79% Imp	pervious Are	ea				
Т	c Length	Slop	be Velocity	Capacity	Description				
(mir	n) (feet)	(ft/1	ft) (ft/sec)	(cfs)					
_	•								

Direct Entry,

Subcatchment PS5A:

Summary for Subcatchment PS5B:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.6 cfs @ 12.07 hrs, Volume= 0.122 af, Depth= 4.68"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Year Storm Rainfall=5.60"

	Area (sf)	CN	Description	
	7,275	98	Paved parking, HS	SG C
*	2,828	98	Sidewalks, HSG C	
	3,502	74	>75% Grass cover,	r, Good, HSG C
	13,605	92	Weighted Average	
	3,502		25.74% Pervious A	Area
	10,103		74.26% Impervious	s Area
	Tc Length	Slop	e Velocity Capac	city Description
(mi	in) (feet)	(ft/	t) (ft/sec) (c	cfs)

Direct Entry,

Subcatchment PS5B:

Summary for Subcatchment PS5C: PS5 Roof

[49] Hint: Tc<2dt may require smaller dt

Runoff = 2.3 cfs @ 12.07 hrs, Volume= 0.189 af, Depth= 5.36"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Year Storm Rainfall=5.60"

Summary for Subcatchment PS6:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 2.3 cfs @ 12.07 hrs, Volume= 0.167 af, Depth= 4.24"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Year Storm Rainfall=5.60"

	Area (sf)	CN	Description
	6,762	98	Paved parking, HSG C
*	2,312	98	Sidewalks, HSG C
	2,662	98	Roofs, HSG C
	8,791	74	>75% Grass cover, Good, HSG C
	20,527	88	Weighted Average
	8,791		42.83% Pervious Area
	11,736		57.17% Impervious Area
-	Tc Length	Slop	be Velocity Capacity Description
(mi	in) (feet)	(ft/	ft) (ft/sec) (cfs)

5.0

Direct Entry,

Subcatchment PS6:

Summary for Subcatchment PS7:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.1 cfs @ 12.07 hrs, Volume= 0.082 af, Depth= 4.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Year Storm Rainfall=5.60"

	Area (sf)	CN	Description	
	410	98	Paved parking, HSG C	
*	4,272	98	Sidewalks, HSG C	
	2,770	98	Roofs, HSG C	
	1,288	74	>75% Grass cover, Good, HSG C	
	8,740	94	Weighted Average	_
	1,288		14.74% Pervious Area	
	7,452		85.26% Impervious Area	
(mi	Tc Length in) (feet)	Slop (ft/i	be Velocity Capacity Description ft) (ft/sec) (cfs)	

5.0

Direct Entry,

Subcatchment PS7:

Summary for Subcatchment PS8:

[49] Hint: Tc<2dt may require smaller dt

Runoff 0.3 cfs @ 12.07 hrs, Volume= 0.022 af, Depth= 4.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Year Storm Rainfall=5.60"

A	rea (sf)	CN	Description						
	1,966	98	Paved park	ing, HSG C	;				
	432	74	>75% Grass cover, Good, HSG C						
	2,398	94	Weighted A	verage					
	432	432 18.02% Pervious Area							
	1,966		81.98% Imp	pervious Are	ea				
Tc	Length	Slop	e Velocity	Capacity	Description				
(min)	(feet)	(ft/f) (ft/sec)	(cfs)					
5.0					Direct Entry				

Direct Entry,

Subcatchment PS8:

Summary for Reach 3R: Swale

 Inflow Area =
 1.210 ac, 75.70% Impervious, Inflow Depth = 4.73" for 10 Year Storm event

 Inflow =
 6.3 cfs @ 12.07 hrs, Volume=
 0.477 af

 Outflow =
 5.7 cfs @ 12.11 hrs, Volume=
 0.477 af, Atten= 9%, Lag= 2.4 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Max. Velocity= 1.83 fps, Min. Travel Time= 3.5 min Avg. Velocity = 0.55 fps, Avg. Travel Time= 11.6 min

Peak Storage= 1,190 cf @ 12.11 hrs Average Depth at Peak Storage= 0.62' Bank-Full Depth= 1.00' Flow Area= 7.0 sf, Capacity= 16.9 cfs

2.00' x 1.00' deep channel, n= 0.030 Earth, grassed & winding Side Slope Z-value= 5.0 '/' Top Width= 12.00' Length= 380.0' Slope= 0.0050 '/' Inlet Invert= 17.15', Outlet Invert= 15.25'

Time (hours)

Summary for Pond 1P: DMH A19

[57] Hint: Peaked at 10.59' (Flood elevation advised)[80] Warning: Exceeded Pond 5P by 0.27' @ 12.10 hrs (10.8 cfs 0.222 af)

Inflow Area	ı =	2.498 ac,	, 73.41%	Impervio	ous, Inflow	Depth =	4.66"	for 10) Year Storm eve	ent
Inflow	=	12.0 cfs (@ 12.09	hrs, Vo	lume=	0.971	af			
Outflow	=	12.0 cfs (ā 12.09	hrs, Vo	lume=	0.971	af, Atte	en= 0%	%, Lag= 0.0 min	
Primary	=	12.0 cfs (@ 12.09	hrs, Vo	lume=	0.971	af			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 10.59' @ 12.18 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	8.17'	36.0" Round Culvert L= 106.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 8.17' / 7.87' S= 0.0028 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 7.07 sf

Primary OutFlow Max=0.0 cfs @ 12.09 hrs HW=10.31' TW=10.32' (Dynamic Tailwater) ☐ 1=Culvert (Controls 0.0 cfs)

Pond 1P: DMH A19

Summary for Pond 3P: PCB3

[57] Hint: Peaked at 11.44' (Flood elevation advised)

Inflow Area	a = 1	1.660 ac, 77	7.58% Impe	rvious,	Inflow [Depth =	4.77"	for 10) Year Storm event
Inflow	=	8.0 cfs @	12.10 hrs,	Volume	;=	0.660	af		
Outflow	=	8.0 cfs @	12.10 hrs,	Volume	;=	0.660	af, Atte	en= 0%	6, Lag= 0.0 min
Primary	=	8.0 cfs @	12.10 hrs,	Volume	; =	0.660	af		
Routing by	Dyn-Stor-	Ind method,	Time Spar	י= 0.00	72.00 h	rs, dt= 0.	05 hrs		

Peak Elev= 11.44' @ 12.13 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	10.00'	24.0" Round Culvert L= 43.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 10.00' / 9.52' S= 0.0112 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=6.8 cfs @ 12.10 hrs HW=11.42' TW=10.92' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 6.8 cfs @ 4.02 fps)

Pond 3P: PCB3

Summary for Pond 4P: PCB7

[57] Hint: Peaked at 10.95' (Flood elevation advised)

Inflow Area	=	1.972 ac, 7	7.06% Impe	rvious, Inflow	Depth = 4	4.76" for	10 Year Storm event
Inflow	=	9.5 cfs @	12.10 hrs,	Volume=	0.782 a	af	
Outflow	=	9.5 cfs @	12.10 hrs,	Volume=	0.782 a	af, Atten=	0%, Lag= 0.0 min
Primary	=	9.5 cfs @	12.10 hrs,	Volume=	0.782 a	af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 10.95' @ 12.15 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	9.40'	24.0" Round Culvert L= 46.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 9.40' / 8.20' S= 0.0261 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=7.7 cfs @ 12.10 hrs HW=10.90' TW=10.34' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 7.7 cfs @ 4.22 fps)

Summary for Pond 5P: DMH 4B

[57] Hint: Peaked at 10.59' (Flood elevation advised)

Inflow Area	a =	0.526 ac, 59	9.77% Impe	rvious, Inflow De	epth = 4.31	" for 10 \	Year Storm event
Inflow	=	2.6 cfs @	12.07 hrs,	Volume=	0.189 af		
Outflow	=	2.6 cfs @	12.07 hrs,	Volume=	0.189 af, A	Atten= 0%,	Lag= 0.0 min
Primary	=	2.6 cfs @	12.07 hrs,	Volume=	0.189 af		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 10.59' @ 12.23 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	8.25'	36.0" Round Culvert L= 104.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 8.25' / 8.18' S= 0.0007 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 7.07 sf

Primary OutFlow Max=0.0 cfs @ 12.07 hrs HW=9.95' TW=10.21' (Dynamic Tailwater)

Summary for Pond 6P: PCB1

[57] Hint: Peaked at 14.86' (Flood elevation advised)

Inflow Area	ı =	0.471 ac, 5	7.17% Impe	rvious,	Inflow I	Depth =	4.24	4" for	10 `	Year Storm event
Inflow	=	2.3 cfs @	12.07 hrs,	Volume) =	0.167	af			
Outflow	=	2.3 cfs @	12.07 hrs,	Volume) =	0.167	af,	Atten=	0%,	Lag= 0.0 min
Primary	=	2.3 cfs @	12.07 hrs,	Volume	9=	0.167	af			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 14.86' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	14.00'	12.0" Round Culvert L= 109.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 14.00' / 11.80' S= 0.0202 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=2.2 cfs @ 12.07 hrs HW=14.84' TW=12.76' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 2.2 cfs @ 3.12 fps)

Pond 6P: PCB1

Summary for Pond 7P: PCB2

[57] Hint: Peaked at 12.79' (Flood elevation advised)

Inflow Area	a =	0.526 ac, 5	9.77% Impe	rvious, Ir	nflow Depth =	4.31"	for 10 \	ear Storm event
Inflow	=	2.6 cfs @	12.07 hrs,	Volume=	.18	9 af		
Outflow	=	2.6 cfs @	12.07 hrs,	Volume=	• 0.18	9 af, Atte	en= 0%,	Lag= 0.0 min
Primary	=	2.6 cfs @	12.07 hrs,	Volume=	• 0.18	9 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 12.79' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	11.70'	12.0" Round Culvert L= 9.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 11.70' / 11.60' S= 0.0111 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=2.5 cfs @ 12.07 hrs HW=12.76' TW=9.95' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 2.5 cfs @ 3.70 fps)

Summary for Pond 9P: PCB4

[57] Hint: Peaked at 11.00' (Flood elevation advised)

Inflow Area	a =	0.473 ac, 7	7.98% Impe	rvious, In	flow Depth =	4.79"	for 10 \	ear Storm event
Inflow	=	2.5 cfs @	12.07 hrs,	Volume=	0.189	9 af		
Outflow	=	2.5 cfs @	12.07 hrs,	Volume=	0.189	9 af, Atte	en= 0%,	Lag= 0.0 min
Primary	=	2.5 cfs @	12.07 hrs,	Volume=	0.189	9 af		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 11.00' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	10.20'	24.0" Round Culvert L= 18.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 10.20' / 10.11' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=2.4 cfs @ 12.07 hrs HW=10.98' TW=10.12' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 2.4 cfs @ 3.12 fps)

Pond 9P: PCB4

Time (hours)

Summary for Pond 10P: PCB5

[57] Hint: Peaked at 10.27' (Flood elevation advised)

Inflow Area	ı =	4.394 ac, 76	5.62% Impe	rvious, Inflow D	Depth = 4.	76" for	10 Year Storm event
Inflow	=	21.9 cfs @	12.08 hrs,	Volume=	1.741 af		
Outflow	=	21.9 cfs @	12.08 hrs,	Volume=	1.741 af	, Atten=	0%, Lag= 0.0 min
Primary	=	21.9 cfs @	12.08 hrs,	Volume=	1.741 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 10.27' @ 12.11 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	7.85'	36.0" Round Culvert L= 45.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 7.85' / 7.49' S= 0.0080 '/' Cc= 0.900 n= 0.013 Concrete pipe, bends & connections, Flow Area= 7.07 sf

Primary OutFlow Max=18.5 cfs @ 12.08 hrs HW=10.17' TW=9.64' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 18.5 cfs @ 4.36 fps)

Pond 10P: PCB5

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Summary for Pond 12P: POCS2

[57] Hint: Peaked at 11.64' (Flood elevation advised)

Inflow Area	a =	0.450 ac, 8	2.66% Impe	rvious,	Inflow [Depth =	4.90"	for	10 \	Year Storm event
Inflow	=	2.4 cfs @	12.07 hrs,	Volume) =	0.184	af			
Outflow	=	2.4 cfs @	12.07 hrs,	Volume) =	0.184	af, At	ten= (0%,	Lag= 0.0 min
Primary	=	2.4 cfs @	12.07 hrs,	Volume)=	0.184	af			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 11.64' @ 12.12 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	10.90'	24.0" Round Culvert L= 40.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 10.90' / 10.10' S= 0.0200 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=1.8 cfs @ 12.07 hrs HW=11.60' TW=11.32' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 1.8 cfs @ 2.70 fps)

Pond 12P: POCS2

Summary for Pond 14P: POCS1

[57] Hint: Peaked at 11.66' (Flood elevation advised)

Inflow Area	a =	0.473 ac, 7	7.98% Impe	rvious, Ir	nflow Depth =	4.79" for	10	Year Storm event
Inflow	=	2.5 cfs @	12.07 hrs,	Volume=	0.189	af		
Outflow	=	2.5 cfs @	12.07 hrs,	Volume=	• 0.189	af, Atten=	0%,	Lag= 0.0 min
Primary	=	2.5 cfs @	12.07 hrs,	Volume=	0.189	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 11.66' @ 12.08 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	11.00'	24.0" Round Culvert L= 46.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 11.00' / 10.30' S= 0.0152 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=2.4 cfs @ 12.07 hrs HW=11.65' TW=10.98' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 2.4 cfs @ 3.99 fps)

Pond 14P: POCS1

Summary for Pond 15P: 2 - 12" PERFORATED UNDERDRAIN

[57] Hint: Peaked at 14.42' (Flood elevation advised)

Inflow Area	a =	0.473 ac, 7	7.98% Impe	rvious,	Inflow I	Depth =	4.79	9" for	10`	Year Storm event
Inflow	=	2.5 cfs @	12.07 hrs,	Volume)=	0.189	af			
Outflow	=	2.5 cfs @	12.07 hrs,	Volume)=	0.189	af,	Atten=	0%,	Lag= 0.0 min
Primary	=	2.5 cfs @	12.07 hrs,	Volume)=	0.189	af			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 14.42' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	13.50'	12.0" Round Culvert X 2.00 L= 65.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 13.50' / 13.50' S= 0.0000 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=2.4 cfs @ 12.07 hrs HW=14.40' TW=11.65' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 2.4 cfs @ 2.14 fps)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)
Summary for Pond 16P: 2 - 12" PERFORATED UNDERDRAIN

[57] Hint: Peaked at 13.92' (Flood elevation advised)

Inflow Area	a =	0.450 ac, 8	2.66% Impe	rvious,	Inflow D	Depth =	4.90"	for	10 ነ	/ear Storm event
Inflow	=	2.4 cfs @	12.07 hrs,	Volume) =	0.184	af			
Outflow	=	2.4 cfs @	12.07 hrs,	Volume) =	0.184	af, Atte	en= C)%,	Lag= 0.0 min
Primary	=	2.4 cfs @	12.07 hrs,	Volume	9=	0.184	af			-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 13.92' @ 12.07 hrs

#1 Primary 13.00' 12.0" Round Culvert X 2.00 L= 75.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 13.00' / 13.00' S= 0.0000 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79) sf

Primary OutFlow Max=2.3 cfs @ 12.07 hrs HW=13.90' TW=11.60' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 2.3 cfs @ 2.06 fps)

32 34 36 38 40 42 Time (hours)

Summary for Pond CB 5D: CB 5D

[57] Hint: Peaked at 10.88' (Flood elevation advised)

Inflow Area	=	0.201 ac, 8	5.26% Impe	rvious, Inflow De	epth = 4.90"	for 10 Y	/ear Storm event
Inflow	=	1.1 cfs @	12.07 hrs,	Volume=	0.082 af		
Outflow	=	1.1 cfs @	12.07 hrs,	Volume=	0.082 af, At	ten= 0%,	Lag= 0.0 min
Primary	=	1.1 cfs @	12.07 hrs,	Volume=	0.082 af		
-			- . 0				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 10.88' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	10.24'	12.0" Round Culvert L= 37.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 10.24' / 9.87' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.0 cfs @ 12.07 hrs HW=10.86' TW=10.57' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 1.0 cfs @ 2.65 fps)

Pond CB 5D: CB 5D

Summary for Pond DMH 4: DP 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	5.034 ac, 78.07% Impervious, I	Inflow Depth = 4.79" for 10 Year Storm even	ent
Inflow	=	25.3 cfs @ 12.08 hrs, Volume=	= 2.008 af	
Primary	=	25.3 cfs @ 12.08 hrs, Volume=	= 2.008 af, Atten= 0%, Lag= 0.0 min	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Pond DMH 4: DP 1

Summary for Pond DMH 4A: DMH 4A

[57] Hint: Peaked at 10.48' (Flood elevation advised)
[80] Warning: Exceeded Pond 1P by 0.02' @ 12.10 hrs (2.7 cfs 0.011 af)
[80] Warning: Exceeded Pond DMH A6 by 0.10' @ 12.10 hrs (4.4 cfs 0.030 af)

Inflow Are	ea =	3.708 ac, 75.46% Impervio	us, Inflow Depth = 4	.72" for 10 Year Storm event
Inflow	=	18.3 cfs @ 12.08 hrs, Vol	ume= 1.459 a	f
Outflow	=	18.3 cfs @ 12.08 hrs, Vol	ume= 1.459 a	f, Atten= 0%, Lag= 0.0 min
Primary	=	18.3 cfs @ 12.08 hrs, Vol	ume= 1.459 a	f

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 10.48' @ 12.14 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	7.85'	36.0" Round Culvert L= 23.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 7.85' / 7.74' S= 0.0048 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 7.07 sf

Primary OutFlow Max=8.9 cfs @ 12.08 hrs HW=10.28' TW=10.18' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 8.9 cfs @ 1.98 fps)

Summary for Pond DMH A6: DMH A6

[57] Hint: Peaked at 10.54' (Flood elevation advised)[80] Warning: Exceeded Pond ENV 21 by 0.07' @ 12.15 hrs (2.3 cfs 0.010 af)

Inflow Area	a = ^	1.210 ac,	79.68% Imp	ervious,	Inflow De	epth =	4.84"	for 10	Year Storm even	ent
Inflow	=	6.4 cfs @) 12.07 hrs,	Volume	e=	0.488	af			
Outflow	=	6.4 cfs @) 12.07 hrs,	Volume	e=	0.488	af, Atte	en= 0%	, Lag= 0.0 min	
Primary	=	6.4 cfs @) 12.07 hrs,	Volume	e=	0.488	af		-	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 10.54' @ 12.18 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	8.50'	24.0" Round Culvert L= 44.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 8.50' / 8.41' S= 0.0020 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf

Primary OutFlow Max=0.0 cfs @ 12.07 hrs HW=10.14' TW=10.20' (Dynamic Tailwater)

Pond DMH A6: DMH A6

Summary for Pond ENV 21: ENV 21

[57] Hint: Peaked at 10.58' (Flood elevation advised)

Inflow Area	a =	0.787 ac, 6	8.76% Impe	rvious, Inflow	Depth =	4.57"	for 10 \	ear Storm event
Inflow	=	4.0 cfs @	12.07 hrs,	Volume=	0.299	af		
Outflow	=	4.0 cfs @	12.07 hrs,	Volume=	0.299	af, Atte	n= 0%,	Lag= 0.0 min
Primary	=	4.0 cfs @	12.07 hrs,	Volume=	0.299	af		
	_							

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 10.58' @ 12.23 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	9.00'	18.0" Round Culvert L= 10.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 9.00' / 8.90' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=1.7 cfs @ 12.07 hrs HW=10.20' TW=10.14' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 1.7 cfs @ 1.50 fps)

Pond ENV 21: ENV 21

Summary for Pond PCB-BH: PCB-BH

[57] Hint: Peaked at 13.60' (Flood elevation advised)

Inflow Area	a =	1.210 ac, 7	5.70% Impe	rvious, Inf	flow Depth =	4.73" for	10 Year Storm event
Inflow	=	5.7 cfs @	12.11 hrs,	Volume=	0.477	af	
Outflow	=	5.7 cfs @	12.11 hrs,	Volume=	0.477	af, Atten=	0%, Lag= 0.0 min
Primary	=	5.7 cfs @	12.11 hrs,	Volume=	0.477	af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 13.60' @ 12.12 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	10.20'	12.0" Round Culvert L= 34.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 10.20' / 10.10' S= 0.0029 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=5.4 cfs @ 12.11 hrs HW=13.49' TW=11.42' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 5.4 cfs @ 6.92 fps)

Pond PCB-BH: PCB-BH

Summary for Pond PDMH 1: PDMH 1

[57] Hint: Peaked at 10.58' (Flood elevation advised)

Inflow Area	a =	0.201 ac, 85	5.26% Impe	rvious, In	flow Depth	h = 4.90)" for	10 `	Year Storm event
Inflow	=	1.1 cfs @	12.07 hrs,	Volume=	0.	.082 af			
Outflow	=	1.1 cfs @	12.07 hrs,	Volume=	0.	.082 af,	Atten=	0%,	Lag= 0.0 min
Primary	=	1.1 cfs @	12.07 hrs,	Volume=	0.	.082 af			
Routing by	/ Dyn-Stor	-Ind method,	Time Spar	n= 0.00-72	2.00 hrs, di	t= 0.05 h	rs		

Peak Elev= 10.58' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	10.04'	12.0" Round Culvert L= 78.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 10.04' / 9.15' S= 0.0114 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.0 cfs @ 12.07 hrs HW=10.57' TW=9.71' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 1.0 cfs @ 3.47 fps)

Pond PDMH 1: PDMH 1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Summary for Pond PDMH 2: PDMH 2

[57] Hint: Peaked at 9.81' (Flood elevation advised)

Inflow Area	a =	0.201 ac, 8	5.26% Impe	rvious, Inflo	w Depth =	4.90"	for 10 Y	ear Storm event
Inflow	=	1.1 cfs @	12.07 hrs,	Volume=	0.082	2 af		
Outflow	=	1.1 cfs @	12.07 hrs,	Volume=	0.082	af, Atte	en= 0%,	Lag= 0.0 min
Primary	=	1.1 cfs @	12.07 hrs,	Volume=	0.082	2 af		
Routing by	Dvn-Stor	-Ind method	. Time Spar	ח= 0.00-72.00) hrs. dt= 0	.05 hrs		

Peak Elev= 9.81' @ 12.12 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	9.05'	24.0" Round Culvert L= 196.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 9.05' / 8.49' S= 0.0029 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=0.5 cfs @ 12.07 hrs HW=9.71' TW=9.64' (Dynamic Tailwater) ☐ 1=Culvert (Outlet Controls 0.5 cfs @ 0.87 fps)

Pond PDMH 2: PDMH 2

Summary for Pond PDMH 3: PDMH 3

[57] Hint: Peaked at 9.68' (Flood elevation advised)

Inflow Area	ı =	4.595 ac, 77	7.00% Impe	rvious, Inflow D	Depth = 4.76"	for 10 \	Year Storm event
Inflow	=	22.9 cfs @	12.08 hrs,	Volume=	1.823 af		
Outflow	=	22.9 cfs @	12.08 hrs,	Volume=	1.823 af, Att	en= 0%,	Lag= 0.0 min
Primary	=	22.9 cfs @	12.08 hrs,	Volume=	1.823 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 9.68' @ 12.08 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	7.48'	36.0'' Round Culvert L= 110.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 7.48' / 6.94' S= 0.0049 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 7.07 sf

Primary OutFlow Max=22.3 cfs @ 12.08 hrs HW=9.64' TW=0.00' (Dynamic Tailwater) -1=Culvert (Barrel Controls 22.3 cfs @ 5.71 fps)

Proposed Conditions	Type III 24-hr 25 Year Storm Rainfall=7.10"
Prepared by Ambit Engineering, Inc.	Printed 3/19/2018
HydroCAD® 10.00 s/n 00801 © 2013 HydroCAD Software Sol	lutions LLC Page 82

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment PS1:	Runoff Area=7,157 sf 95.88% Impervious Runoff Depth=6.74" Tc=5.0 min CN=97 Runoff=1.1 cfs 0.092 af
Subcatchment PS2a:	Runoff Area=20,584 sf 77.98% Impervious Runoff Depth=6.27" Tc=5.0 min CN=93 Runoff=3.2 cfs 0.247 af
Subcatchment PS2b:	Runoff Area=11,747 sf 83.79% Impervious Runoff Depth=6.39" Tc=5.0 min CN=94 Runoff=1.8 cfs 0.144 af
Subcatchment PS3a:	Runoff Area=19,589 sf 82.66% Impervious Runoff Depth=6.39" Tc=5.0 min CN=94 Runoff=3.1 cfs 0.239 af
Subcatchment PS3b:	Runoff Area=40,960 sf 73.37% Impervious Runoff Depth=6.15" Tc=5.0 min CN=92 Runoff=6.3 cfs 0.482 af
Subcatchment PS4:	Runoff Area=12,006 sf 85.32% Impervious Runoff Depth=6.39" Tc=5.0 min CN=94 Runoff=1.9 cfs 0.147 af
Subcatchment PS5:	Runoff Area=34,260 sf 68.76% Impervious Runoff Depth=6.04" Tc=5.0 min CN=91 Runoff=5.2 cfs 0.396 af
Subcatchment PS5A:	Runoff Area=9,298 sf 93.79% Impervious Runoff Depth=6.74" Tc=5.0 min CN=97 Runoff=1.5 cfs 0.120 af
Subcatchment PS5B:	Runoff Area=13,605 sf 74.26% Impervious Runoff Depth=6.15" Tc=5.0 min CN=92 Runoff=2.1 cfs 0.160 af
Subcatchment PS5C: PS5 Roo	of Runoff Area=18,430 sf 100.00% Impervious Runoff Depth=6.86" Tc=5.0 min CN=98 Runoff=3.0 cfs 0.242 af
Subcatchment PS6:	Runoff Area=20,527 sf 57.17% Impervious Runoff Depth=5.69" Tc=5.0 min CN=88 Runoff=3.0 cfs 0.223 af
Subcatchment PS7:	Runoff Area=8,740 sf 85.26% Impervious Runoff Depth=6.39" Tc=5.0 min CN=94 Runoff=1.4 cfs 0.107 af
Subcatchment PS8:	Runoff Area=2,398 sf 81.98% Impervious Runoff Depth=6.39" Tc=5.0 min CN=94 Runoff=0.4 cfs 0.029 af
Reach 3R: Swale	Avg. Flow Depth=0.70' Max Vel=1.96 fps Inflow=8.2 cfs 0.626 af n=0.030 L=380.0' S=0.0050 '/' Capacity=16.9 cfs Outflow=7.5 cfs 0.626 af
Pond 1P: DMH A19	Peak Elev=11.14' Inflow=15.7 cfs 1.278 af 36.0" Round Culvert n=0.012 L=106.0' S=0.0028 '/' Outflow=15.7 cfs 1.278 af
Pond 3P: PCB3	Peak Elev=11.77' Inflow=10.4 cfs 0.865 af 24.0" Round Culvert n=0.013 L=43.0' S=0.0112 '/' Outflow=10.4 cfs 0.865 af

Proposed Conditions Prepared by Ambit Engine HydroCAD® 10.00 s/n 00801	Type III 24-hr 25 Year Storm Rainfall=7.10 Printed 3/19/201 2013 HydroCAD Software Solutions LLC Page 8
Pond 4P: PCB7	Peak Elev=11.37' Inflow=12.4 cfs 1.025 a 24.0" Round Culvert n=0.013 L=46.0' S=0.0261 '/' Outflow=12.4 cfs 1.025 a
Pond 5P: DMH 4B	Peak Elev=11.14' Inflow=3.4 cfs 0.253 a 36.0'' Round Culvert n=0.012 L=104.0' S=0.0007 '/' Outflow=3.4 cfs 0.253 a
Pond 6P: PCB1	Peak Elev=15.13' Inflow=3.0 cfs 0.223 a 12.0" Round Culvert n=0.013 L=109.0' S=0.0202 '/' Outflow=3.0 cfs 0.223 a
Pond 7P: PCB2	Peak Elev=13.13' Inflow=3.4 cfs 0.253 a 12.0" Round Culvert n=0.013 L=9.0' S=0.0111 '/' Outflow=3.4 cfs 0.253 a
Pond 9P: PCB4	Peak Elev=11.12' Inflow=3.2 cfs 0.247 a 24.0" Round Culvert n=0.013 L=18.0' S=0.0050 '/' Outflow=3.2 cfs 0.247 a
Pond 10P: PCB5	Peak Elev=10.73' Inflow=28.4 cfs 2.282 a 36.0" Round Culvert n=0.013 L=45.0' S=0.0080 '/' Outflow=28.4 cfs 2.282 a
Pond 12P: POCS2	Peak Elev=11.87' Inflow=3.1 cfs 0.239 a 24.0" Round Culvert n=0.013 L=40.0' S=0.0200 '/' Outflow=3.1 cfs 0.239 a
Pond 14P: POCS1	Peak Elev=11.77' Inflow=3.2 cfs 0.247 a 24.0" Round Culvert n=0.013 L=46.0' S=0.0152 '/' Outflow=3.2 cfs 0.247 a
Pond 15P: 2 - 12" PERFORA 12	TED UNDERDRAIN Peak Elev=14.57' Inflow=3.2 cfs 0.247 a 0" Round Culvert x 2.00 n=0.013 L=65.0' S=0.0000 '/' Outflow=3.2 cfs 0.247 a
Pond 16P: 2 - 12" PERFORA 12	TED UNDERDRAIN Peak Elev=14.07' Inflow=3.1 cfs 0.239 a 0" Round Culvert x 2.00 n=0.013 L=75.0' S=0.0000 '/' Outflow=3.1 cfs 0.239 a
Pond CB 5D: CB 5D	Peak Elev=10.99' Inflow=1.4 cfs 0.107 a 12.0" Round Culvert n=0.013 L=37.0' S=0.0100 '/' Outflow=1.4 cfs 0.107 a
Pond DMH 4: DP 1	Inflow=32.7 cfs 2.628 a Primary=32.7 cfs 2.628 a
Pond DMH 4A: DMH 4A	Peak Elev=11.03' Inflow=23.7 cfs 1.916 a 36.0" Round Culvert n=0.012 L=23.0' S=0.0048 '/' Outflow=23.7 cfs 1.916 a
Pond DMH A6: DMH A6	Peak Elev=11.11' Inflow=8.2 cfs 0.638 a 24.0" Round Culvert n=0.012 L=44.0' S=0.0020 '/' Outflow=8.2 cfs 0.638 a
Pond ENV 21: ENV 21	Peak Elev=11.19' Inflow=5.2 cfs 0.396 a 18.0" Round Culvert n=0.013 L=10.0' S=0.0100 '/' Outflow=5.2 cfs 0.396 a
Pond PCB-BH: PCB-BH	Peak Elev=15.47' Inflow=7.5 cfs 0.626 a 12.0" Round Culvert n=0.013 L=34.0' S=0.0029 '/' Outflow=7.5 cfs 0.626 a
Pond PDMH 1: PDMH 1	Peak Elev=10.66' Inflow=1.4 cfs 0.107 a 12.0" Round Culvert n=0.013 L=78.0' S=0.0114 '/' Outflow=1.4 cfs 0.107 a

Proposed Conditions	Type III 24-hr 25	SYear Storm Rainfall=7.10"
Prepared by Ambit Engine	ering, Inc.	Printed 3/19/2018
HydroCAD® 10.00 s/n 00801	© 2013 HydroCAD Software Solutions LLC	Page 84
Pond PDMH 2: PDMH 2	Peak Elev=1	10.14' Inflow=1.4 cfs 0.107 af
	24.0" Round Culvert n=0.013 L=196.0' S=0.002	29 '/' Outflow=1.4 cfs 0.107 af
Pond PDMH 3: PDMH 3	Peak Elev=10	0.08' Inflow=29.7 cfs 2.389 af
	36.0" Round Culvert n=0.012 L=110.0' S=0.0049	9 '/' Outflow=29.7 cfs 2.389 af
Total Runofi	Area = 5.034 ac Runoff Volume = 2.628 af Av 21.93% Pervious = 1.104 ac 78	verage Runoff Depth = 6.26" 3.07% Impervious = 3.930 ac

Summary for Subcatchment PS1:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.1 cfs @ 12.07 hrs, Volume= 0.092 af, Depth= 6.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25 Year Storm Rainfall=7.10"

A	rea (sf)	CN	Description			
	1,344	98	Paved park	ing, HSG C	2	
*	544	98	Sidewalks,	HŠG C		
	4,974	98	Roofs, HSC	θC		
	295	74	>75% Gras	s cover, Go	ood, HSG C	
	7,157	97	Weighted A	verage		
	295		4.12% Perv	vious Ārea		
	6,862		95.88% Imp	pervious Are	ea	
Tc	Length	Slop	e Velocity	Capacity	Description	
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)		
5.0					Direct Entry,	

Subcatchment PS1:

Summary for Subcatchment PS2a:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 3.2 cfs @ 12.07 hrs, Volume= 0.247 af, Depth= 6.27"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25 Year Storm Rainfall=7.10"

	Area (sf)	CN	Description				
	15,319	98	Paved park	ing, HSG C			
*	733	98	Sidewalks,	HŠG C			
	4,532	74	>75% Gras	s cover, Go	od, HSG C		
	20,584	93	Weighted A	verage			
	4,532		22.02% Pervious Area				
	16,052		77.98% Impervious Area				
	Tc Length	Slop	be Velocity	Capacity	Description		
(m	in) (feet)	(ft/	ft) (ft/sec)	(cfs)			

Direct Entry,

Subcatchment PS2a:

Summary for Subcatchment PS2b:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.8 cfs @ 12.07 hrs, Volume= 0.144 af, Depth= 6.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25 Year Storm Rainfall=7.10"

A	vrea (sf)	CN	Description						
	9,843	98	Roofs, HSG C						
	1,904	74	>75% Grass cover, Good, HSG C						
	11,747	94	Weighted A	verage					
	1,904		16.21% Per	16.21% Pervious Area					
	9,843		83.79% Imp	83.79% Impervious Area					
Tc (min)	Length	Slop	e Velocity	Capacity	Description				
(mn)	(ieet)	(תו	(10°sec)	(CIS)					
- - -									

Direct Entry,

Subcatchment PS2b:

Summary for Subcatchment PS3a:

[49] Hint: Tc<2dt may require smaller dt

Runoff 3.1 cfs @ 12.07 hrs, Volume= 0.239 af, Depth= 6.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25 Year Storm Rainfall=7.10"

Area (sf)	CN	Description			
16,192	98	Paved parking, HSG C			
3,397	74	>75% Grass cover, Good, HSG C			
19,589	94	Weighted Average			
3,397		17.34% Pervious Area			
16,192		82.66% Impervious Area			
Tc Length	Slop (ft/	be Velocity Capacity Description			

Direct Entry,

Subcatchment PS3a:

Summary for Subcatchment PS3b:

[49] Hint: Tc<2dt may require smaller dt

1

0

0

Runoff = 6.3 cfs @ 12.07 hrs, Volume= 0.482 af, Depth= 6.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25 Year Storm Rainfall=7.10"

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72

Time (hours)

Summary for Subcatchment PS4:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.9 cfs @ 12.07 hrs, Volume= 0.147 af, Depth= 6.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25 Year Storm Rainfall=7.10"

	Area (sf)	CN	Description			
	4,504	98	Paved parki	ng, HSG C	;	
*	2,085	98	Sidewalks, H	IŠG C		
	3,654	98	Roofs, HSG	С		
	1,763	74	>75% Grass	s cover, Go	od, HSG C	
	12,006	94	Weighted Av	verage		
	1,763		14.68% Perv	vious Area		
	10,243		85.32% Imp	ervious Are	ea	
	Tc Length	Slop	e Velocity	Capacity	Description	
(m	in) (feet)	(ft/	ft) (ft/sec)	(cfs)		

5.0

Direct Entry,

Subcatchment PS4:

Summary for Subcatchment PS5:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 5.2 cfs @ 12.07 hrs, Volume= 0.396 af, Depth= 6.04"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25 Year Storm Rainfall=7.10"

	Area (sf)	CN	Description			
	21,695	98	Paved parki	ng, HSG C	;	
*	310	98	Sidewalks,	HŠG C		
	1,551	98	Roofs, HSG	i C		
	10,704	74	>75% Grass	s cover, Go	ood, HSG C	
	34,260	91	Weighted A	verage		
	10,704		31.24% Per	vious Area		
	23,556		68.76% Imp	ervious Are	ea	
-	Ta Lanath	Slor	o Volocity	Consoity	Description	
, .		Siop		Capacity	Description	
(mi	n) (feet)	(†t/1	t) (tt/sec)	(cfs)		

5.0

Direct Entry,

Subcatchment PS5:

Summary for Subcatchment PS5A:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.5 cfs @ 12.07 hrs, Volume= 0.120 af, Depth= 6.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25 Year Storm Rainfall=7.10"

A	rea (sf)	CN	Description			
	7,491	98	Paved park	ing, HSG C		
*	1,230	98	Sidewalks,	HŠG C		
	577	74	>75% Gras	s cover, Go	ood, HSG C	
	9,298	97	Weighted A	verage		
	577	6.21% Pervious Area				
	8,721		93.79% Imp	pervious Are	ea	
Тс	Length	Slop	e Velocity	Capacity	Description	
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)		
5.0					Direct Entry,	

Subcatchment PS5A:

Summary for Subcatchment PS5B:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 2.1 cfs @ 12.07 hrs, Volume= 0.160 af, Depth= 6.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25 Year Storm Rainfall=7.10"

	Area (sf)	CN	Description				
	7,275	98	Paved parki	ng, HSG C			
*	2,828	98	Sidewalks, H	ISG C			
	3,502	74	>75% Grass	s cover, Go	od, HSG C		
	13,605	92	Weighted Av	verage			
	3,502		25.74% Pervious Area				
	10,103		74.26% Imp	ervious Are	ea		
٦	Fc Length	Slop	be Velocity	Capacity	Description		
(mi	n) (feet)	(ft/	ft) (ft/sec)	(cfs)			

Direct Entry,

Subcatchment PS5B:

Summary for Subcatchment PS5C: PS5 Roof

[49] Hint: Tc<2dt may require smaller dt

Runoff 3.0 cfs @ 12.07 hrs, Volume= 0.242 af, Depth= 6.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25 Year Storm Rainfall=7.10"

Summary for Subcatchment PS6:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 3.0 cfs @ 12.07 hrs, Volume= 0.223 af, Depth= 5.69"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25 Year Storm Rainfall=7.10"

	Area (sf)	CN	Description
	6,762	98	Paved parking, HSG C
*	2,312	98	Sidewalks, HSG C
	2,662	98	Roofs, HSG C
	8,791	74	>75% Grass cover, Good, HSG C
	20,527	88	Weighted Average
	8,791		42.83% Pervious Area
	11,736		57.17% Impervious Area
	To Length	Slor	ne Velocity Canacity Description
(m	in) (feet)	(ft/	ft) (ft/sec) (cfs)

5.0

Direct Entry,

Subcatchment PS6:

Summary for Subcatchment PS7:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.4 cfs @ 12.07 hrs, Volume= 0.107 af, Depth= 6.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25 Year Storm Rainfall=7.10"

	Area (sf)	CN	Description					
	410	98	Paved parking, HSG C					
*	4,272	98	Sidewalks,	Sidewalks, HSG C				
	2,770	98	Roofs, HSC	ЭС				
	1,288	74	>75% Grass cover, Good, HSG C					
	8,740	94	Weighted A	verage				
	1,288		14.74% Per	vious Area	а			
	7,452		85.26% Imp	pervious Are	rea			
				_				
Т	c Length	Slop	e Velocity	Capacity	Description			
(mir	n) (feet)	(ft/f	t) (ft/sec)	(cfs)				
5	<u>^</u>				Dise of Future			

5.0

Direct Entry,

Subcatchment PS7:

Summary for Subcatchment PS8:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.4 cfs @ 12.07 hrs, Volume= 0.029 af, Depth= 6.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25 Year Storm Rainfall=7.10"

A	rea (sf)	CN	Description					
	1,966	98	Paved park	C				
	432	74	>75% Grass cover, Good, HSG C					
	2,398	94	Weighted A	verage				
	432		18.02% Pervious Area					
	1,966		81.98% Im	pervious Are	rea			
Тс	Length	Slop	e Velocity	Capacity	Description			
(min)	(feet)	(ft/f) (ft/sec)	(cfs)				
5.0					Direct Entry,			

Subcatchment PS8:

Summary for Reach 3R: Swale

 Inflow Area =
 1.210 ac, 75.70% Impervious, Inflow Depth = 6.21" for 25 Year Storm event

 Inflow =
 8.2 cfs @ 12.07 hrs, Volume=
 0.626 af

 Outflow =
 7.5 cfs @ 12.11 hrs, Volume=
 0.626 af, Atten= 8%, Lag= 2.3 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Max. Velocity= 1.96 fps, Min. Travel Time= 3.2 min Avg. Velocity = 0.59 fps, Avg. Travel Time= 10.7 min

Peak Storage= 1,450 cf @ 12.11 hrs Average Depth at Peak Storage= 0.70' Bank-Full Depth= 1.00' Flow Area= 7.0 sf, Capacity= 16.9 cfs

2.00' x 1.00' deep channel, n= 0.030 Earth, grassed & winding Side Slope Z-value= 5.0 '/' Top Width= 12.00' Length= 380.0' Slope= 0.0050 '/' Inlet Invert= 17.15', Outlet Invert= 15.25'

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Summary for Pond 1P: DMH A19

[57] Hint: Peaked at 11.14' (Flood elevation advised)[80] Warning: Exceeded Pond 5P by 0.33' @ 12.10 hrs (15.1 cfs 0.337 af)

Inflow Area	ı =	2.498 ac,	73.41% Imp	ervious,	Inflow	Depth =	6.14"	for 2	5 Year	Storm ev	ent
Inflow	=	15.7 cfs @) 12.09 hrs	, Volum	e=	1.278	af				
Outflow	=	15.7 cfs @) 12.09 hrs	, Volum	e=	1.278	af, A	tten= 0%	%, Lag	j= 0.0 min	ľ
Primary	=	15.7 cfs @) 12.09 hrs	, Volum	e=	1.278	af				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 11.14' @ 12.18 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	8.17'	36.0" Round Culvert L= 106.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 8.17' / 7.87' S= 0.0028 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 7.07 sf

Primary OutFlow Max=0.0 cfs @ 12.09 hrs HW=10.70' TW=10.79' (Dynamic Tailwater) ☐ 1=Culvert (Controls 0.0 cfs)

Pond 1P: DMH A19

Summary for Pond 3P: PCB3

[57] Hint: Peaked at 11.77' (Flood elevation advised)

Inflow Area	ı =	1.660 ac, 77	.58% Impe	rvious,	Inflow D	epth =	6.25"	for 25	5 Year Storm event
Inflow	=	10.4 cfs @	12.10 hrs,	Volume	=	0.865	af		
Outflow	=	10.4 cfs @	12.10 hrs,	Volume	=	0.865	af, Atte	en= 0%	ώ, Lag= 0.0 min
Primary	=	10.4 cfs @	12.10 hrs,	Volume	=	0.865	af		
Routing by	Dyn-Sto	r-Ind method,	Time Spar	n= 0.00-7	72.00 hrs	s, dt= 0.	05 hrs		

Peak Elev= 11.77' @ 12.14 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	10.00'	24.0" Round Culvert L= 43.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 10.00' / 9.52' S= 0.0112 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=8.4 cfs @ 12.10 hrs HW=11.72' TW=11.26' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 8.4 cfs @ 3.91 fps)

Pond 3P: PCB3

Summary for Pond 4P: PCB7

[57] Hint: Peaked at 11.37' (Flood elevation advised)

Inflow Area	a =	1.972 ac, 77	7.06% Impe	rvious,	Inflow D	Depth =	6.24"	for	25 \	Year Storm event
Inflow	=	12.4 cfs @	12.09 hrs,	Volume) =	1.025	af			
Outflow	=	12.4 cfs @	12.09 hrs,	Volume) =	1.025	af, At	ten= ()% ,	Lag= 0.0 min
Primary	=	12.4 cfs @	12.09 hrs,	Volume	9=	1.025	af			
			T ' 0	0.00	70.00 1		05 1			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 11.37' @ 12.20 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	9.40'	24.0" Round Culvert L= 46.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 9.40' / 8.20' S= 0.0261 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=9.4 cfs @ 12.09 hrs HW=11.24' TW=10.73' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 9.4 cfs @ 4.08 fps)

Summary for Pond 5P: DMH 4B

[57] Hint: Peaked at 11.14' (Flood elevation advised)

Inflow Area =	0.526 ac, 59.77% Impervious, Inflow	Depth = 5.76" for 25 Year Storm eve	nt
Inflow =	3.4 cfs @ 12.07 hrs, Volume=	0.253 af	
Outflow =	3.4 cfs @ 12.07 hrs, Volume=	0.253 af, Atten= 0%, Lag= 0.0 min	
Primary =	3.4 cfs @ 12.07 hrs, Volume=	0.253 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 11.14' @ 12.23 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	8.25'	36.0" Round Culvert L= 104.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 8.25' / 8.18' S= 0.0007 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 7.07 sf

Primary OutFlow Max=0.0 cfs @ 12.07 hrs HW=10.26' TW=10.58' (Dynamic Tailwater)

Time (hours)

Summary for Pond 6P: PCB1

[57] Hint: Peaked at 15.13' (Flood elevation advised)

Inflow Area	a = (0.471 ac, 57	7.17% Impe	rvious,	Inflow [Depth =	5.69"	for 2	25 Year Storm ever	nt
Inflow	=	3.0 cfs @	12.07 hrs,	Volume) =	0.223	af			
Outflow	=	3.0 cfs @	12.07 hrs,	Volume) =	0.223	af, Atte	en= 0	%, Lag= 0.0 min	
Primary	=	3.0 cfs @	12.07 hrs,	Volume)=	0.223	af			
Routing by	Dyn-Stor	-Ind method,	Time Spar	-0.00 =ר	72.00 h	rs, dt= 0.	05 hrs			

Peak Elev= 15.13' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	14.00'	12.0" Round Culvert L= 109.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 14.00' / 11.80' S= 0.0202 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=2.9 cfs @ 12.07 hrs HW=15.09' TW=13.08' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 2.9 cfs @ 3.71 fps)

Pond 6P: PCB1

Summary for Pond 7P: PCB2

[57] Hint: Peaked at 13.13' (Flood elevation advised)

Inflow Area	a =	0.526 ac, 5	9.77% Impe	rvious,	Inflow D	Depth =	5.76"	for 25	SYear Storm event
Inflow	=	3.4 cfs @	12.07 hrs,	Volume) =	0.253	af		
Outflow	=	3.4 cfs @	12.07 hrs,	Volume) =	0.253	af, Atte	en= 0%	, Lag= 0.0 min
Primary	=	3.4 cfs @	12.07 hrs,	Volume) =	0.253	af		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 13.13' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	11.70'	12.0" Round Culvert
			L= 9.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 11.70' / 11.60' S= 0.0111 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=3.3 cfs @ 12.07 hrs HW=13.08' TW=10.26' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 3.3 cfs @ 4.17 fps)

Time (hours)

Summary for Pond 9P: PCB4

[57] Hint: Peaked at 11.12' (Flood elevation advised)

Inflow Area	a =	0.473 ac, 7	7.98% Impe	rvious, Ir	nflow Depth =	6.27" fo	r 25 Y	/ear Storm event
Inflow	=	3.2 cfs @	12.07 hrs,	Volume=	0.247	af		
Outflow	=	3.2 cfs @	12.07 hrs,	Volume=	= 0.247	af, Atten=	= 0%,	Lag= 0.0 min
Primary	=	3.2 cfs @	12.07 hrs,	Volume=	• 0.247	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 11.12' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	10.20'	24.0" Round Culvert L= 18.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 10.20' / 10.11' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=3.1 cfs @ 12.07 hrs HW=11.10' TW=10.54' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 3.1 cfs @ 3.33 fps)

Pond 9P: PCB4

Summary for Pond 10P: PCB5

[57] Hint: Peaked at 10.73' (Flood elevation advised)

Inflow Area	a =	4.394 ac, 76	5.62% Impe	rvious, Inflow De	epth =	6.23"	for 25 \	ear Storm event
Inflow	=	28.4 cfs @	12.08 hrs,	Volume=	2.282	af		
Outflow	=	28.4 cfs @	12.08 hrs,	Volume=	2.282	af, Atte	en= 0%,	Lag= 0.0 min
Primary	=	28.4 cfs @	12.08 hrs,	Volume=	2.282	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 10.73' @ 12.11 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	7.85'	36.0" Round Culvert L= 45.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 7.85' / 7.49' S= 0.0080 '/' Cc= 0.900 n= 0.013 Concrete pipe, bends & connections, Flow Area= 7.07 sf

Primary OutFlow Max=23.6 cfs @ 12.08 hrs HW=10.60' TW=10.03' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 23.6 cfs @ 4.55 fps)

Pond 10P: PCB5

Summary for Pond 12P: POCS2

[57] Hint: Peaked at 11.87' (Flood elevation advised)

Inflow Area	a =	0.450 ac, 82	2.66% Impe	rvious,	Inflow D	epth =	6.39"	for 2	25 Y	ear Storm event
Inflow	=	3.1 cfs @	12.07 hrs,	Volume	;=	0.239	af			
Outflow	=	3.1 cfs @	12.07 hrs,	Volume	;=	0.239	af, Atte	en= 0	1%,	Lag= 0.0 min
Primary	=	3.1 cfs @	12.07 hrs,	Volume	=	0.239	af			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 11.87' @ 12.16 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	10.90'	24.0" Round Culvert L= 40.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 10.90' / 10.10' S= 0.0200 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=1.8 cfs @ 12.07 hrs HW=11.75' TW=11.59' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 1.8 cfs @ 2.13 fps)

Pond 12P: POCS2
Summary for Pond 14P: POCS1

[57] Hint: Peaked at 11.77' (Flood elevation advised)

Inflow Area	a =	0.473 ac, 7	7.98% Impe	rvious,	Inflow D	Depth =	6.27"	for 2	5 Year Storm event
Inflow	=	3.2 cfs @	12.07 hrs,	Volume) =	0.247	af		
Outflow	=	3.2 cfs @	12.07 hrs,	Volume) =	0.247	af, Att	en= 0%	6, Lag= 0.0 min
Primary	=	3.2 cfs @	12.07 hrs,	Volume) =	0.247	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 11.77' @ 12.08 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	11.00'	24.0" Round Culvert L= 46.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 11.00' / 10.30' S= 0.0152 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=3.0 cfs @ 12.07 hrs HW=11.75' TW=11.10' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 3.0 cfs @ 4.09 fps)

Pond 14P: POCS1

Summary for Pond 15P: 2 - 12" PERFORATED UNDERDRAIN

[57] Hint: Peaked at 14.57' (Flood elevation advised)

Inflow Area	a =	0.473 ac,	77.98% In	npervious,	Inflow De	epth = 0	6.27"	for 25	Year Storm event
Inflow	=	3.2 cfs @	2 12.07 h	irs, Volume	<u>)</u> =	0.247	af		
Outflow	=	3.2 cfs @	2 12.07 h	rs, Volume	<u>)</u> =	0.247	af, Atte	en= 0%	, Lag= 0.0 min
Primary	=	3.2 cfs @	2 12.07 h	rs, Volume) =	0.247	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 14.57' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	13.50'	12.0" Round Culvert X 2.00 L= 65.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 13.50' / 13.50' S= 0.0000 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=3.1 cfs @ 12.07 hrs HW=14.55' TW=11.75' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 3.1 cfs @ 2.34 fps)

Summary for Pond 16P: 2 - 12" PERFORATED UNDERDRAIN

[57] Hint: Peaked at 14.07' (Flood elevation advised)

Inflow Area	a =	0.450 ac, 8	2.66% Impe	rvious,	Inflow D	Depth =	6.39"	for 2	25 Y	ear Storm event
Inflow	=	3.1 cfs @	12.07 hrs,	Volume) =	0.239	af			
Outflow	=	3.1 cfs @	12.07 hrs,	Volume) =	0.239	af, Att	en= 0	%,	Lag= 0.0 min
Primary	=	3.1 cfs @	12.07 hrs,	Volume) =	0.239	af			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 14.07' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	13.00'	12.0" Round Culvert X 2.00 L= 75.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 13.00' / 13.00' S= 0.0000 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=3.0 cfs @ 12.07 hrs HW=14.04' TW=11.75' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 3.0 cfs @ 2.25 fps)

Summary for Pond CB 5D: CB 5D

[57] Hint: Peaked at 10.99' (Flood elevation advised)

Inflow Area	a =	0.201 ac, 3	85.26% Impe	rvious,	Inflow	Depth =	6.39"	for 2	5 Year Storm event
Inflow	=	1.4 cfs @	12.07 hrs,	Volume	9 =	0.107	af		
Outflow	=	1.4 cfs @	12.07 hrs,	Volume	9 =	0.107	af, Att	en= 0%	∕₀, Lag= 0.0 min
Primary	=	1.4 cfs @	12.07 hrs,	Volume	e=	0.107	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 10.99' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	10.24'	12.0" Round Culvert L= 37.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 10.24' / 9.87' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.2 cfs @ 12.07 hrs HW=10.96' TW=10.65' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 1.2 cfs @ 2.77 fps)

Pond CB 5D: CB 5D

Summary for Pond DMH 4: DP 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	5.034 ac, 7	8.07% Impe	ervious,	Inflow Depth =	6.26"	for 25 Ye	ear Storm	event
Inflow	=	32.7 cfs @	12.08 hrs,	Volume	e= 2.628	af			
Primary	=	32.7 cfs @	12.08 hrs,	Volume	e= 2.628	af, Att	ten= 0%, l	_ag= 0.0 n	nin

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Pond DMH 4: DP 1

Summary for Pond DMH 4A: DMH 4A

[57] Hint: Peaked at 11.03' (Flood elevation advised)
[80] Warning: Exceeded Pond 1P by 0.10' @ 12.10 hrs (9.3 cfs 0.053 af)
[80] Warning: Exceeded Pond DMH A6 by 0.17' @ 12.10 hrs (6.1 cfs 0.044 af)

Inflow Are	ea =	3.708 ac, 75.46%	6 Impervious,	Inflow Depth = ϵ	6.20" for 25	Year Storm event
Inflow	=	23.7 cfs @ 12.0	8 hrs, Volume	e= 1.916 a	af	
Outflow	=	23.7 cfs @ 12.0	8 hrs, Volume	e= 1.916 a	af, Atten= 0%	,Lag= 0.0 min
Primary	=	23.7 cfs @ 12.0	8 hrs, Volume	e= 1.916 a	af	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 11.03' @ 12.14 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	7.85'	36.0" Round Culvert L= 23.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 7.85' / 7.74' S= 0.0048 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 7.07 sf

Primary OutFlow Max=11.4 cfs @ 12.08 hrs HW=10.73' TW=10.61' (Dynamic Tailwater)

Pond DMH 4A: DMH 4A

Summary for Pond DMH A6: DMH A6

[57] Hint: Peaked at 11.11' (Flood elevation advised)[80] Warning: Exceeded Pond ENV 21 by 0.12' @ 12.15 hrs (3.0 cfs 0.016 af)

Inflow Area	a =	1.210 ac, 7	9.68% Impe	ervious,	Inflow	Depth =	6.33'	' for	25 Y	'ear Sto	rm event
Inflow	=	8.2 cfs @	12.07 hrs,	Volume) =	0.638	af				
Outflow	=	8.2 cfs @	12.07 hrs,	Volume) =	0.638	af, A	tten= ()% ,	Lag= 0	.0 min
Primary	=	8.2 cfs @	12.07 hrs,	Volume) =	0.638	af			-	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 11.11' @ 12.18 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	8.50'	24.0" Round Culvert L= 44.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 8.50' / 8.41' S= 0.0020 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf

Primary OutFlow Max=0.0 cfs @ 12.07 hrs HW=10.51' TW=10.63' (Dynamic Tailwater) ☐ 1=Culvert (Controls 0.0 cfs)

Pond DMH A6: DMH A6

Summary for Pond ENV 21: ENV 21

[57] Hint: Peaked at 11.19' (Flood elevation advised)

Inflow Area	a =	0.787 ac, 6	8.76% Impe	rvious,	Inflow De	epth =	6.04"	for 2	25 Year Storm event
Inflow	=	5.2 cfs @	12.07 hrs,	Volume) =	0.396	af		
Outflow	=	5.2 cfs @	12.07 hrs,	Volume) =	0.396	af, Atte	en= 0	%, Lag= 0.0 min
Primary	=	5.2 cfs @	12.07 hrs,	Volume) =	0.396	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 11.19' @ 12.23 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	9.00'	18.0" Round Culvert L= 10.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 9.00' / 8.90' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=1.3 cfs @ 12.07 hrs HW=10.53' TW=10.51' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 1.3 cfs @ 0.71 fps)

Pond ENV 21: ENV 21

Summary for Pond PCB-BH: PCB-BH

[57] Hint: Peaked at 15.47' (Flood elevation advised) [61] Hint: Exceeded Reach 3R outlet invert by 0.12' @ 12.10 hrs

Inflow Area	a =	1.210 ac,	75.70% lr	mpervious	, Inflow	Depth =	6.21"	for 25	Year Storm even	t
Inflow	=	7.5 cfs @) 12.11 h	hrs, Volum	ie=	0.626	af			
Outflow	=	7.5 cfs @) 12.11 h	hrs, Volum	ie=	0.626	af, Atte	en= 0%,	Lag= 0.0 min	
Primary	=	7.5 cfs @) 12.11 h	hrs, Volum	ie=	0.626	af		-	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 15.47' @ 12.12 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	10.20'	12.0" Round Culvert L= 34.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 10.20' / 10.10' S= 0.0029 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=7.1 cfs @ 12.11 hrs HW=15.31' TW=11.74' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 7.1 cfs @ 9.10 fps)

Pond PCB-BH: PCB-BH

Summary for Pond PDMH 1: PDMH 1

[57] Hint: Peaked at 10.66' (Flood elevation advised)

Inflow Area	=	0.201 ac,	85.26% Im	npervious,	Inflow D	Depth =	6.39"	for 25	Year Storm event
Inflow	=	1.4 cfs @) 12.07 hr	rs, Volume) =	0.107	af		
Outflow	=	1.4 cfs @) 12.07 hr	rs, Volume) =	0.107	af, Atte	en= 0%,	Lag= 0.0 min
Primary	=	1.4 cfs @) 12.07 hr	rs, Volume) =	0.107	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 10.66' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	10.04'	12.0" Round Culvert L= 78.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 10.04' / 9.15' S= 0.0114 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.2 cfs @ 12.07 hrs HW=10.65' TW=9.93' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 1.2 cfs @ 3.36 fps)

Pond PDMH 1: PDMH 1

Time (hours)

Summary for Pond PDMH 2: PDMH 2

[57] Hint: Peaked at 10.14' (Flood elevation advised)

Inflow Area	a =	0.201 ac, 8	5.26% Impe	rvious,	Inflow I	Depth =	6.39"	for	25 `	Year Storm event
Inflow	=	1.4 cfs @	12.07 hrs,	Volume) =	0.107	af			
Outflow	=	1.4 cfs @	12.07 hrs,	Volume) =	0.107	af, At	ten=	0%,	Lag= 0.0 min
Primary	=	1.4 cfs @	12.07 hrs,	Volume)=	0.107	af			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 10.14' @ 12.13 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	9.05'	24.0" Round Culvert L= 196.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 9.05' / 8.49' S= 0.0029 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=0.0 cfs @ 12.07 hrs HW=9.93' TW=10.03' (Dynamic Tailwater) ☐ 1=Culvert (Controls 0.0 cfs)

Pond PDMH 2: PDMH 2

Summary for Pond PDMH 3: PDMH 3

[57] Hint: Peaked at 10.08' (Flood elevation advised)[80] Warning: Exceeded Pond PDMH 2 by 0.19' @ 12.05 hrs (1.6 cfs 0.007 af)

Inflow Area	a =	4.595 ac	, 77.0	0% Impe	ervious,	Inflow	Depth =	6.24'	' for	25 Y	/ear Sto	orm event
Inflow	=	29.7 cfs	@ 12	2.08 hrs,	Volume	e=	2.389	af				
Outflow	=	29.7 cfs	ā 12	2.08 hrs,	Volume	e=	2.389	af, A	tten= (0%,	Lag= C).0 min
Primary	=	29.7 cfs	<u>@</u> 12	2.08 hrs,	Volume	e=	2.389	af			-	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 10.08' @ 12.08 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	7.48'	36.0" Round Culvert L= 110.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 7.48' / 6.94' S= 0.0049 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 7.07 sf

Primary OutFlow Max=28.9 cfs @ 12.08 hrs HW=10.03' TW=0.00' (Dynamic Tailwater) ☐ 1=Culvert (Barrel Controls 28.9 cfs @ 6.06 fps)

Pond PDMH 3: PDMH 3

Proposed Conditions	Type III 24-hr 50 Year Storm Rainfall=8.50"
Prepared by Ambit Engineering, Inc.	Printed 3/19/2018
HydroCAD® 10.00 s/n 00801 © 2013 HydroCAD Software Sol	lutions LLC Page 120

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment PS1:	Runoff Area=7,157 sf 95.88% Impervious Runoff Depth=8.14" Tc=5.0 min CN=97 Runoff=1.4 cfs 0.111 af
Subcatchment PS2a:	Runoff Area=20,584 sf 77.98% Impervious Runoff Depth=7.66" Tc=5.0 min CN=93 Runoff=3.9 cfs 0.302 af
Subcatchment PS2b:	Runoff Area=11,747 sf 83.79% Impervious Runoff Depth=7.78" Tc=5.0 min CN=94 Runoff=2.2 cfs 0.175 af
Subcatchment PS3a:	Runoff Area=19,589 sf 82.66% Impervious Runoff Depth=7.78" Tc=5.0 min CN=94 Runoff=3.7 cfs 0.292 af
Subcatchment PS3b:	Runoff Area=40,960 sf 73.37% Impervious Runoff Depth=7.54" Tc=5.0 min CN=92 Runoff=7.7 cfs 0.591 af
Subcatchment PS4:	Runoff Area=12,006 sf 85.32% Impervious Runoff Depth=7.78" Tc=5.0 min CN=94 Runoff=2.3 cfs 0.179 af
Subcatchment PS5:	Runoff Area=34,260 sf 68.76% Impervious Runoff Depth=7.42" Tc=5.0 min CN=91 Runoff=6.4 cfs 0.486 af
Subcatchment PS5A:	Runoff Area=9,298 sf 93.79% Impervious Runoff Depth=8.14" Tc=5.0 min CN=97 Runoff=1.8 cfs 0.145 af
Subcatchment PS5B:	Runoff Area=13,605 sf 74.26% Impervious Runoff Depth=7.54" Tc=5.0 min CN=92 Runoff=2.5 cfs 0.196 af
Subcatchment PS5C: PS5 R	oofRunoff Area=18,430 sf100.00% ImperviousRunoff Depth=8.26"Tc=5.0 minCN=98Runoff=3.6 cfs0.291 af
Subcatchment PS6:	Runoff Area=20,527 sf 57.17% Impervious Runoff Depth=7.06" Tc=5.0 min CN=88 Runoff=3.7 cfs 0.277 af
Subcatchment PS7:	Runoff Area=8,740 sf 85.26% Impervious Runoff Depth=7.78" Tc=5.0 min CN=94 Runoff=1.7 cfs 0.130 af
Subcatchment PS8:	Runoff Area=2,398 sf 81.98% Impervious Runoff Depth=7.78" Tc=5.0 min CN=94 Runoff=0.5 cfs 0.036 af
Reach 3R: Swale	Avg. Flow Depth=0.76' Max Vel=2.06 fps Inflow=9.9 cfs 0.766 af n=0.030 L=380.0' S=0.0050 '/' Capacity=16.9 cfs Outflow=9.1 cfs 0.766 af
Pond 1P: DMH A19	Peak Elev=11.92' Inflow=19.1 cfs 1.566 af 36.0" Round Culvert n=0.012 L=106.0' S=0.0028 '/' Outflow=19.1 cfs 1.566 af
Pond 3P: PCB3	Peak Elev=12.37' Inflow=12.6 cfs 1.057 af 24.0" Round Culvert n=0.013 L=43.0' S=0.0112 '/' Outflow=12.6 cfs 1.057 af

Proposed Conditions Prepared by Ambit Engine HydroCAD® 10.00 s/n 00801	Type III 24-hr 50 Year Storm Rainfall=8.50 eering, Inc. Printed 3/19/20 © 2013 HydroCAD Software Solutions LLC Page 12
Pond 4P: PCB7	Peak Elev=12.22' Inflow=15.0 cfs 1.253 24.0" Round Culvert n=0.013 L=46.0' S=0.0261 '/' Outflow=15.0 cfs 1.253
Pond 5P: DMH 4B	Peak Elev=11.92' Inflow=4.2 cfs 0.313 36.0" Round Culvert n=0.012 L=104.0' S=0.0007 '/' Outflow=4.2 cfs 0.313
Pond 6P: PCB1	Peak Elev=15.45' Inflow=3.7 cfs 0.277 12.0" Round Culvert n=0.013 L=109.0' S=0.0202 '/' Outflow=3.7 cfs 0.277
Pond 7P: PCB2	Peak Elev=13.38' Inflow=4.2 cfs 0.313 12.0" Round Culvert n=0.013 L=9.0' S=0.0111 '/' Outflow=4.2 cfs 0.313
Pond 9P: PCB4	Peak Elev=11.44' Inflow=3.9 cfs 0.302 24.0" Round Culvert n=0.013 L=18.0' S=0.0050 '/' Outflow=3.9 cfs 0.302
Pond 10P: PCB5	Peak Elev=11.36' Inflow=34.4 cfs 2.790 36.0" Round Culvert n=0.013 L=45.0' S=0.0080 '/' Outflow=34.4 cfs 2.790
Pond 12P: POCS2	Peak Elev=12.38' Inflow=3.7 cfs 0.292 24.0" Round Culvert n=0.013 L=40.0' S=0.0200 '/' Outflow=3.7 cfs 0.292
Pond 14P: POCS1	Peak Elev=11.86' Inflow=3.9 cfs 0.302 24.0" Round Culvert n=0.013 L=46.0' S=0.0152 '/' Outflow=3.9 cfs 0.302
Pond 15P: 2 - 12" PERFOR 1	ATED UNDERDRAIN Peak Elev=14.75' Inflow=3.9 cfs 0.302 2.0" Round Culvert x 2.00 n=0.013 L=65.0' S=0.0000 '/' Outflow=3.9 cfs 0.302
Pond 16P: 2 - 12" PERFOR 1	ATED UNDERDRAIN Peak Elev=14.24' Inflow=3.7 cfs 0.292 2.0" Round Culvert x 2.00 n=0.013 L=75.0' S=0.0000 '/' Outflow=3.7 cfs 0.292
Pond CB 5D: CB 5D	Peak Elev=11.08' Inflow=1.7 cfs 0.130 12.0" Round Culvert n=0.013 L=37.0' S=0.0100 '/' Outflow=1.7 cfs 0.130
Pond DMH 4: DP 1	Inflow=39.6 cfs 3.210 Primary=39.6 cfs 3.210
Pond DMH 4A: DMH 4A	Peak Elev=11.79' Inflow=28.8 cfs 2.344 36.0" Round Culvert n=0.012 L=23.0' S=0.0048 '/' Outflow=28.8 cfs 2.344
Pond DMH A6: DMH A6	Peak Elev=11.91' Inflow=9.9 cfs 0.777 24.0" Round Culvert n=0.012 L=44.0' S=0.0020 '/' Outflow=9.9 cfs 0.777
Pond ENV 21: ENV 21	Peak Elev=12.02' Inflow=6.4 cfs 0.486 18.0" Round Culvert n=0.013 L=10.0' S=0.0100 '/' Outflow=6.4 cfs 0.486
Pond PCB-BH: PCB-BH	Peak Elev=17.60' Inflow=9.1 cfs 0.766 12.0" Round Culvert n=0.013 L=34.0' S=0.0029 '/' Outflow=9.1 cfs 0.766
Pond PDMH 1: PDMH 1	Peak Elev=10.79' Inflow=1.7 cfs 0.130 12.0'' Round Culvert n=0.013 L=78.0' S=0.0114 '/' Outflow=1.7 cfs 0.130

Proposed Conditions	Type III 2	24-hr 50 Yea	ar Storm Rainfall=8.50
Prepared by Ambit Engine	ering, Inc.		Printed 3/19/2018
HydroCAD® 10.00 s/n 00801	2013 HydroCAD Software Solutions LLC		Page 122
Pond PDMH 2: PDMH 2	Pe	ak Elev=10.49	' Inflow=1.7 cfs 0.130 a
	24.0" Round Culvert n=0.013 L=196.0	' S=0.0029 '/'	Outflow=1.7 cfs 0.130 a
Pond PDMH 3: PDMH 3	Pea	k Elev=10.46'	Inflow=36.0 cfs 2.920 a
	36.0" Round Culvert n=0.012 L=110.0'	S=0.0049 '/'	Outflow=36.0 cfs 2.920 a
Total Runoff	Area = 5.034 ac Runoff Volume = 3.2 21.93% Pervious = 1.10	10 af Averao 4 ac 78.07%	ge Runoff Depth = 7.65 6 Impervious = 3.930 ac

Summary for Subcatchment PS1:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.4 cfs @ 12.07 hrs, Volume= 0.111 af, Depth= 8.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Year Storm Rainfall=8.50"

A	Area (sf)	CN	Description							
	1,344	98	Paved parki	ing, HSG C	C					
*	544	98	Sidewalks,	HŠG C						
	4,974	98	Roofs, HSG	ЭС						
	295	74	>75% Grass	s cover, Go	ood, HSG C					
	7,157	97 Weighted Average								
	295		4.12% Perv	4.12% Pervious Area						
	6,862		95.88% Imp	95.88% Impervious Area						
Tc	Length	Slop	e Velocity	Capacity	Description					
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)						
5.0					Direct Entry,					

Subcatchment PS1:

Summary for Subcatchment PS2a:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 3.9 cfs @ 12.07 hrs, Volume= 0.302 af, Depth= 7.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Year Storm Rainfall=8.50"

	Area (sf)	CN	Description	Description						
	15,319	98	Paved park	Paved parking, HSG C						
*	733	98	Sidewalks,	Sidewalks, HSG C						
	4,532	74	>75% Gras	s cover, Go	od, HSG C					
	20,584	93	Weighted Average							
	4,532		22.02% Pei	22.02% Pervious Area						
	16,052		77.98% Impervious Area							
•	Tc Length	Slop	be Velocity	Capacity	Description					
(m	in) (feet)	(ft/	ft) (ft/sec)	(cfs)						

Direct Entry,

Subcatchment PS2a:

Summary for Subcatchment PS2b:

[49] Hint: Tc<2dt may require smaller dt

Runoff 2.2 cfs @ 12.07 hrs, Volume= 0.175 af, Depth= 7.78" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Year Storm Rainfall=8.50"

A	rea (sf)	CN	Description					
	9,843	98	Roofs, HSC	€C				
	1,904	74	>75% Gras	s cover, Go	ood, HSG C			
	11,747	94	Weighted Average					
	1,904		16.21% Pervious Area					
	9,843		83.79% Imp	83.79% Impervious Area				
Tc	Length	Slop	e Velocity	Capacity	Description			
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)				
50					Direct Entry			

Direct Entry,

Subcatchment PS2b:

Summary for Subcatchment PS3a:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 3.7 cfs @ 12.07 hrs, Volume= 0.292 af, Depth= 7.78"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Year Storm Rainfall=8.50"

A	rea (sf)	CN	Description				
	16,192	98	Paved park	ing, HSG C	;		
	3,397	74	>75% Gras	s cover, Go	od, HSG C		
	19,589	94	Weighted Average				
	3,397		17.34% Pervious Area				
	16,192		82.66% Imp	pervious Are			
Tc	Length	Slop	e Velocity	Capacity	Description		
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)			

Direct Entry,

Subcatchment PS3a:

Summary for Subcatchment PS3b:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 7.7 cfs @ 12.07 hrs, Volume= 0.591 af, Depth= 7.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Year Storm Rainfall=8.50"

Area (sf) Cl	N De	escription				
24,8	25 9	98 Ro	oofs, HSG	С			
10,9	06 7	74 > 7	5% Grass	s cover, Go	od, HSG C		
5,2	29 9	98 Pa	wed parki	ng, HSG C			
40,9	60 9	92 W	Weighted Average				
10,9	06	26	26.63% Pervious Area				
30,0	54	73	.37% Imp	ervious Are	a		
Tc Ler	ngth S	Slope	Velocity	Capacity	Description		
<u>(min)</u> (fe	eet)	(ft/ft)	(ft/sec)	(cfs)			
5.0					Direct Entry,		

Subcatchment PS3b:

Summary for Subcatchment PS4:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 2.3 cfs @ 12.07 hrs, Volume= 0.179 af, Depth= 7.78"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Year Storm Rainfall=8.50"

	Area (sf)	CN	Description						
	4,504	98	Paved parki	ng, HSG C	;				
*	2,085	98	Sidewalks, H	Sidewalks, HSG C					
	3,654	98	Roofs, HSG	С					
	1,763	74	>75% Grass	s cover, Go	od, HSG C				
	12,006	94	Weighted Average						
	1,763		14.68% Per	14.68% Pervious Area					
	10,243		85.32% Impervious Area						
_		~		o "	– • <i>•</i>				
	Ic Length	Slop	e Velocity	Capacity	Description				
(mi	n) (feet)	(ft/1	t) (tt/sec)	(cfs)					

5.0

Direct Entry,

Subcatchment PS4:

Summary for Subcatchment PS5:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 6.4 cfs @ 12.07 hrs, Volume= 0.486 af, Depth= 7.42"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Year Storm Rainfall=8.50"

	Area (sf)	CN	Description	Description					
	21,695	98	Paved park	ing, HSG C	;				
*	310	98	Sidewalks,	Sidewalks, HSG C					
	1,551	98	Roofs, HSC	ЭС					
	10,704	74	>75% Gras	>75% Grass cover, Good, HSG C					
	34,260	91	Weighted A	Weighted Average					
	10,704		31.24% Per	vious Area					
	23,556		68.76% Impervious Area						
	Tc Length	Slop	e Velocity	Capacity	Description				
(m	in) (feet)	(ft/	t) (ft/sec)	(cfs)					

5.0

Direct Entry,

Subcatchment PS5:

Page 130

[49] Hint: Tc<2dt may require smaller dt

Runoff 1.8 cfs @ 12.07 hrs, Volume= 0.145 af, Depth= 8.14" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Year Storm Rainfall=8.50"

	Area (sf)	CN	Description								
	7,491	98	Paved park	ing, HSG C							
*	1,230	98	Sidewalks,	HŠG C							
	577	74	>75% Gras	s cover, Go	ood, HSG C						
	9,298	9,298 97 Weighted Average									
	577	577 6.21% Pervious Area									
	8,721		93.79% Imp	pervious Are	ea						
Т	c Length	Slop	e Velocity	Capacity	Description						
(mir	n) (feet)	(ft/f	t) (ft/sec)	(cfs)							
5.	0				Direct Entry,						
	Subcatchment PS5A:										

Summary for Subcatchment PS5B:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 2.5 cfs @ 12.07 hrs, Volume= 0.196 af, Depth= 7.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Year Storm Rainfall=8.50"

	Area (sf)	CN	Description								
	7,275	98	Paved park	Paved parking, HSG C							
*	2,828	98	Sidewalks,	HŠG C							
	3,502										
	13,605 92 Weighted Average										
	3,502		25.74% Per	25.74% Pervious Area							
	10,103		74.26% Imp	74.26% Impervious Area							
_	T . 1	0		0	Description						
	Ic Length	Slop	be Velocity	Capacity	Description						
(mi	in) (feet)	(ft/	ft) (ft/sec)	(cfs)							

Direct Entry,

Subcatchment PS5B:

Summary for Subcatchment PS5C: PS5 Roof

[49] Hint: Tc<2dt may require smaller dt

Runoff = 3.6 cfs @ 12.07 hrs, Volume= 0.291 af, Depth= 8.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Year Storm Rainfall=8.50"

Summary for Subcatchment PS6:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 3.7 cfs @ 12.07 hrs, Volume= 0.277 af, Depth= 7.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Year Storm Rainfall=8.50"

	Area (sf)	CN	Description	_
	6,762	98	Paved parking, HSG C	-
*	2,312	98	Sidewalks, HSG C	
	2,662	98	Roofs, HSG C	
	8,791	74	>75% Grass cover, Good, HSG C	_
	20,527	88	Weighted Average	-
	8,791		42.83% Pervious Area	
	11,736		57.17% Impervious Area	
	Tc Length	Slop	pe Velocity Capacity Description	
(n	nin) (feet)	(ft/	ft) (ft/sec) (cfs)	

5.0

Direct Entry,

Subcatchment PS6:

Summary for Subcatchment PS7:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.7 cfs @ 12.07 hrs, Volume= 0.130 af, Depth= 7.78"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Year Storm Rainfall=8.50"

	Area (sf)	CN	Description									
	410	98	Paved park	ing, HSG C	;							
*	4,272	98	Sidewalks,	idewalks, HSG C								
	2,770	98	Roofs, HSG	oofs, HSG C								
	1,288	74	>75% Gras	75% Grass cover, Good, HSG C								
	8,740	94	Weighted A									
	1,288		14.74% Pervious Area									
	7,452		85.26% Imp	pervious Are	ea							
Т	c Length	Slop	be Velocity	Capacity	Description							
(mir	n) (feet)	(ft/	ft) (ft/sec)	(cfs)								
-	•											

5.0

Direct Entry,

Subcatchment PS7:

Summary for Subcatchment PS8:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.5 cfs @ 12.07 hrs, Volume= 0.036 af, Depth= 7.78"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Year Storm Rainfall=8.50"

AI	rea (sf)	CN	Description								
	1,966	98	Paved park	ing, HSG C	C						
	432	74	74 >75% Grass cover, Good, HSG C								
	2,398	94	Weighted A	verage							
	432 18.02% Pervious Area										
	1,966		81.98% lm	pervious Are	rea						
_				- ··							
Tc	Length	Slop	e Velocity	Capacity	Description						
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)							
5.0					Direct Entry,						

Subcatchment PS8:

Summary for Reach 3R: Swale

 Inflow Area =
 1.210 ac, 75.70% Impervious, Inflow Depth = 7.59" for 50 Year Storm event

 Inflow =
 9.9 cfs @ 12.07 hrs, Volume=
 0.766 af

 Outflow =
 9.1 cfs @ 12.11 hrs, Volume=
 0.766 af, Atten= 8%, Lag= 2.3 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Max. Velocity= 2.06 fps, Min. Travel Time= 3.1 min Avg. Velocity = 0.63 fps, Avg. Travel Time= 10.1 min

Peak Storage= 1,678 cf @ 12.11 hrs Average Depth at Peak Storage= 0.76' Bank-Full Depth= 1.00' Flow Area= 7.0 sf, Capacity= 16.9 cfs

2.00' x 1.00' deep channel, n= 0.030 Earth, grassed & winding Side Slope Z-value= 5.0 '/' Top Width= 12.00' Length= 380.0' Slope= 0.0050 '/' Inlet Invert= 17.15', Outlet Invert= 15.25'

Summary for Pond 1P: DMH A19

[57] Hint: Peaked at 11.92' (Flood elevation advised)[80] Warning: Exceeded Pond 5P by 0.48' @ 12.15 hrs (23.6 cfs 0.484 af)

Inflow Area	a =	2.498 ac,	73.41%	Impe	ervious,	Inflow	Depth =	7.52	" for	50	Year	Storm	event
Inflow	=	19.1 cfs (@ 12.09	9 hrs,	Volume	e=	1.566	af					
Outflow	=	19.1 cfs (ā 12.09	9 hrs,	Volume	e=	1.566	af, A	Atten=	0%,	Lag	= 0.0 m	nin
Primary	=	19.1 cfs (ā 12.09	9 hrs,	Volume	e=	1.566	af			_		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 11.92' @ 12.19 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	8.17'	36.0" Round Culvert L= 106.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 8.17' / 7.87' S= 0.0028 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 7.07 sf

Primary OutFlow Max=0.0 cfs @ 12.09 hrs HW=11.07' TW=11.31' (Dynamic Tailwater) -1=Culvert (Controls 0.0 cfs)

Pond 1P: DMH A19

Summary for Pond 3P: PCB3

[57] Hint: Peaked at 12.37' (Flood elevation advised)[80] Warning: Exceeded Pond 12P by 0.10' @ 12.15 hrs (2.8 cfs 0.031 af)

Inflow Area	a =	1.660 ac	, 77.5	58% Imp	ervious,	Inflow	Depth =	7.64"	for	50 Y	/ear	Storm (event
Inflow	=	12.6 cfs	@ 12	2.10 hrs,	Volum	e=	1.057	af					
Outflow	=	12.6 cfs	<u>@</u> 1:	2.10 hrs,	Volum	e=	1.057	af, Att	en= C)%,	Lag=	= 0.0 m	nin
Primary	=	12.6 cfs	<u>@</u> 12	2.10 hrs,	Volum	e=	1.057	af			_		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 12.37' @ 12.28 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	10.00'	24.0" Round Culvert L= 43.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 10.00' / 9.52' S= 0.0112 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=8.3 cfs @ 12.10 hrs HW=12.01' TW=11.69' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 8.3 cfs @ 3.28 fps)

Pond 3P: PCB3

Summary for Pond 4P: PCB7

[57] Hint: Peaked at 12.22' (Flood elevation advised)

Inflow Area	a =	1.972 ac, 77	.06% Impe	rvious,	Inflow I	Depth =	7.63"	for 5	0 Year Sto	rm event
Inflow	=	15.0 cfs @	12.09 hrs,	Volume) =	1.253	af			
Outflow	=	15.0 cfs @	12.09 hrs,	Volume) =	1.253	af, Atte	en= 09	%, Lag= 0.	0 min
Primary	=	15.0 cfs @	12.09 hrs,	Volume)=	1.253	af			
Routing by	Dyn-Sto	r-Ind method,	Time Spar	-0.00 =ר	72.00 h	nrs, dt= 0.	.05 hrs			

Peak Elev= 12.22' @ 12.23 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	9.40'	24.0" Round Culvert L= 46.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 9.40' / 8.20' S= 0.0261 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=11.2 cfs @ 12.09 hrs HW=11.66' TW=11.11' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 11.2 cfs @ 3.55 fps)

Pond 4P: PCB7

Summary for Pond 5P: DMH 4B

[57] Hint: Peaked at 11.92' (Flood elevation advised)

Inflow Are	ea =	0.526 ac, 5	9.77% Imper	vious, I	nflow Depth =	7.13"	for 50 \	Year Storm event
Inflow	=	4.2 cfs @	12.07 hrs, \	Volume=	= 0.31	3 af		
Outflow	=	4.2 cfs @	12.07 hrs, \	Volume=	= 0.31	3 af, Att	en= 0%,	Lag= 0.0 min
Primary	=	4.2 cfs @	12.07 hrs, \	Volume=	= 0.31	3 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 11.92' @ 12.24 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	8.25'	36.0" Round Culvert L= 104.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 8.25' / 8.18' S= 0.0007 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 7.07 sf

Primary OutFlow Max=0.0 cfs @ 12.07 hrs HW=10.53' TW=10.91' (Dynamic Tailwater)

Summary for Pond 6P: PCB1

[57] Hint: Peaked at 15.45' (Flood elevation advised)

Inflow Area	a = (0.471 ac,57	7.17% Impe	rvious, I	nflow De	epth =	7.06"	for 50	Year Storm event	
Inflow	=	3.7 cfs @	12.07 hrs,	Volume=	=	0.277	af			
Outflow	=	3.7 cfs @	12.07 hrs,	Volume=	=	0.277	af, Atte	en= 0%	,Lag= 0.0 min	
Primary	=	3.7 cfs @	12.07 hrs,	Volume=	=	0.277	af			
Routing by	Dyn-Stor	-Ind method,	Time Spar	1= 0.00-7	′2.00 hrs	s, dt= 0.	05 hrs			

Peak Elev= 15.45' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	14.00'	12.0" Round Culvert L= 109.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 14.00' / 11.80' S= 0.0202 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=3.6 cfs @ 12.07 hrs HW=15.39' TW=13.32' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 3.6 cfs @ 4.54 fps)

Pond 6P: PCB1

Summary for Pond 7P: PCB2

[57] Hint: Peaked at 13.38' (Flood elevation advised)

Inflow Area	a =	0.526 ac, 5	9.77% Impe	rvious,	Inflow D	epth =	7.13"	for 50) Year Storm event
Inflow	=	4.2 cfs @	12.07 hrs,	Volume	e=	0.313	af		
Outflow	=	4.2 cfs @	12.07 hrs,	Volume	e=	0.313	af, Atte	en= 0%	6, Lag= 0.0 min
Primary	=	4.2 cfs @	12.07 hrs,	Volume) =	0.313	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 13.38' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	11.70'	12.0" Round Culvert L= 9.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 11.70' / 11.60' S= 0.0111 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=4.0 cfs @ 12.07 hrs HW=13.32' TW=10.53' (Dynamic Tailwater) -1=Culvert (Inlet Controls 4.0 cfs @ 5.11 fps)

Time (hours)

Summary for Pond 9P: PCB4

[57] Hint: Peaked at 11.44' (Flood elevation advised)

Inflow Area	a = (0.473 ac, 77	7.98% Impe	rvious,	Inflow [Depth =	7.66"	for 5	50 Y	/ear Storm ever	ıt
Inflow	=	3.9 cfs @	12.07 hrs,	Volume	;=	0.302	af				
Outflow	=	3.9 cfs @	12.07 hrs,	Volume	;=	0.302	af, Atte	en= 0	%,	Lag= 0.0 min	
Primary	=	3.9 cfs @	12.07 hrs,	Volume	;=	0.302	af				
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs											

Peak Elev= 11.44' @ 12.15 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	10.20'	24.0" Round Culvert L= 18.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 10.20' / 10.11' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=2.8 cfs @ 12.07 hrs HW=11.20' TW=11.00' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 2.8 cfs @ 2.65 fps)

Pond 9P: PCB4

Time (hours)
Summary for Pond 10P: PCB5

[57] Hint: Peaked at 11.36' (Flood elevation advised)[80] Warning: Exceeded Pond 9P by 0.16' @ 12.10 hrs (3.1 cfs 0.013 af)

Inflow Area	a =	4.394 ac,	76.62%	Impe	rvious,	Inflow	Depth =	7.62	" for	50	Year	Storm	event
Inflow	=	34.4 cfs @	2 12.08	hrs,	Volume) =	2.790	af					
Outflow	=	34.4 cfs @	2 12.08	hrs,	Volume	e=	2.790	af, /	Atten=	0%,	Lag	= 0.0 n	nin
Primary	=	34.4 cfs @	2) 12.08	hrs,	Volume	9 =	2.790	af					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 11.36' @ 12.11 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	7.85'	36.0" Round Culvert L= 45.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 7.85' / 7.49' S= 0.0080 '/' Cc= 0.900 n= 0.013 Concrete pipe, bends & connections, Flow Area= 7.07 sf

Primary OutFlow Max=28.9 cfs @ 12.08 hrs HW=11.11' TW=10.40' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 28.9 cfs @ 4.08 fps)

Pond 10P: PCB5

Summary for Pond 12P: POCS2

[57] Hint: Peaked at 12.38' (Flood elevation advised)

Inflow Area	a =	0.450 ac, 82	2.66% Impe	rvious, Inflow D	Depth =	7.78"	for 50	Year Storm event
Inflow	=	3.7 cfs @	12.07 hrs,	Volume=	0.292	af		
Outflow	=	3.7 cfs @	12.07 hrs,	Volume=	0.292	af, Atte	en= 0%,	Lag= 0.0 min
Primary	=	3.7 cfs @	12.07 hrs,	Volume=	0.292	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 12.38' @ 12.33 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	10.90'	24.0" Round Culvert L= 40.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 10.90' / 10.10' S= 0.0200 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=1.4 cfs @ 12.07 hrs HW=11.91' TW=11.85' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 1.4 cfs @ 1.29 fps)

Pond 12P: POCS2

Summary for Pond 14P: POCS1

[57] Hint: Peaked at 11.86' (Flood elevation advised)

Inflow Area	ı =	0.473 ac, 7	7.98% Impe	rvious,	Inflow	Depth =	7.66"	for	50 N	Year Storm event
Inflow	=	3.9 cfs @	12.07 hrs,	Volume) =	0.302	af			
Outflow	=	3.9 cfs @	12.07 hrs,	Volume) =	0.302	af, Att	en= ()% ,	Lag= 0.0 min
Primary	=	3.9 cfs @	12.07 hrs,	Volume	9=	0.302	af			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 11.86' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	11.00'	24.0" Round Culvert L= 46.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 11.00' / 10.30' S= 0.0152 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=3.5 cfs @ 12.07 hrs HW=11.84' TW=11.20' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 3.5 cfs @ 4.15 fps)

Pond 14P: POCS1

Summary for Pond 15P: 2 - 12" PERFORATED UNDERDRAIN

[57] Hint: Peaked at 14.75' (Flood elevation advised)

Inflow Area	=	0.473 ac, 7	7.98% Impe	rvious,	Inflow I	Depth =	7.66"	for 5	0 Year Storm event
Inflow	=	3.9 cfs @	12.07 hrs,	Volume) =	0.302	af		
Outflow	=	3.9 cfs @	12.07 hrs,	Volume) =	0.302	af, Atte	en= 0%	%, Lag= 0.0 min
Primary	=	3.9 cfs @	12.07 hrs,	Volume) =	0.302	af		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 14.75' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	13.50'	12.0" Round Culvert X 2.00 L= 65.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 13.50' / 13.50' S= 0.0000 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=3.7 cfs @ 12.07 hrs HW=14.71' TW=11.84' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 3.7 cfs @ 2.50 fps)

Summary for Pond 16P: 2 - 12" PERFORATED UNDERDRAIN

[57] Hint: Peaked at 14.24' (Flood elevation advised)

Inflow Area	a =	0.450 ac, 8	2.66% Impe	rvious,	Inflow [Depth =	7.78"	for 50	Year Storm event
Inflow	=	3.7 cfs @	12.07 hrs,	Volume	e=	0.292	af		
Outflow	=	3.7 cfs @	12.07 hrs,	Volume	e=	0.292	af, Atte	en= 0%	, Lag= 0.0 min
Primary	=	3.7 cfs @	12.07 hrs,	Volume	e=	0.292	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 14.24' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	13.00'	12.0" Round Culvert X 2.00 L= 75.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 13.00' / 13.00' S= 0.0000 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=3.6 cfs @ 12.07 hrs HW=14.20' TW=11.91' (Dynamic Tailwater) ☐ 1=Culvert (Barrel Controls 3.6 cfs @ 2.40 fps)

Time (hours)

Summary for Pond CB 5D: CB 5D

[57] Hint: Peaked at 11.08' (Flood elevation advised)

Inflow Area	a =	0.201 ac, 8	5.26% Impe	rvious,	Inflow [Depth =	7.78"	for	50 N	Year Storm event
Inflow	=	1.7 cfs @	12.07 hrs,	Volume) =	0.130	af			
Outflow	=	1.7 cfs @	12.07 hrs,	Volume) =	0.130	af, Att	ten= ()% ,	Lag= 0.0 min
Primary	=	1.7 cfs @	12.07 hrs,	Volume) =	0.130	af			-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 11.08' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	10.24'	12.0" Round Culvert L= 37.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 10.24' / 9.87' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.4 cfs @ 12.07 hrs HW=11.05' TW=10.74' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 1.4 cfs @ 2.83 fps)

Pond CB 5D: CB 5D

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Summary for Pond DMH 4: DP 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	5.034 ac, 7	8.07% Impe	ervious,	Inflow Depth =	7.65"	for 50 Y	ear Storm	event
Inflow	=	39.6 cfs @	12.08 hrs,	Volume	e= 3.210) af			
Primary	=	39.6 cfs @	12.08 hrs,	Volume	e= 3.210) af, A	tten= 0%,	Lag= 0.0 n	nin

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Pond DMH 4A: DMH 4A

[57] Hint: Peaked at 11.79' (Flood elevation advised)
[80] Warning: Exceeded Pond 1P by 0.28' @ 12.10 hrs (18.0 cfs 0.160 af)
[80] Warning: Exceeded Pond DMH A6 by 0.24' @ 12.10 hrs (7.4 cfs 0.083 af)

Inflow Are	a =	3.708 ac, 7	5.46% Impe	rvious,	Inflow D	Depth =	7.58"	for	50 Yea	ar Storm	event
Inflow	=	28.8 cfs @	12.08 hrs,	Volume	= =	2.344	af				
Outflow	=	28.8 cfs @	12.08 hrs,	Volume	= =	2.344	af, At	tten= C)%, La	ag= 0.0 r	nin
Primary	=	28.8 cfs @	12.08 hrs,	Volume	e=	2.344	af			-	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 11.79' @ 12.14 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	7.85'	36.0" Round Culvert L= 23.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 7.85' / 7.74' S= 0.0048 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 7.07 sf

Primary OutFlow Max=10.2 cfs @ 12.08 hrs HW=11.23' TW=11.14' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 10.2 cfs @ 1.44 fps)

Pond DMH 4A: DMH 4A

Summary for Pond DMH A6: DMH A6

[57] Hint: Peaked at 11.91' (Flood elevation advised)[80] Warning: Exceeded Pond ENV 21 by 0.18' @ 12.15 hrs (3.6 cfs 0.029 af)

Inflow Area	a =	1.210 ac, 7	9.68% Impe	ervious,	Inflow I	Depth =	7.71"	for 50	Year Sto	rm event
Inflow	=	9.9 cfs @	12.07 hrs,	Volume)=	0.777	af			
Outflow	=	9.9 cfs @	12.07 hrs,	Volume)=	0.777	af, A	tten= 0%	, Lag= 0.	0 min
Primary	=	9.9 cfs @	12.07 hrs,	Volume	<u>}=</u>	0.777	af		-	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 11.91' @ 12.19 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	8.50'	24.0" Round Culvert L= 44.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 8.50' / 8.41' S= 0.0020 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf

Primary OutFlow Max=0.0 cfs @ 12.07 hrs HW=10.91' TW=11.08' (Dynamic Tailwater) ☐ 1=Culvert (Controls 0.0 cfs)

Summary for Pond ENV 21: ENV 21

[57] Hint: Peaked at 12.02' (Flood elevation advised)

Inflow Area	a =	0.787	ac, 6	8.76%	Impei	rvious,	Inflow	Depth =	7.4	2" f	or	50 `	Year Storm event
Inflow	=	6.4 (cfs @	12.07	hrs,	Volume) =	0.486	af				
Outflow	=	6.4 0	cfs @	12.07	hrs,	Volume) =	0.486	i af,	Atter	n= C)%,	Lag= 0.0 min
Primary	=	6.4 0	cfs @	12.07	hrs,	Volume) =	0.486	af				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 12.02' @ 12.24 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	9.00'	18.0" Round Culvert L= 10.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 9.00' / 8.90' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=2.0 cfs @ 12.07 hrs HW=10.96' TW=10.91' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 2.0 cfs @ 1.12 fps)

Pond ENV 21: ENV 21

Time (hours)

Summary for Pond PCB-BH: PCB-BH

[57] Hint: Peaked at 17.60' (Flood elevation advised)[62] Hint: Exceeded Reach 3R OUTLET depth by 1.49' @ 12.10 hrs

Inflow Area	a =	1.210 ac,	75.70%	Impervio	ous, Inflow	Depth =	7.59"	for 50	Year Storn	n event
Inflow	=	9.1 cfs @) 12.11	hrs, Vo	olume=	0.766	af			
Outflow	=	9.1 cfs @	0 12.11	hrs, Vo	olume=	0.766	af, Atte	n= 0%	, Lag= 0.0	min
Primary	=	9.1 cfs @	0 12.11	hrs, Vo	olume=	0.766	af		-	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 17.60' @ 12.11 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	10.20'	12.0" Round Culvert L= 34.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 10.20' / 10.10' S= 0.0029 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=8.7 cfs @ 12.11 hrs HW=17.39' TW=12.06' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 8.7 cfs @ 11.11 fps)

Pond PCB-BH: PCB-BH

Summary for Pond PDMH 1: PDMH 1

[57] Hint: Peaked at 10.79' (Flood elevation advised)

Inflow Area	a =	0.201 ac, 8	5.26% Impe	rvious, Ir	nflow Dept	h= 7.7	78" for	50 N	ear Storm event
Inflow	=	1.7 cfs @	12.07 hrs,	Volume=	= 0	.130 af			
Outflow	=	1.7 cfs @	12.07 hrs,	Volume=	= 0	.130 af,	Atten=	0%,	Lag= 0.0 min
Primary	=	1.7 cfs @	12.07 hrs,	Volume=	= 0	.130 af			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 10.79' @ 12.14 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	10.04'	12.0" Round Culvert L= 78.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 10.04' / 9.15' S= 0.0114 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.3 cfs @ 12.07 hrs HW=10.74' TW=10.17' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 1.3 cfs @ 3.10 fps)

Pond PDMH 1: PDMH 1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Summary for Pond PDMH 2: PDMH 2

[57] Hint: Peaked at 10.49' (Flood elevation advised)

Inflow Area	a =	0.201 ac, 8	5.26% Impe	rvious, Inf	low Depth =	7.78" fo	r 50`	Year Storm event
Inflow	=	1.7 cfs @	12.07 hrs,	Volume=	0.130	af		
Outflow	=	1.7 cfs @	12.07 hrs,	Volume=	0.130	af, Atten=	= 0%,	Lag= 0.0 min
Primary	=	1.7 cfs @	12.07 hrs,	Volume=	0.130	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 10.49' @ 12.13 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	9.05'	24.0" Round Culvert L= 196.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 9.05' / 8.49' S= 0.0029 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=0.0 cfs @ 12.07 hrs HW=10.17' TW=10.39' (Dynamic Tailwater)

Pond PDMH 2: PDMH 2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Summary for Pond PDMH 3: PDMH 3

[57] Hint: Peaked at 10.46' (Flood elevation advised)[80] Warning: Exceeded Pond PDMH 2 by 0.38' @ 12.05 hrs (3.8 cfs 0.018 af)

Inflow Area	a =	4.595 ac, 7	7.00% Impe	ervious,	Inflow	Depth =	7.63"	for 50 \	/ear Storm eve	nt
Inflow	=	36.0 cfs @	12.08 hrs,	Volume) =	2.920	af			
Outflow	=	36.0 cfs @	12.08 hrs,	Volume) =	2.920	af, Att	en= 0%,	Lag= 0.0 min	
Primary	=	36.0 cfs @	12.08 hrs,	Volume	e=	2.920	af		-	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 10.46' @ 12.08 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	7.48'	36.0" Round Culvert L= 110.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 7.48' / 6.94' S= 0.0049 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 7.07 sf

Primary OutFlow Max=35.0 cfs @ 12.08 hrs HW=10.39' TW=0.00' (Dynamic Tailwater) ☐ 1=Culvert (Barrel Controls 35.0 cfs @ 6.34 fps)

Pond PDMH 3: PDMH 3

Area Listing (selected nodes)

Area	CN	Description			
(acres)		(subcatchment-numbers)			
1.533	96	Gravel surface, HSG C (ES1)			
3.502	98	Paved parking, HSG C (ES1)			
5.035	97	TOTAL AREA			

Soil Listing (selected nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
5.035	HSG C	ES1
0.000	HSG D	
0.000	Other	
5.035		TOTAL AREA

Ground Covers (selected nodes)

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
 (acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
 0.000	0.000	1.533	0.000	0.000	1.533	Gravel surface	ES1
0.000	0.000	3.502	0.000	0.000	3.502	Paved parking	ES1
0.000	0.000	5.035	0.000	0.000	5.035	TOTAL AREA	

Line#

Pipe Listing (selected nodes) Node In-Invert Out-Invert Length Slope n Diam/Width Height Inside-Fill Number (foot) (foot) (foot) (foot) (inches) (inches)

	Number	(feet)	(feet)	(feet)	(ft/ft)		(inches)	(inches)	(inches)
1	ES1	0.00	0.00	120.0	0.0050	0.012	12.0	0.0	0.0
2	ES1	0.00	0.00	195.0	0.0100	0.012	12.0	0.0	0.0
3	DMH 4A	7.87	6.94	190.0	0.0049	0.012	36.0	0.0	0.0

Existing Conditions	Type III 24-hr 2 Year Storm Rainfall=3.69"
Prepared by Ambit Engineering, Inc.	Printed 3/19/2018
HydroCAD® 10.00 s/n 00801 © 2013 HydroC.	AD Software Solutions LLC Page 6
Time span=0.00 Runoff by SCS TF Reach routing by Dyn-Stor-Inc	-72.00 hrs, dt=0.05 hrs, 1441 points R-20 method, UH=SCS, Weighted-CN I method - Pond routing by Dyn-Stor-Ind method
Subcatchment ES1:	Runoff Area=219,330 sf 69.55% Impervious Runoff Depth=3.34" Flow Length=569' Tc=5.0 min CN=97 Runoff=18.0 cfs 1.403 af
Pond DMH 4: DP 1	Inflow=18.0 cfs_1.403 af
	Primary=18.0 cfs 1.403 af
Pond DMH 4A: DMH A4	Peak Elev=9.71' Inflow=18.0 cfs 1.403 af
36.0" Round	Culvert n=0.012 L=190.0' S=0.0049 '/' Outflow=18.0 cfs 1.403 af
Total Runoff Area = 5.035	ac Runoff Volume = 1.403 af Average Runoff Depth = 3.34" 30.45% Pervious = 1.533 ac 69.55% Impervious = 3.502 ac

Summary for Subcatchment ES1:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 18.0 cfs @ 12.07 hrs, Volume= 1.403 af, Depth= 3.34"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2 Year Storm Rainfall=3.69"

A	rea (sf)	CN E	Description		
	66,786	96 G	Gravel surfa	ace, HSG C)
1	52,544	98 F	aved park	ing, HSG C	
2	19,330	97 V	Veighted A	verage	
	66,786	3	0.45% Per	vious Area	
1	52,544	6	9.55% Imp	pervious Are	ea
_				•	-
TC	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
1.3	254	0.0276	3.37		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
0.6	120	0.0050	3.47	2.73	Pipe Channel, RCP_Round 12"
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.012 Concrete pipe, finished
0.7	195	0.0100	4.91	3.86	Pipe Channel, RCP_Round 12"
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.012 Concrete pipe, finished
2.6	569	Total, I	ncreased t	o minimum	Tc = 5.0 min

Subcatchment ES1:

Summary for Pond DMH 4: DP 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	5.035 ac, 69	9.55% Imper	vious, Inflo	w Depth =	3.34"	for 2 Ye	ear Storm	event
Inflow	=	18.0 cfs @	12.07 hrs, \	Volume=	1.403	af			
Primary	=	18.0 cfs @	12.07 hrs, \	Volume=	1.403	af, Atte	en= 0%,	Lag= 0.0	min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Pond DMH 4: DP 1

Summary for Pond DMH 4A: DMH A4

[57] Hint: Peaked at 9.71' (Flood elevation advised)

Inflow Area	a =	5.035 ac, 69	9.55% Impe	rvious, Inflow I	Depth =	3.34"	for 2 Ye	ear Storm event
Inflow	=	18.0 cfs @	12.07 hrs,	Volume=	1.403	af		
Outflow	=	18.0 cfs @	12.07 hrs,	Volume=	1.403	af, Atte	en= 0%,	Lag= 0.0 min
Primary	=	18.0 cfs @	12.07 hrs,	Volume=	1.403	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 9.71' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	7.87'	36.0" Round Culvert L= 190.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 7.87' / 6.94' S= 0.0049 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 7.07 sf

Primary OutFlow Max=17.3 cfs @ 12.07 hrs HW=9.67' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 17.3 cfs @ 5.64 fps)

Existing Conditions	Type III 24-hr	10 Year Storm Rain	nfall=5.60"
Prepared by Ambit Engineering, Inc.		Printed	3/19/2018
HydroCAD® 10.00 s/n 00801 © 2013 HydroCAD Software Sol	utions LLC		Page 11
Time span=0.00-72.00 hrs, dt=0).05 hrs, 1441 p	oints	

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment ES1:	Runoff Area=219,330 sf 69.55% Impervious R Flow Length=569' Tc=5.0 min CN=97 Runoff	unoff Depth=5.25" =27.6 cfs 2.201 af
Pond DMH 4: DP 1	Inflow Primary	=27.6 cfs 2.201 af =27.6 cfs 2.201 af
Pond DMH 4A: DMH A4	Peak Elev=10.27' Inflow 36.0" Round Culvert n=0.012 L=190.0' S=0.0049 '/' Outflow	=27.6 cfs 2.201 af =27.6 cfs 2.201 af

Total Runoff Area = 5.035 acRunoff Volume = 2.201 afAverage Runoff Depth = 5.25"30.45% Pervious = 1.533 ac69.55% Impervious = 3.502 ac

Summary for Subcatchment ES1:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 27.6 cfs @ 12.07 hrs, Volume= 2.201 af, Depth= 5.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Year Storm Rainfall=5.60"

A	rea (sf)	CN E	Description		
	66,786	96 C	Gravel surfa	ace, HSG C	2
1	52,544	98 F	Paved park	ing, HSG C	;
2	19,330	97 V	Veighted A	verage	
	66,786	3	0.45% Per	vious Area	
1	52,544	6	9.55% Imp	ervious Are	ea
_				•	-
TC	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
1.3	254	0.0276	3.37		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
0.6	120	0.0050	3.47	2.73	Pipe Channel, RCP_Round 12"
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.012 Concrete pipe, finished
0.7	195	0.0100	4.91	3.86	Pipe Channel, RCP_Round 12"
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.012 Concrete pipe, finished
2.6	569	Total, I	ncreased t	o minimum	Tc = 5.0 min

Subcatchment ES1:

Summary for Pond DMH 4: DP 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	5.035 ac, 69	9.55% Impe	ervious,	Inflow Depth =	5.25	5" for 10) Year Sto	rm event
Inflow	=	27.6 cfs @	12.07 hrs,	Volume	e= 2.20)1 af			
Primary	=	27.6 cfs @	12.07 hrs,	Volume	e= 2.20)1 af,	Atten= 0%	%, Lag= 0.	0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Pond DMH 4: DP 1

Summary for Pond DMH 4A: DMH A4

[57] Hint: Peaked at 10.27' (Flood elevation advised)

Inflow Area	a =	5.035 ac, 6	9.55% Impe	rvious,	Inflow De	pth =	5.25"	for 10	Year Storm event
Inflow	=	27.6 cfs @	12.07 hrs,	Volume) =	2.201	af		
Outflow	=	27.6 cfs @	12.07 hrs,	Volume) =	2.201	af, Atte	en= 0%	, Lag= 0.0 min
Primary	=	27.6 cfs @	12.07 hrs,	Volume	9=	2.201	af		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 10.27' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	7.87'	36.0'' Round Culvert L= 190.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 7.87' / 6.94' S= 0.0049 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 7.07 sf

Primary OutFlow Max=26.6 cfs @ 12.07 hrs HW=10.21' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 26.6 cfs @ 6.20 fps)

Time (hours)

Pond DMH 4A: DMH A4

Existing Conditions	Type III 24-hr 25 Year Storm Rainfall=7.10"
Prepared by Ambit Engineering, Inc.	Printed 3/19/2018
HydroCAD® 10.00 s/n 00801 © 2013 HydroCAD Software Sol	utions LLC Page 16
	-

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment ES1:	Runoff Area=219,330 sf 69.55% Impervious Runoff Depth=6.74" Flow Length=569' Tc=5.0 min CN=97 Runoff=35.2 cfs 2.829 af
Pond DMH 4: DP 1	Inflow=35.2 cfs 2.829 af Primary=35.2 cfs 2.829 af
Pond DMH 4A: DMH A4	Peak Elev=10.70' Inflow=35.2 cfs 2.829 af 36.0" Round Culvert n=0.012 L=190.0' S=0.0049 '/' Outflow=35.2 cfs 2.829 af

Total Runoff Area = 5.035 acRunoff Volume = 2.829 af
30.45% Pervious = 1.533 acAverage Runoff Depth = 6.74"
69.55% Impervious = 3.502 ac

Summary for Subcatchment ES1:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 35.2 cfs @ 12.07 hrs, Volume= 2.829 af, Depth= 6.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25 Year Storm Rainfall=7.10"

A	rea (sf)	CN E	Description		
	66,786	96 G	Gravel surfa	ace, HSG C)
1	52,544	98 F	aved park	ing, HSG C	
2	19,330	97 V	Veighted A	verage	
	66,786	3	0.45% Per	vious Area	
1	52,544	6	9.55% Imp	pervious Are	ea
_		<u>.</u>		•	-
TC	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
1.3	254	0.0276	3.37		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
0.6	120	0.0050	3.47	2.73	Pipe Channel, RCP_Round 12"
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.012 Concrete pipe, finished
0.7	195	0.0100	4.91	3.86	Pipe Channel, RCP_Round 12"
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.012 Concrete pipe, finished
2.6	569	Total, I	ncreased t	o minimum	Tc = 5.0 min

Subcatchment ES1:

Summary for Pond DMH 4: DP 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	5.035 ac, 69	9.55% Impe	ervious,	Inflow Dept	th = 6.7	4" for 25	Year St	torm ev	ent
Inflow	=	35.2 cfs @	12.07 hrs,	Volume	e= 2	2.829 af				
Primary	=	35.2 cfs @	12.07 hrs,	Volume	e= 2	2.829 af,	Atten= 0%	, Lag=	0.0 min	۱

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Pond DMH 4: DP 1

Summary for Pond DMH 4A: DMH A4

[57] Hint: Peaked at 10.70' (Flood elevation advised)

Inflow Area	a =	5.035 ac, 69	9.55% Impe	rvious,	Inflow De	epth =	6.74"	for 2	5 Year Storm event
Inflow	=	35.2 cfs @	12.07 hrs,	Volume) =	2.829	af		
Outflow	=	35.2 cfs @	12.07 hrs,	Volume) =	2.829	af, Atte	en= 09	%, Lag= 0.0 min
Primary	=	35.2 cfs @	12.07 hrs,	Volume) =	2.829	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 10.70' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	7.87'	36.0" Round Culvert L= 190.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 7.87' / 6.94' S= 0.0049 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 7.07 sf

Primary OutFlow Max=33.9 cfs @ 12.07 hrs HW=10.62' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 33.9 cfs @ 6.53 fps)

Existing Conditions	Type III 24-hr 50 Year Storm Rainf	all=8.50"				
Prepared by Ambit Engineering, Inc.	Printed 3	3/19/2018				
HydroCAD® 10.00 s/n 00801 © 2013 HydroCAD Software Solutions LLC						
Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method						

 Subcatchment ES1:
 Runoff Area=219,330 sf 69.55% Impervious Runoff Depth=8.14" Flow Length=569' Tc=5.0 min CN=97 Runoff=42.2 cfs 3.415 af

 Pond DMH 4: DP 1
 Inflow=42.2 cfs 3.415 af Primary=42.2 cfs 3.415 af

 Pond DMH 4A: DMH A4
 Peak Elev=11.12' Inflow=42.2 cfs 3.415 af

 36.0" Round Culvert n=0.012 L=190.0' S=0.0049 '/' Outflow=42.2 cfs 3.415 af

Total Runoff Area = 5.035 acRunoff Volume = 3.415 afAverage Runoff Depth = 8.14"30.45% Pervious = 1.533 ac69.55% Impervious = 3.502 ac

Summary for Subcatchment ES1:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 42.2 cfs @ 12.07 hrs, Volume= 3.415 af, Depth= 8.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Year Storm Rainfall=8.50"

A	rea (sf)	CN E	Description		
	66,786	96 0	Gravel surfa	ace, HSG C)
1	52,544	98 F	aved park	ing, HSG C	
2	19,330	97 Weighted Average			
66,786 30.45% Pervious Area					
1	52,544	69.55% Impervious Area			
_				•	-
TC	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
1.3	254	0.0276	3.37		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
0.6	120	0.0050	3.47	2.73	Pipe Channel, RCP_Round 12"
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.012 Concrete pipe, finished
0.7	195	0.0100	4.91	3.86	Pipe Channel, RCP_Round 12"
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.012 Concrete pipe, finished
2.6	569	Total, I	ncreased t	o minimum	Tc = 5.0 min
Subcatchment ES1:

Summary for Pond DMH 4: DP 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	5.035 ac, 69	9.55% Impe	ervious,	Inflow Dep	oth = 8.1	4" for 5	50 Year	Storm e	event
Inflow	=	42.2 cfs @	12.07 hrs,	Volume	9=	3.415 af				
Primary	=	42.2 cfs @	12.07 hrs,	Volume) =	3.415 af,	Atten= 0	%, Lag	= 0.0 m	in

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Pond DMH 4: DP 1

Summary for Pond DMH 4A: DMH A4

[57] Hint: Peaked at 11.12' (Flood elevation advised)

Inflow Area =	5.035 ac, 69.55% Impervious, Inflow	Depth = 8.14" for 50 Year Storm even	t
Inflow =	42.2 cfs @ 12.07 hrs, Volume=	3.415 af	
Outflow =	42.2 cfs @ 12.07 hrs, Volume=	3.415 af, Atten= 0%, Lag= 0.0 min	
Primary =	42.2 cfs @ 12.07 hrs, Volume=	3.415 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 11.12' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	7.87'	36.0'' Round Culvert L= 190.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 7.87' / 6.94' S= 0.0049 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 7.07 sf

Primary OutFlow Max=40.7 cfs @ 12.07 hrs HW=11.03' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 40.7 cfs @ 6.79 fps)

LEGEND

PROPERTY LINE STORM DRAIN SILT FENCE CONTOUR SPOT ELEVATION EDGE OF PAVEMENT (EP)
SUBCATCHMENT LINE
SUBCATCHMENT NUMBER
AREA IN SQUARE FEET DESCRIPTION OF COVER
POND (DESIGN MODEL)
REACH (DESIGN MODEL)
DRAINAGE VECTOR EDGE OF WOODS / TREES
CATCH BASIN
DRAIN MANHOLE
WELL
ELEVATION EDGE OF PAVEMENT FINISHED FLOOR INVERT TEMPORARY BENCH MARK TYPICAL Tc PATH SHEET FLOW SHALLOW CONCENTRATED FLOW CHANNEL FLOW HYDROLGIC SOIL GROUP

	AMBIT ENGINE	ERING, IN	IC.
	Civil Engineers & Lat 200 Griffin Road - Unit 3	nd Surveyor	<u>s</u>
\mathbf{X}	Portsmouth, N.H. 03801-7114 Tel (603) 430-9282 Fax (603) 436-2315	!	
100	NOTES:	· · · · · · · · · · · · · · · · · · ·	
	1) THE CONTRACTOR SHALL NOTIFY DIG S	SAFE AT	
	HOURS PRIOR TO COMMENCING ANY EXCAN PUBLIC OR PRIVATE PROPERTY	VATION ON	· ·
	2) UNDERGROUND UTILITY LOCATIONS ARE	E BASED UPON	
	BEST AVAILABLE EVIDENCE AND ARE NOT F LOCATING AND PROTECTING ANY ABOVEGRO	FIELD VERIFIED.	
	UNDERGROUND UTILITIES IS THE SOLE RES THE CONTRACTOR AND/OR THE OWNER. U	PONSIBILITY OF	- S
	SHOULD BE REPORTED AT ONCE TO THE I ENGINEER.	DESIGN	
	3) CONTRACTOR SHALL INSTALL AND MAIN	NTAIN EROSION	
	CONTROL MEASURES IN ACCORDANCE WITH HAMPSHIRE STORMWATER MANUAL, VOLUME	THE "NEW 3, EROSION	-
	AND SEDIMENT CONTROLS DURING CONSTR DECEMBER 2008).	UCTION. (NHDE	S .
	4) THIS PLAN IS FOR RUNOFF ANALYSIS C	NLY AND SHAL	L.
	BE USED ONLY AS A GUIDE FOR CONSTRU	ICTION.	
	APPROVED BY THE PORTSMOUTH PI	LANNING BOA	RD
	CHAIRMAN DA	ATE	
	CHINBURG PROP	ERTIE	S
	145 BREWERY	LANE	
	PORTSMOUTH,	N.H.	
	O ISSUED FOR COMMENT	2/12/	/10
	NO. DESCRIPTION	DATE	10 E
	REVISIONS		
	JOSEPH JOSEPH		
	No. 11502		
		and the second se	
	C/01/14/10		
	chichis		
	SCALE. 1" - 10°		0
		RUART 201	σ
150 FFFT	EXISTING DRAINAGE PLAN	XX /1	
40 50 METERS			

- FB168, PG 11

LEGEND

APPROVED BY THE PORTSMOUTH PLANNING BOARD

CHAIRMAN

DATE

AMBIT ENGINEERING, INC. Civil Engineers & Land Surveyors

200 Griffin Road - Unit 3 Portsmouth, N.H. 03801-7114 Tel (603) 430-9282 Fax (603) 436-2315

NOTES:

1) THE CONTRACTOR SHALL NOTIFY DIG SAFE AT 1-888-DIG-SAFE (1-888-344-7233) AT LEAST 72 HOURS PRIOR TO COMMENCING ANY EXCAVATION ON PUBLIC OR PRIVATE PROPERTY.

2) UNDERGROUND UTILITY LOCATIONS ARE BASED UPON BEST AVAILABLE EVIDENCE AND ARE NOT FIELD VERIFIED. LOCATING AND PROTECTING ANY ABOVEGROUND OR UNDERGROUND UTILITIES IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR AND/OR THE OWNER. UTILITY CONFLICTS SHOULD BE REPORTED AT ONCE TO THE DESIGN ENGINEER.

3) CONTRACTOR SHALL INSTALL AND MAINTAIN EROSION CONTROL MEASURES IN ACCORDANCE WITH THE "NEW HAMPSHIRE STORMWATER MANUAL, VOLUME 3, EROSION AND SEDIMENT CONTROLS DURING CONSTRUCTION. (NHDES DECEMBER 2008).

4) SPEED HUMPS SHALL BE INSTALLED IN A MANNER THAT WILL INSURE THE FREE FLOW OF STORMWATER BETWEEN THE HUMP AND THE CURB LINE.

5) EXISTING DRAINAGE INVERTS CAN BE SEEN ON SHEET EXISTING UTILITIES PLAN - C3.

CHINBURG PROPERTIES 145 BREWERY LANE PORTSMOUTH, N.H.

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Smoothing	No
State	New Hampshire
Location	
Longitude	70.770 degrees West
Latitude	43.069 degrees North
Elevation	0 feet
Date/Time	Tue, 17 Apr 2018 15:07:43 -0400

Inches of Rain - 24 HR Event 2 YR = 3.21 x 15% = 3.69 10 YR = 4.87 x 15% = 5.60 25 YR = 6.17 x 15% = 7.10 50 Yr = 7.39 x 15% = 8.50

Extreme Precipitation Estimates

		-																				
	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12h	r	24hr	48hı		1day	2day	4day	7day	10day	
1yr	0.26	0.40	0.49	0.66	0.81	1.00	1yr	0.70	0.98	1.14	1.57	2.0	1	2.66	2.92	1yr	2.35	2.81	3.22	3.94	4.55	1yr
2yr	0.32	0.50	0.61	0.83	1.02	1.21	2yr	0.88	1.18	1.40	1.87	2.4	0	3.21	3.57	2yr	2.84	3.43	3.94	4.68	5.33	2yr
5yr	0.37	0.58	0.71	0.98	1.25	1.50	5yr	1.08	1.47	1.73	2.32	2.9	6	4.07	4.58	5yr	3.60	4.40	5.04	5.94	6.70	5yr
10yr	0.42	0.65	0.80	1.12	1.45	1.76	10yr	1.25	1.72	2.04	2.72	3.4	7	4.87	5.53	10yr	4.31	5.32	6.08	7.11	7.98	10yr
25yr	0.50	0.76	0.94	1.35	1.77	2.19	25yr	1.53	2.14	2.53	3.38	4.2	8	6.17	7.10	25yr	5.46	6.83	7.80	9.02	10.05	25yr
50yr	0.56	0.86	1.07	1.54	2.07	2.58	50yr	1.78	2.52	2.98	3.99	5.0	2	7.39	8.58	50yr	6.54	8.25	9.42	10.81	11.98	50yr
100yr	0.64	0.97	1.22	1.76	2.41	3.04	100yr	2.08	2.97	3.51	4.70	5.8	9	8.85	1 <mark>0.3</mark> 8	3 100yr	7.84	9.98	11.38	12.96	14.28	100yr
200yr	0.73	1.10	1.40	2.02	2.82	3.59	200yr	2.43	3.51	4.14	5.55	6.9	1	10.61	12.5	5 200yr	9.39	12.07	13.75	15.55	17.03	200yr
500yr	0.88	1.30	1.68	2.44	3.47	4.47	500yr	2.99	4.37	5.14	6.90	8.5	5	13.49	16.1	500yr	11.93	15.53	17.67	19.78	21.50	500yr

Lower Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.23	0.36	0.44	0.59	0.73	0.88	1yr	0.63	0.86	0.92	1.33	1.68	2.23	2.50	1yr	1.98	2.40	2.86	3.17	3.89	1yr
2yr	0.31	0.49	0.60	0.81	1.00	1.19	2yr	0.86	1.16	1.37	1.82	2.34	3.06	3.45	2yr	2.71	3.32	3.82	4.55	5.08	2yr
5yr	0.35	0.54	0.67	0.92	1.17	1.40	5yr	1.01	1.37	1.61	2.12	2.73	3.79	4.19	5yr	3.35	4.03	4.72	5.54	6.24	5yr
10yr	0.39	0.59	0.73	1.03	1.32	1.60	10yr	1.14	1.56	1.81	2.39	3.06	4.37	4.87	10yr	3.87	4.68	5.45	6.42	7.20	10yr
25yr	0.44	0.67	0.83	1.19	1.56	1.90	25yr	1.35	1.86	2.10	2.76	3.54	4.71	5.90	25yr	4.17	5.68	6.66	7.80	8.69	25yr
50yr	0.48	0.73	0.91	1.31	1.77	2.17	50yr	1.52	2.12	2.35	3.08	3.94	5.32	6.82	50yr	4.71	6.56	7.74	9.06	10.03	50yr
100yr	0.54	0.81	1.01	1.47	2.01	2.47	100yr	1.74	2.41	2.63	3.42	4.36	5.98	7.87	100yr	5.29	7.57	9.00	10.53	11.58	100yr
200yr	0.59	0.89	1.13	1.63	2.28	2.82	200yr	1.97	2.75	2.93	3.79	4.80	6.70	9.09	200yr	5.93	8.74	10.46	12.25	13.39	200yr
500yr	0.69	1.02	1.31	1.91	2.71	3.37	500yr	2.34	3.29	3.41	4.33	5.47	7.79	10.98	500yr	6.89	10.56	12.75	14.99	16.21	500yr

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.28	0.44	0.54	0.72	0.89	1.08	1yr	0.77	1.06	1.26	1.74	2.21	2.99	3.16	1yr	2.64	3.04	3.58	4.38	5.05	1yr
2yr	0.34	0.52	0.64	0.86	1.07	1.27	2yr	0.92	1.24	1.48	1.96	2.51	3.43	3.70	2yr	3.03	3.56	4.09	4.84	5.63	2yr
5yr	0.40	0.62	0.76	1.05	1.34	1.62	5yr	1.15	1.58	1.88	2.53	3.25	4.34	4.96	5yr	3.84	4.77	5.38	6.37	7.15	5yr
10yr	0.47	0.72	0.89	1.24	1.61	1.97	10yr	1.39	1.93	2.28	3.10	3.95	5.34	6.19	10yr	4.72	5.96	6.81	7.83	8.74	10yr
25yr	0.57	0.87	1.09	1.55	2.04	2.56	25yr	1.76	2.51	2.95	4.07	5.14	7.79	8.33	25yr	6.90	8.01	9.13	10.33	11.40	25yr
50yr	0.67	1.02	1.27	1.82	2.45	3.12	50yr	2.12	3.05	3.59	4.99	6.30	9.76	10.44	50yr	8.64	10.03	11.41	12.71	13.95	50yr
100yr	0.79	1.19	1.49	2.15	2.95	3.80	100yr	2.55	3.72	4.37	6.15	7.74	12.22	13.07	100yr	10.81	12.57	14.25	15.67	17.07	100yr
200yr	0.92	1.39	1.76	2.54	3.55	4.64	200yr	3.06	4.54	5.33	7.57	9.50	15.33	16.40	200yr	13.57	15.77	17.84	19.31	20.90	200yr
500yr	1.14	1.70	2.19	3.18	4.52	6.02	500yr	3.90	5.88	6.91	10.00	12.50	20.72	22.13	500yr	18.34	21.28	24.00	25.46	27.31	500yr

2