

C0960-006 November 18, 2020

Ms. Juliet Walker, Planning Director City of Portsmouth Planning Board 1 Junkins Avenue Portsmouth, New Hampshire 03801

Re: Site Review Permit & Conditional Use Permit for Parking Applications Proposed Multi-Family Development, 105 Bartlett Street, Portsmouth, NH

Dear Juliet:

On behalf of Iron Horse Properties, LLC, we are pleased to submit the following supplemental information to support a request for a Site Review Permit and Conditional Use Permit for Shared Parking for the above referenced project:

- One (1) full size copy of the Site Plan Set, last revised November 18, 2020;
- One (1) copy of the TAC Comment Response Report, dated November 18, 2020;
- One (1) copy of the Drainage Analysis, last revised November 18, 2020;
- One (1) copy of the Grade Plane Exhibit, last revised November 18, 2020;
- One (1) copy of the Truck Turning Exhibits, last revised November 18, 2020;
- One (1) copy of the Buffer Impact Exhibit, last revised November 18, 2020;
- One (1) copy of the Trip Generation Memorandum, last revised November 11, 2020;
- One (1) copy of the Environmental Summary Memo, dated November 4, 2020

The enclosed revised plans and supplemental materials have been provided to address comments received from the Technical Advisory Committee (TAC) in correspondence dated June 1, 2020 and at their meeting held on June 2, 2020.

We respectfully request to be placed on the TAC meeting agenda for December 1, 2020. If you have any questions or need any additional information, please contact Patrick Crimmins by phone at (603) 433-8818 or by email at <u>pmcrimmins@tighebond.com</u>.

Sincerely,

TIGHE & BOND, INC.

Patrick M. Crimmins, PE Senior Project Manager

Copy: Clipper Traders, LLC Iron Horse Properties, LLC Portsmouth Lumber & Hardware, LLC

Neil A. Hansen, PE Project Engineer

J:\C\C0960 Cathartes\C-0960-006 105 Bartlett Street\Report_Evaluation\Permit Applications\City of Portsmouth\20201118 TAC Resubmission\20201118_TAC Cover Letter.docx

PROPOSED MULTI-FAMILY DEVELOPMENT **105 BARTLETT STREET** PORTSMOUTH, NEW HAMPSHIRE JANUARY 2, 2020 LAST REVISED: NOVEMBER 18, 2020

	LIST OF DRAWINGS	
SHEET NO.	SHEET TITLE	LAST REVISED
	COVER SHEET	11/18/2020
C-101	OVERALL EXISTING CONDITIONS AND DEMOLITION PLAN	11/18/2020
C-101.1	EXISTING CONDITIONS AND DEMOLITION PLAN	11/18/2020
C-101.2	EXISTING CONDITIONS AND DEMOLITION PLAN	11/18/2020
C-102	OVERALL SITE PLAN	11/18/2020
C-102.1	SITE PLAN	11/18/2020
C-102.2	SITE PLAN	11/18/2020
C-102.3	BASEMENT LEVEL SITE PLAN	11/18/2020
C-103.1	GRADING, DRAINAGE, AND EROSION CONTROL PLAN	11/18/2020
C-103.2	GRADING, DRAINAGE, AND EROSION CONTROL PLAN	11/18/2020
C-104.1	UTILITIES PLAN	11/18/2020
C-104.2	UTILITIES PLAN	11/18/2020
C-105.1	PHOTOMETRIC PLAN	11/18/2020
C-105.2	PHOTOMETRIC PLAN	11/18/2020
C-301.1	EASEMENT PLAN	11/18/2020
C-301.2	EASEMENT PLAN	11/18/2020
C-501	EROSION CONTROL NOTES AND DETAILS SHEET	11/18/2020
C-502	DETAILS SHEET	11/18/2020
C-503	DETAILS SHEET	11/18/2020
C-504	DETAILS SHEET	11/18/2020
C-505	DETAILS SHEET	11/18/2020
C-506	DETAILS SHEET	11/18/2020
C-507	DETAILS SHEET	11/18/2020
L-1	SITE LANDSCAPE PLAN	11/18/2020
L-2	FOUNDATION PLANTING PLAN	11/18/2020

LIST OF PERMITS		
LOCAL	STATUS	DATE
SITE PLAN REVIEW PERMIT	PENDING	
LOT LINE REVISION PERMIT	PENDING	
CONDITIONAL USE PERMIT - SHARED PARKING	PENDING	
CONDITIONAL USE PERMIT - WETLAND BUFFER	PENDING	
STATE		
NHDES - ALTERATION OF TERRAIN PERMIT	PENDING	
NHDES - WETLAND PERMIT	PENDING	
NHDES - SHORELAND PERMIT	PENDING	
NHDES - SEWER CONNECTION PERMIT	PENDING	
FEDERAL		
EPA - NPDES CGP	PENDING	

T&B PROJECT NO: C0960-006

LOCATION MAP SCALE: 1" = 2000'

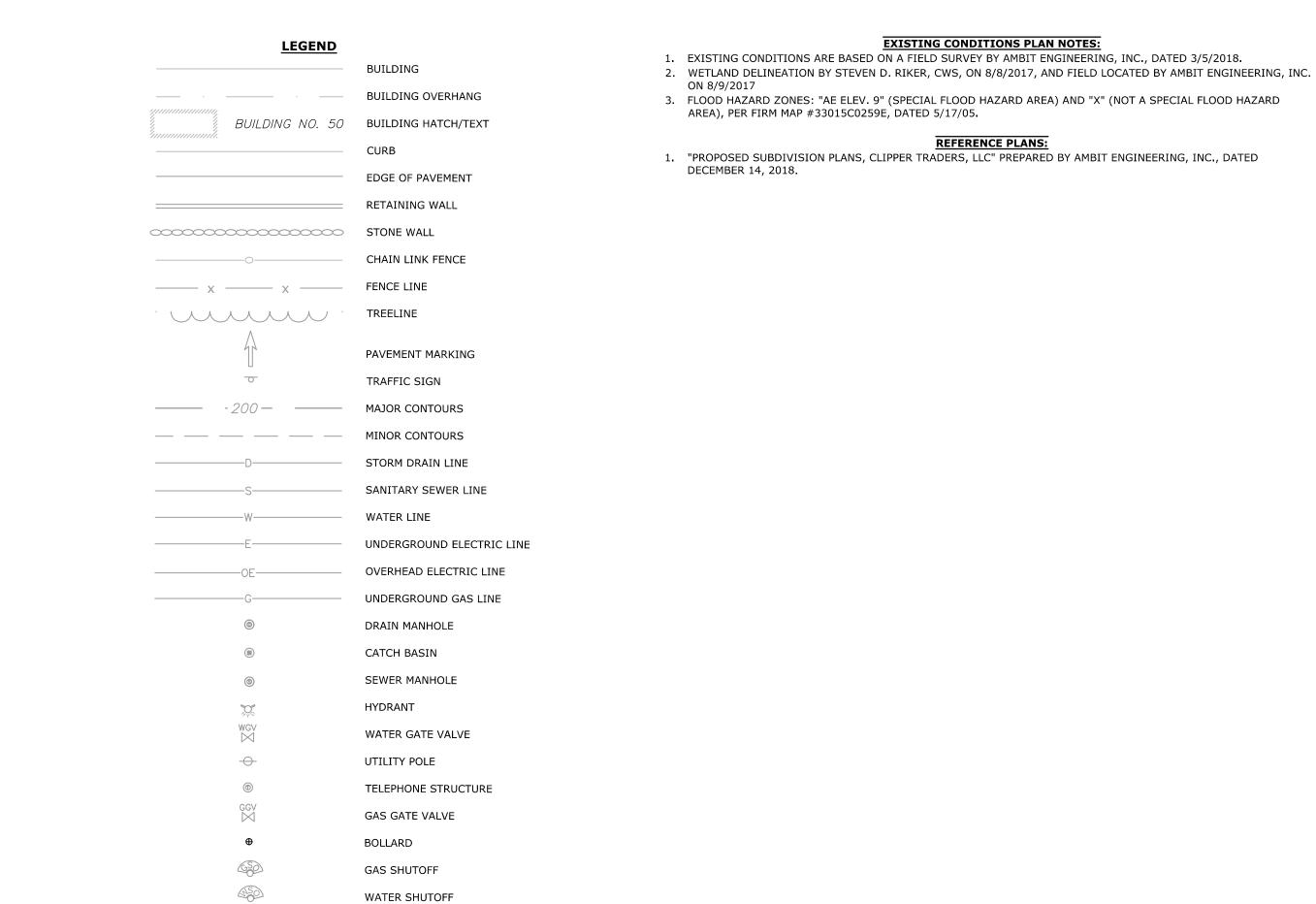
PREPARED BY:

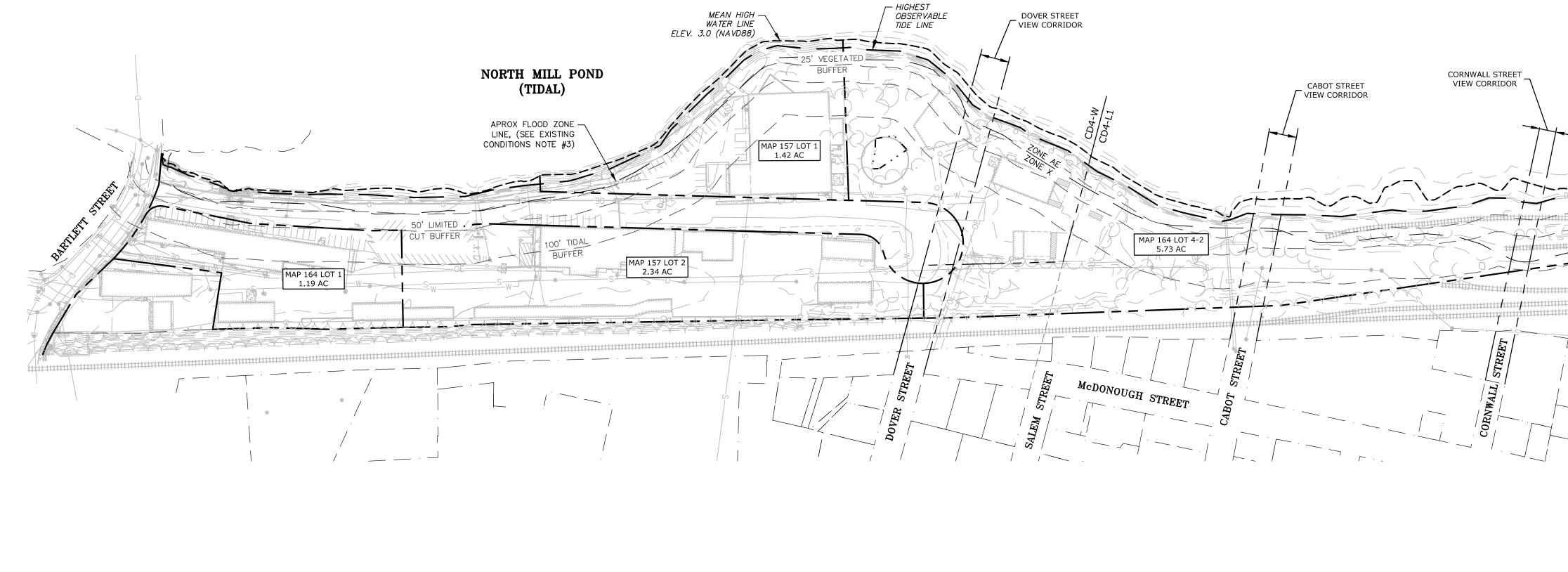
PORTSMOUTH, NEW HAMPSHIRE 03801 603-433-8818

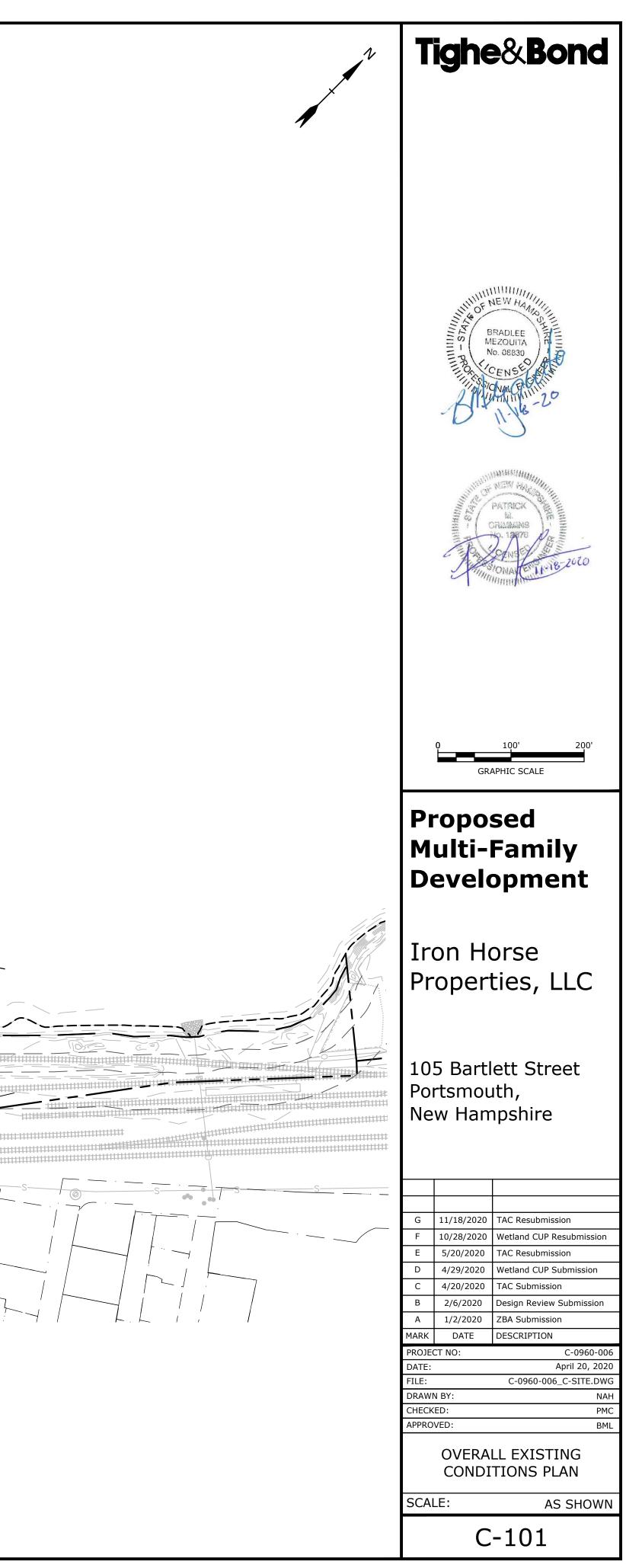
OWNERS: TAX MAP 157, LOT 1 CLIPPER TRADERS, LLC **105 BARTLETT STREET** PORTSMOUTH, NEW HAMPSHIRE 03801

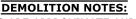
TAX MAP 164, LOT 4-2 IRON HORSE PROPERTIES, LLC **105 BARTLETT STREET** PORTSMOUTH, NH 03801

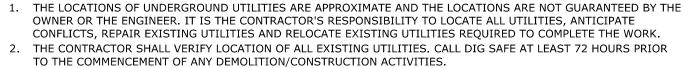
TAX MAP 157 LOT 2 TAX MAP 164, LOT 1 PORTSMOUTH HARDWARE & LUMBER, LLC 105 BARTLETT STREET PORTSMOUTH, NH 03801






APPLICANT:


IRON HORSE PROPERTIES, LLC **105 BARTLETT STREET** PORTSMOUTH, NEW HAMPSHIRE 03801


TAC RESUBMISSION COMPLETE SET 25 SHEETS

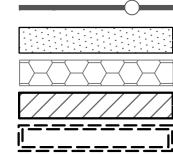
3. ALL MATERIALS SCHEDULED TO BE REMOVED SHALL BECOME THE PROPERTY OF THE CONTRACTOR UNLESS OTHERWISE SPECIFIED. THE CONTRACTOR SHALL DISPOSE OF ALL MATERIALS OFF-SITE IN ACCORDANCE WITH ALL FEDERAL, STATE, AND LOCAL REGULATIONS, ORDINANCES AND CODES.

- COORDINATE REMOVAL, RELOCATION, DISPOSAL OR SALVAGE OF UTILITIES WITH THE OWNER AND APPROPRIATE UTILITY COMPANY.
 ANY EXISTING WORK OR PROPERTY DAMAGED OR DISRUPTED BY CONSTRUCTION/ DEMOLITION ACTIVITIES SHALL BE REPLACED OR REPAIRED TO MATCH ORIGINAL EXISTING CONDITIONS BY THE CONTRACTOR AT NO ADDITIONAL COST
- TO THE OWNER.
 SAW CUT AND REMOVE PAVEMENT ONE (1) FOOT OFF PROPOSED EDGE OF PAVEMENT OR EXISTING CURB LINE IN ALL AREAS WHERE PAVEMENT TO BE REMOVED ABUTS EXISTING PAVEMENT OR CONCRETE TO REMAIN.
- IT IS THE CONTRACTOR'S RESPONSIBILITY TO FAMILIARIZE THEMSELVES WITH THE CONDITIONS OF ALL OF THE PERMIT APPROVALS.
- 8. THE CONTRACTOR SHALL OBTAIN AND PAY FOR ADDITIONAL PERMITS, NOTICES AND FEES NECESSARY TO COMPLETE THE WORK AND ARRANGE FOR AND PAY FOR NECESSARY INSPECTIONS AND APPROVALS FROM THE AUTHORITIES HAVING JURISDICTION.
- THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL DEMOLITION AND OFF-SITE DISPOSAL OF MATERIALS REQUIRED TO COMPLETE THE WORK, EXCEPT FOR WORK NOTED TO BE COMPLETED BY OTHERS.
 UTILITIES SHALL BE TERMINATED AT THE MAIN LINE PER UTILITY COMPANY STANDARDS. THE CONTRACTOR SHALL
- REMOVE ALL ABANDONED UTILITIES LOCATED WITHIN THE LIMITS OF WORK. 11. CONTRACTOR SHALL VERIFY ORIGIN OF ALL DRAINS AND UTILITIES PRIOR TO REMOVAL/TERMINATION TO DETERMINE LODDAL DRAINS OF UTILITY IN AND ACTIVE AND ACTIVES ANY ON OF OF CITE CTRUCTURE TO REMOVAL.
- IF DRAINS OR UTILITY IS ACTIVE, AND SERVICES ANY ON OR OFF-SITE STRUCTURE TO REMAIN. THE CONTRACTOR SHALL NOTIFY ENGINEER IMMEDIATELY OF ANY SUCH UTILITY FOUND AND SHALL MAINTAIN THESE UTILITIES UNTIL PERMANENT SOLUTION IS IN PLACE. 12. PAVEMENT REMOVAL LIMITS ARE SHOWN FOR CONTRACTOR'S CONVENIENCE. ADDITIONAL PAVEMENT REMOVAL MAY
- PAVEMENT REMOVAL LIMITS ARE SHOWN FOR CONTRACTOR'S CONVENIENCE. ADDITIONAL PAVEMENT REMOVAL MAY BE REQUIRED DEPENDING ON THE CONTRACTOR'S OPERATION. CONTRACTOR TO VERIFY FULL LIMITS OF PAVEMENT REMOVAL PRIOR TO BID.
 ALL ITEMS WITHIN THE LIMIT OF WORK ARE TO REMAIN UNLESS SPECIFICALLY IDENTIFIED TO BE REMOVED OR
- 13. ALL THEMS WITHIN THE LIMIT OF WORK ARE TO REMAIN UNLESS SPECIFICALLY IDENTIFIED TO BE REMOVED OR OTHERWISE ALTERED BY THE CONTRACTOR. ITEMS TO BE REMOVED INCLUDE, BUT ARE NOT LIMITED TO: CONCRETE, PAVEMENT, MANHOLES, CATCH BASINS, UNDERGROUND PIPING & UTILITIES, POLES, STAIRS, STRUCTURES, FENCES, RAMPS, BUILDING FOUNDATIONS, TREES, AND LANDSCAPING. THE CONTRACTOR SHALL CONFIRM WITH THE ENGINEER IF THE TREATMENT OF CERTAIN ITEMS IS UNCLEAR.
- 14. COORDINATE ALL WORK WITHIN THE PUBLIC RIGHT OF WAYS WITH THE CITY OF PORTSMOUTH. 15. REMOVE TREES AND BRUSH AS REQUIRED FOR COMPLETION OF WORK. CONTRACTOR SHALL GRUB AND REMOVE ALL
- STUMPS WITHIN LIMITS OF WORK AND DISPOSE OF OFF SITE IN ACCORDANCE WITH FEDERAL, STATE, AND LOCAL LAWS AND REGULATIONS.
 16. CONTRACTOR SHALL PROTECT ALL PROPERTY MONUMENTATION THROUGHOUT DEMOLITION AND CONSTRUCTION
- OPERATIONS. SHOULD ANY MONUMENTATION BE DISTURBED BY THE CONTRACTOR, THE CONTRACTOR SHALL EMPLOY A NEW HAMPSHIRE LICENSED SURVEYOR TO REPLACE DISTURBED MONUMENTS. 17. PROVIDE INLET PROTECTION BARRIERS AT ALL CATCH BASINS/CURB INLETS WITHIN CONSTRUCTION LIMITS AS WELL
- AS CATCH BASINS/CURB INLETS THAT RECEIVE RUNOFF FROM CONSTRUCTION ACTIVITIES. INLET PROTECTION BARRIERS SHALL BE MAINTAINED FOR THE DURATION OF THE PROJECT. INLET PROTECTION BARRIERS SHALL BE "HIGH FLOW SILT SACK" BY ACF ENVIRONMENTAL OR EQUAL. INSPECT BARRIERS WEEKLY AND AFTER EACH RAIN EVENT OF 0.25 INCHES OR GREATER. CONTRACTOR SHALL COMPLETE A MAINTENANCE INSPECTION REPORT AFTER EACH INSPECTION. SEDIMENT DEPOSITS SHALL BE REMOVED AFTER EACH STORM EVENT OR MORE OFTEN IF THE FABRIC BECOMES CLOGGED OR SEDIMENT HAS ACCUMULATED TO 1/3 THE DESIGN DEPTH OF THE BARRIER.
- 18. THE CONTRACTOR SHALL PHASE DEMOLITION AND CONSTRUCTION AS REQUIRED TO PROVIDE CONTINUOUS SERVICE TO EXISTING BUSINESSES AND HOMES THROUGHOUT THE CONSTRUCTION PERIOD. EXISTING BUSINESS AND HOME SERVICES INCLUDE, BUT ARE NOT LIMITED TO ELECTRICAL, COMMUNICATION, FIRE PROTECTION, DOMESTIC WATER AND SEWER SERVICES. TEMPORARY SERVICES, IF REQUIRED, SHALL COMPLY WITH ALL FEDERAL, STATE, LOCAL AND UTILITY COMPANY STANDARDS. CONTRACTOR SHALL PROVIDE DETAILED CONSTRUCTION SCHEDULE TO OWNER PRIOR TO ANY DEMOLITION/CONSTRUCTION ACTIVITIES AND SHALL COORDINATE TEMPORARY SERVICES TO ABUTTERS WITH THE UTILITY COMPANY AND AFFECTED ABUTTER.
- 19. EROSION CONTROL MEASURES SHALL BE INSTALLED PRIOR TO THE START OF ANY CLEARING OR DEMOLITION ACTIVITIES.
- 20. THE CONTRACTOR SHALL PAY ALL COSTS NECESSARY FOR TEMPORARY PARTITIONING, BARRICADING, FENCING, SECURITY AND SAFETY DEVICES REQUIRED FOR THE MAINTENANCE OF A CLEAN AND SAFE CONSTRUCTION SITE.
- SAW CUT AND REMOVE PAVEMENT AND CONSTRUCT PAVEMENT TRENCH PATCH FOR ALL UTILITIES TO BE REMOVED AND PROPOSED UTILITIES LOCATED IN EXISTING PAVEMENT AREAS TO REMAIN.

SIGN

IRON ROD w/MSC

LLS 844 ID CAP FOUND,


UP 3"-

"STOP" -----

22. ALL CONDITIONS ON THIS PLAN SHALL REMAIN IN EFFECT IN PERPETUITY PURSUANT TO THE REQUIREMENTS OF THE SITE PLAN REVIEW REGULATIONS.

TBM A SPIKE IN UPOLE EL. 10.79

<u>CB</u> 6154

BEGIN SILT -

TBR

(TYP)

YARD DRAIN TO BE RELOCATED

– PSNH 176/6

- BRICK

- CONCRETE BLOCK

RETAINING WALL

RETAINING WALL

#105

1 STORY

BRICK/CINDER BLOCK

1 STORY

METAL

FF=9.9

ROOF

PEAK=26.

FF=10.2

ROOF PEAK=23.1

SECTION OF -

STONE WALL

APPROXIMATE -

SAWCUT LINE

GAS LINE -

UTILITY POLE TO BE RELOCATED (COORD W/UTILITY COMPANIES)

318/858/3

176/5

- GRANITE BLOCK

ABUTMENT/WINGWALL DRILL HOLE FOUND IN PARAPET-CENTERLINE OF LOCATION STA 2969+04.87

TBR

SOCK

TBR BLDG TYP COORD

<u>LEGEND</u>

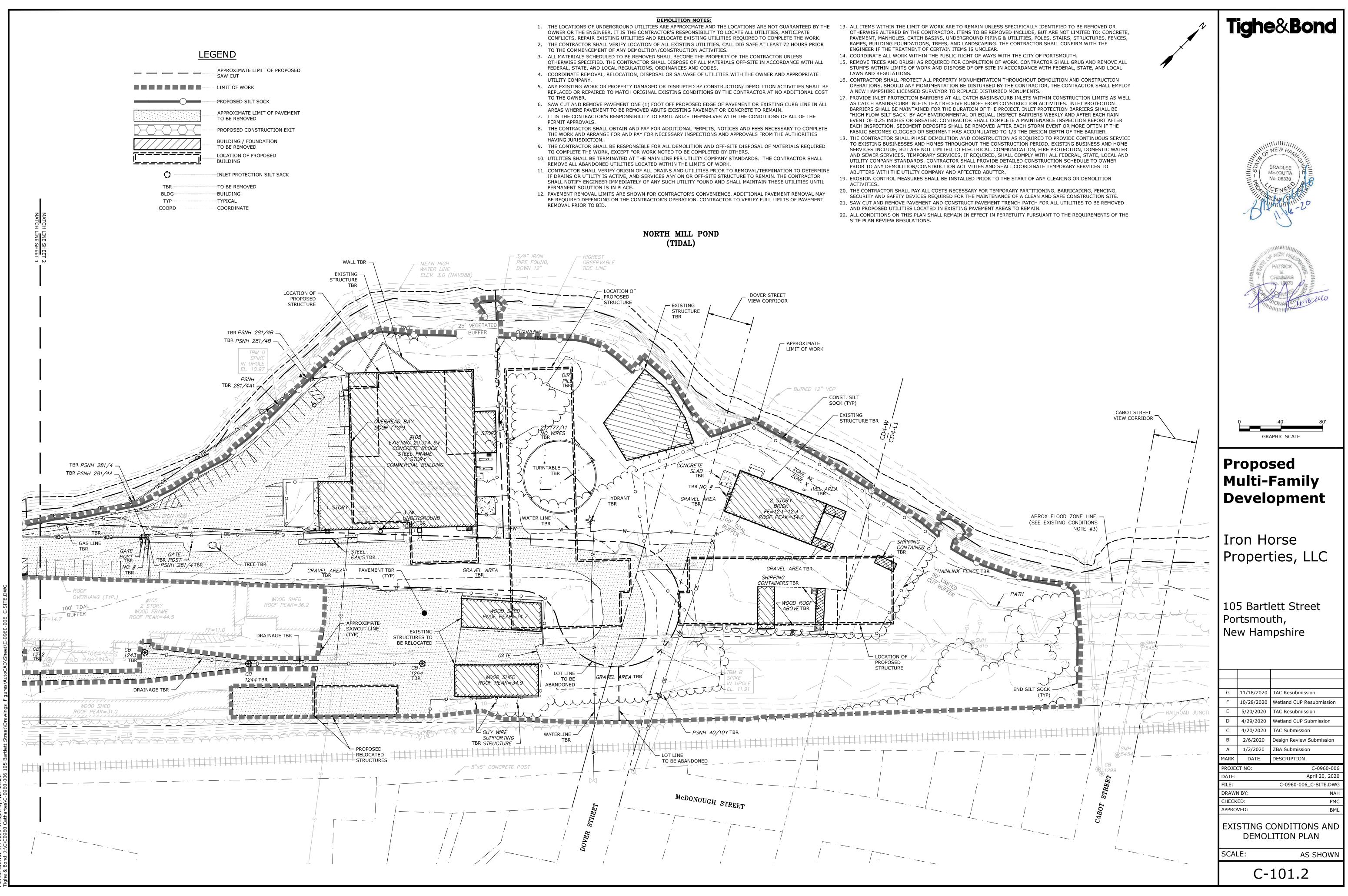
APPROXIMATE LIMIT OF PROPOSED SAW CUT

PROPOSED SILT SOCK

TO BE REMOVED

BUILDING / FOUNDATION TO BE REMOVED LOCATION OF PROPOSED

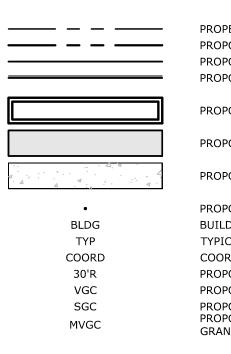
BUILDING


----TO BE REMOVED ----BUILDING -----TYPICAL ----COORDINATE

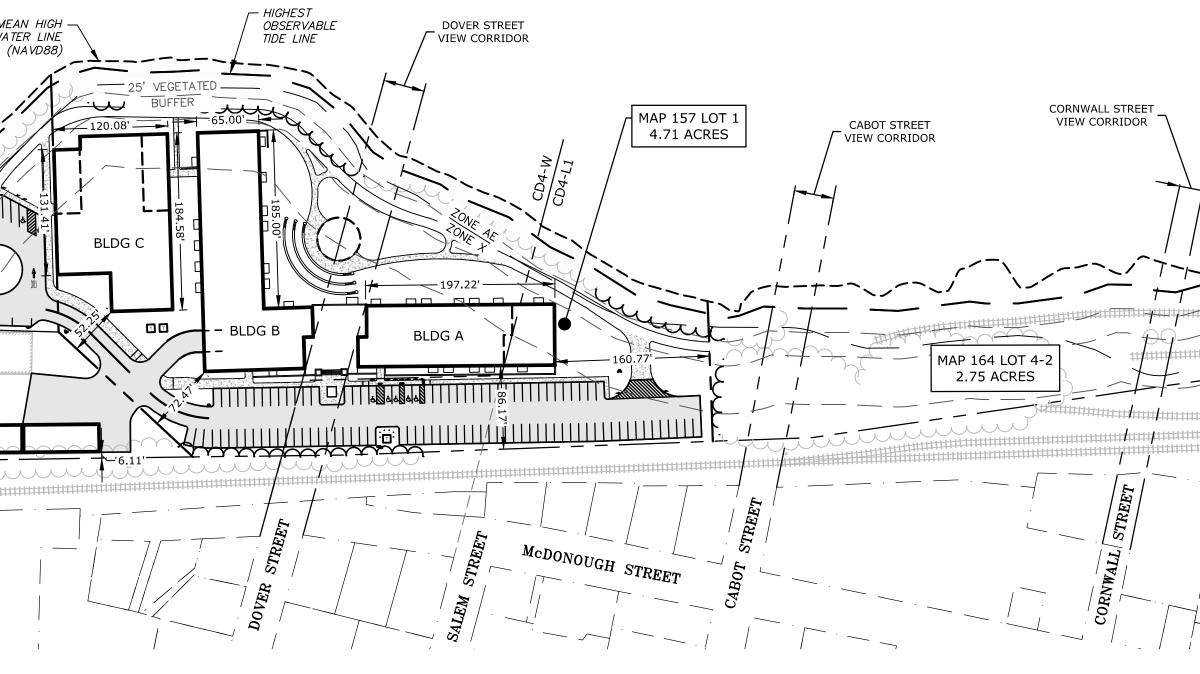
- PSNH 178/8 - CONCRETE RETAINING WALL - GRANITE BLOCK RETAINING WALL TBM - STONE RETAINING - RIPRAP SLOPE IN UPOLE WALL - MILL PONL INFORMATION SIGN____ /- SIGN "CLEAN UP \sim NORTH MILL POND - BUSINESS SIGN AFTER YOUR DOG" - APROX FLOOD ZONE LINE, ON CONCRETE (TIDAL) HIGHEST - PSNH 281/1 (SEE EXISTING CONDITIONS w/CONDUIT NOTE #3) LOT LINE -TIDE LIN - GRANITE BLOCK — MEAN HIGH - 12" PVC TO BE RELOCATED — APPROXIMATE RETAINING/HEAD WALL WATER LINE INV.=4.13 PSNH LIMIT OF WORK - CONCRETÉ HEADWALL ELEV. 3.0 (NAVD88) TBR 211/281/3 PSNH 281/2 -O D -2" RCP PAVEMENT TBR INV.=4.15 TBR ZONE AE ZONE X - PSNH CB 281-4/3-LOT LINE TO -REMAIN #105 OVERHAN 2 STORY WOOD FRAME LIMIT OF LOT LINE -FF=11.5 - PSNH 176/6B TBR 281/3S TO BE RELOCATED · ·CB ROOF PEAK=44.1 FNTRY VZ 85B/2 TBR C 1241 TBR TRE HOOKUP -- *NETT 400* TBR. - PSNH 176/6A w/CONDUIT CB 1239 TBR. APPROXIMATE -5533 – DRAINAGE SAWCUT LINE PROPANE TBR — WOOD TBR (TYP) STORAGE SHED RETAINING TANK 1 STORY WALL WOOD SHED _____9_ WOOD FRAME WOOD SHED ROOF PEAK=25.3 FF=10.2 ROOF PEAK=30.6 ROOF, PEAK=26

	Tighe&Bond
MATCH LINE SHEET 2 MATCH LINE SHEET 1	BRADLEE BRADLEE MEZOUITA No. 08830 CENSE CENSE COMMANDE PATRICK PATRICK COMMANDE COMMAND COMMANDE COMMANDO COMM
TBR PSNH 2E TBR PSNH 281	GRAPHIC SCALE Proposed Multi-Family Development Iron Horse
GAS LINE TBR ROOF OVERHANG 100' TIDAL FF=14.7 FF=14.7 CB 100' PARKIN	105 Bartlett Street Portsmouth, New Hampshire
	G11/18/2020TAC ResubmissionF10/28/2020Wetland CUP ResubmissionE5/20/2020TAC ResubmissionD4/29/2020Wetland CUP SubmissionC4/20/2020TAC SubmissionB2/6/2020Design Review SubmissionA1/2/2020ZBA SubmissionMARKDATEDESCRIPTIONPROJECT NO:C-0960-006DATE:April 20, 2020FILE:C-0960-006_C-SITE.DWGDRAWN BY:NAHCHECKED:PMCAPPROVED:BML
	EXISTING CONDITIONS AND DEMOLITION PLAN SCALE: AS SHOWN C-101.1

	TAX MAP 157, LOT 1 TAX MAP 157, LOT 2 TAX MAP 164, LOT 1 TAX MAP 164, LOT 4					OFF-STREE PARKING SPACE DWELLING 0 SF TO 5
SITE ZONING DISTRICT:	105 BARTLETT STREE PORTSMOUTH, NEW CHARACTER DISTRIC CHARACTER DISTRIC	HAMPSHIRE CT 4 (CD4-W) CT 4 (CD4-L1)				TOTAL MI
ALLOWED USE ON SITE:	PROFESSIONAL OFFI	/E OVERLAY DISTRICT CE, BUSINESS OFFICE, MULT	TIFAMILY DWELLING			
	R USES: & B: RESIDENTIAL OFFICE & AMENITY SP/	ACE				OVER 750
DEVELOPMENT ST BUILDING PLACEMENT (PR		REQUIRED (CD4-W)	PROPOSED (CD4-W)	REQUIRED (CD4-L1)	PROPOSED (CD4-L1)	OFFICE: 1 SPACE P
MAX PRINCIPAL FRO MINIMUM SIDE YARI MINIMUM REAR YARI	D:	10 FT 15 FT ⁽¹⁾ 5 FT	0 FT <6 FT ⁽²⁾ 269 FT	15 FT 15 FT ⁽¹⁾ 5 FT	N/A 86 FT 269 FT	MINUS 25 VISITORS
FRONT LOT LINE BUI	ILDOUT:	50% MIN REQUIRED (CD4-W)	69% PROPOSED (CD4-W)	60% MIN, 80% MAX REQUIRED (CD4-L1)	N/A PROPOSED (CD4-L1)	1 SPACE F
	IODULATION LENGTH:	200 FT 80 FT	196 FT <80 FT	100 FT ⁽³⁾ 50 FT	34 FT <50 FT	TOTAL PARKING TOTAL PARKING
MAXIMUM ENTRANCE MAXIMUM BUILDING MAXIMUM BUILDING	COVERAGE: FOOTPRINT:	50 FT 80% ⁽⁴⁾ 20,000 SF ⁽⁵⁾	<50 FT ±24.0% 20,000 SF	NR 80% ⁽⁴⁾ 3,500 SF ⁽⁶⁾	NR ±1.3% 2,852 SF	
MINIMUM LOT AREA: MINIMUM LOT AREA MINIMUM OPEN SPAC MAXIMUM GROUND F	PER DWELLING UNIT: CE:	5,000 SF NR ⁽⁷⁾ 15% 15,000 SF	220,768 SF 48% 10,300 SF	3,000 SF NR ⁽⁷⁾ 25% NR	220,768 SF 48%	ADA SPACES RE ADA SPACES PR
(1) - PER 10.516.20, MINI	MUM SIDE YARD SETB	ACK ADJOINING A RAILROAD ADJUSTMENT ON JANUARY	RIGHT OF WAY SHALL BE			(1) - CONDITIO
(3) - MAXIMUM BLOCK LEI COMMUNITY SPACE.	NGTH ALLOWED IN WE	ST END INCENTIVE OVERLAY	DISTRICT FOR PROVIDING		E TO BE ASSIGNED AS OF THE SITE TO BE ASSIGNED	PARKING STALL DRIVE AISLE W
AS COMMUNITY SPA (5) - ADDITIONAL 5,000 S (6) - ADDITIONAL 1,000 S	CE. SF OF GFA (INCREASED SF OF GFA (INCREASED	FROM 15,000 SF) ALLOWED FROM 2,500 SF) ALLOWED I) FOR PROVIDING AT LEAST FOR PROVIDING AT LEAST 2	20% OF THE SITE TO BE AS 20% OF THE SITE TO BE ASS	SIGNED AS COMMUNITY SPACE. SIGNED AS COMMUNITY SPACE.	<u>BIKE SPACES RI</u> 1 BIKE SPACE / MAXIMUM OF 3
(7) - NO MINIMUM LOT AR ASSIGNED AS COMM	REA PER DWELLING UN IUNITY SPACE.	IT REQUIRED IN THE WEST E	END INCENTIVE OVERLAY D	STRICT FOR PROVIDING AT	LEAST 20% OF THE SITE TO BE	*INDOOR BIKE
BUILDING FORM (PRINCIP, BUILDING HEIGHT:		REQUIRED (CD4-W) 4 STORIES ⁽¹⁾ 50' MAX ⁽²⁾	PROPOSED (CD4-W) 4 STORIES, 50'	REQUIRED (CD4-L1) 2 STORIES ⁽¹⁾ 30' MAX ⁽²⁾	PROPOSED (CD4-L1) 2 STORIES, 30' (BLDG A)	
MINIMUM GROUND S	OVE SIDEWALK GRADE: STORY HEIGHT:	9 FT ⁽³⁾	<36 IN 12 FT	36 IN 9 FT ⁽³⁾	<36 IN 11 FT	
MINIMUM SECOND S FAÇADE GLAZING: SHOPFRONT FA OTHER FAÇADE	AÇADE:	N/A 70% MIN 20% TO 50%	>70%	N/A 70% MIN 20% TO 40%	>70%	
ALLOWED ROOF TYP	ES:	20% TO 50% FLAT, GABLE, HIP, GAMBREL, OR MANSARD	FLAT	20% TO 40% FLAT, GABLE, HIP, GAMBREL, OR MANSARD	FLAT	
GABLE HIP MANSARD/GAM		6:12 - 12:12 3:12 MIN 6:12 - 30:12		6:12 - 12:12 3:12 MIN 6:12 - 30:12		
ALLOWED BUILDING (1) - ADDITIONAL 1 STOR		APARTMENT BUILDING AND 3 RESPECTIVELY) ALLC	APARTMENT BUILDING DWED FOR PROVIDING AT L	EAST 20% OF THE SITE TO I	BE ASSIGNED AS COMMUNITY	
COMMUNITY SPACE.	STORY HEIGHT ALLOWE		OVERLAY DISTRICT FOR PR	OVIDING AT LEAST 20% OF	THE SITE TO BE ASSIGNED AS	
ASSIGNED AS COMM (3) - MINIMUM GROUND S	STORY HEIGHT ALLOWE	D IN WEST END INCENTIVE 44,154 SF 20%		OVIDING AT LEAST 20% OF		
ASSIGNED AS COMM (3) - MINIMUM GROUND S COMMUNITY SPACE.	STORY HEIGHT ALLOWE	44,154 SF 20%	OVERLAY DISTRICT FOR PR 55,192 SF	OVIDING AT LEAST 20% OF		
ASSIGNED AS COMM (3) - MINIMUM GROUND S COMMUNITY SPACE.	TORY HEIGHT ALLOWE	44,154 SF 20%	OVERLAY DISTRICT FOR PR 55,192 SF 25% <u>SECTION:</u>			
ASSIGNED AS COMM (3) - MINIMUM GROUND S COMMUNITY SPACE.	TORY HEIGHT ALLOWE	44,154 SF 20% NCES:	OVERLAY DISTRICT FOR PR 55,192 SF 25% <u>SECTION:</u>	<u>GRANTED:</u>		
ASSIGNED AS COMM (3) - MINIMUM GROUND S COMMUNITY SPACE.	TORY HEIGHT ALLOWE	44,154 SF 20% NCES:	OVERLAY DISTRICT FOR PR 55,192 SF 25% <u>SECTION:</u>	<u>GRANTED:</u>		ΜΕΑΝ
ASSIGNED AS COMM (3) - MINIMUM GROUND S COMMUNITY SPACE.	TORY HEIGHT ALLOWE	44,154 SF 20% NCES:	OVERLAY DISTRICT FOR PR 55,192 SF 25% <u>SECTION:</u>	<u>GRANTED:</u>		WA TEF
ASSIGNED AS COMM (3) - MINIMUM GROUND S COMMUNITY SPACE.	TORY HEIGHT ALLOWE	44,154 SF 20% NCES:	OVERLAY DISTRICT FOR PR 55,192 SF 25% <u>SECTION:</u>	<u>GRANTED:</u> 1/22/2020	THE SITE TO BE ASSIGNED AS	WA TER
ASSIGNED AS COMM (3) - MINIMUM GROUND S COMMUNITY SPACE.	TORY HEIGHT ALLOWE	44,154 SF 20% NCES:	OVERLAY DISTRICT FOR PR 55,192 SF 25% <u>SECTION:</u>	<u>GRANTED:</u> 1/22/2020 NORT	THE SITE TO BE ASSIGNED AS	WA TER
ASSIGNED AS COMM (3) - MINIMUM GROUND S COMMUNITY SPACE.	TORY HEIGHT ALLOWE	44,154 SF 20% NCES:	OVERLAY DISTRICT FOR PR 55,192 SF 25% <u>SECTION:</u>	GRANTED: 1/22/2020 NORT	THE SITE TO BE ASSIGNED AS	MEAN WATER ELEV. 3.0 (NA
ASSIGNED AS COMM (3) - MINIMUM GROUND S COMMUNITY SPACE. COMMUNITY SPACE:	STORY HEIGHT ALLOWE	44,154 SF 20% NCES:	OVERLAY DISTRICT FOR PR 55,192 SF 25% <u>SECTION:</u>	GRANTED: 1/22/2020 NORT	THE SITE TO BE ASSIGNED AS TH MILL POND (TIDAL) X FLOOD ZONE (SEE EXISTING	WA TER
ASSIGNED AS COMM (3) - MINIMUM GROUND S COMMUNITY SPACE. COMMUNITY SPACE:	STORY HEIGHT ALLOWE	44,154 SF 20% NCES:	OVERLAY DISTRICT FOR PR 55,192 SF 25% <u>SECTION:</u>	GRANTED: 1/22/2020 NORT	THE SITE TO BE ASSIGNED AS TH MILL POND (TIDAL) X FLOOD ZONE (SEE EXISTING	WA TEF
ASSIGNED AS COMM (3) - MINIMUM GROUND S COMMUNITY SPACE. COMMUNITY SPACE:	STORY HEIGHT ALLOWE	44,154 SF 20%	OVERLAY DISTRICT FOR PR 55,192 SF 25% <u>SECTION:</u>	GRANTED: 1/22/2020 NORT	THE SITE TO BE ASSIGNED AS	WA TER
ASSIGNED AS COMM (3) - MINIMUM GROUND S COMMUNITY SPACE.	STORY HEIGHT ALLOWE	44,154 SF 20% NCES:	OVERLAY DISTRICT FOR PR 55,192 SF 25% <u>SECTION:</u>	GRANTED: 1/22/2020 NORT APRO LINE, CONDIT	THE SITE TO BE ASSIGNED AS TH MILL POND (TIDAL) X FLOOD ZONE (SEE EXISTING	WATEF ELEV. 3.0 (NA
ASSIGNED AS COMM (3) - MINIMUM GROUND S COMMUNITY SPACE. COMMUNITY SPACE:	STORY HEIGHT ALLOWE	44,154 SF 20%	OVERLAY DISTRICT FOR PR 55,192 SF 25% <u>SECTION:</u>	GRANTED: 1/22/2020 NORT APRO LINE, CONDIT	THE SITE TO BE ASSIGNED AS TH MILL POND (TIDAL) X FLOOD ZONE (SEE EXISTING IONS NOTE #3) 100' TIDAL RICCI	WATEF ELEV. 3.0 (NA
ASSIGNED AS COMM (3) - MINIMUM GROUND S COMMUNITY SPACE. COMMUNITY SPACE:	STORY HEIGHT ALLOWE	44,154 SF 20%	OVERLAY DISTRICT FOR PR 55,192 SF 25% SECTION: ROAD: 10,516.20	GRANTED: 1/22/2020 NORT APRO LINE, CONDIT	THE SITE TO BE ASSIGNED AS	WATEF ELEV. 3.0 (NA
ASSIGNED AS COMM (3) - MINIMUM GROUND S COMMUNITY SPACE. COMMUNITY SPACE:	STORY HEIGHT ALLOWE	44,154 SF 20%	OVERLAY DISTRICT FOR PR 55,192 SF 25% SECTION: ROAD: 10,516.20	GRANTED: 1/22/2020 NORT APRO LINE, CONDIT	THE SITE TO BE ASSIGNED AS	WATEF ELEV. 3.0 (NA
ASSIGNED AS COMM (3) - MINIMUM GROUND S COMMUNITY SPACE. COMMUNITY SPACE:	STORY HEIGHT ALLOWE	44,154 SF 20%	OVERLAY DISTRICT FOR PR 55,192 SF 25% SECTION: ROAD: 10,516.20	GRANTED: 1/22/2020 NORT APRO LINE, CONDIT	THE SITE TO BE ASSIGNED AS	WATER ELEV. 3.0 (NA
ASSIGNED AS COMM (3) - MINIMUM GROUND S COMMUNITY SPACE. COMMUNITY SPACE:	STORY HEIGHT ALLOWE	44,154 SF 20%	OVERLAY DISTRICT FOR PR 55,192 SF 25% SECTION: ROAD: 10,516.20	GRANTED: 1/22/2020 NORT APRO LINE, CONDIT 50' LIMITED	THE SITE TO BE ASSIGNED AS	WATER ELEV. 3.0 (NA
ASSIGNED AS COMM (3) - MINIMUM GROUND S COMMUNITY SPACE. COMMUNITY SPACE:	STORY HEIGHT ALLOWE	44,154 SF 20%	OVERLAY DISTRICT FOR PR 55,192 SF 25% SECTION: ROAD: 10,516.20	GRANTED: 1/22/2020 NORT APRO LINE, CONDIT 50' LIMITED	THE SITE TO BE ASSIGNED AS	WATER ELEV. 3.0 (NA
ASSIGNED AS COMM (3) - MINIMUM GROUND S COMMUNITY SPACE. COMMUNITY SPACE:	STORY HEIGHT ALLOWE	44,154 SF 20%	OVERLAY DISTRICT FOR PR 55,192 SF 25% SECTION: ROAD: 10,516.20	GRANTED: 1/22/2020 NORT APRO LINE, CONDIT 50' LIMITED	THE SITE TO BE ASSIGNED AS	WATER ELEV. 3.0 (NA


Last Sa Plotted

REET	PARKING	REQUIREMENTS:	


SPACES REQUIRED:		
LLING UNITS:		
TO 500 SF 0.5 SPACES PER UNIT	BUILDING A, 1 UNITS	0.5 SPACES
	BUILDING B, 1 UNITS	0.5 SPACES
	BUILDING C, 1 UNITS	0.5 SPACES
AL MINIMUM PARKING SPACES REQUIRE	D =	1.5 SPACES
SF TO 750 SF 1.0 SPACES PER UNIT		
SF TO 750 SF 1.0 SPACES PER UNIT	BUILDING A, 24 UNITS BUILDING B, 38 UNITS	24 SPACES 38 SPACES
	BUILDING C, 27 UNITS	27 SPACES
AL MINIMUM PARKING SPACES REQUIRE		89 SPACES
		05 01 1020
R 750 SF 1.3 SPACES PER UNIT	BUILDING A, 21 UNITS	27.3 SPACES
	BUILDING B, 35 UNITS	45.5 SPACES
	BUILDING C, 22 UNITS	28.6 SPACES
AL MINIMUM PARKING SPACES REQUIRE	D =	101.4 SPACES
ACE PER 350 SF	10,300 SF	
JS 25% FOR WEST END INCENTIVE		23 SPACES
TORS:		
ACE FOR EVERY 5 DWELLING UNITS	170 UNITS	34 SPACES
	170 01110	3101/(020
AL MINIMUM PARKING SPACES REQUIRE	D =	250 SPACES
-		
RKING SPACES PROVIDED:		
RKING SPACES PROVIDED =	103 SPACES (SURFACE PAR	
	73 SPACES (BUILDING A, U	
	46 SPACES (BUILDING B, U	NDERGROUND)
	28 SPACES (PRIVATE ROAD	<u>WAY)</u> (1)
	250 SPACES	
ES REQUIRED=	7 SPACES (FOR 201-300 FA	
ES PROVIDED=		IRFACE PARKING COUNT OF 100)
	/ SI ACES (INCLODED IN SC	
DITIONAL USE PERMIT REQUIRED FOR S	HARED PARKING ON SEPARA	TE LOT
-		
	REQUIRED	PROPOSED
STALL LAYOUT:	8.5' X 19'	8.5' X 19'
LE WIDTH:	24 FT	24 FT
ES REQUIRED:		
ACE / 5 DWELLING UNITS,	30 SPACES	30 SPACES*

BIKE STORAGE WILL BE PROVIDED THAT MEETS OR EXCEEDS THE REQUIREMENT.

<u>LEGEN</u>

PROP PROPO BUILD TYPIC COOR PROPO PROPO PROPO PROPO GRAN

	Tighe&Bond
ID PERTY LINE POSED PROPERTY LINE POSED EDGE OF PAVEMENT POSED CORS POSED BUILDING POSED PAVEMENT SECTION POSED CONCRETE SIDEWALK POSED CONCRETE SIDEWALK POSED BOLLARD LING POSED CURB RADIUS POSED CURB RADIUS POSED CURB RADIUS POSED SLOPED GRANITE CURB POSED SLOPED GRANITE CURB POSED SLOPED GRANITE CURB POSED SLOPED GRANITE CURB POSED MOUNTABLE VERTICAL	PRADLEE MEZQUITA No. 08830 CENSE ONALELATION DATACK PATRICK CRIMANNS ON ACTION DATACK CRIMANNS ON ACTION DATACK CRIMANNS ON ACTION DATACK
	u 100' 200' GRAPHIC SCALE
	Iron Horse Properties, LLC 105 Bartlett Street Portsmouth, New Hampshire
	Image: Constraint of the systemImage: Constraint of the systemG11/18/2020TAC ResubmissionF10/28/2020Wetland CUP ResubmissionE5/20/2020TAC ResubmissionD4/29/2020Wetland CUP SubmissionC4/20/2020TAC SubmissionB2/6/2020Design Review SubmissionA1/2/2020ZBA SubmissionMARKDATEDESCRIPTIONPROJECT NO:C-0960-006DATE:April 20, 2020FILE:C-0960-006_C-SITE.DWGDRAWN BY:NAHCHECKED:PMCAPPROVED:BML
	SCALE: AS SHOWN

1.	SITE NOTES: STRIPE PARKING AREAS AS SHOWN, INCLUDING PARKING SPACES, STOP BARS, ADA SYMBOLS, PAINTED ISLANDS, CROSS WALKS, ARROWS, LEGENDS AND CENTERLINES SHALL BE THERMOPLASTIC MATERIAL. THERMOPLASTIC MATERIAL SHALL MEET THE REQUIREMENTS OF AASHTO AASHTO M249. (ALL MARKINGS EXCEPT CENTERLINE AND MEDIAN ISLANDS TO BE CONSTRUCTED USING WHITE TRAFFIC PAINT. CENTERLINE AND MEDIAN ISLANDS TO BE CONSTRUCTED USING YELLOW TRAFFIC PAINT. ALL TRAFFIC PAINT SHALL MEET THE REQUIREMENTS OF AASHTO M248 TYPE "F").	<u>L</u>
2.	ALL PAVEMENT MARKINGS AND SIGNS TO CONFORM TO "MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES", "STANDARD ALPHABETS FOR HIGHWAY SIGNS AND PAVEMENT MARKINGS", AND THE AMERICANS WITH DISABILITIES ACT REQUIREMENTS, LATEST EDITIONS.	
	SEE DETAILS FOR PARKING STALL MARKINGS, ADA SYMBOLS, SIGNS AND SIGN POSTS.	[]
	CENTERLINES SHALL BE FOUR (4) INCH WIDE YELLOW LINES. STOP BARS SHALL BE EIGHTEEN (18) INCHES WIDE.	
5.	PAINTED ISLANDS SHALL BE FOUR (4) INCH WIDE DIAGONAL LINES AT 3'-0" O.C. BORDERED BY FOUR (4) INCH WIDE LINES.	
6.	THE CONTRACTOR SHALL EMPLOY A NEW HAMPSHIRE LICENSED LAND SURVEYOR TO DETERMINE ALL LINES AND	
7	GRADES.	
/.	CLEAN AND COAT VERTICAL FACE OF EXISTING PAVEMENT AT SAW CUT LINE WITH RS-1 EMULSION IMMEDIATELY PRIOR TO PLACING NEW BITUMINOUS CONCRETE.	
8.	ALL MATERIALS AND CONSTRUCTION SHALL CONFORM WITH APPLICABLE FEDERAL, STATE, AND LOCAL CODES &	•
9	SPECIFICATIONS. COORDINATE ALL WORK WITHIN PUBLIC RIGHT OF WAY WITH THE CITY OF PORTSMOUTH.	BLDG TYP
	CONTRACTOR TO SUBMIT AS-BUILT PLANS IN DIGITAL FORMAT (.DWG AND .PDF FILES) ON DISK TO THE OWNER AND	COORD
	ENGINEER UPON COMPLETION OF THE PROJECT. AS-BUILTS SHALL BE PREPARED AND CERTIFIED BY A NEW	30'R
11.	HAMPSHIRE LICENSED LAND SURVEYOR. SEE BUILDING DRAWINGS FOR ALL CONCRETE PADS & SIDEWALKS ADJACENT TO BUILDING.	VGC
	ALL WORK SHALL CONFORM TO THE CITY OF PORTSMOUTH DEPARTMENT OF PUBLIC WORKS, STANDARD	SGC
13	SPECIFICATIONS. CONTRACTOR TO PROVIDE BACKFILL AND COMPACTION AT CURB LINE AFTER CONCRETE FORMS FOR SIDEWALKS AND	MVGC
15.	PADS HAVE BEEN STRIPPED. COORDINATE WITH BUILDING CONTRACTOR.	
	COORDINATE ALL WORK ADJACENT TO BUILDING WITH BUILDING CONTRACTOR.	
15.	THE PROPERTY MANAGER WILL BE RESPONSIBLE FOR TIMELY SNOW REMOVAL FROM ALL PRIVATE SIDEWALKS, DRIVEWAYS, AND PARKING AREAS. SNOW REMOVAL WILL BE HAULED OFF-SITE AND LEGALLY DISPOSED OF WHEN	
	SNOW BANKS EXCEED 6 FEET IN HEIGHT.	
	ALL DIMENSIONS ARE TO THE FACE OF CURB UNLESS OTHERWISE NOTED. ALL CONDITIONS ON THIS PLAN SHALL REMAIN IN EFFECT IN PERPETUITY PURSUANT TO THE REQUIREMENTS OF THE	
	SITE PLAN REVIEW REGULATIONS.	
18.	THIS SITE PLAN SHALL BE RECORDED IN THE ROCKINGHAM COUNTY REGISTRY OF DEEDS. ALL IMPROVEMENTS SHOWN ON THIS SITE PLAN SHALL BE CONSTRUCTED AND MAINTAINED IN ACCORDANCE WITH THE PLAN BY THE PROPERTY OWNER AND ALL FUTURE PROPERTY OWNERS. NO CHANGES SHALL BE MADE TO THIS SITE PLAN WITHOUT	
10	THE EXPRESS APPROVAL OF THE PORTSMOUTH PLANNING DIRECTOR. THE APPLICANT SHALL HAVE A SITE SURVEY CONDUCTED BY A RADIO COMMUNICATIONS CARRIER APPROVED BY THE	
19.	CITY'S COMMUNICATIONS DIVISION. THE RADIO COMMUNICATIONS CARRIER MUST BE FAMILIAR AND CONVERSANT	
	WITH THE POLICE AND RADIO CONFIGURATION. IF THE SITE SURVEY INDICATES THAT IT IS NECESSARY TO INSTALL A SIGNAL REPEATER EITHER ON OR NEAR THE PROPOSED PROJECT, THOSE COSTS SHALL BE THE RESPONSIBILITY OF	
	THE PROPERTY OWNER. THE OWNER SHALL COORDINATE WITH THE SUPERVISOR OF RADIO COMMUNICATIONS FOR	
20.	THE CITY. ALL TREES TO BE PLANTED ARE TO BE INSTALLED UNDER THE SUPERVISION OF THE CITY OF PORTSMOUTH DPW	
	USING STANDARD INSTALLATION METHODS.	
21.	THE APPLICATION SHALL PREPARE A CONSTRUCTION MITIGATION AND MANAGEMENT PLAN (CMMP) FOR REVIEW AND APPROVAL BY THE CITY'S LEGAL AND PLANNING DEPARTMENTS.	
	ALLOVAL DE THE CITES LEGAL AND FLANNING DELAKTHENES.	
		BEGIN VO MEET/MA
		SIGN
		34
	END V	
	MEET/MAT	гсн
	EXISTI	
	BARTLETT STREET	X Star we you
	(BY OTHERS)	
	le la constante de la constante	
	Eller ////	
		M M
		E
	BASTING	
		/

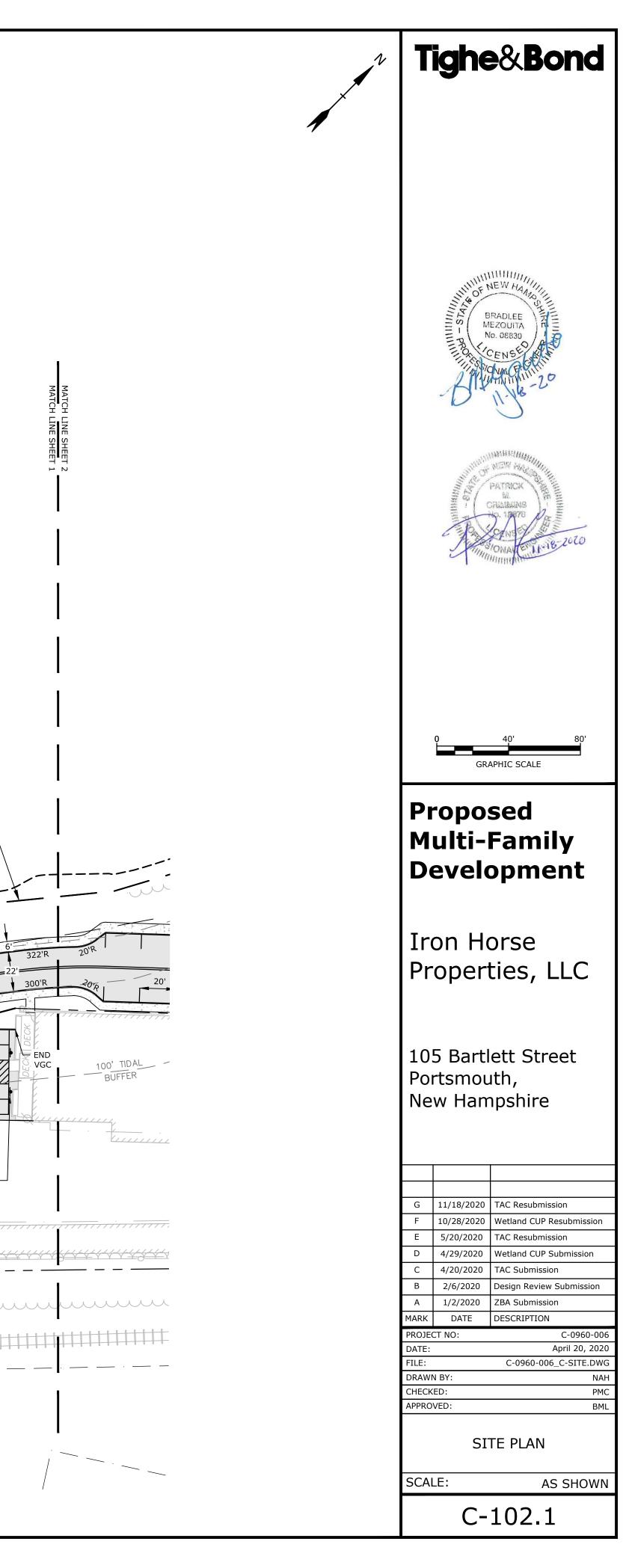
HAR

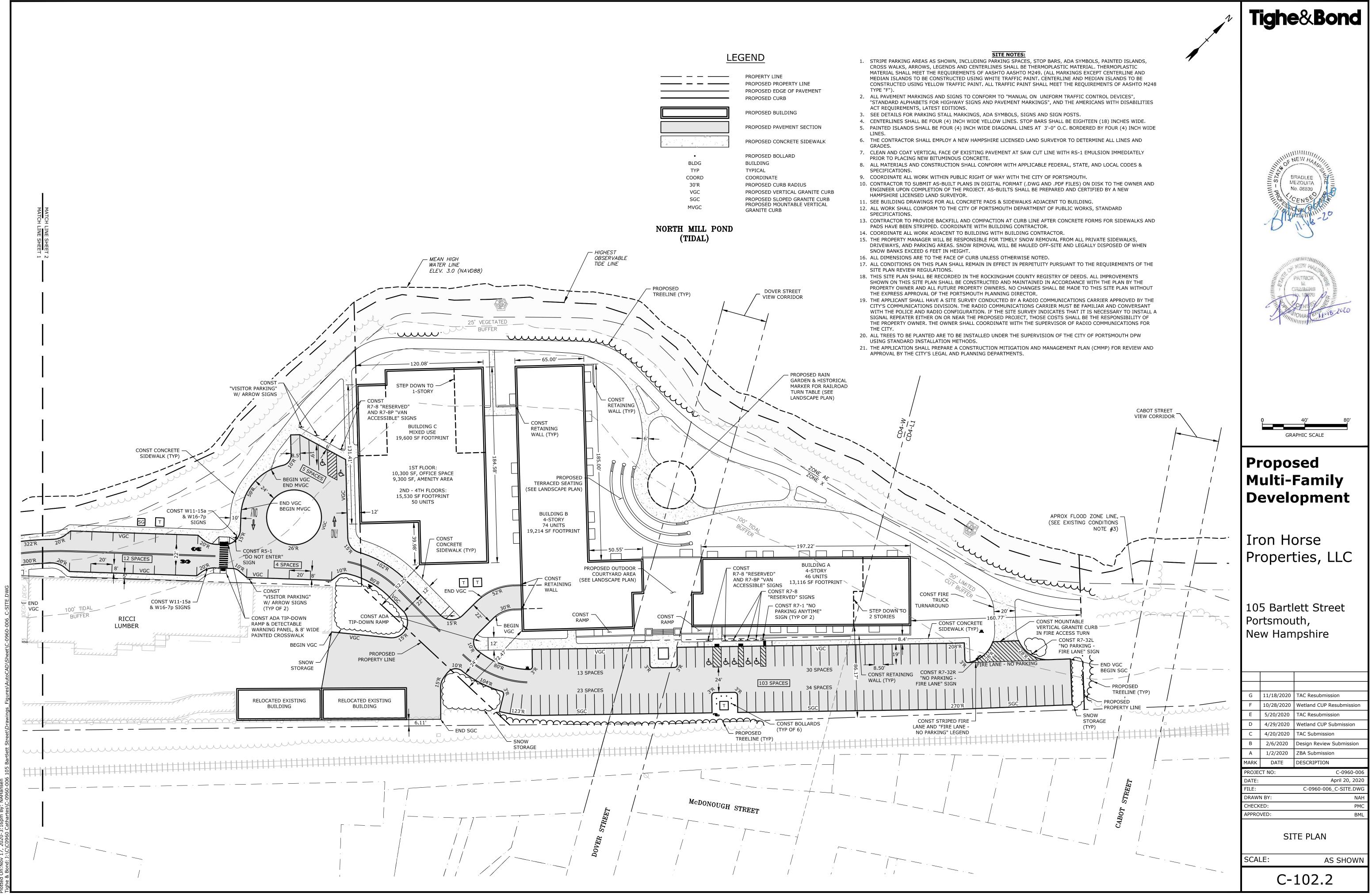
Martin aparticity

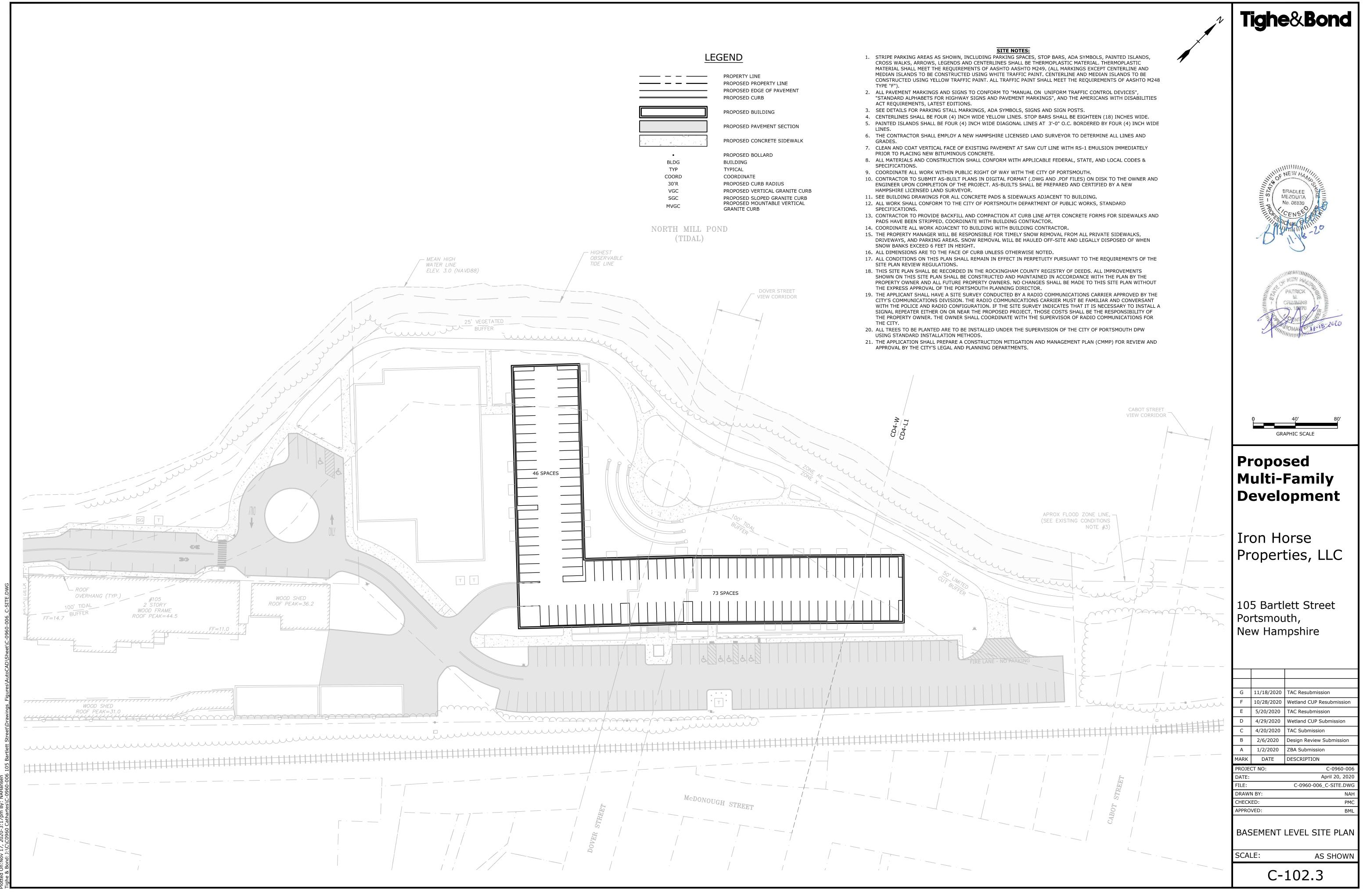
┠╫┎╶╫╓╶┧╲┥╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴

LEGEND

PROPERTY LINE PROPOSED PROPERTY LINE PROPOSED EDGE OF PAVEMENT PROPOSED CURB


PROPOSED BUILDING


PROPOSED PAVEMENT SECTION


PROPOSED CONCRETE SIDEWALK

PROPOSED BOLLARD BUILDING TYPICAL COORDINATE PROPOSED CURB RADIUS PROPOSED VERTICAL GRANITE CURB PROPOSED SLOPED GRANITE CURB PROPOSED MOUNTABLE VERTICAL GRANITE CURB

- BEGIN VGC MEET/MATCH EXISTING NORTH MILL POND APROX FLOOD ZONE LINE, (SEE EXISTING CONDITIONS - CONST R1-1 "STOP" (TIDAL) HIGHEST – OBSERVABLE TIDE LINE SIGN, BAR, AND LEGEND NOTE #3) MEAN HIGH WATER LINE ELEV. 3.0 (NAVD88) CONST PAINTED -SHARROW (TYP) CONST DOUBLE CONST ADA 🖳 CONST CONCRETE -SIDEWALK (TYP) CONST ADA TIP-DOWN RAMP YELLOW LINE TIP-DOWN RAMP ' SPACES ZONE AE ZONE X -#==== 300'R VGC 7 SPACES 5'R 3->> SPACES 20' VGC BEGIN VGC MEET/MATCH EXISTING RICCI LUMBER DESIGN CENTER f SPACES L END VGC MEET/MATCH EXISTING CONST ADA –/ TIP-DOWN RAMP 8 SPACE - 4-G CONST PAINTED — ARROW (TYP) - BEGIN VGC EXISTING GATE ---/ HOUSE └─ CONST 6' CHAINLINK FENCE CONST BOLLARD-MOUNTED R7-8 "RESERVED" AND R7-8A "VAN ACCESSIBLE" SIGNS (TYP OF 2) 13000003000⁴444444444444444

GRADING AND DRAINAGE NOTES:

95%

95%

90%

1.	COMPACTION REQUIREMENTS:
	BELOW PAVED OR CONCRETE AREAS

- TRENCH BEDDING MATERIAL AND SAND BLANKET BACKFILL
- BELOW LOAM AND SEED AREAS
- * ALL PERCENTAGES OF COMPACTION SHALL BE OF THE MAXIMUM DRY DENSITY AT THE OPTIMUM MOISTURE CONTENT AS DETERMINED AND CONTROLLED IN ACCORDANCE WITH ASTM D-1557, METHOD C FIELD DENSITY TESTS SHALL BE MADE IN ACCORDANCE WITH ASTM D-1556 OR ASTM-2922.
- 2. ALL STORM DRAINAGE PIPES SHALL BE HIGH DENSITY POLYETHYLENE (HANCOR HI-Q, ADS N-12 OR EQUAL), UNLESS OTHERWISE SPECIFIED.
- 3. SEE UTILITY PLAN FOR ALL SITE UTILITY INFORMATION. 4. ADJUST ALL MANHOLES, CATCH BASINS, CURB BOXES, ETC. WITHIN LIMITS OF WORK TO FINISH GRADE.
- 5. CONTRACTOR SHALL PROVIDE A FINISH PAVEMENT SURFACE AND LAWN AREAS FREE OF LOW SPOTS AND PONDING AREAS. CRITICAL AREAS INCLUDE BUILDING ENTRANCES, EXITS, RAMPS AND LOADING DOCK AREAS ADJACENT TO THE BUILDING.
- 6. CONTRACTOR SHALL THOROUGHLY CLEAN ALL CATCH BASINS AND DRAIN LINES, WITHIN THE LIMIT OF WORK, OF SEDIMENT IMMEDIATELY UPON COMPLETION OF CONSTRUCTION.
- 7. ALL MATERIALS AND CONSTRUCTION SHALL CONFORM WITH APPLICABLE FEDERAL, STATE AND LOCAL CODES. 8. ALL DISTURBED AREAS NOT TO BE PAVED OR OTHERWISE TREATED SHALL RECEIVE 6" LOAM, SEED FERTILIZER AND MULCH.
- 9. ALL STORM DRAIN CONSTRUCTION SHALL BE IN ACCORDANCE WITH THE NHDOT STANDARD SPECIFICATIONS FOR
- HIGHWAYS AND BRIDGES, LATEST EDITION. 10. ALL PROPOSED CATCH BASINS SHALL BE EQUIPPED WITH OIL/GAS SEPARATOR HOODS AND 4' SUMPS.
- 11. ALL WORK SHALL CONFORM TO THE CITY OF PORTSMOUTH DEPARTMENT OF PUBLIC WORKS, STANDARD SPECIFICATIONS AND WITH THE STATE OF NEW HAMPSHIRE DEPARTMENT OF TRANSPORTATION, "STANDARD SPECIFICATIONS OF ROAD AND BRIDGE CONSTRUCTION", CURRENT EDITION.
- 12. CONTRACTOR TO SUBMIT AS-BUILT PLANS IN DIGITAL FORMAT (.DWG AND .PDF FILES) ON DISK TO THE OWNER AND ENGINEER UPON COMPLETION OF THE PROJECT. AS-BUILTS SHALL BE PREPARED AND CERTIFIED BY A NEW HAMPSHIRE LICENSED LAND SURVEYOR.
- 13. SEE EXISTING CONDITIONS PLAN FOR BENCH MARK INFORMATION.

EROSION CONTROL NOTES

- 1. INSTALL EROSION CONTROL BARRIERS AS SHOWN AS FIRST ORDER OF WORK. 2. SEE GENERAL EROSION CONTROL NOTES ON "EROSION CONTROL NOTES & DETAILS SHEET"
- 3. PROVIDE INLET PROTECTION AROUND ALL EXISTING AND PROPOSED CATCH BASIN INLETS WITHIN THE WORK LIMITS AS WELL AS CATCH BASINS/CURB INLETS THAT RECEIVE RUNOFF FROM CONSTRUCTION ACTIVITIES. MAINTAIN FOR THE DURATION OF THE PROJECT.
- 4. INSTALL STABILIZED CONSTRUCTION EXIT(S).
- 5. INSPECT INLET PROTECTION AND PERIMETER EROSION CONTROL MEASURES DAILY AND AFTER EACH RAIN STORM OF 0.25 INCH OR GREATER. REPAIR/MODIFY PROTECTION AS NECESSARY TO MAXIMIZE EFFICIENCY OF FILTER. REPLACE ALL FILTERS WHEN SEDIMENT IS 1/3 THE FILTER HEIGHT. 6. ALL DISTURBED AREAS NOT TO BE PAVED OR OTHERWISE TREATED SHALL RECEIVE 6" LOAM, SEED, FERTILIZER AND
- MULCH.
- 7. CONSTRUCT EROSION CONTROL BLANKET ON ALL SLOPES STEEPER THAN 3:1.
- 8. PRIOR TO ANY WORK OR SOIL DISTURBANCE COMMENCING ON THE SUBJECT PROPERTY, INCLUDING MOVING OF EARTH, THE APPLICANT SHALL INSTALL ALL EROSION AND SILTATION MITIGATION AND CONTROL MEASURES AS REQUIRED BY STATE AND LOCAL PERMITS AND APPROVALS.
- 9. CONTRACTOR SHALL BE RESPONSIBLE TO CONTROL DUST AND WIND EROSION THROUGHOUT THE CONSTRUCTION PERIOD. DUST CONTROL MEASURES SHALL INCLUDE, BUT ARE NOT LIMITED TO, SPRINKLING WATER ON UNSTABLE SOILS SUBJECT TO ARID CONDITIONS.
- 10. THE CONTRACTOR SHALL REMOVE AND PROPERLY DISPOSE OF ALL TEMPORARY EROSION CONTROL DEVICES UPON COMPLETION OF CONSTRUCTION.
- 11. ALL CATCH BASIN SUMPS AND PIPING SHALL BE THOROUGHLY CLEANED TO REMOVE ALL SEDIMENT AND DEBRIS AFTER THE PROJECT HAS BEEN FULLY PAVED.
- 12. TEMPORARY SOIL STOCKPILE SHALL BE SURROUNDED WITH PERIMETER CONTROLS AND SHALL BE STABILIZED BY TEMPORARY EROSION CONTROL SEEDING. STOCKPILE AREAS TO BE LOCATED AS FAR AS POSSIBLE FROM THE DELINEATED EDGE OF WETLANDS.
- 13. SAFETY FENCING SHALL BE PROVIDED AROUND STOCKPILES OVER 10 FT.
- 14. CONCRETE TRUCKS WILL BE REQUIRED TO WASH OUT (IF NECESSARY) SHOOTS ONLY WITHIN AREAS WHERE
- CONCRETE HAS BEEN PLACED. NO OTHER WASH OUT WILL BE ALLOWED. 15. ALL CONDITIONS ON THIS PLAN SHALL REMAIN IN EFFECT IN PERPETUITY PURSUANT TO THE REQUIREMENTS OF THE SITE PLAN REVIEW REGULATIONS.

LEGEND

0

 \bigcirc

BLDG

TYP

COORD

TC

BC

НW

PROPOSED MAJOR CONTOUR LINE PROPOSED MINOR CONTOUR LINE PROPOSED DRAIN LINE (TYP) PROPOSED SILT SOCK

INLET PROTECTION SILT SACK

PROPOSED CATCHBASIN PROPOSED DOUBLE GRATE CATCHBASIN

PROPOSED DRAIN MANHOLE

PROPOSED YARD DRAIN BUILDING TYPICAL COORDINATE TOP OF CURB

BOTTOM OF CURB HEADWALL

BEGIN SILT

SOCK

- 10.75

RELOCATED

YARD DRAIN

DRAINAGE STRUCTURE TABL	
	-

CB1242	PCB2
RIM=9.30	RIM=8.20
INV.OUT=5.80 SW	INV.OUT=5.30 N
CB1243 RIM=9.55 INV.IN=6.65 NW INV.OUT=6.55 SE	PCB3 RIM=8.40 INV.OUT=5.50 NW
CB1244	PCB4
RIM=10.00	RIM=8.70
INV.OUT=6.85 SW	INV.OUT=5.10 NW
CB1264	PCB5
RIM=9.50	RIM=9.60
INV.OUT=6.50 NE	INV.OUT=6.10 NW
PCB1	PCB6
RIM=8.25	RIM=9.80

INV.OUT=5.30 E

PCB7 RIM=10.50 INV.OUT=7.50 NW PCB8 RIM=12.65 INV.OUT=8.65 NW PCB9 RIM=12.15 .10 NW INV.OUT=9.15 NW PCB10 RIM=11.55 INV.OUT=8.55 SE

PCB11 RIM=8.60 INV.OUT=6.30 SW INV.OUT=5.80 NE

PCB12 RIM=8.60 INV.OUT=5.45 S PDMH1 RIM=8.35 INV.IN=5.20 W

INV.IN=5.20 S INV.IN=5.20 SE INV.OUT=5.10 NE PDMH2 RIM=9.05 INV.IN=5.00 SW INV.IN=5.00 SE

INV.OUT=4.90 NE PDMH3 RIM=10.50 INV.IN=4.30 SE

INV.IN=4.30 SW INV.OUT=4.20 NE INV.OUT=6.15 NE PDMH4

RIM=11.75 INV.IN=3.45 SW INV.IN=8.20 NW INV.IN=4.30 NE INV.IN=8.20 SE INV.OUT=3.35 NW INV.OUT=8.10 SW

PDMH5 RIM=11.30 INV.IN=5.05 NE INV.OUT=4.95 SW

PDMH6

PDMH7

PDMH8

PDMH9

RIM=12.85

RIM=11.90

RIM=11.00

INV.IN=6.60 NW

INV.OUT=6.50 SE

INV.IN=6.25 NW

INV.IN=6.25 SE

INV.IN=6.25 SW

RIM=9.85

INV.IN=6.00 NE

INV.IN=6.00 SE

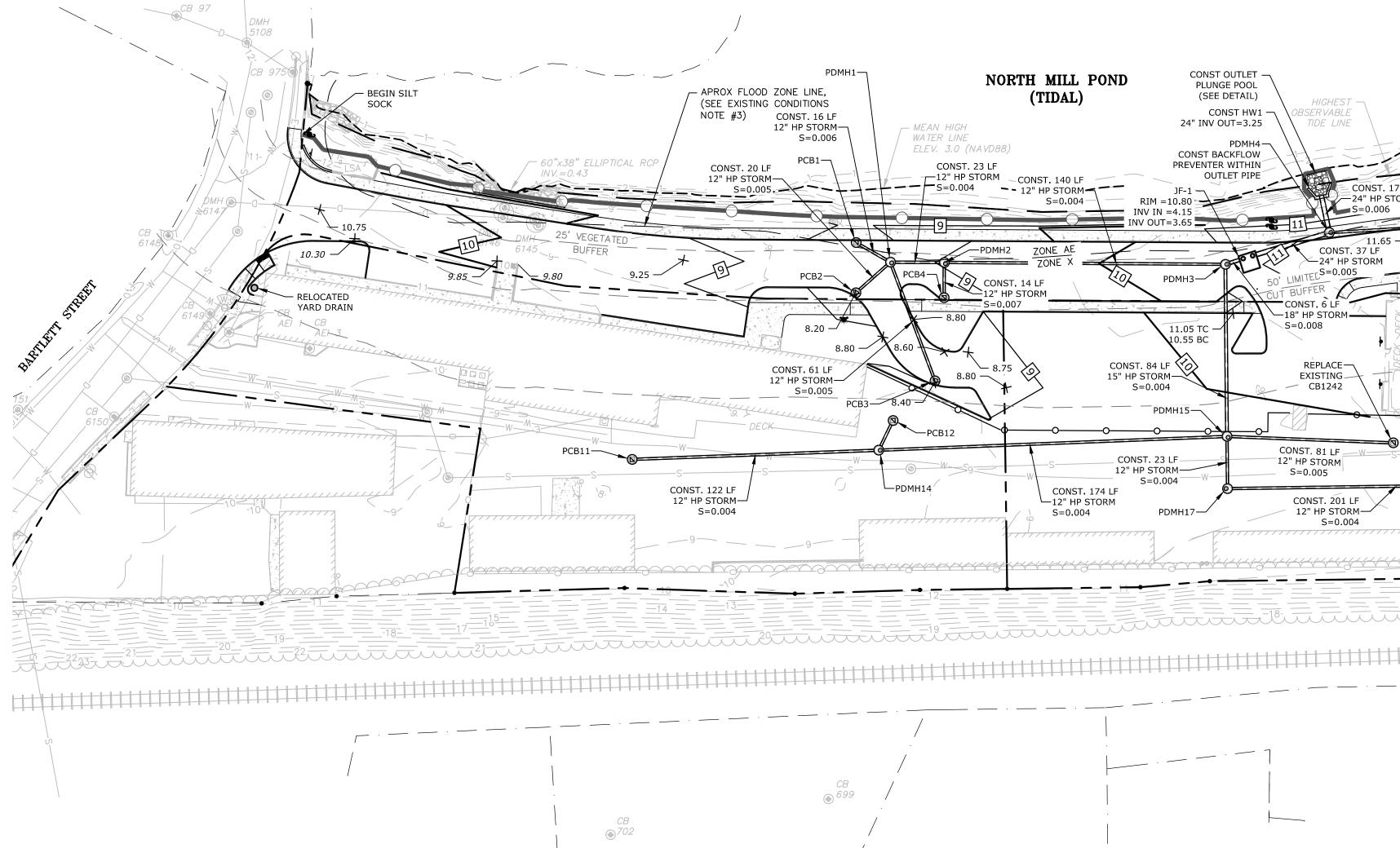
INV.OUT=5.90 SW

RIM=14.50 INV IN=4.60 SE INV.OUT=4.60 NW INV.IN=5.40 NE INV.OUT=6.80 SW PDMH11

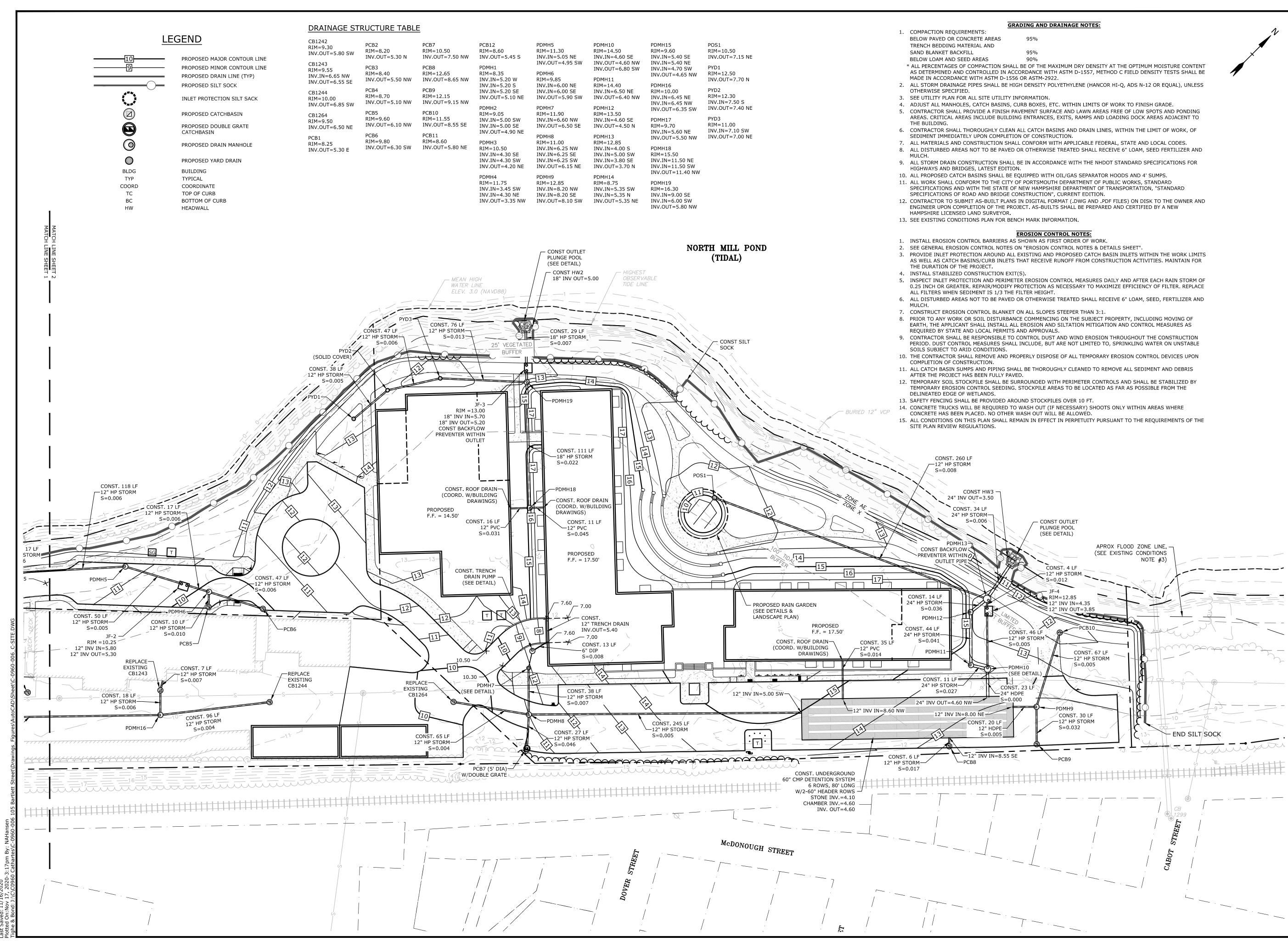
PDMH10

RIM=14.40 INV.IN=6.50 NE INV.OUT=6.40 NW PDMH12 RIM=13.50

INV IN=4.60 SE INV.OUT=4.50 N PDMH13

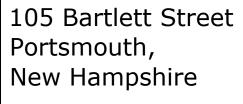

RIM=12.85 INV.IN=4.00 S INV IN=5.00 SW INV.IN=3.80 SE INV.OUT=3.70 N

PDMH14 RIM=8.75 INV.IN=5.35 SW INV IN=5.35 N INV.OUT=5.35 NE INV.OUT=5.80 NW


PDMH15 RIM=9.60 INV.IN=5.40 SE INV IN=4.70 SW INV.OUT=4.65 NW PDMH16 RIM=10.00 INV IN=6.45 NE INV.IN=6.45 NW INV.OUT=6.35 SW PDMH17 RIM=9.70

INV.IN=5.60 NE INV.OUT=5.50 NW PDMH18 RIM=15.50 INV.IN=11.50 NE

INV.IN=11.50 SW INV.OUT=11.40 NW PDMH19 RIM=16.30 INV.IN=9.00 SE INV.IN=6.00 SW



POS1 RIM=10.50 RIV.OUT=7.15 NE PYD1 RIM=12.50 RVV.OUT=7.70 N PYD2 RIM=12.30 RVV.IN=7.50 S RVV.OUT=7.40 NE PYD3 RIM=11.00	1 Tighe&Bond
MATCH LINE SHEET 1	BRADLEE MEZQUITA No. 08830 CENSE9 CENSE9 COMMENTAL DESCRIPTION CENSE9 COMMENTAL DESCRIPTION COMMENTAL DESCRIPTION COMMENTAL DESCRIPTION DE
	definition of the second secon
NST. 17 LF HP STORM 0.006 LF RM H H H H H H H H H H H H H H H H H H	Iron Horse Properties, LLC 105 Bartlett Street Portsmouth, New Hampshire
	G11/18/2020TAC ResubmissionF10/28/2020Wetland CUP ResubmissionE5/20/2020TAC ResubmissionD4/29/2020Wetland CUP SubmissionC4/20/2020TAC SubmissionB2/6/2020Design Review SubmissionA1/2/2020ZBA SubmissionMARKDATEDESCRIPTIONPROJECT NO:C-0960-006DATE:April 20, 2020FILE:C-0960-006_C-SITE.DWGDRAWN BY:NAHCHECKED:PMCAPPROVED:BMLGRADING, DRAINAGE, AND EROSION CONTROL PLAN
	SCALE: AS SHOWN

BRADLE MEZQUITA No. 08830 GRAPHIC SCALE Proposed Multi-Family Development Iron Horse Properties, LLC

Tighe&Bond

G	TAC Resubmission					
F	10/28/2020	Wetland CUP Resubmission				
E	5/20/2020	TAC Resubmission				
D	4/29/2020	Wetland CUP Submission				
С	4/20/2020	TAC Submission				
В	2/6/2020	Design Review Submission				
A 1/2/2020 ZBA Submission						
MARK	DATE	DESCRIPTION				
PROJE	CT NO:	C-0960-006				
DATE:		April 20, 2020				
FILE:		C-0960-006_C-SITE.DWG				
DRAW	N BY:	NAH				
CHECK	ED:	PMC				
APPRO	VED:	BML				
GRADING, DRAINAGE, AND EROSION CONTROL PLAN						
SCAI	_E:	AS SHOWN				
	C-	103.2				

UTILITY NOTES:

- 1. THE LOCATIONS OF EXISTING UNDERGROUND UTILITIES ARE APPROXIMATE AND THE LOCATIONS ARE NOT GUARANTEED BY THE OWNER OR ENGINEER. IT IS THE CONTRACTOR'S RESPONSIBILITY TO LOCATE ALL UTILITIES, ANTICIPATE CONFLICTS, REPAIR EXISTING UTILITIES, AND RELOCATE EXISTING UTILITIES REQUIRED TO COMPLETE THE WORK AT NO ADDITIONAL COST TO THE OWNER.
- 2. COORDINATE ALL UTILITY WORK WITH APPROPRIATE UTILITY COMPANY. • NATURAL GAS - UNITIL
- WATER/SEWER CITY OF PORTSMOUTH
- ELECTRIC EVERSOURCE • COMMUNICATIONS - CONSOLIDATED COMMUNICATIONS & COMCAST
- 3. SEE EXISTING CONDITIONS PLAN FOR BENCHMARK INFORMATION.
- 4. SEE GRADING, DRAINAGE & EROSION CONTROL PLAN FOR PROPOSED GRADING AND EROSION CONTROL MEASURES. 5. THE APPLICANT SHALL COORDINATE WITH THE CITY'S CONSULTANT TO COMPLETE A WATER CAPACITY ANALYSIS USING THE CITY'S CAPACITY MODELING AND SHALL MODIFY THE WATER SERVICE DESIGN AS REQUIRED. THE PRIVATE WATER LINE THAT CURRENTLY FEEDS THE DEVELOPMENT LOT SHALL BE EITHER REPLACED OR ABANDONED DEPENDING ON THE OUTCOME OF THE STUDY. ALL MODIFICATIONS SHALL BE REVIEWED AND APPROVED BY THE DPW AND THE FIRE DEPARTMENT.
- 6. ALL WATER MAIN INSTALLATIONS SHALL BE CLASS 52, CEMENT LINED DUCTILE IRON PIPE.
- 7. ALL WATER MAIN INSTALLATIONS SHALL BE PRESSURE TESTED AND CHLORINATED AFTER CONSTRUCTION PRIOR TO ACTIVATING THE SYSTEM. CONTRACTOR SHALL COORDINATE CHLORINATION AND TESTING WITH THE CITY OF PORTSMOUTH WATER DEPARTMENT.
- 8. ALL SEWER PIPE SHALL BE PVC SDR 35 UNLESS OTHERWISE STATED.
- 9. COORDINATE ALL WORK WITHIN PUBLIC RIGHT OF WAYS WITH THE CITY OF PORTSMOUTH. 10. CONTRACTOR SHALL MAINTAIN UTILITY SERVICES TO ABUTTING PROPERTIES THROUGHOUT CONSTRUCTION.
- 11. CONNECTION TO EXISTING WATER MAIN SHALL BE CONSTRUCTED TO CITY OF PORTSMOUTH STANDARDS.
- 12. EXISTING UTILITIES TO BE REMOVED SHALL BE CAPPED AT THE MAIN AND MEET THE DEPARTMENT OF PUBLIC WORKS
- STANDARDS FOR CAPPING OF WATER AND SEWER SERVICES. 13. ALL ELECTRICAL MATERIAL WORKMANSHIP SHALL CONFORM TO THE NATIONAL ELECTRIC CODE, LATEST EDITION, AND ALL APPLICABLE STATE AND LOCAL CODES.
- 14. THE EXACT LOCATION OF NEW UTILITY SERVICES AND CONNECTIONS SHALL BE COORDINATED WITH THE BUILDING
- DRAWINGS AND THE APPLICABLE UTILITY COMPANIES. 15. ADJUST ALL MANHOLES, CATCH BASINS, CURB BOXES, ETC. WITHIN LIMITS OF WORK TO FINISH GRADE.
- 16. ALL UNDERGROUND CONDUITS SHALL HAVE NYLON PULL ROPES TO FACILITATE PULLING CABLES.
- 17. THE CONTRACTOR SHALL OBTAIN, PAY FOR, AND COMPLY WITH ALL REQUIRED PERMITS, ARRANGE FOR ALL INSPECTIONS, AND SUBMIT COPIES OF ACCEPTANCE CERTIFICATES TO THE OWNER PRIOR TO THE COMPLETION OF THIS PROJECT.
- 18. THE CONTRACTOR SHALL PROVIDE AND INSTALL ALL MANHOLES, BOXES, FITTINGS, CONNECTORS, COVER PLATES, AND OTHER MISCELLANEOUS ITEMS NOT NECESSARILY DETAILED ON THESE DRAWINGS TO RENDER INSTALLATION OF UTILITIES COMPLETE AND OPERATIONAL.
- 19. CONTRACTOR SHALL PROVIDE EXCAVATION, BEDDING, BACKFILL AND COMPACTION FOR NATURAL GAS SERVICES. 20. A 10-FOOT MINIMUM EDGE TO EDGE HORIZONTAL SEPARATION SHALL BE PROVIDED BETWEEN ALL WATER AND SANITARY SEWER LINES. AN 18-INCH MINIMUM OUTSIDE TO OUTSIDE VERTICAL SEPARATION SHALL BE PROVIDED AT ALL WATER/SANITARY SEWER CROSSINGS.
- 21. THE CONTRACTOR SHALL CONTACT "DIG-SAFE" 72 HOURS PRIOR TO COMMENCING CONSTRUCTION. THE CONTRACTOR SHALL HAVE THE "DIG-SAFE" NUMBER ON SITE AT ALL TIMES.
- 22. CONTRACTOR TO SUBMIT AS-BUILT PLANS ON REPRODUCIBLE MYLARS AND IN DIGITAL FORMAT (.DWG FILES) TO THE OWNER AND ENGINEER UPON COMPLETION OF THE PROJECT. AS-BUILTS SHALL BE PREPARED AND CERTIFIED BY A NEW HAMPSHIRE LICENSED LAND SURVEYOR OR PROFESSIONAL ENGINEER.
- 23. SAW CUT AND REMOVE PAVEMENT AND CONSTRUCT PAVEMENT TRENCH PATCH FOR ALL PROPOSED UTILITIES LOCATED IN EXISTING PAVEMENT AREAS TO REMAIN 24. HYDRANTS, GATE VALVES, FITTINGS, ETC. SHALL MEET THE REQUIREMENTS OF THE CITY OF PORTSMOUTH.
- 25. COORDINATE TESTING OF SEWER CONSTRUCTION WITH THE CITY OF PORTSMOUTH. 26. ALL SEWER PIPE WITH LESS THAN 6' OF COVER IN PAVED AREAS OR LESS THAT 4' OF COVER IN UNPAVED AREAS
- SHALL BE INSULATED.
- 27. CONTRACTOR SHALL COORDINATE ALL ELECTRIC WORK INCLUDING BUT NOT LIMITED TO: CONDUIT CONSTRUCTION, MANHOLE CONSTRUCTION, UTILITY POLE CONSTRUCTION, OVERHEAD WIRE RELOCATION, AND TRANSFORMER CONSTRUCTION WITH POWER COMPANY.
- 28. CONTRACTOR SHALL PHASE UTILITY CONSTRUCTION, PARTICULARLY WATER MAIN AND GAS MAIN CONSTRUCTION AS TO MAINTAIN CONTINUOUS SERVICE TO ABUTTING PROPERTIES. CONTRACTOR SHALL COORDINATE TEMPORARY SERVICES TO ABUTTERS WITH THE UTILITY COMPANY AND AFFECTED ABUTTER.
- 29. SITE LIGHTING SPECIFICATIONS, CONDUIT LAYOUT AND CIRCUITRY FOR PROPOSED SITE LIGHTING AND SIGN ILLUMINATION SHALL BE PROVIDED BY THE PROJECT ELECTRICAL ENGINEER.
- 30. CONTRACTOR SHALL CONSTRUCT ALL UTILITIES AND DRAINS TO WITHIN 10' OF THE FOUNDATION WALLS AND CONNECT THESE TO SERVICE STUBS FROM THE BUILDING.
- 31. ALL CONDITIONS ON THIS PLAN SHALL REMAIN IN EFFECT IN PERPETUITY PURSUANT TO THE REQUIREMENTS OF THE SITE PLAN REVIEW REGULATIONS.

HARA

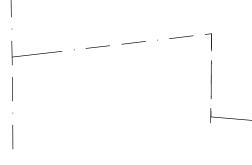
CONNECT TO GAS MAIN -

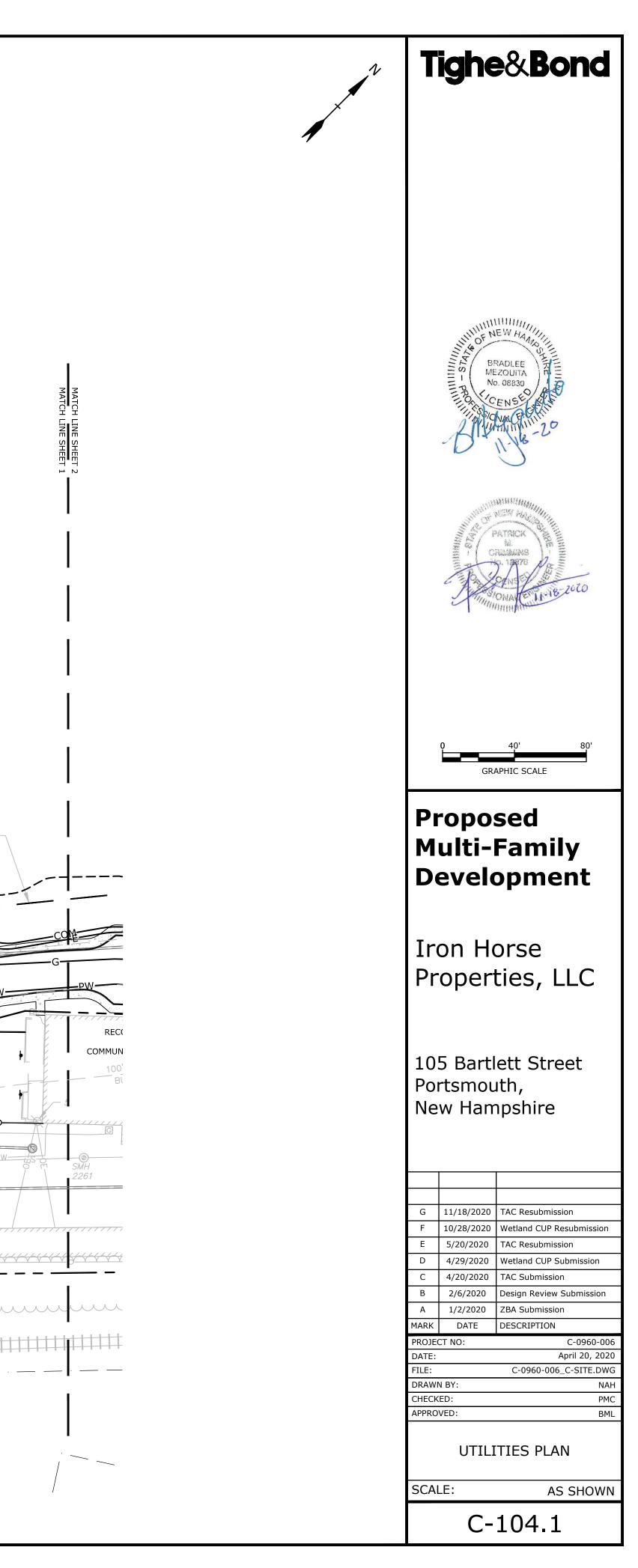
318/858/3

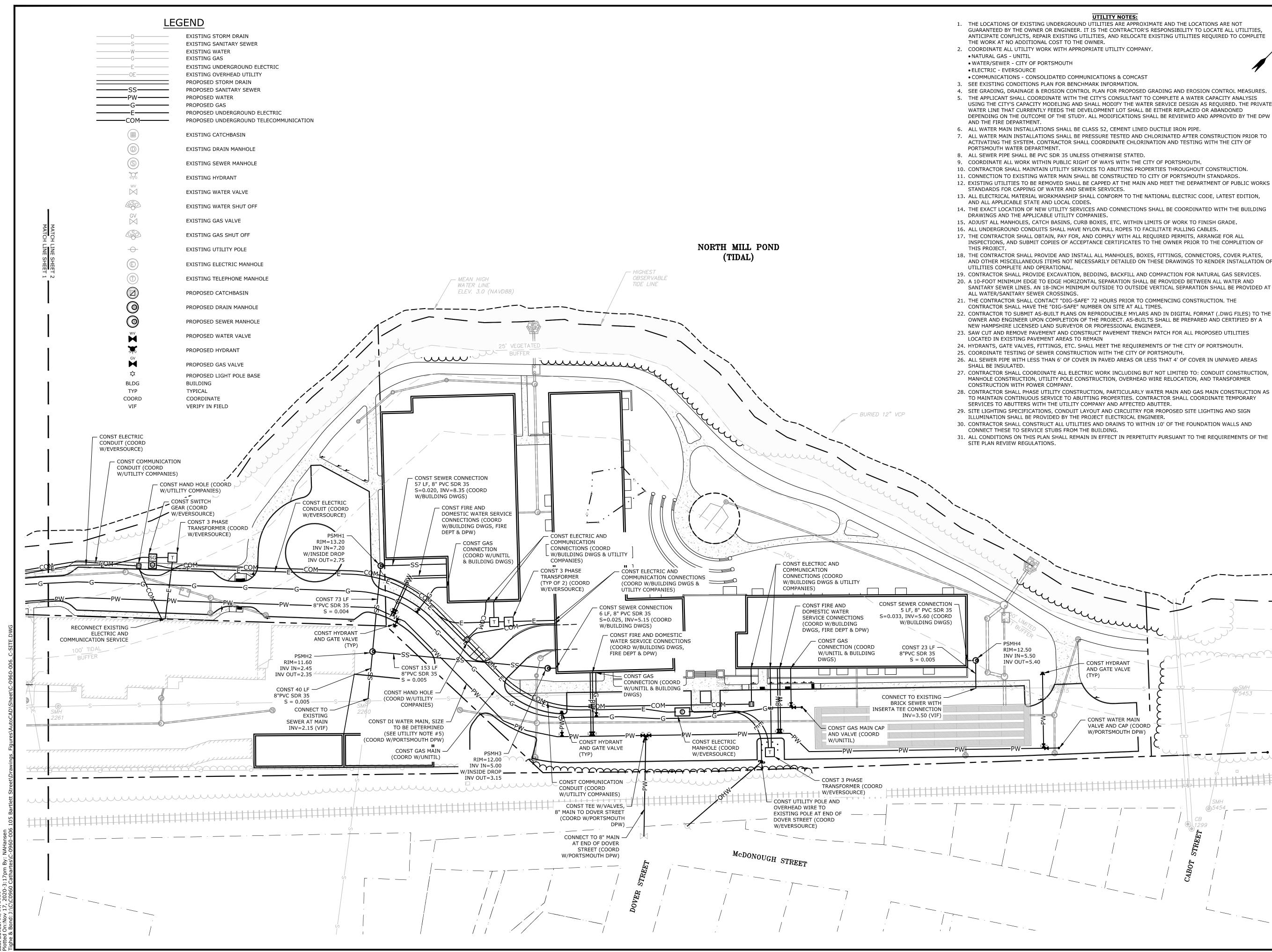
TT 85/2

CONNECT TO WATER MAIN WITH -TAPPING SLEEVE AND VALVE COORD W/ PORTSMOUTH DPW)

(COORD W/UNITL)


PSNH 176/6


VYYYYYYYY


<u>.....</u>

D		EXISTING STORM DRAIN										
S		EXISTING SANITARY SEWE	ER									
E		EXISTING GAS EXISTING UNDERGROUND		:								
OE		EXISTING OVERHEAD UTIL PROPOSED STORM DRAIN										
SS PW		PROPOSED SANITARY SEW PROPOSED WATER	VER									
——————————————————————————————————————		PROPOSED GAS PROPOSED UNDERGROUNI	D ELECTRIC	с								
COM		PROPOSED UNDERGROUN	D TELECOM	MUNICATION								
		EXISTING CATCHBASIN										
		EXISTING DRAIN MANHOL										
) S		EXISTING SEWER MANHOL	LE									
WV		EXISTING HYDRANT										
		EXISTING WATER VALVE										
GV		EXISTING WATER SHUT O	IFF									
		EXISTING GAS VALVE										
(SO)		EXISTING GAS SHUT OFF										
\rightarrow		EXISTING UTILITY POLE										
		EXISTING ELECTRIC MANH										
		EXISTING TELEPHONE MAI	NHOLE									
		PROPOSED CATCHBASIN										
		PROPOSED DRAIN MANHO										
		PROPOSED SEWER MANHO										
		PROPOSED WATER VALVE										
GV		PROPOSED HYDRANT										
×		PROPOSED GAS VALVE PROPOSED LIGHT POLE BA	ASE									
BLDG TYP		BUILDING TYPICAL										
COORD												
178/8 VIF		COORDINATE VERIFY IN FIELD		/								
	D RD PSN	VERIFY IN FIELD		/					MILL PO IDAL)	ND		H
VIF TO BE RETIRED D W/PORTSMOUTH ONST UTILITY POLE AND ECONNECT EXISTING VERHEAD WIRES (COOF	D RD PSN	VERIFY IN FIELD	/ M	/ / CONST GAS MAIN (COORD W/UNITIL)		/ /	MEAN HIGH MATER LINE	(T		CONST RIS	ER POLES FOR	H OBSEF TIL
VIF NG 8" WATER TO BE RETIRED D W/PORTSMOUTH DNST UTILITY POLE AND ECONNECT EXISTING VERHEAD WIRES (COOF /EVERSOURCE)	P RD PSN w/Co	VERIFY IN FIELD	/ M	MAIN (COORD W/UNITIL)	281/2	/ /	MEAN HIGH NATER LINE ELEV. 3.0 (NA	(T		CONST RIS I COMMUNICA		OBSEF
VIF TO BE RETIRED D W/PORTSMOUTH ONST UTILITY POLE AND ECONNECT EXISTING VERHEAD WIRES (COOF	P RD PSN w/Co	VERIFY IN FIELD	/ M	MAIN (COORD W/UNITIL)	281/2		NATER LINE	(T		CONST RIS I COMMUNICA	ELECTRIC AND ATION (COORD	OBSEF
VIF NG 8" WATER TO BE RETIRED D W/PORTSMOUTH DNST UTILITY POLE AND ECONNECT EXISTING VERHEAD WIRES (COOF /EVERSOURCE)	P RD PSN w/Co	VERIFY IN FIELD	/ M	MAIN (COORD W/UNITIL)	281/2 -	2	NATER LINE	(T .vd88)	IDAL)	CONST RIS COMMUNICA W/ UTILIT	ELECTRIC AND ATION (COORD Y COMPANIES)	OBSEF
VIF NG 8" WATER O BE RETIRED D W/PORTSMOUTH DNST UTILITY POLE ANI ECONNECT EXISTING VERHEAD WIRES (COOF /EVERSOURCE)	P RD - PSN w/Cu - 6 - 146	VERIFY IN FIELD H 281/1 ONDUIT 0"x38" ELLIPTICAL RCP IV.=0.43 DE 25' VEGETATED	/ M	MAIN (COORD W/UNITIL)	281/2		NATER LINE ELEV. 3.0 (NA	(T		CONST RIS I COMMUNICA	ELECTRIC AND ATION (COORD Y COMPANIES)	OBSEF TIL
VIF NG 8" WATER O BE RETIRED D W/PORTSMOUTH ONST UTILITY POLE ANI CONNECT EXISTING /ERHEAD WIRES (COOF /EVERSOURCE)	D RD W/C	VERIFY IN FIELD H 281/1 O"x38" ELLIPTICAL RCP IV.=0.43 OE 25' VEGETATED BUFFER PW		MAIN (COORD W/UNITIL) PSNH 2	281/2 	OHW	NATER LINE ELEV. 3.0 (NA	(T .vd88)		CONST RIS COMMUNICA W/ UTILIT	ELECTRIC AND ATION (COORD Y COMPANIES)	OBSEF TIL
VIF NG 8" WATER O BE RETIRED D W/PORTSMOUTH ONST UTILITY POLE AND CONNECT EXISTING VERHEAD WIRES (COOF VEVERSOURCE) OHW G PU OHW OHW OHW OHW OHW OHW OHW OHW	D RD W/CU 6145 6145	VERIFY IN FIELD H 281/1 O"x38" ELLIPTICAL RCP IV.=0.43 OE 25' VEGETATED BUFFER PW	0E G	MAIN (COORD W/UNITIL)	281/2 G		NATER LINE ELEV. 3.0 (NA	(T .vd88)		CONST RIS COMMUNICA W/ UTILIT	ELECTRIC AND ATION (COORD Y COMPANIES)	OBSEF TIL
VIF	D RD W/CU 6145 6145	VERIFY IN FIELD H 281/1 O"x38" ELLIPTICAL RCP IV.=0.43 OE 25' VEGETATED BUFFER PW	0E G	MAIN (COORD W/UNITIL) PSNH 2	281/2 G	OHW	NATER LINE ELEV. 3.0 (NA	(T .vd88)		CONST RIS COMMUNICA W/ UTILIT	ELECTRIC AND ATION (COORD Y COMPANIES)	OBSEF TIL
VIF	D RD PSN w/Cl 6146 6145 6146 6145	VERIFY IN FIELD	0E G	MAIN (COORD W/UNITIL) PSNH 2	281/2 	OHW	NATER LINE ELEV. 3.0 (NA	(T .vd88)		CONST RIS COMMUNICA W/ UTILIT	ELECTRIC AND ATION (COORD Y COMPANIES)	OBSEF TIL
VIF	D RD PSN W/CU 6145 6145 6145 6145 CON	VERIFY IN FIELD		MAIN (COORD W/UNITIL) PSNH 2 OF PW- PW- CONST HYDRAN	G	OHW	NATER LINE ELEV. 3.0 (NA	(T .vd88)		CONST RIS COMMUNICA W/ UTILIT	ELECTRIC AND ATION (COORD Y COMPANIES)	OBSEF TIL
VIF	D RD PSN W/CU 6146 6145 CON CON	VERIFY IN FIELD	PW	MAIN (COORD W/UNITIL) PSNH 2 OE PW-	G	OHW-	NATER LINE ELEV. 3.0 (NA	(T .vd88)		CONST RIS COMMUNICA W/ UTILIT	ELECTRIC AND ATION (COORD Y COMPANIES)	OBSEF TIL
VIF	D RD PSN W/CU 6145 6145 6145 6145 CON	VERIFY IN FIELD	PW	MAIN (COORD W/UNITIL) PSNH 2 OF OF OF OF OF OF OF OF OF OF OF OF OF	G	OHW-	MATER LINE ELEV. 3.0 (NA	(T .vd88)		CONST RIS COMMUNICA W/ UTILIT	ELECTRIC AND ATION (COORD Y COMPANIES)	OBSEF TIL
VIF	D RD W/C 6 6 6 6 7 6 7 6 7 6 7 6 7 6 7 7 7 7 7	VERIFY IN FIELD	PW	MAIN (COORD W/UNITIL) PSNH 2 OE PW-	G	OHW-	MATER LINE ELEV. 3.0 (NA	(T .vd88)		CONST RIS COMMUNICA W/ UTILIT	ELECTRIC AND ATION (COORD Y COMPANIES)	OBSEF TIL
VIF	D RD W/C 6 6 146 6145 CON CON	VERIFY IN FIELD	PW	MAIN (COORD W/UNITIL) PSNH 2 OE PW-	G	OHW-	MATER LINE ELEV. 3.0 (NA	(T .vd88)		CONST RIS COMMUNICA W/ UTILIT	ELECTRIC AND ATION (COORD Y COMPANIES)	OBSEF TIL
VIF	D RD W/C 6 6 146 6145 CON CON	VERIFY IN FIELD	PW	MAIN (COORD W/UNITIL) PSNH 2 OE PW-	G	OHW-	MATER LINE ELEV. 3.0 (NA	(T .vd88)		CONST RIS COMMUNICA W/ UTILIT	ELECTRIC AND ATION (COORD Y COMPANIES)	OBSEF TIL
VIF	D RD PSN W/CO CON CON CON CON CON	VERIFY IN FIELD	PW	MAIN (COORD W/UNITIL) PSNH 2 OE PW-	G	OHW-	MATER LINE ELEV. 3.0 (NA	(T	PIDAL)	CONST RIS COMMUNICA W/ UTILIT	ELECTRIC AND ATION (COORD Y COMPANIES)	V 50 LIMITER CUT BUFFE
VIF	D RD PSN W/CO CON CON CON CON CON	VERIFY IN FIELD	PW	MAIN (COORD W/UNITIL) PSNH 2 OE PW-	G	OHW-	MATER LINE ELEV. 3.0 (NA	(T		CONST RIS COMMUNICA W/ UTILIT	ELECTRIC AND ATION (COORD Y COMPANIES)	OBSEF TIL
VIF NG 8" WATER O BE RETIRED D W/PORTSMOUTH DNST UTILITY POLE AND CONNECT EXISTING /ERHEAD WIRES (COOF /EVERSOURCE) OHW G W PI SMH 5534 SMH 5533 I	D RD PSN W/CO CON CON CON CON CON	VERIFY IN FIELD		MAIN (COORD W/UNITIL) PSNH 2 OE PW-	G G T T G G	OHW-	MATER LINE ELEV. 3.0 (NA		TDAL)	CONST RIS COMMUNICA W/ UTILIT	ELECTRIC AND ATION (COORD Y COMPANIES)	V 50 LIMITER CUT BUFFE
VIF NG 8" WATER O BE RETIRED D W/PORTSMOUTH DNST UTILITY POLE AND CONNECT EXISTING /ERHEAD WIRES (COOF /EVERSOURCE) OHW G W PI SMH 5534 SMH 5533 C	D RD W/CA 6146 6145 CON: CON: CON: CON: CON: CON:	VERIFY IN FIELD		MAIN (COORD W/UNITIL) PSNH 2 OF OF OF OF OF OF OF OF OF OF OF OF OF	G G T T G G	OHW-	MATER LINE ELEV. 3.0 (NA		TDAL)	CONST RIS COMMUNICA W/ UTILIT	ELECTRIC AND ATION (COORD Y COMPANIES)	V 50 LIMITER CUT BUFFE
VIF NG 8" WATER O BE RETIRED D W/PORTSMOUTH DNST UTILITY POLE AND CONNECT EXISTING /ERHEAD WIRES (COOF /EVERSOURCE) OHW G W PI SMH 5534 SMH 5533 I	D RD W/CA 6146 6145 CON: CON: CON: CON: CON: CON:	VERIFY IN FIELD		MAIN (COORD W/UNITIL) PSNH 2 OF OF OF OF OF OF OF OF OF OF OF OF OF	G G T T G G	OHW-	MATER LINE ELEV. 3.0 (NA		TDAL)		ELECTRIC AND ATION (COORD Y COMPANIES)	V 50 LIMITER CUT BUFFE
VIF	D RD W/CA 6146 6145 CON: CON: CON: CON: CON:	VERIFY IN FIELD		MAIN (COORD W/UNITIL) PSNH 2 OF OF OF OF OF OF OF OF OF OF OF OF OF	G G T T G G	OHW-	MATER LINE ELEV. 3.0 (NA		TDAL)	CONST RIS COMMUNICA W/ UTILIT	ELECTRIC AND ATION (COORD Y COMPANIES)	V 50 LIMITER CUT BUFFE
VIF NG 8" WATER TO BE RETIRED D W/PORTSMOUTH DNST UTILITY POLE AND CONNECT EXISTING VERHEAD WIRES (COOF /EVERSOURCE) OHW G PU SMH 5534 SMH 5533 C	D RD W/CA 6146 6145 CON: CON: CON: CON: CON:	VERIFY IN FIELD		MAIN (COORD W/UNITIL) PSNH 2 OF OF OF OF OF OF OF OF OF OF OF OF OF	G G T T G G	OHW-	MATER LINE ELEV. 3.0 (NA		TDAL)		ELECTRIC AND ATION (COORD Y COMPANIES)	V 50 LIMITER CUT BUFFE

СВ ₁₀₂

GUARANTEED BY THE OWNER OR ENGINEER. IT IS THE CONTRACTOR'S RESPONSIBILITY TO LOCATE ALL UTILITIES, ANTICIPATE CONFLICTS, REPAIR EXISTING UTILITIES, AND RELOCATE EXISTING UTILITIES REQUIRED TO COMPLETE

4. SEE GRADING, DRAINAGE & EROSION CONTROL PLAN FOR PROPOSED GRADING AND EROSION CONTROL MEASURES. 5. THE APPLICANT SHALL COORDINATE WITH THE CITY'S CONSULTANT TO COMPLETE A WATER CAPACITY ANALYSIS USING THE CITY'S CAPACITY MODELING AND SHALL MODIFY THE WATER SERVICE DESIGN AS REQUIRED. THE PRIVATE WATER LINE THAT CURRENTLY FEEDS THE DEVELOPMENT LOT SHALL BE EITHER REPLACED OR ABANDONED

6. ALL WATER MAIN INSTALLATIONS SHALL BE CLASS 52, CEMENT LINED DUCTILE IRON PIPE. 7. ALL WATER MAIN INSTALLATIONS SHALL BE PRESSURE TESTED AND CHLORINATED AFTER CONSTRUCTION PRIOR TO

- 9. COORDINATE ALL WORK WITHIN PUBLIC RIGHT OF WAYS WITH THE CITY OF PORTSMOUTH. 10. CONTRACTOR SHALL MAINTAIN UTILITY SERVICES TO ABUTTING PROPERTIES THROUGHOUT CONSTRUCTION.
- 11. CONNECTION TO EXISTING WATER MAIN SHALL BE CONSTRUCTED TO CITY OF PORTSMOUTH STANDARDS. 12. EXISTING UTILITIES TO BE REMOVED SHALL BE CAPPED AT THE MAIN AND MEET THE DEPARTMENT OF PUBLIC WORKS
- 13. ALL ELECTRICAL MATERIAL WORKMANSHIP SHALL CONFORM TO THE NATIONAL ELECTRIC CODE, LATEST EDITION,
- 14. THE EXACT LOCATION OF NEW UTILITY SERVICES AND CONNECTIONS SHALL BE COORDINATED WITH THE BUILDING
- 15. ADJUST ALL MANHOLES, CATCH BASINS, CURB BOXES, ETC. WITHIN LIMITS OF WORK TO FINISH GRADE.
- 17. THE CONTRACTOR SHALL OBTAIN, PAY FOR, AND COMPLY WITH ALL REQUIRED PERMITS, ARRANGE FOR ALL
- 18. THE CONTRACTOR SHALL PROVIDE AND INSTALL ALL MANHOLES, BOXES, FITTINGS, CONNECTORS, COVER PLATES, AND OTHER MISCELLANEOUS ITEMS NOT NECESSARILY DETAILED ON THESE DRAWINGS TO RENDER INSTALLATION OF
- 19. CONTRACTOR SHALL PROVIDE EXCAVATION, BEDDING, BACKFILL AND COMPACTION FOR NATURAL GAS SERVICES. 20. A 10-FOOT MINIMUM EDGE TO EDGE HORIZONTAL SEPARATION SHALL BE PROVIDED BETWEEN ALL WATER AND SANITARY SEWER LINES. AN 18-INCH MINIMUM OUTSIDE TO OUTSIDE VERTICAL SEPARATION SHALL BE PROVIDED AT
- 22. CONTRACTOR TO SUBMIT AS-BUILT PLANS ON REPRODUCIBLE MYLARS AND IN DIGITAL FORMAT (.DWG FILES) TO THE OWNER AND ENGINEER UPON COMPLETION OF THE PROJECT. AS-BUILTS SHALL BE PREPARED AND CERTIFIED BY A
- 24. HYDRANTS, GATE VALVES, FITTINGS, ETC. SHALL MEET THE REQUIREMENTS OF THE CITY OF PORTSMOUTH.
- 26. ALL SEWER PIPE WITH LESS THAN 6' OF COVER IN PAVED AREAS OR LESS THAT 4' OF COVER IN UNPAVED AREAS
- 27. CONTRACTOR SHALL COORDINATE ALL ELECTRIC WORK INCLUDING BUT NOT LIMITED TO: CONDUIT CONSTRUCTION, MANHOLE CONSTRUCTION, UTILITY POLE CONSTRUCTION, OVERHEAD WIRE RELOCATION, AND TRANSFORMER
- 28. CONTRACTOR SHALL PHASE UTILITY CONSTRUCTION, PARTICULARLY WATER MAIN AND GAS MAIN CONSTRUCTION AS TO MAINTAIN CONTINUOUS SERVICE TO ABUTTING PROPERTIES. CONTRACTOR SHALL COORDINATE TEMPORARY
- 29. SITE LIGHTING SPECIFICATIONS, CONDUIT LAYOUT AND CIRCUITRY FOR PROPOSED SITE LIGHTING AND SIGN
- 30. CONTRACTOR SHALL CONSTRUCT ALL UTILITIES AND DRAINS TO WITHIN 10' OF THE FOUNDATION WALLS AND

		//	
Lunn			
	-		
CONST HYDRANT AND GATE VALVE (TYP)			
	∫	<u>SMH</u> 5453	S
CONST WATER MAIN VALVE AND CAP (COO			
W/PORTSMOUTH DPW			
	. L <u></u> -	u fuu	
· · · · ·		SMH (6)5454	
/ /	CABOT ST		
		/	
	I		
			· · ·

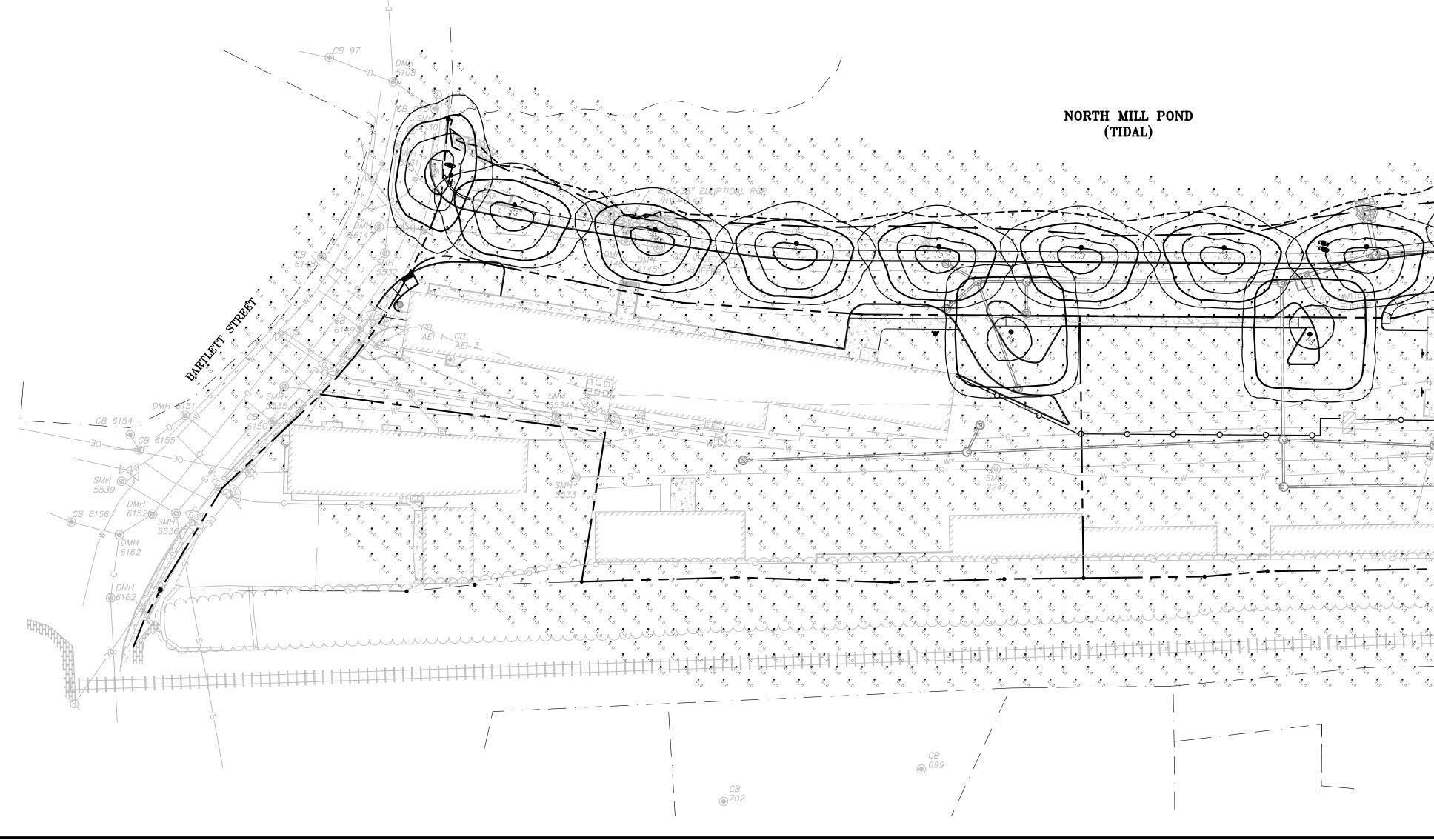
MEZQUITA No. 08830 GRAPHIC SCALE

BRADLEE

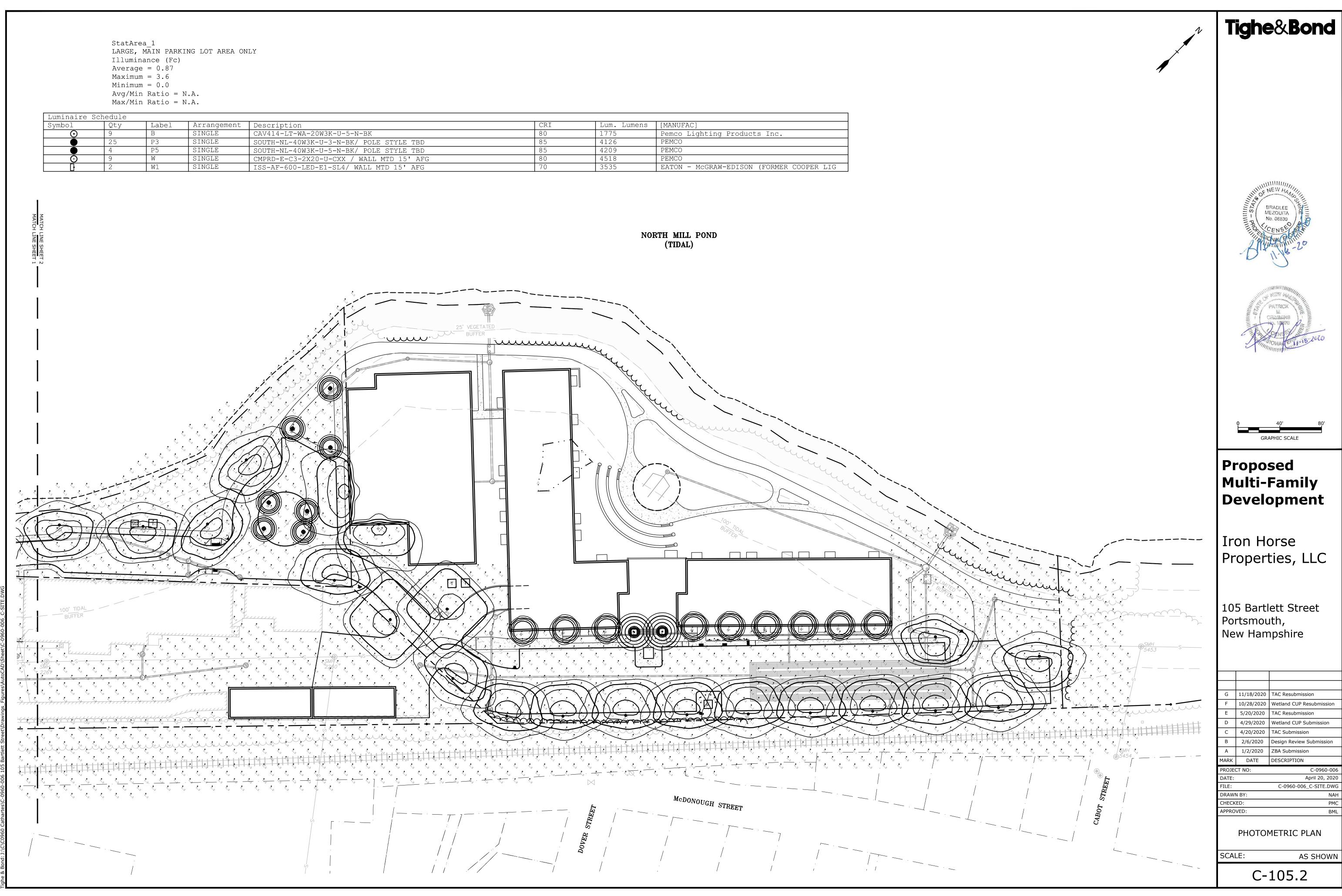
Tighe&Bond

Proposed Multi-Family Development

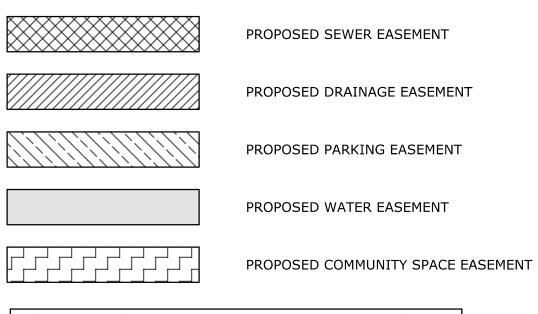
Iron Horse Properties, LLC

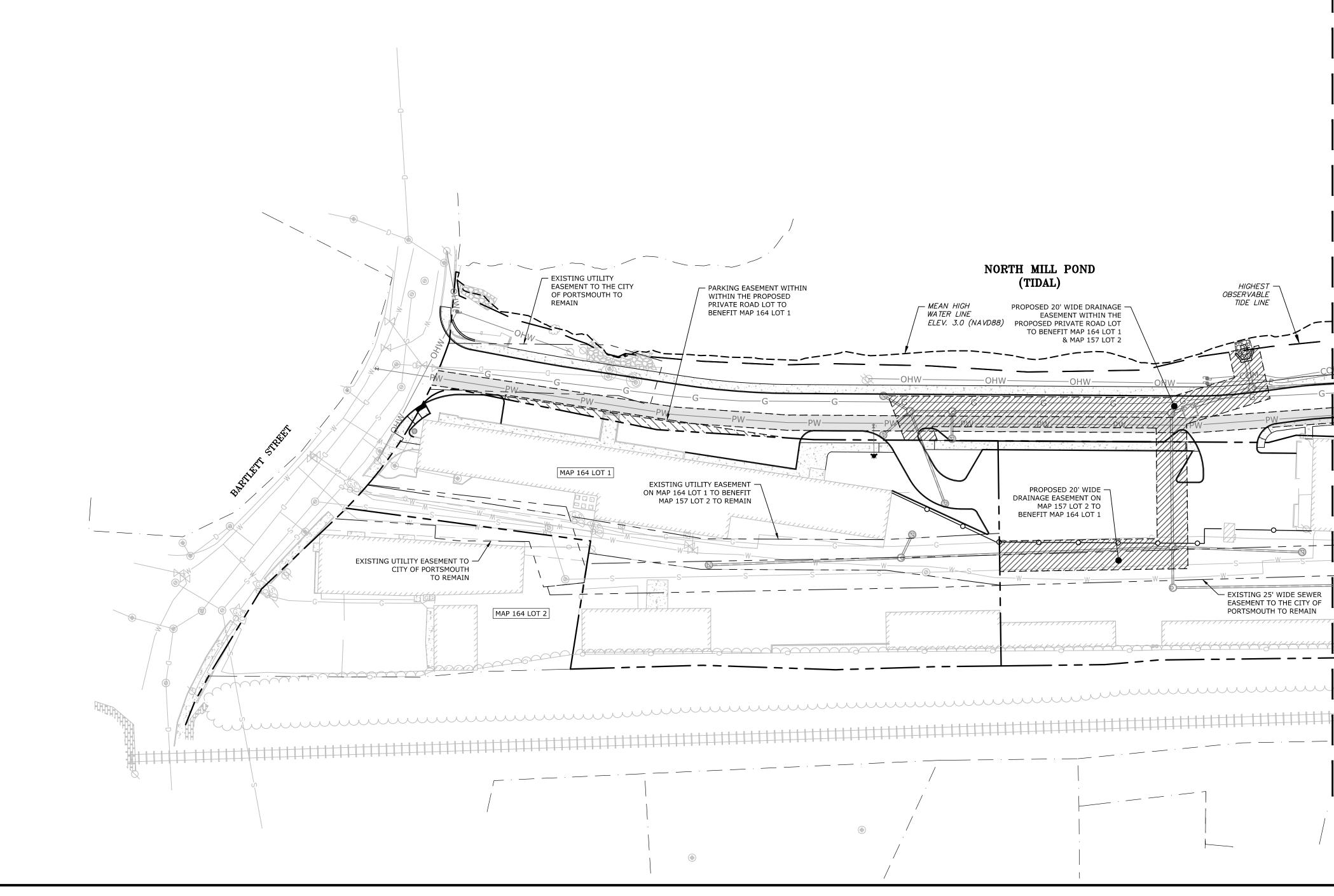

105 Bartlett Street Portsmouth, New Hampshire

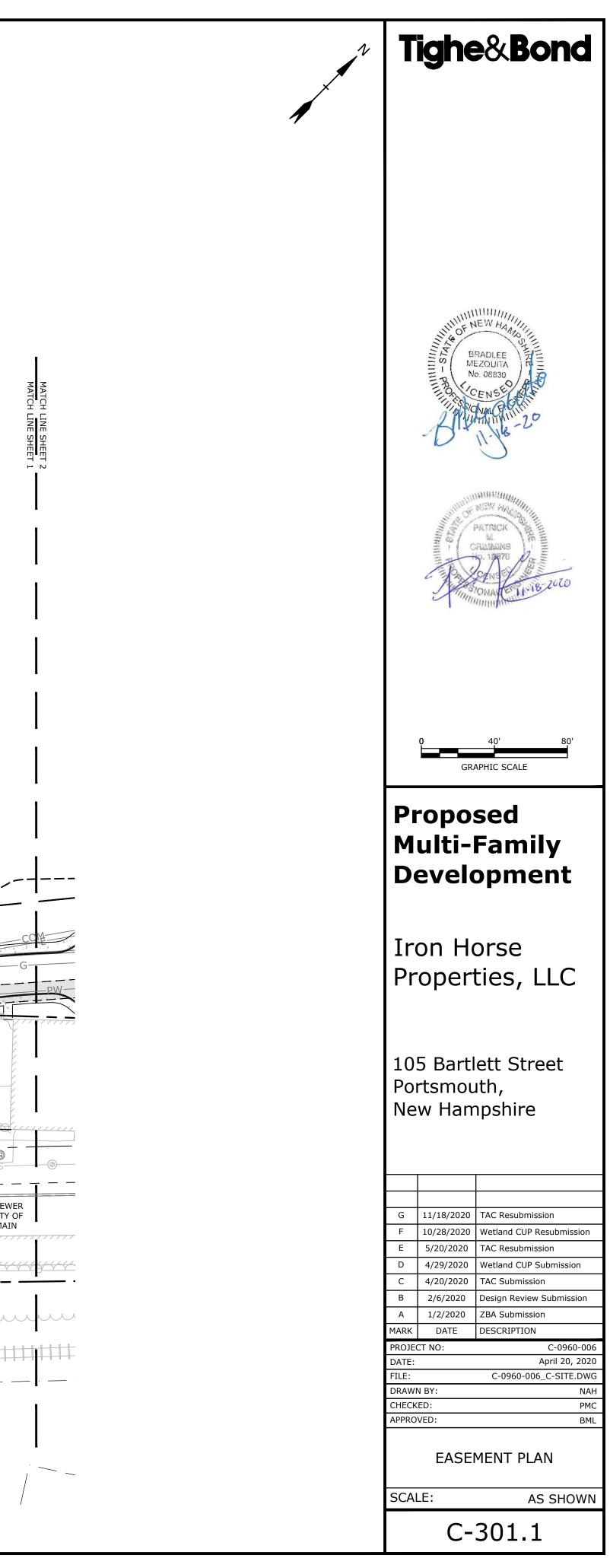
G 11/18/2020 TAC Resubmission						
F	10/28/2020	Wetland CUP Resubmission				
E	5/20/2020	TAC Resubmission				
D	4/29/2020	Wetland CUP Submission				
С	4/20/2020	TAC Submission				
В	2/6/2020	Design Review Submission				
А	1/2/2020	ZBA Submission				
MARK	DATE	DESCRIPTION				
PROJE	CT NO:	C-0960-006				
DATE:		April 20, 2020				
FILE:		C-0960-006_C-SITE.DWG				
DRAWI	N BY:	NAF				
CHECK	ED:	PMC				
APPRO	VED:	BML				
UTILITIES PLAN						
SCAI	LE:	AS SHOWN				
C-104.2						

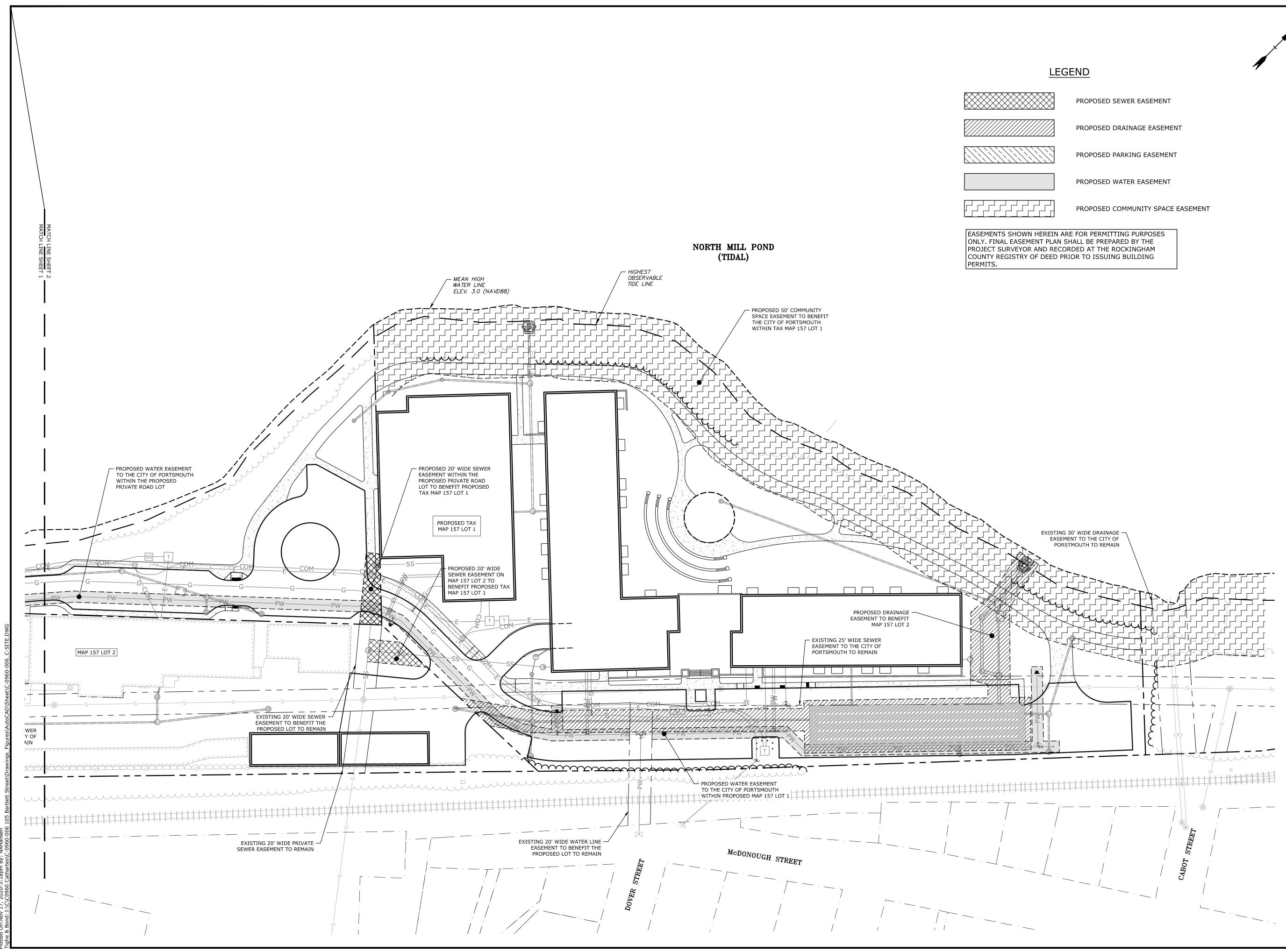

StatArea_1
LARGE, MAIN PARKING LOT AREA ONLY
Illuminance (Fc)
Average = 0.87
Maximum = 3.6
Minimum = 0.0
Avg/Min Ratio = N.A.
Max/Min Ratio = N.A.

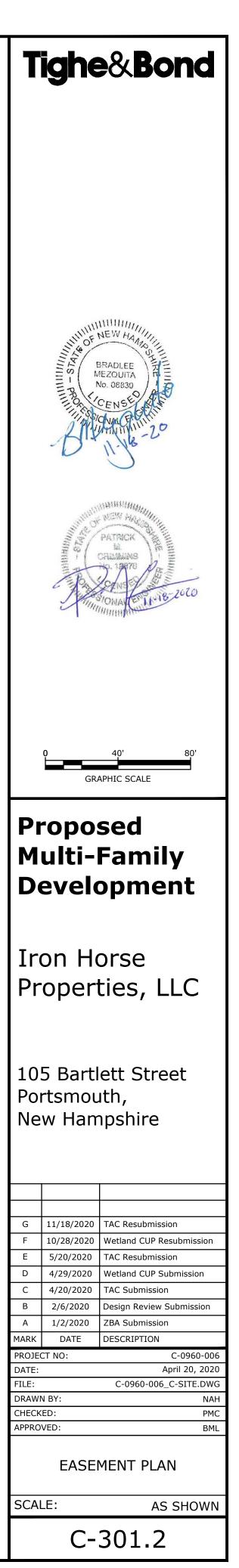
Luminaire S	Luminaire Schedule							
Symbol	Qty	Label	Arrangement	Description	CRI	Lum. Lumens	[MANUFAC]	
\odot	9	В	SINGLE	CAV414-LT-WA-20W3K-U-5-N-BK	80	1775	Pemco Lighting Products Inc.	
	25	P3	SINGLE	SOUTH-NL-40W3K-U-3-N-BK/ POLE STYLE TBD	85	4126	PEMCO	
	4	P5	SINGLE	SOUTH-NL-40W3K-U-5-N-BK/ POLE STYLE TBD	85	4209	PEMCO	
\odot	9	W	SINGLE	CMPRD-E-C3-2X20-U-CXX / WALL MTD 15' AFG	80	4518	PEMCO	
Ŀ	2	W1	SINGLE	ISS-AF-600-LED-E1-SL4/ WALL MTD 15' AFG	70	3535	EATON - McGRAW-EDISON (FORMER COOPER LIG	


	Tighe&Bond
MATCH LINE SHEET MATCH LINE SHEET	BRADLEE No. 08830 CENSED
	PATRICK NU CRUMBUNS 50, 12878 50, 10
	GRAPHIC SCALE Proposed
	Multi-Family Development
	Iron Horse Properties, LLC
	105 Bartlett Street Portsmouth, New Hampshire
	Image: Constraint of the systemImage: Constraint of the systemG11/18/2020TAC ResubmissionG11/18/2020Wetland CUP ResubmissionF10/28/2020TAC ResubmissionE5/20/2020TAC ResubmissionD4/29/2020Wetland CUP SubmissionC4/20/2020TAC SubmissionB2/6/2020Design Review SubmissionA1/2/2020ZBA SubmissionMARKDATEDESCRIPTION
2 10 10 10 10 10 10 3 0 10 10 10 10 10 10 3 0 10 10 10 10 10 10 10 3 0 10 10 10 10 10 10 10 10 10 10 10 10 1	PROJECT NO:C-0960-006DATE:April 20, 2020FILE:C-0960-006_C-SITE.DWODRAWN BY:NAHCHECKED:PMOAPPROVED:BMI
	PHOTOMETRIC PLAN
1	SCALE: AS SHOWN


CRI	Lum. Lumens	[MANUFAC]
80	1775	Pemco Lighting Products Inc.
85	4126	PEMCO
85	4209	PEMCO
80	4518	PEMCO
70	3535	EATON - McGRAW-EDISON (FORMER COOPER LIG


LEGEND




EASEMENTS SHOWN HEREIN ARE FOR PERMITTING PURPOSES ONLY. FINAL EASEMENT PLAN SHALL BE PREPARED BY THE PROJECT SURVEYOR AND RECORDED AT THE ROCKINGHAM COUNTY REGISTRY OF DEED PRIOR TO ISSUING BUILDING PERMITS.

Last Saved: 11/16/2020 Plotted On:Nov 17, 2020-3:18pm By: NAHansen Tighe & Bond: J:\C\C0960 Cathartes\C-0960-006 105 Bartlett Street\Drawings_Figures\AutoCAD\Sheet\C-0960-006_C-SITE.I

	CT INFORMATION NT: IRON HORSE PROPERTIES, LLC	PROJECT MAP/LOT:	STORM DRAIN BASIN INLETS SHALL BE PROVID RACKS. THE SITE SHALL BE STABILIZED FOR TH
	105 BARTLETT STREET PORTSMOUTH, NH 03801	MAP 157 / LOT 1 MAP 157 / LOT 2	DUST CONTROL: 1. THE CONTRACTOR SHALL BE RESPONSIBLE TO (
PROJECT NAME: PROJECT ADDRES	PROPOSED MULTI-FAMILY DEVELOPMENT S: 105 BARTLETT STREET	MAP 164 / LOT 1 MAP 164 / LOT 4-2	 PERIOD. DUST CONTROL METHODS SHALL INCLUDE, BUT
PROJECT LATITUD	PORTSMOUTH, NH 03801 E/LONGITUDE: 43°-04'-20" N / 70°-46'-15" W		EXPOSED AREAS, COVERING LOADED DUMP TRU MULCHING.
PROJECT DESCR	IPTION ISISTS OF CONSTRUCTING TWO (2) MULTI-FAMILY APA	ARTMENT BUILDINGS WITH	3. DUST CONTROL MEASURES SHALL BE UTILIZED FROM THE SITE TO ABUTTING AREAS.
BASEMENT LEVEL	PARKING, ONE (1) MIXED-USE BUILDING WITH FIRST AS UPPER STORY APARTMENTS.		STOCKPILES: 1. LOCATE STOCKPILES A MINIMUM OF 50 FEET AV
ISTURBED ARE HE TOTAL AREA	<u>A</u> TO BE DISTURBED IS APPROXIMATELY 6.5 ACRES.		CULVERTS. 2. ALL STOCKPILES SHOULD BE SURROUNDED WI PRIOR TO THE ONSET OF PRECIPITATION.
OIL CHARACTE	RISTICS TE SPECIFIC SOIL SURVEY CONDUCTED BY LEONARD L	ORD PHD CSS CSW ON	3. PERIMETER BARRIERS SHOULD BE MAINTAINED ACCOMMODATE THE DELIVERY AND REMOVAL C
	DECEMBER 2, 2019, THE SOILS ON SITE CONSIST OF		 INTEGRITY OF THE BARRIER SHOULD BE INSPECT 4. PROTECT ALL STOCKPILES FROM STORMWATER MEASURES SUCH AS BERMS, SILT SOCK, OR OT
	R RUNOFF FROM THE SITE WILL BE DISCHARGED VIA S	UBSURFACE DRAINAGE WHICH	OF MATERIAL BEYOND THE IMMEDIATE CONFIN OFF SITE VEHICLE TRACKING:
CONSTRUCTION	/S TO NORTH MILL POND. SEQUENCE OF MAJOR ACTIVITIES:		1. THE CONTRACTOR SHALL CONSTRUCT STABILIZ EXCAVATION ACTIVITIES.
	EMPORARY AND PERMANENT SEDIMENT, EROSION AN		VEGETATION: 1. TEMPORARY GRASS COVER:
ANY EARTH M	ROSION, SEDIMENT AND DETENTION MEASURES SHAL OVING OPERATIONS THAT WILL INFLUENCE STORMWA STRUCTION		A. SEEDBED PREPARATION: a. SEE LANDSCAPE PLAN FOR SEEDBED P
CONTROL			B. SEEDING: a. SEE LANDSCAPE PLAN FOR SEEDING RE
. ALL PERMANE	CTION DURING LATE WINTER AND EARLY SPRING NT DITCHES, SWALES, DETENTION, RETENTION AND S		C. MAINTENANCE: a. TEMPORARY SEEDING SHALL BE PERIO SOIL SURFACE SHOULD BE COVERED B
TO THEM.	ISING THE VEGETATIVE AND NON-STRUCTURAL BMPS	PRIOR TO DIRECTING RUNOFF	SEDIMENTATION IS APPARENT, REPAIR MEASURES USED IN THE INTERIM (MUL
. CONSTRUCT 1	ISPOSE OF DEBRIS. EMPORARY CULVERTS AND DIVERSION CHANNELS AS RAVEL ROADWAYS AND PARKING AREAS - ALL ROADS		2. VEGETATIVE PRACTICE:A. SEE LANDSCAPE PLAN FOR PERMANENT ME/
STABILIZED V	VITHIN 72 HOURS OF ACHIEVING FINISHED GRADE. NENT AND TEMPORARY SEEDING AND MULCHING. ALL		a. THE CONTRACTOR SHALL PROTECT AND b. IN NO CASE SHALL THE WEED CONTEN SHALL COMPLY WITH STATE AND FEDER
BE SEEDED AI DAILY, OR AS	ND MULCHED WITHIN 72 HOURS OF ACHIEVING FINISH REQUIRED, CONSTRUCT TEMPORARY BERMS, DRAINS,	IED GRADE. DITCHES, PERIMETER	SHALL COMPLY WITH STATE AND FEDER LATER THAN SEPTEMBER 15. IN NO CAS 3. DORMANT SEEDING (SEPTEMBER 15 TO FIRST S
	ITROL MEASURES, SEDIMENT TRAPS, ETC., MULCH ANI APS AND/OR BASINS SHALL BE USED AS NECESSARY 1 ABU 17ED	-	A. FOLLOW PERMANENT MEASURES REQUIREM INDICATED RATE. APPLY MULCH AS INDICA
). FINISH PAVIN	G ALL ROADWAYS AND PARKING LOTS. MAINTAIN ALL EROSION AND SEDIMENT CONTROL ME	ASURES.	CONCRETE WASHOUT AREA:
3. REMOVE TRAF	RMANENT SEEDING AND LANDSCAPING. PPED SEDIMENTS FROM COLLECTOR DEVICES AS APPRO	OPRIATE AND THEN REMOVE	NON-STORMWATER DISCHARGES ARE PROHIBI A. THE CONCRETE DELIVERY TRUCKS SHALL,
	ROSION CONTROL MEASURES.		AT THEIR OWN PLANT OR DISPATCH FACILI B. IF IT IS NECESSARY, SITE CONTRACTOR SH
. THE PROJECT	JCTION SEQUENCE MUST LIMIT THE DURATION AND AND AND IS TO BE MANAGED IN A MANNER THAT MEETS THE RE	EQUIREMENTS AND INTENT OF	DESIGN FACILITIES TO HANDLE ANTICIPAT C. CONTRACTOR SHALL LOCATE WASHOUT AR DRAINS, SWALES AND SURFACE WATERS O
RSA 430:53 A ROSION CONTR	ND CHAPTER AGR 3800 RELATIVE TO INVASIVE SPECIE	ES.	D. INSPECT WASHOUT FACILITIES DAILY TO D MATERIALS NEED TO BE REMOVED.
STORMWATER	CONTROL MEASURES AND PRACTICES SHALL CONFOR MANUAL VOLUME 3: EROSION AND SEDIMENT CONTR		ALLOWABLE NON-STORMWATER DISCHARGES: 1. FIRE-FIGHTING ACTIVITIES;
	<u>THE NHDES.</u> (WORK OR SOIL DISTURBANCE, CONTRACTOR SHALL : ITROL MEASURES AS REQUIRED IN THE PROJECT MANU		 FIRE HYDRANT FLUSHING; WATERS USED TO WASH VEHICLES WHERE DET
. CONTRACTOR	SHALL INSTALL TEMPORARY EROSION CONTROL BARF MULCH BERMS, SILT SACKS AND SILT SOCKS AS SHO	IERS, INCLUDING HAY BALES,	 WATER USED TO CONTROL DUST; POTABLE WATER INCLUDING UNCONTAMINATED
THE FIRST OF SILT SACK IN	DER OF WORK. LET PROTECTION SHALL BE INSTALLED IN ALL EXISTIN	IG AND PROPOSED CATCH	 ROUTINE EXTERNAL BUILDING WASH DOWN WH PAVEMENT WASH WATERS WHERE DETERGENTS UNCONTAMINATED AIR CONDITIONING/COMPRI
PROJECT.	WITHIN THE WORK LIMITS AND BE MAINTAINED FOR		 9. UNCONTAMINATED GROUND WATER OR SPRING 10. FOUNDATION OR FOOTING DRAINS WHICH ARE
	ONTROLS INCLUDING SILT FENCES, MULCH BERM, SILT ALL BE MAINTAINED FOR THE DURATION OF THE PROJ TABILIZED	, ,	11. UNCONTAMINATED EXCAVATION DEWATERING; 12. LANDSCAPE IRRIGATION.
. THE CONTRAC CONTROL DE\	CTOR SHALL REMOVE AND PROPERLY DISPOSE OF ALL /ICES UPON COMPLETION OF CONSTRUCTION.		WASTE DISPOSAL: 1. WASTE MATERIAL:
FERTILIZER.	ED AREAS NOT OTHERWISE BEING TREATED SHALL RE		A. ALL WASTE MATERIALS SHALL BE COLLECT RECEPTACLES. ALL TRASH AND CONSTRUCT
STORM OF 0.2	INLET PROTECTION AND PERIMETER CONTROLS WEEKI 25 INCH OR GREATER. REPAIR/MODIFY PROTECTION AS 9F FILTER. REPLACE ALL FILTERS WHEN SEDIMENT IS 1	5 NECESSARY TO MAXIMIZE	IN A DUMPSTER; B. NO CONSTRUCTION WASTE MATERIALS SH/ C. ALL PERSONNEL SHALL BE INSTRUCTED RE
. CONSTRUCT E	ROSION CONTROL BLANKETS ON ALL SLOPES STEEPE		 2. HAZARDOUS WASTE:
	LL BE CONSIDERED STABLE WHEN ONE OF THE FOLLO JRSE GRAVELS HAVE BEEN INSTALLED IN AREAS TO BE		A. ALL HAZARDOUS WASTE MATERIALS SHALL LOCAL OR STATE REGULATION OR BY THE N
B. A MINIMU	IM OF 85% VEGETATED GROWTH HAS BEEN ESTABLISH IM OF 3" OF NON-EROSIVE MATERIAL SUCH AS STONE	HED;	 B. SITE PERSONNEL SHALL BE INSTRUCTED IN 3. SANITARY WASTE: A. ALL SANITARY WASTE SHALL BE COLLECTED
	CONTROL BLANKETS HAVE BEEN PROPERLY INSTALLED		A. ALL SANITARY WASTE SHALL BE COLLECTED PER WEEK BY A LICENSED SANITARY WAST
REQUIRE	TO BE PAVED, "STABLE" MEANS THAT BASE COURSE (MENTS OF NHDOT STANDARD FOR ROAD AND BRIDGE VE BEEN INSTALLED.		 SPILL PREVENTION: 1. CONTRACTOR SHALL BE FAMILIAR WITH SPILL F STATE AND FEDERAL AGENCIES. AT A MINIMUM
. WINTER STAB A. ALL PROP	ULIZATION PRACTICES: OSED VEGETATED AREAS THAT DO NOT EXHIBIT A MI		MANAGEMENT SPILL PREVENTION PRACTICES O 2. THE FOLLOWING ARE THE MATERIAL MANAGEM
VEGETAT: SHALL BE	IVE GROWTH BY OCTOBER 15, OR WHICH ARE DISTUR	BED AFTER OCTOBER 15, CONTROL BLANKETS ON	THE RISK OF SPILLS OR OTHER ACCIDENTAL EX CONSTRUCTION TO STORMWATER RUNOFF:
SECURED	GREATER THAN 3:1, AND SEEDING AND PLACING 3 TO 4 WITH ANCHORED NETTING, ELSEWHERE. THE INSTAL S OR MULCH AND NETTING SHALL NOT OCCUR OVER A	LATION OF EROSION CONTROL	A. GOOD HOUSEKEEPING - THE FOLLOWING G FOLLOWED ON SITE DURING CONSTRUCTIO
	GROUND AND SHALL BE COMPLETED IN ADVANCE OF T		 a. ONLY SUFFICIENT AMOUNTS OF PRODU b. ALL REGULATED MATERIALS STORED O MANNER IN THEIR PROPER (ORIGINAL)
B. ALL DITC	HES OR SWALES WHICH DO NOT EXHIBIT A MINIMUM BY OCTOBER 15, OR WHICH ARE DISTURBED AFTER O		UNDER A ROOF OR OTHER ENCLOSURE c. MANUFACTURER'S RECOMMENDATIONS
THE DESI	ED TEMPORARILY WITH STONE OR EROSION CONTROL GN FLOW CONDITIONS;		FOLLOWED; d. THE SITE SUPERINTENDENT SHALL INS
FOR THE	CTOBER 15, INCOMPLETE ROAD OR PARKING SURFACES WINTER SEASON, SHALL BE PROTECTED WITH A MININ PER NHDOT ITEM 304.3, OR IF CONSTRUCTION IS TO C	1UM OF 3 INCHES OF CRUSHED	DISPOSAL OF MATERIALS; e. SUBSTANCES SHALL NOT BE MIXED WI
WINTER S	SEASON BE CLEARED OF ANY ACCUMULATED SNOW AF DN SHALL BE INITIATED ON ALL LOAM STOCKPILES, AN	TER EACH STORM EVENT;	MANUFACTURER; f. WHENEVER POSSIBLE ALL OF A PRODU CONTAINER.
CONSTRUCTION BY THE FOUR	ON ACTIVITY SHALL NOT OCCUR FOR MORE THAN TWE FEENTH (14TH) DAY AFTER CONSTRUCTION ACTIVITY F	NTY-ONE (21) CALENDAR DAYS HAS PERMANENTLY OR	g. THE TRAINING OF ON-SITE EMPLOYEES RESPONSE INFORMATION DESCRIBING
A. TEMPORA		U BE USED INCLUDE:	REGULATED SUBSTANCES. B. HAZARDOUS PRODUCTS - THE FOLLOWING
	G. IALL BE STABILIZED WITHIN 45 DAYS OF INITIAL DIST RUCTION ACTIVITY PERMANENTLY OR TEMPORARILY C		ASSOCIATED WITH HAZARDOUS MATERIAL a. PRODUCTS SHALL BE KEPT IN THEIR OI RESEALABLE;
NEARBY SURF	ACE WATERS OR DELINEATED WETLANDS, THE AREA S YS OR PRIOR TO A RAIN EVENT. ONCE CONSTRUCTION	HALL BE STABILIZED WITHIN	b. ORIGINAL LABELS AND MATERIAL SAFE PRODUCT INFORMATION;
PERMANENTLY EARTH/DIKES	IN AN THESE AREAS, SILT FENCES, MULCH BERMS, H SHALL BE REMOVED ONCE PERMANENT MEASURES AR	AY BALE BARRIERS AND ANY E ESTABLISHED.	c. SURPLUS PRODUCT THAT MUST BE DIS THE MANUFACTURER'S RECOMMENDED
PIPING OR ST	STRUCTION, RUNOFF WILL BE DIVERTED AROUND THE ABILIZED CHANNELS WHERE POSSIBLE. SHEET RUNOF	F FROM THE SITE WILL BE	C. PRODUCT SPECIFIC PRACTICES - THE FOLLO FOLLOWED ON SITE:
FILIEKED IHH	ROUGH SILT FENCES, MULCH BERMS, HAY BALE BARRIE	IND, UK DILI DUUKD. ALL	a. PETROLEUM PRODUCTS:

DED WITH FLARED END SECTIONS AND TRASH THE WINTER BY OCTOBER 15.

CONTROL DUST THROUGHOUT THE CONSTRUCTION

JT BE NOT LIMITED TO SPRINKLING WATER ON RUCKS LEAVING THE SITE, AND TEMPORARY

D SO AS TO PREVENT THE MIGRATION OF DUST

AWAY FROM CATCH BASINS, SWALES, AND

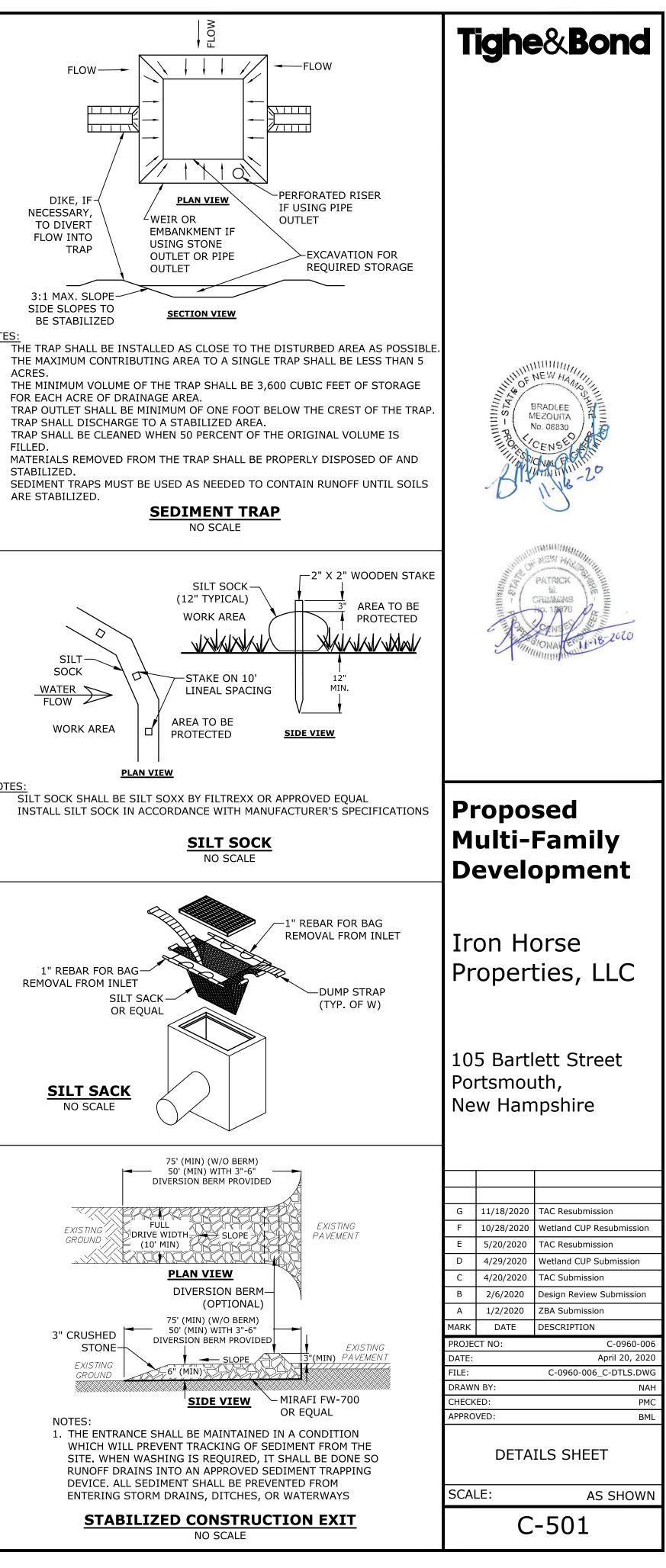
- ITH TEMPORARY EROSION CONTROL MEASURES
- D AT ALL TIMES, AND ADJUSTED AS NEEDED TO OF MATERIALS FROM THE STOCKPILE. THE ECTED AT THE END OF EACH WORKING DAY. R RUN-OFF USING TEMPORARY EROSION CONTROL THER APPROVED PRACTICE TO PREVENT MIGRATION NES OF THE STOCKPILES.

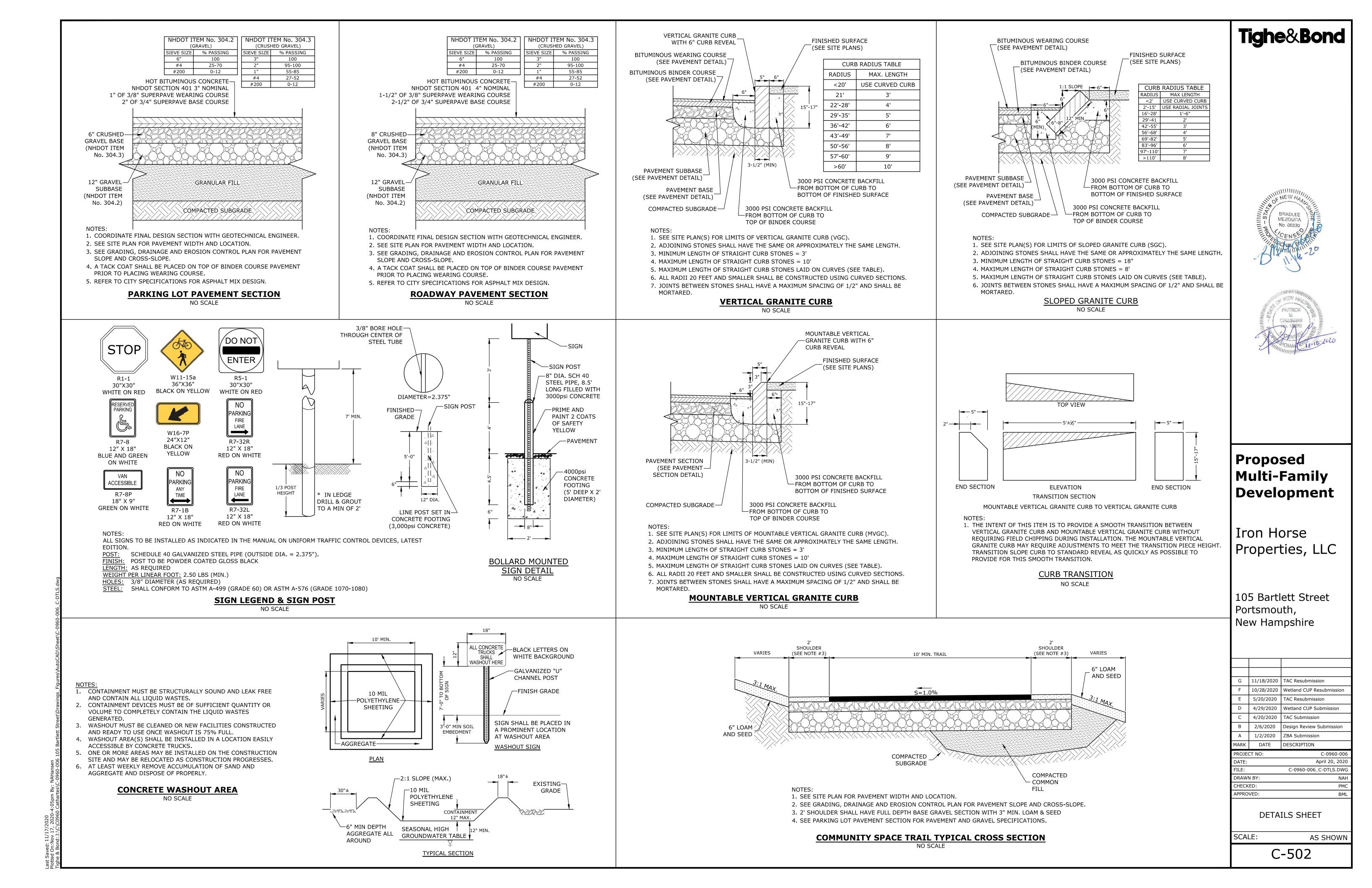
IZED CONSTRUCTION ENTRANCE(S) PRIOR TO ANY

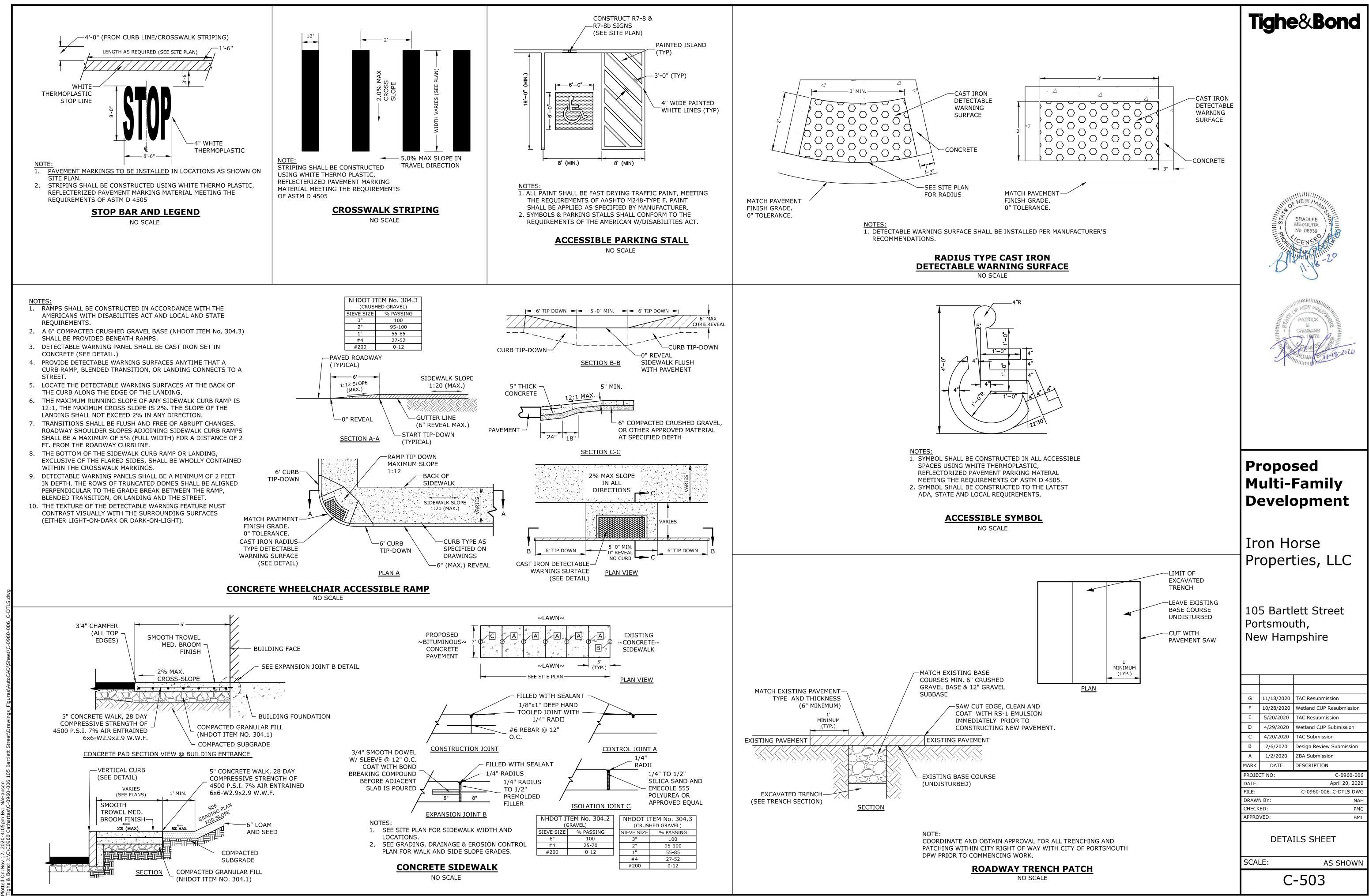
- PREPARATION REQUIREMENTS;
- REQUIREMENTS;
- ODICALLY INSPECTED. AT A MINIMUM, 95% OF THE BY VEGETATION. IF ANY EVIDENCE OF EROSION OR RS SHALL BE MADE AND OTHER TEMPORARY JLCH, FILTER BARRIERS, CHECK DAMS, ETC.).
- EASURES AND PLANTINGS:
- ND MAINTAIN THE SEEDED AREAS UNTIL ACCEPTED; NT EXCEED ONE (1) PERCENT BY WEIGHT. ALL SEED ERAL SEED LAWS. SEEDING SHALL BE DONE NO ASE SHALL SEEDING TAKE PLACE OVER SNOW.
- SNOWFALL): MENTS. APPLY SEED MIXTURE AT TWICE THE ATED FOR PERMANENT MEASURES.
- VATER DISCHARGES ALLOWED. ALL OTHER
- ITED ON SITE:
- , WHENEVER POSSIBLE, USE WASHOUT FACILITIES LITY;
- SHALL DESIGNATE SPECIFIC WASHOUT AREAS AND TED WASHOUT WATER; REAS AT LEAST 150 FEET AWAY FROM STORM
- OR DELINEATED WETLANDS;
- DETECT LEAKS OR TEARS AND TO IDENTIFY WHEN

- TERGENTS ARE NOT USED;
- ED WATER LINE FLUSHING;
- VHERE DETERGENTS ARE NOT USED; IS ARE NOT USED;
- RESSOR CONDENSATION
- IG WATER;
- E UNCONTAMINATED;
- TED AND STORED IN SECURELY LIDDED CTION DEBRIS FROM THE SITE SHALL BE DEPOSITED
- HALL BE BURIED ON SITE; EGARDING THE CORRECT PROCEDURE FOR WASTE
- LL BE DISPOSED OF IN THE MANNER SPECIFIED BY MANUFACTURER;
- IN THESE PRACTICES BY THE SUPERINTENDENT.
- ED FROM THE PORTABLE UNITS A MINIMUM OF ONCE TE MANAGEMENT CONTRACTOR.
- . PREVENTION MEASURES REQUIRED BY LOCAL, M, CONTRACTOR SHALL FOLLOW THE BEST OUTLINED BELOW.
- MENT PRACTICES THAT SHALL BE USED TO REDUCE EXPOSURE OF MATERIALS AND SUBSTANCES DURING
- GOOD HOUSEKEEPING PRACTICE SHALL BE
- [ON OUCTS TO DO THE JOB SHALL BE STORED ON SITE; ON SITE SHALL BE STORED IN A NEAT, ORDERLY . IF POSSIBLE) CONTAINERS AND, IF POSSIBLE, E, ON AN IMPERVIOUS SURFACE;
- IS FOR PROPER USE AND DISPOSAL SHALL BE
- SPECT DAILY TO ENSURE PROPER USE AND
- /ITH ONE ANOTHER UNLESS RECOMMENDED BY THE
- UCT SHALL BE USED UP BEFORE DISPOSING OF THE
- S AND THE ON-SITE POSTING OF RELEASE G WHAT TO DO IN THE EVENT OF A SPILL OF
- G PRACTICES SHALL BE USED TO REDUCE THE RISKS
- DRIGINAL CONTAINERS UNLESS THEY ARE NOT
- ETY DATA SHALL BE RETAINED FOR IMPORTANT
- SPOSED OF SHALL BE DISCARDED ACCORDING TO D METHODS OF DISPOSAL. LOWING PRODUCT SPECIFIC PRACTICES SHALL BE

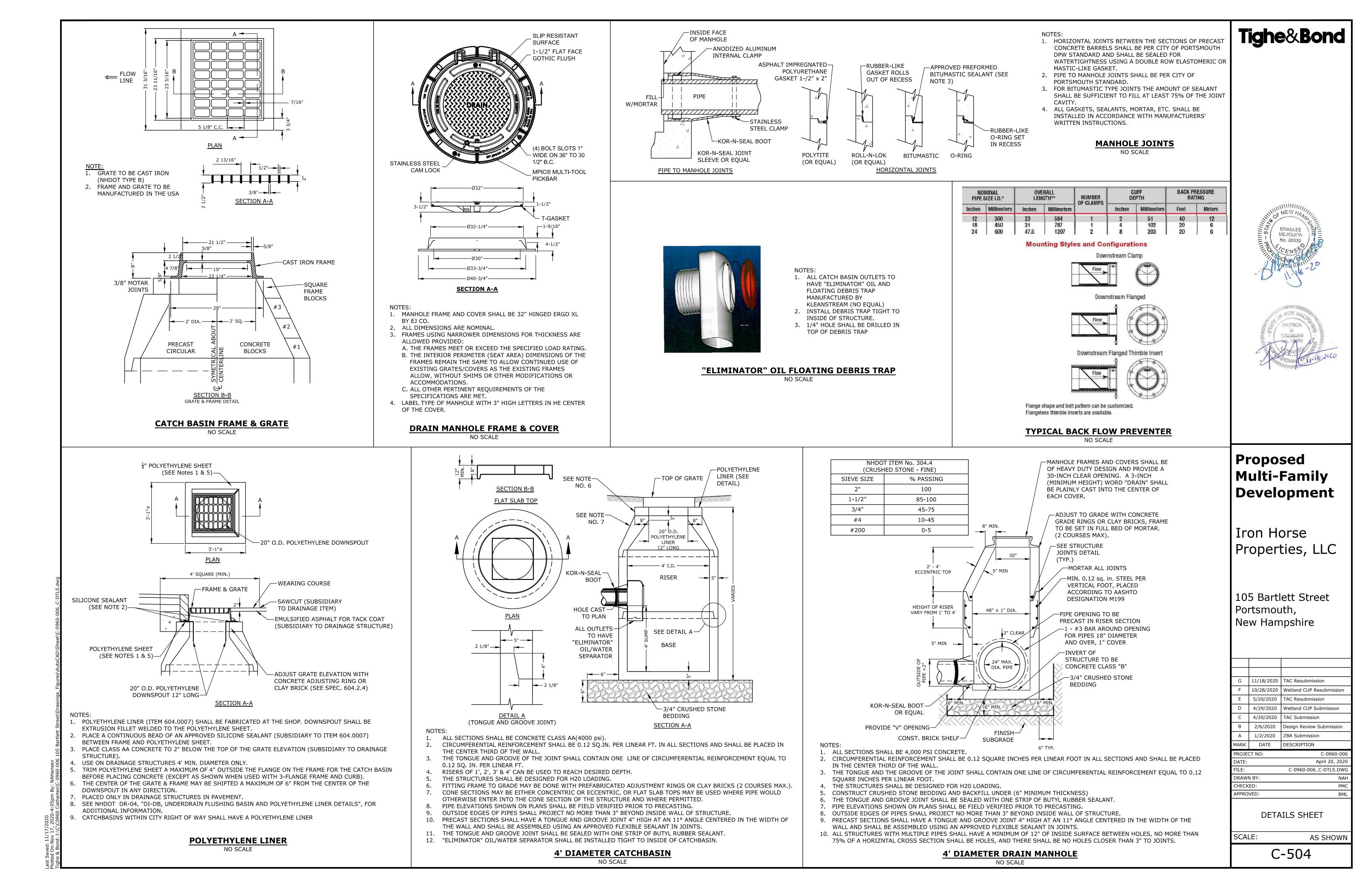
- ALL ON SITE VEHICLES SHALL BE MONITORED FOR LEAKS AND RECEIVE REGULAR PREVENTIVE MAINTENANCE TO REDUCE LEAKAGE;
- PETROLEUM PRODUCTS SHALL BE STORED IN TIGHTLY SEALED CONTAINERS WHICH ARE CLEARLY LABELED. ANY ASPHALT BASED SUBSTANCES USED ON SITE SHALL BE APPLIED ACCORDING TO THE MANUFACTURER'S RECOMMENDATIONS.
- iii. SECURE FUEL STORAGE AREAS AGAINST UNAUTHORIZED ENTRY;
- iv. INSPECT FUEL STORAGE AREAS WEEKLY;
- v. WHEREVER POSSIBLE, KEEP REGULATED CONTAINERS THAT ARE STORED OUTSIDE MORE THAN 50 FEET FROM SURFACE WATER AND STORM DRAINS, 75 FEET FROM PRIVATE WELLS, AND 400 FEET FROM PUBLIC WELLS;
- vi. COVER REGULATED CONTAINERS IN OUTSIDE STORAGE AREAS;
- vii. SECONDARY CONTAINMENT IS REQUIRED FOR CONTAINERS CONTAINING REGULATED SUBSTANCES STORED OUTSIDE, EXCEPT FOR ON PREMISE USE HEATING FUEL TANKS, OR ABOVEGROUND OR UNDERGROUND STORAGE TANKS OTHERWISE REGULATED.
- viii. THE FUEL HANDLING REQUIREMENTS SHALL INCLUDE: (1) EXCEPT WHEN IN USE, KEEP CONTAINERS CONTAINING REGULATED SUBSTANCES CLOSED AND SEALED;
 - (2) PLACE DRIP PANS UNDER SPIGOTS, VALVES, AND PUMPS; (3) HAVE SPILL CONTROL AND CONTAINMENT EQUIPMENT READILY AVAILABLE IN
 - ALL WORK AREAS;
 - (4) USE FUNNELS AND DRIP PANS WHEN TRANSFERRING REGULATED SUBSTANCES; (5) PERFORM TRANSFERS OF REGULATED SUBSTANCES OVER AN IMPERVIOUS SURFACE.
- ix. FUELING AND MAINTENANCE OF EXCAVATION, EARTHMOVING AND OTHER CONSTRUCTION RELATED EQUIPMENT SHALL COMPLY WITH THE REGULATIONS OF THE NEW HAMPSHIRE DEPARTMENT OF ENVIRONMENTAL SERVICES THESE REQUIREMENTS ARE SUMMARIZED IN WD-DWGB-22-6 BEST MANAGEMENT PRACTICES FOR FUELING AND MAINTENANCE OF EXCAVATION AND EARTHMOVING EQUIPMENT, OR ITS SUCCESSOR DOCUMENT. HTTPS://WWW.DES.NH.GOV/ORGANIZATION/COMMISSIONER/PIP/FACTSHEETS/DWGB/DOCUMENTS/DWGB-22-6.PDF
- b. FERTILIZERS FERTILIZERS USED SHALL BE APPLIED ONLY IN THE MINIMUM AMOUNTS DIRECTED BY
- THE SPECIFICATIONS; ii. ONCE APPLIED FERTILIZER SHALL BE WORKED INTO THE SOIL TO LIMIT EXPOSURE TO STORMWATER
- iii. STORAGE SHALL BE IN A COVERED SHED OR ENCLOSED TRAILERS. THE CONTENTS OF ANY PARTIALLY USED BAGS OF FERTILIZER SHALL BE TRANSFERRED TO A SEALABLE PLASTIC BIN TO AVOID SPILLS.
- c. PAINTS:
- i. ALL CONTAINERS SHALL BE TIGHTLY SEALED AND STORED WHEN NOT REQUIRED FOR USE;
- ii. EXCESS PAINT SHALL NOT BE DISCHARGED TO THE STORM SEWER SYSTEM; iii. EXCESS PAINT SHALL BE DISPOSED OF PROPERLY ACCORDING TO MANUFACTURER'S
- INSTRUCTIONS OR STATE AND LOCAL REGULATIONS. D. SPILL CONTROL PRACTICES - IN ADDITION TO GOOD HOUSEKEEPING AND MATERIAL
- MANAGEMENT PRACTICES DISCUSSED IN THE PREVIOUS SECTION, THE FOLLOWING PRACTICES SHALL BE FOLLOWED FOR SPILL PREVENTION AND CLEANUP:
- a. MANUFACTURER'S RECOMMENDED METHODS FOR SPILL CLEANUP SHALL BE CLEARLY POSTED AND SITE PERSONNEL SHALL BE MADE AWARE OF THE PROCEDURES AND THE LOCATION OF THE INFORMATION AND CLEANUP SUPPLIES
- b. MATERIALS AND EQUIPMENT NECESSARY FOR SPILL CLEANUP SHALL BE KEPT IN THE MATERIAL STORAGE AREA ON SITE. EQUIPMENT AND MATERIALS SHALL INCLUDE BUT NOT BE LIMITED TO BROOMS, DUSTPANS, MOPS, RAGS, GLOVES, GOGGLES, KITTY LITTER, SAND, SAWDUST AND PLASTIC OR METAL TRASH CONTAINERS SPECIFICALLY FOR THIS PURPOSE;
- c. ALL SPILLS SHALL BE CLEANED UP IMMEDIATELY AFTER DISCOVERY;
- d. THE SPILL AREA SHALL BE KEPT WELL VENTILATED AND PERSONNEL SHALL WEAR APPROPRIATE PROTECTIVE CLOTHING TO PREVENT INJURY FROM CONTACT WITH A HAZARDOUS SUBSTANCE;
- e. SPILLS OF TOXIC OR HAZARDOUS MATERIAL SHALL BE REPORTED TO THE APPROPRIATE LOCAL, STATE OR FEDERAL AGENCIES AS REQUIRED; f. THE SITE SUPERINTENDENT RESPONSIBLE FOR DAY-TO-DAY SITE OPERATIONS SHALL BE
- THE SPILL PREVENTION AND CLEANUP COORDINATOR. E. VEHICLE FUELING AND MAINTENANCE PRACTICE:
- a. CONTRACTOR SHALL MAKE AN EFFORT TO PERFORM EQUIPMENT/VEHICLE FUELING AND MAINTENANCE AT AN OFF-SITE FACILITY; b. CONTRACTOR SHALL PROVIDE AN ON-SITE FUELING AND MAINTENANCE AREA THAT IS
- CLEAN AND DRY;
- c. IF POSSIBLE THE CONTRACTOR SHALL KEEP AREA COVERED;
- d. CONTRACTOR SHALL KEEP A SPILL KIT AT THE FUELING AND MAINTENANCE AREA;
- e. CONTRACTOR SHALL REGULARLY INSPECT VEHICLES FOR LEAKS AND DAMAGE; f. CONTRACTOR SHALL USE DRIP PANS, DRIP CLOTHS, OR ABSORBENT PADS WHEN REPLACING SPENT FLUID.

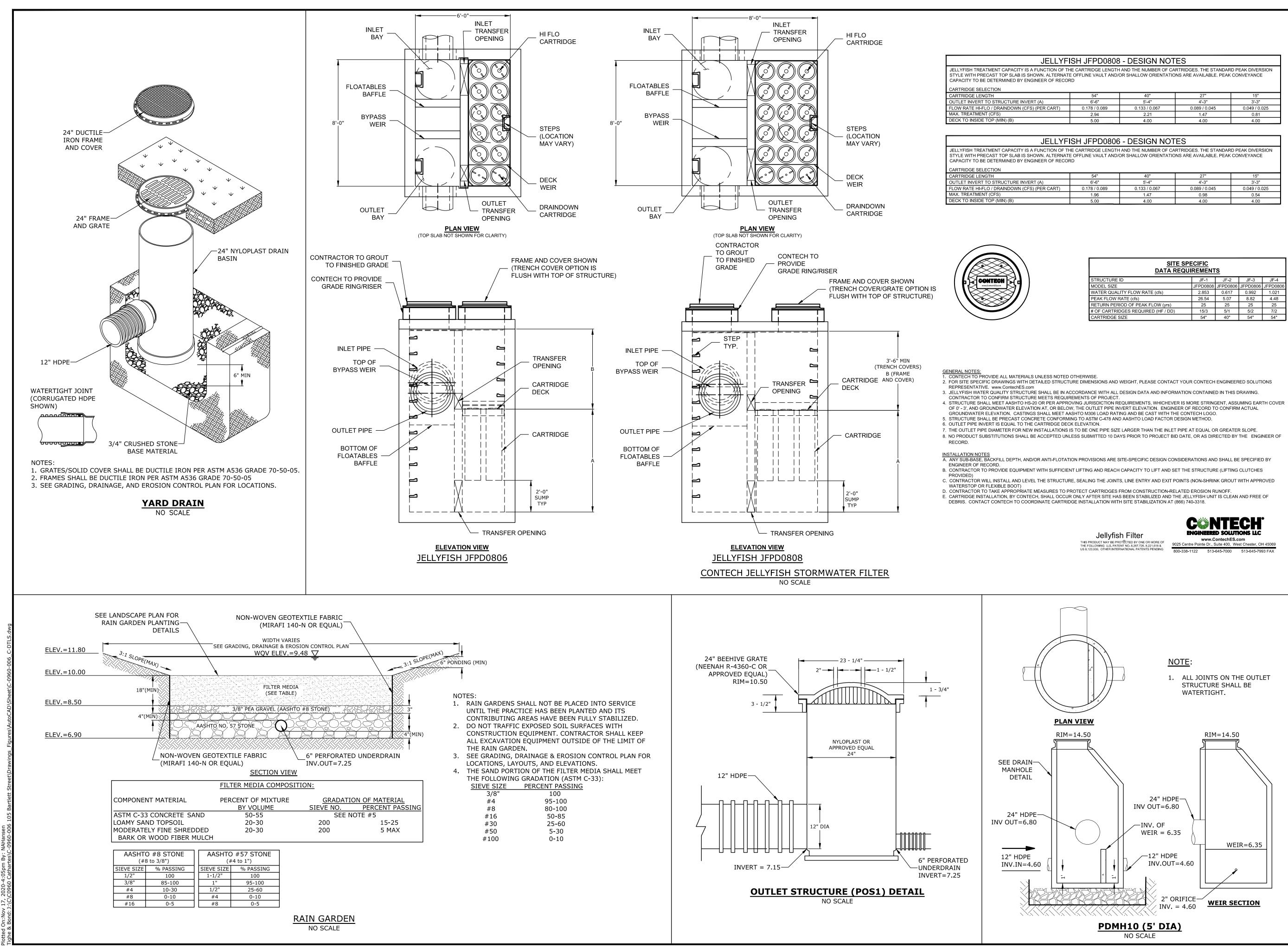

EROSION CONTROL OBSERVATIONS AND MAINTENANCE PRACTICES


THIS PROJECT EXCEEDS ONE (1) ACRE OF DISTURBANCE AND THUS REQUIRES A SWPPP. THE SWPPP SHALL BE PREPARED BY THE CONTRACTOR. THE CONTRACTOR SHALL BE FAMILIAR WITH THE SWPPP AND KEEP AN UPDATED COPY OF THE SWPPP ONSITE AT ALL TIMES. 2. THE FOLLOWING REPRESENTS THE GENERAL OBSERVATION AND REPORTING PRACTICES THAT


- SHALL BE FOLLOWED AS PART OF THIS PROJECT: A. OBSERVATIONS OF THE PROJECT FOR COMPLIANCE WITH THE SWPPP SHALL BE MADE BY THE
- CONTRACTOR AT LEAST ONCE A WEEK OR WITHIN 24 HOURS OF A STORM 0.25 INCHES OR GREATER: B. AN OBSERVATION REPORT SHALL BE MADE AFTER EACH OBSERVATION AND DISTRIBUTED TO
- THE ENGINEER, THE OWNER, AND THE CONTRACTOR; C. A REPRESENTATIVE OF THE SITE CONTRACTOR, SHALL BE RESPONSIBLE FOR MAINTENANCE
- AND REPAIR ACTIVITIES; D. IF A REPAIR IS NECESSARY, IT SHALL BE INITIATED WITHIN 24 HOURS OF REPORT.

ACRES. FILLED.


2.



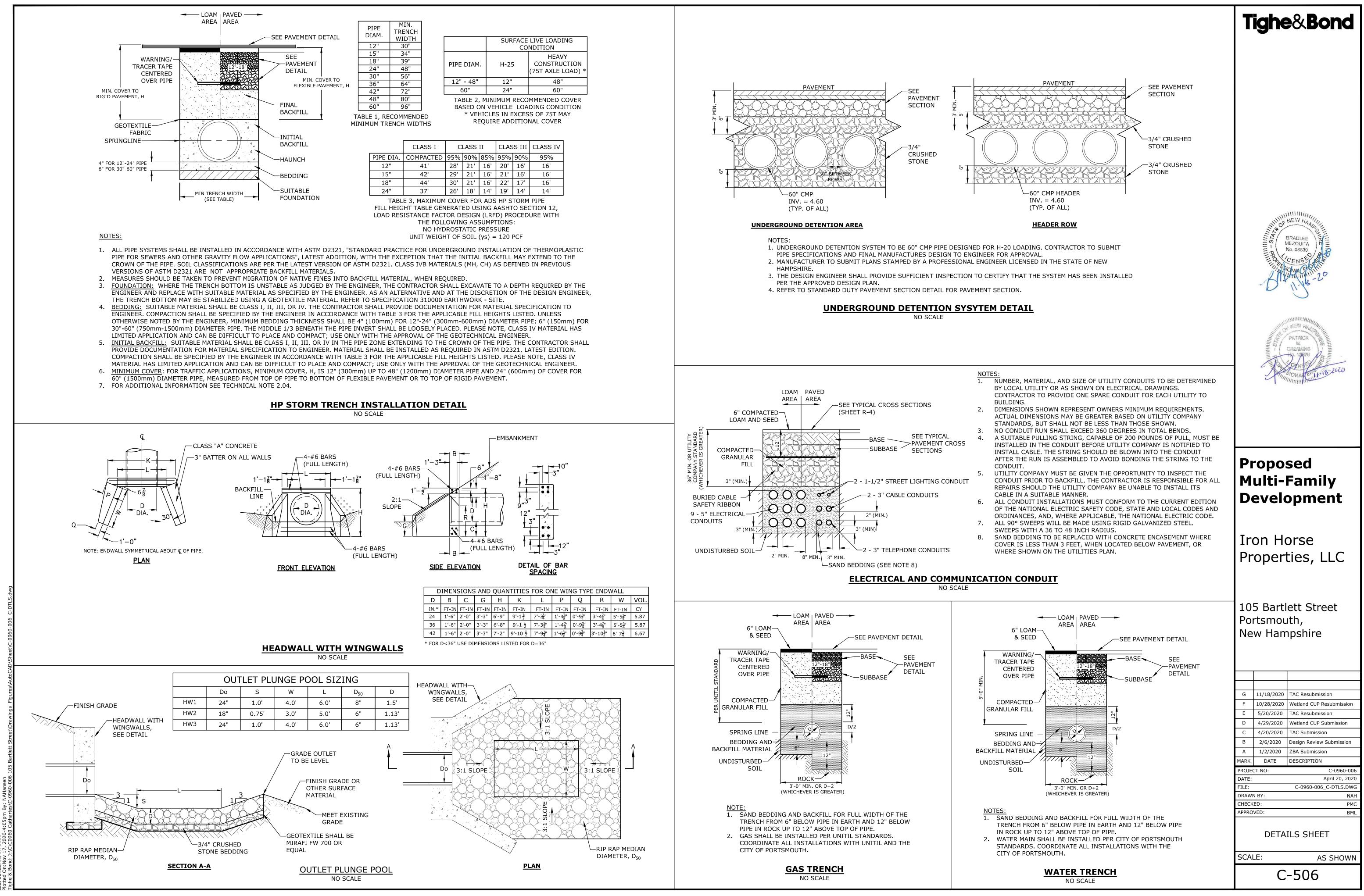
d: 11/17/2020 1:Nov 17, 2020-4:05pm By: NAHan

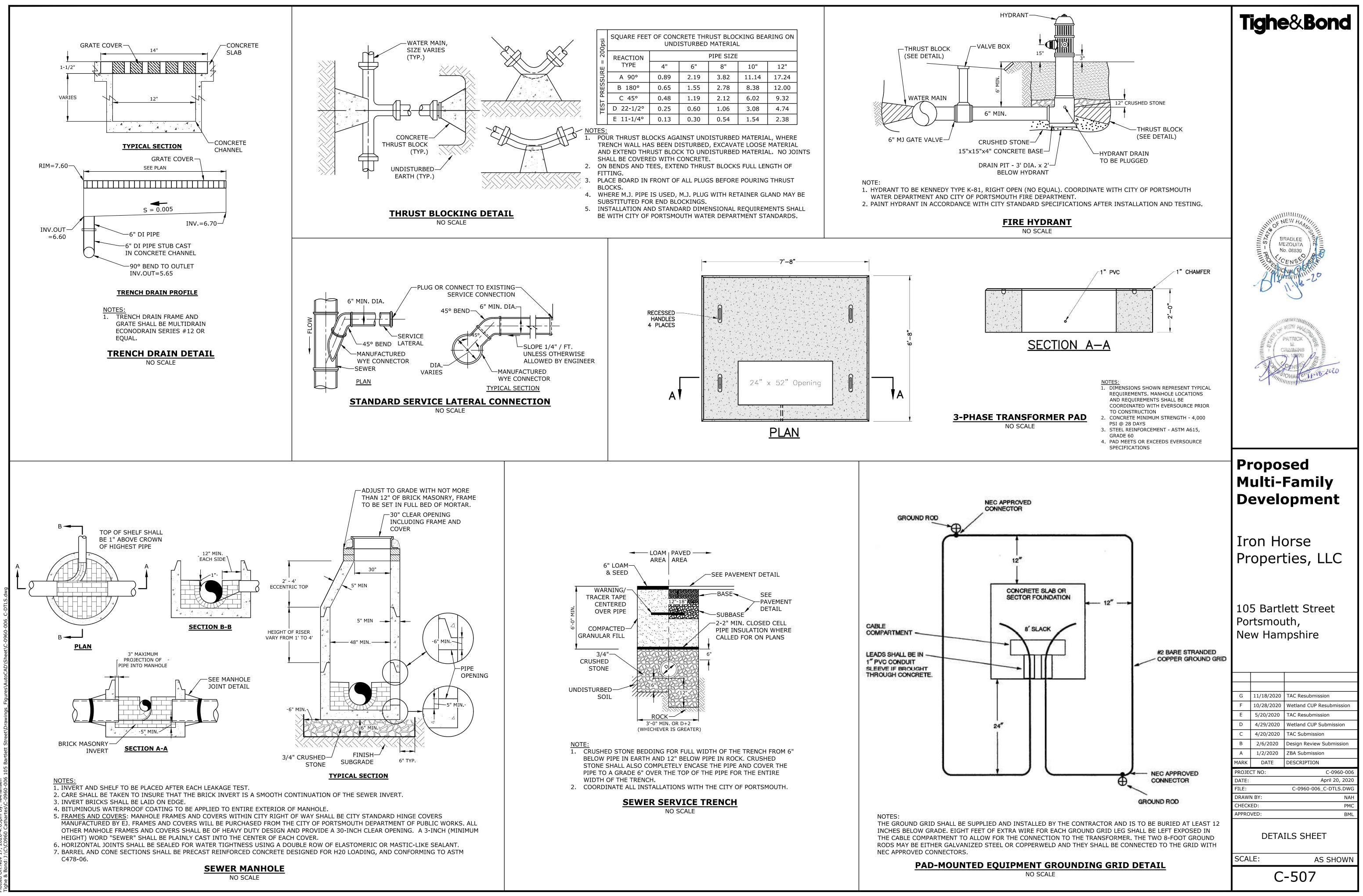
YFISH JFPD0808 - DESIGN NOTES
OF THE CARTRIDGE LENGTH AND THE NUMBER OF CARTRIDGES. THE S
RNATE OFFLINE VALUET AND/OR SHALLOW/ ORIENTATIONS ARE AVAILABL

	54"	40"	27"	15"
	6'-6"	5'-4"	4'-3"	3'-3"
T)	0.178 / 0.089	0.133 / 0.067	0.089 / 0.045	0.049 / 0.025
	2.94	2.21	1.47	0.81
	5.00	4.00	4.00	4.00

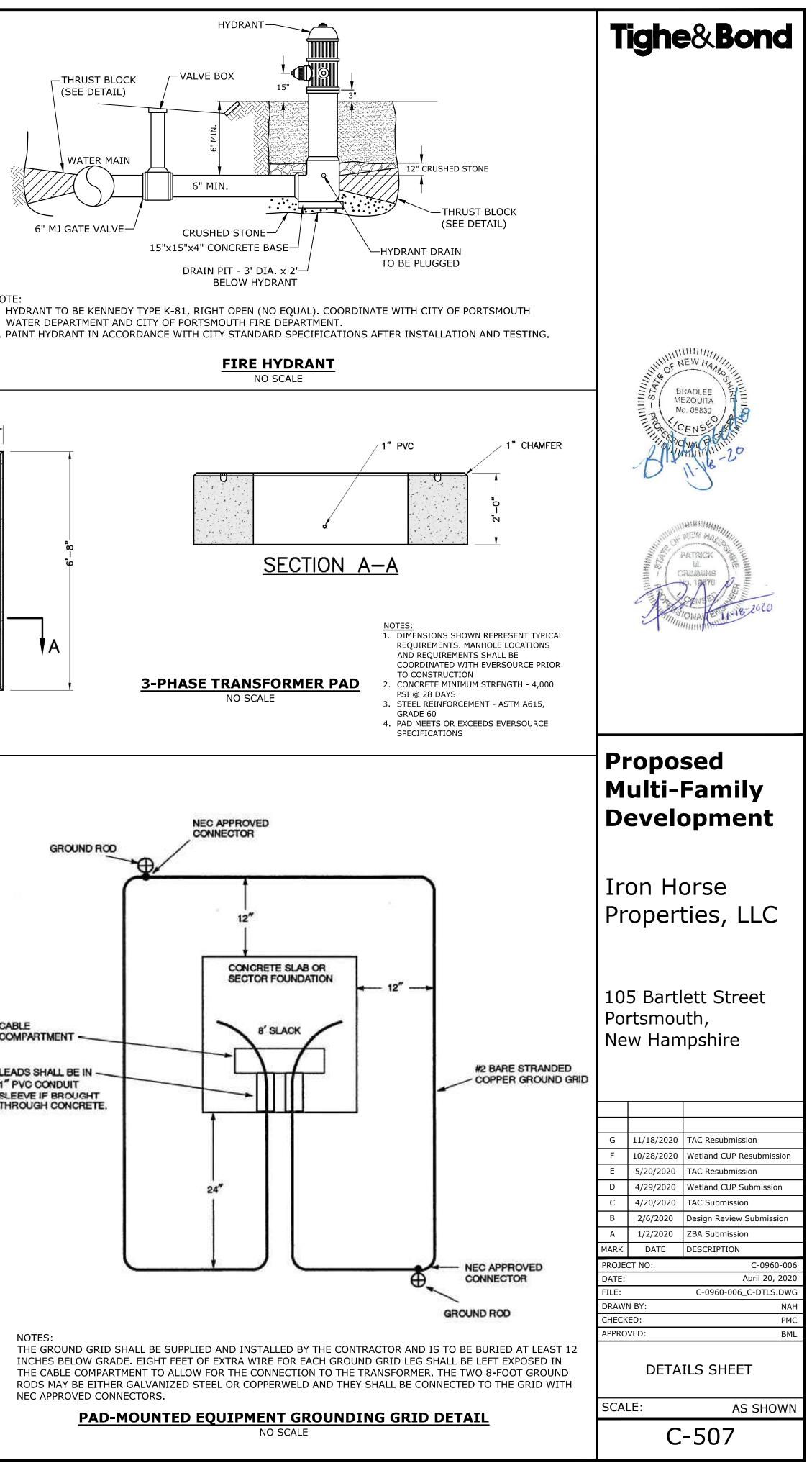
	54"	40"	27"	15"
	6'-6"	5'-4"	4'-3"	3'-3"
T)	0.178 / 0.089	0.133 / 0.067	0.089 / 0.045	0.049 / 0.025
	1.96	1.47	0.98	0.54
	5.00	4.00	4.00	4.00

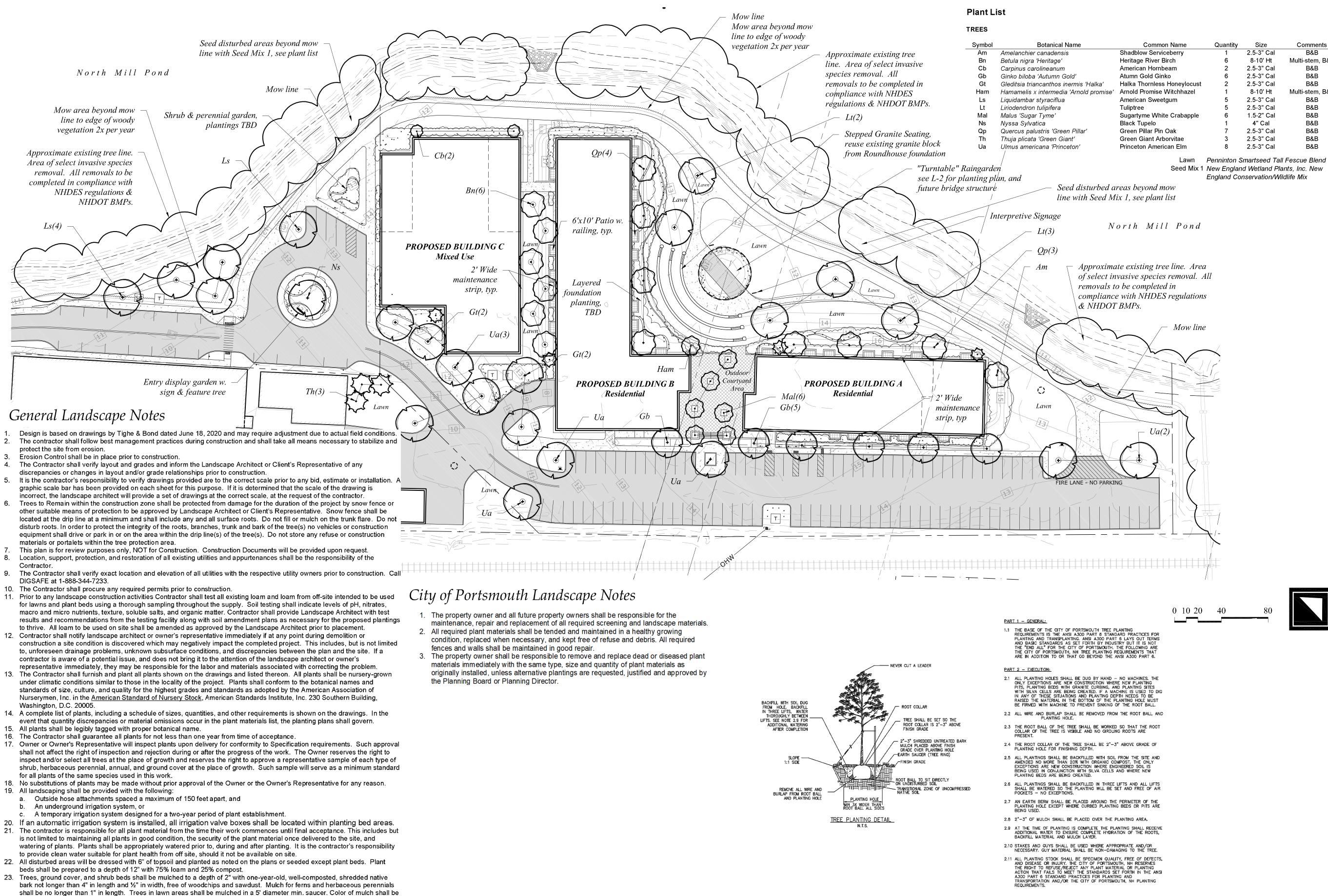
SITE SPECIFIC DATA REQUIREMENTS						
STRUCTURE ID	JF-1	JF-2	JF-3	JF-4		
MODEL SIZE	JFPD0808	JFPD0806	JFPD0806	JFPD0806		
WATER QUALITY FLOW RATE (cfs)	2.853	0.617	0.992	1.021		
PEAK FLOW RATE (cfs)	26.54	5.07	8.82	4.48		
RETURN PERIOD OF PEAK FLOW (yrs)	25	25	25	25		
# OF CARTRIDGES REQUIRED (HF / DD)	15/3	5/1	5/2	7/2		
CARTRIDGE SIZE	54"	40"	54"	54"		



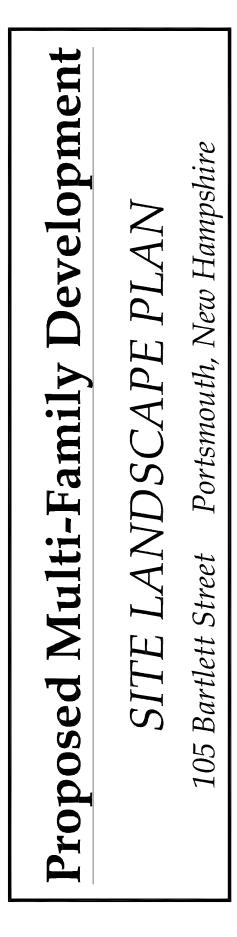

	iahe	&Bond
		N11117
	NHHHHHINOF	BRADLEE MEZOUITA
	- 1 1	
		VO. 08830
	2	Ava Calinta
	D.	11-20
	Survey of	NEW HARDS
	NIMINIA	PATRICK A
	B	HO. 138TO
	Juli	10NAV (11-18-2020
		and we
P	ropos	sed
	ropo: ulti-	
M	ulti-	Family
M	ulti-	
M D	ulti- evelo	Family opment
M D Ir	ulti-levelo	Family opment
M D Ir	ulti-levelo	Family opment
M D Ir	ulti-levelo	Family opment
M D Ir Pr	ulti-levelo	Family opment
M D Ir Pr	ulti-levelo on Ho opert	Family opment orse ties, LLC ett Street
M D Ir Pr 10 Po	ulti- evel on Ho oper 5 Bartl rtsmou	Family opment
M D Ir Pr 10 Po	ulti- evel on Ho oper 5 Bartl rtsmou	Family opment orse ties, LLC ett Street
M D Ir Pr 10 Po	ulti- evel on Ho oper 5 Bartl rtsmou	Family opment
M D Ir Pr 10 Po	ulti- evel on Ho oper 5 Bartl rtsmou	Family opment
M D Ir Pr 10 Po Ne	ulti- evel on Ho oper 5 Bartl rtsmou w Ham	Family opment
M D Ir Pr 10 Po Ne	ulti- evela on Ha oper 5 Bartl rtsmou w Ham	Family opment
M D Ir Pr 10 Po Ne	ulti- evela on Ha oper 5 Bartl rtsmou w Ham	Family opment
M D Ir Pr 10 Po Ne	ulti- evel on Ho oper 5 Bartl rtsmou w Ham 11/18/2020 10/28/2020 5/20/2020 4/29/2020 4/29/2020 2/6/2020	Family opment
M D Ir Pr 10 Po Ne G F E D C B A MARK	ulti- evel on Ho oper 5 Bartl rtsmou w Ham 11/18/2020 10/28/2020 5/20/2020 4/29/2020 4/29/2020 4/29/2020 2/6/2020 2/6/2020 1/2/2020	Family opment Spent Crse ties, LLC ett Street th, opshire TAC Resubmission Vetland CUP Resubmission TAC Resubmission TAC Resubmission TAC Resubmission TAC Resubmission TAC Resubmission TAC Submission Design Review Submission ZBA Submission
M D Ir Pr 10 Po Ne G F E D C B A MARK PROJE	ulti- evel on Ho oper 5 Bartl rtsmou w Ham 11/18/2020 10/28/2020 10/28/2020 4/20/2020 4/20/2020 4/20/2020 1/2/2020	Family openat Specta Specta Specta Street th, opshire specta Street th, opshire Street Street specta Street Stre
M D D I T P T D T C B A MARK PROJE FILE: DRAW	ulti- evel on Ho oper 5 Bartl rtsmou w Ham 11/18/2020 5/20/2020 4/29/2020 4/29/2020 4/29/2020 4/20/2020 2/6/2020 1/2/2020 1/2/2020 CT NO:	Family openations openations openations openations openations wetland CUP Resubmission ind ind CUP Resubmission ind ind CUP Resubmission ind ind CUP Submission ind ind CUP Submission ind CUP Submissio
M D Ir Pr 10 Po Ne G F E D C B A MARK PROJE FILE:	ulti- evel on Ho oper 5 Bartl rtsmou w Ham 11/18/2020 5/20/2020 4/29/2020 4/29/2020 4/29/2020 4/29/2020 2/6/2020 1/2/2020 2/6/2020 CT NO:	Family openations openations openations openations openations wetland CUP Resubmission TAC Resubmission Metland CUP Resubmission TAC Resubmission Metland CUP Submission TAC Resubmission TAC Resubmission Design Review Submission ZBA Submission DescRIPTION C-0960-006_C-DTLS.DWG

C-505


AS SHOWN


SCALE:

200psi	SQUARE FEET OF CONCRETE THRUST BLOCKING BEARING ON UNDISTURBED MATERIAL					
	REACTION			PIPE SIZE		
КЕ =	TYPE	4"	6"	8"	10"	12"
SURE	A 90°	0.89	2.19	3.82	11.14	17.24
PRES	B 180°	0.65	1.55	2.78	8.38	12.00
	C 45°	0.48	1.19	2.12	6.02	9.32
TEST	D 22-1/2°	0.25	0.60	1.06	3.08	4.74
-	E 11-1/4°	0.13	0.30	0.54	1.54	2.38


- black. 24. In no case shall mulch touch the stem of a plant nor shall mulch ever be more than 3" thick total (including previously applied mulch) over the root ball of any plant.
- 25. Secondary lateral branches of deciduous trees overhanging vehicular and pedestrian travel ways shall be pruned up to a height of 6' to allow clear and safe passage of vehicles and pedestrians under tree canopy. Within the sight distance triangles at vehicle intersections the canopies shall be raised to 8' min.
- Snow shall be stored a minimum of 5' from shrubs and trunks of trees. Landscape Architect is not responsible for the means and methods of the contractor.

City of Portsmouth Tree Planting Detail

lame	Common Name	Quantity	Size	Comments
3	Shadblow Serviceberry	1	2.5-3" Cal	B&B
	Heritage River Birch	6	8-10' Ht	Multi-stem, B&B
	American Hornbeam	2	2.5-3" Cal	B&B
old'	Atumn Gold Ginko	6	2.5-3" Cal	B&B
ermis 'Halka'	Halka Thornless Honeylocust	2	2.5-3" Cal	B&B
'Arnold promise'	Arnold Promise Witchhazel	1	8-10' Ht	Multi-stem, B&B
·	American Sweetgum	5	2.5-3" Cal	B&B
	Tuliptree	5	2.5-3" Cal	B&B
	Sugartyme White Crabapple	6	1.5-2" Cal	B&B
	Black Tupelo	1	4" Cal	B&B
n Pillar'	Green Pillar Pin Oak	7	2.5-3" Cal	B&B
nt'	Green Giant Arborvitae	3	2.5-3" Cal	B&B
eton'	Princeton American Elm	8	2.5-3" Cal	B&B

Seed Mix 1 New England Wetland Plants, Inc. New

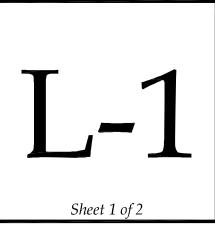
England Conservation/Wildlife Mix

C

 \mathcal{Q}

 \bigcirc

 \Box


0

 \bigcirc

 \bigcirc


 $\leq \leq$

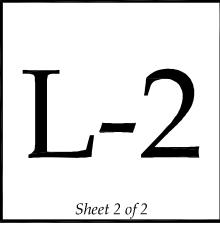
Drawn By:	VM
Checked By	y: RW
Scale:	1" = 40' - 0"
Date:	May 20, 2020
Revisions: N	October 28, 2020 Iovember 18, 2020

© 2020 Woodburn & Company Landscape Architecture, LLC

Hydrangea paniculata 'Bobo' Hydrangea macrophylla 'Endless Summer' HyE Hydrangea arborescens 'Incrediball' Hyl Hydrangea paniculata 'Little Lime' HyL llex glabra 'Shamrock' lg llex verticillata 'Red Sprite' ١v Juniperus chinensis 'Sargenti' Jc Juniperus virginiana 'Emerald Sentinel' Jv Мр Myrica pensylvanica Picea orientalis 'Gowdy' Po Rh Rhus aromatica 'Grow-Low' Rosa 'Blush Knockout' Ros Sp Spiraea x bumalda 'Anthony Waterer' Sy Syringa meyeri 'Palibin' Taxus media 'Ever-Low' Тах Thuja occidentalis 'Smaragd' Th Va Vaccinium angustifolium

Lowbush Blueberry

59

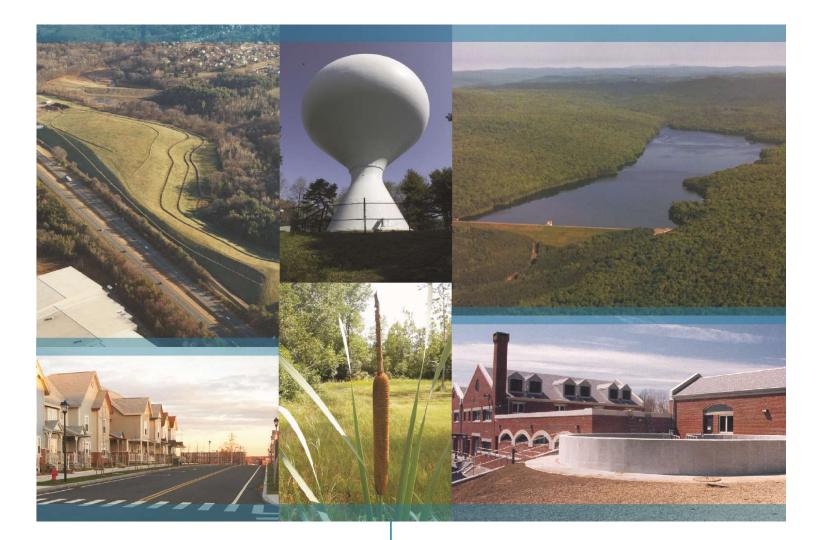

1 gal

Common Name	Quantity	Size	Comments	Symbol	Botanical Name	Common Name	Quantity
Tide Hill Boxwood	58	2' Ht	B&B	Вар	Baptisia australis	False Blue Indigo	12
Lo and Behold Butterflybush	29	3 gal		Cal	Calamagrostis acutifolia 'Karl Foerster'	Feather Reed Grass	22
Winter Gem Boxwood	34	2' Ht	B&B	Day	Hemerocallis 'Big Time Happy'	Big Time Happy Daylily	20
Hummingbird Summersweet	28	5 gal		Ir	Iris versicolor	Blue Flag Iris	46
Gold Tide Forsythia	151	3 gal		Pan	Panicum virgatum 'Heavy Metal'	Heavy Metal Switch Grass	30
Dwarf Fothergilla	12	5 gal		Rud	Rudbeckia fulgida 'Goldsturm'	Black-Eyed Susan	29
Bobo Hydrangea	41	3 gal		Vm	Vinca minor 'Bowles'	Bowles Periwinkle	1250
Endless Summer Hydrangea	16	5 gal					
Incrediball Hydrangea	18	5 gal		Lawn	Penninton Smartseed Tall Fescue Blend		
Little Lime Hydrangea	25	3 gal		Seed Mix 1	New England Wetland Plants, Inc. New		
Shamrock Inkberry	121	5 gal	full to ground		England Conservation/Wildlife Mix		
Red Sprite Winterberry	13	3 gal					
Sargent Juniper	110	5 gal					
Emerald Sentinel Red Cedar	6	7-8' Ht	B&B				
Northern Bayberry	22	5 gal					
Gowdy Oriental Spruce	4	8-10' Ht	B&B				
Grow Low Sumac	396	3 gal					
Blush Knockout Rose	76	3 gal					
Anthony Waterer Spirea	41	5 gal					
Dwarf Korean Lilac	23	3-4' Ht	B&B				
Ever-Low Yew	70	3 gal					
Emerald Green Arborvitae	7	7-8' Ht	B&B				

口

Drawn By	<i>y</i> :	VM
Checked 1	By:	RW
Scale:	1" :	= 20' - 0"
Date:	Novembe	r 4, 2020
Revisions	: November	18, 2020

© 2020 Woodburn & Company Landscape Architecture, LLC


105 Bartlett Street - City of Portsmouth TAC COMMENT RESPONSE

of Portsmouth TAC, June 02, 2020: TAC Comment	Applicant Response	Sheet
Comments from 6/1 Correspondence:		blicet
1 Driveway corner radius at Bartlett should be enlarged to provide easier access and egress. (It does	Driveway corner radius for right turns onto Bartlett Street has been increased from a 15-foot radius to a 25-foot radius.	C-102.1
2 Third party peer review of updated traffic generation memo shall be completed prior to Planning	Confirmed. Peer review memo has been completed by TEC. An updated Trip Generation Memo prepared by Stephan G. Pernaw & Company is also included with this submission.	N/A
 3 Applicant is responsible for final design, construction, and permitting of the greenway trail along the North Mill Pond, as it counts toward the community space requirement. Construction of the trail will have to be coordinated with occupancy of the building it is required for fire department access to the building and may also need to be designed to support a fire truck. 	Applicant agrees to construct improvements along North Mill Pond as shown enclosed Site and Landscape Plans.	C-102.2 & L-1
pavement in the wetland buffer . It appears as if there may be new pavement proposed in the wetland buffer. Please either confirm there is no new pavement in the wetland buffer or expand upon your rational for not providing porous pavement in the wetland buffer including details on the depth to the water table and technical justification for not including porous pavement.	As per TAC meeting on 6/2, applicant is proposing to construct stormwater treatment units in lieu of porous asphalt due to existing soils and groundwater constraints. As shown in the enclosed revised Drainage Analysis, the proposed treatment units with pretreatment measures have higher TSS, phosphorus and nitrogen removal rates then the porous asphalt. In addition, the stormwater management system on the development site has been revised to include a detention system to detain the water quality volume of runoff for a 24-hour period in order to reduce temperature prior to discharge into the North Mill Pond.	C-103.1 & 103.2
the contaminated soil be managed during construction?	Soil testing on site has been done. An Environmental Summary Memo has been included with this submission. A soil management plan will be prepared in accordance with NHDES regulations prior to construction.	
	The elevated walkway in front Buildings A & B has been entirely pulled out of the City sewer easement.	C-102.2
7 The ground floor uses of the proposed buildings should be noted on the Site Data table on Sheet C- 102.	The proposed ground floor uses have been added to the Site Data table on Sheet C-102.	C-102
	All of the buildings have been dimensioned and site data table updated to show compliance with all of the building requirements.	C-102 & C-102.2
	The existing zoning district lines have been added to the Grade Plane Plan to demonstrate full compliance with the building height requirements for each district.	Grade Plane Exhibit
	One way pavement markings and a "Do Not Enter" sign has been added to the proposed round- about indicating one-way traffic.	C-102.2
	The sidewalk has been revised to eliminate the small landscape islands near the cul-de-sac and on street parking areas.	C-102, C-102.1 & C-102.
	One way pavement markings and a "Do Not Enter" sign has been added to the proposed round- about indicating one-way traffic.	C-102.2

Date: November 18, 2020

13	A detail should be provided for the mountable vertical curb proposed for fire access to the	A detail has been added for the mountable vertical curb and curb transition p
	waterfront side of the buildings	access to the waterfront side of the buildings
14	Visitor parking areas should be shown.	Visitor parking areas have been added to the site plan.
15	The no-parking / turn-around area at the end of the surface parking lot should be reduced to only	The no-parking / turn-around area at the end of the surface parking lot has b
	include the driveway aisle and a single space furthest from the waterfront.	include the driveway aisle and a single space furthest from the waterfront. The
		area has also been reduced to pull all of the parking spaces out of the 100' tid
Additiona	I Comments from 6/2 TAC Meeting:	•
16	Designed to be useable including snow removal. Grade and ability to support fire truck and	A detail has been added to show the minimum cross section of the communi
	outriggers for a width of 14' minimum in rear of building	includes a 10' minimum width and a full depth gravel width of 14' to support
		outriggers. The path has also been designed to be wider at the building corne
		truck turning to be within the paved path surface.
17	Add proper signage for fire lane around rear of building	Fire lane signage has been added to the fire lane access.
18	Turning templates are too tight at turnaround.	Turning templates have been revised for the update site layout.
19	Move Jellyfish 4 closer to the path for better maintenance access	Jellyfish 4 has been moved closer to the path for better maintenance access
20	Move fire hydrant at the end of Building A to the opposite side of the fire access to remove conflict	The revisions to the drainage and utilities plans have eliminated the conflict b
	with the proposed drainage. End of the main should be a tee to the hydrant, followed by a valve,	and the drainage lines and structures.
	10ft of pipe and then the cap. Fire would prefer to keep the hydrant on the building side of the	
	turnaround so the turn around is not blocked by a hose running across the access.	
21	Add more detail landscape plan	More detailed landscape plans are included.

C-502
C-102.2
C-102 & C-102.2
C-102.2 & C-502
C-102.2
C-103.2
C-104.2
L-1

Proposed Multi-Family Development 105 Bartlett Street Portsmouth, NH

Drainage Analysis

Prepared For:

Iron Horse Properties LLC

April 20, 2020 Last Revised: November 18, 2020

Section 1 Project Description

The Bartlett Street property is comprised of a five (5) parcels that are bounded by Bartlett Street to the west and south, North Mill Pond to the north, and the Boston and Maine (B&M) railroad to the east. The existing parcels are listed below.

Tax Map/Lot No.	Area (ac)
157 / 1	1.42
157 / 2	2.34
164 / 1	1.19
164 / 4-2	5.73
R.O.W.	1.60

Lot 157-1 is currently occupied by a 20,000-square-foot, 2-story, concrete block/steel frame building and associated parking lot. Lot 157-2 contains another 20,000-square foot wood frame structure with a variety of outbuildings, such as sheds, to support an impervious lumber yard. Lot 164-1 also contains an approximately 20,000-square foot wood frame structure that hosts a variety of smaller businesses and associated parking. Lot 164-4-2 is currently occupied by a former B&M railroad turntable, a dilapidated former brick roundhouse, and an approximately 3,600-square-foot machine shop. Several shipping containers are also present throughout the lot. The northern end of the lot is comprised mostly of abandoned rail lines that run down the shoreline between North Mill Pond and the active railroad past the northern limits of the project site

The proposed project includes the demolition and relocation of the structures on Lots 157-1, 157-2, and 164-4-2 and construction of two (2) multi-family apartment buildings with basement level parking, as well as one (1) mixed used building with first floor office spaces, amenity space, and upper story apartments In order to accommodate the footprints of the new structure and site improvements, the listed lots are proposed to be revised into five (5) new lots. The project will include associated site improvements that consist of a private road with cul-de-sac, parking, utilities, stormwater management and treatment, landscaping, lighting, and a greenway park. Additionally, the land from North Mill Pond's mean high water (MHW) line to the 50ft buffer will be deeded to the City of Portsmouth and designated as community space for the City's North Mill Pond Trail project. The City will be responsible for the future design and permitting of the North Mill Pond Trail project and any of its associated work within the 50ft buffer.

The pre-development and post-development watershed areas have been analyzed at two points of analysis. While the points of analysis remained unchanged, their contributing sub-catchment areas varied between pre-development and post-development conditions. These adjustments were made to reflect the differences in drainage patterns between the existing and proposed conditions. The overall area analyzed as part of this drainage analysis was held constant. For reference, PA-1 assesses flows that discharge directly to North Mill Pond via overland flow or various outlets, and PA-2 assesses flows that discharge to the 36" brick sewer which runs through the development area. In the postdevelopment condition, however, all stormwater flows have been separated from the brick sewer and are discharged to North Mill Pond after being treated. PA-2 would have no stormwater flows in the post-development condition, therefore removing the need to assess it.

Furthermore, since North Mill Pond is a tidal water, NHDES does not require peak runoff control requirements to be met (Env-Wq 1507.06(d)). For this reason, a comparison of peak runoff rates for the various storm events has not been provided. A detention system is included on the development site for the purpose of mitigating temperature differences between the stormwater runoff and the North Mill Pond.

1.1 Calculation Methods

The design storms analyzed in this study are the 2-year, 10-year, 25-year and 50-year 24-hour duration storm events. The stormwater modeling system, HydroCAD 10.0 was utilized to predict the peak runoff rates from these storm events. The peak discharge rates were determined by analyzing Type III 24-hour storm events. The rainfall data for these storm events was obtained from the data published by the Northeast Regional Climate Center at Cornell University, with an additional 15% added factor of safety as required by Env-Wq 1503.08(I).

The time of concentration was computed using the TR-55 Method, which provides a means of determining the time for an entire watershed to contribute runoff to a specific location via sheet flows, shallow concentrated flow and channel flow. Runoff curve numbers were calculated by estimating the coverage areas and then summing the curve number for the coverage area as a percent of the entire watershed.

References:

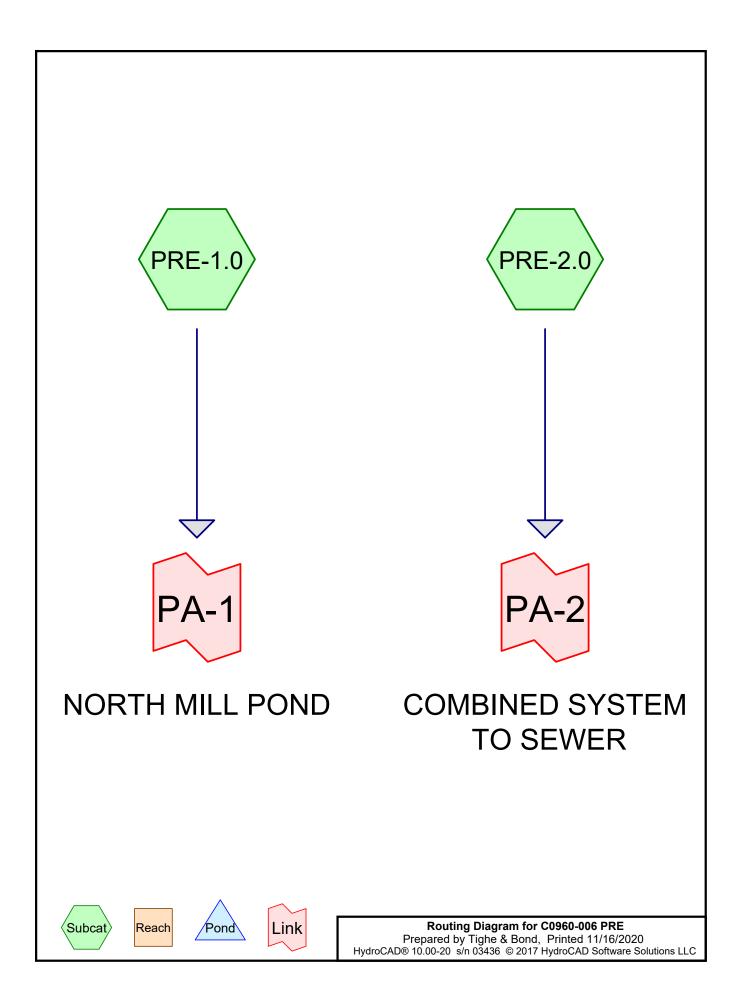
- 1. HydroCAD Stormwater Modeling System, by HydroCAD Software Solutions LLC, Chocorua, New Hampshire.
- New Hampshire Stormwater Management Manual, Volume 2, Post-Construction Best Management Practices Selection and Design, December 2008.
- 3. "Extreme Precipitation in New York & New England." Extreme Precipitation in New York & New England by Northeast Regional Climate Center (NRCC), 26 June 2012.

Section 2 Pre-Development Conditions

In order to analyze the pre-development condition, the site has been divided into two (2) watershed areas modeled at two (2) points of analysis. These points of analysis and watersheds are depicted on the plans entitled "Pre-Development Watershed Plan", Sheets C-801.1 and C-801.2.

Each of the points of analysis and their contributing watershed areas are described below:

Point of Analysis (PA-1)


Pre-development Watershed 1.0 (PRE 1.0) is comprised of mostly impervious surfaces from paved parking and structures, as well as some disturbed forested areas to the northeast that surround a dilapidated roundhouse, former railroad turntable, and a machine shop. Banks along the shoreline of North Mill Pond consist of lawn, various species associated with disturbed sites, and rubble. Runoff from this watershed area travels via overland flow or underground drainage system to discharge into North Mill Pond. The runoff is currently untreated before discharge.

Point of Analysis (PA-2)

Pre-development Watershed 2.0 (PRE-2.0) is comprised mostly of impervious surfaces in the form of paved parking, roadway, and structures. Additional runoff comes from a grassy wooded strip that slopes down from the railroad to the east of the watershed. Runoff from this watershed drains to various catch basins that tie into an existing brick sewer.

2.2.1 Pre-Development Calculations

2.2.2 Pre-Development Watershed Plans

C0960-006 PRE Prepared by Tighe & Bond HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.507	39	>75% Grass cover, Good, HSG A (PRE-1.0)
0.419	61	>75% Grass cover, Good, HSG B (PRE-1.0, PRE-2.0)
0.922	74	>75% Grass cover, Good, HSG C (PRE-1.0, PRE-2.0)
0.071	80	>75% Grass cover, Good, HSG D (PRE-1.0)
1.173	96	Gravel surface, HSG C (PRE-1.0, PRE-2.0)
3.596	98	Paved parking, HSG C (PRE-1.0, PRE-2.0)
1.695	98	Roofs, HSG C (PRE-1.0, PRE-2.0)
0.496	30	Woods, Good, HSG A (PRE-1.0)
0.292	55	Woods, Good, HSG B (PRE-1.0, PRE-2.0)
1.378	70	Woods, Good, HSG C (PRE-1.0, PRE-2.0)
0.306	77	Woods, Good, HSG D (PRE-1.0)
10.853	83	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
1.003	HSG A	PRE-1.0
0.711	HSG B	PRE-1.0, PRE-2.0
8.763	HSG C	PRE-1.0, PRE-2.0
0.376	HSG D	PRE-1.0
0.000	Other	
10.853		TOTAL AREA

C0960-006 PRE Prepared by Tighe & Bond HydroCAD® 10.00-20 s/n 03436 © 2017 H	<i>Type III 24-hr 2-YR Rainfall=3.69"</i> Printed 11/16/2020 ydroCAD Software Solutions LLC Page 4
Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method	
SubcatchmentPRE-1.0:	Runoff Area=280,495 sf 37.67% Impervious Runoff Depth>1.71" Flow Length=461' Tc=12.7 min CN=79 Runoff=10.22 cfs 0.918 af
SubcatchmentPRE-2.0:	Runoff Area=192,280 sf 64.91% Impervious Runoff Depth>2.62" Flow Length=248' Tc=5.0 min CN=90 Runoff=13.43 cfs 0.965 af
Link PA-1: NORTH MILL POND	Inflow=10.22 cfs 0.918 af Primary=10.22 cfs 0.918 af
Link PA-2: COMBINED SYSTEM TO SEV	WER Inflow=13.43 cfs 0.965 af Primary=13.43 cfs 0.965 af

Total Runoff Area = 10.853 acRunoff Volume = 1.883 afAverage Runoff Depth = 2.08"51.25% Pervious = 5.563 ac48.75% Impervious = 5.291 ac

C0960-006 PRE Prepared by Tighe & Bond HydroCAD® 10.00-20 s/n 03436 © 2017 H	Type III 24-hr 10-YR Rainfall=5.60" Printed 11/16/2020 ydroCAD Software Solutions LLC Page 5
Runoff by SCS	0.00-24.00 hrs, dt=0.05 hrs, 481 points TR-20 method, UH=SCS, Weighted-CN -Ind method - Pond routing by Dyn-Stor-Ind method
SubcatchmentPRE-1.0:	Runoff Area=280,495 sf 37.67% Impervious Runoff Depth>3.32" Flow Length=461' Tc=12.7 min CN=79 Runoff=19.96 cfs 1.780 af
SubcatchmentPRE-2.0:	Runoff Area=192,280 sf 64.91% Impervious Runoff Depth>4.45" Flow Length=248' Tc=5.0 min CN=90 Runoff=22.22 cfs 1.639 af
Link PA-1: NORTH MILL POND	Inflow=19.96 cfs 1.780 af Primary=19.96 cfs 1.780 af
Link PA-2: COMBINED SYSTEM TO SE	WER Inflow=22.22 cfs 1.639 af Primary=22.22 cfs 1.639 af

Total Runoff Area = 10.853 acRunoff Volume = 3.419 afAverage Runoff Depth = 3.78"51.25% Pervious = 5.563 ac48.75% Impervious = 5.291 ac

Summary for Subcatchment PRE-1.0:

Runoff = 19.96 cfs @ 12.18 hrs, Volume= 1.780 af, Depth> 3.32"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=5.60"

Α	rea (sf)	CN E	Description		
	22,079	39 >	39 >75% Grass cover, Good, HSG A		
	21,626	30 V	Voods, Go	od, HSG A	
	15,637	61 >	75% Gras	s cover, Go	bod, HSG B
	9,580	55 V	Voods, Go	od, HSG B	
	43,774	98 F	Roofs, HSG	G C	
	13,394	74 >	75% Gras	s cover, Go	bod, HSG C
	61,882	98 F	aved park	ing, HSG C	
	33,912	70 V	Voods, Go	od, HSG C	
	42,224	96 G	Gravel surfa	ace, HSG (
	3,074	80 >	75% Gras	s cover, Go	bod, HSG D
	13,313	77 V	Voods, Go	od, HSG D	
2	80,495	79 V	Veighted A	verage	
1	74,839	6	2.33% Per	vious Area	l
1	05,656	3	7.67% Imp	pervious Ar	ea
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.9	100	0.0400	0.24		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.69"
5.8	361	0.0219	1.04		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
12.7	461	Total			

Summary for Subcatchment PRE-2.0:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 22.22 cfs @ 12.07 hrs, Volume= 1.639 af, Depth> 4.45"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=5.60"

Area (sf)	CN	Description
2,616	61	>75% Grass cover, Good, HSG B
3,131	55	Woods, Good, HSG B
30,043	98	Roofs, HSG C
26,755	74	>75% Grass cover, Good, HSG C
94,757	98	Paved parking, HSG C
26,114	70	Woods, Good, HSG C
8,864	96	Gravel surface, HSG C
192,280	90	Weighted Average
67,480		35.09% Pervious Area
124,800		64.91% Impervious Area

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	2.1	48	0.1875	0.39		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.69"
	1.6	200	0.0100	2.03		Shallow Concentrated Flow,
_						Paved Kv= 20.3 fps
	3.7	248	Total, I	ncreased t	o minimum	Tc = 5.0 min

Summary for Link PA-1: NORTH MILL POND

Inflow Area =	6.439 ac, 37.67% Impervious, Inflov	w Depth > 3.32"	for 10-YR event
Inflow =	19.96 cfs @ 12.18 hrs, Volume=	1.780 af	
Primary =	19.96 cfs @ 12.18 hrs, Volume=	1.780 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Summary for Link PA-2: COMBINED SYSTEM TO SEWER

Inflow Area	a =	4.414 ac, 64.91% Impervious, Inflow Depth > 4.45" for 10-YR event
Inflow	=	22.22 cfs @ 12.07 hrs, Volume= 1.639 af
Primary	=	22.22 cfs @ 12.07 hrs, Volume= 1.639 af, Atten= 0%, Lag= 0.0 min

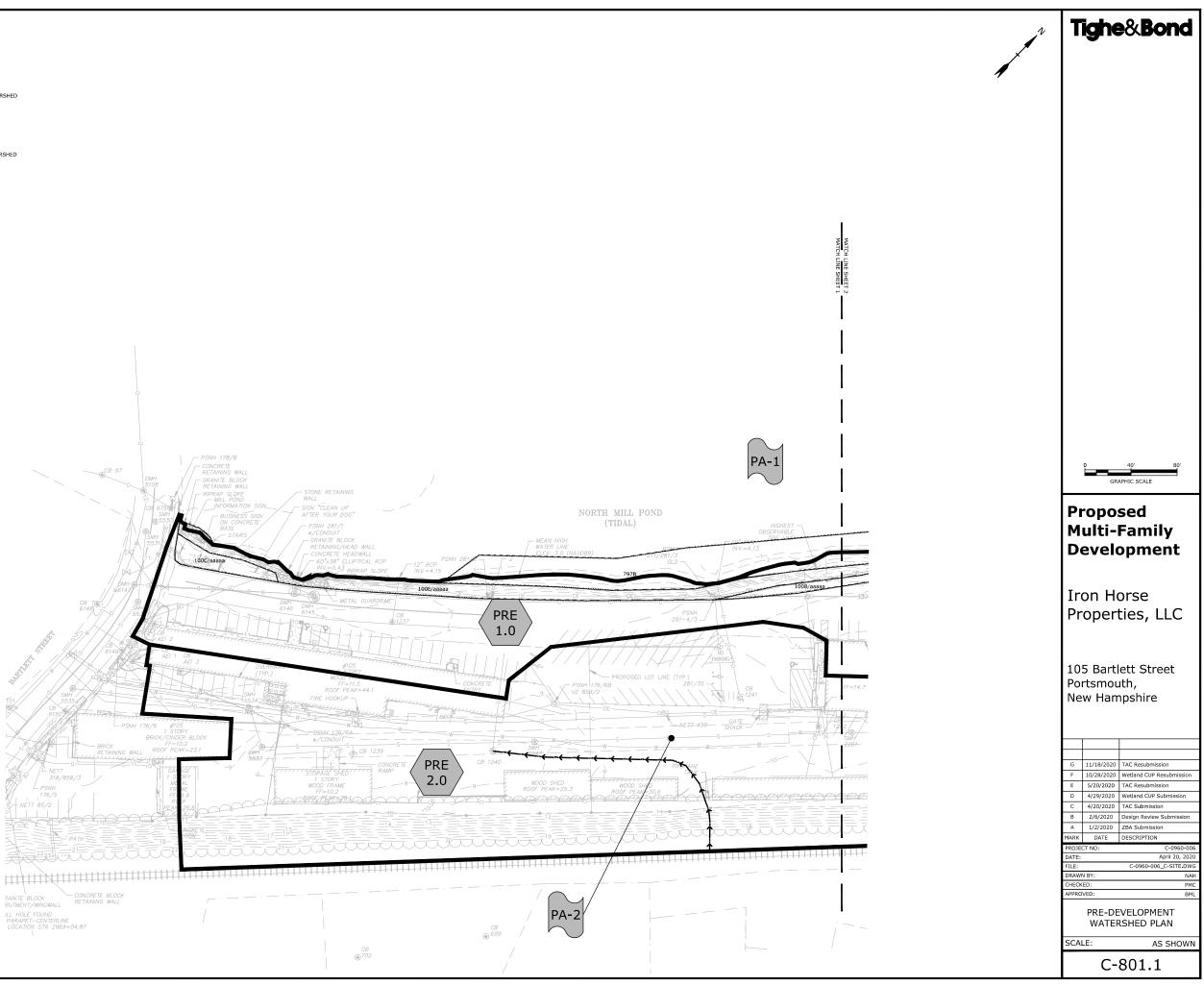
Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

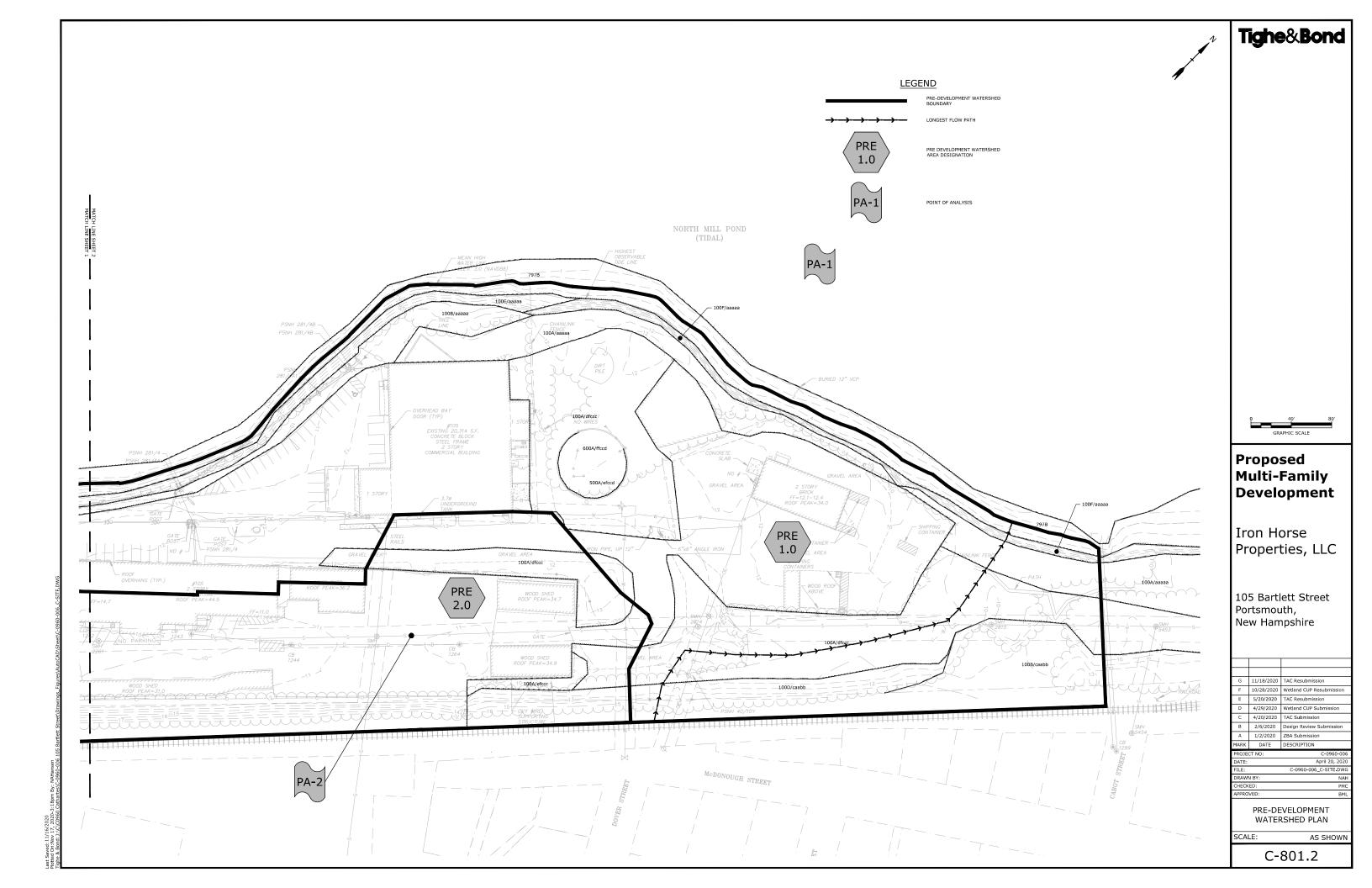
C0960-006 PRE Prepared by Tighe & Bond	<i>Type III 24-hr 25-YR Rainfall=7.10"</i> Printed 11/18/2020
HydroCAD® 10.00-20 s/n 03436 © 2017 H	lydroCAD Software Solutions LLC Page 8
Runoff by SCS	0.00-24.00 hrs, dt=0.05 hrs, 481 points TR-20 method, UH=SCS, Weighted-CN -Ind method , Pond routing by Dyn-Stor-Ind method
Subcatchment PRE-1.0:	Runoff Area=280,495 sf 37.67% Impervious Runoff Depth>4.67" Flow Length=461' Tc=12.7 min CN=79 Runoff=28.08 cfs 2.504 af
Subcatchment PRE-2.0:	Runoff Area=192,280 sf 64.91% Impervious Runoff Depth>5.92" Flow Length=248' Tc=5.0 min CN=90 Runoff=29.06 cfs 2.177 af
Link PA-1: NORTH MILL POND	Inflow=28.08 cfs 2.504 af Primary=28.08 cfs 2.504 af
Link PA-2: COMBINED SYSTEM TO SE	WER Inflow=29.06 cfs 2.177 af Primary=29.06 cfs 2.177 af
Total Runoff Area = 10.8	53 ac Runoff Volume = 4.681 af Average Runoff Depth = 5.18" 51.25% Pervious = 5.563 ac 48.75% Impervious = 5.291 ac

C0960-006 PRE Prepared by Tighe & Bond <u>HydroCAD® 10.00-20 s/n 03436 © 2017 H</u>	Type III 24-hr 50-YR Rainfall=8.50"Printed 11/18/2020AydroCAD Software Solutions LLCPage 9
Runoff by SCS	0.00-24.00 hrs, dt=0.05 hrs, 481 points 5 TR-20 method, UH=SCS, Weighted-CN -Ind method , Pond routing by Dyn-Stor-Ind method
Subcatchment PRE-1.0:	Runoff Area=280,495 sf 37.67% Impervious Runoff Depth>5.96" Flow Length=461' Tc=12.7 min CN=79 Runoff=35.62 cfs 3.200 af
Subcatchment PRE-2.0:	Runoff Area=192,280 sf 64.91% Impervious Runoff Depth>7.29" Flow Length=248' Tc=5.0 min CN=90 Runoff=35.39 cfs 2.683 af
Link PA-1: NORTH MILL POND	Inflow=35.62 cfs 3.200 af Primary=35.62 cfs 3.200 af
Link PA-2: COMBINED SYSTEM TO SE	WER Inflow=35.39 cfs 2.683 af Primary=35.39 cfs 2.683 af
Total Runoff Area = 10.8	53 ac Runoff Volume = 5.883 af Average Runoff Depth = 6.50" 51.25% Pervious = 5.563 ac 48.75% Impervious = 5.291 ac

LEGEND

PRE-DEVELOPMENT WATERSHED BOUNDARY




PA-1

PRE DEVELOPMENT WATERSHED AREA DESIGNATION

LONGEST FLOW PATH

POINT OF ANALYSIS

Section 3 Post-Development Conditions

The post-development condition was analyzed by dividing the watersheds into seven (7) watershed areas. Stormwater runoff from these sub-catchment areas flow via subsurface drainage systems prior to discharging to North Mill Pond. Unlike in the pre-development condition, flows from these sub-catchment areas are modeled at only one point of analysis at North Mill Pond (PA-1). As previously described, a large portion of the site has been designed to reroute runoff to North Mill Pond instead of the existing brick sewer. This moderately increases the watershed area flowing to PA-1 compared to the pre-development condition but eliminates the site's contribution to a combined sewer system. As per Env-Wq 1507.06(d), the resulting increased peak flows from a larger effective watershed area are not of concern since North Mill Pond is a tidal water and the peak runoff control requirements do not apply. For this reason, a comparison of peak runoff rates for the various storm events has not been provided.

A detention system is included on the development site for the purpose of mitigating temperature differences between the stormwater runoff and the North Mill Pond. The detention system and outlet structure have been sized to detain the WQV with a drain down time of 24 hours, prior to discharging to the treatment unit. Flows greater than the 2-year storm event are designed to bypass the treatment unit.

The point of analysis (PA-1) and its sub-catchment areas are depicted on the plans entitled "Post-Development Watershed Plan," Sheets C-802.1 and C-802.2. Each of the points of analysis and their contributing watershed areas are described below:

Point of Analysis (PA-1)

Post-development Watershed 1.0 (POST-1.0) is comprised of mostly existing impervious areas on the south end of the site behind some of the existing structures. Runoff from this watershed area travels via overland flow to the modified subsurface drainage system, where it is pretreated by deep-sump catch basins and treated by a Contech Jellyfish Stormwater Filter (JF-1). The Jellyfish units proposed are Contech's Peak Diversion model, which include an internal bypass that route flows greater than the design Water Quality Flow past the internal treatment system. Flows exiting the Jellyfish Filter discharge to a manhole structure outfitted with a backflow preventer within the outlet invert to protect the drainage system from tidal backflow and flooding. Flows then directly discharge to North Mill Pond (PA-1). through an outfall protected by a concrete winged headwall and plunge pool.

Post-development Watershed 1.1 (POST-1.1) collects the runoff from the modified roadway and parking areas at the entrance of the site. Runoff from this watershed area travels via overland flow to deep-sump catch basins that tie into a structure (PDMH3) just upstream of the Jellyfish Filter described in POST 1.0 (JF-1). Runoff is treated and discharged through manhole structure equipped with a backflow preventer before exiting to North Mill Pond (PA-1). A concrete winged headwall and plunge pool provide erosion control and bank stability to the outfall.

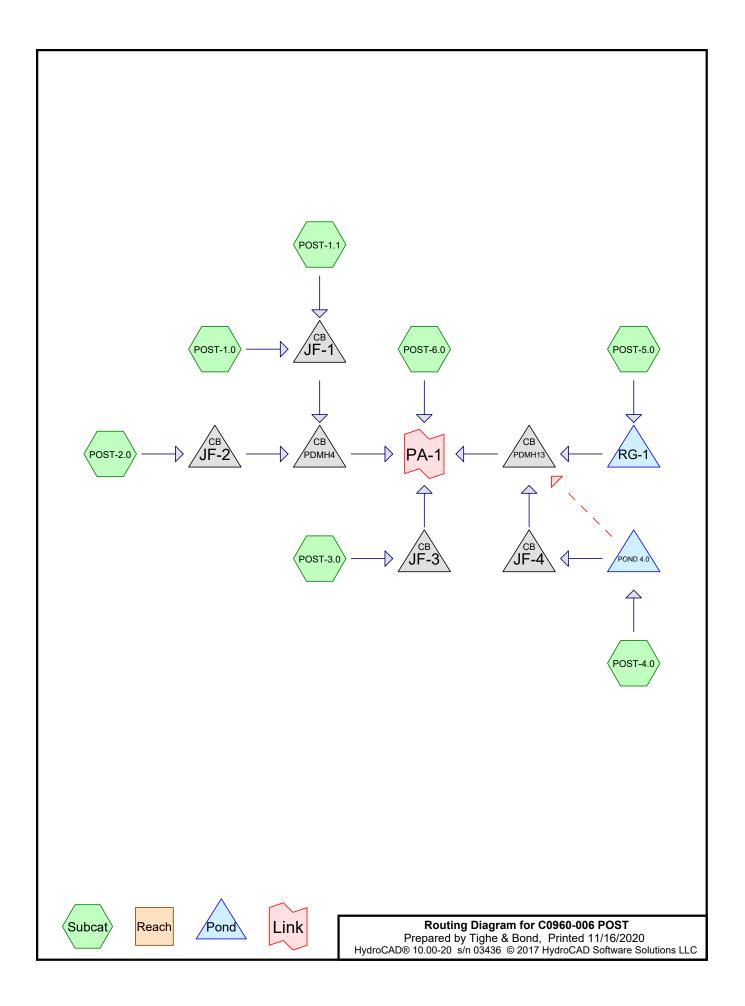
Post-development Watershed 2.0 (POST-2.0) is comprised mostly of asphalt roadway and concrete sidewalks in the center of the site. Runoff from this watershed area travels via

overland flow to deep-sump catch basins and a Contech Jellyfish Stormwater Filter (JF-2). Flows exiting the Jellyfish Filter tie into a manhole structure that combines the flows with those of POST-1.0 before similarly exiting to North Mill Pond.

Post-development Watershed 3.0 (POST-3.0) primarily collects the roof runoff from two (2) of the proposed buildings, as well as some additional impervious cover below. Runoff from this watershed area travels via roof leaders or yard drains to a Contech Jellyfish Stormwater Filter (JF-3). Flows exiting the Jellyfish Filter discharge to North Mill Pond (PA-1). Similar to Post-Development Watershed 1.0 (POST-1.0), the pipe network is protected by a backflow preventer within the outlet invert of a manhole structure at the most downstream location. A concrete winged headwall and plunge pool provide erosion control and bank stability to the outfall.

Post-development Watershed 4.0 (POST-4.0) collects the roof runoff from the third proposed building, paved parking, and some forested grassy slopes parallel to the existing railroad. Runoff from this watershed area travels via overland flow or roof leader to deep-sump catch basins and a underground detention system. The detention system and outlet structure have been sized to detain the WQV with a drain down time of 24 hours, prior to discharging to the treatment unit, a Contech Jellyfish Stormwater Filter (JF-4). Flows greater than the 2-year storm event are designed to bypass the treatment unit. Flows exiting the Jellyfish Filter discharge to North Mill Pond (PA-1). Similar to Post-Development Watershed 1.0 (POST-1.0), the pipe network is protected by a backflow preventer within the outlet invert of a manhole structure at the most downstream location. A concrete winged headwall and plunge pool provide erosion control and bank stability to the outfall.

Post-development Watershed 5.0 (POST-5.0) collects the runoff from the proposed greenway park area behind the proposed buildings. A circular rain garden (RG-1), paired with an outlet control structure, has been designed to provide treatment for the runoff from this park area. The outlet control structure directs flows to a manhole structure downstream that combines flows with those of POST-4.0 before exiting to North Mill Pond.


Post-development Watershed 6.0 (POST-6.0) is comprised mostly of grassy and slightly forested areas along the shoreline of North Mill Pond. Runoff from this watershed simply sheets toward and discharges into North Mill Pond, as in the existing condition. There are no proposed impervious surfaces that are within this watershed area that would require treatment.

Point of Analysis (PA-2)

All runoff previously draining to the existing brick sewer (PA-2) is proposed to be diverted to underground drainage that flows to North Mill Pond, effectively eliminating all flows to this point of analysis from this site.

3.3.1 Post-Development Calculations

3.3.2 Post-Development Watershed Plans

C0960-006 POST Prepared by Tighe & Bond HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	CN	Description
 (acres)		(subcatchment-numbers)
0.483	39	>75% Grass cover, Good, HSG A (POST-3.0, POST-4.0, POST-6.0)
0.373	61	>75% Grass cover, Good, HSG B (POST-4.0, POST-6.0)
1.682	74	>75% Grass cover, Good, HSG C (POST-1.0, POST-1.1, POST-2.0, POST-3.0,
		POST-4.0, POST-5.0, POST-6.0)
0.076	80	>75% Grass cover, Good, HSG D (POST-5.0, POST-6.0)
0.421	89	Gravel roads, HSG C (POST-1.0)
0.089	98	Paved parking, HSG A (POST-1.1, POST-3.0, POST-4.0, POST-5.0)
0.224	98	Paved parking, HSG B (POST-4.0)
3.919	98	Paved parking, HSG C (POST-1.0, POST-1.1, POST-2.0, POST-3.0, POST-4.0,
		POST-5.0)
0.002	98	Paved parking, HSG D (POST-5.0)
2.122	98	Roofs, HSG C (POST-1.0, POST-1.1, POST-2.0, POST-3.0, POST-4.0)
0.028	98	Roofs, HSG D (POST-3.0)
0.432	30	Woods, Good, HSG A (POST-6.0)
0.114	55	Woods, Good, HSG B (POST-4.0, POST-6.0)
0.619	70	Woods, Good, HSG C (POST-1.0, POST-4.0, POST-6.0)
0.270	83	Woods, Poor, HSG D (POST-6.0)
10.853	85	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
 (acres)	Group	Numbers
1.003	HSG A	POST-1.1, POST-3.0, POST-4.0, POST-5.0, POST-6.0
0.711	HSG B	POST-4.0, POST-6.0
8.763	HSG C	POST-1.0, POST-1.1, POST-2.0, POST-3.0, POST-4.0, POST-5.0, POST-6.0
0.376	HSG D	POST-3.0, POST-5.0, POST-6.0
0.000	Other	
10.853		TOTAL AREA

C0960-006 POST	Туре
Prepared by Tighe & Bond	
HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions	LLC

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPOST-1.0	: Runoff Area=129,041 sf 66.78% Impervious Runoff Depth>2.72" Tc=5.0 min CN=91 Runoff=9.28 cfs 0.671 af
SubcatchmentPOST-1.1	Runoff Area=42,709 sf 91.75% Impervious Runoff Depth>3.23" Tc=5.0 min CN=96 Runoff=3.45 cfs 0.264 af
SubcatchmentPOST-2.0	Runoff Area=32,228 sf 84.61% Impervious Runoff Depth>3.02" Tc=5.0 min CN=94 Runoff=2.50 cfs 0.186 af
SubcatchmentPOST-3.0	: Runoff Area=53,219 sf 82.46% Impervious Runoff Depth>2.82" Tc=5.0 min CN=92 Runoff=3.93 cfs 0.287 af
SubcatchmentPOST-4.0	Runoff Area=113,769 sf 62.53% Impervious Runoff Depth>2.35" Tc=5.0 min CN=87 Runoff=7.17 cfs 0.512 af
SubcatchmentPOST-5.0	: Runoff Area=34,408 sf 30.39% Impervious Runoff Depth>1.86" Tc=5.0 min CN=81 Runoff=1.73 cfs 0.123 af
SubcatchmentPOST-6.0	: Runoff Area=67,401 sf 0.00% Impervious Runoff Depth>0.34" Tc=5.0 min CN=53 Runoff=0.24 cfs 0.044 af
Pond JF-1:	Peak Elev=6.29' Inflow=12.73 cfs 0.935 af 24.0" Round Culvert n=0.013 L=4.0' S=0.0125 '/' Outflow=12.73 cfs 0.935 af
Pond JF-2:	Peak Elev=6.27' Inflow=2.50 cfs 0.186 af 15.0" Round Culvert n=0.013 L=50.0' S=0.0040 '/' Outflow=2.50 cfs 0.186 af
Pond JF-3:	Peak Elev=4.41' Inflow=3.93 cfs 0.287 af 18.0" Round Culvert n=0.013 L=5.0' S=0.0200 '/' Outflow=3.93 cfs 0.287 af
Pond JF-4:	Peak Elev=5.25' Inflow=3.71 cfs 0.389 af 15.0" Round Culvert n=0.013 L=55.0' S=0.0055 '/' Outflow=3.71 cfs 0.389 af
Pond PDMH13:	Peak Elev=4.71' Inflow=4.81 cfs 0.498 af 24.0" Round Culvert n=0.013 L=37.0' S=0.0054 '/' Outflow=4.81 cfs 0.498 af
Pond PDMH4:	Peak Elev=5.70' Inflow=15.23 cfs 1.122 af 24.0" Round Culvert n=0.013 L=11.0' S=0.0045 '/' Outflow=15.23 cfs 1.122 af
Pond POND 4.0:	Peak Elev=6.78' Storage=7,962 cf Inflow=7.17 cfs 0.512 af Primary=3.71 cfs 0.389 af Secondary=0.00 cfs 0.000 af Outflow=3.71 cfs 0.389 af
Pond RG-1:	Peak Elev=10.66' Storage=1,286 cf Inflow=1.73 cfs 0.123 af Outflow=1.46 cfs 0.109 af
Link PA-1:	Inflow=21.43 cfs 1.950 af Primary=21.43 cfs 1.950 af

Total Runoff Area = 10.853 ac Runoff Volume = 2.087 af Average Runoff Depth = 2.31" 41.17% Pervious = 4.469 ac 58.83% Impervious = 6.385 ac

C0960-006 POST	Type I
Prepared by Tighe & Bond	
HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions	3 LLC

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPOST-1.0	: Runoff Area=129,041 sf 66.78% Impervious Runoff Depth>4.56" Tc=5.0 min CN=91 Runoff=15.16 cfs 1.127 af
SubcatchmentPOST-1.1	: Runoff Area=42,709 sf 91.75% Impervious Runoff Depth>5.13" Tc=5.0 min CN=96 Runoff=5.34 cfs 0.419 af
SubcatchmentPOST-2.0	: Runoff Area=32,228 sf 84.61% Impervious Runoff Depth>4.90" Tc=5.0 min CN=94 Runoff=3.95 cfs 0.302 af
SubcatchmentPOST-3.0	: Runoff Area=53,219 sf 82.46% Impervious Runoff Depth>4.67" Tc=5.0 min CN=92 Runoff=6.35 cfs 0.476 af
SubcatchmentPOST-4.0	: Runoff Area=113,769 sf 62.53% Impervious Runoff Depth>4.13" Tc=5.0 min CN=87 Runoff=12.43 cfs 0.900 af
SubcatchmentPOST-5.0	: Runoff Area=34,408 sf 30.39% Impervious Runoff Depth>3.52" Tc=5.0 min CN=81 Runoff=3.25 cfs 0.232 af
SubcatchmentPOST-6.0	: Runoff Area=67,401 sf 0.00% Impervious Runoff Depth>1.15" Tc=5.0 min CN=53 Runoff=1.74 cfs 0.149 af
Pond JF-1:	Peak Elev=8.43' Inflow=20.50 cfs 1.546 af 24.0" Round Culvert n=0.013 L=4.0' S=0.0125 '/' Outflow=20.50 cfs 1.546 af
Pond JF-2:	Peak Elev=7.18' Inflow=3.95 cfs 0.302 af 15.0" Round Culvert n=0.013 L=50.0' S=0.0040 '/' Outflow=3.95 cfs 0.302 af
Pond JF-3:	Peak Elev=4.81' Inflow=6.35 cfs 0.476 af 18.0" Round Culvert n=0.013 L=5.0' S=0.0200 '/' Outflow=6.35 cfs 0.476 af
Pond JF-4:	Peak Elev=5.73' Inflow=4.25 cfs 0.689 af 15.0" Round Culvert n=0.013 L=55.0' S=0.0055 '/' Outflow=4.25 cfs 0.689 af
Pond PDMH13:	Peak Elev=5.25' Inflow=9.32 cfs 0.981 af 24.0" Round Culvert n=0.013 L=37.0' S=0.0054 '/' Outflow=9.32 cfs 0.981 af
Pond PDMH4:	Peak Elev=6.83' Inflow=24.45 cfs 1.848 af 24.0" Round Culvert n=0.013 L=11.0' S=0.0045 '/' Outflow=24.45 cfs 1.848 af
Pond POND 4.0:	Peak Elev=7.56' Storage=11,761 cf Inflow=12.43 cfs 0.900 af Primary=4.25 cfs 0.689 af Secondary=2.59 cfs 0.074 af Outflow=6.65 cfs 0.763 af
Pond RG-1:	Peak Elev=10.80' Storage=1,442 cf Inflow=3.25 cfs 0.232 af Outflow=3.16 cfs 0.218 af
Link PA-1:	Inflow=40.47 cfs 3.453 af Primary=40.47 cfs 3.453 af

Total Runoff Area = 10.853 ac Runoff Volume = 3.603 af Average Runoff Depth = 3.98" 41.17% Pervious = 4.469 ac 58.83% Impervious = 6.385 ac

Summary for Subcatchment POST-1.0:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 15.16 cfs @ 12.07 hrs, Volume= 1.127 af, Depth> 4.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=5.60"

Are	ea (sf)	CN	CN Description				
2	27,484	98	Roofs, HSC	G C			
	576	74	>75% Gras	s cover, Go	od, HSG C		
5	58,692	98	Paved park	ing, HSG C			
2	23,967	70	Woods, Go	od, HSG C			
1	18,322	89	Gravel road	ls, HSG C			
12	29,041	91	Weighted A	verage			
۷	12,865	33.22% Pervious Area					
8	36,176		66.78% Imp	pervious Ar	ea		
	Length	Slope		Capacity	Description		
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
5.0					Direct Entry,		

Summary for Subcatchment POST-1.1:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 5.34 cfs @ 12.07 hrs, Volume= 0.419 af, Depth> 5.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=5.60"

Area	a (sf)	CN	Description				
	5	98	Paved park	ing, HSG A	١		
5	5,020	98	Roofs, HSC	6 Č			
3	3,525	74	>75% Gras	s cover, Go	ood, HSG C		
34	4,159	98	Paved park	ing, HSG C			
42	2,709	96	96 Weighted Average				
3	3,525		8.25% Pervious Area				
39	9,184		91.75% Impervious Area				
Tc L	_ength	Slope		Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
5.0					Direct Entry,		

Summary for Subcatchment POST-2.0:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 3.95 cfs @ 12.07 hrs, Volume= 0.302 af, Depth> 4.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=5.60"

A	rea (sf)	CN	Description			
	6,843	98	Roofs, HSC	G C		
	4,959	74	>75% Gras	s cover, Go	ood, HSG C	
	20,426	98	Paved park	ing, HSG C	С	
	32,228	94	Weighted A	verage		
	4,959	15.39% Pervious Area			а	
	27,269		84.61% Imp	pervious Ar	rea	
_				_		
Тс	Length	Slope	,	Capacity	Description	
<u>(min)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)		
5.0					Direct Entry,	
					-	

Summary for Subcatchment POST-3.0:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 6.35 cfs @ 12.07 hrs, Volume= 0.476 af, Depth> 4.67"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=5.60"

Ar	ea (sf)	CN	CN Description				
	2,277	39	>75% Gras	s cover, Go	od, HSG A		
	2,396	98	Paved park	ing, HSG A			
	37,574	98	Roofs, HSG	G C			
	7,059	74	>75% Gras	s cover, Go	od, HSG C		
	2,676	98	Paved park	ing, HSG C			
	1,237	98	Roofs, HSC	6 D			
Ę	53,219	92	92 Weighted Average				
	9,336		17.54% Pervious Area				
4	43,883	82.46% Impervious Area					
Tc	Length	Slope	e Velocity	Capacity	Description		
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
5.0					Direct Entry,		

Summary for Subcatchment POST-4.0:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 12.43 cfs @ 12.07 hrs, Volume= 0.900 af, Depth> 4.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=5.60"

Are	ea (sf)	CN	Description				
	196	39	>75% Gras	s cover, Go	ood, HSG A		
	1,384	98	Paved park	ing, HSG A	4		
1	5,548	61	>75% Gras	s cover, Go	ood, HSG B		
	9,773	98	Paved park	ing, HSG B	3		
	3,314	55	Woods, Go	od, HSG B			
1	5,516	98	Roofs, HSC	G C			
2	1,639	74	>75% Gras	s cover, Go	ood, HSG C		
4	4,469	98	Paved park	ing, HSG C			
	1,930	70	Woods, Good, HSG C				
11	3,769	87	Weighted A	verage			
4	2,627		37.47% Per	vious Area	3		
7	1,142		62.53% Imp	ervious Ar	rea		
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description		
5.0					Direct Entry,		

Summary for Subcatchment POST-5.0:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 3.25 cfs @ 12.08 hrs, Volume= 0.232 af, Depth> 3.52"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=5.60"

Area (sf)	CN	Description
71	98	Paved parking, HSG A
23,745	74	>75% Grass cover, Good, HSG C
10,302	98	Paved parking, HSG C
205	80	>75% Grass cover, Good, HSG D
85	98	Paved parking, HSG D
34,408	81	Weighted Average
23,950		69.61% Pervious Area
10,458		30.39% Impervious Area
23,950	-	69.61% Pervious Area

C09	60-	·006	POST	•

 Type III 24-hr
 10-YR Rainfall=5.60"

 Printed
 11/16/2020

 LC
 Page 20

Prepared by Tighe & Bond	
HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC	

Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
5.0 Direct Entry,
Summary for Subcatchment POST-6.0:
[49] Hint: Tc<2dt may require smaller dt
Runoff = 1.74 cfs @ 12.10 hrs, Volume= 0.149 af, Depth> 1.15"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=5.60"
Area (sf) CN Description
18,570 39 >75% Grass cover, Good, HSG A 18,806 30 Woods, Good, HSG A
694 61 >75% Grass cover, Good, HSG B
1,635 55 Woods, Good, HSG B
11,771 74 >75% Grass cover, Good, HSG C
1,065 70 Woods, Good, HSG C
3,085 80 >75% Grass cover, Good, HSG D
11,775 83 Woods, Poor, HSG D
67,40153Weighted Average67,401100.00% Pervious Area
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
5.0 Direct Entry,
Summary for Pond JF-1:
Inflow Area = 3.943 ac, 72.99% Impervious, Inflow Depth > 4.70" for 10-YR event Inflow = 20.50 cfs @ 12.07 hrs, Volume= 1.546 af
Outflow = 20.50 cfs @ 12.07 hrs, Volume= 1.546 af, Atten= 0%, Lag= 0.0 min Primary = 20.50 cfs @ 12.07 hrs, Volume= 1.546 af
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 8.43' @ 12.10 hrs Flood Elev= 10.80'
Device Routing Invert Outlet Devices

Device	Routing	Invert	Outlet Devices
#1	Primary	3.45'	24.0" Round Culvert L= 4.0' Ke= 0.500 Inlet / Outlet Invert= 3.45' / 3.40' S= 0.0125 '/' Cc= 0.900 n= 0.013, Flow Area= 3.14 sf

Primary OutFlow Max=17.27 cfs @ 12.07 hrs HW=8.03' TW=6.72' (Dynamic Tailwater) -1=Culvert (Inlet Controls 17.27 cfs @ 5.50 fps)

Summary for Pond JF-2:

Inflow A	rea =	0.740 ac, 84.0	61% Impervious, Inflow Depth > 4.90" for 10-YR event	
Inflow	=	3.95 cfs @ 12	2.07 hrs, Volume= 0.302 af	
Outflow	=	3.95 cfs @ 12	2.07 hrs, Volume= 0.302 af, Atten= 0%, Lag= 0.0 min	
Primary	=	3.95 cfs @ 12	2.07 hrs, Volume= 0.302 af	
Peak Ele	Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 7.18' @ 12.11 hrs Flood Elev= 10.25'			
Device	Routing	Invert	Outlet Devices	
#1	Primary	5.30'	15.0" Round Culvert L= 50.0' Ke= 0.500 Inlet / Outlet Invert= 5.30' / 5.10' S= 0.0040 '/' Cc= 0.900	

n= 0.013, Flow Area= 1.23 sf

Primary OutFlow Max=2.00 cfs @ 12.07 hrs HW=6.84' TW=6.72' (Dynamic Tailwater) -1=Culvert (Inlet Controls 2.00 cfs @ 1.63 fps)

Summary for Pond JF-3:

Inflow Area =	1.222 ac, 82.46% Impervious, Inflo	w Depth > 4.67" for 10-YR event
Inflow =	6.35 cfs @ 12.07 hrs, Volume=	0.476 af
Outflow =	6.35 cfs @ 12.07 hrs, Volume=	0.476 af, Atten= 0%, Lag= 0.0 min
Primary =	6.35 cfs @ 12.07 hrs, Volume=	0.476 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 4.81' @ 12.07 hrs Flood Elev= 13.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	3.30'	18.0" Round Culvert L= 5.0' Ke= 0.500 Inlet / Outlet Invert= 3.30' / 3.20' S= 0.0200 '/' Cc= 0.900 n= 0.013, Flow Area= 1.77 sf

Primary OutFlow Max=6.11 cfs @ 12.07 hrs HW=4.77' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 6.11 cfs @ 4.38 fps)

Summary for Pond JF-4:

Inflow Are	a =	2.612 ac, 6	2.53% Impervious	, Inflow Depth >	3.17"	for 10-YR event
Inflow	=	4.25 cfs @	12.13 hrs, Volum	e= 0.689) af	
Outflow	=	4.25 cfs @	12.13 hrs, Volum	e= 0.689) af, Atte	en= 0%, Lag= 0.0 min
Primary	=	4.25 cfs @	12.13 hrs, Volum	e= 0.689) af	
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs. dt= 0.05 hrs						

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 5.73' @ 12.18 hrs Flood Elev= 13.25'

Device	Routing	Invert	Outlet Devices
#1	Primary	4.00'	15.0" Round Culvert L= 55.0' Ke= 0.500

C0960-006 POST Typ Prepared by Tighe & Bond HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions LLC

Inlet / Outlet Invert= 4.00' / 3.70' S= 0.0055 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf

Primary OutFlow Max=3.73 cfs @ 12.13 hrs HW=5.63' TW=5.23' (Dynamic Tailwater) -1=Culvert (Inlet Controls 3.73 cfs @ 3.04 fps)

Summary for Pond PDMH13:

Inflow Area =	3.402 ac,	55.07% Impervious,	Inflow Depth > 3.	46" for 10-YR event
Inflow =	9.32 cfs @	12.15 hrs, Volume	e= 0.981 af	
Outflow =	9.32 cfs @	12.15 hrs, Volume	e= 0.981 af,	Atten= 0%, Lag= 0.0 min
Primary =	9.32 cfs @	12.15 hrs, Volume	e= 0.981 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 5.25' @ 12.15 hrs Flood Elev= 10.90'

Device	Routing	Invert	Outlet Devices	
#1	Primary	3.60'	24.0" Round Culvert L= 37.0' Inlet / Outlet Invert= 3.60' / 3.40' n= 0.013, Flow Area= 3.14 sf	Cc= 0.900

Primary OutFlow Max=9.28 cfs @ 12.15 hrs HW=5.25' TW=0.00' (Dynamic Tailwater) -1=Culvert (Barrel Controls 9.28 cfs @ 4.56 fps)

Summary for Pond PDMH4:

[80] Warning: Exceeded Pond JF-2 by 0.17' @ 12.05 hrs (2.46 cfs 0.010 af)

Inflow Area	a =	4.683 ac, 74.83%	Impervious, Inflow D	epth > 4.73"	for 10-YR event
Inflow	=	24.45 cfs @ 12.07	hrs, Volume=	1.848 af	
Outflow	=	24.45 cfs @ 12.07	hrs, Volume=	1.848 af, Atte	en= 0%, Lag= 0.0 min
Primary	=	24.45 cfs @ 12.07	hrs, Volume=	1.848 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 6.83' @ 12.07 hrs Flood Elev= 10.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	3.30'	24.0" Round Culvert L= 11.0' Ke= 0.500 Inlet / Outlet Invert= 3.30' / 3.25' S= 0.0045 '/' Cc= 0.900
			n= 0.013, Flow Area= 3.14 sf

Primary OutFlow Max=23.54 cfs @ 12.07 hrs HW=6.72' TW=0.00' (Dynamic Tailwater) -1=Culvert (Inlet Controls 23.54 cfs @ 7.49 fps)

Summary for Pond POND 4.0:

Inflow Area =	2.612 ac, 62.53% Impervious, Inflow Depth > 4.1	3" for 10-YR event
Inflow =	12.43 cfs @ 12.07 hrs, Volume= 0.900 af	
Outflow =	6.65 cfs @ 12.19 hrs, Volume= 0.763 af,	Atten= 46%, Lag= 6.9 min
Primary =	4.25 cfs @ 12.13 hrs, Volume= 0.689 af	
Secondary =	2.59 cfs $@$ 12.21 hrs, Volume= 0.074 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 7.56' @ 12.21 hrs Surf.Area= 7,104 sf Storage= 11,761 cf Flood Elev= 9.60' Surf.Area= 7,104 sf Storage= 19,046 cf

Plug-Flow detention time= 106.5 min calculated for 0.763 af (85% of inflow) Center-of-Mass det. time= 42.5 min (838.3 - 795.8)

Volume	Invert	Avail.Storage	Storage Description
#1A	4.10'	0 cf	37.00'W x 192.00'L x 6.00'H Field A
			42,624 cf Overall - 19,046 cf Embedded = 23,578 cf x 0.0% Voids
#2A	4.60'	19,046 cf	CMP Round 60 x 45 Inside #1
			Effective Size= 60.0"W x 60.0"H => 19.63 sf x 20.00'L = 392.7 cf
			Overall Size= 60.0"W x 60.0"H x 20.00'L
			5 Rows of 9 Chambers
			35.00' Header x 19.63 sf x 2 = 1,374.4 cf Inside
		19,046 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	4.60'	
			L= 20.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 4.60' / 4.50' S= 0.0050 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	4.60'	2.0" Vert. Orifice/Grate C= 0.600
#3	Device 1	6.35'	4.0' long x 5.00' rise Sharp-Crested Rectangular Weir
			2 End Contraction(s)
#4	Secondary	6.80'	24.0" Round Culvert
			L= 10.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 6.80' / 6.50' S= 0.0300 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=4.04 cfs @ 12.13 hrs HW=7.46' TW=5.63' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 4.04 cfs @ 5.14 fps)

2=Orifice/Grate (Passes < 0.14 cfs potential flow)

-3=Sharp-Crested Rectangular Weir (Passes < 14.37 cfs potential flow)

Secondary OutFlow Max=2.57 cfs @ 12.21 hrs HW=7.56' TW=5.17' (Dynamic Tailwater) 4=Culvert (Inlet Controls 2.57 cfs @ 2.34 fps)

Summary for Pond RG-1:

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=91)

Inflow Area =	0.790 ac, 30.39% Impervious, Inflow D	Depth > 3.52" for 10-YR event
Inflow =	3.25 cfs @ 12.08 hrs, Volume=	0.232 af
Outflow =	3.16 cfs @ 12.10 hrs, Volume=	0.218 af, Atten= 3%, Lag= 1.6 min
Primary =	3.16 cfs @ 12.10 hrs, Volume=	0.218 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 10.80' @ 12.10 hrs Surf.Area= 1,198 sf Storage= 1,442 cf Flood Elev= 11.80' Surf.Area= 1,590 sf Storage= 2,835 cf

Plug-Flow detention time= 55.4 min calculated for 0.217 af (94% of inflow) Center-of-Mass det. time= 24.1 min (837.1 - 813.0)

Volume	Inver	rt Avai	il.Stor	rage Storage Desci	ription	
#1	7.25	5'	2,83	35 cf Custom Stag	e Data (Prismatio	c)Listed below (Recalc)
Elevatio	on S	Surf.Area	Void	ls Inc.Store	Cum.Store	
(fee		(sq-ft)	(%		(cubic-feet)	
7.2	25	919	0.	.0 0	0	
8.8	50	919	40.	.0 460	460	
10.0	00	919	10.		597	
11.(00	1,269	100.	.0 1,094	1,691	
11.8	30	1,590	100.	.0 1,144	2,835	
Device	Routing	In	vert	Outlet Devices		
#1	Primary	7	'.15'	12.0" Round Culv	ert	
				L= 238.0' CPP, sq	uare edge headwa	all, Ke= 0.500
				Inlet / Outlet Invert=	7.15'/5.00' S=	0.0090 '/' Cc= 0.900
				n= 0.013 Corrugate	ed PE, smooth inte	erior, Flow Area= 0.79 sf
#2	Device 1	10	.50'	16.4" x 16.4" Horiz	. Orifice/Grate	C= 0.600
				Limited to weir flow	at low heads	
#3	Device 1	7	.25'	6.0" Vert. UD C=	0.600	
#4	Device 3	10	.00'	0.26 cfs Exfiltratio	n when above 10).00'

Primary OutFlow Max=3.14 cfs @ 12.10 hrs HW=10.80' TW=5.20' (Dynamic Tailwater)

-**1=Culvert** (Passes 3.14 cfs of 4.61 cfs potential flow)

-2=Orifice/Grate (Weir Controls 2.88 cfs @ 1.78 fps)

-3=UD (Passes 0.26 cfs of 1.72 cfs potential flow)

4=Exfiltration (Exfiltration Controls 0.26 cfs)

Summary for Link PA-1:

Inflow Are	a =	10.853 ac, 58.83% Impervious, Inflow Depth > 3.82" fo	r 10-YR event
Inflow	=	40.47 cfs @ 12.08 hrs, Volume= 3.453 af	
Primary	=	40.47 cfs @ 12.08 hrs, Volume= 3.453 af, Atten=	0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

C0960-006 POST	Туре
Prepared by Tighe & Bond	
HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solutions	LLC

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPOST-1.0	: Runoff Area=129,041 sf 66.78% Impervious Runoff Depth>6.03" Tc=5.0 min CN=91 Runoff=19.73 cfs 1.490 af
SubcatchmentPOST-1.1	Runoff Area=42,709 sf 91.75% Impervious Runoff Depth>6.62" Tc=5.0 min CN=96 Runoff=6.81 cfs 0.541 af
SubcatchmentPOST-2.0	Runoff Area=32,228 sf 84.61% Impervious Runoff Depth>6.38" Tc=5.0 min CN=94 Runoff=5.07 cfs 0.394 af
SubcatchmentPOST-3.0	: Runoff Area=53,219 sf 82.46% Impervious Runoff Depth>6.15" Tc=5.0 min CN=92 Runoff=8.22 cfs 0.626 af
SubcatchmentPOST-4.0	: Runoff Area=113,769 sf 62.53% Impervious Runoff Depth>5.57" Tc=5.0 min CN=87 Runoff=16.51 cfs 1.213 af
SubcatchmentPOST-5.0	: Runoff Area=34,408 sf 30.39% Impervious Runoff Depth>4.90" Tc=5.0 min CN=81 Runoff=4.50 cfs 0.322 af
SubcatchmentPOST-6.0	: Runoff Area=67,401 sf 0.00% Impervious Runoff Depth>2.00" Tc=5.0 min CN=53 Runoff=3.36 cfs 0.257 af
Pond JF-1:	Peak Elev=11.22' Inflow=26.54 cfs 2.030 af 24.0" Round Culvert n=0.013 L=4.0' S=0.0125 '/' Outflow=26.54 cfs 2.030 af
Pond JF-2:	Peak Elev=9.20' Inflow=5.07 cfs 0.394 af 15.0" Round Culvert n=0.013 L=50.0' S=0.0040 '/' Outflow=5.07 cfs 0.394 af
Pond JF-3:	Peak Elev=5.15' Inflow=8.22 cfs 0.626 af 18.0" Round Culvert n=0.013 L=5.0' S=0.0200 '/' Outflow=8.22 cfs 0.626 af
Pond JF-4:	Peak Elev=6.23' Inflow=4.48 cfs 0.893 af 15.0" Round Culvert n=0.013 L=55.0' S=0.0055 '/' Outflow=4.48 cfs 0.893 af
Pond PDMH13:	Peak Elev=5.74' Inflow=13.63 cfs 1.383 af 24.0" Round Culvert n=0.013 L=37.0' S=0.0054 '/' Outflow=13.63 cfs 1.383 af
Pond PDMH4:	Peak Elev=8.61' Inflow=31.61 cfs 2.424 af 24.0" Round Culvert n=0.013 L=11.0' S=0.0045 '/' Outflow=31.61 cfs 2.424 af
Pond POND 4.0:	Peak Elev=7.99' Storage=13,756 cf Inflow=16.51 cfs 1.213 af Primary=4.48 cfs 0.893 af Secondary=5.73 cfs 0.182 af Outflow=9.96 cfs 1.075 af
Pond RG-1:	Peak Elev=10.88' Storage=1,537 cf Inflow=4.50 cfs 0.322 af Outflow=4.38 cfs 0.308 af
Link PA-1:	Inflow=54.96 cfs 4.691 af Primary=54.96 cfs 4.691 af

Total Runoff Area = 10.853 ac Runoff Volume = 4.843 af Average Runoff Depth = 5.35" 41.17% Pervious = 4.469 ac 58.83% Impervious = 6.385 ac

C0960-006 POST	Type II
Prepared by Tighe & Bond	
HydroCAD® 10.00-20 s/n 03436 © 2017 HydroCAD Software Solution	is LLC

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

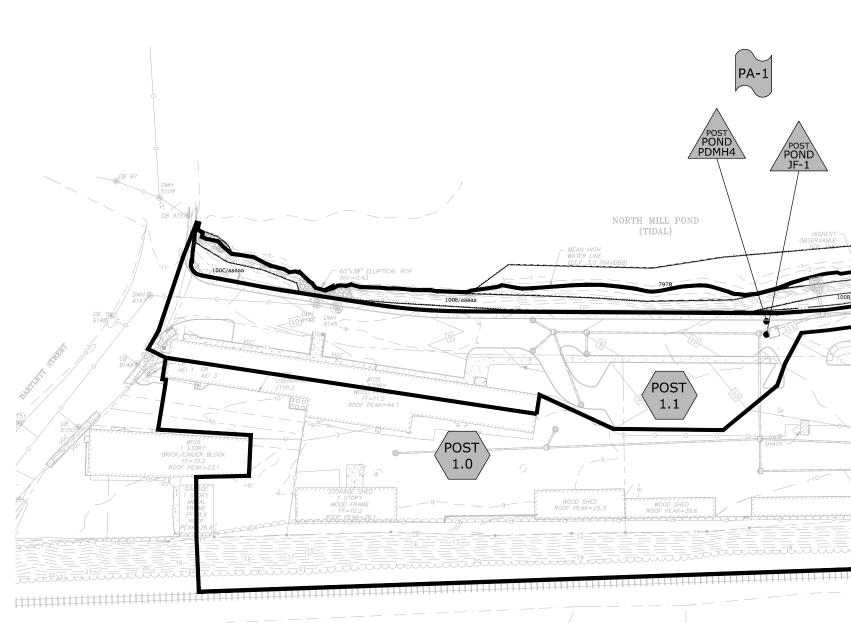
SubcatchmentPOST-1.0:	Runoff Area=129,041 sf 66.78% Impervious Runoff Depth>7.41" Tc=5.0 min CN=91 Runoff=23.96 cfs 1.830 af
SubcatchmentPOST-1.1:	Runoff Area=42,709 sf 91.75% Impervious Runoff Depth>8.02" Tc=5.0 min CN=96 Runoff=8.19 cfs 0.655 af
SubcatchmentPOST-2.0:	Runoff Area=32,228 sf 84.61% Impervious Runoff Depth>7.78" Tc=5.0 min CN=94 Runoff=6.11 cfs 0.479 af
SubcatchmentPOST-3.0:	Runoff Area=53,219 sf 82.46% Impervious Runoff Depth>7.53" Tc=5.0 min CN=92 Runoff=9.96 cfs 0.767 af
SubcatchmentPOST-4.0:	Runoff Area=113,769 sf 62.53% Impervious Runoff Depth>6.93" Tc=5.0 min CN=87 Runoff=20.30 cfs 1.509 af
SubcatchmentPOST-5.0:	Runoff Area=34,408 sf 30.39% Impervious Runoff Depth>6.21" Tc=5.0 min CN=81 Runoff=5.66 cfs 0.409 af
SubcatchmentPOST-6.0:	Runoff Area=67,401 sf 0.00% Impervious Runoff Depth>2.90" Tc=5.0 min CN=53 Runoff=5.07 cfs 0.374 af
Pond JF-1:	Peak Elev=14.44' Inflow=32.14 cfs 2.485 af 24.0" Round Culvert n=0.013 L=4.0' S=0.0125 '/' Outflow=32.14 cfs 2.485 af
Pond JF-2:	Peak Elev=11.48' Inflow=6.11 cfs 0.479 af 15.0" Round Culvert n=0.013 L=50.0' S=0.0040 '/' Outflow=6.11 cfs 0.479 af
Pond JF-3:	Peak Elev=5.50' Inflow=9.96 cfs 0.767 af 18.0" Round Culvert n=0.013 L=5.0' S=0.0200 '/' Outflow=9.96 cfs 0.767 af
Pond JF-4:	Peak Elev=6.79' Inflow=4.58 cfs 1.073 af 15.0" Round Culvert n=0.013 L=55.0' S=0.0055 '/' Outflow=4.58 cfs 1.073 af
Pond PDMH13:	Peak Elev=6.37' Inflow=17.71 cfs 1.765 af 24.0" Round Culvert n=0.013 L=37.0' S=0.0054 '/' Outflow=17.71 cfs 1.765 af
Pond PDMH4:	Peak Elev=10.63' Inflow=38.26 cfs 2.965 af 24.0" Round Culvert n=0.013 L=11.0' S=0.0045 '/' Outflow=38.26 cfs 2.965 af
Pond POND 4.0: Pri	Peak Elev=8.37' Storage=15,414 cf Inflow=20.30 cfs 1.509 af mary=4.58 cfs 1.073 af Secondary=8.93 cfs 0.297 af Outflow=13.09 cfs 1.370 af
Pond RG-1:	Peak Elev=11.04' Storage=1,739 cf Inflow=5.66 cfs 0.409 af Outflow=4.71 cfs 0.395 af
Link PA-1:	Inflow=68.17 cfs 5.871 af Primary=68.17 cfs 5.871 af

Total Runoff Area = 10.853 ac Runoff Volume = 6.024 af Average Runoff Depth = 6.66" 41.17% Pervious = 4.469 ac 58.83% Impervious = 6.385 ac

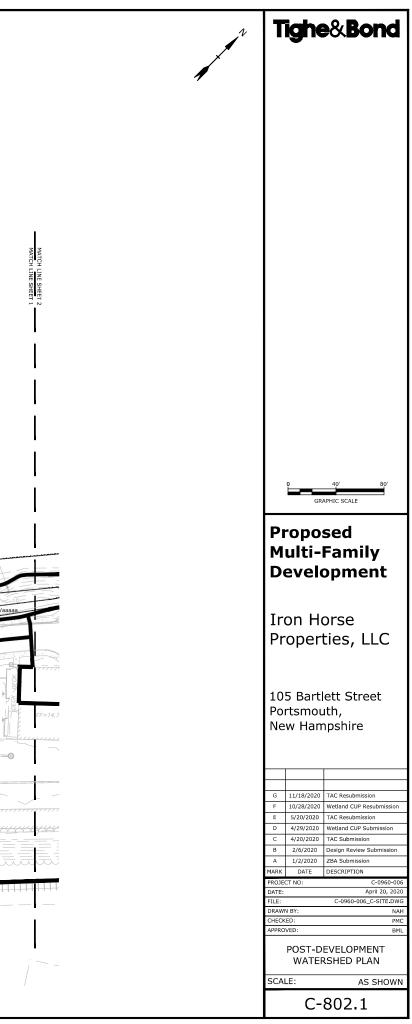
LEGEND

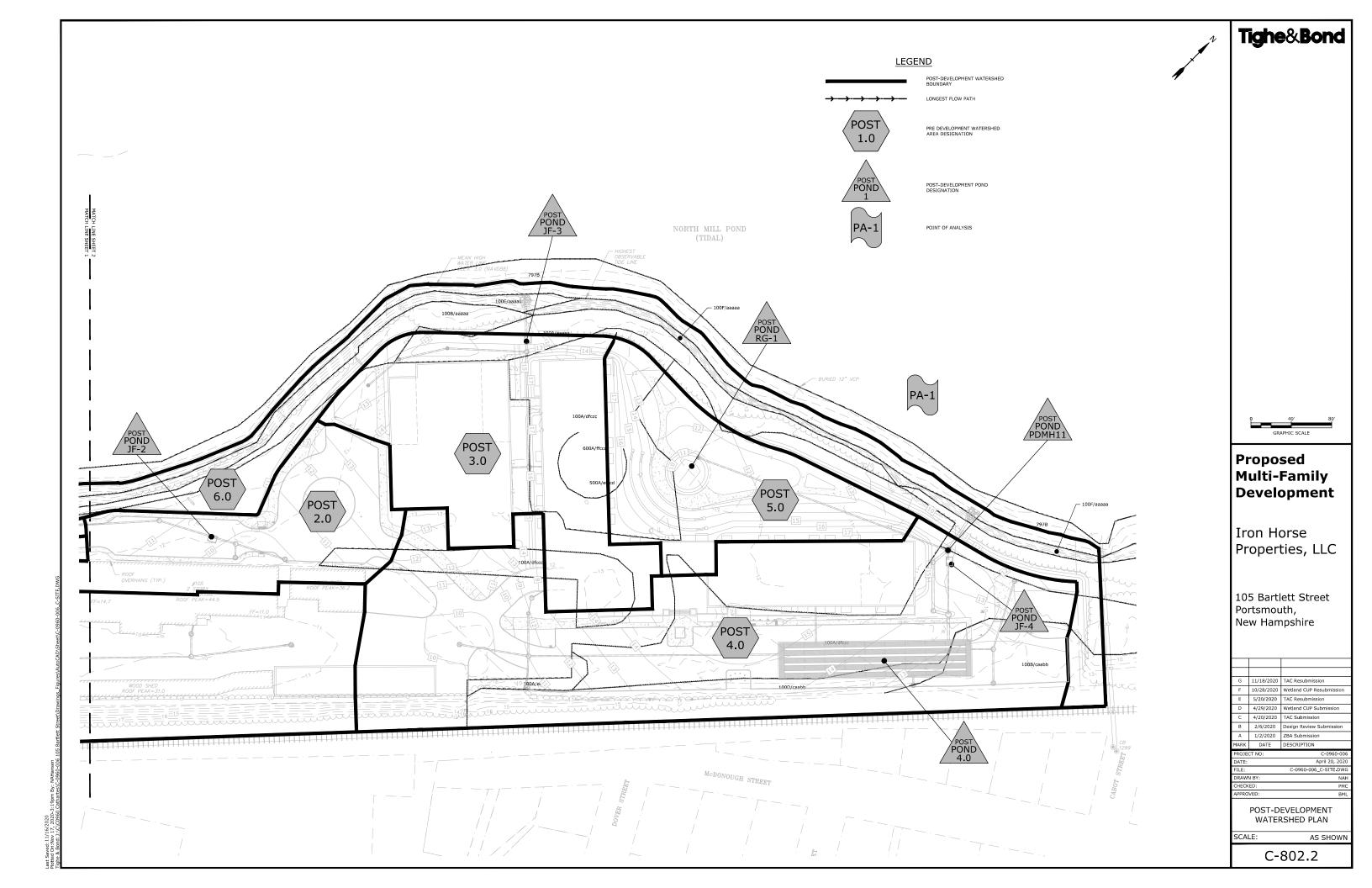
POST-DEVELOPMENT WATERSHED BOUNDARY

LONGEST FLOW PATH



PRE DEVELOPMENT WATERSHED AREA DESIGNATION




POST-DEVELOPMENT POND DESIGNATION

POINT OF ANALYSIS

CB ⊚⁷⁰² CB @ 699

Section 4 Stormwater Treatment

The stormwater management system has been designed to provide stormwater treatment as required by the City of Portsmouth Site Review Regulations and NHDES AoT Regulations (Env-Wq 1500).

4.4.1 Pre-Treatment Methods for Protecting Water Quality

Pre-treatment for the stormwater filtration systems consist of deep sump catch basins.

4.4.2 Treatment Methods for Protecting Water Quality.

The runoff from existing and proposed impervious areas will be treated by various Contech Jellyfish stormwater filtration systems. These Jellyfish systems are sized to treat the Water Quality Flows of their respective subcatchment areas. Each system is outfitted with an internal bypass that diverts peak flows away from treatment. The BMP worksheet for these treatment practices have been included in Section 5 of this report.

Additionally, a rain garden within the proposed greenway park is included to treat runoff from the surrounding area. The rain garden has been designed and sized to contain the 50-year storm without overtopping, as well as treat a volume of runoff greater than the WQV. Due to poor infiltration rates of the surrounding soils, the bottom of the rain garden is proposed to be lined and outfitted with underdrains to convey treated runoff to the system's outlet structure. The BMP worksheet for this treatment practice has been included in Section 5 of this report, as well.

Table 4.1 – Pollutant Removal Efficiencies					
ВМР	Total Suspended Solids	Total Nitrogen	Total Phosphorus		
Jellyfish Filter w/Pretreatment ¹	91%	53%	61%		
Raingarden ²	90%	65%	65%		
Porous Pavement w/Underdrain ²	90%	10%	45%		

1. Pollutant removal calculations for Jellyfish Filter with deep sump catchbasin pretreatment shown in Table 4.2.

2. Pollutant removal efficiencies from NH Stormwater Manual Volume 2, Appendix E.

Table 4.2 – Pollutant Removal Calculations				
Contech Jellyfish Filt	er			
BMP	TSS Removal Rate	Starting TSS Load	TSS Removed	Remaining TSS Load
Deep Sump Catchbasin w/Hood ¹	0.15	1.00	0.15	0.85
Jellyfish Filter ²	0.89	0.85	0.76	0.09
	Total Su	uspended Soli	ds Removed:	91%
	TN Removal Rate	Starting TN Load	TN Removed	Remaining TN Load
Deep Sump Catchbasin w/Hood ¹	0.05	1.00	0.05	0.95
Jellyfish Filter ²	0.51	0.95	0.48	0.47
		Total Nitrog	en Removed:	53%
	TP Removal Rate	Starting TP Load	TP Removed	Remaining TP Load
Deep Sump Catchbasin w/Hood ¹	0.05	1.00	0.05	0.95
Jellyfish Filter ²	0.59	0.95	0.56	0.39
	Т	otal Phosphor	us Removed:	61%

1. Pollutant removal efficiencies from NH Stormwater Manual Volume 2, Appendix E.

2. Pollutant removal efficiencies from Contech Engineered Solutions, Jellyfish Filter Stromwater Treatment performance testing results.

Section 5 BMP Worksheets and Sizing Memos

General Calculations - WQV and WQF (optional worksheet)

This worksheet may be useful when designing a BMP <u>that does not fit into one of the specific worksheets</u> <u>already provided (i.e. for a technology which is not a stormwater wetland, infiltration practice, etc.)</u>

Water Quality Volume (WQV)

3.94 ac	A = Area draining to the practice
2.88 ac	A_{I} = Impervious area draining to the practice
0.73 decimal	I = percent impervious area draining to the practice, in decimal form
0.71 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)
2.79 ac-in	WQV= 1" x Rv x A
10,118 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")

Water Quality Flow (WQF)

1	inches	P = amount of rainfall. For WQF in NH, $P = 1$ ".
0.71	inches	Q = water quality depth. $Q = WQV/A$
97	unitless	$CN = unit peak discharge curve number. CN = 1000/(10+5P+10Q-10*[Q^2 + 1.25*Q*P]^{0.5})$
0.3	inches	S = potential maximum retention. S = $(1000/CN)$ - 10
0.061	inches	Ia = initial abstraction. Ia = $0.2S$
5.0	minutes	$T_c = Time of Concentration$
655.0	cfs/mi ² /in	qu is the unit peak discharge. Obtain this value from TR-55 exhibits 4-II and 4-III
2.853	cfs	WQF = $q_u x$ WQV. Conversion: to convert "cfs/mi ² /in * ac-in" to "cfs" multiply by $1 \text{mi}^2/640 \text{ac}$

Designer's Notes:	POST 1.0 & 1.1 combined
JF-1	
PEAK FLOW = 26.54	CFS

CONTECH Stormwater Solutions Inc. Engineer Date Prepared:	: DRA 11/13/2020		
Site Information			
Project Name	105 Bartlett Street JF1		
Project State	NH		
Project City	Portsmouth		
Total Drainage Area, Ad	3.94 ac		
Post Development Impervious Area, Ai	2.88 ac		
Pervious Area, Ap	1.06 ac		
% Impervious	73%		
Runoff Coefficient, Rc	0.71		
Mass Loading Calculations			
Mean Annual Rainfall, P	50 in		
Agency Required % Removal	80%		
Percent Runoff Capture	90%		
Mean Annual Runoff, Vt	455583 ft ³		
Event Mean Concentration of Pollutant, EMC	70 mg/l		
Annual Mass Load, M total	1989.70 lbs		
Filter System			
Filtration Brand	Jelly Fish		
Cartridge Length	54 in		
Jelly Fish Sizing			
Mass to be Captured by System	1591.76 lbs		
Water Quality Flow	2.85 cfs		
Method to Use	FLOW BASED		

Summary		
Flow	Treatment Flow Rate	2.94 cfs
	Required Size	JFPD0808-15-3

General Calculations - WQV and WQF (optional worksheet)

This worksheet may be useful when designing a BMP <u>that does not fit into one of the specific worksheets</u> <u>already provided (i.e. for a technology which is not a stormwater wetland, infiltration practice, etc.)</u>

Water Quality Volume (WQV)

0.74 ac	A = Area draining to the practice
0.63 ac	A_{I} = Impervious area draining to the practice
0.85 decimal	I = percent impervious area draining to the practice, in decimal form
0.82 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)
0.60 ac-in	WQV= 1" x Rv x A
2,189 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")

Water Quality Flow (WQF)

1	inches	P = amount of rainfall. For WQF in NH, $P = 1$ ".
0.82	inches	Q = water quality depth. $Q = WQV/A$
98	unitless	$CN = unit peak discharge curve number. CN = 1000/(10+5P+10Q-10*[Q^2 + 1.25*Q*P]^{0.5})$
0.2	inches	S = potential maximum retention. S = $(1000/CN)$ - 10
0.035	inches	Ia = initial abstraction. Ia = $0.2S$
5.0	minutes	$T_c = Time of Concentration$
655.0	cfs/mi ² /in	qu is the unit peak discharge. Obtain this value from TR-55 exhibits 4-II and 4-III
0.617	cfs	WQF = $q_u x$ WQV. Conversion: to convert "cfs/mi ² /in * ac-in" to "cfs" multiply by $1 mi^2/640 ac$

Designer's Notes: JF-2

PEAK FLOW = 5.07 CFS

CONTECH Stormwater Solutions Inc. Engineer: Date Prepared:	DRA 11/13/2020
Site Information	
Project Name Project State Project City	105 Bartlett Street JF2 NH Portsmouth
Total Drainage Area, Ad Post Development Impervious Area, Ai Pervious Area, Ap % Impervious Runoff Coefficient, Rc	0.74 ac 0.63 ac 0.11 ac 85% 0.82
Mass Loading Calculations Mean Annual Rainfall, P Agency Required % Removal Percent Runoff Capture Mean Annual Runoff, Vt Event Mean Concentration of Pollutant, EMC Annual Mass Load, M total	50 in 80% 90% 98663 ft ³ 70 mg/l 430.90 lbs
Filter System Filtration Brand Cartridge Length	Jelly Fish 40 in
Jelly Fish Sizing Mass to be Captured by System Water Quality Flow	344.72 lbs 0.62 cfs
Method to Use	FLOW BASED

	Sur	nmary
Flow	Treatment Flow Rate	0.73 cfs
Flow	Required Size	JFPD0806-5-1

General Calculations - WQV and WQF (optional worksheet)

This worksheet may be useful when designing a BMP <u>that does not fit into one of the specific worksheets</u> <u>already provided (i.e. for a technology which is not a stormwater wetland, infiltration practice, etc.)</u>

Water Quality Volume (WQV)

1.22 ac	A = Area draining to the practice
1.01 ac	A_{I} = Impervious area draining to the practice
0.83 decimal	I = percent impervious area draining to the practice, in decimal form
0.79 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)
0.97 ac-in	WQV= 1" x Rv x A
3,518 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")

Water Quality Flow (WQF)

-	e	
1	inches	P = amount of rainfall. For WQF in NH, $P = 1$ ".
0.79	inches	Q = water quality depth. $Q = WQV/A$
98	unitless	CN = unit peak discharge curve number. CN = 1000/(10+5P+10Q-10*[Q2 + 1.25*Q*P]0.5)
0.2	inches	S = potential maximum retention. S = $(1000/CN)$ - 10
0.040	inches	Ia = initial abstraction. Ia = $0.2S$
5.0	minutes	$T_c = Time of Concentration$
655.0	cfs/mi ² /in	qu is the unit peak discharge. Obtain this value from TR-55 exhibits 4-II and 4-III
0.992	cfs	WQF = $q_u x$ WQV. Conversion: to convert "cfs/mi ² /in * ac-in" to "cfs" multiply by $1 mi^2/640 ac$

Designer's Notes: JF-3

PEAK FLOW = 8.82 CFS

CONTECH Stormwater Solutions Inc. Engineer Date Prepared:	DRA 11/13/2020			
Site Information				
Project Name	105 Bartlett Street JF3			
Project State	NH			
Project City	Portsmouth			
Total Drainage Area, Ad	1.22 ac			
Post Development Impervious Area, Ai	1.01 ac			
Pervious Area, Ap	0.21 ac			
•				
Runoff Coefficient, Rc	0.80			
Project Name105 Bartlett Street JF3Project StateNHProject CityPortsmouthTotal Drainage Area, Ad1.22 acPost Development Impervious Area, Ai1.01 ac				
Mean Annual Rainfall, P	50 in			
Agency Required % Removal				
Percent Runoff Capture				
-				
	Ŭ			
Annual Mass Load, M total	692.01 lbs			
Filter System				
Filtration Brand	Jelly Fish			
Cartridge Length	54 in			
Jelly Fish Sizing				
Mass to be Captured by System	553.60 lbs			
Water Quality Flow	0.99 cfs			
Method to Use	FLOW BASED			

	Si	ummary
Flow	Treatment Flow Rate	1.07 cfs
Flow	Required Size	JFPD0806-5-2

General Calculations - WQV and WQF (optional worksheet)

This worksheet may be useful when designing a BMP <u>that does not fit into one of the specific worksheets</u> <u>already provided (i.e. for a technology which is not a stormwater wetland, infiltration practice, etc.)</u>

Water Quality Volume (WQV)

2.61 ac	A = Area draining to the practice
1.64 ac	A_{I} = Impervious area draining to the practice
0.63 decimal	I = percent impervious area draining to the practice, in decimal form
0.62 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)
1.61 ac-in	WQV= 1" x Rv x A
5,835 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")

Water Quality Flow (WQF)

	l inches	P = amount of rainfall. For WQF in NH, $P = 1$ ".
0.62	2 inches	Q = water quality depth. $Q = WQV/A$
9	6 unitless	CN = unit peak discharge curve number. CN = 1000/(10+5P+10Q-10*[Q2 + 1.25*Q*P]0.5)
0.4	4 inches	S = potential maximum retention. S = $(1000/CN)$ - 10
0.08	8 inches	Ia = initial abstraction. Ia = $0.2S$
5.) minutes	$T_c = Time of Concentration$
655.) $cfs/mi^2/in$	qu is the unit peak discharge. Obtain this value from TR-55 exhibits 4-II and 4-III
1.64	5 cfs	WQF = $q_u x$ WQV. Conversion: to convert "cfs/mi ² /in * ac-in" to "cfs" multiply by $1 mi^2/640 ac$

Designer's Notes: JF-4

PEAK FLOW = 4.48 CFS

CONTECH Stormwater Solutions Inc. Engineer Date Prepared:	: DRA 11/13/2020
Site Information	
Project Name	105 Bartlett Street JF4
Project State	NH
Project City	Portsmouth
Total Drainage Area, Ad	2.61 ac
Post Development Impervious Area, Ai	1.64 ac
Pervious Area, Ap	0.97 ac
% Impervious	63%
Runoff Coefficient, Rc	0.62
Mass Loading Calculations	
Mean Annual Rainfall, P	50 in
Agency Required % Removal	<mark>80%</mark>
Percent Runoff Capture	90%
Mean Annual Runoff, Vt	262422 ft ³
Event Mean Concentration of Pollutant, EMC	70 mg/l
Annual Mass Load, M total	1146.09 lbs
Filter System	
Filtration Brand	Jelly Fish
Cartridge Length	54 in
Jelly Fish Sizing	
Mass to be Captured by System	916.87 lbs

		Summary
Mass	Treatment Mass	1001.00 lbs
Wass	Required Size	JFPD0806-7-2

Type/Node Name:

FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.07)

RG-1

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable

			1500.07(.)0	
Yes	-	Have you reviewed the restrictions on unlined systems outlined in Env-Wq 1508.07(a)?		
0.73	-	A = Area draining to the practice		
0.14	-	A_{I} = Impervious area draining to the practice		
	decimal	I = percent impervious area draining to the practice, in decimal form		
	unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)		
0.16	ac-in	WQV= 1" x Rv x A		
590	cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")		
147	cf	25% x WQV (check calc for sediment forebay volume)		
442	cf	75% x WQV (check calc for surface sand filter volume)		
Cle	ean	Method of Pretreatment? (not required for clean or roof runoff)		
	cf	V_{SED} = sediment forebay volume, if used for pretreatment	$\leftarrow \geq 25\% WQV$	
919	sf	A_{SA} = surface area of the practice		
-	iph	$K_{Sat}_{DESIGN} = design infiltration rate1$		
Yes	Yes/No	If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been	provided?	
-	hours	$T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$	← <u><</u> 72-hrs	
8.50	feet	E_{FC} = elevation of the bottom of the filter course material ²		
7.25	feet	E_{UD} = invert elevation of the underdrain (UD), if applicable		
	feet	E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation	of the test pit)	
	feet	E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation	n of the test pit)	
1.25	feet	$D_{FC \text{ to } UD}$ = depth to UD from the bottom of the filter course	← ≥ 1'	
8.50	feet	$D_{FC \text{ to } ROCK}$ = depth to bedrock from the bottom of the filter course	← ≥ 1'	
8.50	feet	$D_{FC \text{ to SHWT}} = \text{depth to SHWT from the bottom of the filter course}$	← ≥ 1'	
10.93	-	Peak elevation of the 50-year storm event (infiltration can be used in a	nalvsis)	
11.80	-	Elevation of the top of the practice		
YES	•	50 peak elevation $\leq $ Elevation of the top of the practice	← yes	
If a surface	e sand filte	er or underground sand filter is proposed:		
YES	ac	Drainage Area check.	← < 10 ac	
	cf	V = volume of storage ³ (attach a stage-storage table)	$\leftarrow \geq 75\%$ WQV	
	-		← 18", or 24" if	
	inches	D_{FC} = filter course thickness	within GPA	
Sheet	-	Note what sheet in the plan set contains the filter course specification		
	Yes/No	Access grate provided?	← yes	
Real Provide State Stat				

YES ac	Drainage Area no larger than 5 ac?	← yes
1,892 cf	$V = volume of storage^{3} (attach a stage-storage table)$	$\leftarrow \geq WQV$
18.0 inches	D_{FC} = filter course thickness	← 18", or 24" if within GPA
Sheet C-506	Note what sheet in the plan set contains the filter course specification	
3.0 :1	Pond side slopes	← <u>>3</u> :1
Sheet	Note what sheet in the plan set contains the planting plans and surface	e cover
If porous pavement	is proposed:	
	Type of pavement proposed (concrete? Asphalt? Pavers? Etc)	
acres	A_{SA} = surface area of the pervious pavement	
:1	ratio of the contributing area to the pervious surface area	← ≤ 5:1
inches	D_{FC} = filter course thickness	← 12", or 18" if within GPA
Sheet	Note what sheet in the plan set contains the filter course spec.	← 304.1 sand

1. Rate of the limiting layer (either the filter course or the underlying soil). Ksat_{design} includes factor of safey. See Env-Wq 1504.14 for guidance on determining the infiltration rate.

2. See lines 34, 40 and 48 for required depths of filter media.

3. Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet stucture, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.

Designer's Notes:

2019

Section 6 Long-Term Operation & Maintenance Plan

It is the intent of this Operation and Maintenance Plan to identify the areas of this site that need special attention and consideration, as well as implementing a plan to assure routine maintenance. By identifying the areas of concern as well as implementing a frequent and routine maintenance schedule the site will maintain a high-quality stormwater runoff.

6.1 Contact/Responsible Party

Iron Horse Properties, LLC 105 Bartlett Street Portsmouth, NH 03801

(Note: The contact information for the Contact/Responsible Party shall be kept current. If ownership changes, the Operation and Maintenance Plan must be transferred to the new party.)

6.2 Maintenance Items

Maintenance of the following items shall be recorded:

- Litter/Debris Removal
- Landscaping
- Catchbasin Cleaning
- Pavement Sweeping
- Contech Jellyfish Filtration System

The following maintenance items and schedule represent the minimum action required. Periodic site inspections shall be conducted, and all measures must be maintained in effective operating condition. The following items shall be observed during site inspection and maintenance:

- Inspect vegetated areas, particularly slopes and embankments for areas of erosion. Replant and restore as necessary
- Inspect catch basins for sediment buildup
- Inspect site for trash and debris

6.3 Overall Site Operation & Maintenance Schedule

Overall Site Opera	tion and Maintenance Schedule	
Maintenance Item	Frequency of Maintenance	Operation
Litter/Debris Removal - Trash and debris to be removed including long the full length of the stream.	Weekly	Management Company
Pavement Sweeping - Sweep impervious areas to remove sand and litter.	Annually	Parking Lot Sweeper
Catch Basin (CB) Cleaning - CB to be cleaned of solids and oils.	Annually	Vacuum Truck
Landscaping - Landscaped islands to be maintained and mulched.	Maintained as required and mulched each Spring	Management Company

Rain Garde	n Inspection/Mainter	nance Requirements
Inspection/ Maintenance	Frequency	Action
Monitor to ensure that Rain Gardens function effectively after storms	Two (2) times annually and after any rainfall event exceeding 2.5" in a 24-hr period	- Trash and debris to be removed - Any required maintenance shall be addressed
Inspect Vegetation	Annually	 Inspect the condition of all Rain Garden vegetation Prune back overgrowth Replace dead vegetation Remove any invasive species
Inspect Drawdown Time - The system shall drawdown within 48- hours following a rainfall event.	Annually	- Assess the condition of the facility to determine measures required to restore the filtration function, including but not limited to removal of accumulated sediments or reconstruction of the filter.

Contech Jellyfish Fil	ter System Inspectior	n/Maintenance Requirements
Inspection/	Frequency	Action
Maintenance		
Inspect vault for sediment build up, static water, plugged media and bypass condition	One (1) time annually and after any rainfall event exceeding 2.5" in a 24-hr period	 Maintenance required for any of the following: >4" of sediment on the vault floor >1/4" of sediment on top of the cartridge .4" of static water above the cartridge bottom more than 24 hours after a rain event If pore space between media is absent. If vault is in bypass condition during an average rainfall event.
Replace Cartridges	As required by inspection, 1–5 years.	 Remove filter cartridges per manufacturer methods. Vacuum sediment from vault. Install new cartridges per manufacturer methods

6.3.1 Disposal Requirements

Disposal of debris, trash, sediment and other waste material should be done at suitable disposal/recycling sites and in compliance with all applicable local, state and federal waste regulations.

6.3.2 Snow & Ice Management for Standard Asphalt and Walkways

Snow storage areas shall be located such that no direct untreated discharges are possible to receiving waters from the storage site (snow storage areas have been shown on the Site Plan). The property manager will be responsible for timely snow removal from all private sidewalks, driveways, and parking areas. Snow removal will be hauled off-site and legally disposed of when snowbanks exceed 6 feet in height. Salt storage areas shall be covered or located such that no direct untreated discharges are possible to receiving waters from the storage site. Salt and sand shall be used to the minimum extent practical (refer to the attached for de-icing application rate guideline from the New Hampshire Stormwater Management Manual, Volume 2,).

6.4 Chloride Management Plan

Winter Operational Guidelines

The following Chloride Management Plan is for the 105 Bartlett Street, Multi-Family, Mixed Use Development in Portsmouth, New Hampshire. The Plan includes operational guidelines including: winter operator certification requirements, weather monitoring, equipment calibration requirements, mechanical removal, and salt usage evaluation and monitoring. Due to the evolving nature of chloride management efforts, the Chlorides Management Plan will be reviewed annually, in advance of the winter season, to reflect the current management standards.

6.4.1 Background Information

The 105 Bartlett Street, Multi-Family, Mixed Use Development is located along the North Mill Pond in Portsmouth, New Hampshire.

6.4.2 Operational Guidelines – Chloride Management

All private contractors engaged at the development site for the purposes of winter operational snow removal and surface maintenance, are responsible for assisting in meeting compliance for the following protocols. Private contractors are expected to minimize the effects of the use of de-icing, anti-icing and pretreatment materials by adhering to the strict guidelines outlined below.

The winter operational de-icing, anti-icing and pretreatment materials will adhere to the following protocols:

6.4.2.1 Winter Operator Certification Requirements

All private contractors engaged at the premises for the purpose of winter operational snow removal and surface maintenance must be current UNHT2 Green SnowPro Certified operators or equivalent and will use only pre-approved methods for spreading abrasives on private roadways and parking lots. All private contractors engaged at the premises for the purpose of winter operational snow removal and surface maintenance shall provide to the property management two copies of the annual UNHT2 Green SnowPro certificate or equivalent for each operator utilized on the premises. The annual UNHT2 Green SnowPro certificate or equivalent for each operator will be available on file in the Facilities Management office and be present in the vehicle/carrier at all times.

6.4.2.2 Improved Weather Monitoring

The property manager will coordinate weather information for use by winter maintenance contractors. This information in conjunction with site specific air/ground surface temperature monitoring will ensure that private contractors engaged at the premises for the purpose of winter operational snow removal and surface maintenance will make more informed decisions as to when and to what extent de-icing, anti-icing and pretreatment materials are applied to private roadways, sidewalks, and parking lots.

6.4.2.3 Equipment Calibration Requirements

All equipment utilized on the premises for the purpose of winter operational snow removal and surface maintenance will conform to the following calibration requirements.

6.4.2.3.1 Annual Calibration Requirements

All private contractors engaged at the premises for the purpose of winter operational snow removal and surface maintenance shall provide two copies of the annual calibration report for each piece of equipment utilized on the premises. Each calibration report shall include the vehicle/carrier VIN number and the serial numbers for each component including, but not limited to, spreader control units, salt aggregate spreader equipment, brining/prewetting equipment, ground speed orientation unit, and air/ground surface temperature monitor. Annual calibration reports will be available on file in the Facilities Management office and be present in the vehicle/carrier at all times.

Prior to each use, each vehicle/carrier operator will perform a systems check to verify that unit settings remain within the guidelines established by the Management Team in order to accurately dispense material. All private contractors engaged at the premises for the purpose of winter operational snow removal and surface maintenance will be subject to spot inspections by members of the Property Management Team to ensure that each vehicle/carrier is operating in a manner consistent with the guidelines set herein or State and Municipal regulations. All units will be recalibrated, and the updated calibration reports will be provided each time repairs or maintenance procedures affect the hydraulic system of the vehicle/carrier.

6.4.2.4 Increased Mechanical Removal Capabilities

All private contractors engaged at the premises will endeavor to use mechanical removal means on a more frequent basis for roadways, parking lots and sidewalks. Dedicating more manpower and equipment to increase snow removal frequencies prevents the buildup of snow and the corresponding need for deicing, anti-icing and pretreatment materials. Shortened maintenance routes, with shorter service intervals, will be used to stay ahead of snowfall. Minimized snow and ice packing will reduce the need for abrasives, salt aggregates, and/or brining solution to restore surfaces back to bare surface states after winter precipitation events.

After storm events the management team will be responsible for having the streets swept to recapture un-melted de-icing materials, when practical.

6.4.3 Salt Usage Evaluation and Monitoring

All private contractors engaged at the premises for the purpose of winter operational snow removal and surface maintenance shall provide two copies of a storm report, which includes detailed information regarding treatment areas and the use of de-icing, antiicing and pretreatment materials applied for the removal of snow and surface maintenance on the premises. The property manager will maintain copies of Summary Documents, including copies of the Storm Reports, operator certifications, equipment used for roadway and sidewalk winter maintenance, calibration reports and amount of de-icing materials used.

6.4.4 Summary

The above-described methodologies are incorporated into the Operational Manual and are to be used to qualify and retain all private contractors engaged at the 105 Bartlett Street premises for the purpose of winter operational snow removal and surface maintenance. This section of the Manual, is intended to be an adaptive management document that is modified as required based on experience gained from past practices and technological advancements that reflect chloride BMP standards. All employees directly involved with winter operational activities are required to review this document and the current standard Best Management Practices published by the UNH Technology Transfer (T2) program annually. All employees directly involved with winter operational activities, and all private contractors engaged at the premises for the purposes of winter operational snow removal and surface maintenance, must be current UNHT2 Green SnowPro Certified operators or equivalent and undergo the necessary requirements to maintain this certification annually.

Deicing Application Rate Guidelines

24' of pavement (typcial two-lane road)

These rates are not fixed values, but rather the middle of a range to be selected and adjusted by an agency according to its local conditions and experience.

		_		Pounds per tw	o-lane mile	
Pavement Temp. (°F) and Trend (个↓)	Weather Condition	Maintenance Actions	Salt Prewetted / Pretreated with Salt Brine	Salt Prewetted / Pretreated with Other Blends	Dry Salt*	Winter Sand (abrasives)
>30° ↑	Snow	Plow, treat intersections only	80	70	100*	Not recommended
> 30° 1°	Freezing Rain	Apply Chemical	80 - 160	70 - 140	100 - 200*	Not recommended
30° J	Snow	Plow and apply chemical	80 - 160	70 - 140	100 - 200*	Not recommended
30 V	Freezing Rain	Apply Chemical	150 - 200	130 - 180	180 - 240*	Not recommended
25°-30° ↑	Snow	Plow and apply chemical	120 - 160	100 - 140	150 - 200*	Not recommended
25 - 50 - 1	Freezing Rain	Apply Chemical	150 - 200	130 - 180	180 - 240 *	Not recommended
25°-30° ↓	Snow	Plow and apply chemical	120 - 160	100 - 140	150 - 200*	Not recommended
23 - 50 🖤	Freezing Rain	Apply Chemical	160 - 240	140 - 210	200 - 300*	400
20°-25° ↑	Snow or Freezing Rain	Plow and apply chemical	160 - 240	140 - 210	200 - 300*	400
20°-25° ↓	Snow	Plow and apply chemical	200 - 280	175 - 250	250 - 350*	Not recommended
20 - 23 🗸	Freezing Rain	Apply Chemical	240 - 320	210 - 280	300 - 400*	400
15°-20° ↑	Snow	Plow and apply chemical	200 - 280	175 - 250	250 - 350*	Not recommended
	Freezing Rain	Apply Chemical	240 - 320	210 - 280	300 - 400*	400
15°-20° ↓	Snow or Freezing Rain	Plow and apply chemical	240 - 320	210 - 280	300 - 400*	500 for freezing rain
0°-15° ↑↓	Snow	Plow, treat with blends, sand hazardous areas	Not recommended	300 - 400	Not recommended	500 - 750 spot treatment as needed
< 0°	Snow	Plow, treat with blends, sand hazardous areas	Not recommended	400 - 600**	Not recommended	500 - 750 spot treatment as needed

* Dry salt is not recommended. It is likely to blow off the road before it melts ice.

** A blend of 6 - 8 gal/ton MgCl₂ or CaCl₂ added to NaCl can melt ice as low as -10°.

	А	nti-icing Route Data	a Form		
Truck Station:					
Date:					
Air Temperature	Pavement Temperature	Relative Humidity	Dew Point	Sky	
Reason for applying:					
Route:					
Chemical:					
Application Time:					
Application Amount:					
Observation (first da	y):				
Observation (after ev	vent):				
Observation (before	next application):				
Name:					

6.5 Invasive Species

With respect to a particular ecosystem, any species, including its seeds, eggs, spores, or other biological material capable of propagating that species, that is not native to that ecosystem is classified as an invasive species. Refer to the following fact sheet prepared by the University of New Hampshire Cooperative Extension entitled Methods for Disposing Non-Native Invasive Plants for recommended methods to dispose of invasive plant species.

6.6 Annual Updates and Log Requirements

The Owner and/or Contact/Responsible Party shall review this Operation and Maintenance Plan once per year for its effectiveness and adjust the plan and deed as necessary.

A log of all preventative and corrective measures for the stormwater system shall be kept on-site and be made available upon request by any public entity with administrative, health environmental or safety authority over the site including NHDES.

		St	ormwater Management R	leport		
Project Name		105 Bartle	tt Street			
BMP Description	Date of Inspection	Inspector	BMP Installed and Operating Properly?	Cleaning / Corrective Action Needed	Date of Cleaning / Repair	Performed By
			□Yes □No			
			□Yes □No			
			□Yes □No			
			□Yes □No			
			□Yes □No			
			□Yes □No			
			□Yes □No			
			□Yes □No			
			□Yes □No			
			□Yes □No			
			□Yes □No			
			□Yes □No			

J:\C\C0960 Cathartes\C-0960-006 105 Bartlett Street\Report_Evaluation\Applications\City of Portsmouth\20200420_TAC Submission\C-0960-006_Drainage Report.docx

Transportation: Engineering • Planning • Design

MEMORANDUM

Ref: 1955A

To: Jeff Johnston Cathartes

From: Stephen G. Pernaw, P.E., PTOE

Subject: Trip Generation Update

Date: February 21, 2020 (Updated November 11, 2020)

As you know, our office prepared the "*Traffic Impact & Site Access Study – Proposed Residential Subdivision*" report dated June 18, 2019 for the 120-unit multi-family low/mid-rise residential development located on the south side of North Mill Pond in Portsmouth, New Hampshire. The development proposal has changed and it now involves: 1) acquiring the property associated with Great Rhythm Brewing Company and the Play All Day Doggy Daycare facility and razing these buildings, 2) increasing the development area by +1.72 acres, 3) increasing the number of dwellings to 170 units, and 4) providing 10,300 sf of office space (see Attachment 1). Similar to our previous traffic report, all site vehicles will travel to/from the development via Bartlett Street. The purpose of this memorandum is to compare the trip generating characteristics of the former and current development proposals. The following tabulation compares these development proposals.

	Original Development Proposal	Current Development Proposal	Change
1. Apartments (units)	120	170	+50 units
2. Office Space (sf)	0	10,300	+10,300 sf
3. Great Rhythm Brewing Co	remains	razed	- 68 AM & -85 PM trips
4. Play All Day dog care	remains	razed	- 00 AIVI & -05 FIVI (11)ps
5. Access/Egress	Via Bartlett St. Only	Via Bartlett St. Only	No change
6. Development area	2.99 Acres	4.71 Acres	+58% increase

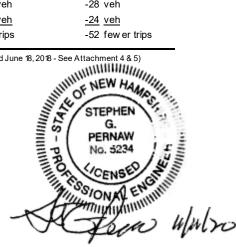
Table 1A summarizes the updated trip generation analyses and shows that the proposed residences and office space will generate a total of approximately 70 (AM) and 86 (PM) vehicle-trips during the peak hour periods (see Attachment 2). Driveway counts conducted at the brewery/dog daycare parking lot in October 2018 revealed that these two uses generated 68 (AM) and 85 (PM) vehicle-trips on a typical weekday (see Attachment 3). <u>The removal of the brewery and daycare uses essentially cancels out the impact of the proposed residential / commercial development</u>.

Table 1A

Trip Generation Summary - Current Development Proposal (11/11/20)

			Current	Development Pr	oposal	
		Apartments ¹ (170 units)	Office ² (10,300 sf)	Subtotal	Less Brewery & Dog Daycare ³	Net Trips Generated
Weekday AM Pe	ak Hour					
	Entering	15 veh	10 veh	25 veh	-34 veh	-9 veh
	Exiting	<u>43</u> veh	2 veh	<u>45</u> veh	<u>-34</u> veh	<u>11 veh</u>
	Total	58 trips	12 trips	70 trips	-68 trips	2 trips
Weekday PM Pea	ak Hour					
	Entering	45 veh	2 veh	47 veh	-43 veh	4 veh
	Exiting	<u>29</u> veh	<u>10</u> veh	<u>39</u> veh	<u>-42 veh</u>	<u>-3 veh</u>
	Total	74 trips	12 trips	86 trips	-85 trips	1 trips

 $^1\mbox{ITE}$ Land Use Code 221- M ultifamily Ho using (M id-Rise) - Equation M ethod - See Attachment 2


 $^2 \mbox{ITE}$ Land Use Code 710 - Office - Rate M ethod - See Attachment 2

³October 2018 Driveway Counts - See Attachment 3

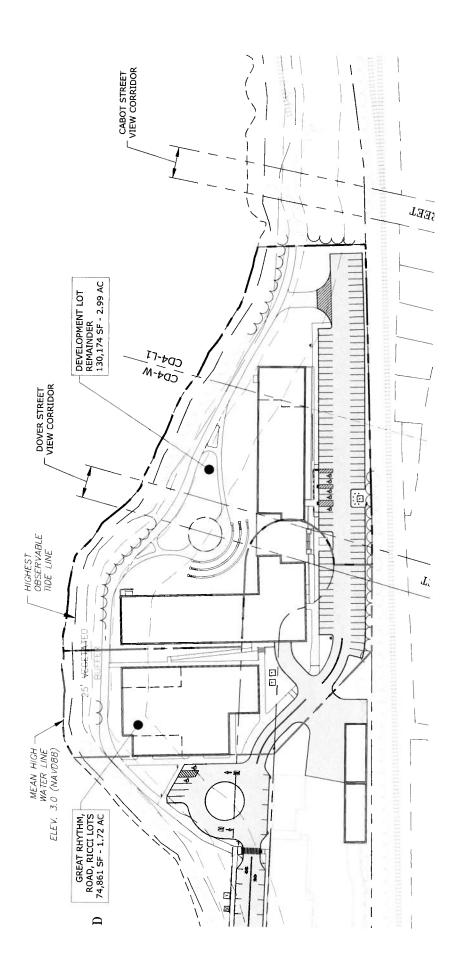

Table 1B compares the trip generating characteristics of the previous and current development proposals and demonstrates that the current development proposal will generate approximately -39 (AM) and -52 (PM) <u>fewer</u> vehicle-trips during the peak hour periods than the previous development proposal. Accordingly, the traffic projections contained in the previous traffic study are now considered to be quite conservative on the "high side." This means that the study findings and conclusions remain valid for the new development proposal.

Table 1B		Trip Generati	on Comparison (1	1/11/20)
		Previous Development Proposal ¹ (120 Apartments)	Current Development Proposal ²	Net Change
Weekday AM Peak	k Hour			
	Entering	11 veh	-9 veh	-20 veh
	Exiting	<u>30 veh</u>	<u>11 veh</u>	<u>-19</u> veh
	Total	41 trips	2 trips	-39 few er trips
Weekday PM Peak	Hour			
	Entering	32 veh	4 veh	-28 veh
	Exiting	<u>21 veh</u>	<u>-3 veh</u>	<u>-24</u> veh
	Total	53 trips	1 trips	-52 few er trips

¹"Traffic Impact and Site Access Study-Proposed Residential Subdivision" Table 1, dated June 18, 2018 - See Attachment 4 & 5) ²See "net trips generated" on Table 1A

Attachments

1

 \backslash

2
Ø
Ê
Ē
Ξ
2
~
C
<u>0</u>
ati
Ľ.
e
5
Ä.
U
Q
Έ.
—

Alternative: Current Development Proposal

Phase: Project: 1955A										Ope Analys	Open Date: 6/25/2020 Analysis Date: 6/25/2020	6/25/2020 6/25/2020
	>	eekday Av	Weekday Average Daily Trips	ly Trips	>	Veekday <i>i</i> Adjacen	Weekday AM Peak Hour of Adjacent Street Traffic	lour of affic		Weekday PM Peak Hour of Adiacent Street Traffic	eekday PM Peak Hour Adiacent Street Traffic	our of Mic
ITE Land Use	*	Enter	Exit	Total	*	Enter	Exit	Total	*	Enter	Exit	Total
221 MID-RISE 1 170 Dwelling Units		463	462	925		15	43	58		45	29	74
710 10.3 1000 Sq. Ft. GFA		50	50	100		10	2	12		0	10	12
Unadjusted Volume		513	512	1025		25	45	20		47	30	86
Internal Capture Trips		0	0	0		0	0	0		-	~	2
Pass-By Trips		0	0	0		0	0	0		0	0	0
Volume Added to Adjacent Streets		513	512	1025		25	45	70		46	38	84
Total Weekday Average Daily Trips Internal Capture = 0 Percent Total Weekday AM Peak Hour of Adjacent Street Traffic Internal (= 0 Pe affic Inte	rcent ernal Capt	Capture = 0 Percent	rcent								

Total Weekday PM Peak Hour of Adjacent Street Traffic Internal Capture = 2 Percent

Custom rate used for selected time period.

Source: Institute of Transportation Engineers, Trip Generation Manual 10th Edition TRIP GENERATION 10, TRAFFICWARE, LLC

Attachment 3

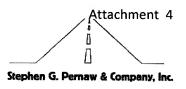
P.O. Box 1721 • Concord, NH 03302 tel: (603) 731-8500 • fax: (866) 929-6094 • sgp@ pernaw.com

Transportation: Engineering • Planning • Design

MEMORANDUM

Ref: 1821A

- To: Juliet T. H. Walker, AICP Planning Director City of Portsmouth Planning Department
- From: Stephen G. Pernaw, P.E., PTOE
- Subject: Clipper Traders Supplemental Traffic Counts Portsmouth, New Hampshire


Date: October 9, 2018

On October 2, 2018 the Technical Advisory Committee requested that traffic counts be conducted at the Great Rhythm Brewing Company & Play All Day dog day care center parking lot to determine when the busiest traffic periods occur. These traffic counts were conducted on Thursday, October 4, 2018 during the morning and evening commuter periods:

	Hourly \	/olumes	
	Arrivals		Trips
7:00 - 8:00	32	29	61
8:00 - 9:00	<u>35</u>	<u>33</u>	<u>68</u>
2-Hour Total	67	62	129
3:00 - 4:00	22	14	36
4:00 - 5:00	34	37	71
5:00 - 6:00	<u>38</u>	<u>41</u>	<u>79</u>
3-Hour Total	94	92	186
	AM Peak Ho	ur Volumes	
7:30 - 8:30	34	34	68
8:00 - 9:00	35	33	68
	PM Peak Ho	ur Volumes	
4:15 - 5:15	43	42	85

The highest hourly traffic volume that was generated by this parking lot occurred from 4:15 to 5:15 PM with 43 arrivals and 42 departures (85 vehicle-trips).

cc: John Chagnon, P.E. – Ambit Engineering, Inc.
Doug Pinciaro, Clipper Traders, LLC
Ed Hayes, Ricci Lumber
Eric Eby, P.E. – City of Portsmouth
Elizabeth Oltman, P.E. – The Engineering Corporation

TRIP GENERATION

To estimate the quantity of vehicle trips that will be produced by the proposed residential development, Pernaw & Company, Inc. considered the standardized trip-generation rates and equations published by the Institute of Transportation Engineers (ITE)¹. Based upon ITE Land Use Code LUC 221 - Multi-Family Housing (Mid-Rise) the overall development is expected to generate approximately 41 vehicle-trips during the weekday AM peak hour and 53 vehicle-trips during the weekday PM peak hour, on an average weekday basis. These results are based upon consideration of both the trip "rate" and "equation" method, and 120 dwelling units as the independent variable. The following table summarizes the anticipated trip-generating characteristics of the proposed residential development.

Table 1	Trip Generation Sum	mary - Clipper Traders
		120 Dw elling Units ¹
Weekday Total ²		
	Entering	326 veh
	Exiting	<u>326</u> veh
	Total	652 trips
Weekday AM Peak	K Hour ²	
	Entering	11 veh
	Exiting	<u>30 veh</u>
	Total	41 trips
Weekday PM Peak	Hour ²	
	Entering	32 veh
	Exiting	<u>21 veh</u>
	Total	53 trips

¹ ITE LUC 221: Multi-Family Housing (Mid-Rise)

² Trip Equation Method

³ Trip Rate Method

All vehicle-trips associated with the proposed residential development will be "primary" trips, or new trips to the area. Appendix F contains the trip generation computations for the proposed residential development, along with a diagram that summarizes the distribution of the primary trips at the various study area intersections.

¹ Institute of Transportation Engineers, Trip Generation, tenth edition (Washington, D.C., 2017). 1821A 12

_
3
7
E
3
ā
Ē
0
÷
g
<u> </u>
ě
1
ê.
G
0
.=
<u> </u>
-

Alternative: Previous Development Proposal

	>	Veekday <i>H</i>	Weekday Average Daily Trips	ly Trips	~	Weekday AM Peak Hour of Adiacent Street Traffic	eekday AM Peak Hour Adiacent Street Traffic	our of tific	~	Weekday PM Peak Hour of Adiacent Street Traffic	eekday PM Peak Hour Adiacent Street Traffic	our of ffic
ITE Land Use	*	Enter	Exit	Total	*	Enter	Exit	Total	*	Enter	Exit	Total
221 MID-RISE 2		327	326	653		11	30	41		32	21	53
120 Dwelling Units											i	3
Unadjusted Volume		327	326	653		11	30	41		32	21	53
Internal Capture Trips		0	0	0		0	0	0		0	0	0
Pass-By Trips		0	0	0		0	0	0		0	0	0
Volume Added to Adjacent Streets		327	326	653		11	30	41		32	21	53

I otal Weekday AM Peak Hour of Adjacent Street Traffic Internal Capture = 0 Percent Total Weekday PM Peak Hour of Adjacent Street Traffic Internal Capture = 0 Percent

Source: Institute of Transportation Engineers, Trip Generation Manual 10th Edition Custom rate used for selected time period.

TRIP GENERATION 10, TRAFFICWARE, LLC

C-0960-006 November 4, 2020

Mr. Jeff Johnston, Principal Cathartes 100 Summer Street, Suite 1600 Boston, MA 02110

Re: Environmental Summary 105 Bartlett Street Portsmouth, New Hampshire

Dear Mr. Johnston:

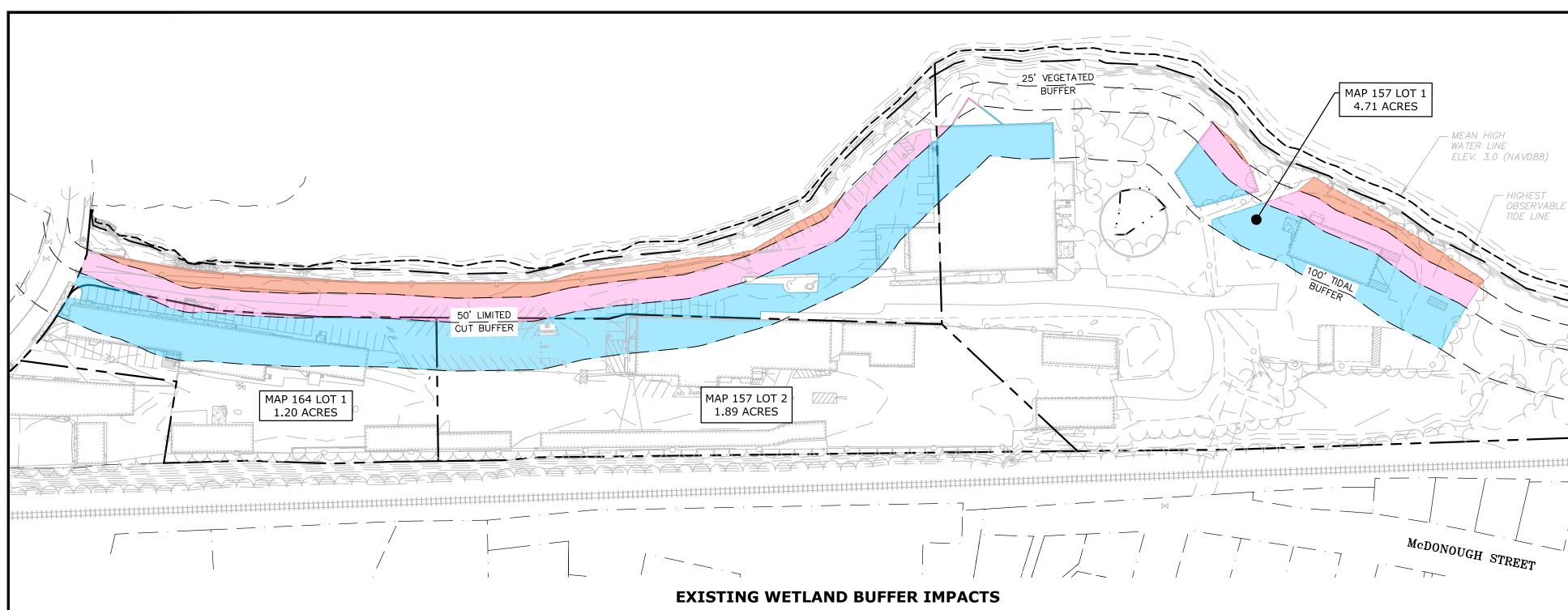
Tighe & Bond conducted an environmental assessment in 2019 for the 105 Bartlett Street, New Hampshire property (herein referred to as the "Site") on behalf of Cathartes. Tighe & Bond conducted a limited subsurface exploration program to help assess the subsurface conditions potentially impacted by historical operations and to better understand potential environmental risks associated with property acquisition and redevelopment.

Below is a summary of potential environmental concerns associated with the Site identified during this limited environmental assessment:

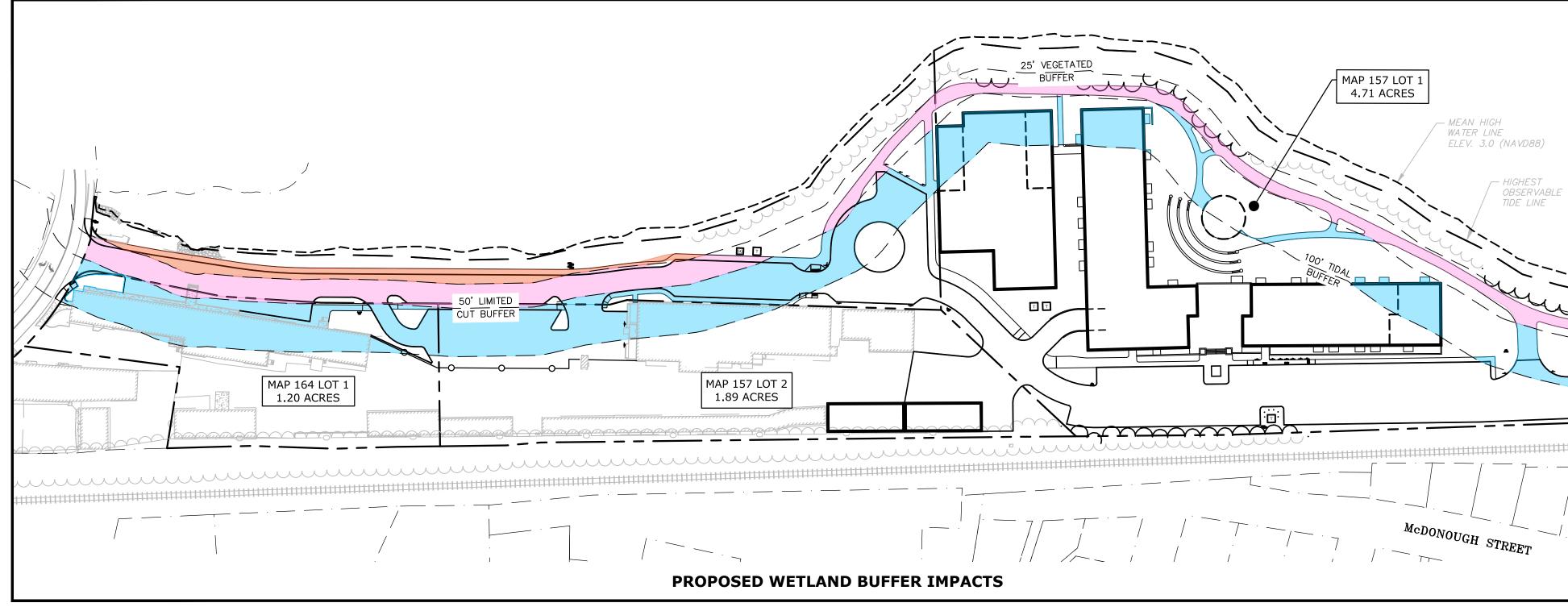
- Tighe & Bond completed an Environmental Site Assessment which included visual field observations of soil and the collection and chemical analysis of both soil and ground water samples across the Site.
 - A total of ten(10) environmental soil samples were collected across the Site and submitted for a comprehensive chemical analysis of volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), total petroleum hydrocarbons (TPH), polychlorinated biphenyl (PCBs), RCRA 8 Metals and reactivity.
 - A total of four(4) groundwater samples were collected across the Site and submitted for a comprehensive chemical analysis of VOCs, SVOCs and dissolved RCRA 8 metals.
- Tighe & Bond concluded that in general, portions of the site are underlain with a layer of anthropogenic fill material at varying thickness which is attributed to the historic site use. The anthropogenic fil material is generally consistent with typical urban sites with similar commercial/industrial historical site uses.
- Portions of the Site were formerly utilized for B&M railroad operations and a foundry. The presence of coal tar was not observed in test pits, and/or the soil and groundwater data collected at the site to date.
- Analytical data from soil samples collected during the 2019 subsurface investigations indicate concentrations of contaminants are typical for similar urban sites are considered background conditions from the anthropogenic fill material at the Site and do not constitute a NHDES reporting condition.

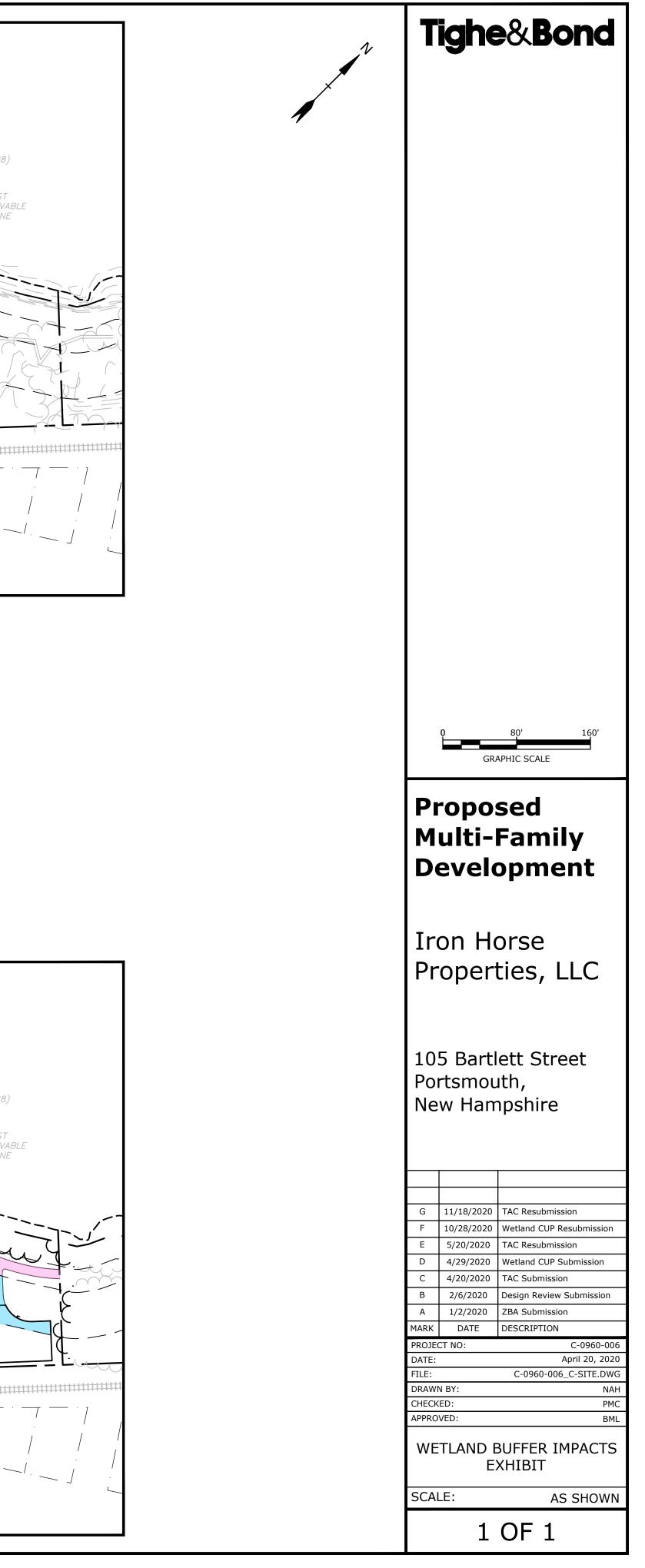
Analytical data obtained from the 2019 groundwater sampling at the Site indicate no exceedances of the NHDES groundwater standards were observed.

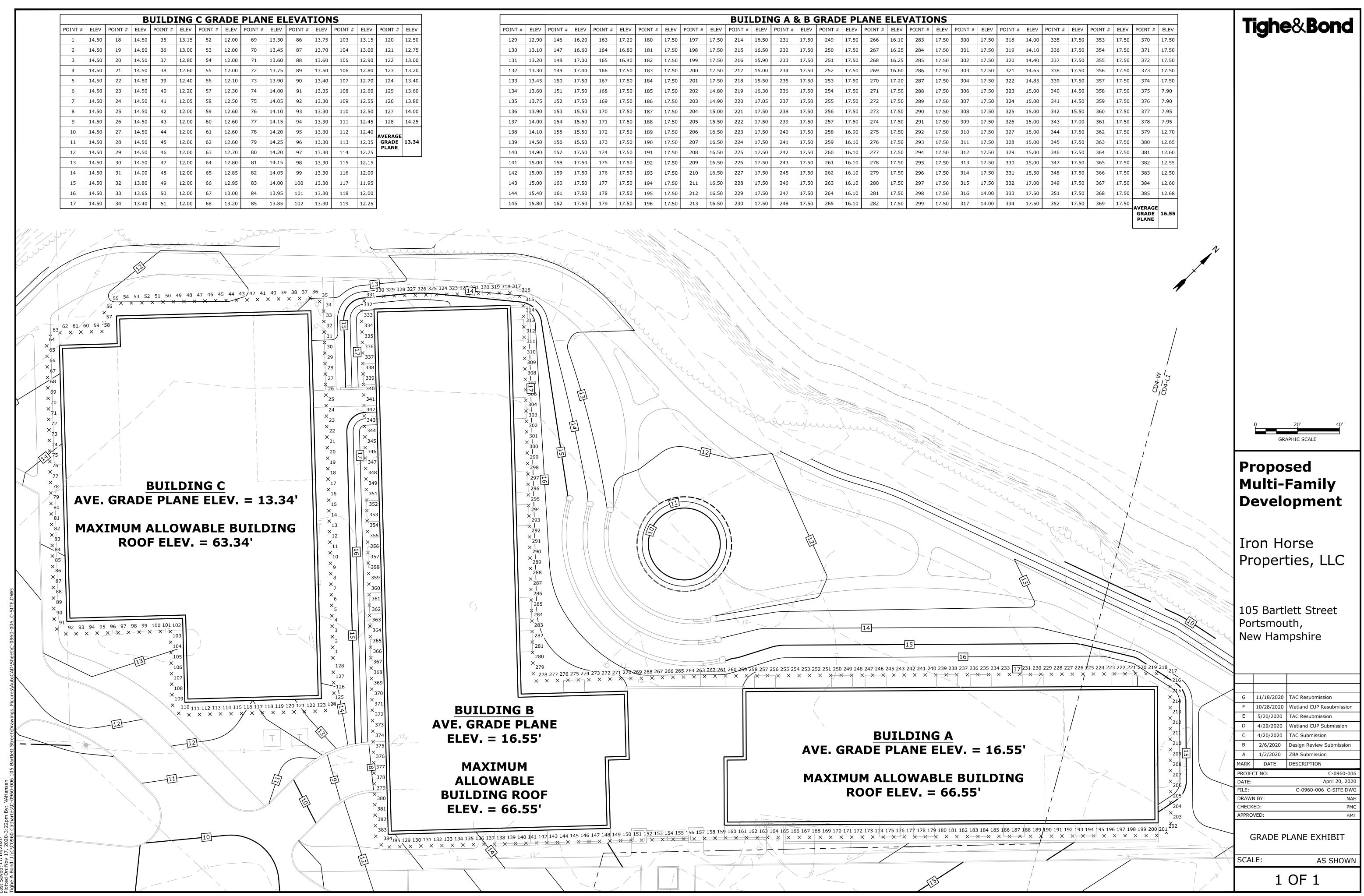
• A 20,000 gallon tank was removed from the site in 1992. The soil in this area has limited petroleum contaminants in soil. This area will be remediated under a soil management plan and in accordance with NHDES regulations during redevelopment.

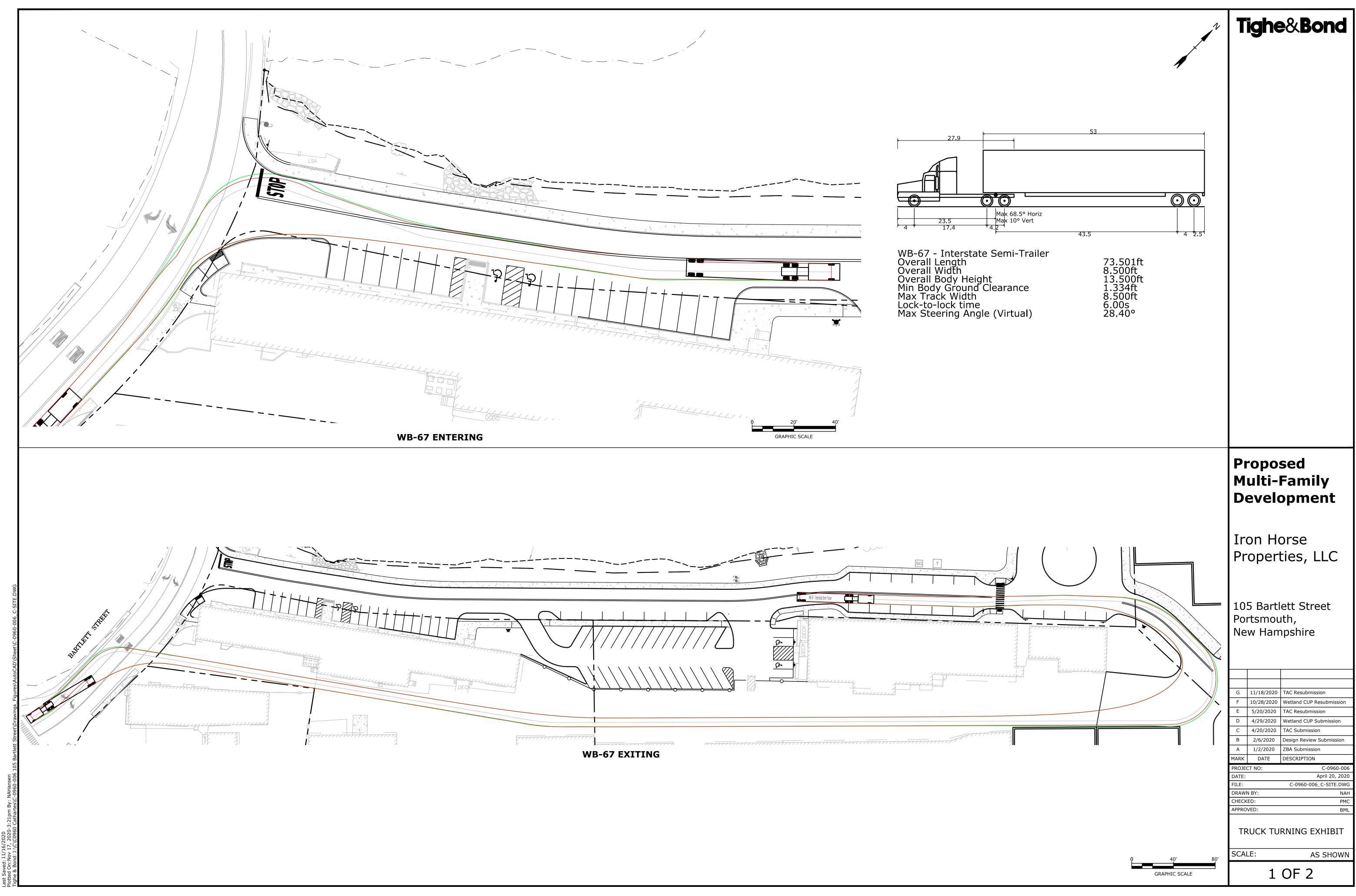

If you have any questions pertaining to this limited subsurface investigation, please feel free to contact the undersigned.

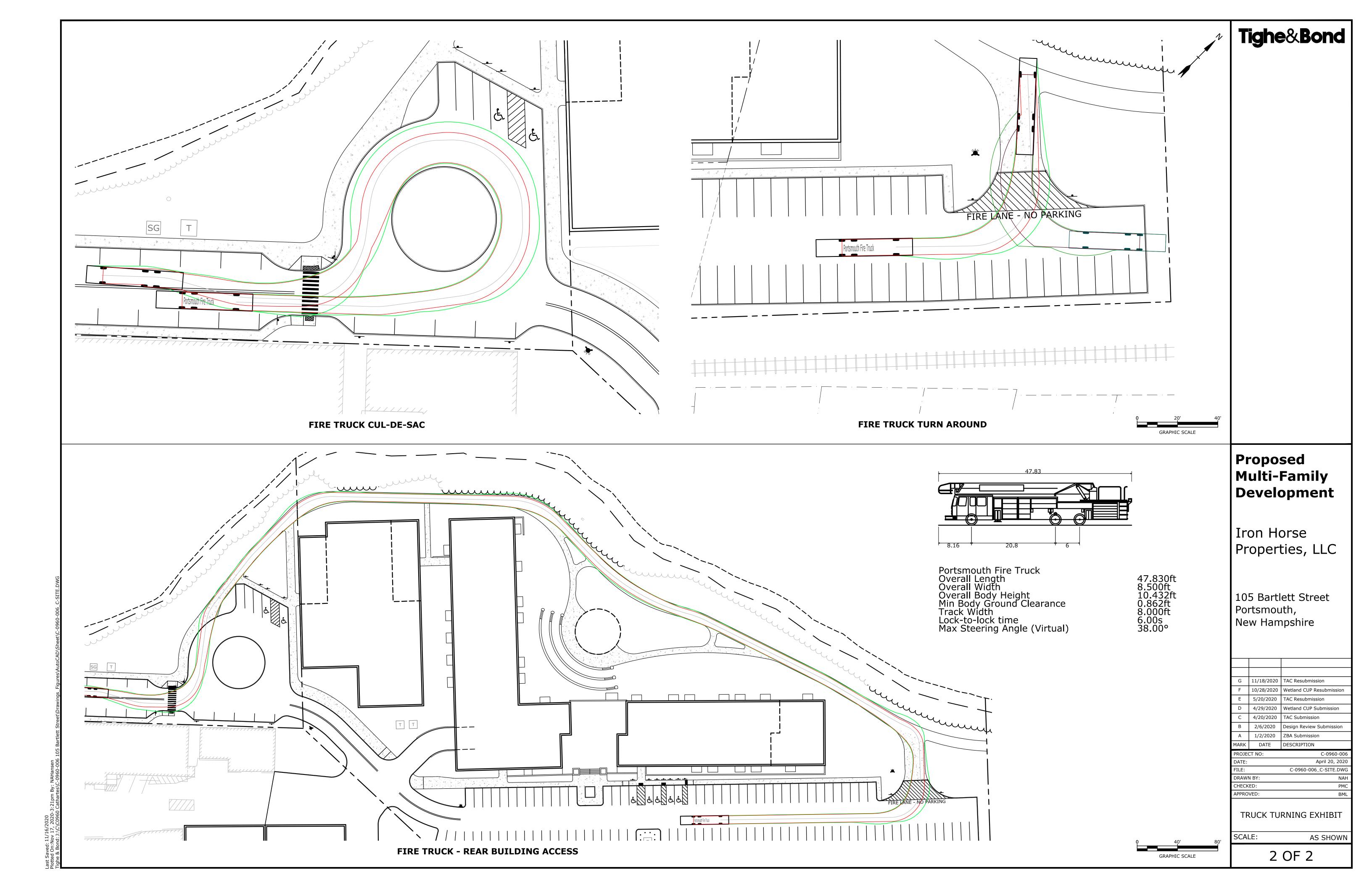
Very truly yours,


TIGHE & BOND, INC.


Bryan Gammons Senior Environmental Scientist


\\Tighebond.com\data\Data\Projects\C\C0960 Cathartes\C-0960-006 105 Bartlett Street\Environmental\Reports\Environmental Memo - November 2020\2020-1104-105 Bartlett Street - Environmental Memo-Final.doc


	NAcio 1	[7] at 1	Deed	······	Dana 1	57 L et 2	Dana 1		
	мар 1	57 Lot 1	Koady	way Lot	імар 1	57 Lot 2	імар 1	64 Lot 1	
Wetland Buffer Setback	Proposed D	evelopment	Privat	e Road	Ricci I	umber	Ricci Des	ign Center	
0 - 25 FT 25 - 50 FT 50 - 100 FT Total Lot Impact et Buffer Improvement on Parcel Overall Project Improvement otes: .) Includes 147 SF of impact in 0 - 2	Existing Impact	Proposed Impact	Existing Impact	Proposed Impact	Existing Impact	Proposed Impact	Existing Impact	Proposed Impact	
0 - 25 FT	3,094 SF (1)	0 SF	9,694 SF	6,664 SF	0 SF	0 SF	0 SF	0 SF	
25 - 50 FT	7,537 SF (2)	8,542 SF (4)	21,656 SF	17,652 SF	422 SF	422 SF 12,610 SF	863 SF 18,839 SF	837 SF	
50 - 100 FT	20,407 SF (3)	14,698 SF	14,253 SF	11,506 SF	13,345 SF			16,135 SF	
Total Lot Impact	31,038 SF	23,240 SF	45,603 SF	35,822 SF	13,767 SF	13,032 SF	19,702 SF	16,971 SF	
Net Buffer Improvement on Parcels	7,79	9 SF	9,78	81 SF	73	5 SF	2,731 SF		
Overall Project Improvement				21,04	46 SF				
Notes:									
1) Includes 147 SF of impact in 0 - 25	ft buffer from the exist	ing railroad turntable st	ructure.						
2) Includes 1,806 SF of impact in 25 -	50 ft buffer from the e	xisting railroad turntable	e structure.						
3) Includes 2,397 SF of impact in 50 -	100 ft buffer from the	existing railroad turntab	le structure.						
4) Includes 8,294 SF of impact in the I	25 - 50 ft buffer for the	City's North Mill Pond T	rail & Greenway						



										BUII	DIN	IG A 8	& B (GRAD	E PL		ELEV	/ATIO	NS			
POINT #	ELEV	PC																				
129	12.90	146	16.20	163	17.20	180	17.50	197	17.50	214	16.50	231	17.50	249	17.50	266	16.10	283	17.50	300	17.50	
130	13.10	147	16.60	164	16.80	181	17.50	198	17.50	215	16.50	232	17.50	250	17.50	267	16.25	284	17.50	301	17.50	
131	13.20	148	17.00	165	16.40	182	17.50	199	17.50	216	15.90	233	17.50	251	17.50	268	16.25	285	17.50	302	17.50	
132	13.30	149	17.40	166	17.50	183	17.50	200	17.50	217	15.00	234	17.50	252	17.50	269	16.60	286	17.50	303	17.50	
133	13.45	150	17.50	167	17.50	184	17.50	201	17.50	218	15.50	235	17.50	253	17.50	270	17.20	287	17.50	304	17.50	
134	13.60	151	17.50	168	17.50	185	17.50	202	14.80	219	16.30	236	17.50	254	17.50	271	17.50	288	17.50	306	17.50	
135	13.75	152	17.50	169	17.50	186	17.50	203	14.90	220	17.05	237	17.50	255	17.50	272	17.50	289	17.50	307	17.50	
136	13.90	153	15.50	170	17.50	187	17.50	204	15.00	221	17.50	238	17.50	256	17.50	273	17.50	290	17.50	308	17.50	
137	14.00	154	15.50	171	17.50	188	17.50	205	15.50	222	17.50	239	17.50	257	17.50	274	17.50	291	17.50	309	17.50	
138	14.10	155	15.50	172	17.50	189	17.50	206	16.50	223	17.50	240	17.50	258	16.90	275	17.50	292	17.50	310	17.50	
139	14.50	156	15.50	173	17.50	190	17.50	207	16.50	224	17.50	241	17.50	259	16.10	276	17.50	293	17.50	311	17.50	
140	14.90	157	17.50	174	17.50	191	17.50	208	16.50	225	17.50	242	17.50	260	16.10	277	17.50	294	17.50	312	17.50	
141	15.00	158	17.50	175	17.50	192	17.50	209	16.50	226	17.50	243	17.50	261	16.10	278	17.50	295	17.50	313	17.50	
142	15.00	159	17.50	176	17.50	193	17.50	210	16.50	227	17.50	245	17.50	262	16.10	279	17.50	296	17.50	314	17.50	
143	15.00	160	17.50	177	17.50	194	17.50	211	16.50	228	17.50	246	17.50	263	16.10	280	17.50	297	17.50	315	17.50	
144	15.40	161	17.50	178	17.50	195	17.50	212	16.50	229	17.50	247	17.50	264	16.10	281	17.50	298	17.50	316	14.00	
145	15.80	162	17.50	179	17.50	196	17.50	213	16.50	230	17.50	248	17.50	265	16.10	282	17.50	299	17.50	317	14.00	

